[In English]

Buza Krisztián, adjunktus

Számítástudományi és Információelméleti Tanszék
Villamosmérnöki és Informatikai Kar, BME

E-Mail: buza (kukac) cs (pont) bme (pont) hu
Telefon: + 36 20 912 7426

Adminisztráció telefonszáma: + 36 1 463 2585

Iroda: I. E. 217. 3., 1117 Budapest, Magyar tudósok körútja 2.

Könyv Könyvfejezet Jegyzet
K. Buza (2011): Fusion Methods for Time Series Classification,
Peter Lang Verlag, ISBN: 978-3631630853
Megvásárolható az amazon.de -n vagy letölthető a Hildesheimi Egyetemről.
S. Blohm, K. Buza, P. Cimiano, L. Schmidt-Thieme (2011): Relation Extraction for the Semantic Web with Taxonomic Sequential Patterns, in V. Sugumaran and J.A. Gulla: Applied Semantic Web Technologies, CRC Press, Taylor&Francis Group.
Megvásárolható az amazon.com -n.
Bodon Ferenc, Buza Krisztián (2013):
Adatbányászat
Elektronikus tananyag
Válogatott közlemények

lásd még: MTMT

Krisztian Buza, Gabor Nagy, Alexandros Nanopoulos (2014):
Storage-Optimizing Clustering Algorithms for High-Dimensional Tick Data [paper]
Expert Systems with Applications, Vol. 41, pp. 4148-4157.

Nenad Tomasev, Krisztian Buza, Kristóf Marussy, Piroska B. Kis (to appear): Hubness-aware Classification, Instance Selection and Feature Construction: Survey and Extensions to Time-Series [paper]
In: U. Stanczyk, L. Jain (eds.), Feature selection for data and pattern recognition (tentative title), Springer-Verlag

Krisztian Buza, Gabor I. Nagy, Alexandros Nanopoulos (2014):
Trend analysis and anomaly detection in time series of language usage [poster]
VI. Dubrovnik Conference on Cognitive Science (DUCOG)

Krisztian Buza, Gabor I. Nagy, Alexandros Nanopoulos (2014):
Three Open Questions related to the Tick Data Decomposition Problem [abstract]
Summit240 Conference, abstract

Kristóf Marussy, Krisztian Buza (2013):
SUCCESS: A New Approach for Semi-Supervised Classification of Time-Series [paper]
ICAISC, LNCS Vol. 7894, pages 437-447, Springer.
The original publication is available at www.springerlink.com.

Krisztian Buza, Julia Koller (2013):
Speeding up the classification of biomedical signals via instance selection [abstract] [poster]
5th Dubrovnik Conference on Cognitive Science, Learning & Perception, Volume 5, Supplement 1

Krisztian Buza, Ilona Galambos (2013):
An Application of Link Prediction in Bipartite Graphs: Personalized Blog Feedback Prediction, [paper]
8th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

Gabor I. Nagy, Krisztian Buza (2012):
Efficient Storage of Tick Data That Supports Search and Analysis, [paper] [presentation slides]
12th Industrial Conference on Data Mining, Berlin, LNCS Vol. 7377, pages 38-51, Springer.
Nominated for the Best Paper Award
The original publication is available at www.springerlink.com.

K. Buza, A. Nanopoulos, T. Horváth, L. Schmidt-Thieme (2012):
GRAMOFON: General Model-selection Framework based on Networks, [paper at Elsevier]
to appear in Neurocomputing, Volume 75, Issue 1, pages 163-170, Elsevier

Gabor I. Nagy, Krisztian Buza (2012):
Clustering Algorithms for Storage of Tick Data, [abstract]
The 36th Annual Conference of the German Classification Society on Data Analysis, Machine Learning and Knowledge Discovery August 1-3, 2012, Hildesheim, Germany

Krisztian Buza (2012):
Feedback Predicition for Blogs, [absztrakt] [a cikkben használt adatok] [fóliák] [cikk]
The 36th Annual Conference of the German Classification Society on Data Analysis, Machine Learning and Knowledge Discovery August 1-3, 2012, Hildesheim, Germany

Gabor I. Nagy, Krisztian Buza (2012):
Partitional Clustering of Tick Data to Reduce Storage Space.
IEEE 16th International Conference on Intelligent Engineering Systems

K. Buza, A. Buza, P.B. Kis (2011):
A Distributed Genetic Algorithm for Graph-Based Clustering, [paper] [presentation slides]
Man-Machine Interactions 2, Advances in Intelligent and Soft Computing, Volume 103/2011, pages 323-331, Springer
The original publication is available at www.springerlink.com.

T. Horváth, A. Eckhardt, K. Buza, P. Vojtás, L. Schmidt-Thieme (2011):
Value-transformation for Monotone Prediction by Approximating Fuzzy Membership Functions, [paper] [poster]
12th IEEE International Symposium on Computational Intelligence and Informatics

K. Buza, A. Nanopoulos, L. Schmidt-Thieme (2011):
INSIGHT: Efficient and Effective Instance Selection for Time-Series Classification, [paper]
Proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), LNCS Vol. 6635, pages 149-160, Springer. The original publication is available at www.springerlink.com.

K. Buza, A. Nanopoulos, L. Schmidt-Thieme (2010):
Time-Series Classification based on Individualised Error Prediction, [paper]
13th IEEE International Conference on Computational Science and Engineering (CSE-2010). Best Paper Award

Legtöbb régebbi publikációm megtalálható a korábbi weblapomon.

Önéletrajz
Letölthető innen (angol nyelven).
Oktatás
  • Adatbányászati algoritmusok
  • Adatbányászati technikák
  • Adatbányászat labor (BSc) fóliák
  • Alkalmazott funkcionális és logikai programozás (Logikai programozás rész)
  • Témakiírások Hallgatók számára