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My task is to present the Sections 3.5.3 and 3.5.4. of Liggett’s book. I would like to give a beamer talk,
and to draw several graphs to the blackboard. In bullet points, my concept is to include the following four
parts:

1. Solving Exercise 3.65: generator of the Euclidean norm of Brownian motion in higher dimensions.

2. (Optional, according to how much time I have. Logically it should come here, but I will shift it to the
end of the talk.) Solving Exercise 3.63. b, c: martingales associated to Y (t)−X(t) where {X(t)} is a
Brownian motion and {Y (t)} is its running maximum process.

3. Proving Theorem 3.53.: path continuity of the processes which have generator Lf(x) = 1
2c(x)f ′′(x).

4. Proving Theorem 3.66.: construction of diffusions with generator Lf(x) = 1
2c(x)f ′′(x) under certain

conditions, using discrete approximations associated to continuous time Markov chains.

In more detail, I plan to present these four parts as follows.

1 Solution of Exercise 3.65
Exercise (Liggett 3.65). Let X1(t), . . . , Xn(t) be independent one-dimensional Brownian motions, and con-
sider Y (t) =

√∑n
j=1X

2
j (t). Show that if f ∈ C2[0,∞) has compact support and satisfies f ′(0) = 0, then f

is in the domain of the generator L of Y , and we have Lf(y) = 1
2f
′′(y) + β f

′(y)
y . Specify β = β(n).

The problem for n = 1, has already been solved by Adrián in the first part the talk, then we have β(1) = 0
and the process X1(t) is a reflected Brownian motion. Thus, we may focus on the case n ≥ 2. We write
X(t) = (X1(t), . . . , Xn(t)) and | · | for Euclidean norm.

Solution. First, by Itō’s formula, for Y 2 =
∑n
j=1X

2
j we have

dY (t)2 = 2

n∑
i=1

Xi(t)dXi(t) +

n∑
i=1

d[Xi](t) = 2

n∑
i=1

Xi(t)dXi(t) + ndt.

The cross-covariations are zero because of the independence of X1, . . . , Xn.
We claim that

{Wt} =

{
n∑
i=1

∫ t

0

Xi(t)

|X(t)|
1{(X(t) 6=0)}dXi(t)

}
is a continuous local martingale with quadratic variation 1. In fact, it is a continuous local martingale
as a sum of stochastic integrals of bounded functions w.r.t. independent Brownian motions. Further, the
sum of the quadratic variation of W is given as the sum of the quadratic variations of the summands since
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X1, . . . , Xn are independent. The quadratic variation of the ith summand equals
∫ t

0
X2

i (s)∑n
j=1X

2
j (s)

ds, thus the

q.v. of Wt equals
∫ t

0

∑n
j=1X

2
j (s)∑n

j=1X
2
j (s)

ds = t. By Lévy’s characterization, W is a Brownian motion.

Rewriting the sde for Y 2, we get

dY 2(t) = 2Y (t)dW (t) + ndt.

Applying Itō’s formula to the Itō process Y 2 yields (writing f : x 7→
√
x)

dY (t) = d
√
Y (t)2 =

1

2

1

Y (t)
2Y (t)dW (t) +

1

2

1

Y (t)
ndt︸ ︷︷ ︸

=f ′(Y 2(t))dX(t)

+
1

2
× −1

4

1

Y (t)3
× 4Y (t)2dt︸ ︷︷ ︸

1
2 f

′′(Y 2(t))d[Y ](t)

= dWt +
n− 1

2

dt

dXt

Thus, Dynkin’s formula yields Lf(y) = 1
2f
′′(y) + n−1

2
f ′(y)
y , i.e. β = n−1

2 .
Since Y (t) = |X(t)|, for all x ∈ Rn and f ∈ C2([0,∞)) with compact support, we have Ex [f(Y (t))] =

Ex [f(|X(t)|)]. In order to ensure that Rn 7→ [0,∞), x 7→ f(|x|) be twice continuously differentiable, we need
to have f ′(0) = 0. No further conditions needed for a C2 function f with compact support. This explains
why the one given in the exercise is the domain of L.

2 Solution of Exercise 3.63 b, c
Exercise (Liggett 3.63 b). Consider a stochastic process {X(t), Y (t)} on S = {x, y ∈ R2 : x ≤ y} (upper
diagonal of R2 ), such that for x ≤ y, under P(x,y), {X(t), Y (t)} has the following distribution starting at
(x, y): X(t) be a standard Brownian motion, and Y (t) = max{y,max0≤s≤tX(s)}.

Let g be a 2× continuously differentiable function on R with compact support. We show:

g(Y (t))− g′(Y (t))(Y (t)−X(t))

is a martingale.

Solution. Under P(x,y) this is clearly true under the event {Y = y}, since X is a martingale. Thus from
now on we assume that y = 0; if we show that the claim holds in this case, it also holds for y > 0.

Using the product formula, we conclude that

g(Y (t))− g′(Y (t))(Y (t)−X(t))

= g(Y (t))−
∫ t

0

(Y (s)−X(s))dg′′(Ys)︸ ︷︷ ︸
=0

−
∫ t

0

g′′(Ys)d(Y (s)−X(s))− [g′′(Yt), (Y (t)−X(t)]︸ ︷︷ ︸
=0

= g(Y (t))−
∫ t

0

g′(Y (s))dY (s) +

∫ t

0

g′(Y (s))dX(s)

=

∫ t

0

g′(Y (s))dY (s)+
1

2

∫ t

0

g′′(Y (s))d[Y ]s︸ ︷︷ ︸
=0

−
∫ t

0

g′(Y (s))dY (s)+

∫ t

0

g′(Y (s)) dX(s) =

∫ t

0

g′(Y (s))dX(s)

(1)

is a local martingale. Since g is bounded, also a true martingale1.

Exercise (Liggett 3.63 c). Let ξ be a random variable with values in an interval [a, b] with a ≤ 0 ≤ b,
furthermore E[ξ] = 0 and ξ has a strictly positive density f on [a, b]. Show that X(τ)

d
= ξ for the following

stopping time: τ = min{t ≥ 0 : Y (t) ≥ Ψ(X(t))}, where Ψ(u) =

{
E[ξ| ξ ≥ u] if u < b,

u, if u ≥ b.
2.

1We note that Y (t) increases only when X(t) = Y (t), and this ensures that all stochastic integrals in (1) make sense.
2In the talk I will also explain what is the Skokhorod embedding problem and that here we describe its Azéma–Yor solution.
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Solution. For u ≥ 0, approximating the function x 7→ (x − u)+ by C2 functions with compact support,
we have by part b) that the stochastic process {X(t)1{Y (t)≥u} − u1{Y (t)≥u}}, which is dominated by the
process {X(t) + u}, is a martingale. Hence, Doob’s stopping theorem gives

0 = E(0,0)[X(0)1{Y (0)≥u} − u1{Y (0)≥u}] = E(0,0)(X(τ)1{Y (τ)≥u} − u1{Y (τ)≥u}

= E(0,0)(X(τ)1{Y (τ)≥u} − uP(0,0)(Y (τ) ≥ u).

Hence, for u ≤ b we have uP(Y (τ) ≥ Ψ(u)) = E(X(τ)1{Y (τ)≥Ψ(u)}) = E(X(τ)1{X(τ)≥u}).

Differentiating (and noting that the right hand side equals
∫ b
u
x fX(τ)(x)dx), where fX(τ) is the density

of (X(τ)), gives

Ψ′(u)P(0,0)(Y (τ) ≥ Ψ(u))−Ψ(u)P(0,0)(Y (τ) ∈ Ψ(du)) = −uP(0,0)(X(τ) ∈ du).

That is, P(0,0)(X(τ) ≥ u)Ψ′(u) = [Ψ(u)−u)]P(0,0)(X(τ) ∈ du). On the other hand, elementary computations
show that

P(ξ ≥ u)Ψ′(u) = [Ψ(u)− u)]P(ξ ∈ du).

Consequently, ξ and X(τ) have the same distribution relative to P(0,0).

3 Sufficient condition for path continuity of Feller processes
Theorem 1 (Liggett 3.53.). Suppose c(·) ∈ C(R) and 0 ≤ c(x) ≤ K for all x ∈ R, and that X(t) is a Feller
process that has generator

Lf(x) =
1

2
c(x)f ′′(x) (2)

when restricted to C2 functions with compact support. Then X(t) is a diffusion process.

Here I will follow the proof of Liggett’s book, after revising the claim of the Kolmogorov-Centsov theorem.

4 Existence of diffusions
Theorem 2 (Liggett 3.66). Suppose c(·) is a strictly positive and uniformly bounded C2 function on R
such that the first three derivatives of log c(x) are uniformly bounded by K ≥ 0. Define L as in (2), for
C2 functions on R with compact support. Then the closure of L is the probability generator of a diffusion
process.

Here I will also follow the proof in the book, omitting some uninteresting computations about exact
bounds on derivatives, but showing the entire construction using the discrete approximation by continuous
time Markov chains. In order to provide a better understanding, I will do the resolvent computation (top of
page 131 of Liggett) in more detail than it is in the book. My goal is also to explain about every point of
the definition of probability generator why it is satisfied under the conditions of the theorem.

I have described the following part of Liggett’s book and used the following references during solving the
exercises.
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