next up previous contents
Next: Lindenmayer systems Up: Preliminaries Previous: Preliminaries   Contents

Formal language prerequisites

We present the basic notions and notations used in the dissertation, for further information the reader is referred to [SalomaaSalomaa1973],  [Rozenberg and SalomaaRozenberg and Salomaa1980] and [Dassow and PaunDassow and Paun1989].

The set of all non-empty words over a finite alphabet $ V$ is denoted by $ V^+$, the empty word is denoted by $ \lambda$; $ V^*=V^+\cup \{\lambda\}$. For a set $ V$, we denote by card$ (V)$ or by $ \vert V\vert$ the cardinality of $ V$. For a word $ x$, we denote by $ \vert x\vert$ the length of $ x$. If $ a\in V$ and $ x$ is a word over $ V$, then $ {\vert x\vert}_a$ denotes the number of letters $ a$ in $ x$. When $ V_1\subseteq V$ and $ x\in V^*$, then $ {\vert x\vert}_{V_1}={\sum}_{a\in V_1}{\vert x\vert}_a$.

If $ V$ is an alphabet, then $ V^{(2)}$, $ V'$, $ [V,i,j]$, and $ [V,j]$ denote the sets $ \{x^{(2)}\;\vert\;x\in V\}$, $ \{x'\;\vert\;x\in V\}$, $ \{[x,i,j]\;\vert\;x\in V\}$, and $ \{[x,j]\;\vert\;x\in V\}$ for $ 1\leq i,j$, respectively.

If $ x=x_1\cdots x_n$ is a word over an alphabet $ V$, where $ x_j\in V$ for $ 1\leq j\leq n$, then $ [x,i,k]$ and $ [x,i]$ denote the words $ [x_1,i,k]\cdots[x_n,i,k]\in {[V,i,k]}^*$ and $ [x_1,i]\cdots[x_n,i]\in {[V,i]}^*$, respectively, for $ i,k\geq 1$; $ x'$ and $ x^{(2)}$ denote the words $ {x_1}'\cdots {x_n}'\in {V'}^*$ and $ x_1^{(2)}\cdots x_n^{(2)}\in {V^{(2)}}^*$.

Let $ V$ be an alphabet and $ x,y\in V^*$. We use the notation $ x\preceq y$ if $ x$ is a sub-word of $ y$, that is, if $ y=x_1xx_2$ with some words $ x_1,x_2\in V^*$.

By a permutation of the words $ w_1,\ldots,w_n$, written as $ {[w_1,w_2,\ldots,w_n]}^P$, where $ w_i\in V^*$ for $ 1\leq i \leq n$, we mean a word in the form of $ w_{i_1}w_{i_2}\cdots w_{i_n}$, where $ i_{j_1}\not = i_{j_2}$ if $ j_1\not =j_2$ and $ 1\leq i_j\leq n$ for $ 1\leq j\leq n$.

By a language over an alphabet $ V$ we mean a subset $ L$ of $ V^*$. We denote by alph$ (L)$ the set of all letters appearing in at least one word of $ L$. For a word $ w$, alph$ (w)$ denotes the set of all letters appearing in $ w$.

By a context-free production or by a context-free rule (a CF rule, for short) over an alphabet $ V$ we mean a production in the form of $ a\ensuremath{\rightarrow}u$, where $ a\in V$ and $ u\in V^*$. A CF rule is a $ \lambda$-rule (or a deletion rule) if $ u=\lambda$.

For a set of CF rules $ R$, dom$ (R)$ denotes the set of all letters appearing on the left-hand side of a rule in $ R$.


next up previous contents
Next: Lindenmayer systems Up: Preliminaries Previous: Preliminaries   Contents
Csima Judit 2002-01-04