An Introduction to Logic Programming

Péter Szeredi

szeredi@cs.bme.hu

Budapest University of Technology and Economics Department of Computer Science and Information Theory

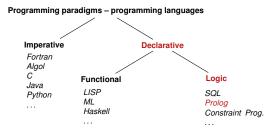
2024 Spring Semester

Part I

Overview

- Overview
- Declarative Programming with Prolog

Prolog in the family of programming languages



Prolog

- Birth date: 1972, designed by Alain Colmerauer, Robert Kowalski
- First public implementation (Marseille Prolog):
 1973, interpreter in Fortran, A. Colmerauer, Ph. Roussel
- Second implementation (Hungarian Prolog): 1975, interpreter in CDL, Péter Szeredi

- First compiler (Edinburgh Prolog, DEC-10 Prolog):
 1977, David H. D. Warren (current syntax introduced)
- Wiki: https://en.wikipedia.org/wiki/Prolog

Prolog examples

Example 1: checking if an integer is a prime

- A Prolog program consists of predicates (functions returning a Boolean)
- Let's write a predicate prime(P) describing that P is a prime
- Let's write an executable specification: first in English, then transform the English text to Prolog code:

- X is Expr is a built-in predicate (BIP) for doing arithmetic
- between(From, To, Int) enumerates in Int all ints between From and To

The slogan of Prolog: WHAT (logic) rather than HOW (execution)

Example 2: append - multiple uses of a single predicate

• app(L1, L2, L3) is true if L3 is the concatenation of L1 and L2.

- app can be used, for example,
 - to check whether the relation holds:

```
| ?- app([1,2], [3,4], [1,2,3,4]). yes
```

to append two lists:

```
| ?- app([1,2], [3,4], L). L = [1,2,3,4] ? ; no
```

to split a list into two:

Predicate app is available as a built-in: append/3 (append with 3 args)

The logic variable

- A variable in Prolog is a "first class citizen" data structure
- The 2nd clause of app sets its 3rd arg. to a list whose tail is yet unknown:
 app([], L, L).

- In the goal (*) L3 can be viewed as a pointer to a location where the output list is to be deposited
- Multiple occurences of yet uninstantiated variables are allowed:

```
double_member(X, List) :- append(_, [X,X|_], List).
```

```
| ?- double_member(X, [a,b,b,a,a]). \Longrightarrow X = b?; X = a?
```

- A single underline (_) is a so called void variable, each occurrence of which represents a new variable
- The data structure [x,x|_] is actually implemented by the first list element cell pointing to the second one (or vice versa)

Example 3: Handling lists in Prolog

Multiply each element of a list by a number:

```
% times(As, M, Bs): List Bs is obtained from number list As by
% multiplying each list element by M.
times([A|As], M, [B|Bs]) :-
   B is M*A, times(As, M, Bs).
times([], _, []).
| ?- times([1,3,4,6], 2, L). \Rightarrow L = [2,6,8,12] ?
```

Merge two sorted lists into a single sorted list

Example 4: Countdown game show number puzzles

- Countdown is a British TV game show in which the players have to construct an arithmetic expression from (a subset of) six given integers so that it evaluates to a given target integer
- Given the list of numbers Is and the target number T, obtain a solution E

- subseq/3 and permutation/2 are available from the lists library
- The third argument of subseq/3 contains the remaining elements from the first argument. Using a void variable _ there means we do not care about that list.
- We only have to write expr leaves/2

Countdown - expr_leaves/2

• We need expr_leaves/2 to generate the valid expressions in a tree form:

```
expr_leaves(E, Is) :-
append(LIs, RIs, Is),

LIs \== [],
RIs \== [],
expr_leaves(LE, LIs),
expr_leaves(RE, RIs),
build_expr(LE, RE, E).
expr_leaves(I, [I]) :-
integer(I).
```

```
% E is a valid formula with
% a given list of leaves Is if
% Is is the concatenation of
% LIs and RIs and
% LIs is not an empty list and
% RIs is not an empty list and
% LE is a formula with leaves LIs and
% RE is a formula with leaves RIs and
% combining LE and RE may yield E.
% I is a valid formula with
% list of leaves [I] if
% I is an integer.
```

Countdown - build_expr/3

• We still need build_expr/3 to define the operations we can use:

- The operator // denotes integer division in Prolog (always yielding an integer result)
- Countdown rules prohibit the use of operations yielding non-positive or fractional results, hence the above restrictions
- This program may give the same (or equivalent) solution several times because of the commutativity and associativity of the operators

Prolog extensions: coroutining (Prolog II)

- Wikipedia: Coroutines are computer program components that allow execution to be suspended and resumed, generalizing subroutines for cooperative multitasking. Coroutines are well-suited for implementing familiar program components such as cooperative tasks, exceptions, event loops, iterators, infinite lists and pipes.
- A typical example of coroutining, the Hamming problem:
 Generate, in increasing order, the sequence of all positive integers divisible by no primes other than 2, 3, 5.
- We implement a simplified version: the only divisors allowed are 2 and 3, re-using predicates times/3 and merge/3 in dataflow programming style
- For this we add the block declaration

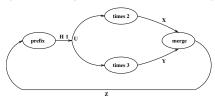
```
:- block times(-, ?, ?).
```

Meaning: suspend pred. times if the first arg. is an unbound variable

Also, suspend pred. merge if the first or second arg is unbound

```
:- block merge(-, ?, ?), merge(?, -, ?).
```

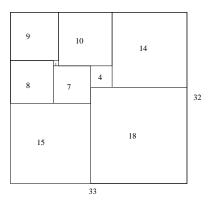
Example 5: Solving the Hamming problem via coroutining



Prolog extensions: CLPQ - Constraint LP on Rationals

Example 6: Perfect rectangles (Prolog III)

- Find a rectangle which can be covered (with no holes and no overlaps) by squares of different sizes
- A solution, with (the minimal number of) 9 squares



Perfect rectangle — CLPQ solution

```
% Colmerauer A.: An Introduction to Prolog III,
% Communications of the ACM, 33(7), 69-90, 1990.
\% Rectangle 1 x Width is covered by distinct
% squares with sizes Ss.
filled_rectangle(Width, Ss) :-
       { Width >= 1 }, distinct_squares(Ss),
       filled_hole([-1,Width,1], _, Ss, []).
% distinct_squares(Ss): All elements of Ss are distinct.
distinct_squares([]).
distinct squares([S|Ss]) :-
       { S > 0 }, outof(Ss, S), distinct_squares(Ss).
outof([], ).
\operatorname{outof}([S|Ss], S0) :- \{ S = \ S0 \}, \operatorname{outof}(Ss, S0).
```

Perfect rectangle, CLPQ solution, ctd.

```
% filled_hole(LO, L, SsO, Ss): Hole in line LO
% filled with squares SsO-Ss (diff list) gives line L.
% Def: h(L): sum of lengths of vertical segments in L.
% Pre: All elements of LO except the first >= 0.
% Post: All elems in L \ge 0, h(L0) = h(L).
filled hole(L, L, Ss, Ss) :-
       L = \lceil V \mid \rceil, \{V >= 0\}.
filled hole([V|HL], L, [S|Ss0], Ss) :-
       { V < 0 }, placed_square(S, HL, L1),
       filled_hole(L1, L2, Ss0, Ss1), { V1=V+S },
       filled hole([V1,S|L2], L, Ss1, Ss).
% placed_square(S, HL, L): placing a square size S on
% horizontal line HL gives (vertical) line L.
% Pre: all elems in HL >=0
% Post: all in L except first >=0, h(L) = h(HL)-S.
placed_square(S, [H,V,H1|L], L1) :-
       \{S > H, V=0, H2=H+H1\}, placed_square(S, [H2|L], L1).
placed_square(S, [S,V|L], [X|L]) :- { X=V-S }.
placed_square(S, [H|L], [X,Y|L]) :-
       \{ S < H, X = -S, Y = H - S \}.
```

Perfect rectangle: sample runs

Prolog extensions – CLPFD (Prolog IV)

CLPFD: Constraint Logic Programming over Finite Domains

Example 7: a cryptarithmetic puzzle in Prolog

- SEND+MORE=MONEY
- Replace each letter with the same digit throughout the above equation
- The digits assigned to letters should be different
- Leading zeroes are not allowed

SEND MORE MONEY – Prolog and CLPFD solutions

Prolog: generate and test (check)

```
:- use_module(library(between)).
sendO(SEND, MORE, MONEY) :-
    Ds = [S.E.N.D.M.O.R.Y].
    maplist(between(0, 9), Ds),
    alldiff(Ds).
    S = \ 0. M = \ 0.
    SEND is 1000*S+100*E+10*N+D.
    MORE is 1000*M+100*O+10*R+E.
    MONEY is
      10000*M+1000*O+100*N+10*E+Y,
    SEND+MORE =:= MONEY.
% alldiff(+L):
% elements of L are all different
alldiff(∏).
alldiff([D|Ds]) :-
    \+ member(D, Ds), alldiff(Ds).
```

Run time: 13.1 sec

CLPFD: test (constrain) and generate

```
:- use_module(library(clpfd)).
send_clpfd(SEND, MORE, MONEY) :-
    Ds = [S,E,N,D,M,O,R,Y],
    domain(Ds, 0, 9),
    all_different(Ds),
    S #\= 0, M #\= 0,
    SEND #= 1000*S+100*E+10*N+D,
    MORE #= 1000*M+100*0+10*R+E,
    MONEY #=
    10000*M+1000*0+100*N+10*E+Y,
    SEND+MORE #= MONEY,
    labeling([], Ds).
```

New implementation features used here:

- associating a domain with a variable
- constraints performing repetitive pruning

Run time: 0.00011 sec

Example 8: a Sudoku solver using CLPFD

- A Sudoku puzzle: 9 x 9 grid, split into 9 3 x 3 boxes, each row, column and box should contain digits 1–9, once each
- A Sudoku puzzle in Prolog: a list of 9 elements (rows), each row being a list of 9 cells. A cell can be a number 1–9, or a variable, example:
- Solving the puzzle instantiates all variables, ensuring that all constraints are satisfied.

```
[[,,,,,,,,,,],
[,,,1,2,,,,],
[,,,1,2,,,,],
[,,,1,4,,,,1],
[,,9,,,,,,],
[5,,,,,,7,,],
[6,,,,,,7,3],
[1,9,,,,,7,3],
[1,1,1,1,1,1,],
```

- Library/BIP predicates used in the solver
 - domain(Vs, Min, Max): Vars in list Vs take values from Min.. Max
 - all_distinct(Vs): Vars in Vs are all different.
 - append(ListOfLs, L): L is the concatenation of lists in ListOfLs
 - length(List, Len): List has length Len
 - same_length(L1, L2): Lists L1 and L2 have the same length
 - transpose (Rs, Cs): Cs is the transpose of matrix Rs
 - maplist(Pred, L): for each X element of L, calls Pred(X)

Sudoku solver, full code

```
% Rows is a valid sudoku grid
sudoku(Rows) :-
   length(Rows, 9),
                                      % The grid has 9 rows
   maplist(same_length(Rows), Rows), % Each row is 9 cells wide
   append(Rows, Vars),
                                     % Vars is a list of all cells
   domain(Vars, 1, 9),
                                      % Each cell value is in 1..9
   maplist(all_distinct, Rows).
                                     % Each row contains distinct values
   transpose(Rows, Cols),
                                     % Cols are the columns in the grid
                                      % Each column contains distinct values
   maplist(all distinct, Cols),
   Rows = [As,Bs,Cs,Ds,Es,
                                     % Get hold of rows 1..9 in variables
           Fs.Gs.Hs.Is].
                                          As. Bs. .... Is
   blocks(As. Bs. Cs).
                                      % Boxes in rows 1-3 are all distinct
   blocks(Ds. Es. Fs).
                                    % Boxes in rows 4-6 are all distinct
   blocks(Gs, Hs, Is),
                                     % Boxes in rows 7-9 are all distinct
   labeling([], Vars).
                                      % Perform the search instantiating all Vars
% blocks(Xs, Ys, Zs): The boxes in consequtive rows Xs, Ys, Zs are all distinct
blocks([], [], []).
blocks([N1,N2,N3|Ns1],
                                     % Obtain the 9 cells from the leftmost box
       [N4,N5,N6|Ns2],
                                     % in the three rows
       [N7.N8.N9|Ns3]) :-
   all distinct([N1,N2,N3,N4,N5,
                                     % Ensure that the cells of the leftmost
                 N6.N7.N8.N9]).
                                     % box are all distinct
   blocks(Ns1, Ns2, Ns3).
                                      % Continue with the remaining boxes, if any.
```

Part II

Declarative Programming with Prolog

- Overview
- Declarative Programming with Prolog

Contents

- Declarative Programming with Prolog
 - Prolog first steps
 - Prolog execution models
 - The syntax of the (unsweetened) Prolog language
 - Further control constructs
 - Operators
 - Further list processing predicates
 - Term ordering
 - Higher order predicates
 - Executable specifications
 - All solutions predicates
 - Efficient programming in Prolog
 - Further reading

Prolog – PROgramming in LOGic: standard (Edinburgh) syntax

```
Standard syntax
                    English
                                                  Marseille syntax
has_p(b, c).
                   % b has a parent c.
                                                  +has_p(b, c).
has_p(b, d).
                                                  +has_p(b, d).
                   % b has a parent d.
has_p(d, e).
                   % d has a parent e.
                                                  +has_p(d, e).
has_p(d, f).
                   % d has a parent f.
                                                  +has_p(d, f).
                    % for all GC, GP, P it holds
has_gp(GC, GP) :- % GC has grandparent GP if
                                                  +has_gp(*GC, *GP)
    has_p(GC, P), % GC has parent P and
                                                     -has_p(*GC,*P)
     has_p(P, GP). % P has parent GP.
                                                      -has p(*P,*GP).
```

```
FOL: \forall GC, GP. (has\_gp(GC, GP) \leftarrow \exists P. (has\_p(GC, P) \land has\_p(P, GP))) Capitalized identifiers (e.g. P, GC) are variables, lower case names (b, has_p) are atoms (symbolic constants)
```

- Prolog execution is a special case of a First Order Logic (FOL) theorem proving approach called resolution, which can also be viewed as pattern-based procedure invocation with backtracking
- Dual semantics: declarative and procedural
 - Slogan: WHAT <u>rather than</u> HOW (focus on the logic first, but then think over Prolog <u>execution</u>, too).

Prolog clauses and predicates - some terminology

- A Prolog program is a sequence of clauses
- A clause represents a statement, it can be
 - a fact, of the form 'head.', e.g. has_parent(a,b).
 - a rule, of the form 'head :- body.',
 e.g. has_gp(GC, GP) :- has_p(GC, P), has_p(P, GP).
- Read ':-' as 'if', ',' as 'and'
- A fact can be viewed as having an empty body, or the body true
- A body is comma-separated list of goals, also named calls
- A head as well as a goal has the form name(argument,...), or just name
- Arguments are terms (cf. FOL terms): variables, constants, ... terms
- A functor of a head or a goal (or of a term, in general) is F/N, where F is the name of the term and N is the number of args (also called arity).
 Example: the functor of the head of (*) is has_gp/2
- The functor of a clause is the functor of its head.
- The set of clauses with the same functor form a *predicate* or *procedure*, e.g. append/3 and append/2 are different predicates/procedures.
- Clauses of a predicate should be contiguous (you get a warning, if not)

And what happened to the *function* symbols of FOL?

- In FOL, atomic predicates have arguments that are terms, built from variables using function symbols, e.g. lseq(plus(X, 2), times(Y, Z))
- In maths this is normally written in *infix operator* notation as $X+2 \le Y \cdot Z$
- In Prolog, graphic characters (and sequences of such) can be used for both predicate and function names:
 =<(+(X,2), *(Y,Z))
- As a "syntactic sweetener", Prolog supports operator notation in user interaction, i.e. (1) is normally input and displayed as X+2 =< Y*Z.
 However, (1) is the internal, canonical format
- The built-in predicate (BIP) write/1 displays its argument using operators,
 while write_canonical/1 shows the canonical form

```
| ?- write(1 - 2 = < 3*4). \implies 1-2=<3*4 | ?- write_canonical(1 - 2 = < 3*4). \implies =<(-(1,2),*(3,4))
```

- Notice that the predicate arguments are not evaluated, function names act as data constructors (e.g. the op. is not necessarily a subtraction):
 | ?- keysort([a-3,p-4,p-2,1-0,e-5],L). ⇒ L = [a-3,e-5,1-0,p-4,p-2]
- Evaluation of arith. exprs is only done by BIPs <, >, =<, >=, =:=, =\= and is

Prolog built-in predicates (BIPs) for unification and arithmetic

Unification. x = y: unifies x and y. Examples:

Arithmetic evaluation. X is A: A is evaluated, the result is unified with X.
 A must be a ground arithmetic expression (ground: no free vars inside)

Arithmetic comparison. A =:= B: A and B are evaluated to numbers.
 Succeeds iff the two numbers are equal.

(Both A and B have to be ground arithmetic expressions.)

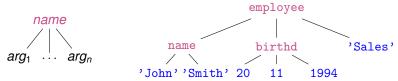
$$| ?- X = 6, 7-1 =:= X.$$
 $\implies X = 6$
 $| ?- X = 6, X*X =:= (X+3)*(X-2).$ $\implies X = 6$
 $| ?- X = 6, X+3 =:= 2*(X-2).$ $\implies no$
 $| ?- X = 6, X+3 =:= 2*(Y-2).$ $\implies 'Instantiation Error'$

Further BIPs: A < B, A > B, A = < B (\le), A >= B (\ge), and $A = \setminus = B$ (\ne)

Data structures in Prolog

Prolog is a dynamically typed language, i.e. vars can take arbitrary values. Prolog data structures correspond to FOL terms. A Prolog term can be:

- var (variable), e.g. X, Sum, _a, _; the last two are void (don't care) vars (If a var occurs once in a clause, prefix it with _, or get a WARNING!!!) Multiple occurrences of a single _ symbol denote different vars.)
- constant (0 argument function symbol):
 - number (integer or float), e.g. 3, -5, 3.1415
 - atom (symbolic constant, cf. enum type), e.g. a, susan, =<, 'John'
- compound, also called record, structure (n-arg. function symbol, n > 0) A compound takes the form: $name(arg_1, ..., arg_n)$, where
 - name is an atom, argi are arbitrary Prolog terms
 - C.g. employee(name('John', 'Smith'), birthd(20,11,1994), 'Sales')
 - Compounds can be viewed as trees



Prolog implementation – some milestones

- 1973: Marseille Prolog (Alain Colmerauer, Philippe Roussel)
 - interpreter in Fortran language
 - term representation: structure-sharing
 - stack structure: single stack (freed upon backtracking)
- 1975: Hungarian Prolog (P. Szeredi) re-impl. of Marseille P. in CDL
 http://dtai.cs.kuleuven.be/projects/ALP/nevsletter/nov04/nav/articles/szeredi/szeredi.html

Based on the last 3 slides of presentation "What is Prolog" by David H. D. Warren https://www.softwarepreservation.org/projects/prolog/edinburgh/doc/Warren-What_is_Prolog-1974.pdf

- 1977: DEC-10 Prolog (D. H. D. Warren)
 - compiler in Prolog and assembly (+ interpreter in Prolog)
 - term representation: structure-sharing
 - stack structure: three stacks (all freed upon backtracking)
 - global stack: global variables (inside compound terms)
 - local (main) stack: procedures, choice-points, variables
 - trail: variable substitutions
- 1983: WAM Warren Abstract Machine (D. H. D. Warren)
 - abstract machine for Prolog (used in SICStus, SWI, GNU . . .)
 - term representation: structure-copying
 - Three stacks as in DEC-10 Prolog

global/local stack

WAM: Storage of Prolog terms (LBT – low bit tagging)

WAM (Warren Abstract Machine): the most widespread Prolog architecture

- Prolog object
- Unbound variable:
- Reference to other variable:
- Atom (symb. constant):
- Integer:
- List:

Compound:

own addr	REF

addr of var REF

atom table index A CON

integer value | I CON

addr LIST

addr: head term tail term

addr STR

addr: functor table index argument term

...

global stack only

Variables in Prolog: the logic variable

A variable cannot be assigned (unified with) two distinct ground values:

```
| ?- X = 1, X = 2. \implies no
```

• Two variables may be unified and then assigned a (common) value:

```
| ?- X = Y, X = 2. \Longrightarrow X = 2, Y = 2 ?
```

 The above apply to a single branch of execution. If we backtrack over a branch on which the variable was assigned, the assignment is undone, and on a new branch another assignment can be made:

```
\begin{array}{lll} has\_p(b,\ c). & has\_p(b,\ d). & has\_p(d,\ e). \\ |\ ?-\ has\_p(b,\ Y). & \Longrightarrow & Y=c\ ?\ ;\ Y=d\ ?\ ;\ no \end{array}
```

 A logic variable is a "first class citizen" data structure, it can appear inside compound terms:

• The Emp data structure represents an arbitrary employee with given name John who works in the Sales department

The logic variable (cont'd)

A variable may also appear several times in a compound, e.g. name(X,X) is a Prolog term, which will match the first argument of the employee/3 record, iff the person's first and last names are the same:

```
employee(1, employee(name('John','John'),birthd(2000,12,21),'Sales')).
employee(2, employee(name('Ann','Kovach'),birthd(1988,8,18),'HR')).
employee(3, employee(name('Peter','Peter'),birthd(1970,2,12),'HR')).

| ?- Emp = employee(name(_X,_X),_,_), employee(Num, Emp).
Num = 1, Emp = employee(name('John','John'),birthd(2000,12,21),'Sales') ?;
Num = 3, Emp = employee(name('Peter','Peter'),birthd(1970,2,12),'HR') ?; no
```

 If a variable name starts with an underline, e.g. _x, its value is not displayed by the interactive Prolog shell (often called the top level)

Classification of Prolog data objects (terms)

 The taxonomy of Prolog terms, and the corresponding BIPs for checking the category the arg. belongs to

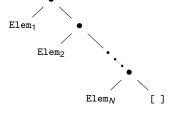
```
Term
                                  var(X)
                                                 X is a variable
                                                 x is not a variable
                                  nonvar(X)
                                  atomic(X)
                                                  x is a constant (atom or number)
var
                nonvar
                                  compound(X)
                                                 X is a compound
           atomic
                     compound
                                  number(X)
                                                 x is a number
                                  atom(X)
                                                 X is an atom
      number
                atom
                                  float(X)
                                                 X is a floating point number
                                  integer(X)
                                                  X is an integer
  float
          integer
```

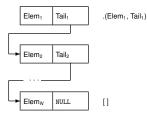
- The five coloured BIPs correspond to the five basic term types.
- Two further type-checking BIPs:
 - simple(X): X is not compound, i.e. it is a variable or a constant.
 - ground(X): X is a constant or a compound with no (uninstantiated)
 variables in it.

Another syntactic "sweetener" – list notation

A Prolog list [a,b,...] represents a sequence of terms (cf. linked list)

```
| ?- L = [a,b,c], write_canonical(L).
'.'(a,'.'(b,'.'(c,[])))
```





(Since version 7, SWI Prolog uses '[|]', instead of '.':-((((.)

- The head of a list is its first element, e.g. L's head: a
 the tail is the list of all but the first element, e.g. L's tail: [b,c]
- One often needs to split a list to its head and tail: List = .(Head, Tail)
 The "square bracketed" counterpart: List = [Head|Tail]
- Further sweeteners: $[E_1, E_2, \dots, E_n | Tail] \equiv [E_1 | [E_2 | \dots, [E_n | Tail] \dots]]$ $[E_1, E_2, \dots, E_n] \equiv [E_1, E_2, \dots, E_n | []]$

Open ended and proper lists

Example:

```
% headO(L): L's first element is 0. headO(L): L = [0|_]. % '_' is a void, don't care variable % singleton(L): L has a single element. singleton([_]). 
| ?- singleton(L1). \Rightarrow L1 = [_A] % L1 = [_A|[]] is a proper list | ?- headO(L2). \Rightarrow L2 = [0|_A] % L2 is an open ended list
```

- A Prolog term is called an open ended (or partial) list iff
 - either it is an unbound variable.
 - or it is a nonempty list structure (i.e. of the form [_|_])
 and its tail is open ended,

i.e. if sooner or later an unbound variable appears as the tail.

- A list is closed or proper iff sooner or later an [] appears as the tail
- Further examples: [X,1,Y] is a proper list, [X,1|Z] is open ended.

Working with lists – examples

(Each occurrence of a void variable (_) denotes a different variable.)

```
|?-[1,2] = [X|Y].
                                \implies X = 1, Y = [2] ?
|?-[1,2] = [X,Y].
                                \implies X = 1, Y = 2 ?
|?-[1,2,3] = [X|Y].
                                \implies X = 1, Y = [2,3] ?
|?-[1,2,3] = [X,Y].
                               ⇒ no
|?-[1,2,3,4] = [X,Y|Z].
                           \implies X = 1, Y = 2, Z = [3,4] ?
|?-L=[a,b], L=[\_,X|\_]. \implies ..., X=b?
    % X is the 2nd elem of L
| ?- L = [a,b], L = [ ,X, | ].
                               \Longrightarrow
                                      no
    % L has at least 3 elements, of which X is the 2nd
                                \implies L = [1,2|_A] ?
| ?- L = [1| ], L = [ ,2| ].
                                       % L is an open ended list
```

List-handling predicates – simple example

- I/O mode notation for pred. arguments (only in comments):
 +: input (bound), -: output (unbound var.), ?: arbitrary.
- Write a predicate that checks if all elements in a list are the same. Let's call such a list A-boring, where A is the element appearing repeatedly.
- Remember, you can read ':-' as 'if', ',' as 'and'

• You can simplify the definition of boring/1 to:

```
boring([], _).
boring([A|L], A) :- boring(L, A).
```

List-handling predicates – further examples

- Given a list of numbers, calculate the sum of the list elements.
- Remember, you can do arithmetic calculations with 'is'

```
% sum(+L, ?Sum): L sums to Sum. (L is a list of numbers.)
sum([], 0).
          % [] sums to 0.
sum([H|T], Sum) :- % A list with head H and tail T sums to Sum if
 sum(T, Sum0), % T sums to Sum0 and
 Sum is SumO+H. % Sum is the value of SumO+H.
```

Given two arbitrary lists, check that they are of equal length.

```
% same_length(?L1, ?L2): Lists L1 and L2 are of equal length.
same_length(L1, L2) :- % L1 and L2 are of equal length if
 L1 = [ |T1],
            % the tail of L1 is T1 and
 L2 = [|T2], % the tail of L2 is T2 and
 same_length(T1, T2). % the T1 and the T2 are of equal length.
```

Concatenating lists

- Let L1
 ⊕ L2 denote the concatenation of L1 and L2,
 i.e. a list consisting of the elements of L1 followed by those of L2.
- Building L1
 ⊕ L2 in an imperative language
 (A list is either a NULL pointer or a pointer to a head-tail structure):
 - Scan L1 until you reach a tail which is NULL
 - Overwrite the NULL pointer with L2
- If you still need the original L1, you have to copy it, replacing its final NULL with L2. A recursive definition of the ⊕ (concatenation) function:

```
L1 \oplus L2 = if L1 == NULL return L2
else L3 = tail(L1) \oplus L2
return a new list structure whose head is head(L1)
and whose tail is L3
```

• Transform the above recursive definition to Prolog:

Efficient and multi-purpose concatenation

- Drawbacks of the app0/3 predicate:
 - Uses "real" recursion (needs stack space proportional to length of L1)
 - Cannot split lists, e.g. app0(L1, [3], [1,3])

 infinite loop
- Apply a generic optimization: eliminate variable assignments
 - Remove goal Var = T, and replace occurrences of variable Var by T
 Not applicable in the presence of disjunctions or if-then-else or the cut (!)
- Apply this optimization to the second clause of app0/3: app0([X|L1], L2, Var) :- app0(L1, L2, L3), Var = [X|L3].
- The resulting code (renamed to app, also available as the BIP append/3)

```
% app(A, B, C): The conc. of A and B is C, i.e. C = A \oplus B app([], L2, L2). % The conc. of [] and L2 is L2. app([X|L1], L2, [X|L3]):- % The conc. of [X|L1] and L2 is [X|L3] if app(L1, L2, L3). % the conc. of L1 and L2 is L3.
```

- append/3 uses tail recursion optimization (TRO), i.e. it is implemented as a loop (thanks to the logic variable)
- append/3 can also be used for further tasks, e.g. finding a prefix of a list, splitting a list into two parts, etc.

Tail recursion optimization

- Tail recursion optimization (TRO), or more generally last call optimization (LCO) is applicable if
 - the goal in question is the last to be executed in a clause body, and
 - no choice points exist in the given predicate.
- LCO is applicable to the recursive call of app/3:

```
app([], L, L).
app([X|L1], L2, [X|L3]) :- app(L1, L2, L3).
```

- This feature relies on open ended lists:
 - It is possible to build a list node before building its tail
 - This corresponds to passing to append a pointer to the location where the resulting list should be stored.
- Open ended lists are possible because unbound variables are first class objects, i.e. unbound variables are allowed inside data structures. (This type of variable is often called the logic variable).

The iterative algorithm for concatenating lists

```
append L1 \oplus L2 depositing (the result) into L3:
rep: if L1 == []
    then L3 = L2
    else split L1 into a head X and a tail T1
         create a new list compound LC whose head is X
         deposit (a pointer to) LC into L3
         append T1 

L2 depositing into the tail of LC % recursive
         L1 = T1, L3 = tail of LC, go to rep % TRO, iterative
```

A C++ implementation

```
struct link { link *next;
              char elem:
              link(char e): elem(e) {} }:
typedef link *list;
list app(list L1, list L2)
{ list L3, *lp = &L3;
 for (list p=L1; p; p=p->next)
 { list newl = new link(p->elem); *lp = newl; lp = &newl->next;
 }
 *lp = L2: return L3:
```

- app(A, B, [1,2,3,4]).

Splitting lists using append

```
A=Γ1
                             B=[1,2,3,4]
                                                  A = [1|A1]
                                                  A?- app(A1, B, [2,3,4]).
                              A=[], B=[1,2,3,4]
                                                       A1 = [2|A2]
                                       A1=[]
                                  B=[2,3,4]
% app(L1, L2, L3):
                                                       (- app(A2, B, [3,4]).
% L1 \oplus L2 = L3.
                                   A=[1], B=[2,3,4]
app([], L, L).
                                                            A2 = [3|A3]
                                            A2=[]
app([X|L1], L2, [X|L3]) :-
                                          B = [3, 4]
    app(L1, L2, L3).
                                                            (A3, B, [4]).
                                        A=[1,2], B=[3,4]
| ?- app(A, B, [1,2,3,4]).
                                                                 A3=[4|A4]
A = [], B = [1,2,3,4] ?;
                                                  A3=[]
A = [1], B = [2,3,4]?;
                                               B=[4]
                                                                 (- app(A4, B, []).
A = [1,2], B = [3,4] ?;
                                             A=[1,2,3], B=[4]
A = [1,2,3], B = [4] ?;
A = [1,2,3,4], B = [] ? ;
                                                          A4=[]
no
                                                          B = []
```

A=[1,2,3,4],B=[]

How does the "openness" of arguments affect append(L1,L2,L3)?

 L2 is never decomposed ("looked inside") by append, its openness does not matter. E.g. obfuscate: use append to implement X = 1: | ?- append([], 1, X). \implies X = 1 ? : no

```
    If L1 is closed, append produces at most one answer
```

```
\implies L = [a,b|T] ?; no
| ?- append([a,b], T, L).
|?-append([a,b], [c|T], L). \Rightarrow L = [a,b,c|T] ? ; no
| ?- append([a,b], [c|T], [_,_,d,_]). \implies no
```

• If L3 is closed (of length n), append produces at most n + 1 answers, where L1 and L2 are closed lists (see previous slide, too):

```
| ?- append(L1,L2,[1,2]). \implies L1=[], L2=[1,2] ? ; L1=[1], L2=[2] ? ;
                                 L1=[1,2], L2=[] ? : no
| ?- append([1,2], L, [1,2,3,4,5]). \implies L = [3,4,5] ? ; no
| ?- append(L1, [4|L2], [1,2,3,4,5]). \implies L1 = [1,2,3], L2=[5] ? ; no
| ?- append(L1,[4,2],[1,2,3,4,5]). \implies no
```

• The search may be infinite: if both the 1st and the 3rd arg. is open ended

```
| ?- append([1|L1], [a,b], L3).
         L1 = [], L3 = [1,a,b] ?; L1 = [A], L3 = [1, A,a,b] ?;
         L1 = [A, B], L3 = [1, A, B, a, b]?; ad infinitum :-((((
But: | ?- append([1|L1], L2, [2|L3]).
```

Eight ways of using append(L1,L2,L3) (safe or unsafe)

```
:- mode append(+, +, +). % checking if appending L1 and L2 gives L3
| ?- append([1,2], [3,4], [1,2,3,4]). \implies yes
  :- mode append(+, +, -). % appending L1 and L2 to obtain suffix L3
| ?- append([1,2], [3,4], L3). \implies L3 = [1,2,3,4] ? ; no
 :- mode append(+, -, +). % checking if L1 is a prefix of L3, obtaining L2
| ?- append([1,2], L2, [1,2,3,4]).
                                   \implies L2 = [3,4] ? ; no
 :- mode append(+, -, -). % prepending L1 to an open ended L2 to obtain L3
| ?- append([1,2], [3|L2], L3). \implies L3 = [1,2,3|L2] ?; no
  :- mode append(-, +, +). % checking if L2 is a suffix of L3 to obtain L1
| ?- append(L1, [3,4], [1,2,3,4]). \implies L1 = [1,2] ? ; no
  :- mode append(-, -, +). % splitting L3 to L1 and L2 in all possible ways
| ?- append(L1, L2, [1]). \implies L1=[],L2=[1] ?; L1=[1],L2=[] ?; no
  :- mode append(-, +, -). (see prev. slide) and :- mode append(-, -, -).
| ?- append(L1, L2, L3). \implies L1=[], L3=L2?; L1=[A], L3=[A|L2]?;
                            L1=[A,B], L3=[A,B|L2] ? ...
```

Variation on append — appending three lists

- Recall: append/3 has **finite** search space, if its 1st **or** 3rd arg. is closed. append($\mathbb{L}_{,-,-}$) completes in $\leq n+1$ reduction steps when \mathbb{L} has length n
- Let us define append(L1, L2, L3, L123): L1 ⊕ L2 ⊕ L3 = L123. First attempt: append(L1, L2, L3, L123) :- append(L1, L2, L12), append(L12, L3, L123).
 - Inefficient: append([1,...,100],[1,2,3],[1], L) 203 and not 103 steps...
 - Not suitable for splitting lists creates an infinite choice point
- An efficient version, suitable for splitting a given list to three parts:

- L3 can be open ended or closed, it does not matter
- If e.g. L1=[1,2] and L123 is unbound, then the first append/3 builds an open ended list in L123:

```
| ?- append([1,2], L23, L123). \Longrightarrow L123 = [1,2|L23] Here L23 will be filled in by the second call of append/3.
```

The BIP length/2 - length of a list

```
% length(?List, ?N): list List is of length N.
```

This built-in predicate can be used in several input-output modes:

 length/2 has an infinite search space if the first argument is an open ended list and the second is a variable.

Appending a list of lists

Library lists contains a predicate append/2

```
% append(LL, L): L is the concatenation of the elements of LL.
% where LL is a closed list of lists.
```

- A further condition for safe use (finite search space):
 - Either each element of LL is a closed list

```
| ?- append([[1,A],[3],[4,B]], L). \implies L = [1,A,3,4,B] ?; no
```

Or L is a closed list

```
| ?- append([L1,L2,L3], [1,2]), L1 \= [],

⇒ L1 = [1], L2 = [], L3 = [2] ?;

L1 = [1], L2 = [2], L3 = [] ?;

L1 = [1,2], L2 = [], L3 = [] ?; no
```

• Using append/2, find a sublist matching a given pattern:

Implement append/2 (naming it app/2), along the lines of append/4

Further Prolog exercise tasks

Consider the following predicates (annotation + indicates a closed list):

```
% pref(+L, ?P): P is a (possibly empty) prefix of list L
% suff(+L, ?S): S is a (possibly empty) suffix of list L
% lst(+L, ?E): E is the last element of L (fails if L is []) last
% memb(?E, +L): E is an element of list L
% selct(?E, +L, ?R): Omitting E from list L gives list R
% rth(?N, +L, ?E): The Nth element of list L is E
nth1
```

- First, implement each of the above predicates by reducing them to a single call of append/3 (except for selct/3 which requires two calls of append/3).
- Next, implement each of the above without using append/3, as a single recursive predicate
- The above predicates are available in library(lists) under the name shown above at the end of line in green

Another recursive data structure – binary tree

- A binary tree data structure can be defined as being
 - either a leaf (leaf) which contains an integer (value)
 - or a node (node) which contains two subtrees (left,right)
- Defining binary tree structures in C and Prolog:

```
% Declaration of a C structure
enum treetype Leaf, Node;
struct tree {
 enum treetype type;
 union {
    struct { int value;
           } leaf:
    struct { struct tree *left;
             struct tree *right;
           } node;
 } u;
```

```
% No need to define types in Prolog
% A type-checking predicate can be
% written, if this check is needed:

% is_tree(T): T is a binary tree
is_tree(leaf(Value)) :-
    integer(Value).

is_tree(node(Left,Right)) :-
    is_tree(Left),
    is_tree(Right).
```

Note: integer(Value) is a BIP which succeeds if and only if v is an integer.

Calculating the sum of numbers in the leaves of a binary tree

- Calculating the sum of the leaves of a binary tree:
 - if the tree is a leaf, return the integer in the leaf
 - if the tree is a node, (recursively) sum the two subtrees and return their sum

```
% C function (declarative)
int tree_sum(struct tree *tree) {
   switch(tree->type) {
   case Leaf:
    return tree->u.leaf.value;
   case Node:
   return
     tree_sum(tree->u.node.left) +
     tree_sum(tree->u.node.right);
   }
}
```

```
% Prolog procedure
% tree_sum(+T, ?S):
% The sum of the leaves
% of tree T is S.
tree_sum(leaf(Value), S):-
    S = Value.
tree_sum(node(Left,Right), S):-
    tree_sum(Right, S1),
        tree_sum(Right, S2),
    S is S1+S2.
```

Sum of Binary Trees – a sample run

```
% sicstus
SICStus 4.3.5 (...)
? - consult(tree). % alternatively: compile(tree). or [tree].
% consulting /home/szeredi/examples/tree.pl...
% consulted /home/szeredi/examples/tree.pl in module user, (...)
| ?- tree_sum(node(leaf(5),
                   node(leaf(3), leaf(2))), Sum).
Sum = 10 ? ; no
| ?- tree sum(leaf(10), 10).
yes
| ?- tree_sum(leaf(10), Sum).
Sum = 10 ? ; no
| ?- tree_sum(Tree, 10).
Tree = leaf(10) ? ;
! Instantiation error in argument 2 of is/2
! goal: 10 is _73+_74
| ?- halt.
```

The cause of the error: the built-in arithmetic is one-way: the goal 10 is S1+S2 causes an error!

Contents

- Declarative Programming with Prolog
 - Prolog first steps
 - Prolog execution models
 - The syntax of the (unsweetened) Prolog language
 - Further control constructs
 - Operators
 - Further list processing predicates
 - Term ordering
 - Higher order predicates
 - Executable specifications
 - All solutions predicates
 - Efficient programming in Prolog
 - Further reading

Two Prolog execution models

- The Goal Reduction model
 - a reformulation of the resolution proof technique
 - · good for visualizing the search tree
- The Procedure Box model
 - reflects actual implementation better
 - used by the Prolog trace mechanism

The Goal Reduction model – the grandparent example

• Goal reduction takes a goal, i.e. a *conjunction* of subgoals G and using a clause G reduces it to a new goal G', so that $G' \to G$

• E.g. reducing $G = \text{has_gp(b, X)}$ using (gp1) gives $G' = \text{has_p(b, P1), has_p(P1, X)}$

```
has p(b, c).
                                    % (p1)
     has_p(b, d).
                                    % (p2)
     has p(d. e).
                                    % (p3)
                                                              has_gp(b, X)
     has p(d, f).
                                    % (p4)
     has_gp(GC, GP) :-
                                                             (gp1)
              has p(GC, P),
              has p(P, GP).
                                    % (gp1)
                                                              has_p(b, P1), has_p(P1, X)
                                               (p1)
                                                                 (p2)
| ?- has_gp(b, X).
                                            P1=c
                                                                      P1=d
                              has_p(c, X)
                                                                               has_p(d, X)
                                                                                 (p4)
                                                                (p3)
                                 (blind alley -- backtrack)
                                                                                     X=f
                                                              X=e
                                                    (empty conjunction = true)
                                                                                (empty conjunction)
```

(success)

(success)

The definition of a goal reduction step

Reduce a goal G to a new goal G' using a program clause Cl_i :

- Split goal G into the first subgoal G_F and the residual goal G_R
- Copy clause Cl_i, i.e. rename all variables to new ones, and split the copy to a head H and body B
- Unify the goal G_F and the head H
 - If the unification fails, exit the reduction step with failure
 - If the unification succeeds with a substitution σ , return the new goal $G' = (B, G_B)\sigma$ (i.e. apply σ to both the body and the residual goal)

```
E.g., slide 54: G = \text{has\_gp(b, X)} using (gp1) \Rightarrow G' = \text{has\_p(b, P1)}, has_p(P1, X)
```

Reduce a goal *G* to a new goal *G'* by executing a built-in predicate (BIP)

- Split goal G into the first, BIP subgoal GF and the residual goal GR
- Execute the BIP G_F
 - If the BIP fails then exit the reduction step with failure
 - If the BIP succeeds with a substitution σ then return the new goal $G' = G_B \sigma$

The goal reduction model of Prolog execution – outline

- This model describes how Prolog builds and traverses a search tree
- A web app for practicing the model: https://ait.plwin.dev/P1-1
- The inputs:
 - a Prolog program (a sequence of clauses), e.g. the has_gp program
 - a goal, e.g.: has_gp(b, GP).
 extended with a special goal, carrying the solution: answer(Sol):
 :- has_gp(b, GP), answer(GP). % Who are the grandparents of a?
 :- has_gp(Ch,GP), answer(Ch-GP). % Which are the child-gparent pairs?
- When only an answer goal remains, a solution is obtained
- Possible outcomes of executing a Prolog goal:
 - Exception (error), e.g. :- Y = apple, X is Y+1.

 (This is not discussed further here)
 - Failure (no solutions), e.g. :- has_p(c, P), answer(P).
 - Success (1 or more solutions), e.g. :- has_p(d, P), answer(P).

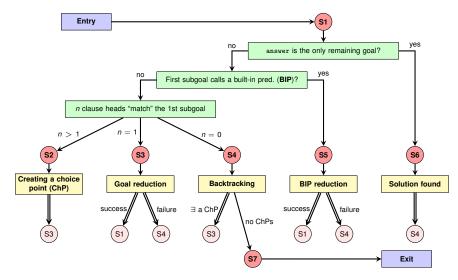
The main data structures used in the model

- There are only two (imperative, mutable) variables in this model:
 Goal: the current goal sequence, ChPSt the stack of choice points (ChPs)
- If, in a reduction step, two or more clause heads unify (match) the first subgoal, a new ChPSt entry is made, storing:
 - the list of clauses with possibly matching heads
 - the current goal sequence (i.e. Goal)

ChPoint name	Clause list	Goal	
CHP2	[p3,p4]	(4)	hasP(d,Y),answer(b-Y).
CHP1	[p2,p3,p4]	(2)	hasP(X,P),hasP(P,Y),answer(X-Y).

- At a failure, the top entry of the ChPSt is examined:
 - the goal stored there becomes the current Goal,
 - the first element of the list of clauses is removed, the second is remembered as the "current clause",
 - if the list of clauses is now a singleton, the top entry is removed,
 - finally the Goal is reduced, using the current clause.
- If, at a failure, ChPSt is empty, execution ends.

The flowchart of the Prolog goal reduction model



(Double arrows indicate a jump to the step in the pink circle, i.e. execution continues at the given red circle.)

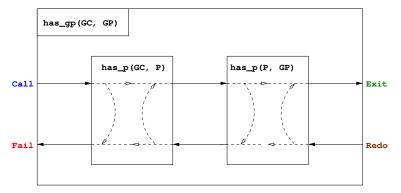
Remarks on the flowchart

- There are seven different execution steps: **S1–S7**, where **S1** is the initial (but also an intermediate) step, and **S7** represents the final state.
- The main task of S1 is to branch to one of S2–S6:
 - when Goal contains an answer goal only ⇒ S6;
 - when the first subgoal of Goal calls a BIP \Rightarrow S5;
 - otherwise the first subgoal calls a user predicate. Here a set of clauses is selected which *contains* all clauses whose heads match the first subgoal (this may be a *superset* of the matching ones).
 Based on the number of clauses ⇒ S2, S3 or S4.
- **S2** creates a new ChPSt entry, and \Rightarrow **S3** (to reduce with the first clause).
- S3 performs the reduction. If that fails ⇒ S4, otherwise ⇒ S1.
- S4 retrieves the next clause from the top ChPSt entry, if any (⇒ S3), otherwise execution ends (⇒ S7).
- In S5, similarly to S3, if the BIP succeeds ⇒ S1, otherwise ⇒ S4.
- In **S6**, the solution is displayed and further solutions are sought (\Rightarrow **S4**).

The Procedure Box execution model – example

The procedure box execution model of has_gp

```
\label{eq:has_gp(GC, GP)} $$has_p(GC, P), $has_p(P, GP).$$ has_p(b, c).$$ $$has_p(b, d).$$ $$has_p(d, e).$$ $$has_p(d, f).$$
```



Prolog tracing (SICStus), based on the four port box model

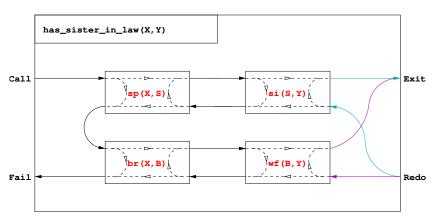
```
| ?- consult(gp3).
% consulting gp3.pl...
% consulted gp3.pl ...
yes
| ?- listing.
has_gp(Ch, G) :-
        has p(Ch, P),
        has_p(P, G).
has_p(b, c).
has_p(b, d).
has_p(d, e).
has_p(d, f).
ves
 ?- trace.
% The debugger will ...
ves
```

```
| ?- has_gp(Ch, f).
Det? BoxId Depth Port Goal
                1 Call: has gp(Ch,f) ?
                2 Call: has_p(Ch,P) ?
                2 Exit: has_p(b,c) ?
?
                2 Call: has p(c,f) ?
                2 Fail: has_p(c,f) ?
                2 Redo: has_p(b,c) ?
                2 Exit: has p(b,d) ?
                2 Call: has_p(d,f) ?
                2 Exit: has_p(d,f) ?
                   No choice left in box 4, box removed (no ?)
                1 Exit: has_gp(b,f) ?
Ch = b?
                1 Redo: has_gp(b,f) ?
                2 Redo: has_p(b,d) ?
                2 Exit: has p(d,e) ?
                2 Call: has_p(e,f) ?
                2 Fail: has p(e,f) ?
                2 Redo: has p(d,e) ?
                2 Exit: has_p(d,f) ?
                   No choice left in box 2, box removed (no ?)
                2 Call: has_p(f,f) ?
                2 Fail: has_p(f,f) ?
                1 Fail: has gp(Ch,f) ?
no
```

The procedure-box of multi-clause predicates

'Sister in law' can be one's spouse's sister; or one's brother's wife:

```
has_sister_in_law(X, Y) :-
    has_spouse(X, S), has_sister(S, Y).
has_sister_in_law(X, Y) :-
    has_brother(X, B), has_wife(B, Y).
```



The procedure-box of a "database" predicate of facts

- In general in a multi-clause predicate the clauses have different heads
- A database of facts is a typical example:

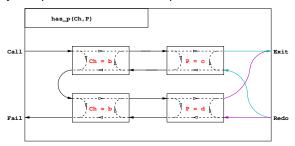
```
has_p(b, c). has_p(b, d).
```

• These clauses can be massaged to have the same head:

```
has_p(Ch, P) :- Ch = b, P = c.

has_p(Ch, P) :- Ch = b, P = d.
```

Consequently, the procedure-box of this predicate is this:



Contents

- Declarative Programming with Prolog
 - Prolog first steps
 - Prolog execution models
 - The syntax of the (unsweetened) Prolog language
 - Further control constructs
 - Operators
 - Further list processing predicates
 - Term ordering
 - Higher order predicates
 - Executable specifications
 - All solutions predicates
 - Efficient programming in Prolog
 - Further reading

Summary – syntax of Prolog predicates, clauses

Example

```
% A predicate with two clauses, the functor is: tree_sum/2
tree sum(leaf(Val), Val).
                                                    clause 1, fact
tree_sum(node(Left,Right), S) :- %
                                          head
   tree_sum(Left, S1),
                                 % goal \
    tree sum(Right, S2),
                                 % goal | body | clause 2, rule
    S is S1+S2.
                                 % goal
Syntax
⟨ program ⟩ ::= ⟨ predicate ⟩ . . . {i.e. a sequence of predicates}
⟨ predicate ⟩::= ⟨ clause ⟩ . . .
                                  {with the same functor}
⟨clause⟩ ::= ⟨fact⟩.⊔|
                ⟨rule⟩.∟
⟨ fact ⟩ ::=
                (head)
⟨ head ⟩:-⟨ body ⟩
                                  {clause functor = head functor}
body \rangle ::= \langle goal \rangle, ...
                                  {i.e. a seq. of goals sep. by commas}
head > ::=
                (callable term)
                                  {atom or compound}
                (callable term)
                                  {or a variable, if instantiated to a callable}
goal >
           ::=
```

Prolog terms (canonical form)

Example – a clause head as a term

```
% tree_sum(node(Left,Right), S)
                                       % compound term, has the
                                       % functor tree sum/2
  compound name \ argument, variable
%
                      - argument, compound term
Syntax
⟨term⟩
                        ⟨ variable ⟩ |
                                               {has no functor}
                         constant > |
                                               {\langle constant \rangle /0}
                        \langle compound term \rangle \mid \{\langle comp. name \rangle / \langle \# of args \rangle \}
                        ... extensions ... {lists, operators}
(constant)
                        ⟨ atom ⟩ |
                                               {symbolic constant}
                         number >
( number )
                  ::=
                        〈integer〉|〈float〉
compound term ::=
                        ⟨comp. name⟩ ( ⟨argument⟩, ...)
 comp. name >
                        ⟨ atom ⟩
                  ::=
 argument > ::=
                         term >
callable term >

⟨ atom ⟩ | ⟨ compound term ⟩

                  ::=
```

Lexical elements

Examples

```
% variable: Fact FACT _fact X2 _2 _
               fact ≡ 'fact' 'István' [] ; ',' += ** \= ≡ '\\='
% atom:
% number:
             0 -123 10.0 -12.1e8
% not an atom: !=, István
% not a number: 1e8 1.e2
Syntax
(variable)
                  ::= \langle capital letter \langle alphanum \langle \ldots \langle
                        (alphanum)...
                  ::= '\' quoted char \\...' |
( atom )
                        ⟨ lower case letter ⟩ ⟨ alphanum ⟩... |
                        ⟨ sticky char ⟩... | ! | ; | [] | {}
                        {signed or unsigned sequence of digits }
〈integer〉
                  ::=
〈float 〉
                  ::=
                        { a sequence of digits with a compulsory decimal point
                         in between, with an optional exponent)
⟨ quoted char ⟩ ::=
                        {any non ' and non \ character} | \ \ escaped char \
 alphanum \ ::= \langle lower case letter \rangle | \langle upper case letter \rangle | \langle digit \rangle | _

⟨ sticky char ⟩ ::= + | - | * | / | \ | $ | ^ | < | > | = | ' | ~ | : | . | ? | @ | # | & |
```

Comments and layout in Prolog

- Comments
 - From a % character till the end of line
 - From /* till the next */
- Layout (spaces, newlines, tabs, comments) can be used freely, except:
 - No layout allowed between the name of a compound and the "("
 - If a prefix operator (see later) is followed by "(", these have to be separated by layout
 - Clause terminator (.□): a stand-alone full stop (i.e., one not preceded by a sticky char), followed by layout
- The recommended formatting of Prolog programs:
 - Write clauses of a predicate continuously, no empty lines between
 - Precede each pred. by an empty line and a spec (head comment)

```
% predicate_name(A1, ..., An): A declarative sentence (statement)
% describing the relationship between terms A1
```

- % describing the relationship between terms A1, ..., An
- Write the head of the clause at the beginning of a line, and prefix each goal in the body with an indentation of a few (8 recommended) spaces.

Contents

- Declarative Programming with Prolog
 - Prolog first steps
 - Prolog execution models
 - The syntax of the (unsweetened) Prolog language
 - Further control constructs
 - Operators
 - Further list processing predicates
 - Term ordering
 - Higher order predicates
 - Executable specifications
 - All solutions predicates
 - Efficient programming in Prolog
 - Further reading

Disjunctions

- Disjunctions (i.e. subgoals separated by "or") can appear as goals
- A disjunction is denoted by semicolon (";")
- Enclose the whole disjunction in parentheses, align chars (, ; and)

```
has_sister_in_law(X, Y) :-
    ( has_spouse(X, S), has_sister(S, Y)
    ; has_brother(X, B), has_wife(B, Y)
    ).
```

• The above predicate is equivalent (and expands) to:

```
has_sister_in_law(X, Y) :- has_spouse(X, S), has_sister(S, Y).
has_sister_in_law(X, Y) :- has_brother(X, B), has_wife(B, Y).
```

A disjunction is itself a valid goal, it can appear in a conjunction:

Can you make an equivalent variant which does not use ";"?

Disjunctions, continued

An example with multiple disjunctions:

- Note: the V=Term goals can no longer be got rid of in disjunctions
- Comma binds more tightly than semicolon, e.g.

```
p :- (q, r; s) \equiv p :- ((q, r); s).
```

Please, never enclose disjuncts (goals on the sides of ;) in parentheses!

You can have more than two-way "or"s:

```
p := (a; b; c; ...) which is the same as p := (a; (b; (c; ...)))
```

Please, do not use the unnecessary parentheses (colored red)!

Expanding disjunctions to helper predicates

• Example: p :- q, (r ; s).

p :- q, r. p :- q, s.

Distributive expansion inefficient, as it calls q twice: p:• For an efficient solution introduce a helper predicate. Example:

```
g(X, Z):-
p(X,Y),
( q(Y,U), r(U,Z);
s(Y, Z);
t(Y), w(Z)
),
v(X, Z).
```

- Collect variables that occur both inside and outside the disj. Y,Z.
- Define a helper predicate aux(Y,Z) with these vars as args, transform each disjunct to a separate clause of the helper predicate:

```
aux(Y, Z) :- q(Y,U), r(U,Z).
aux(Y, Z) :- s(Y, Z).
aux(Y, Z) :- t(Y), w(Z).
```

Replace the disjunction with a call of the helper predicate:

```
g(X, Z) := p(X, Y), aux(Y, Z), v(X, Z).
```

The if-then-else construct

 When the two branches of a disjunction exclude each other, use the if-then-else construct (condition -> then; else). Example:

- pow1 is about 25% faster than pow and requires much less memory
- The atom -> is a standard operator
- The construct (Cond -> Then ; Else) is executed by first executing Cond. If this succeeds, Then is executed, otherwise Else is executed.
- **Important**: Only the first solution of Cond is used for executing Then. The remaining solutions are discarded!
- Note that (Cond -> Then ; Else) looks like a disjunction, but it is not
- The else-branch can be omitted, it defaults to false.

Defining "childless" using if-then-else

- Given the has_parent/2 predicate, define the notion of a childless person
- If we can find a child of a given person, then childless should fail, otherwise it should succeed.

- What happens if you call childless(P), where P is an unbound var?
 Will it enumerate childless people in P? No, it will simply fail.
- The above if-then-else can be simplified to:

```
childless(Person) :- \+ has_parent(_, Person).
```

- "\+" is called Negation by Failure (NF), as "\+ G" runs by executing G:
 - if G fails "\+ G" succeeds.
 - if G succeeds "\+ G" fails (ignoring further solutions of G, if any)
- Since a failed goal produces no bindings, "\+ G" will never bind a variable.

Open and closed world assumption (ADVANCED)

```
has_parent(a, b). has_parent(a, c). has_parent(c, d). (1)-(3)
```

- Does (1)-(3) imply that a is childless: $\varphi = \forall x. \neg \text{has_parent}(x, a)$?
- ullet No. Although has_parent(Ch, a) cannot be proven, arphi does not hold!
- But in the world of databases we do conclude that a is childless. . .
- Databases use the Closed World Assumption (CWA): anything that cannot be proven is considered false.
- Mathematical logic uses the Open World Assumption (OWA)
 - A statement S follows from a set of statements P (premises),
 if S holds in any world (interpretation) that satisfies P.
 - thus φ is not a logical consequence of (1)-(3)
- Classical logic (OWA) is monotonic: the more you know, the more you can deduce
- Negation by failure (CWA) is non-monotonic:
 add the fact "has_parent(e, a)." to (1)-(3) and \+ has_parent(_, a) will fail.

Checking inequality - siblings and cousins

```
has_p('Charles', 'Elizabeth'). has_p('Andrew', 'Elizabeth'). has_p('William', 'Charles'). has_p('Beatrice', 'Andrew'). has_p('Harry', 'Charles'). has_p('Eugenie', 'Andrew').
```

Let's define predicate has_sibling/2, first attempt:

```
has_sibling0(A, B) :- \ + A = B, has_p(A, P), has_p(B, P).
```

has_sibling0 does not work properly, e.g. this goal fails:

```
| ?- has_siblingO('Charles', X).
```

```
because \+ 'Charles' = X fails (as 'Charles' = X succeeds)
```

 Negated goals should be instantiated as much as possible, therefore always place them at the end of the body:

```
has_sibling(A, B) :- has_p(A, P), has_p(B, P), + A = B.
```

• Define has_cousin/2 (using has_gp/2, the "has grandparent" predicate) has_cousin(A, B) :- has_gp(A, GP), has_gp(B, GP), \+ has_sibling(A, B), A \= B.

Note that the BIP A \= B is equivalent to \+ A = B

Expressing negation using if-then-else, and vice versa

Negation can be fully defined using if-then-else

```
( p -> false

+ p = ; true

)
```

If-then-else can be transformed to a disjunction with a negation:

These are equivalent only if cond succeeds at most once. The if-then-else is more efficient (no choice point left).

As semicolon is associative, please do not use nested parentheses (...)
 if multiple if-then-else branches are present:

Using double negation for "checking" loops

Recall an earlier example:

```
prime(P) := P > 1, Q is P-1, \+ ( between(2, Q, I), P mod I =:= 0 ).
```

- Notice how negation, combined with the backtracking search of Prolog, leads to a loop for checking if P is a prime.
- Let us generalize this as a meta-predicate (predicate with predicate args):

• Note that forall/2, because of \+, will never instantiate variables, hence zero_vector can be used for checking, but not generating:

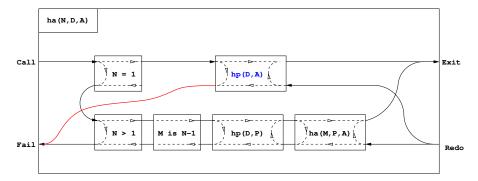
```
\begin{array}{lll} | ?- zero_vector([0,1,0,0]). & \Longrightarrow & no \\ | ?- zero_vector([0,0,0,0]). & \Longrightarrow & yes \\ | ?- L = [\_,\_,\_], zero_vector(L). & \Longrightarrow & L = [\_A,\_B,\_C,\_D] ? ; no \end{array}
```

The procedure-box of disjunctions

A disjunction can be transformed into a multi-clause predicate

```
has sister in law(X, Y) :-
                                                   has sister in law(X, Y) :-
        has spouse(X, S), has sister(S, Y)
                                                       has_spouse(X, S), has_sister(S, Y).
                                                   has sister_in_law(X, Y) :-
                                                       has brother(X, B), has wife(B, Y).
        has brother(X, B), has wife(B, Y)
    ).
         has_sister_in_law(X,Y)
  Call
                                                                                   Exit
                          br(X,B)
  Fail
                                                                                   Redo
```

The procedure box for if-then-else

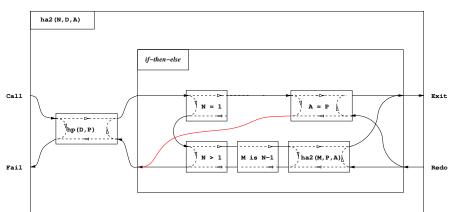


Failure of the "then" part leads to failure of the whole if-then-else construct

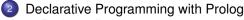
The if-then-else box, continued

 When an if-then-else occurs in a conjunction, or there are multiple clauses, then it requires a separate box

```
ha2(N, D, A) :- hp(D, P), ( N = 1 -> A = P ; N > 1, M is N-1, ha2(M, P, A) ).
```



Contents



- Prolog first steps
- Prolog execution models
- The syntax of the (unsweetened) Prolog language
- Further control constructs
- Operators
- Further list processing predicates
- Term ordering
- Higher order predicates
- Executable specifications
- All solutions predicates
- Efficient programming in Prolog
- Further reading

Introducing operators

- Example: S is -S1+S2 is equivalent to: is(S, +(-(S1),S2))
- Syntax of terms using operators

• The built-in predicate for defining operators:

```
op(Priority, Type, Op) Of op(Priority, Type, [Op1,Op2,...]):
```

- Priority: an int. between 1 and 1200 smaller priorities bind tighter
- Type determines the placement of the operator and the associativity: infix: yfx, xfy, xfx; prefix: fy, fx; postfix: yf, xf (f - op, x, y - args)
- Op or Op_i: an arbitrary atom
- The call of the BIP op/3 is normally placed in a directive, executed immediately when the program file is loaded, e.g.:
 :- op(800, xfx, [has_tree_sum]).
 leaf(V) has_tree_sum V.

Characteristics of operators

Operator properties implied by the operator type

	Type	Class	Interpretation		
left-assoc.	right-assoc.	non-assoc.			
yfx	xfy	xfx	infix	$X f Y \equiv f(X, Y)$	
	fy	fx	prefix	$f X \equiv f(X)$	
yf		xf	postfix	$X f \equiv f(X)$	

Parentheses implied by operator priorities and associativities

- $a/b+c*d \equiv (a/b)+(c*d)$ as the priority of / and * (400) is less than the priority of + (500) smaller priority = stronger binding
- a-b-c = (a-b)-c as operator has type yfx, thus it is left-associative, i.e. it binds to the left, the leftmost operator is parenthesized first
 (the position of y wrt. f shows the direction of associativity)
- a^b^c \equiv a^(b^c) as ^ has type xfy, therefore it is right-associative
- a=b=c ⇒ syntax error, as = has type xfx, it is non-associative
- the above also applies to different operators of same type and priority:
 a+b-c+d = ((a+b)-c)+d

Standard built-in operators

Standard operators

```
1200
      xfx
1200
       fx
            :- ?-
1100
      xfv
1050
      xfy ->
1000
      xfv
900
       fy
           \+
700
      xfx
            = \= = . .
            < =< =:= =\=
            > >= is
            == \==
            0< 0=< 0> 0>=
500
      yfx
            + - /\ \/
400
      vfx
            * / // rem
            mod << >>
200
      xfx
            **
200
      xfv
200
       fy
```

Further built-in operators of SICStus Prolog

```
1150
       fx
            mode public dynamic
            volatile discontiguous
            initialization multifile
            meta_predicate block
1100
      xfy
            do
900
       fy
            spy nospy
550
      xfy
500
      yfx
200
       fy
```

Operators – additional comments

- The "comma" is heavily overloaded:
 - it separates the arguments of a compound term
 - it separates list elements
 - it is an xfy op. of priority 1000, e.g.:
 (p:-a,b,c)=:-(p,','(a,','(b,c)))
- Ambiguities arise, e.g. is $p(a,b,c) \stackrel{?}{=} p((a,b,c))$?
- Disambiguation: if the outermost operator of a compound argument has priority ≥ 1000, then it should be enclosed in parentheses

```
| ?- write_canonical((a,b,c)). ⇒ ','(a,','(b,c))
| ?- write_canonical(a,b,c). ⇒ Error: ! write_canonical/3 does not exist
| ?- write_canonical((hgp(A,B):-hp(A,C),hp(C,B))).
```

• Note: an unquoted comma (,) is an operator, but not a valid atom

 \Rightarrow :-(hgp(A,B),','(hp(A,C),hp(C,B)))

Functions and operators allowed in arithmetic expressions

 The Prolog standard prescribes that the following functions can be used in arithmetic expressions:

```
plain arithmetic:
        +X, -X, X+Y, X-Y, X*Y, X/Y,
        X//Y (int. division, truncates towards 0),
        X div Y (int. division, truncates towards -\infty),
        X rem Y (remainder wrt. //),
        X mod Y (remainder wrt. div),
        X**Y, X^Y (both denote exponentiation)
conversions:
        float_integer_part(X), float_fractional_part(X), float(X),
        round(X), truncate(X), floor(X), ceiling(X)
bit-wise ops:
        X/Y, X/Y, xor(X,Y) \equiv X \setminus Y, X (negation), X << Y, X >> Y (shifts)
other:
         abs(X), sign(X), min(X,Y), max(X,Y),
         sin(X), cos(X), tan(X), asin(X), acos(X), atan(X),
         atan2(X,Y), sqrt(X), log(X), exp(X), pi
```

Uses of operators

- What are operators good for?
 - to allow usual arithmetic expressions, such as in X is (Y+3) mod 4
 - processing of symbolic expressions (such as symbolic derivation)
 - for writing the clauses themselves

```
(:-, ', ', ; ... are all standard operators)
```

- clauses can be passed as arguments to meta-predicates:
 asserta((p(X):-q(X),r(X)))
- to make Prolog data structures look like natural language sentences (controlled English), e.g. Smullyan's island of knights and knaves (knights always tell the truth, knaves always lie):

```
We meet natives A and B, A says: one of us is a knave.
```

```
| ?- solve_puzzle(A says A is a knave or B is a knave).
```

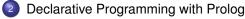
 to make data structures more readable: acid(sulphur, h*2-s-o*4).

Classical symbolic computation: symbolic derivation

 Write a Prolog predicate which calculates the derivative of a formula built from numbers and the atom x using some arithmetic operators.

```
% deriv(Formula, D): D is the derivative of Formula with respect to x.
deriv(x, 1).
deriv(C, 0) :-
                                     number(C).
deriv(U+V, DU+DV) :-
                                     deriv(U, DU), deriv(V, DV).
deriv(U-V, DU-DV) :-
                                     deriv(U, DU), deriv(V, DV).
deriv(U*V, DU*V + U*DV) :-
                                     deriv(U, DU), deriv(V, DV).
| ?- deriv(x*x+x, D).
                            \implies D = 1*x+x*1+1 ? : no
| ?- deriv((x+1)*(x+1), D).
                                   D = (1+0)*(x+1)+(x+1)*(1+0) ?; no
\mid ?- \operatorname{deriv}(I, 1*x+x*1+1). \Longrightarrow I = x*x+x ? : no
| ?- deriv(I, 2*x+1).
                                   nο
| ?- deriv(I, 0).
                                   no
```

Contents



- Prolog first steps
- Prolog execution models
- The syntax of the (unsweetened) Prolog language
- Further control constructs
- Operators
- Further list processing predicates
- Term ordering
- Higher order predicates
- Executable specifications
- All solutions predicates
- Efficient programming in Prolog
- Further reading

Finding list elements – BIP member/2

| ?- member(X, [1,2,1]). $\Longrightarrow X = 1$?; X = 2 ?; X = 1 ?; no • Finding common elements of lists – with both above modes:

```
| ?- member(X, [1,2,3]),
member(X, [5,4,3,2,3]). \Longrightarrow X = 2 ? ; X = 3 ? ; X = 3 ? ; no
```

 $| ?- member(X, [1,2,3]). \implies X = 1 ? ; X = 2 ? ; X = 3 ? ; no$

Mode member (+,-) - making a term an element of a list (infinite choice):

```
| ?- member(1, L). \implies L = [1|A] ?; L = [A,1|B] ?; L = [A,B,1|C] ?; ...
```

The search space of member/2 is finite, if the 2nd argument is closed.

Reversing lists

Naive solution (quadratic in the length of the list)

```
% nrev(L, R): List R is the reverse of list L.
nrev([], []).
nrev([X|L], R) :-
    nrev(L, RL),
    append(RL, [X], R).
```

A solution which is linear in the length of the list

```
% reverse(L, R): List R is the reverse of list L.
reverse(L, R) :- revapp(L, [], R).

% revapp(L1, L2, R): The reverse of L1 prepended to L2 gives R.
revapp([], R, R).
revapp([X|L1], L2, R) :-
    revapp(L1, [X|L2], R).
```

- In SICStus 4 append/3 is a BIP, reverse/2 is in library lists
- To load the library place this directive in your program file:

```
:- use_module(library(lists)).
```

append and revapp — building lists forth and back (ADVANCED)

Prolog

```
app([], L, L).
                                       revapp([], L, L).
app([X|L1], L2, [X|L3]) :-
                                       revapp([X|L1], L2, L3) :-
    app(L1, L2, L3).
                                           revapp(L1, [X|L2], L3).
C++
struct link { link *next;
               char elem:
               link(char e): elem(e) {} }:
typedef link *list;
list app(list L1, list L2)
                                       list revapp(list L1, list L2)
                                       \{ list 1 = L2; \}
{ list L3, *lp = \&L3;
 for (list p=L1; p; p=p->next)
                                         for (list p=L1; p; p=p->next)
  { list newl = new link(p->elem);
                                         { list newl = new link(p->elem);
    *lp = newl; lp = &newl->next;
                                           newl->next = 1; 1 = newl;
 *lp = L2; return L3;
                                         return 1;
```

Generalization of member: select/3 - defined in library lists

```
% select(E, List, Rest): Removing E from List results in list Rest.
select(E, [E|Rest], Rest).  % The head is removed, the tail remains.
select(E, [X|Tail], [X|Rest]):- % The head remains,
   select(E, Tail, Rest). % the element is removed from the Tail.
```

Possible uses:

```
L = [2,3,1] ? ; L = [2,1,3] ? ; no
L=[2,3], X=1?; L=[1,3], X=2?; L=[1,2], X=3?; no
? select(3, L, [1,2]). % Insert a given element!
     L = [3,1,2] ?; L = [1,3,2] ?; L = [1,2,3] ?; no
| ?- select(3, [2|L], [1,2,7,3,2,1,8,9,4]).
                          % Can one remove 3 from [2/L]
     no
                          % to obtain [1,...]?
| ?- select(1, [X,2,X,3], L).
     L = [2,1,3], X = 1?; L = [1,2,3], X = 1?; no
```

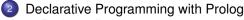
The search space of select/3 is finite, if the 2nd or the 3rd arg, is closed.

Permutation of lists – two solutions (ADVANCED)

```
perm(+List, ?Perm): The list Perm is a permutation of List
perm_sel([], []).
                            % SWI version
perm_sel(L, [H|P]) :-
    select(H, L, R),
                           % Select H from L as the head of the output, R remaining.
    perm_sel(R, P).
                            % Permute R to become P, the tail of the output list.
| ?- perm_sel([a,b,c], L).
                       L = [a,b,c] ? ; L = [a,c,b] ? ; L = [b,a,c] ? ;
                       L = [b,c,a] ? ; L = [c,a,b] ? ; L = [c,b,a] ? ; no
perm_ins([], []).
                            % SICStus version
perm_ins([H|T], P) :-
    perm ins(T, P1),
                           % Permute T, the tail of the input list, obtaining P1.
    select(H, P, P1).
                            % Insert H, the head of the input list, into an arbitrary
                            % position within P1 to obtain the output list, P.
    % mode:+ - +
| ?- perm_ins([a,b,c], L).
                       L = [a,b,c] ? ; L = [b,a,c] ? ; L = [b,c,a] ? ;
                       L = [a,c,b] ? ; L = [c,a,b] ? ; L = [c,b,a] ? ; no
```

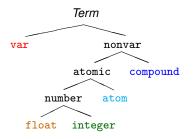
- perm is symmetric, so the two predicates have the same meaning (WHAT)
- perm ins is faster in general, but perm sel works better e.g. in draw/2

Contents



- Prolog first steps
- Prolog execution models
- The syntax of the (unsweetened) Prolog language
- Further control constructs
- Operators
- Further list processing predicates
- Term ordering
- Higher order predicates
- Executable specifications
- All solutions predicates
- Efficient programming in Prolog
- Further reading

Principles of Prolog term ordering ≺



Different kinds ordered left-to-right:

```
var ≺ float ≺ integer ≺
≺ atom ≺ compound
```

- Ordering of variables: system dependent
- Ordering of floats and integers: usual $(x \prec y \Leftrightarrow x < y)$
- Ordering of atoms: lexicographical (abc≺abcd, abcv≺abcz)
- Compound terms: $name_a(a_1, \ldots, a_n) \prec name_b(b_1, \ldots, b_m)$ iff
 - $\mathbf{0}$ n < m, e.g. $p(x,s(u,v,w)) \prec a(b,c,d)$, or
 - n = m, and name_a \prec name_b (lexicographically), e.g. $a(x,y) \prec p(b,c)$, or
 - on m = m, name_a = name_b, and for the first i where $a_i \neq b_i$, $a_i \prec b_i$, e.g. $r(1,u+v,3,x) \prec r(1,u+v,5,a)$

Built-in predicates for comparing Prolog terms

Comparing two Prolog terms:

Goal	holds if
Term1 == Term2	Term1 ⊀ Term2 ∧ Term2 ⊀ Term1
Term1 = Term2	$\texttt{Term1} \prec \texttt{Term2} \lor \texttt{Term2} \prec \texttt{Term1}$
Term1 @< Term2	Term1 ≺ Term2
Term1 @=< Term2	Term2 ⊀ Term1
Term1 @> Term2	Term2 ≺ Term1
Term1 @>= Term2	Term1 ⊀ Term2

The comparison predicates are not purely logical:

$$| ?- X @< 3, X = 4. \implies X = 4$$

 $| ?- X = 4, X @< 3. \implies no$

as they rely on the current instantiation of their arguments

Comparison uses, of course, the canonical representation:

$$| ?- [1, 2, 3, 4] @< s(1,2,3). \implies yes$$

 BIP sort(L, S) sorts (using %) a list L of arbitrary Prolog terms, removing duplicates (w.r.t. ==). Thus the result is a strictly increasing list s.

| ?- sort([1, 2.0, s(a,b), s(a,c), s,
$$X$$
, s(Y), t(a), s(a), 1, X], L).
L = [X ,2.0,1,s,s(Y),s(a),t(a),s(a,b),s(a,c)] ?

Equality-like Prolog predicates – a summary

Recall: a Prolog term is *ground* if it contains no unbound variables

- U = V: U unifies with V
 No errors. May bind vars.
- U == V: U is identical to V, i.e. U=V succeeds with no bindings No errors, no bindings.
- U =:= V: The value of U is arithmetically equal to that of V.
 No bindings. Error if U or V is not a (ground) arithmetic expression.
- U is V: U is unified with the value of V.
 Error if V is not a (ground) arithmetic expression.

```
| ?- X = 1+2. \implies X = 1+
| ?- 3 = 1+2. \implies no
| ?- X == 1+2. \implies no
| ?- 3 == 1+2. \implies no
| ?- +(X,Y)==X+Y \implies yes
```

| ?-
$$X = := 1+2$$
. \Longrightarrow error
| ?- $1+2 = := X$. \Longrightarrow error
| ?- $2+1 = := 1+2$. \Longrightarrow yes
| ?- $3.0 = := 1+2$. \Longrightarrow yes
| ?- X is $1+2$. \Longrightarrow $X = 3$
| ?- 3.0 is $1+2$. \Longrightarrow no
| ?- $1+2$ is X . \Longrightarrow error
| ?- 3 is $1+2$. \Longrightarrow yes
| ?- $1+2$ is $1+2$. \Longrightarrow no

Nonequality-like Prolog predicates – a summary

- Nonequality-like Prolog predicates never bind variables.
- U \= V: U does not unify with V.
 No errors.

- U \== V: U is not identical to V.
 No errors.
- U =\= V: The values of the arithmetic expressions U and V are different.
 Error if U or V is not a (ground)

```
|?-X|=1+2. \implies no

|?-X|=1+2, X=1. \implies no

|?-X=1, X|=1+2. \implies yes

|?-+(1,2)|=1+2. \implies no
```

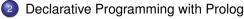
arithmetic expression.

(Non)equality-like Prolog predicates – examples

		Unification		Identical terms		Arithmetic		
U	V	U = V	U /= V	U == V	U \== V	U =:= V	U =/= V	U is V
1	2	no	yes	no	yes	no	yes	no
a	Ъ	no	yes	no	yes	error	error	error
1+2	+(1,2)	yes	no	yes	no	yes	no	no
1+2	2+1	no	yes	no	yes	yes	no	no
1+2	3	no	yes	no	yes	yes	no	no
3	1+2	no	yes	no	yes	yes	no	yes
X	1+2	X=1+2	no	no	yes	error	error	X=3
X	Y	х=ү	no	no	yes	error	error	error
X	X	yes	no	yes	no	error	error	error

Legend: yes - success; no - failure.

Contents



- Prolog first steps
- Prolog execution models
- The syntax of the (unsweetened) Prolog language
- Further control constructs
- Operators
- Further list processing predicates
- Term ordering
- Higher order predicates
- Executable specifications
- All solutions predicates
- Efficient programming in Prolog
- Further reading

Higher order programming: using predicates as arguments

Example: collect all nonzero elements of a list

```
% nonzero_elems(Xs, Ys): Ys is a list of all nonzero elements of Xs
nonzero_elems([], []).
nonzero elems([X|Xs], Ys) :-
    ( 0 = X -> Ys = [X|Ys1]
    : Ys = Ys1
    ), nonzero_elems(Xs, Ys1).
```

Generalize to a predicate where the condition is given as an argument

```
% include(Pred, Xs, Ys): Ys = list of elems of Xs that satisfy Pred
include(_Pred, [], []).
include(Pred, [X|Xs], Ys) :-
    ( call(Pred, X) -> Ys = [X|Ys1]
    : Ys = Ys1
    ), include(Pred, Xs, Ys1).
```

Specialize include for collecting nonzero elements:

```
nonz(X) := 0 = X. \% \equiv = (0, X)
nonzero_elems(L, L1) :- include(nonz, L, L1).
```

Without a helper predicate: nonzero_elems(L, L1) :- include(=(0), L, L1).

Higher order predicates

- A higher order predicate (or meta-predicate) is a predicate with an argument which is interpreted as a goal, or a partial goal
- A partial goal is a goal with the last few arguments missing
 - e.g., a predicate name is a partial goal (hence variable name Pred is often used for partial goals)
- The BIP call(PG, X), where PG is a partial goal, adds X as the last argument to PG and executes this new goal:
 - if PG is an atom \Rightarrow it calls PG(X), e.g. call(number, X) \equiv number(X)
 - if PG is a compound $Pred(A_1, ..., A_n) \Rightarrow it calls <math>Pred(A_1, ..., A_n, X)$, e.g. $call(\=(0), X) \equiv \=(0, X) \equiv 0 = X$
- Predicate include(Pred, L, FL) is in library(lists)

```
| ?- L=[1,2,a,X,b,0,3+4],
	include(number, L, Nums). % Nums = { x \in L \mid number(x) }

Nums = [1,2,0] ?; no

| ?- L=[0,2,0,3,-1,0],
	include(\=(0), L, NZs). % NZs = { x \in L \mid \=(0,x) }

NZs = [2,3,-1] ?
```

Calling predicates with additional arguments

- Recall: a callable term is a compound or atom.
- There is a group of built-in predicates call/N
 - call(Goal): invokes Goal, where Goal is a callable term
 - call(PG, A): Adds A as the last argument to PG, and invokes it.
 - call(PG, A, B): Adds A and B as the last two args to PG, invokes it.
 - call(PG, A_1 , ..., A_n): Adds A_1 , ..., A_n as the last n arguments to PG, and invokes the goal so obtained.
- PG is a partial goal, to be extended with additional arguments before calling. It has to be a callable term.

In descriptions we often abbreviate call(PG, A1, ..., An) to PG(A1, ..., An)

An important higher order predicate: maplist/3

- maplist(:PG, ?L, ?ML): for each X element of L and the corresponding Y element of ML, call (PG, X, Y) holds, where PG is a partial goal requiring two additional arguments
- Annotation ":" (as in :PG above) marks a meta argument, i.e. a term to be interpreted as a goal or a partial goal

```
maplist(_PG, [], []).
maplist(PG, [X|Xs], [Y|Ys]) :-
    call(PG, X, Y),
    maplist(PG, Xs, Ys).
| ?- maplist(reverse, [[1,2],[3,4]], LL). \implies LL = [[2,1],[4,3]] ?; no
square(X, Y) := Y is X*X.
mult(N, X, NX) := NX is N*X.
| ?- maplist(square, [1,2,3,4], L). \implies L = [1,4,9,16] ?; no
| ?- maplist(mult(2), [1,2,3,4], L). \implies L = [2,4,6,8] ? ; no
| ?- maplist(mult(-5), [1,2,3], L). \implies L = [-5,-10,-15] ? ; no
```

Variants of maplist

In SICStus, maplist can also be used with 2 and 4 arguments

- maplist(:Pred, +Xs) is true if for each x element of Xs, Pred(x) holds.
- Example: check if a condition holds for all elements of a list

```
all_positive(Xs) :- % all elements of Xs are positive maplist(<(0), Xs). % \forall X \in Xs, <(0, X), i.e. 0 < X holds
```

- maplist(:Pred, ?Xs, ?Ys, ?Zs) is true when Xs, Ys, and Zs are lists of equal length, and Pred(X, Y, Z) is true for corresponding elements X of Xs, Y of Ys, and Z of Zs. At least one of Xs, Ys, Zs has to be a closed list.
- Example: add two vectors

• The implementation of maplist/4 (easy to generalize :-):

```
maplist(_PG, [], [], []).
maplist(PG, [X|Xs], [Y|Ys], [Z|Zs]) :-
    call(PG, X, Y, Z), maplist(PG, Xs, Ys, Zs).
```

plus(A, SO, S) :- S is SO+A.

Another important higher order predicate: scanlist (SWI: fold1)

- | ?- scanlist(plus, [1,3,5], 0, Sum). \implies Sum = 9 ?; no % 0+1+3+5 = 9

 This executes as: plus(0, 1, S₁), plus(S₁, 3, S₂), plus(S₂, 5, Sum).
- In general: scanlist(acc, [E₁,E₂,...,E_n], S₀, S_n) is expanded as:
 acc(S₀, E₁, S₁), acc(S₁, E₂, S₂), ..., acc(S_{n-1}, E_n, S_n)
- scanlist(:PG, ?L, ?Init, ?Final):
 - PG represents the above accumulating predicate acc
 - scanlist applies the acc predicate repeatedly, on all elements of list L, left-to-right, where Init = S₀ and Final = S₀.
- For processing two lists (of the same length), use scanlist/5, e.g.
 prodsum(A, B, PSO, PS) :- PS is PSO + A*B.
 scalar_product(As, Bs, SP) :- scanlist(prodsum, As, Bs, 0, SP).
 | ?- scalar_product([1,0,2], [3,4,5], SP). $\implies SP = 13 ?; no$
- In SICStus, there is also a scanlist/6 predicate, for processing 3 lists

• Example:

Contents

- Declarative Programming with Prolog
 - Prolog first steps
 - Prolog execution models
 - The syntax of the (unsweetened) Prolog language
 - Further control constructs
 - Operators
 - Further list processing predicates
 - Term ordering
 - Higher order predicates
 - Executable specifications
 - All solutions predicates
 - Efficient programming in Prolog
 - Further reading

Executable specifications – what are they?

- An executable specification is a piece of non-recursive Prolog code which is in a one-to-one correspondence with its specification
- Example 1: Finding a contiguous sublist with a given sum

Example 2: Finding elements occurring in pairs

Executable specification examples: plateau

- A list is a plateau, if its length is ≥ 2, and all its elements are the same. (Think of list elements as elevation values.)
 We assume that the list is ground (contains no variables).
- Example 3: Checking if a list is a plateau. Four variants: N = 1,2,3,4
 % plateauN(Pl, A): Pl is a plateau with elements equal to A.
 - Use boring/2 (slide 36):
 plateau1([A,A|Pl], A) :- boring(Pl, A).
 - Use maplist/2:
 plateau2([A,A|Pl], A) :- maplist(=(A), Pl).
 - Use (double) negation: P1 has no element that differs from A plateau3([A,A|P1], A):- \+ (member(X, P1), \+ X = A).
 - Use the forall/2 library predicate (library(aggregate) in SICStus) plateau4([A,A|Pl], A) :- forall(member(X, Pl), X = A).
- Recall: forall(P, Q) succeeds iff Q holds for each solution of P

Executable specification examples: the longest plateau prefix

- The maximal plateau prefix (MPP for short) of a list is its longest prefix that is a plateau. E.g. the MPP of [1,1,1,2,1] is [1,1,1].
- Example 4: Given a list, obtain the length and the repeating element of its MPP. Fail if the list has no MPP (e.g. [3,1,1,1,2,1] has no MPP).

```
% mpp(+L, ?Len, ?A): List L has an MPP of length Len, composed of A's
```

- Let's use append/3 to split L into a P1 plateau prefix and Suff suffix: append(P1, Suff, L), plateauN(P1, A), <check P1 is maximal>
- P1 is maximal, if Suff = [] or the head of Suff is not A:

```
( Suff = [] \rightarrow true ; Suff = [X|_], X \= A )
```

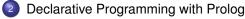
• This can be simplified to: \+Suff = [A|_] (it does not hold that the head of Suff is A)

Executable specification examples: maximal plateau sublist

- A contiguous sublist of a list is a maximal plateau sublist, if it is a plateau that cannot be extended neither leftwards nor rightwards
- Example 5: enumerate all maximal plateau sublists of a given list

```
% plateau(+L, ?I, ?Len, ?A): List L has a maximal plateau sublist that starts
% at (0-based) index I, has length Len, and is composed of A-s
| ?- plateau([1,1,1,2,1,4,4,3,7,7,7], I, Len, A).
I = 0, Len = 3, A = 1?;
I = 5, Len = 2, A = 4?;
I = 8, Len = 3, A = 7?; no
plateau(L, I, Len, A) :-
    P1 = [A,A|],
                                   % The first two elements of Pl are equal,
                                   % call them A
    append([Pref,Pl,Suff], L),  % Split L to Pref⊕Pl⊕Suff
    forall( member(X, Pl), X=A), % For each X element of Pl, X = A holds
    \ Suff = [A|_],
                                   % Suff does not start with A
    \+ last(Pref, A),
                                % Pref does not end with A
    length(Pl, Len),
                                 % The length of Pl is Len
    length(Pref, I).
                                   % The length of Pref is I
```

Contents



- Prolog first steps
- Prolog execution models
- The syntax of the (unsweetened) Prolog language
- Further control constructs
- Operators
- Further list processing predicates
- Term ordering
- Higher order predicates
- Executable specifications
- All solutions predicates
- Efficient programming in Prolog
- Further reading

All solutions built-in predicates – introduction

- All solution BIPs are higher order predicates analogous to list comprehensions in Haskell, Python, etc.
- There are three such predicates: findall/3 (the simplest), bagof/3 and setof/3; having the same arguments, but somewhat different behavior
- Examples for findal1/3:

```
| ?- findall(X, (member(X, [1,7,8,3,2,4]), X > 3), L).

\{X \mid X \in \{1,7,8,3,2,4\}, X > 3\} = L

\Rightarrow L = [7,8,4] ?; no
| ?- findall(X, (member(X, [1,7,8,3,2,4]), X > 8), L).

\{X \mid X \in \{1,7,8,3,2,4\}, X > 8\} = L

\Rightarrow L = [] ?; no
| ?- findall(X-Y, (between(1, 3, X), between(1, X, Y)), L).

\{X-Y \mid 1 \le X \le 3, 1 \le Y \le X\} = L

\Rightarrow L = [1-1,2-1,2-2,3-1,3-2,3-3] ?; no
```

Note: between(+N, +M, ?X) enumerates in X the integers N, N+1, ..., M. In SICStus, it requires loading library(between).

Finding all solutions: the BIP findall(?Templ, :Goal, ?L)

Approximate meaning: L is a list of Templ terms for each solution of Goal

The execution of the BIP findall/3 (procedural semantics):

- Interpret term Goal as a goal, and call it
- For each solution of Goal:
 - store a copy of Temp1 (copy

 replace vars in Temp1 by new ones)
 Note that copying requires time proportional to the size of Temp1
 - continue with failure (to enumerate further solutions)
- When there are no more solutions (Goal fails)
 - collect the stored Templ values into a list, unify it with L.
- When a solution contains (possibly multiple instances of) a variable (e.g. A), then each of these will be replaced by a single new variable (e.g. A):

```
| ?- findall(T, member(T, [A-A,B-B,A]), L).

\Longrightarrow L= [_A-_A,_B-B,_C] ?; no
```

All solutions: the BIP bagof (?Templ, :Goal, ?L)

Exactly the same arguments as in findall/3.
 bagof/3 is the same as findall/3, except when there are unbound variables in Goal which do not occur in Templ (so called free variables)

```
% emps(Er, Ee): employer Er employs employee Ee. emps(a,b). emps(a,c). emps(b,c). emps(b,d). 
 | ?- findall(E, emps(R, E), Es). % Es \equiv the list of all employees \Longrightarrow Es = [b,c,c,d] ?; no i.e. Es = {E | \exists R. (R employs E)}
```

bagof does not treat free vars as existentially quantified. Instead it
enumerates all possible values for the free vars (all employers) and for
each such choice it builds a separate list of solutions:

```
 | ?- bagof(E, emps(R, E), Es). % Es \equiv list of Es employed by a possible R. 
 \Rightarrow R = a, Es = [b,c] ? ; 
 \Rightarrow R = b, Es = [c,d] ? ; no
```

Use operator ^ to achieve existential quantification in bagof:

```
| ?- bagof(E, R^emps(R, E), Es). % Collect Es for which \exists R.emps(R, E)

\implies Es = [b,c,c,d] ?; no
```

• bagof preserves variables (but it is slower than findall :-():

```
| ?- bagof(T, member(T, [A-A,B-B,A]), L). \implies L = [A-A,B-B,A] ? ; no
```

All solutions: the BIP setof/3

- setof(?Templ, :Goal, ?List)
- The execution of the procedure:
 - same as: bagof(Templ, Goal, L0), sort(L0, List)
- recall: sort(+L, ?SL) is a built-in predicate which sorts L using the @
 built-in predicate (removing duplicates) and unifies the result with SL
- Example:

```
graph([a-b,a-c,b-c,c-d,b-d]).
% Graph has a node V.
has_node(Graph, V) :- member(A-B, Graph), ( V = A ; V = B).
% The set of nodes of G is Vs.
graph_nodes(G, Vs) :- setof(V, has_node(G, V), Vs).
| ?- graph(_G), graph_nodes(_G, Vs). \Rightarrow Vs = [a,b,c,d] ? ; no
```

Contents

- Declarative Programming with Prolog
 - Prolog first steps
 - Prolog execution models
 - The syntax of the (unsweetened) Prolog language
 - Further control constructs
 - Operators
 - Further list processing predicates
 - Term ordering
 - Higher order predicates
 - Executable specifications
 - All solutions predicates
 - Efficient programming in Prolog
 - Further reading

Causes of inefficiency – preview

Unnecessary choice points (ChPs) waste both time and space
 Recursive definitions often leave choice points behind on exit, e.g.:

```
• % fact0(+N, ?F): F = N!.
fact0(0, 1).
fact0(N, F) :- N > 0, N1 is N-1, fact0(N1, F1), F is N*F1.
```

- Remedy: use if-then-else or the cut BIP (coming soon)
- % lastO(L, E): The last element of L is E.
 lastO([E], E).
 lastO([_|L], E): lastO(L, E).
- Remedy: rewrite to make use of indexing (or cut, or if-then-else)
- General recursion, as opposed to tail recursion
 As an example, see the facto/2 predicate above
 Remedy: re-formulate to a tail recursive form, using accumulators

The cut – the BIP underlying if-then-else and negation

- The cut, denoted by !, is a BIP with no arguments, i.e. its functor is !/0.
- Execution: the cut always succeeds with these two side effects:
 - Restrict to the first solution of a goal:
 Remove all choice points created within the goal(s) preceding the !.

```
% is_a_parent(+P): check if a given P is a parent.
is_a_parent(P) :- has_parent(_, P), !.
```

Commit to the clause containting the cut:
 Remove the choice of any further clauses in the current predicate.

- Definition: if q: -..., p, then the parent goal of p is the goal matching the clause head q
- Effects of cut in the search tree: removes all choice points up to and including the node labelled with the parent goal of the cut.
- In the procedure box model: Fail port of cut ⇒ Fail port of parent goal

How does "cut" prune the search tree – an example

```
a(X, Y):-b(X), c(X, Y).

a(X, Y):-d(X, Y).

b(s(1)).

b(s(2)).

c(s(X), Y):-Yis X+10.

c(s(X), Y):-Yis X+20.

d(s(3), 30).

d(t(4), 40).

a_cut(X, Y):-b(X), !, c(X, Y).

a_cut(X, Y):-d(X, Y).

test(Pred, X, Res):-
findall(X-Y, call(Pred, X, Y), Res).
```

Sample runs:

```
| ?- test(a, s(_), Res). \implies Res = [s(1)-11,s(1)-21,s(2)-12, s(2)-22,s(3)-30]?
| ?- test(a, t(_), Res). \implies Res = [t(4)-40]?
| ?- test(a_cut, s(_), Res). \implies Res = [s(1)-11,s(1)-21]?
| ?- test(a_cut, s(3), Res). \implies Res = [s(3)-30]?
| ?- test(a_cut, t(_), Res). \implies Res = [t(4)-40]?
```

Avoid leaving unnecessary choice points

- Add a cut if you know that remaining branches are doomed to fail.
 (These are so called green cuts, which do not remove solutions.)
- Example of a green cut:

```
% last1(L, E): The last element of L is E.
last1([E], E) :- !.
last1([_|L], E) :- last1(L, E).
```

In the absence of the cut, the goal last1([1], X) will return the answer X = 1, and leave a choice point. When this choice point is explored last1([], X) will be called which will always fail.

• Instead of a cut, one can use if-then-else:

Avoid leaving unnecessary choice points - indexing

Recall a simple example predicate, summing a binary tree:

- Indexing groups the clauses of a predicate based on the outermost functor of (usually) the first argument.
- The compiler generates code (using hashing) to select the subset of clauses that corresponds to this outermost functor.
- If the subset contains a single clause, no choicepoint is created. (This is the case in the above example.)

Indexing – an introductory example

A sample (meaningless) program to illustrate indexing.

 For the call p(A, B), the compiler produces a case statement-like construct, to determine the list of applicable clauses:

```
      (VAR)
      if A is a variable:
      (1) (2) (3) (4) (5)

      (0/0)
      if A = 0 (A's main functor is 0/0):
      (1) (2)

      (s/1)
      if A's main functor is s/1:
      (2) (3) (4)

      (9/0)
      if A = 9:
      (2) (5)

      (OTHER)
      in all other cases:
      (2)
```

- Example calls (do they create and leave a choice point?)
 - p(1, Y) takes branch (OTHER), does not create a choice point.
 - p(s(1), Y) takes branch (s/1), creates a choice point, but removes it and exits without leaving a choice point.
 - p(s(0), Y) takes branch (s/1), and exits leaving a choice point.

Indexing

- Indexing improves the efficiency of Prolog execution by
 - speeding up the selection of clauses matching a particular call;
 - using a compile-time grouping of the clauses of the predicate.
- Most Prolog systems, including SICStus, use only the main (i.e. outermost) functor of the *first* argument for indexing, which is
 - C/0, if the argument is a constant (atom or number) C;
 - R/N, if the argument is a compound with name R and arity N;
 - undefined, if the argument is a variable.

Implementing indexing

- Compile-time: collect the set of (outermost) functors of nonvar terms occurring as first args, build the case statement (see prev. slide)
- Run-time: select the relevant clause list using the first arg. of the call.
 This is practically a constant time operation, as it uses hashing.
 - If the clause list is a singleton, no choice point is created.
 - Otherwise a choice point *is* created, which will be removed before entering the last branch.

Getting the most out of indexing

Get deep indexing through helper predicates (rewrite p/2 to q/2):

Pred. q(X,Y) will not create choice points if X is ground.

- Indexing does not deal with arithmetic comparisons
 - E.g., N = 0 and N > 0 are not recognized as mutually exclusive.
- Indexing and lists
 - Putting the (input) list in the first argument makes indexing work.
 - Indexing distinguishes between [] and [...|...]
 (resp. functors: '[]'/0 and '.'/2).
 - For proper lists, the order of the two clauses is not relevant
 - For use with open ended lists: put the clause for [] first, to avoid an infinite loop (an infinite choice may still remain)

Indexing list handling predicates

 Predicate app/3 creates no choice points if the first argument is a proper list:

• The same is true for revapp/3:

Indexing list handling predicates, cont'd

Getting the last element of a list: last0/2 leaves a choice point.

• The variant last4/2 uses a helper predicate, creates no choice points:

member 0/2 (as defined earlier) always leaves a choice point.

```
% member0(E, L): E is an element of L. member0(E, [E|_T]). % VAR member0(E, [_H|_T]):- member0(E, T). % VAR
```

 Write the head comment and the clauses of member1/3, so that member1/2 leaves no choice point when the last element of a (proper) list is returned.

Using cut to make member/2 more efficient: BIP memberchk/2

Built-in predicate memberchk/2 could be defined as:

```
% First solution of the query "X is an element of list L". memberchk(X, L): - member(X, L), !.
```

Equivalent definitions of memberchk/2:

Uses of memberchk/2

% memberchk(+X, +L): check if X is an element of proper list L
 Does not scan the list tail on backtracking after a successful exit.
 | ?- member(X, [1,2,3,4]), memberchk(X, [1,4,1,5,1]),

```
memberchk(X, [2,3,4]). (*)
With member throughout, goal (*), for X=1, would be called 3 times.
```

```
    No infinite choice here, due to the cut in memberchk.
```

memberchk with open ended lists: a dictionary (ADVANCED)

A program for building and querying of a Hungarian-English dictionary:

A sample run (program output shown in blue on the right):

Dangers of using the BIP cut (!)

- Example: implement f(X) = (X==1 ? 2 : X) (if $X=1 \rightarrow 2$, else $\rightarrow X$)
- We define several variants with the same spec: % pN(+X, ?Y): Y = f(X).
- Version 0: Logic OK, but: leaves a choice point p0(1, 2).
 p0(X, X): \+ X=1.
- Version 1: add a cut, no choice point left, but: X=1 still checked twice p1(1, 2):-!. % green cut, adding it leaves the solution set unchanged p1(X, X):- \+ X=1.
- Version 2: remove the check from clause 2, but: see issue below p2(1, 2):-!. % red cut, does change the set of solutions p2(X, X) /*:- \+ X=1 */.
- p2 produces the same results as p1 in mode (+,-)
- But not in mode (+,+): $\exists a, b$ so that p1(a,b) and p2(a,b) run differently $| ?- p1(1, 1). \implies no \qquad | ?- p2(1, 1). \implies yes$
- Final, correct and efficient version:

```
p3(1, Y) :- !, Y = 2. % set the output arg. after the ! (Base rule of cut) p3(X, X) /* :- + X=1 */.
```

Interaction of indexing and the cut

- The effect of cut is included in indexing, if the compiler can prove that the cut will definitely be reached. This will happen when:
 - the cut is the first subgoal of the body;
 - if the 1st head arg. is a compound, it has only variable args;
 - all further head arguments are variables;
 - all variable occurrences in the head are distinct.
- Predicate p3/2 satisfies condition 3, but p2/2 does not.

```
p2(1, 2) := !. (1) p2(X, X). (2)
Since only the first argument is used in indexing, p2 has to create a choice
```

point, as \mid ?- p2(1,2). matches (1) while \mid ?- p2(1,1). matches (2)

• The base rule of cut implies not only cleaner but also more efficient code:

Unification of output args should always be done after the cut!

To be on the safe side, use if-then-else instead of cut:

$$p(X, Y) :=$$
 $p(X, Y) :=$
 $(X = := 1 -> Y = 2)$
 $p(X, X)$.

 $(X = := 1 -> Y = X)$

Efficiency of the cut and indexing (ADVANCED)

• A Fibonacci-like sequence: $f_1=1$; $f_2=2$; $f_n=f_{\lfloor 3n/4\rfloor}+f_{\lfloor 2n/3\rfloor}, \ n>2$

where Body =

```
N > 2, N2 is N*3//4, N3 is N*2//3, fibxx(N2, F2), fibxx(N3, F3), F is F2+F3.
```

Run times for n = 6000

Pred.	Glob.	Local	Trail	ChP	Total	Succ.	Fail.	Total
	stack	stack	stack	stack	mem.	time	time	time
fib	1.2K	112M	37M	149M	299M	2.16s	0.30s	2.46s
fibc	1.2K	0.3K	18M	0.4K	18M	1.67s	0.03s	1.70s
fibci	1.2K	0.3K	0.1K	0.4K	2.0K	1.56s	0.00s	1.56s

- For fibc, notice the large trail stack size, and non-zero failure time (for cleaning the trail).
- See BIP statistics/2 for obtaining time and memory data

Tail recursion

- In general, recursion is expensive both in terms of time and space.
- The special case of tail recursion can be compiled to a loop. Conditions:
 - the recursive call is the last to be executed in the clause body, i.e.:
 - it is textually the last subgoal in the body; or
 - the last subgoal is a disjunction/if-then-else, and the recursive call is the last in one of the branches
 - on ChPs left in the predicate when the recursive call is reached
- Example

```
% all_pos(+L): all elements of number list L are positive.
all_pos([]).
all_pos([X|L]) :-
    X > 0, all_pos(L).
```

- Tail recursion optimization, TRO: the memory allocated by the clause is freed **before** the last call is executed.
- This optimization is performed not only for recursive calls but for the **last** calls in general (*last call optimization*, *LCO*).

Making a predicate tail recursive – accumulators

Example: the sum of a list of numbers. The left recursive variant:

```
% sumO(+List, -Sum): the sum of the elements of List is Sum.
sum0([], 0).
sumO([X|L], Sum) := sumO(L, SumO), Sum is SumO+X.
Note that sum0([a_1,..., a_n], S) \Longrightarrow S = 0+a_n+...+a_1 (right to left)
```

For TRO, define a helper pred, with an arg. storing the "sum so far":

```
% sum(+List, +Sum0, -Sum):
% (\Sigma List) + Sum0 = Sum, i.e. \Sigma List = Sum-Sum0.
sum([], Sum, Sum).
sum([X|L], Sum0, Sum) :-
    Sum1 is Sum0+X, % Increment the ''sum so far''
    sum(L, Sum1, Sum). % recurse with the tail and the new sum so far
```

 Arguments Sum0 and Sum form an accumulator pair: Sum0 is an intermediate while Sum is the final value of the accumulator. The initial value is supplied when defining sum/2:

```
% sumlist(+List, ?Sum): \Sigma List = Sum. Available from library(lists).
sumlist(List, Sum) :- sum(List, 0, Sum).
```

Note that sumlist($[a_1, \ldots, a_n]$, S) $\Longrightarrow S = 0+a_1+\ldots+a_n$ (left to right)

Accumulators - making factorial tail-recursive

- Two arguments of a pred. forming an accumulator pair: the declarative equivalent of the imperative variable (i.e. a variable with a mutable state)
- The two parts: the state of the mutable quantity at pred. entry and exit.
- Example: making factorial tail-recursive. The mid-recursive version:

```
% fact0(N, F): F = N!. fact0(N, F): - ( N =:= 0 -> F = 1 ; N > 0, N1 is N-1, fact0(N1, F1), F is F1*N ). 
 | ?- fact0(4, F). \Longrightarrow F = 24 \sim 1*1*2*3*4
```

• Helper predicate: fact(N, FO, F), FO is the product accumulated so far.

Accumulating lists – higher order approaches (ADVANCED)

Recap predicate revapp/3:

```
% revapp(L, RO, R): The reverse of L prepended to RO gives R.
revapp0([], R0, R) :- R = R0.
revapp0([X|L], R0, R) :- R1 = [X|R0], revapp0(L, R1, R).
```

Introduce the list construction predicate cons/3

```
% L1 is a list constructed from the head X and tail L0.
cons(X, L0, L1) :- L1 = [X|L0].
revapp1([], RO, R) :- R = RO.
revapp1([X|L], R0, R) := cons(X, R0, R1), revapp1(L, R1, R).
```

- A higher order (HO) solution (in SWI use fold1 instead of scanlist): revapp2(L, RO, R) :- scanlist(cons, L, RO, R).
- Summing a list, HO solution (% sum2(L, Sum): list L sums to Sum.) plus(X, S0, S1) :- S1 is S0+X.sum2(L, Sum) :- scanlist(plus, L, 0, Sum).
- (ADV²) Appending lists, HO sol. (% app(L1, L2, L): L1 \oplus L2 = L.) % decomp(X, C, B): List C can be decomposed to head X and tail B decomp(X, C, B) :- C = [X|B].app(A, B, C) := scanlist(decomp, A, C, B).

Accumulating lists - avoiding append

Example: calculate the list of leaf values of a tree. Without accumulators:

```
% tree_list0(+T, ?L): L is the list of the leaf values of tree T.
tree_list0(leaf(Value), [Value]).
tree_list0(node(Left, Right), L) :-
    tree_list0(Left, L1), tree_list0(Right, L2), append(L1, L2, L).
```

Building the list of tree leaves using accumulators:

- Note that one of the two recursive calls is tail-recursive.
- Also, there is no need to append the intermediate lists!

Accumulators for implementing imperative (mutable) variables

- Let $L = [x_1, \ldots,]$ be a number list. x_i is *left-visible* in L, iff $\forall i < i.(x_i < x_i)$
- Determine the count of left-visible elements in a list of positive integers:

Imperative, C-like algorithm | Prolog code

```
int viscnt(list L) {
  int MV = 0; // max visible
  int VC = 0; // visible cnt
loop:
  if (empty(L)) return VC;
  { int H = hd(L), L = tl(L);
    if (H > MV)
       \{ VC += 1: MV = H: \}
    // else VC,MV unchanged
  goto loop;
```

```
% List L has VC left-visible elements.
viscnt(L, VC) :- viscnt(L,
                         0. VC).
% viscnt(L, MV, VCO, VC): L has VC-VCO
% left-visible elements which are > MV.
viscnt([], \_, VCO, VC) :- VC = VCO.
viscnt(L0, MV0, VC0, VC) :-
    L0 = [H|L1],
    (H > MVO)
    \rightarrow VC1 is VC0+1, MV1 = H
    ; VC1 = VC0, MV1 = MV0
                                  % (2)
    viscnt(L1, MV1, VC1, VC).
                                  % (3)
```

Mapping a C loop to a Prolog predicate

- Each C variable initialized before the loop and used in it becomes an input argument of the Prolog predicate
- Each C variable assigned to in the loop and used afterwards becomes an output argument of the Prolog predicate
- Each occurrence of a C variable is mapped to a Prolog variable, whenever the variable is assigned, a new Prolog variable is needed, e.g. MV is mapped to MVO, MV1, ...:
 - The initial values (LO,MVO, ...) are the args of the clause head¹ (1)
 - If a branch of if-then(-else) changes a variable, while others don't, then the Prolog code of latter branches has to state that the new Prolog variable is equal to the old one,
 - At the end of the loop the Prolog predicate is called with arguments corresponding to the current values of the C variables, (3)

¹References of the form (n) point to the previous slide.

Class practice task

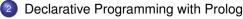
```
% pbfo(+L, ?FO, ?I, ?N): The number of positive elements before
  % the first odd element FO, occurring at index I is N.
  % L is a proper list and all its elements are integers.
  | ?- pbfo([8,2,-2,5,3,0], F0, I, N). \implies F0 = 5, I = 4, N = 2 ? ; no
  |?-pbfo([8,2,-2,0], FO, I, N). \implies no
```

A C-like algorithm (the return value is the list [FO,I,N] or [] for failure)

```
list pbfo(list L) {
   int I = 1, N = 0;
loop:
  if (empty(L)) return nil(); // returning an empty list for failure
  \{ \text{ int } H = hd(L) : 
   L = tl(L);
    if (H \% 2 == 1)
                   // if H is odd
      return cons(H, cons(I, cons(N, nil()))); // return [H,I,N]
    if (H > 0) N += 1;
   I += 1:
  }
  goto loop;
```

Rewrite the above to Prolog, using techniques shown on previous slides

Contents



- Prolog first steps
- Prolog execution models
- The syntax of the (unsweetened) Prolog language
- Further control constructs
- Operators
- Further list processing predicates
- Term ordering
- Higher order predicates
- Executable specifications
- All solutions predicates
- Efficient programming in Prolog
- Further reading

Additional slides

Subsequent slides were not presented in the class, these are included as further reading and for reference purposes

Building and decomposing compounds: the univ predicate

- BIP = . . /2 (pronounce univ) is a standard op. (xfx, 700; just as =, . . .)
- Term =.. List holds if
 - Term = $Fun(A_1, ..., A_n)$ and List = $[Fun, A_1, ..., A_n]$, where Fun is an atom and $A_1, ..., A_n$ are arbitrary terms; or
 - Term = C and List = [C], where C is a constant.
 (Constants are viewed as compounds with 0 arguments.)
- Whenever you would like to use a var. as a compound name, use univ:
 X = F(A1,...,An) causes syntax error, use X = ... [F,A1,...,An] instead
- Call patterns for *univ*: +Term =.. ?List decomposes Term
 - -Term =.. +List CONStructs Term

Examples

Error handling in Prolog

- A BIP for catching exceptions (errors): catch(:Goal, ?ETerm, :EGoal):
- Recall: ":" marks a meta argument, i.e. a term which is a goal
- BIP catch/3 runs Goal
 - If no exception is raised (no error occurs) during the execution of Goal, catch ignores the remaining arguments
 - When an exception occurs, an exception term E is produced, which contains the details of the exception
 - If E unifies with the 2nd argument of catch, ETerm, it runs EGoal
 - Otherwise catch propagates the exception further outwards, giving a chance to surrounding catch goals
 - If the user code does not "catch" the exception, it is caught by the top level, displaying the error term in a readable form.

```
| ?- X is Y+1.
! Instantiation error in argument 2 of (is)/2
! goal: _177 is _183+1
| ?- catch(X is Y+1, E, true).
E = error(instantiation_error,instantiation_error(_A is _B+1,2)) ? ; no
| ?- catch(X is Y+1, _, fail).
```

An interesting Prolog task

- A job interview question: construct an arithmetic expression containing integers 1, 3, 4, 6 each exactly once, using the four basic arithmetic operators +, -, *, /, 0 or more times, so that the expression evaluates to 24
- Let's write a Prolog program for solving this task:

An interesting Prolog task, cont'd

```
% leaves_ops_expr(+L, +OpL, ?Expr): Expr is an arithmetic expression
% which uses operators from OpL (O or more times each) whose leaves,
% read left-to-right, form the list L.
leaves_ops_expr(L, _OpL, Expr) :-
    L = [Expr].  % If L is a singleton, Expr is the only element
leaves_ops_expr(L, OpL, Expr) :-
    append(L1, L2, L),
                                     % Split L to nonempty L1 and L2,
   L1 = [], L2 = [],
    leaves_ops_expr(L1, OpL, E1),
                                     % generate E1 from L1 (using OpL),
    leaves_ops_expr(L2, OpL, E2),
                                     % generate E2 from L2 (using OpL),
   member(Op, OpL),
                                     % choose an operator Op from OpL,
    Expr = ... [Op, E1, E2].
                                     % build the expression 'E1 Op E2'
| ?- solve(66).
(3*4-1)*6
(4*3-1)*6
```

6*(3*4-1) 6*(4*3-1) yes

A motivating symbolic processing example

- Polynomial: built from the atom 'x' and numbers using ops '+' and '*'
- \bullet Calculate the value of a polynomial for a given substitution of ${\bf x}$

```
% value_of(+Poly, +X, ?V): Poly has the value V, for x=X
value of 0(x, X, V) := V = X.
                                  value of (x, X, V) :- !, V = X.
value_of0(N, _, V) :-
                                  value_of(N, _, V) :-
                                       number(N), !, V = N.
    number(N), V = N.
value_of0(P1+P2, X, V) :-
    value of O(P1, X, V1),
    value_of0(P2, X, V2),
    V is V1+V2.
value_of0(Poly, X, V) :-
                                   value_of(Poly, X, V) :-
    Poly = *(P1, P2),
                                       Poly = ... [Func, P1, P2],
                                       value_of(P1, X, V1),
    value of O(P1, X, V1),
    value_of0(P2, X, V2),
                                       value_of(P2, X, V2),
    PolvV = *(V1, V2),
                                       PolvV = ... [Func, V1, V2],
    V is PolvV.
                                       V is PolvV.
```

Predicate value_of works for all binary functions supported by is/2.

| ?- value_of(exp(100,min(x,1/x)), 2, V). \Longrightarrow V = 10.0 ?; no

Building and decomposing compounds: functor/3

• functor(Term, Name, Arity):

Term has the name Name and arity Arity, i.e.

Term has the functor Name/Arity.

(A constant c is considered to have the name c and arity 0.)

Call patterns:

```
functor(+Term, ?Name, ?Arity) - decompose Term
functor(-Term, +Name, +Arity) - construct a most general Term ('
```

- If Term is output (*), it is unified with the most general term with the given name and arity (with distinct new variables as arguments)
- Examples:

```
\implies F = edge, N = 3
| ?- functor(edge(a,b,1), F, N).
| ?- functor(E, edge, 3).
                                       \implies E = edge(_A,_B,_C)
                                       \implies F = apple, N = 0
| ?- functor(apple, F, N).
| ?- functor(Term, 122, 0).
                                       \Longrightarrow
                                             Term = 122
| ?- functor(Term, edge, N).
                                       \Longrightarrow
                                              error
| ?- functor(Term, 122, 1).
                                       ⇒ error
                                       \implies F = '.', N = 2
| ?- functor([1,2,3], F, N).
                                              Term = [A|B]
| ?- functor(Term, ., 2).
                                       \Longrightarrow
```

Building and decomposing compounds: arg/3

- arg(N, Compound, A): the Nth argument of Compound is A
 - Call pattern: arg(+N, +Compound, ?A), where $N \ge 0$ holds
 - Execution: The Nth argument of Compound is unified with A.
 If Compound has less than N arguments, or N = 0, arg/3 fails
 - Arguments are unified arg/3 can also be used for instantiating a variable argument of the structure (as in the second example below).
- Examples:

```
| ?- arg(3, edge(a, b, 23), Arg). \Longrightarrow Arg = 23
| ?- T=edge(_,_,), arg(1, T, a),
| arg(2, T, b), arg(3, T, 23). \Longrightarrow T = edge(a,b,23)
| ?- arg(1, [1,2,3], A). \Longrightarrow A = 1
| ?- arg(2, [1,2,3], B). \Longrightarrow B = [2,3]
```

 Predicate univ can be implemented using functor and arg, and vice versa, for example:

Finding arbitrary subterms using arg/3 and functor/3

• Given a term T_0 with a (not necessarily proper) subterm T_n at depth n, the position of T_n within T_0 is described by a *selector* $[I_1, ..., I_n]$ $(n \ge 0)$:

- E.g. within term a*b+f(1,2,3)/c, [1] selects a*b, [1,2] selects b, [2,1,3] selects 3, [] selects the whole term
- Given a term, enumerate all subterms and their selectors.

Decomposing and building atoms

- atom_codes(Atom, Cs): Cs is the list of character codes comprising Atom.
 - Call patterns: atom_codes(+Atom, ?Cs)
 atom_codes(-Atom, +Cs)
 - Execution:
 - If cs is a proper list of character codes then Atom is unified with the atom composed of the given characters
 - Otherwise Atom has to be an atom, and Cs is unified with the list of character codes comprising Atom
- Examples:

²A string "abc..." is treated as a list of character codes of a, b,

Decomposing and building numbers

- number_codes(Number, Cs): Cs is the list of character codes of Number.
 - Call patterns: number_codes(+Number, ?Cs)
 number_codes(-Number, +Cs)
 - Execution:
 - If cs is a proper list of character codes which is a number according to Prolog syntax, then Number is unified with the number composed of the given characters
 - Otherwise Number has to be a number, and Cs is unified with the list of character codes comprising Number
- Examples:

Dynamic predicates – an introduction

- Dynamic predicates are Prolog predicates, with the following properties
 - The predicate can be modified during runtime by adding (asserting) and removing (retracting) clauses
 - There can be 0 or more clauses of the predicate in the program text
 - The predicate is interpreted (slower execution)
- A dynamic predicate can be created
 - by placing a directive in the program: :- dynamic(Predicate/Arity).
 (preceding any clauses of the predicate in the program text); or
 - by using a database modification BIP³
- Built-in predicates for database modification
 - Add a clause: asserta/1, assertz/1
 - Remove a clause (can be non-deterministic): retract/1
 - Retrieve a clause (can be non-deterministic): clause/2
- Adding or removing clauses is permanent, this is not undone at backtracking.

³The set of program clauses is often called the Prolog database.

Adding a clause: asserta/1, assertz/1

- asserta(:Clause)⁴
 - the term Clause is interpreted as a clause, it has to be sufficiently instantiated for its functor P/N to be to determined
 - \bullet If pred. P/N exists, it has to be dynamic, if not, it is made dynamic
 - a copy of Clause is added to pred. P/N as the first clause

By copying we mean systematically replacing variables with new ones.

- assertz(:Clause)
 - Same as asserta, but Clause is added as the last clause
- Most Prolog systems support the non-standard BIP assert/1, which inserts the clause somewhere in the predicate (mostly = assertz/1)
- Examples:

```
\begin{array}{lll} | ?\text{- assertz}((p(1,X):-q(X))), \ asserta(p(2,0)), & p(2, 0). \\ & assertz((p(2,Z):-r(Z))), \ listing(p). & \Longrightarrow \ p(1, A) :- \ q(A). \\ & p(2, A) :- \ r(A). \end{array}
```

```
| ?- assertz(s(X,X)), s(U,V), U == V, X == U. \implies V = U ? ; no
```

⁴character: indicates that the argument is a meta-argument.

Removing a clause: retract/1

- retract(:Clause) where Clause viewed as a clause is sufficiently instantiated so that its functor P/N can be determined:
 - looks up a clause of pred. P/N which unifies with Clause;
 - if found (and unified), removes the clause from the program;
 - on backtracking keeps looking up and removing further clauses
- Example (continued from the previous slide):

The output

An example – a simplified findall (ADVANCED)

 Predicate findall1/3 implements the BIP findall/3, except for not supporting nested invocations

```
:- dynamic(solution/1).
% findall1(T, Goal, L):
% L is the list of copies of T, for each solution of Goal
findall1(T, Goal, _L) :-
    call(Goal),
    asserta(solution(T)), % solutions stored in reverse order!
    fail.
findall1(_Templ, _Goal, L) :-
    solution_list([], L).
\% solution list(LO, L): L = rev(list of retracted solutions) \oplus LO
solution_list(L0, L) :-
    retract(solution(S)), !,
    solution list([S|L0], L).
solution_list(L, L).
\mid ?- findall1(Y, (member(X, [1,2,3]),Y is X*X), SL). \Longrightarrow SL = [1,4,9]
```

Retrieving a clause: clause/2 (ADVANCED)

- clause(:Head, ?Body) where Head is instantiated sufficiently so that its functor P/N can be determined
 - looks up a clause of pred. P/N which unifies with (Head :- Body)⁵
 - if found exits with success (having performed the unification);
 - on backtracking keeps looking up further clauses
- Example (continued from previous slides)

```
:- listing(p), clause(p(2, 0), Body).

p(2, 0).

p(1, A) :-

q(A).

p(2, A) :-

r(A).

Body = true ?;

\Rightarrow Body = r(0) ?;

\Rightarrow no
```

⁵For facts. Body = true is assumed.

An example using clause/2: wallpaper tracing (ADVANCED)

An interpreter for tracing pure Prolog programs, with no BIPs.

```
\% interp(G, D): Interprets and traces goal G with an indentation D.
interp(true, _) :- !.
interp((G1, G2), D) :- !,
    interp(G1, D), interp(G2, D).
interp(G, D) :-
    ( trace(G, D, call)
    ; trace(G, D, fail), fail % shows the fail port, keeps backtracking
   D2 is D+2,
    clause(G, B), interp(B, D2),
    ( trace(G, D, exit)
    ; trace(G, D, redo), fail % shows the redo port, keeps backtracking
    ).
% Traces goal G at port Port with indentation D.
trace(G, D, Port) :-
       between(1, D, _), write(' '), fail % Writes out D spaces and fails
      write(Port), write(': '), write(G), nl
    ).
```

A sample run of the wallpaper trace interpreter (ADVANCED)

```
:- dynamic ap2/3,ap3/4. % (*)
ap2([], L, L).
ap2([X|L1], L2, [X|L3]) :-
    ap2(L1, L2, L3).

ap3(L1, L2, L3, L123) :-
    ap2(L1, L23, L123),
    ap2(L2, L3, L23).
```

 Assuming that above text is stored in file, say, app23.p1, line (*) becomes unnecessary if the file is loaded by

```
| ?- interp(ap3(_,[b,c],L,[c,b,c,b]), 0).
call: ap3(_203,[b,c],_253,[c,b,c,b])
  call: ap2(_203,_666,[c,b,c,b])
  exit: ap2([],[c,b,c,b],[c,b,c,b])
  call: ap2([b,c],_253,[c,b,c,b])
  fail: ap2([b,c], 253,[c,b,c,b])
  redo: ap2([],[c,b,c,b],[c,b,c,b])
    call: ap2(873,666,[b,c,b])
    exit: ap2([],[b,c,b],[b,c,b])
  exit: ap2([c],[b,c,b],[c,b,c,b])
  call: ap2([b,c],_253,[b,c,b])
    call: ap2([c],_253,[c,b])
      call: ap2([],_253,[b])
      exit: ap2([],[b],[b])
    exit: ap2([c],[b],[c,b])
  exit: ap2([b,c],[b],[b,c,b])
exit: ap3([c],[b,c],[b],[c,b,c,b])
L = \lceil b \rceil ?
```

The Unification Algorithm

- The unification algorithm takes (canonical) terms A and B as input.
- It returns the most general unifier of A and B, $\sigma = mgu(A, B)$, or failure.
- In practice, the substitution σ has to be applied to the query at hand.
- The (practical) unification algorithm:
 - If A and B are identical variables or constants, then return success.
 - ② Else, if A is a variable, then substitute $A \leftarrow B$ and return success.
 - Selse, if B is a variable, then substitute B ← A and return success. (Steps 2 and 3 can be executed in arbitrary order, i.e. when both A and B are variables, one of them is substituted by the other)
 - Solution Else, if A and B are compounds with the same name and arity, and their arguments are A_1, \ldots, A_N and B_1, \ldots, B_N , resp., then for $i = 1, \ldots, N$ do

Perform (recursively) the unification alg. for A_i and B_i ; If the recursive invocation fails, return failure;

- If the for-loop completes, return success.
- In all other cases return failure (A and B are not unifiable)

The Occurs Check in unification (ADVANCED)

- Can one unify x and f(Y,g(X))?
 - Theoretically: no, as there is no finite term x s.t. x = f(Y,g(X)),
 (if x had a maximal depth d, then d = d + 2 would have to hold)
 a var. x cannot be bound to a compound containing x,
 - Theoretically, step 2 (and 3) of the unification alg. should include an "occurs check": before binding A ← B check that no A occurs in B,
 - The (costly) check is almost always useless ⇒ not used by default.
- ullet No occurs check \Longrightarrow so-called cyclic (infinite) terms may be created, e.g.

```
| ?- X = s(1,X). \implies X = s(1,s(1,s(1,s(1,s(...))))) ? ; no
```

Unification with occurs check is available as a standard BIP:

```
| ?- unify_with_occurs_check(X, s(1,X)). \implies no
```

 Some Prologs (e.g. SICStus) support the unification and other operations on cyclic terms

```
| ?- X = s(X), Y = s(s(Y)), X = Y. \Longrightarrow X = s(s(s(s(...)))), Y = s(s(s(s(...))))?
```

(Other Prologs may go to infinite loop on this example.)

Unification – mathematical formulation (ADVANCED)

Preliminaries

- A substitution is a function σ which maps variables to arbitrary Prolog terms. Xσ denotes σ applied to variable X
- Example: $\sigma = \{X \leftarrow a, Y \leftarrow s(b,B), Z \leftarrow C\}, Dom(\sigma) = \{X,Y,Z\}, e.g. X\sigma = a\}$
- The substitution function can be naturally extended:
 - Tσ: σ applied to an arbitrary term T: all occurrences in T of variables in Dom(σ) are simultaneously substituted according to σ
 - Example: $f(g(Z,h),A,Y)\sigma = f(g(C,h),A,s(b,B))$
- Composition of substitutions:
 - $\sigma \otimes \theta$ is a substitution obtained by first performing σ and then θ
 - Subst. $\sigma \otimes \theta$ maps variables $x \in Dom(\sigma)$ to $(x\sigma)\theta$, while variables $y \in Dom(\theta) \setminus Dom(\sigma)$ to $y\theta (Dom(\sigma \otimes \theta) = Dom(\sigma) \cup Dom(\theta))$:

$$\sigma \otimes \theta = \{ x \leftarrow (x\sigma)\theta \mid x \in Dom(\sigma) \} \bigcup \{ y \leftarrow y\theta \mid y \in Dom(\theta) \setminus Dom(\sigma) \}$$

• For example, $\theta = \{X \leftarrow b, B \leftarrow d\}$ $\sigma \otimes \theta = \{X \leftarrow a, Y \leftarrow s(b,d), Z \leftarrow C, B \leftarrow d\}$

Unification – mathematical formulation (ADVANCED)

- The unification algorithm takes (canonical) terms A and B as input.
- It returns the most general unifier of A and B, $\sigma = mgu(A, B)$, or failure.
 - If A and B are identical variables or constants, then return $\sigma = \{\}$ (empty substitution).
 - **2** Else, if *A* is a variable, then return $\sigma = \{A \leftarrow B\}$
 - Selse, if B is a variable, then return σ = {B ← A} (the order of steps 2 and 3 is arbitrary, they may involve an occurs check)
 - **3** Else, if A and B are compounds with the same name and arity, and their arguments are A_1, \ldots, A_N and B_1, \ldots, B_N resp., then initialize $\sigma = \{\}$ and for $i = 1, \ldots, N$ do

Perform (recursively) the unification alg. for $A_i\sigma$ and $B_i\sigma$; If the recursive invocation fails, return failure, otherwise set $\sigma = \sigma \otimes mgu(A_i, B_i)$

If the above loop completes, return σ

1 In all other cases return failure (A and B are not unifiable)

The goal reduction execution algorithm

The definition of reduction step

- Reduce a query Q to a new query NQ using a program clause Cl_i:
 - Split query Q into a first goal Q₀ and a residual query RQ
 - Copy clause Cl_i, i.e. introduce new variables, and split the copy to a head H and body B
 - Unify the goal Q₀ and the head H
 - If the unification fails, exit the reduction step with failure
 - If the unification succeeds with a substitution σ , return the new query $NQ = (B, RQ)\sigma$ (i.e. apply σ to both the body and the residual query)
- reduce a query Q to a new query NQ by executing a built-in goal (when the first goal is a built-in procedure call):
 - Split query Q into a built-in goal Q₀ and a residual query RQ
 - Execute the BIP Q₀
 - If the BIP fails then exit the reduction step with failure
 - If the BIP succeeds with a substitution σ then return the new query $NQ = RQ\sigma$

Prolog execution algorithm based on goal reduction

The algorithm uses a variable QU, storing a query, a variable I which is a clause counter; and a stack consisting of pairs of the form <QU, I>

- (Initialization:) The stack is initialized to empty, QU := initial query
- (BIP:) If the first call of QU is built-in then perform a reduction step,
 - a. If it fails \Rightarrow step 6.
 - b. If it is succeeds, QU := the result of reduction step, \Rightarrow step 5.
- (Non built-in procedure initialize a clause counter) I := 1.
- (Reduction step:) Select the list of clauses applicable to the first call of QU.⁶ Assume the list has N elements.
 - a. If $I > N \Rightarrow \text{step } 6$.
 - b. perform a reduction step between the 1th clause of the list and QU.
 - c. If this fails, then I := I+1, \Rightarrow step 4 a.
 - d. If I < N (non-last clause), then push <QU, I> on the stack.
 - e. QU := the query returned by the reduction step
- **(Success:)** If QU is nonempty \Rightarrow step 2, otherwise exit with success.
- (Failure:) If the stack is empty, then exit with failure.
- **O** (Backtrack:) Pop $\langle QU, I \rangle$ from the stack, I := I+1, and \Rightarrow step 4.

⁶If there is no indexing, then this list will contain all clauses of the predicate. With indexing this will be an appropriate subset of all clauses.

Principles of the SICStus Prolog module system

- Each module should be placed in a separate file
- A module directive should be placed at the beginning of the file:

```
:- module(ModuleName, [ExportedFunc_1, ExportedFunc_2, ...]).
```

- ullet ExportedFunc_i the functor (Name/Arity) of an exported predicate
- Example

```
:- module(drawing_lines, [draw/2]). % line 1 of file draw.pl
```

- Built-in predicates for loading module files:
 - use_module(FileName)
 - use_module(FileName, [ImportedFunc1, ImportedFunc2,...])
 ImportedFunci the functor of an imported predicate
 FileName an atom (with the default file extension .pl);
 or a special compound, such as library(LibraryName)
- Examples:

- Goals can be module qualified: Mod: Goal runs Goal in module Mod
- Modules do not hide the non-exported predicates, these can be called from outside if the module qualified form is used

Meta predicates and modules

Predicate arguments in imported predicates may cause problems:

Load file module2.pl, e,g, by | ?- [module2]., and run some goals:

```
| ?- q1. ⇒ gogo
| ?- q2. ⇒ gaga
| ?- r. ⇒ gogo :
```

:-(counter-intuitive

Solution: Tell Prolog that double has a meta-arg. by adding at (1) this:

```
:- meta_predicate double(:).
```

This causes (2) to be replaced by 'r :- double(module2:p).' at load time, making predicates r and q2 identical.

Meta predicate declarations, module name expansion

Syntax of meta predicate declarations

```
:- meta_predicate \langle \text{pred. name} \rangle (\langle \text{modespec}_1 \rangle, \ldots, \langle \text{modespec}_n \rangle), \ldots.

• \langle \text{modespec}_i \rangle Can be ':', '+', '-', or '?'.
```

- Mode spec ':' indicates that the given argument is a meta-argument
- In all subsequent invocations of the given predicate the given arg. is replaced by its module name expanded form, at load time
 - Other mode specs just document modes of non-meta arguments.
- The module name expanded form of a term Term is:
 - Term itself, if Term is of the form M: X or it is a variable which occurs in the clause head in a meta argument position; otherwise
 - \bullet $\mathit{SMod} \colon \mathit{Term},$ where SMod is the current source module (user by default)

⁷The imported goal double gets a prefix "module1:", not shown here, to save space.