
An Introduction to Logic Programming

Péter Szeredi

szeredi@cs.bme.hu

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

2024 Spring Semester

Revision 3488M | Generated: 2024. márc. 27., szerda, 14:00:58 CET

Part I

Overview

1 Overview

2 Declarative Programming with Prolog

Overview

Prolog in the family of programming languages
Programming paradigms – programming languages

Imperative
Fortran
Algol
C
Java
Python
. . .

Declarative

Functional

LISP
ML
Haskell
. . .

Logic

SQL
Prolog
ConstraintxProg.
. . .Prolog

Birth date: 1972, designed by Alain Colmerauer, Robert Kowalski
First public implementation (Marseille Prolog):
1973, interpreter in Fortran, A. Colmerauer, Ph. Roussel
Second implementation (Hungarian Prolog):
1975, interpreter in CDL, Péter Szeredi

http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/szeredi.html

First compiler (Edinburgh Prolog, DEC-10 Prolog):
1977, David H. D. Warren (current syntax introduced)
Wiki: https://en.wikipedia.org/wiki/Prolog

An Introduction to Logic Programming 2024 Spring Semester 3 / 170

http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/szeredi.html
https://en.wikipedia.org/wiki/Prolog

Overview

Prolog examples

Example 1: checking if an integer is a prime
A Prolog program consists of predicates (functions returning a Boolean)
Let’s write a predicate prime(P) describing that P is a prime
Let’s write an executable specification: first in English, then transform the
English text to Prolog code:

prime(P) :- % P is a prime if
integer(P), P > 1, % P is an integer and P > 1 and
P1 is P-1, % P1 = P-1 and
\+ (% it is not the case that

% (there exists an integer I such that)
between(2, P1, I), % 2 =< I =< P1 and
P mod I =:= 0 % P is divisible by I

). %

X is Expr is a built-in predicate (BIP) for doing arithmetic
between(From, To, Int) enumerates in Int all ints between From and To

The slogan of Prolog: WHAT (logic) rather than HOW (execution)
An Introduction to Logic Programming 2024 Spring Semester 4 / 170

Overview

Example 2: append - multiple uses of a single predicate

app(L1, L2, L3) is true if L3 is the concatenation of L1 and L2.

app([], L, L). % appending an empty list with L gives L.
app([H|L1], L2, [H|L3]) :- % appending a list composed of

% head H and tail L1 with a list L2
% gives a list with head H and tail L3 if

app(L1, L2, L3). % appending L1 and L2 gives L3.

app can be used, for example,
to check whether the relation holds:
| ?- app([1,2], [3,4], [1,2,3,4]). yes
to append two lists:
| ?- app([1,2], [3,4], L). L = [1,2,3,4] ? ; no
to split a list into two:
| ?- app(L1, L2, [1,2,3]). L1 = [], L2 = [1,2,3] ? ;

L1 = [1], L2 = [2,3] ? ;
L1 = [1,2], L2 = [3] ? ;
L1 = [1,2,3], L2 = [] ? ; no

Predicate app is available as a built-in: append/3 (append with 3 args)
An Introduction to Logic Programming 2024 Spring Semester 5 / 170

Overview

The logic variable

A variable in Prolog is a “first class citizen” data structure
The 2nd clause of app sets its 3rd arg. to a list whose tail is yet unknown:
app([], L, L).
app([H|L1], L2, [H|L3]) :-

% Here L3 is still unbound, [H|L3] is an open ended list
app(L1, L2, L3) (*)

In the goal (*) L3 can be viewed as a pointer to a location where the
output list is to be deposited
Multiple occurences of yet uninstantiated variables are allowed:
double_member(X, List) :- append(_, [X,X|_], List).

| ?- double_member(X, [a,b,b,a,a]). =⇒ X = b ? ; X = a ?

A single underline (_) is a so called void variable, each occurence of
which represents a new variable
The data structure [X,X|_] is actually implemented by the first list
element cell pointing to the second one (or vice versa)

An Introduction to Logic Programming 2024 Spring Semester 6 / 170

Overview

Example 3: Handling lists in Prolog

Multiply each element of a list by a number:
% times(As, M, Bs): List Bs is obtained from number list As by
% multiplying each list element by M.
times([A|As], M, [B|Bs]) :-

B is M*A, times(As, M, Bs).
times([], _, []).

| ?- times([1,3,4,6], 2, L). =⇒ L = [2,6,8,12] ?

Merge two sorted lists into a single sorted list
% merge(As, Bs, Cs): Sorted list Cs is obtained by
% collating sorted lists As and Bs, removing duplicates
merge([A|As], [B|Bs], Cs) :-

(/*if*/ A < B -> /*then*/ Cs = [A|Ds], merge(As, [B|Bs], Ds)
; /*elif*/ A > B -> /*then*/ Cs = [B|Ds], merge([A|As], Bs, Ds)
; /*else*/ Cs = [A|Ds], merge(As, Bs, Ds)
).

merge([], Bs, Bs).
merge(As, [], As).

| ?- merge([1,3,4,6], [1,3,5,9], L). =⇒ L = [1,3,4,5,6,9] ?

An Introduction to Logic Programming 2024 Spring Semester 7 / 170

Overview

Example 4: Countdown game show number puzzles

Countdown is a British TV game show in which the players have to
construct an arithmetic expression from (a subset of) six given integers
so that it evaluates to a given target integer
Given the list of numbers Is and the target number T, obtain a solution E

countdown(Is, T, E) :- % E is a solution of the task
% with ints Is and target T if

subseq(Is, Is1, _), % Is has a subsequence Is1 and
permutation(Is1, Is2), % Is1 has a permutation Is2 and
expr_leaves(E, Is2), % E is a formula with

% list of leaves Is2 and
E =:= T. % E evaluates to T.

subseq/3 and permutation/2 are available from the lists library
The third argument of subseq/3 contains the remaining elements from
the first argument. Using a void variable _ there means we do not care
about that list.
We only have to write expr_leaves/2

An Introduction to Logic Programming 2024 Spring Semester 8 / 170

Overview

Countdown – expr_leaves/2

We need expr_leaves/2 to generate the valid expressions in a tree form:

expr_leaves(E, Is) :- % E is a valid formula with
% a given list of leaves Is if

append(LIs, RIs, Is), % Is is the concatenation of
% LIs and RIs and

LIs \== [], % LIs is not an empty list and
RIs \== [], % RIs is not an empty list and
expr_leaves(LE, LIs), % LE is a formula with leaves LIs and
expr_leaves(RE, RIs), % RE is a formula with leaves RIs and
build_expr(LE, RE, E). % combining LE and RE may yield E.

expr_leaves(I, [I]) :- % I is a valid formula with
% list of leaves [I] if

integer(I). % I is an integer.

An Introduction to Logic Programming 2024 Spring Semester 9 / 170

Overview

Countdown – build_expr/3

We still need build_expr/3 to define the operations we can use:

build_expr(X, Y, X+Y). % combining exprs X and Y may yield X+Y.
build_expr(X, Y, X*Y). % combining exprs X and Y may yield X*Y.
build_expr(X, Y, X-Y) :- % combining exprs X and Y may yield X-Y if

X > Y. % X > Y.
build_expr(X, Y, X//Y) :-% combining exprs X and Y may yield X//Y if

X mod Y =:= 0. % X divided by Y gives a 0 remainder.

The operator // denotes integer division in Prolog
(always yielding an integer result)
Countdown rules prohibit the use of operations yielding non-positive or
fractional results, hence the above restrictions
This program may give the same (or equivalent) solution several times
because of the commutativity and associativity of the operators

An Introduction to Logic Programming 2024 Spring Semester 10 / 170

Overview

Prolog extensions: coroutining (Prolog II)

Wikipedia: Coroutines are computer program components that allow
execution to be suspended and resumed, generalizing subroutines for
cooperative multitasking. Coroutines are well-suited for implementing
familiar program components such as cooperative tasks, exceptions,
event loops, iterators, infinite lists and pipes.
A typical example of coroutining, the Hamming problem:
Generate, in increasing order, the sequence of all positive integers
divisible by no primes other than 2, 3, 5.
We implement a simplified version: the only divisors allowed are 2 and 3,
re-using predicates times/3 and merge/3 in dataflow programming style
For this we add the block declaration

:- block times(-, ?, ?).
Meaning: suspend pred. times if the first arg. is an unbound variable
Also, suspend pred. merge if the first or second arg is unbound

:- block merge(-, ?, ?), merge(?, -, ?).

An Introduction to Logic Programming 2024 Spring Semester 11 / 170

Overview

Example 5: Solving the Hamming problem via coroutining

We use merge/3 unmodified, and times/3 slightly changed:
% times(As, M, Bs): List Bs is obtained from number list As by
% multiplying each list element by M.
:- block times(-, ?, ?). % blocks if the 1st arg is a variable.
times([A|X], M, Bs) :- % 3rd arg used to be [B|Cs]

B is M*A, Bs = [B|Cs], times(B, M, Cs). % coloured text added
times([], _, []).

% U is the list of the first N (2,3)-Hamming numbers
hamming(N, U) :-

U = [1|_], times(U, 2, X), times(U, 3, Y), merge(X, Y, Z),
prefix_length([1|Z], U, N). % A predicate from library(lists)

% prefix_length(L, P, N): L has a prefix P of length N

prefix

times 2

times 3

mergeU

X

Y

Z

1H

An Introduction to Logic Programming 2024 Spring Semester 12 / 170

Overview

Prolog extensions: CLPQ – Constraint LP on Rationals

Example 6: Perfect rectangles (Prolog III)
Find a rectangle which can be covered (with no holes and no overlaps) by
squares of different sizes
A solution, with (the minimal number of) 9 squares

18
15

14

4
78

9
10

32

33

1

An Introduction to Logic Programming 2024 Spring Semester 13 / 170

Overview

Perfect rectangle — CLPQ solution

% Colmerauer A.: An Introduction to Prolog III,
% Communications of the ACM, 33(7), 69-90, 1990.

% Rectangle 1 x Width is covered by distinct
% squares with sizes Ss.
filled_rectangle(Width, Ss) :-

{ Width >= 1 }, distinct_squares(Ss),
filled_hole([-1,Width,1], _, Ss, []).

% distinct_squares(Ss): All elements of Ss are distinct.
distinct_squares([]).
distinct_squares([S|Ss]) :-

{ S > 0 }, outof(Ss, S), distinct_squares(Ss).

outof([], _).
outof([S|Ss], S0) :- { S =\= S0 }, outof(Ss, S0).

An Introduction to Logic Programming 2024 Spring Semester 14 / 170

Overview

Perfect rectangle, CLPQ solution, ctd.
% filled_hole(L0, L, Ss0, Ss): Hole in line L0
% filled with squares Ss0-Ss (diff list) gives line L.
% Def: h(L): sum of lengths of vertical segments in L.
% Pre: All elements of L0 except the first >= 0.
% Post: All elems in L >=0, h(L0) = h(L).
filled_hole(L, L, Ss, Ss) :-

L = [V|_], {V >= 0}.
filled_hole([V|HL], L, [S|Ss0], Ss) :-

{ V < 0 }, placed_square(S, HL, L1),
filled_hole(L1, L2, Ss0, Ss1), { V1=V+S },
filled_hole([V1,S|L2], L, Ss1, Ss).

% placed_square(S, HL, L): placing a square size S on
% horizontal line HL gives (vertical) line L.
% Pre: all elems in HL >=0
% Post: all in L except first >=0, h(L) = h(HL)-S.
placed_square(S, [H,V,H1|L], L1) :-

{ S > H, V=0, H2=H+H1 }, placed_square(S, [H2|L], L1).
placed_square(S, [S,V|L], [X|L]) :- { X=V-S }.
placed_square(S, [H|L], [X,Y|L]) :-

{ S < H, X= -S, Y=H-S }.
An Introduction to Logic Programming 2024 Spring Semester 15 / 170

Overview

Perfect rectangle: sample runs

% pentium i5, bogomips: 5187.85
| ?- length(Ss, N), N > 1, statistics(runtime, _),

filled_rectangle(Width, Ss),
statistics(runtime, [_,MSec]).

N = 9, MSec = 840, Width = 33/32,
Ss = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] ? ;

N = 9, MSec = 110, Width = 69/61,
Ss = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61] ? ;

N = 9, MSec = 1130, Width = 33/32,
Ss = [9/16,15/32,7/32,1/4,7/16,1/8,5/16,1/32,9/32] ?

An Introduction to Logic Programming 2024 Spring Semester 16 / 170

Overview

Prolog extensions – CLPFD (Prolog IV)

CLPFD: Constraint Logic Programming over Finite Domains

Example 7: a cryptarithmetic puzzle in Prolog
SEND+MORE=MONEY

Replace each letter with the same digit throughout the above equation
The digits assigned to letters should be different
Leading zeroes are not allowed

An Introduction to Logic Programming 2024 Spring Semester 17 / 170

Overview

SEND MORE MONEY – Prolog and CLPFD solutions

Prolog: generate and test (check)

:- use_module(library(between)).
send0(SEND, MORE, MONEY) :-

Ds = [S,E,N,D,M,O,R,Y],
maplist(between(0, 9), Ds),
alldiff(Ds),
S =\= 0, M =\= 0,
SEND is 1000*S+100*E+10*N+D,
MORE is 1000*M+100*O+10*R+E,
MONEY is

10000*M+1000*O+100*N+10*E+Y,
SEND+MORE =:= MONEY.

% alldiff(+L):
% elements of L are all different
alldiff([]).
alldiff([D|Ds]) :-

\+ member(D, Ds), alldiff(Ds).

CLPFD: test (constrain) and generate

:- use_module(library(clpfd)).
send_clpfd(SEND, MORE, MONEY) :-

Ds = [S,E,N,D,M,O,R,Y],
domain(Ds, 0, 9),
all_different(Ds),
S #\= 0, M #\= 0,
SEND #= 1000*S+100*E+10*N+D,
MORE #= 1000*M+100*O+10*R+E,
MONEY #=

10000*M+1000*O+100*N+10*E+Y,
SEND+MORE #= MONEY,
labeling([], Ds).

New implementation features used here:

associating a domain with a variable

constraints performing repetitive
pruning

Run time: 13.1 sec Run time: 0.00011 sec

An Introduction to Logic Programming 2024 Spring Semester 18 / 170

Overview

Example 8: a Sudoku solver using CLPFD

A Sudoku puzzle: 9 x 9 grid, split into 9 3 x 3 boxes, each row, column
and box should contain digits 1–9, once each
A Sudoku puzzle in Prolog: a list of 9 elements (rows), each row being a
list of 9 cells. A cell can be a number 1–9, or a variable, example:
Solving the puzzle instantiates all variables,
ensuring that all constraints are satisfied.

[[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]

Library/BIP predicates used in the solver
domain(Vs, Min, Max): Vars in list Vs take values from Min..Max
all_distinct(Vs): Vars in Vs are all different.
append(ListOfLs, L): L is the concatenation of lists in ListOfLs
length(List, Len): List has length Len
same_length(L1, L2): Lists L1 and L2 have the same length
transpose(Rs, Cs): Cs is the transpose of matrix Rs
maplist(Pred, L): for each X element of L, calls Pred(X)

An Introduction to Logic Programming 2024 Spring Semester 19 / 170

Overview

Sudoku solver, full code

% Rows is a valid sudoku grid
sudoku(Rows) :-

length(Rows, 9), % The grid has 9 rows
maplist(same_length(Rows),Rows), % Each row is 9 cells wide
append(Rows, Vars), % Vars is a list of all cells
domain(Vars, 1, 9), % Each cell value is in 1..9
maplist(all_distinct, Rows), % Each row contains distinct values
transpose(Rows, Cols), % Cols are the columns in the grid
maplist(all_distinct, Cols), % Each column contains distinct values
Rows = [As,Bs,Cs,Ds,Es, % Get hold of rows 1..9 in variables

Fs,Gs,Hs,Is], % As, Bs, ..., Is
blocks(As, Bs, Cs), % Boxes in rows 1-3 are all distinct
blocks(Ds, Es, Fs), % Boxes in rows 4-6 are all distinct
blocks(Gs, Hs, Is), % Boxes in rows 7-9 are all distinct
labeling([], Vars). % Perform the search instantiating all Vars

% blocks(Xs, Ys, Zs): The boxes in consequtive rows Xs, Ys, Zs are all distinct
blocks([], [], []).
blocks([N1,N2,N3|Ns1], % Obtain the 9 cells from the leftmost box

[N4,N5,N6|Ns2], % in the three rows
[N7,N8,N9|Ns3]) :-

all_distinct([N1,N2,N3,N4,N5, % Ensure that the cells of the leftmost
N6,N7,N8,N9]), % box are all distinct

blocks(Ns1, Ns2, Ns3). % Continue with the remaining boxes, if any.

An Introduction to Logic Programming 2024 Spring Semester 20 / 170

Part II

Declarative Programming with Prolog

1 Overview

2 Declarative Programming with Prolog

Declarative Programming with Prolog Prolog – first steps

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 22 / 170

Declarative Programming with Prolog Prolog – first steps

Prolog – PROgramming in LOGic: standard (Edinburgh) syntax

Standard syntax English Marseille syntax
has_p(b, c). % b has a parent c. +has_p(b, c).
has_p(b, d). % b has a parent d. +has_p(b, d).
has_p(d, e). % d has a parent e. +has_p(d, e).
has_p(d, f). % d has a parent f. +has_p(d, f).

% for all GC, GP, P it holds
has_gp(GC, GP) :- % GC has grandparent GP if +has_gp(*GC, *GP)

has_p(GC, P), % GC has parent P and -has_p(*GC,*P)
has_p(P, GP). % P has parent GP. -has_p(*P,*GP).

FOL: ∀GC, GP. (has_gp(GC, GP)←∃P.(has_p(GC, P)∧has_p(P, GP)))
Capitalized identifiers (e.g. P, GC) are variables,
lower case names (b, has_p) are atoms (symbolic constants)
Prolog execution is a special case of a First Order Logic (FOL) theorem
proving approach called resolution, which can also be viewed as
pattern-based procedure invocation with backtracking
Dual semantics: declarative and procedural

Slogan: WHAT rather than HOW
(focus on the logic first, but then think over Prolog execution, too).

An Introduction to Logic Programming 2024 Spring Semester 23 / 170

Declarative Programming with Prolog Prolog – first steps

Prolog clauses and predicates - some terminology

A Prolog program is a sequence of clauses
A clause represents a statement, it can be

a fact, of the form ‘head.’, e.g. has_parent(a,b).
a rule, of the form ‘head :- body. ’,
e.g. has_gp(GC, GP) :- has_p(GC, P), has_p(P, GP). (*)

Read ‘:-’ as ‘if’, ‘,’ as ‘and’
A fact can be viewed as having an empty body, or the body true
A body is comma-separated list of goals, also named calls
A head as well as a goal has the form name(argument,. . .), or just name
Arguments are terms (cf. FOL terms): variables, constants, . . . terms
A functor of a head or a goal (or of a term, in general) is F/N, where F is
the name of the term and N is the number of args (also called arity).
Example: the functor of the head of (*) is has_gp/2
The functor of a clause is the functor of its head.
The set of clauses with the same functor form a predicate or procedure,
e.g. append/3 and append/2 are different predicates/procedures.
Clauses of a predicate should be contiguous (you get a warning, if not)

An Introduction to Logic Programming 2024 Spring Semester 24 / 170

Declarative Programming with Prolog Prolog – first steps

And what happened to the function symbols of FOL?

In FOL, atomic predicates have arguments that are terms, built from
variables using function symbols, e.g. lseq(plus(X ,2), times(Y ,Z))

In maths this is normally written in infix operator notation as X+2≤Y ·Z
In Prolog, graphic characters (and sequences of such) can be used for
both predicate and function names: =<(+(X,2), *(Y,Z)) (1)
As a “syntactic sweetener”, Prolog supports operator notation in user
interaction, i.e. (1) is normally input and displayed as X+2 =< Y*Z.
However, (1) is the internal, canonical format
The built-in predicate (BIP) write/1 displays its argument using operators,
while write_canonical/1 shows the canonical form
| ?- write(1 - 2 =< 3*4). =⇒ 1-2=<3*4
| ?- write_canonical(1 - 2 =< 3*4). =⇒ =<(-(1,2),*(3,4))

Notice that the predicate arguments are not evaluated, function names
act as data constructors (e.g. the op. - is not necessarily a subtraction):
| ?- keysort([a-3,p-4,p-2,l-0,e-5],L). =⇒ L = [a-3,e-5,l-0,p-4,p-2]

Evaluation of arith. exprs is only done by BIPs <, >, =<, >=, =:=, =\= and is

An Introduction to Logic Programming 2024 Spring Semester 25 / 170

Declarative Programming with Prolog Prolog – first steps

Prolog built-in predicates (BIPs) for unification and arithmetic

Unification. X = Y: unifies X and Y. Examples:
| ?- X = 1-2, Z = X*X. =⇒ X = 1-2, Z = (1-2)*(1-2)
| ?- U = X/Y, c(X,b)=c(a,Y). =⇒ U = a/b, X = a, Y = b
| ?- 1-2*3 = X*Y. =⇒ no (unification unsuccessful)

Arithmetic evaluation. X is A: A is evaluated, the result is unified with X.
A must be a ground arithmetic expression (ground: no free vars inside)
| ?- X = 2, Y is X*X+2. =⇒ X = 2, Y = 6 ?
| ?- X = 2, 7 is X*X+2. =⇒ no
| ?- X = 6, 7-1 is X. =⇒ no
| ?- X is f(1,2). =⇒ ’Type Error’

Arithmetic comparison. A =:= B: A and B are evaluated to numbers.
Succeeds iff the two numbers are equal.
(Both A and B have to be ground arithmetic expressions.)
| ?- X = 6, 7-1 =:= X. =⇒ X = 6
| ?- X = 6, X*X =:= (X+3)*(X-2). =⇒ X = 6
| ?- X = 6, X+3 =:= 2*(X-2). =⇒ no
| ?- X = 6, X+3 =:= 2*(Y-2). =⇒ ’Instantiation Error’

Further BIPs: A < B, A > B, A =< B (≤), A >= B (≥), and A =\= B (̸=)
An Introduction to Logic Programming 2024 Spring Semester 26 / 170

Declarative Programming with Prolog Prolog – first steps

Data structures in Prolog

Prolog is a dynamically typed language, i.e. vars can take arbitrary values.
Prolog data structures correspond to FOL terms. A Prolog term can be:

var (variable), e.g. X, Sum, _a, _; the last two are void (don’t care) vars
(If a var occurs once in a clause, prefix it with _, or get a WARNING!!!)
Multiple occurrences of a single _ symbol denote different vars.)
constant (0 argument function symbol):

number (integer or float), e.g. 3, -5, 3.1415
atom (symbolic constant, cf. enum type), e.g. a, susan, =<, ’John’

compound, also called record, structure (n-arg. function symbol, n > 0)
A compound takes the form: name(arg1,. . . ,argn), where

name is an atom, argi are arbitrary Prolog terms
e.g. employee(name(’John’,’Smith’),birthd(20,11,1994),’Sales’)

Compounds can be viewed as trees

name

arg1 . . . argn

employee

name

’John’ ’Smith’

birthd

20 11 1994

’Sales’

An Introduction to Logic Programming 2024 Spring Semester 27 / 170

Declarative Programming with Prolog Prolog – first steps

Prolog implementation – some milestones

1973: Marseille Prolog (Alain Colmerauer, Philippe Roussel)
interpreter in Fortran language
term representation: structure-sharing
stack structure: single stack (freed upon backtracking)

1975: Hungarian Prolog (P. Szeredi) – re-impl. of Marseille P. in CDL
http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/szeredi.html

Based on the last 3 slides of presentation“What is Prolog” by David H. D. Warren
https://www.softwarepreservation.org/projects/prolog/edinburgh/doc/Warren-What_is_Prolog-1974.pdf

1977: DEC-10 Prolog (D. H. D. Warren)
compiler in Prolog and assembly (+ interpreter in Prolog)
term representation: structure-sharing
stack structure: three stacks (all freed upon backtracking)

global stack: global variables (inside compound terms)
local (main) stack: procedures, choice-points, variables
trail: variable substitutions

1983: WAM – Warren Abstract Machine (D. H. D. Warren)
abstract machine for Prolog (used in SICStus, SWI, GNU . . .)
term representation: structure-copying
Three stacks as in DEC-10 Prolog

An Introduction to Logic Programming 2024 Spring Semester 28 / 170

http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/szeredi.html
https://www.softwarepreservation.org/projects/prolog/edinburgh/doc/Warren-What_is_Prolog-1974.pdf

Declarative Programming with Prolog Prolog – first steps

WAM: Storage of Prolog terms (LBT – low bit tagging)

WAM (Warren Abstract Machine): the most widespread Prolog architecture
Prolog object global/local stack global stack only

Unbound variable: own addr REF

Reference to other variable: addr of var REF

Atom (symb. constant): atom table index CONA

Integer: integer value CONI

List: addr LIST

addr: head term
tail term

Compound: addr STR

addr: functor table index
argument term

...

An Introduction to Logic Programming 2024 Spring Semester 29 / 170

Declarative Programming with Prolog Prolog – first steps

Variables in Prolog: the logic variable

A variable cannot be assigned (unified with) two distinct ground values:
| ?- X = 1, X = 2. =⇒ no

Two variables may be unified and then assigned a (common) value:
| ?- X = Y, X = 2. =⇒ X = 2, Y = 2 ?

The above apply to a single branch of execution. If we backtrack over a
branch on which the variable was assigned, the assignment is undone,
and on a new branch another assignment can be made:

has_p(b, c). has_p(b, d). has_p(d, e).

| ?- has_p(b, Y). =⇒ Y = c ? ; Y = d ? ; no

A logic variable is a “first class citizen” data structure, it can appear inside
compound terms:
| ?- Emp = employee(Name,Birth,Dept), Dept = ’Sales’,

Name = name(First,Last), First = ’John’.
=⇒ Emp = employee(name(’John’,Last),Birth,’Sales’) ?

The Emp data structure represents an arbitrary employee with given name
John who works in the Sales department

An Introduction to Logic Programming 2024 Spring Semester 30 / 170

Declarative Programming with Prolog Prolog – first steps

The logic variable (cont’d)

A variable may also appear several times in a compound, e.g. name(X,X)
is a Prolog term, which will match the first argument of the employee/3
record, iff the person’s first and last names are the same:
employee(1, employee(name(’John’,’John’),birthd(2000,12,21),’Sales’)).
employee(2, employee(name(’Ann’,’Kovach’),birthd(1988,8,18),’HR’)).
employee(3, employee(name(’Peter’,’Peter’),birthd(1970,2,12),’HR’)).

| ?- Emp = employee(name(_X,_X),_,_), employee(Num, Emp).
Num = 1, Emp = employee(name(’John’,’John’),birthd(2000,12,21),’Sales’) ? ;
Num = 3, Emp = employee(name(’Peter’,’Peter’),birthd(1970,2,12),’HR’) ? ; no

If a variable name starts with an underline, e.g. _X, its value is not
displayed by the interactive Prolog shell (often called the top level)

An Introduction to Logic Programming 2024 Spring Semester 31 / 170

Declarative Programming with Prolog Prolog – first steps

Classification of Prolog data objects (terms)

The taxonomy of Prolog terms,
and the corresponding BIPs for checking the category the arg. belongs to

XXXX

!!! aaa

!!! HH

�� aaa

Term

float

var nonvar

atomic compound

number atom

integer

var(X) X is a variable
nonvar(X) X is not a variable
atomic(X) X is a constant (atom or number)
compound(X) X is a compound
number(X) X is a number
atom(X) X is an atom
float(X) X is a floating point number
integer(X) X is an integer

The five coloured BIPs correspond to the five basic term types.
Two further type-checking BIPs:

simple(X): X is not compound, i.e. it is a variable or a constant.
ground(X): X is a constant or a compound with no (uninstantiated)
variables in it.

An Introduction to Logic Programming 2024 Spring Semester 32 / 170

Declarative Programming with Prolog Prolog – first steps

Another syntactic “sweetener” – list notation

A Prolog list [a,b,...] represents a sequence of terms (cf. linked list)
| ?- L = [a,b,c], write_canonical(L).
’.’(a,’.’(b,’.’(c,[])))

•

Elem1 •

Elem2

•

ElemN []

-

-

Elem2 Tail2

Tail1Elem1 .(Elem1, Tail1)

ElemN

. . .

NULL []

(Since version 7, SWI Prolog uses ’[|]’, instead of ’.’ :-((((.)

The head of a list is its first element, e.g. L’s head: a
the tail is the list of all but the first element, e.g. L’s tail: [b,c]
One often needs to split a list to its head and tail: List = .(Head, Tail)
The “square bracketed” counterpart: List = [Head|Tail]
Further sweeteners: [E1,E2,...,En|Tail] ≡ [E1|[E2|...,[En|Tail]...]]

[E1,E2,...,En] ≡ [E1,E2,...,En|[]]
An Introduction to Logic Programming 2024 Spring Semester 33 / 170

Declarative Programming with Prolog Prolog – first steps

Open ended and proper lists

Example:
% head0(L): L’s first element is 0.
head0(L) :- L = [0|_]. % ‘_’ is a void, don’t care variable

% singleton(L): L has a single element.
singleton([_]).

| ?- singleton(L1). ⇒ L1 = [_A] % L1 = [_A|[]] is a proper list
| ?- head0(L2). ⇒ L2 = [0|_A] % L2 is an open ended list

A Prolog term is called an open ended (or partial) list iff
either it is an unbound variable,
or it is a nonempty list structure (i.e. of the form [_|_])
and its tail is open ended,

i.e. if sooner or later an unbound variable appears as the tail.
A list is closed or proper iff sooner or later an [] appears as the tail
Further examples: [X,1,Y] is a proper list, [X,1|Z] is open ended.

An Introduction to Logic Programming 2024 Spring Semester 34 / 170

Declarative Programming with Prolog Prolog – first steps

Working with lists – examples

(Each occurrence of a void variable (_) denotes a different variable.)

| ?- [1,2] = [X|Y]. =⇒ X = 1, Y = [2] ?
| ?- [1,2] = [X,Y]. =⇒ X = 1, Y = 2 ?
| ?- [1,2,3] = [X|Y]. =⇒ X = 1, Y = [2,3] ?
| ?- [1,2,3] = [X,Y]. =⇒ no
| ?- [1,2,3,4] = [X,Y|Z]. =⇒ X = 1, Y = 2, Z = [3,4] ?
| ?- L = [a,b], L = [_,X|_]. =⇒ . . . , X = b ?

% X is the 2nd elem of L
| ?- L = [a,b], L = [_,X,_|_]. =⇒ no

% L has at least 3 elements, of which X is the 2nd
| ?- L = [1|_], L = [_,2|_]. =⇒ L = [1,2|_A] ?

% L is an open ended list

An Introduction to Logic Programming 2024 Spring Semester 35 / 170

Declarative Programming with Prolog Prolog – first steps

List-handling predicates – simple example

I/O mode notation for pred. arguments (only in comments):
+: input (bound), -: output (unbound var.), ?: arbitrary.
Write a predicate that checks if all elements in a list are the same. Let’s
call such a list A-boring, where A is the element appearing repeatedly.
Remember, you can read ‘:-’ as ‘if’, ‘,’ as ‘and’
% boring(+L, ?A): List L is A-boring.
boring([], _) % [] is A-boring for every A.
boring(L, A) :- % List L is A-boring, if

L=[A|L1], % L’s head equals A and
boring(L1, A). % L’s tail is A-boring.

You can simplify the definition of boring/1 to:
boring([], _).
boring([A|L], A) :- boring(L, A).

An Introduction to Logic Programming 2024 Spring Semester 36 / 170

Declarative Programming with Prolog Prolog – first steps

List-handling predicates – further examples

Given a list of numbers, calculate the sum of the list elements.
Remember, you can do arithmetic calculations with ‘is‘

% sum(+L, ?Sum): L sums to Sum. (L is a list of numbers.)
sum([], 0). % [] sums to 0.
sum([H|T], Sum) :- % A list with head H and tail T sums to Sum if

sum(T, Sum0), % T sums to Sum0 and
Sum is Sum0+H. % Sum is the value of Sum0+H.

Given two arbitrary lists, check that they are of equal length.

% same_length(?L1, ?L2): Lists L1 and L2 are of equal length.
same_length([], []). % [] has the same length as []
same_length(L1, L2) :- % L1 and L2 are of equal length if

L1 = [_|T1], % the tail of L1 is T1 and
L2 = [_|T2], % the tail of L2 is T2 and
same_length(T1, T2). % the T1 and the T2 are of equal length.

An Introduction to Logic Programming 2024 Spring Semester 37 / 170

Declarative Programming with Prolog Prolog – first steps

Concatenating lists

Let L1 ⊕ L2 denote the concatenation of L1 and L2,
i.e. a list consisting of the elements of L1 followed by those of L2.
Building L1 ⊕ L2 in an imperative language
(A list is either a NULL pointer or a pointer to a head-tail structure):

Scan L1 until you reach a tail which is NULL
Overwrite the NULL pointer with L2

If you still need the original L1, you have to copy it, replacing its final NULL
with L2. A recursive definition of the ⊕ (concatenation) function:
L1 ⊕ L2 = if L1 == NULL return L2

else L3 = tail(L1) ⊕ L2
return a new list structure whose head is head(L1)

and whose tail is L3

Transform the above recursive definition to Prolog:
% app0(A, B, C): the conc(atenation) of A and B is C
app0([], L2, L2). % The conc. of [] and L2 is L2.
app0([X|L1], L2, L) :- % The conc. of [X|L1] and L2 is L if

app0(L1, L2, L3), % the conc. of L1 and L2 is L3 and
L = [X|L3]. % L’s head is X and L’s tail is L3.

An Introduction to Logic Programming 2024 Spring Semester 38 / 170

Declarative Programming with Prolog Prolog – first steps

Efficient and multi-purpose concatenation

Drawbacks of the app0/3 predicate:
Uses “real” recursion (needs stack space proportional to length of L1)
Cannot split lists, e.g. app0(L1,[3],[1,3]) ; infinite loop

Apply a generic optimization: eliminate variable assignments
Remove goal Var = T, and replace occurrences of variable Var by T

Not applicable in the presence of disjunctions or if-then-else or the cut (!)
Apply this optimization to the second clause of app0/3:
app0([X|L1], L2, Var) :- app0(L1, L2, L3), Var = [X|L3].

The resulting code (renamed to app, also available as the BIP append/3)
% app(A, B, C): The conc. of A and B is C, i.e. C = A⊕B
app([], L2, L2). % The conc. of [] and L2 is L2.
app([X|L1], L2, [X|L3]) :- % The conc. of [X|L1] and L2 is [X|L3] if

app(L1, L2, L3). % the conc. of L1 and L2 is L3.

append/3 uses tail recursion optimization (TRO), i.e. it is implemented as
a loop (thanks to the logic variable)
append/3 can also be used for further tasks, e.g. finding a prefix of a list,
splitting a list into two parts, etc.

An Introduction to Logic Programming 2024 Spring Semester 39 / 170

Declarative Programming with Prolog Prolog – first steps

Tail recursion optimization

Tail recursion optimization (TRO), or more generally last call optimization
(LCO) is applicable if

the goal in question is the last to be executed in a clause body, and
no choice points exist in the given predicate.

LCO is applicable to the recursive call of app/3:
app([], L, L).
app([X|L1], L2, [X|L3]) :- app(L1, L2, L3).

This feature relies on open ended lists:
It is possible to build a list node before building its tail
This corresponds to passing to append a pointer to the location
where the resulting list should be stored.

Open ended lists are possible because unbound variables are first class
objects, i.e. unbound variables are allowed inside data structures.
(This type of variable is often called the logic variable).

An Introduction to Logic Programming 2024 Spring Semester 40 / 170

Declarative Programming with Prolog Prolog – first steps

The iterative algorithm for concatenating lists

append L1 ⊕ L2 depositing (the result) into L3:
rep: if L1 == []

then L3 = L2
else split L1 into a head X and a tail T1

create a new list compound LC whose head is X
deposit (a pointer to) LC into L3
append T1 ⊕ L2 depositing into the tail of LC % recursive
L1 = T1, L3 = tail of LC, go to rep % TRO, iterative

A C++ implementation

struct link { link *next;
char elem;
link(char e): elem(e) {} };

typedef link *list;
list app(list L1, list L2)
{ list L3, *lp = &L3;

for (list p=L1; p; p=p->next)
{ list newl = new link(p->elem); *lp = newl; lp = &newl->next;
}
*lp = L2; return L3;

}

An Introduction to Logic Programming 2024 Spring Semester 41 / 170

Declarative Programming with Prolog Prolog – first steps

Splitting lists using append

PPPPPP

�
�
�

��

A
A
A
AA
�
�
�

��

A
A
A
AA
�
�
�

��

A
A
A
AA
�

�
�
��

A
A
A
AA

?- app(A, B, [1,2,3,4]).
A=[]

B=[1,2,3,4] A=[1|A1]

A=[],B=[1,2,3,4]
?- app(A1, B, [2,3,4]).

A1=[2|A2]

?- app(A2, B, [3,4]).

B=[3,4]

B=[4]

A2=[]

A3=[]

B=[2,3,4]
A1=[]

A3=[4|A4]

?- app(A3, B, [4]).

?- app(A4, B, []).

A2=[3|A3]
A=[1], B=[2,3,4]

A=[1,2],B=[3,4]

A=[1,2,3],B=[4]

A4=[]
B=[]

A=[1,2,3,4],B=[]

% app(L1, L2, L3):
% L1 ⊕ L2 = L3.
app([], L, L).
app([X|L1], L2, [X|L3]) :-

app(L1, L2, L3).

| ?- app(A, B, [1,2,3,4]).
A = [], B = [1,2,3,4] ? ;
A = [1], B = [2,3,4] ? ;
A = [1,2], B = [3,4] ? ;
A = [1,2,3], B = [4] ? ;
A = [1,2,3,4], B = [] ? ;
no

An Introduction to Logic Programming 2024 Spring Semester 42 / 170

Declarative Programming with Prolog Prolog – first steps

How does the “openness” of arguments affect append(L1,L2,L3)?

L2 is never decomposed (“looked inside”) by append, its openness does
not matter. E.g. obfuscate: use append to implement X = 1:
| ?- append([], 1, X). =⇒ X = 1 ? ; no
If L1 is closed, append produces at most one answer
| ?- append([a,b], T, L). =⇒ L = [a,b|T] ? ; no
| ?- append([a,b], [c|T], L). =⇒ L = [a,b,c|T] ? ; no
| ?- append([a,b], [c|T], [_,_,d,_]). =⇒ no
If L3 is closed (of length n), append produces at most n + 1 answers,
where L1 and L2 are closed lists (see previous slide, too):
| ?- append(L1,L2,[1,2]). =⇒ L1=[], L2=[1,2] ? ; L1=[1], L2=[2] ? ;

L1=[1,2], L2=[] ? ; no
| ?- append([1,2], L, [1,2,3,4,5]). =⇒ L = [3,4,5] ? ; no
| ?- append(L1,[4|L2],[1,2,3,4,5]). =⇒ L1 = [1,2,3], L2=[5] ? ; no
| ?- append(L1,[4,2],[1,2,3,4,5]). =⇒ no
The search may be infinite: if both the 1st and the 3rd arg. is open ended
| ?- append([1|L1], [a,b], L3). =⇒

L1 = [], L3 = [1,a,b] ? ; L1 = [_A], L3 = [1,_A,a,b] ? ;
L1 = [_A,_B], L3 = [1,_A,_B,a,b] ? ; ad infinitum :-((((

But: | ?- append([1|L1], L2 , [2|L3]). =⇒ no
An Introduction to Logic Programming 2024 Spring Semester 43 / 170

Declarative Programming with Prolog Prolog – first steps

Eight ways of using append(L1,L2,L3) (safe or unsafe)

:- mode append(+, +, +). % checking if appending L1 and L2 gives L3
| ?- append([1,2], [3,4], [1,2,3,4]). =⇒ yes

:- mode append(+, +, -). % appending L1 and L2 to obtain suffix L3
| ?- append([1,2], [3,4], L3). =⇒ L3 = [1,2,3,4] ? ; no

:- mode append(+, -, +). % checking if L1 is a prefix of L3, obtaining L2
| ?- append([1,2], L2, [1,2,3,4]). =⇒ L2 = [3,4] ? ; no

:- mode append(+, -, -). % prepending L1 to an open ended L2 to obtain L3
| ?- append([1,2], [3|L2], L3). =⇒ L3 = [1,2,3|L2] ? ; no

:- mode append(-, +, +). % checking if L2 is a suffix of L3 to obtain L1
| ?- append(L1, [3,4], [1,2,3,4]). =⇒ L1 = [1,2] ? ; no

:- mode append(-, -, +). % splitting L3 to L1 and L2 in all possible ways
| ?- append(L1, L2, [1]). =⇒ L1=[],L2=[1] ? ; L1=[1],L2=[] ? ; no

:- mode append(-, +, -). (see prev. slide) and :- mode append(-, -, -).
| ?- append(L1, L2, L3). =⇒ L1=[], L3=L2 ? ; L1=[A], L3=[A|L2] ? ;

L1=[A,B], L3=[A,B|L2] ? ...

An Introduction to Logic Programming 2024 Spring Semester 44 / 170

Declarative Programming with Prolog Prolog – first steps

Variation on append — appending three lists

Recall: append/3 has finite search space, if its 1st or 3rd arg. is closed.
append(L,_,_) completes in ≤ n + 1 reduction steps when L has length n
Let us define append(L1,L2,L3,L123): L1 ⊕ L2 ⊕ L3 = L123. First attempt:
append(L1, L2, L3, L123) :-

append(L1, L2, L12), append(L12, L3, L123).

Inefficient: append([1,...,100],[1,2,3],[1], L) – 203 and not 103 steps. . .
Not suitable for splitting lists – creates an infinite choice point

An efficient version, suitable for splitting a given list to three parts:
% L1 ⊕ L2 ⊕ L3 = L123,
% where either both L1 and L2 are closed, or L123 is closed.
append(L1, L2, L3, L123) :-

append(L1, L23, L123), append(L2, L3, L23).

L3 can be open ended or closed, it does not matter
If e.g. L1=[1,2] and L123 is unbound, then the first append/3 builds an
open ended list in L123:
| ?- append([1,2], L23, L123). =⇒ L123 = [1,2|L23]

Here L23 will be filled in by the second call of append/3.
An Introduction to Logic Programming 2024 Spring Semester 45 / 170

Declarative Programming with Prolog Prolog – first steps

The BIP length/2 – length of a list

% length(?List, ?N): list List is of length N.

This built-in predicate can be used in several input-output modes:
| ?- length([4,3,1], Len). Len = 3 ? ;

no
| ?- length(List, 3). List = [_A,_B,_C] ? ;

no
| ?- length([[4,1,3],[2,8,7]], Len). Len = 2 ? ;

no

| ?- length(L, N). L = [], N = 0 ? ;
L = [_A], N = 1 ? ;
L = [_A,_B], N = 2 ? ;
L = [_A,_B,_C], N = 3 ? ...

length/2 has an infinite search space if the first argument is an open
ended list and the second is a variable.

An Introduction to Logic Programming 2024 Spring Semester 46 / 170

Declarative Programming with Prolog Prolog – first steps

Appending a list of lists

Library lists contains a predicate append/2

% append(LL, L): L is the concatenation of the elements of LL.
% where LL is a closed list of lists.

A further condition for safe use (finite search space):
Either each element of LL is a closed list
| ?- append([[1,A],[3],[4,B]], L). =⇒ L = [1,A,3,4,B] ? ; no

Or L is a closed list
| ?- append([L1,L2,L3], [1,2]), L1 \= [],

=⇒ L1 = [1], L2 = [], L3 = [2] ? ;
L1 = [1], L2 = [2], L3 = [] ? ;
L1 = [1,2], L2 = [], L3 = [] ? ; no

Using append/2, find a sublist matching a given pattern:
| ?- Pattern = [_A,_,_A], append([_Pref,Pattern,_],[1,2,3,2,1,2]),

length(_Pref, Index). % obtain the index of the Pattern
Pattern = [2,3,2], Index = 1 ? ; % Index is zero-based
Pattern = [2,1,2], Index = 3 ? ; no

Implement append/2 (naming it app/2), along the lines of append/4

An Introduction to Logic Programming 2024 Spring Semester 47 / 170

Declarative Programming with Prolog Prolog – first steps

Further Prolog exercise tasks

Consider the following predicates (annotation + indicates a closed list):
% pref(+L, ?P): P is a (possibly empty) prefix of list L prefix
% suff(+L, ?S): S is a (possibly empty) suffix of list L suffix
% lst(+L, ?E): E is the last element of L (fails if L is []) last
% memb(?E, +L): E is an element of list L member
% selct(?E, +L, ?R): Omitting E from list L gives list R select
% nth(?N, +L, ?E): The Nth element of list L is E nth1

First, implement each of the above predicates by reducing them to a
single call of append/3 (except for selct/3 which requires two calls of
append/3).
Next, implement each of the above without using append/3, as a single
recursive predicate
The above predicates are available in library(lists) under the name
shown above at the end of line in green

An Introduction to Logic Programming 2024 Spring Semester 48 / 170

Declarative Programming with Prolog Prolog – first steps

Another recursive data structure – binary tree

A binary tree data structure can be defined as being
either a leaf (leaf) which contains an integer (value)
or a node (node) which contains two subtrees (left,right)

Defining binary tree structures in C and Prolog:

% Declaration of a C structure
enum treetype Leaf, Node;
struct tree {

enum treetype type;
union {

struct { int value;
} leaf;

struct { struct tree *left;
struct tree *right;

} node;
} u;

};

% No need to define types in Prolog
% A type-checking predicate can be
% written, if this check is needed:

% is_tree(T): T is a binary tree
is_tree(leaf(Value)) :-

integer(Value).
is_tree(node(Left,Right)) :-

is_tree(Left),
is_tree(Right).

Note: integer(Value) is a BIP which
succeeds if and only if V is an integer.

An Introduction to Logic Programming 2024 Spring Semester 49 / 170

Declarative Programming with Prolog Prolog – first steps

Calculating the sum of numbers in the leaves of a binary tree

Calculating the sum of the leaves of a binary tree:
if the tree is a leaf, return the integer in the leaf
if the tree is a node, (recursively) sum the two subtrees and return
their sum

% C function (declarative)
int tree_sum(struct tree *tree) {

switch(tree->type) {
case Leaf:
return tree->u.leaf.value;

case Node:
return
tree_sum(tree->u.node.left) +
tree_sum(tree->u.node.right);
}

}

% Prolog procedure
% tree_sum(+T, ?S):
% The sum of the leaves
% of tree T is S.
tree_sum(leaf(Value), S) :-

S = Value.
tree_sum(node(Left,Right), S) :-

tree_sum(Left, S1),
tree_sum(Right, S2),
S is S1+S2.

An Introduction to Logic Programming 2024 Spring Semester 50 / 170

Declarative Programming with Prolog Prolog – first steps

Sum of Binary Trees – a sample run

% sicstus
SICStus 4.3.5 (...)
| ?- consult(tree). % alternatively: compile(tree). or [tree].
% consulting /home/szeredi/examples/tree.pl...
% consulted /home/szeredi/examples/tree.pl in module user, (...)
| ?- tree_sum(node(leaf(5),

node(leaf(3), leaf(2))), Sum).
Sum = 10 ? ; no
| ?- tree_sum(leaf(10), 10).
yes
| ?- tree_sum(leaf(10), Sum).
Sum = 10 ? ; no
| ?- tree_sum(Tree, 10).
Tree = leaf(10) ? ;
! Instantiation error in argument 2 of is/2
! goal: 10 is _73+_74
| ?- halt.

The cause of the error: the built-in arithmetic is one-way: the goal 10 is S1+S2
causes an error!

An Introduction to Logic Programming 2024 Spring Semester 51 / 170

Declarative Programming with Prolog Prolog execution models

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 52 / 170

Declarative Programming with Prolog Prolog execution models

Two Prolog execution models

The Goal Reduction model
a reformulation of the resolution proof technique
good for visualizing the search tree

The Procedure Box model
reflects actual implementation better
used by the Prolog trace mechanism

An Introduction to Logic Programming 2024 Spring Semester 53 / 170

Declarative Programming with Prolog Prolog execution models

The Goal Reduction model – the grandparent example

Goal reduction takes a goal, i.e. a conjunction of subgoals G and using a
clause C reduces it to a new goal G′, so that G′ → G
E.g. reducing G = has_gp(b, X) using (gp1) gives

G′ = has_p(b, P1), has_p(P1, X)

has_p(b, c). % (p1)
has_p(b, d). % (p2)
has_p(d, e). % (p3)
has_p(d, f). % (p4)

has_gp(GC, GP) :-
has_p(GC, P),
has_p(P, GP). % (gp1)

| ?- has_gp(b, X).

(gp1)

P1=d

(p2) (p1)

X=f

 has_p(d, X)

(p4) (p3)

 X=e

 has_p(c,X)

 P1=c

 has_p(b, P1), has_p(P1, X)

 has_gp(b, X)

.

(blind alley −− backtrack)

(success) (success)

(empty conjunction = true) (empty conjunction)

An Introduction to Logic Programming 2024 Spring Semester 54 / 170

Declarative Programming with Prolog Prolog execution models

The definition of a goal reduction step

Reduce a goal G to a new goal G′ using a program clause Cli :
Split goal G into the first subgoal GF and the residual goal GR

Copy clause Cli , i.e. rename all variables to new ones,
and split the copy to a head H and body B
Unify the goal GF and the head H

If the unification fails, exit the reduction step with failure
If the unification succeeds with a substitution σ, return the new goal
G′ = (B,GR)σ (i.e. apply σ to both the body and the residual goal)

E.g., slide 54: G = has_gp(b, X) using (gp1) ⇒ G′ = has_p(b, P1),has_p(P1, X)

Reduce a goal G to a new goal G′ by executing a built-in predicate (BIP)
Split goal G into the first, BIP subgoal GF and the residual goal GR

Execute the BIP GF

If the BIP fails then exit the reduction step with failure
If the BIP succeeds with a substitution σ then
return the new goal G′ = GRσ

An Introduction to Logic Programming 2024 Spring Semester 55 / 170

Declarative Programming with Prolog Prolog execution models

The goal reduction model of Prolog execution – outline

This model describes how Prolog builds and traverses a search tree
A web app for practicing the model: https://ait.plwin.dev/P1-1

The inputs:
a Prolog program (a sequence of clauses), e.g. the has_gp program
a goal, e.g. :- has_gp(b, GP).
extended with a special goal, carrying the solution: answer(Sol):
:- has_gp(b, GP),answer(GP). % Who are the grandparents of a?
:- has_gp(Ch,GP),answer(Ch-GP). % Which are the child-gparent pairs?

When only an answer goal remains, a solution is obtained
Possible outcomes of executing a Prolog goal:

Exception (error), e.g. :- Y = apple, X is Y+1.
(This is not discussed further here)

Failure (no solutions), e.g. :- has_p(c, P), answer(P).
Success (1 or more solutions), e.g. :- has_p(d, P), answer(P).

An Introduction to Logic Programming 2024 Spring Semester 56 / 170

https://ait.plwin.dev/P1-1

Declarative Programming with Prolog Prolog execution models

The main data structures used in the model

There are only two (imperative, mutable) variables in this model:
Goal: the current goal sequence, ChPSt the stack of choice points (ChPs)
If, in a reduction step, two or more clause heads unify (match) the first
subgoal, a new ChPSt entry is made, storing:

the list of clauses with possibly matching heads
the current goal sequence (i.e. Goal)

At a failure, the top entry of the ChPSt is examined:
the goal stored there becomes the current Goal,
the first element of the list of clauses is removed, the second is
remembered as the “current clause”,
if the list of clauses is now a singleton, the top entry is removed,
finally the Goal is reduced, using the current clause.

If, at a failure, ChPSt is empty, execution ends.
An Introduction to Logic Programming 2024 Spring Semester 57 / 170

Declarative Programming with Prolog Prolog execution models

The flowchart of the Prolog goal reduction model

Entry S1

answer is the only remaining goal?

First subgoal calls a built-in pred. (BIP)?

n clause heads “match” the 1st subgoal

S2

Creating a choice
point (ChP)

S3

Goal reduction

S4

Backtracking

S5

BIP reduction

S6

Solution found

S3 S1 S4 S3

S7

S1 S4 S4

Exit

no yes

yesno

n > 1 n = 1 n = 0

success failure ∃ a ChP

no ChPs

success failure

(Double arrows indicate a jump to the step in the pink circle, i.e. execution continues at the given red circle.)

An Introduction to Logic Programming 2024 Spring Semester 58 / 170

Declarative Programming with Prolog Prolog execution models

Remarks on the flowchart

There are seven different execution steps: S1–S7, where S1 is the initial
(but also an intermediate) step, and S7 represents the final state.
The main task of S1 is to branch to one of S2–S6:

when Goal contains an answer goal only⇒ S6;
when the first subgoal of Goal calls a BIP⇒ S5;
otherwise the first subgoal calls a user predicate. Here a set of
clauses is selected which contains all clauses whose heads match
the first subgoal (this may be a superset of the matching ones).
Based on the number of clauses⇒ S2, S3 or S4.

S2 creates a new ChPSt entry, and⇒ S3 (to reduce with the first clause).
S3 performs the reduction. If that fails⇒ S4, otherwise⇒ S1.
S4 retrieves the next clause from the top ChPSt entry, if any (⇒ S3),
otherwise execution ends (⇒ S7).
In S5, similarly to S3, if the BIP succeeds⇒ S1, otherwise⇒ S4.
In S6, the solution is displayed and further solutions are sought (⇒ S4).

An Introduction to Logic Programming 2024 Spring Semester 59 / 170

Declarative Programming with Prolog Prolog execution models

The Procedure Box execution model – example

The procedure box execution model of has_gp

has_gp(GC, GP) :- has_p(GC, P), has_p(P, GP). has_p(b, c).
has_p(b, d).
has_p(d, e).
has_p(d, f).

Call Exit

Fail Redo

has_p(P, GP)

has_gp(GC, GP)

has_p(GC, P)

An Introduction to Logic Programming 2024 Spring Semester 60 / 170

Declarative Programming with Prolog Prolog execution models

Prolog tracing (SICStus), based on the four port box model

| ?- consult(gp3).
% consulting gp3.pl...
% consulted gp3.pl ...
yes
| ?- listing.
has_gp(Ch, G) :-

has_p(Ch, P),
has_p(P, G).

has_p(b, c).
has_p(b, d).
has_p(d, e).
has_p(d, f).

yes
| ?- trace.
% The debugger will ...
yes

| ?- has_gp(Ch, f).
Det? BoxId Depth Port Goal

1 1 Call: has_gp(Ch,f) ?
2 2 Call: has_p(Ch,P) ?

? 2 2 Exit: has_p(b,c) ?
3 2 Call: has_p(c,f) ?
3 2 Fail: has_p(c,f) ?
2 2 Redo: has_p(b,c) ?

? 2 2 Exit: has_p(b,d) ?
4 2 Call: has_p(d,f) ?
4 2 Exit: has_p(d,f) ?

No choice left in box 4, box removed (no ?)
? 1 1 Exit: has_gp(b,f) ?
Ch = b ? ;

1 1 Redo: has_gp(b,f) ?
2 2 Redo: has_p(b,d) ?

? 2 2 Exit: has_p(d,e) ?
5 2 Call: has_p(e,f) ?
5 2 Fail: has_p(e,f) ?
2 2 Redo: has_p(d,e) ?
2 2 Exit: has_p(d,f) ?

No choice left in box 2, box removed (no ?)
6 2 Call: has_p(f,f) ?
6 2 Fail: has_p(f,f) ?
1 1 Fail: has_gp(Ch,f) ?

no
| ?-

An Introduction to Logic Programming 2024 Spring Semester 61 / 170

Declarative Programming with Prolog Prolog execution models

The procedure-box of multi-clause predicates

‘Sister in law’ can be one’s spouse’s sister; or one’s brother’s wife:

has_sister_in_law(X, Y) :-
has_spouse(X, S), has_sister(S, Y).

has_sister_in_law(X, Y) :-
has_brother(X, B), has_wife(B, Y).

Call

Fail

Exit

Redo

wf(B,Y)

sp(X,S)

br(X,B)

si(S,Y)

has_sister_in_law(X,Y)

.

.

An Introduction to Logic Programming 2024 Spring Semester 62 / 170

Declarative Programming with Prolog Prolog execution models

The procedure-box of a “database” predicate of facts

In general in a multi-clause predicate the clauses have different heads
A database of facts is a typical example:
has_p(b, c).
has_p(b, d).

These clauses can be massaged to have the same head:
has_p(Ch, P) :- Ch = b, P = c.
has_p(Ch, P) :- Ch = b, P = d.

Consequently, the procedure-box of this predicate is this:

Call

Fail

Exit

Redo

P = d

Ch = b

Ch = b

P = c

has_p(Ch,P)

.

.

An Introduction to Logic Programming 2024 Spring Semester 63 / 170

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 64 / 170

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Summary – syntax of Prolog predicates, clauses

Example

% A predicate with two clauses, the functor is: tree_sum/2
tree_sum(leaf(Val), Val). % clause 1, fact
tree_sum(node(Left,Right), S) :- % head \

tree_sum(Left, S1), % goal \ |
tree_sum(Right, S2), % goal | body | clause 2, rule
S is S1+S2. % goal / /

Syntax
⟨program ⟩ ::= ⟨predicate ⟩ . . . {i.e. a sequence of predicates}
⟨predicate ⟩::= ⟨ clause ⟩ . . . {with the same functor}
⟨ clause ⟩ ::= ⟨ fact ⟩. |

⟨ rule ⟩.
⟨ fact ⟩ ::= ⟨head ⟩
⟨ rule ⟩ ::= ⟨head ⟩:-⟨body ⟩ {clause functor = head functor}
⟨body ⟩ ::= ⟨goal ⟩, . . . {i.e. a seq. of goals sep. by commas}
⟨head ⟩ ::= ⟨ callable term ⟩ {atom or compound}
⟨goal ⟩ ::= ⟨ callable term ⟩ {or a variable, if instantiated to a callable}

An Introduction to Logic Programming 2024 Spring Semester 65 / 170

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Prolog terms (canonical form)

Example – a clause head as a term
% tree_sum(node(Left,Right), S) % compound term, has the
% ________ ________________ _ % functor tree_sum/2
% | | |
% compound name \ argument, variable
% \ - argument, compound term

Syntax
⟨ term ⟩ ::= ⟨ variable ⟩ | {has no functor}

⟨ constant ⟩ | {⟨ constant ⟩/0}
⟨ compound term ⟩ | {⟨ comp. name ⟩/⟨# of args ⟩}
. . . extensions . . . {lists, operators}

⟨ constant ⟩ ::= ⟨atom ⟩ | {symbolic constant}
⟨number ⟩

⟨number ⟩ ::= ⟨ integer ⟩ | ⟨ float ⟩

⟨ compound term ⟩::= ⟨ comp. name ⟩ (⟨argument ⟩, . . .)
⟨ comp. name ⟩ ::= ⟨atom ⟩
⟨argument ⟩ ::= ⟨ term ⟩
⟨ callable term ⟩ ::= ⟨atom ⟩ | ⟨ compound term ⟩

An Introduction to Logic Programming 2024 Spring Semester 66 / 170

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Lexical elements

Examples

% variable: Fact FACT _fact X2 _2 _
% atom: fact ≡ ’fact’ ’István’ [] ; ’,’ += ** \= ≡ ’\\=’
% number: 0 -123 10.0 -12.1e8
% not an atom: !=, István
% not a number: 1e8 1.e2

Syntax
⟨ variable ⟩ ::= ⟨ capital letter ⟩⟨alphanum ⟩. . . |

_ ⟨alphanum ⟩. . .
⟨atom ⟩ ::= ’⟨quoted char ⟩. . . ’ |

⟨ lower case letter ⟩⟨alphanum ⟩. . . |
⟨ sticky char ⟩. . . | ! | ; | [] | {}

⟨ integer ⟩ ::= {signed or unsigned sequence of digits }
⟨ float ⟩ ::= { a sequence of digits with a compulsory decimal point

in between, with an optional exponent}
⟨quoted char ⟩ ::= {any non ’ and non \ character} | \ ⟨escaped char ⟩
⟨alphanum ⟩ ::= ⟨ lower case letter ⟩ | ⟨upper case letter ⟩ | ⟨digit ⟩ | _
⟨ sticky char ⟩ ::= + | - | * | / | \ | $ | ^ | < | > | = | ‘ | ~ | : | . | ? | @ | # | &

An Introduction to Logic Programming 2024 Spring Semester 67 / 170

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Comments and layout in Prolog

Comments
From a % character till the end of line
From /* till the next */

Layout (spaces, newlines, tabs, comments) can be used freely, except:
No layout allowed between the name of a compound and the “(”
If a prefix operator (see later) is followed by “(”, these have to be
separated by layout
Clause terminator (.): a stand-alone full stop (i.e., one not preceded
by a sticky char), followed by layout

The recommended formatting of Prolog programs:
Write clauses of a predicate continuously, no empty lines between
Precede each pred. by an empty line and a spec (head comment)
% predicate_name(A1, ..., An): A declarative sentence (statement)
% describing the relationship between terms A1, ..., An

Write the head of the clause at the beginning of a line, and prefix
each goal in the body with an indentation of a few (8 recommended)
spaces.

An Introduction to Logic Programming 2024 Spring Semester 68 / 170

Declarative Programming with Prolog Further control constructs

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 69 / 170

Declarative Programming with Prolog Further control constructs

Disjunctions

Disjunctions (i.e. subgoals separated by “or”) can appear as goals
A disjunction is denoted by semicolon (“;”)
Enclose the whole disjunction in parentheses, align chars (, ; and)

has_sister_in_law(X, Y) :-
(has_spouse(X, S), has_sister(S, Y)
; has_brother(X, B), has_wife(B, Y)
).

The above predicate is equivalent (and expands) to:
has_sister_in_law(X, Y) :- has_spouse(X, S), has_sister(S, Y).
has_sister_in_law(X, Y) :- has_brother(X, B), has_wife(B, Y).

A disjunction is itself a valid goal, it can appear in a conjunction:
has_ancestor(X, A) :-

has_parent(X, P), (A = P
; has_ancestor(P, A)
).

Can you make an equivalent variant which does not use “;”?

An Introduction to Logic Programming 2024 Spring Semester 70 / 170

Declarative Programming with Prolog Further control constructs

Disjunctions, continued

An example with multiple disjunctions:
% first_1(L): List L has length 3 and its first nonzero element is 1.

first_1([A,B,C]) :-
(A = 1
; A = 0,

(B = 1
; B = 0, C = 1
)

).

Note: the V=Term goals can no longer be got rid of in disjunctions
Comma binds more tightly than semicolon, e.g.
p :- (q, r ; s) ≡ p :- ((q, r) ; s).
Please, never enclose disjuncts (goals on the sides of ;) in parentheses!
You can have more than two-way “or”s:
p :- (a ; b ; c ; ...) which is the same as
p :- (a ; (b ; (c ; ...)))

Please, do not use the unnecessary parentheses (colored red)!
An Introduction to Logic Programming 2024 Spring Semester 71 / 170

Declarative Programming with Prolog Further control constructs

Expanding disjunctions to helper predicates

Example: p :- q, (r ; s).

Distributive expansion inefficient, as it calls q twice:
p :- q, r.
p :- q, s.

For an efficient solution introduce a helper predicate. Example:
g(X, Z) :-

p(X,Y),
(q(Y,U), r(U,Z)
; s(Y, Z)
; t(Y), w(Z)
),
v(X, Z).

Collect variables that occur both inside and outside the disj. – Y,Z.
Define a helper predicate – aux(Y,Z) – with these vars as args, transform
each disjunct to a separate clause of the helper predicate:
aux(Y, Z) :- q(Y,U), r(U,Z).
aux(Y, Z) :- s(Y, Z).
aux(Y, Z) :- t(Y), w(Z).

Replace the disjunction with a call of the helper predicate:
g(X, Z) :- p(X, Y), aux(Y, Z), v(X, Z).

An Introduction to Logic Programming 2024 Spring Semester 72 / 170

Declarative Programming with Prolog Further control constructs

The if-then-else construct

When the two branches of a disjunction exclude each other, use the
if-then-else construct (condition -> then ; else). Example:
% pow(A, E, P): P is A to the power E.
pow(A, E, P) :- pow1(A, E, P) :-

(E > 0, E1 is E-1, =⇒ (E > 0 -> E1 is E-1,
pow(A, E1, P1), pow(A, E1, P1),
P is A*P1 P is A*P1

; E = 0, P = 1 ; E = 0, P = 1
).).

pow1 is about 25% faster than pow and requires much less memory
The atom -> is a standard operator
The construct (Cond -> Then ; Else) is executed by first executing
Cond. If this succeeds, Then is executed, otherwise Else is executed.
Important: Only the first solution of Cond is used for executing Then. The
remaining solutions are discarded!
Note that (Cond -> Then ; Else) looks like a disjunction, but it is not
The else-branch can be omitted, it defaults to false.

An Introduction to Logic Programming 2024 Spring Semester 73 / 170

Declarative Programming with Prolog Further control constructs

Defining “childless” using if-then-else

Given the has_parent/2 predicate, define the notion of a childless person
If we can find a child of a given person, then childless should fail,
otherwise it should succeed.
% childless(+Person): A given Person has no children
childless(Person) :- (has_parent(_, Person) -> fail

; true
).

What happens if you call childless(P), where P is an unbound var?
Will it enumerate childless people in P? No, it will simply fail.
The above if-then-else can be simplified to:
childless(Person) :- \+ has_parent(_, Person).

“\+” is called Negation by Failure (NF), as “\+ G” runs by executing G:
if G fails “\+ G” succeeds.
if G succeeds “\+ G” fails (ignoring further solutions of G, if any)

Since a failed goal produces no bindings, “\+ G” will never bind a variable.
Read “\+” as “not provable”, cf. ̸⊢ tilted slightly to the left.

An Introduction to Logic Programming 2024 Spring Semester 74 / 170

Declarative Programming with Prolog Further control constructs

Open and closed world assumption (ADVANCED)

has_parent(a, b). has_parent(a, c). has_parent(c, d). (1)-(3)

Does (1)–(3) imply that a is childless: φ = ∀x .¬has_parent(x , a)?
No. Although has_parent(Ch, a) cannot be proven, φ does not hold!
But in the world of databases we do conclude that a is childless. . .
Databases use the Closed World Assumption (CWA): anything that
cannot be proven is considered false.
Mathematical logic uses the Open World Assumption (OWA)

A statement S follows from a set of statements P (premises),
if S holds in any world (interpretation) that satisfies P.
thus φ is not a logical consequence of (1)-(3)

Classical logic (OWA) is monotonic:
the more you know, the more you can deduce
Negation by failure (CWA) is non-monotonic:
add the fact “has_parent(e, a).” to (1)–(3) and \+ has_parent(_, a) will fail.

An Introduction to Logic Programming 2024 Spring Semester 75 / 170

Declarative Programming with Prolog Further control constructs

Checking inequality – siblings and cousins

has_p(’Charles’, ’Elizabeth’). has_p(’Andrew’, ’Elizabeth’).
has_p(’William’, ’Charles’). has_p(’Beatrice’, ’Andrew’).
has_p(’Harry’, ’Charles’). has_p(’Eugenie’, ’Andrew’).

Let’s define predicate has_sibling/2, first attempt:
has_sibling0(A, B) :- \+ A = B, has_p(A, P), has_p(B, P).

has_sibling0 does not work properly, e.g. this goal fails:
| ?- has_sibling0(’Charles’, X).

because \+ ’Charles’ = X fails (as ’Charles’ = X succeeds)
Negated goals should be instantiated as much as possible,
therefore always place them at the end of the body:
has_sibling(A, B) :- has_p(A, P), has_p(B, P), \+ A = B.

Define has_cousin/2 (using has_gp/2, the “has grandparent” predicate)
has_cousin(A, B) :-

has_gp(A, GP), has_gp(B, GP), \+ has_sibling(A, B), A \= B.

Note that the BIP A \= B is equivalent to \+ A = B

An Introduction to Logic Programming 2024 Spring Semester 76 / 170

Declarative Programming with Prolog Further control constructs

Expressing negation using if-then-else, and vice versa

Negation can be fully defined using if-then-else
(p -> false

\+ p ≡ ; true
)

If-then-else can be transformed to a disjunction with a negation:
(cond -> then (cond, then
; else =⇒ ; \+ cond, else
))

These are equivalent only if cond succeeds at most once.
The if-then-else is more efficient (no choice point left).
As semicolon is associative, please do not use nested parentheses (. . .)
if multiple if-then-else branches are present:
(cond1 -> then1 (cond1 -> then1
; (cond2 -> then2 ; cond2 -> then2

; ((...)) =⇒ ; (...)
)

; else ; else
))

An Introduction to Logic Programming 2024 Spring Semester 77 / 170

Declarative Programming with Prolog Further control constructs

Using double negation for “checking” loops

Recall an earlier example:
prime(P) :- P > 1, Q is P-1, \+ (between(2, Q, I), P mod I =:= 0).

Notice how negation, combined with the backtracking search of Prolog,
leads to a loop for checking if P is a prime.
Let us generalize this as a meta-predicate (predicate with predicate args):
% forall(Generator, Goal): succeeds when Goal is provable
% for each true instance of Generator.

forall(Generator, Goal) :- \+ (Generator, \+ Goal).

prime(P) :- P > 1, Q is P-1, forall(between(2, Q, I), P mod I =\= 0).

zero_vector(L) :- forall(member(X,L), X = 0).

Note that forall/2, because of \+, will never instantiate variables, hence
zero_vector can be used for checking, but not generating:
| ?- zero_vector([0,1,0,0]). =⇒ no
| ?- zero_vector([0,0,0,0]). =⇒ yes
| ?- L = [_,_,_,_], zero_vector(L). =⇒ L = [_A,_B,_C,_D] ? ; no

An Introduction to Logic Programming 2024 Spring Semester 78 / 170

Declarative Programming with Prolog Further control constructs

The procedure-box of disjunctions

A disjunction can be transformed into a multi-clause predicate

has_sister_in_law(X, Y) :- has_sister_in_law(X, Y) :-
(has_spouse(X, S), has_sister(S, Y) has_spouse(X, S), has_sister(S, Y).
; has_sister_in_law(X, Y) :-

has_brother(X, B), has_wife(B, Y) has_brother(X, B), has_wife(B, Y).
).

Call

Fail

Exit

Redo

wf(B,Y)

sp(X,S)

br(X,B)

si(S,Y)

has_sister_in_law(X,Y)

.

.

An Introduction to Logic Programming 2024 Spring Semester 79 / 170

Declarative Programming with Prolog Further control constructs

The procedure box for if-then-else

% ha(+N, ?D, ?A): D has A as their Nth generation ancestor (N>0 int)
% The 1st, 2nd, 3rd generation ancestors are
% parents, grandparents, great-grandparents etc.
ha(N, D, A) :-

(N = 1 -> hp(D, A) % hp(D, A): D has a parent A
; N > 1, M is N-1, hp(D, P), ha(M, P, A)
).

Call

Fail Redo

Exit

N > 1

N = 1 hp(D,A)

.

.

ha(N,D,A)

M is N−1 hp(D,P) ha(M,P,A)

Failure of the “then” part leads to failure of the whole if-then-else construct

An Introduction to Logic Programming 2024 Spring Semester 80 / 170

Declarative Programming with Prolog Further control constructs

The if-then-else box, continued

When an if-then-else occurs in a conjunction, or there are multiple
clauses, then it requires a separate box
ha2(N, D, A) :- hp(D, P), (N = 1 -> A = P

; N > 1, M is N-1, ha2(M, P, A)
).

A = P

.

N > 1

N = 1

if−then−else

ha2(N,D,A)

Call

Fail

Exit

Redo

.

.

M is N−1 ha2(M,P,A)

hp(D,P)

An Introduction to Logic Programming 2024 Spring Semester 81 / 170

Declarative Programming with Prolog Operators

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 82 / 170

Declarative Programming with Prolog Operators

Introducing operators

Example: S is -S1+S2 is equivalent to: is(S, +(-(S1),S2))
Syntax of terms using operators
⟨ comp. term ⟩ ::=

⟨ comp. name ⟩ (⟨argument ⟩, . . .) {so far we had this}
| ⟨argument ⟩ ⟨operator name ⟩ ⟨argument ⟩ {infix term}
| ⟨operator name ⟩ ⟨argument ⟩ {prefix term}
| ⟨argument ⟩ ⟨operator name ⟩ {postfix term}
| (⟨ term ⟩) {parenthesized term}

⟨operator name ⟩ ::= ⟨ comp. name ⟩ {if declared as an operator}
The built-in predicate for defining operators:
op(Priority, Type, Op) or op(Priority, Type, [Op1,Op2,...]):

Priority: an int. between 1 and 1200 – smaller priorities bind tighter
Type determines the placement of the operator and the associativity:
infix: yfx, xfy, xfx; prefix: fy, fx; postfix: yf, xf (f – op, x, y – args)
Op or Opi : an arbitrary atom

The call of the BIP op/3 is normally placed in a directive, executed
immediately when the program file is loaded, e.g.:
:- op(800, xfx, [has_tree_sum]). leaf(V) has_tree_sum V.

An Introduction to Logic Programming 2024 Spring Semester 83 / 170

Declarative Programming with Prolog Operators

Characteristics of operators

Operator properties implied by the operator type
Type Class Interpretation

left-assoc. right-assoc. non-assoc.
yfx xfy xfx infix X f Y ≡ f(X, Y)

fy fx prefix f X ≡ f(X)
yf xf postfix X f ≡ f(X)

Parentheses implied by operator priorities and associativities
a/b+c*d ≡ (a/b)+(c*d) as the priority of / and * (400) is less than
the priority of + (500) smaller priority = stronger binding
a-b-c ≡ (a-b)-c as operator - has type yfx, thus it is left-associative, i.e. it
binds to the left, the leftmost operator is parenthesized first

(the position of y wrt. f shows the direction of associativity)
a^b^c ≡ a^(b^c) as ^ has type xfy, therefore it is right-associative
a=b=c =⇒ syntax error, as = has type xfx, it is non-associative
the above also applies to different operators of same type and priority:
a+b-c+d ≡ ((a+b)-c)+d

An Introduction to Logic Programming 2024 Spring Semester 84 / 170

Declarative Programming with Prolog Operators

Standard built-in operators

Standard operators

1200 xfx :- -->
1200 fx :- ?-
1100 xfy ;
1050 xfy ->
1000 xfy ’,’

900 fy \+
700 xfx = \= =..

< =< =:= =\=
> >= is
== \==
@< @=< @> @>=

500 yfx + - /\ \/
400 yfx * / // rem

mod << >>
200 xfx **
200 xfy ^
200 fy - \

Further built-in operators
of SICStus Prolog

1150 fx mode public dynamic
volatile discontiguous
initialization multifile
meta_predicate block

1100 xfy do
900 fy spy nospy
550 xfy :
500 yfx \
200 fy +

An Introduction to Logic Programming 2024 Spring Semester 85 / 170

Declarative Programming with Prolog Operators

Operators – additional comments

The “comma” is heavily overloaded:
it separates the arguments of a compound term
it separates list elements
it is an xfy op. of priority 1000, e.g.:
(p:-a,b,c)≡:-(p,’,’(a,’,’(b,c)))

Ambiguities arise, e.g. is p(a,b,c)
?≡ p((a,b,c))?

Disambiguation: if the outermost operator of a compound argument has
priority ≥ 1000, then it should be enclosed in parentheses

| ?- write_canonical((a,b,c)). ⇒ ’,’(a,’,’(b,c))

| ?- write_canonical(a,b,c). ⇒ Error: ! write_canonical/3 does not exist

| ?- write_canonical((hgp(A,B):-hp(A,C),hp(C,B))).

⇒ :-(hgp(A,B),’,’(hp(A,C),hp(C,B)))

Note: an unquoted comma (,) is an operator, but not a valid atom

An Introduction to Logic Programming 2024 Spring Semester 86 / 170

Declarative Programming with Prolog Operators

Functions and operators allowed in arithmetic expressions

The Prolog standard prescribes that the following functions can be used
in arithmetic expressions:
plain arithmetic:

+X, -X, X+Y, X-Y, X*Y, X/Y,
X//Y (int. division, truncates towards 0),
X div Y (int. division, truncates towards −∞),
X rem Y (remainder wrt. //),
X mod Y (remainder wrt. div),
X**Y, X^Y (both denote exponentiation)

conversions:
float_integer_part(X), float_fractional_part(X), float(X),
round(X), truncate(X), floor(X), ceiling(X)

bit-wise ops:
X/\Y, X\/Y, xor(X,Y) ≡ X \ Y, \ X (negation), X<<Y, X>>Y (shifts)

other:
abs(X), sign(X), min(X,Y), max(X,Y),
sin(X), cos(X), tan(X), asin(X), acos(X), atan(X),
atan2(X,Y), sqrt(X), log(X), exp(X), pi

An Introduction to Logic Programming 2024 Spring Semester 87 / 170

Declarative Programming with Prolog Operators

Uses of operators

What are operators good for?
to allow usual arithmetic expressions, such as in X is (Y+3) mod 4
processing of symbolic expressions (such as symbolic derivation)
for writing the clauses themselves
(:-, ’,’, ; . . . are all standard operators)

clauses can be passed as arguments to meta-predicates:
asserta((p(X):-q(X),r(X)))

to make Prolog data structures look like natural language sentences
(controlled English), e.g. Smullyan’s island of knights and knaves
(knights always tell the truth, knaves always lie):
We meet natives A and B, A says: one of us is a knave.
| ?- solve_puzzle(A says A is a knave or B is a knave).

to make data structures more readable:
acid(sulphur, h*2-s-o*4).

An Introduction to Logic Programming 2024 Spring Semester 88 / 170

Declarative Programming with Prolog Operators

Classical symbolic computation: symbolic derivation

Write a Prolog predicate which calculates the derivative of a formula built
from numbers and the atom x using some arithmetic operators.

% deriv(Formula, D): D is the derivative of Formula with respect to x.
deriv(x, 1).
deriv(C, 0) :- number(C).
deriv(U+V, DU+DV) :- deriv(U, DU), deriv(V, DV).
deriv(U-V, DU-DV) :- deriv(U, DU), deriv(V, DV).
deriv(U*V, DU*V + U*DV) :- deriv(U, DU), deriv(V, DV).

| ?- deriv(x*x+x, D). =⇒ D = 1*x+x*1+1 ? ; no

| ?- deriv((x+1)*(x+1), D).
=⇒ D = (1+0)*(x+1)+(x+1)*(1+0) ? ; no

| ?- deriv(I, 1*x+x*1+1). =⇒ I = x*x+x ? ; no

| ?- deriv(I, 2*x+1). =⇒ no

| ?- deriv(I, 0). =⇒ no

An Introduction to Logic Programming 2024 Spring Semester 89 / 170

Declarative Programming with Prolog Further list processing predicates

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 90 / 170

Declarative Programming with Prolog Further list processing predicates

Finding list elements – BIP member/2

% member(E, L): E is an element of list L
member(Elem, [Elem|_]). member1(Elem, [Head|Tail]) :-
member(Elem, [_|Tail]) :- (Elem = Head

member(Elem, Tail). ; member1(Elem, Tail)
).

Mode member(+,+) – checking membership
| ?- member(2, [2,1,2]). =⇒ yes BUT
| ?- member(2, [2,1,2]), R=yes. =⇒ R = yes ? ; R = yes ? ; no

Mode member(-,+) – enumerating list elements:
| ?- member(X, [1,2,3]). =⇒ X = 1 ? ; X = 2 ? ; X = 3 ? ; no
| ?- member(X, [1,2,1]). =⇒ X = 1 ? ; X = 2 ? ; X = 1 ? ; no

Finding common elements of lists – with both above modes:
| ?- member(X, [1,2,3]),

member(X, [5,4,3,2,3]). =⇒ X = 2 ? ; X = 3 ? ; X = 3 ? ; no

Mode member(+,-) – making a term an element of a list (infinite choice):
| ?- member(1, L). =⇒ L = [1|A] ? ; L = [A,1|B] ? ;

L = [A,B,1|C] ? ; ...

The search space of member/2 is finite, if the 2nd argument is closed.
An Introduction to Logic Programming 2024 Spring Semester 91 / 170

Declarative Programming with Prolog Further list processing predicates

Reversing lists

Naive solution (quadratic in the length of the list)
% nrev(L, R): List R is the reverse of list L.
nrev([], []).
nrev([X|L], R) :-

nrev(L, RL),
append(RL, [X], R).

A solution which is linear in the length of the list
% reverse(L, R): List R is the reverse of list L.
reverse(L, R) :- revapp(L, [], R).

% revapp(L1, L2, R): The reverse of L1 prepended to L2 gives R.
revapp([], R, R).
revapp([X|L1], L2, R) :-

revapp(L1, [X|L2], R).

In SICStus 4 append/3 is a BIP, reverse/2 is in library lists

To load the library place this directive in your program file:
:- use_module(library(lists)).

An Introduction to Logic Programming 2024 Spring Semester 92 / 170

Declarative Programming with Prolog Further list processing predicates

append and revapp — building lists forth and back (ADVANCED)

Prolog
app([], L, L).
app([X|L1], L2, [X|L3]) :-

app(L1, L2, L3).

revapp([], L, L).
revapp([X|L1], L2, L3) :-

revapp(L1, [X|L2], L3).

C++

struct link { link *next;
char elem;
link(char e): elem(e) {} };

typedef link *list;

list app(list L1, list L2)
{ list L3, *lp = &L3;

for (list p=L1; p; p=p->next)
{ list newl = new link(p->elem);

*lp = newl; lp = &newl->next;
}
*lp = L2; return L3;

}

list revapp(list L1, list L2)
{ list l = L2;

for (list p=L1; p; p=p->next)
{ list newl = new link(p->elem);

newl->next = l; l = newl;
}
return l;

}

An Introduction to Logic Programming 2024 Spring Semester 93 / 170

Declarative Programming with Prolog Further list processing predicates

Generalization of member: select/3 – defined in library lists

% select(E, List, Rest): Removing E from List results in list Rest.
select(E, [E|Rest], Rest). % The head is removed, the tail remains.
select(E, [X|Tail], [X|Rest]):- % The head remains,

select(E, Tail, Rest). % the element is removed from the Tail.

Possible uses:

| ?- select(1, [2,1,3,1], L). % Remove a given element
L = [2,3,1] ? ; L = [2,1,3] ? ; no

| ?- select(X, [1,2,3], L). % Remove an arbitrary element
L=[2,3], X=1 ? ; L=[1,3], X=2 ? ; L=[1,2], X=3 ? ; no

| ?- select(3, L, [1,2]). % Insert a given element!
L = [3,1,2] ? ; L = [1,3,2] ? ; L = [1,2,3] ? ; no

| ?- select(3, [2|L], [1,2,7,3,2,1,8,9,4]).
no % Can one remove 3 from [2|L]

% to obtain [1,...]?
| ?- select(1, [X,2,X,3], L).

L = [2,1,3], X = 1 ? ; L = [1,2,3], X = 1 ? ; no

The search space of select/3 is finite, if the 2nd or the 3rd arg. is closed.
An Introduction to Logic Programming 2024 Spring Semester 94 / 170

Declarative Programming with Prolog Further list processing predicates

Permutation of lists – two solutions (ADVANCED)

perm(+List, ?Perm): The list Perm is a permutation of List

perm_sel([], []). % SWI version
perm_sel(L, [H|P]) :-

select(H, L, R), % Select H from L as the head of the output, R remaining.
perm_sel(R, P). % Permute R to become P, the tail of the output list.

| ?- perm_sel([a,b,c], L).
L = [a,b,c] ? ; L = [a,c,b] ? ; L = [b,a,c] ? ;
L = [b,c,a] ? ; L = [c,a,b] ? ; L = [c,b,a] ? ; no

perm_ins([], []). % SICStus version
perm_ins([H|T], P) :-

perm_ins(T, P1), % Permute T, the tail of the input list, obtaining P1.
select(H, P, P1). % Insert H, the head of the input list, into an arbitrary
% mode:+ - + % position within P1 to obtain the output list, P.

| ?- perm_ins([a,b,c], L).
L = [a,b,c] ? ; L = [b,a,c] ? ; L = [b,c,a] ? ;
L = [a,c,b] ? ; L = [c,a,b] ? ; L = [c,b,a] ? ; no

perm is symmetric, so the two predicates have the same meaning (WHAT)
perm_ins is faster in general, but perm_sel works better e.g. in draw/2

An Introduction to Logic Programming 2024 Spring Semester 95 / 170

Declarative Programming with Prolog Term ordering

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 96 / 170

Declarative Programming with Prolog Term ordering

Principles of Prolog term ordering ≺

XXXX

!!! aaa

!!! HH

�� aaa

Term

float

var nonvar

atomic compound

number atom

integer

Different kinds ordered left-to-right:

var ≺ float ≺ integer ≺
≺ atom ≺ compound

Ordering of variables: system dependent
Ordering of floats and integers: usual (x ≺ y ⇔ x < y)
Ordering of atoms: lexicographical (abc≺abcd, abcv≺abcz)
Compound terms: namea(a1, . . . ,an) ≺ nameb(b1, . . . ,bm) iff

1 n < m, e.g. p(x,s(u,v,w)) ≺ a(b,c,d), or
2 n = m, and namea ≺ nameb (lexicographically), e.g. a(x,y) ≺ p(b,c), or
3 n = m, namea = nameb, and for the first i where ai ̸= bi , ai ≺ bi ,

e.g. r(1,u+v,3,x) ≺ r(1,u+v,5,a)

An Introduction to Logic Programming 2024 Spring Semester 97 / 170

Declarative Programming with Prolog Term ordering

Built-in predicates for comparing Prolog terms

Comparing two Prolog terms:
Goal holds if
Term1 == Term2 Term1 ̸≺ Term2 ∧ Term2 ̸≺ Term1
Term1 =̄ Term2 Term1 ≺ Term2 ∨ Term2 ≺ Term1
Term1 @< Term2 Term1 ≺ Term2
Term1 @=< Term2 Term2 ̸≺ Term1
Term1 @> Term2 Term2 ≺ Term1
Term1 @>= Term2 Term1 ̸≺ Term2

The comparison predicates are not purely logical:
| ?- X @< 3, X = 4. =⇒ X = 4
| ?- X = 4, X @< 3. =⇒ no
as they rely on the current instantiation of their arguments
Comparison uses, of course, the canonical representation:
| ?- [1, 2, 3, 4] @< s(1,2,3). =⇒ yes
BIP sort(L, S) sorts (using @<) a list L of arbitrary Prolog terms, removing
duplicates (w.r.t. ==). Thus the result is a strictly increasing list S.
| ?- sort([1, 2.0, s(a,b), s(a,c), s, X, s(Y), t(a), s(a), 1, X], L).
L = [X,2.0,1,s,s(Y),s(a),t(a),s(a,b),s(a,c)] ?

An Introduction to Logic Programming 2024 Spring Semester 98 / 170

Declarative Programming with Prolog Term ordering

Equality-like Prolog predicates – a summary

Recall: a Prolog term is ground if it contains no unbound variables

U = V: U unifies with V
No errors. May bind vars.

| ?- X = 1+2. =⇒ X = 1+2
| ?- 3 = 1+2. =⇒ no

U == V: U is identical to V, i.e. U=V
succeeds with no bindings
No errors, no bindings.

| ?- X == 1+2. =⇒ no
| ?- 3 == 1+2. =⇒ no
| ?- +(X,Y)==X+Y =⇒ yes

U =:= V: The value of U is
arithmetically equal to that of V.
No bindings. Error if U or V is not a
(ground) arithmetic expression.

| ?- X =:= 1+2. =⇒ error
| ?- 1+2 =:= X. =⇒ error
| ?- 2+1 =:= 1+2.=⇒ yes
| ?- 3.0 =:= 1+2.=⇒ yes

U is V: U is unified with the value
of V.
Error if V is not a (ground)
arithmetic expression.

| ?- X is 1+2. =⇒ X = 3
| ?- 3.0 is 1+2. =⇒ no
| ?- 1+2 is X. =⇒ error
| ?- 3 is 1+2. =⇒ yes
| ?- 1+2 is 1+2. =⇒ no

An Introduction to Logic Programming 2024 Spring Semester 99 / 170

Declarative Programming with Prolog Term ordering

Nonequality-like Prolog predicates – a summary

Nonequality-like Prolog predicates never bind variables.

U \= V: U does not unify with V.
No errors.

| ?- X \= 1+2. =⇒ no
| ?- X \= 1+2, X = 1. =⇒ no
| ?- X = 1, X \= 1+2. =⇒ yes
| ?- +(1,2) \= 1+2. =⇒ no

U \== V: U is not identical to V.
No errors.

| ?- X \== 1+2. =⇒ yes
| ?- X \== 1+2, X=1+2. =⇒ yes
| ?- 3 \== 1+2. =⇒ yes
| ?- +(1,2)\==1+2 =⇒ no

U =\= V: The values of the
arithmetic expressions U and V
are different.
Error if U or V is not a (ground)
arithmetic expression.

| ?- X =\= 1+2. =⇒ error
| ?- 1+2 =\= X. =⇒ error
| ?- 2+1 =\= 1+2. =⇒ no
| ?- 2.0 =\= 1+1. =⇒ no

An Introduction to Logic Programming 2024 Spring Semester 100 / 170

Declarative Programming with Prolog Term ordering

(Non)equality-like Prolog predicates – examples

Unification Identical terms Arithmetic

U V U = V U \= V U == V U \== V U =:= V U =\= V U is V

1 2 no yes no yes no yes no

a b no yes no yes error error error

1+2 +(1,2) yes no yes no yes no no

1+2 2+1 no yes no yes yes no no

1+2 3 no yes no yes yes no no

3 1+2 no yes no yes yes no yes

X 1+2 X=1+2 no no yes error error X=3

X Y X=Y no no yes error error error

X X yes no yes no error error error

Legend: yes – success; no – failure.

An Introduction to Logic Programming 2024 Spring Semester 101 / 170

Declarative Programming with Prolog Higher order predicates

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 102 / 170

Declarative Programming with Prolog Higher order predicates

Higher order programming: using predicates as arguments

Example: collect all nonzero elements of a list
% nonzero_elems(Xs, Ys): Ys is a list of all nonzero elements of Xs
nonzero_elems([], []).
nonzero_elems([X|Xs], Ys) :-

(0 \= X -> Ys = [X|Ys1]
; Ys = Ys1
), nonzero_elems(Xs, Ys1).

Generalize to a predicate where the condition is given as an argument
% include(Pred, Xs, Ys): Ys = list of elems of Xs that satisfy Pred
include(_Pred, [], []).
include(Pred, [X|Xs], Ys) :-

(call(Pred, X) -> Ys = [X|Ys1]
; Ys = Ys1
), include(Pred, Xs, Ys1).

Specialize include for collecting nonzero elements:
nonz(X) :- 0 \= X. % ≡ \=(0, X)
nonzero_elems(L, L1) :- include(nonz, L, L1).
Without a helper predicate:
nonzero_elems(L, L1) :- include(\=(0), L, L1).

An Introduction to Logic Programming 2024 Spring Semester 103 / 170

Declarative Programming with Prolog Higher order predicates

Higher order predicates

A higher order predicate (or meta-predicate) is a predicate with an
argument which is interpreted as a goal, or a partial goal
A partial goal is a goal with the last few arguments missing

e.g., a predicate name is a partial goal
(hence variable name Pred is often used for partial goals)

The BIP call(PG, X), where PG is a partial goal, adds X as the last
argument to PG and executes this new goal:

if PG is an atom⇒ it calls PG(X), e.g. call(number, X) ≡ number(X)
if PG is a compound Pred(A1,...,An)⇒ it calls Pred(A1,...,An,X),
e.g. call(\=(0), X) ≡ \=(0,X) ≡ 0 \= X

Predicate include(Pred, L, FL) is in library(lists)

| ?- L=[1,2,a,X,b,0,3+4],
include(number, L, Nums). % Nums = { x ∈ L | number(x) }

Nums = [1,2,0] ? ; no

| ?- L=[0,2,0,3,-1,0],
include(\=(0), L, NZs). % NZs = { x ∈ L | \=(0,x) }

NZs = [2,3,-1] ?

An Introduction to Logic Programming 2024 Spring Semester 104 / 170

Declarative Programming with Prolog Higher order predicates

Calling predicates with additional arguments

Recall: a callable term is a compound or atom.
There is a group of built-in predicates call/N

call(Goal): invokes Goal, where Goal is a callable term
call(PG, A): Adds A as the last argument to PG, and invokes it.
call(PG, A, B): Adds A and B as the last two args to PG, invokes it.
call(PG, A1, . . ., An): Adds A1, . . . , An as the last n arguments to PG,
and invokes the goal so obtained.

PG is a partial goal, to be extended with additional arguments before
calling. It has to be a callable term.
even(X) :- X mod 2 =:= 0.

| ?- include(even, [1,3,2,9,6,4,0], FL).
=⇒ FL = [2,6,4,0] ; no

divisible_by(N, X) :- X mod N =:= 0.

| ?- include(divisible_by(3), [1,3,2,9,6,4,0], FL).
=⇒ FL = [3,9,6,0] ; no

In descriptions we often abbreviate call(PG, A1, . . ., An) to PG(A1, . . ., An)

An Introduction to Logic Programming 2024 Spring Semester 105 / 170

Declarative Programming with Prolog Higher order predicates

An important higher order predicate: maplist/3

maplist(:PG, ?L, ?ML): for each X element of L and the corresponding Y
element of ML, call(PG, X, Y) holds, where PG is a partial goal requiring
two additional arguments
Annotation “:” (as in :PG above) marks a meta argument, i.e. a term to be
interpreted as a goal or a partial goal

maplist(_PG, [], []).
maplist(PG, [X|Xs], [Y|Ys]) :-

call(PG, X, Y),
maplist(PG, Xs, Ys).

| ?- maplist(reverse, [[1,2],[3,4]], LL). =⇒ LL = [[2,1],[4,3]] ? ; no

square(X, Y) :- Y is X*X.

mult(N, X, NX) :- NX is N*X.

| ?- maplist(square, [1,2,3,4], L). =⇒ L = [1,4,9,16] ? ; no
| ?- maplist(mult(2), [1,2,3,4], L). =⇒ L = [2,4,6,8] ? ; no
| ?- maplist(mult(-5), [1,2,3], L). =⇒ L = [-5,-10,-15] ? ; no

An Introduction to Logic Programming 2024 Spring Semester 106 / 170

Declarative Programming with Prolog Higher order predicates

Variants of maplist

In SICStus, maplist can also be used with 2 and 4 arguments
maplist(:Pred, +Xs) is true if for each x element of Xs, Pred(x) holds.
Example: check if a condition holds for all elements of a list
all_positive(Xs) :- % all elements of Xs are positive

maplist(<(0), Xs). % ∀ X ∈ Xs, <(0, X), i.e. 0 < X holds

maplist(:Pred, ?Xs, ?Ys, ?Zs) is true when Xs, Ys, and Zs are lists of
equal length, and Pred(X, Y, Z) is true for corresponding elements X of
Xs, Y of Ys, and Z of Zs. At least one of Xs, Ys, Zs has to be a closed list.
Example: add two vectors
add_vectors(VA, VB, VC) :-

maplist(plus, VA, VB, VC). plus(A, B, C) :- C is A+B.

| ?- add_vectors([10,20,30], [3,2,1], V). =⇒ V = [13,22,31] ? ; no

The implementation of maplist/4 (easy to generalize :-):
maplist(_PG, [], [], []).
maplist(PG, [X|Xs], [Y|Ys], [Z|Zs]) :-

call(PG, X, Y, Z), maplist(PG, Xs, Ys, Zs).

An Introduction to Logic Programming 2024 Spring Semester 107 / 170

Declarative Programming with Prolog Higher order predicates

Another important higher order predicate: scanlist (SWI: foldl)

Example: plus(A, S0, S) :- S is S0+A.

| ?- scanlist(plus, [1,3,5], 0, Sum). =⇒ Sum = 9 ? ; no
% 0+1+3+5 = 9

This executes as: plus(0, 1, S1), plus(S1, 3, S2), plus(S2, 5, Sum).

In general: scanlist(acc, [E1,E2,...,En], S0, Sn) is expanded as:
acc(S0, E1, S1), acc(S1, E2, S2), ..., acc(Sn−1, En, Sn)

scanlist(:PG, ?L, ?Init, ?Final):
PG represents the above accumulating predicate acc
scanlist applies the acc predicate repeatedly, on all elements of list
L, left-to-right, where Init = S0 and Final = Sn.

For processing two lists (of the same length), use scanlist/5, e.g.
prodsum(A, B, PS0, PS) :- PS is PS0 + A*B.

scalar_product(As, Bs, SP) :- scanlist(prodsum, As, Bs, 0, SP).
| ?- scalar_product([1,0,2], [3,4,5], SP). =⇒ SP = 13 ? ; no

In SICStus, there is also a scanlist/6 predicate, for processing 3 lists

An Introduction to Logic Programming 2024 Spring Semester 108 / 170

Declarative Programming with Prolog Executable specifications

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 109 / 170

Declarative Programming with Prolog Executable specifications

Executable specifications – what are they?

An executable specification is a piece of non-recursive Prolog code which
is in a one-to-one correspondence with its specification
Example 1: Finding a contiguous sublist with a given sum
% sublist_sum(+L, +Sum, ?SubL): SubL is a sublist of L summing to Sum.
| ?- sublist_sum([1,2,3], 3, SL). =⇒ SL = [1,2] ? ; SL = [3] ? ; no

:- use_module(library(lists)). % To import sumlist/2, append/2
sublist_sum(L, Sum, SubL) :-

append([_,SubL,_], L), % SubL is a sublist of L
sumlist(SubL, Sum). % Σ SubL = Sum

Example 2: Finding elements occurring in pairs
% paired(+List, ?E, ?I): E is an element of List equal to its
% right neighbour, occurring at (zero-based) index I.
| ?- paired([a,b,b,c,d,d], E, I). =⇒ E = b, I = 1 ? ;

=⇒ E = d, I = 4 ? ; no

paired(L, E, I) :-
append(Pref, [E,E|_], L), % L starts with a sublist Pref,

% followed by two elements equal to E
length(Pref, I). % The length of Pref is I

An Introduction to Logic Programming 2024 Spring Semester 110 / 170

Declarative Programming with Prolog Executable specifications

Executable specification examples: plateau

A list is a plateau, if its length is ≥ 2, and all its elements are the same.
(Think of list elements as elevation values.)
We assume that the list is ground (contains no variables).
Example 3: Checking if a list is a plateau. Four variants: N = 1,2,3,4

% plateauN(Pl, A): Pl is a plateau with elements equal to A.

1 Use boring/2 (slide 36):
plateau1([A,A|Pl], A) :- boring(Pl, A).

2 Use maplist/2:
plateau2([A,A|Pl], A) :- maplist(=(A), Pl).

3 Use (double) negation: Pl has no element that differs from A
plateau3([A,A|Pl], A) :- \+ (member(X, Pl), \+ X = A).

4 Use the forall/2 library predicate (library(aggregate) in SICStus)
plateau4([A,A|Pl], A) :- forall(member(X, Pl), X = A).

Recall: forall(P, Q) succeeds iff Q holds for each solution of P

An Introduction to Logic Programming 2024 Spring Semester 111 / 170

Declarative Programming with Prolog Executable specifications

Executable specification examples: the longest plateau prefix

The maximal plateau prefix (MPP for short) of a list is its longest prefix
that is a plateau. E.g. the MPP of [1,1,1,2,1] is [1,1,1].
Example 4: Given a list, obtain the length and the repeating element of its
MPP. Fail if the list has no MPP (e.g. [3,1,1,1,2,1] has no MPP).
% mpp(+L, ?Len, ?A): List L has an MPP of length Len, composed of A’s

Let’s use append/3 to split L into a Pl plateau prefix and Suff suffix:
append(Pl, Suff, L), plateauN(Pl, A), <check Pl is maximal>

Pl is maximal, if Suff = [] or the head of Suff is not A:
(Suff = [] -> true ; Suff = [X|_], X \= A)

This can be simplified to: \+ Suff = [A|_] (it does not hold that the head of Suff is A).

mpp(L, Len, A) :- % L has an MPP of length Len, composed of A’s if
Pl = [A,A|_], % Pl’s first two elems are the same, call them A
append(Pl, Suff, L), % Pl⊕ Suff = L, Pl is a prefix of L followed by Suff
forall(member(X,Pl), % For each X element of Pl

X = A), % X is equal to A *** Pl is a plateau!
\+ Suff = [A|_], % Suff does not start with A *** Pl is maximal!
length(Pl, Len). % The length of Pl is Len

An Introduction to Logic Programming 2024 Spring Semester 112 / 170

Declarative Programming with Prolog Executable specifications

Executable specification examples: maximal plateau sublist

A contiguous sublist of a list is a maximal plateau sublist, if it is a plateau
that cannot be extended neither leftwards nor rightwards
Example 5: enumerate all maximal plateau sublists of a given list

% plateau(+L, ?I, ?Len, ?A): List L has a maximal plateau sublist that starts
% at (0-based) index I, has length Len, and is composed of A-s

| ?- plateau([1,1,1,2,1,4,4,3,7,7,7], I, Len, A).
I = 0, Len = 3, A = 1 ? ;
I = 5, Len = 2, A = 4 ? ;
I = 8, Len = 3, A = 7 ? ; no

plateau(L, I, Len, A) :-
Pl = [A,A|_], % The first two elements of Pl are equal,

% call them A
append([Pref,Pl,Suff], L), % Split L to Pref⊕ Pl⊕ Suff
forall(member(X, Pl), X=A), % For each X element of Pl, X = A holds
\+ Suff = [A|_], % Suff does not start with A
\+ last(Pref, A), % Pref does not end with A
length(Pl, Len), % The length of Pl is Len
length(Pref, I). % The length of Pref is I

| ?- plateau([1,1,1,2,1,4,4,3,7,7,7], I, Len, A).
I = 0, Len = 3, A = 1 ? ;
I = 5, Len = 2, A = 4 ? ;
I = 8, Len = 3, A = 7 ? ;
no

An Introduction to Logic Programming 2024 Spring Semester 113 / 170

Declarative Programming with Prolog All solutions predicates

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 114 / 170

Declarative Programming with Prolog All solutions predicates

All solutions built-in predicates – introduction

All solution BIPs are higher order predicates analogous to list
comprehensions in Haskell, Python, etc.
There are three such predicates: findall/3 (the simplest), bagof/3 and
setof/3; having the same arguments, but somewhat different behavior
Examples for findall/3:
| ?- findall(X, (member(X, [1,7,8,3,2,4]), X > 3), L).
% {X | X ∈ {1,7,8,3,2,4}, X > 3} = L

=⇒ L = [7,8,4] ? ; no
| ?- findall(X, (member(X, [1,7,8,3,2,4]), X > 8), L).
% {X | X ∈ {1,7,8,3,2,4}, X > 8} = L

=⇒ L = [] ? ; no
| ?- findall(X-Y, (between(1, 3, X), between(1, X, Y)), L).
% {X-Y | 1≤ X≤ 3, 1≤ Y≤ X } = L

=⇒ L = [1-1,2-1,2-2,3-1,3-2,3-3] ? ; no

Note: between(+N, +M, ?X) enumerates in X the integers N, N+1, . . . , M.
In SICStus, it requires loading library(between).

An Introduction to Logic Programming 2024 Spring Semester 115 / 170

Declarative Programming with Prolog All solutions predicates

Finding all solutions: the BIP findall(?Templ, :Goal, ?L)

Approximate meaning: L is a list of Templ terms for each solution of Goal

The execution of the BIP findall/3 (procedural semantics):
Interpret term Goal as a goal, and call it
For each solution of Goal:

store a copy of Templ (copy =⇒ replace vars in Templ by new ones)
Note that copying requires time proportional to the size of Templ
continue with failure (to enumerate further solutions)

When there are no more solutions (Goal fails)
collect the stored Templ values into a list, unify it with L.

When a solution contains (possibly multiple instances of) a variable (e.g. A),
then each of these will be replaced by a single new variable (e.g. _A):
| ?- findall(T, member(T, [A-A,B-B,A]), L).

=⇒ L= [_A-_A,_B-_B,_C] ? ; no

An Introduction to Logic Programming 2024 Spring Semester 116 / 170

Declarative Programming with Prolog All solutions predicates

All solutions: the BIP bagof(?Templ, :Goal, ?L)

Exactly the same arguments as in findall/3.
bagof/3 is the same as findall/3, except when there are unbound
variables in Goal which do not occur in Templ (so called free variables)
% emps(Er, Ee): employer Er employs employee Ee.
emps(a,b). emps(a,c). emps(b,c). emps(b,d).
| ?- findall(E, emps(R, E), Es). % Es ≡ the list of all employees

=⇒ Es = [b,c,c,d] ? ; no i.e. Es = {E | ∃ R. (R employs E)}
bagof does not treat free vars as existentially quantified. Instead it
enumerates all possible values for the free vars (all employers) and for
each such choice it builds a separate list of solutions:
| ?- bagof(E,emps(R,E),Es). % Es ≡ list of Es employed by a possible R.

=⇒ R = a, Es = [b,c] ? ;
=⇒ R = b, Es = [c,d] ? ; no

Use operator ^ to achieve existential quantification in bagof:
| ?- bagof(E, R^emps(R, E), Es). % Collect Es for which ∃R.emps(R, E)

=⇒ Es = [b,c,c,d] ? ; no

bagof preserves variables (but it is slower than findall :-():
| ?- bagof(T, member(T, [A-A,B-B,A]), L). =⇒ L = [A-A,B-B,A] ? ; no

An Introduction to Logic Programming 2024 Spring Semester 117 / 170

Declarative Programming with Prolog All solutions predicates

All solutions: the BIP setof/3

setof(?Templ, :Goal, ?List)

The execution of the procedure:
same as: bagof(Templ, Goal, L0), sort(L0, List)

recall: sort(+L, ?SL) is a built-in predicate which sorts L using the @<
built-in predicate (removing duplicates) and unifies the result with SL

Example:
graph([a-b,a-c,b-c,c-d,b-d]).

% Graph has a node V.
has_node(Graph, V) :- member(A-B, Graph), (V = A ; V = B).

% The set of nodes of G is Vs.
graph_nodes(G, Vs) :- setof(V, has_node(G, V), Vs).

| ?- graph(_G), graph_nodes(_G, Vs). =⇒ Vs = [a,b,c,d] ? ; no

An Introduction to Logic Programming 2024 Spring Semester 118 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 119 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Causes of inefficiency – preview

Unnecessary choice points (ChPs) waste both time and space
Recursive definitions often leave choice points behind on exit, e.g.:

% fact0(+N, ?F): F = N!.
fact0(0, 1).
fact0(N, F) :- N > 0, N1 is N-1, fact0(N1, F1), F is N*F1.
Remedy: use if-then-else or the cut BIP (coming soon)
% last0(L, E): The last element of L is E.
last0([E], E).
last0([_|L], E) :- last0(L, E).
Remedy: rewrite to make use of indexing (or cut, or if-then-else)

General recursion, as opposed to tail recursion
As an example, see the fact0/2 predicate above
Remedy: re-formulate to a tail recursive form, using accumulators

An Introduction to Logic Programming 2024 Spring Semester 120 / 170

Declarative Programming with Prolog Efficient programming in Prolog

The cut – the BIP underlying if-then-else and negation

The cut, denoted by !, is a BIP with no arguments, i.e. its functor is !/0.
Execution: the cut always succeeds with these two side effects:

Restrict to the first solution of a goal:
Remove all choice points created within the goal(s) preceding the !.
% is_a_parent(+P): check if a given P is a parent.
is_a_parent(P) :- has_parent(_, P), !.

Commit to the clause containting the cut:
Remove the choice of any further clauses in the current predicate.
fact1(0, F) :- !, F = 1. % Assign output vars only after the cut,

% both for correctness and efficiency
fact1(N, F) :- N > 0, N1 is N-1, fact1(N1, F1), F is N*F1.

Definition: if q :- ..., p, then
the parent goal of p is the goal matching the clause head q

Effects of cut in the search tree: removes all choice points up to and
including the node labelled with the parent goal of the cut.
In the procedure box model: Fail port of cut =⇒ Fail port of parent goal

An Introduction to Logic Programming 2024 Spring Semester 121 / 170

Declarative Programming with Prolog Efficient programming in Prolog

How does “cut” prune the search tree – an example

a(X, Y) :- b(X), c(X, Y). b(s(1)).
a(X, Y) :- d(X, Y). b(s(2)).

c(s(X), Y) :- Y is X+10. d(s(3), 30).
c(s(X), Y) :- Y is X+20. d(t(4), 40).

a_cut(X, Y) :- b(X), !, c(X, Y).
a_cut(X, Y) :- d(X, Y).

test(Pred, X, Res) :-
findall(X-Y, call(Pred, X, Y), Res).

Sample runs:

| ?- test(a, s(_), Res). =⇒ Res = [s(1)-11,s(1)-21,s(2)-12,
s(2)-22,s(3)-30] ?

| ?- test(a, t(_), Res). =⇒ Res = [t(4)-40] ?
| ?- test(a_cut, s(_), Res). =⇒ Res = [s(1)-11,s(1)-21] ?
| ?- test(a_cut, s(3), Res). =⇒ Res = [s(3)-30] ?
| ?- test(a_cut, t(_), Res). =⇒ Res = [t(4)-40] ?

An Introduction to Logic Programming 2024 Spring Semester 122 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Avoid leaving unnecessary choice points

Add a cut if you know that remaining branches are doomed to fail.
(These are so called green cuts, which do not remove solutions.)
Example of a green cut:
% last1(L, E): The last element of L is E.
last1([E], E) :- !.
last1([_|L], E) :- last1(L, E).

In the absence of the cut, the goal last1([1], X) will return the
answer X = 1, and leave a choice point. When this choice point is
explored last1([], X) will be called which will always fail.
Instead of a cut, one can use if-then-else:
last2([E|L], X) :- (L == [] -> X = E

; last2(L, X)
).

fact2(N, F) :- (N == 0 -> F = 1
; N > 0, N1 is N-1, fact2(N1, F1), F is N*F1
).

An Introduction to Logic Programming 2024 Spring Semester 123 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Avoid leaving unnecessary choice points – indexing

Recall a simple example predicate, summing a binary tree:
% tree_sum(+Tree, ?Sum):
% Sum is the sum of integers in the leaves of Tree.
tree_sum(leaf(Value), Value). 1st head arg’s functor: leaf/1
tree_sum(node(Left, Right), S) :- 1st head arg’s functor: node/2

tree_sum(Left, S1), tree_sum(Right, S2), S is S1+S2.

Indexing groups the clauses of a predicate based on the outermost
functor of (usually) the first argument.
The compiler generates code (using hashing) to select the subset of
clauses that corresponds to this outermost functor.
If the subset contains a single clause, no choicepoint is created. (This is
the case in the above example.)

An Introduction to Logic Programming 2024 Spring Semester 124 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Indexing – an introductory example

A sample (meaningless) program to illustrate indexing.
p(0, a). /* (1) */
p(X, t) :- q(X). /* (2) */
p(s(0), b). /* (3) */
p(s(1), c). /* (4) */
p(9, z). /* (5) */

q(1).
q(2).

For the call p(A, B), the compiler produces a case statement-like
construct, to determine the list of applicable clauses:

(VAR) if A is a variable: (1) (2) (3) (4) (5)
(0/0) if A = 0 (A’s main functor is 0/0): (1) (2)
(s/1) if A’s main functor is s/1: (2) (3) (4)
(9/0) if A = 9: (2) (5)
(OTHER) in all other cases: (2)

Example calls (do they create and leave a choice point?)
p(1, Y) takes branch (OTHER), does not create a choice point.
p(s(1), Y) takes branch (s/1), creates a choice point,
but removes it and exits without leaving a choice point.
p(s(0), Y) takes branch (s/1), and exits leaving a choice point.

An Introduction to Logic Programming 2024 Spring Semester 125 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Indexing

Indexing improves the efficiency of Prolog execution by
speeding up the selection of clauses matching a particular call;
using a compile-time grouping of the clauses of the predicate.

Most Prolog systems, including SICStus, use only the main (i.e.
outermost) functor of the first argument for indexing, which is

C/0, if the argument is a constant (atom or number) C;
R/N, if the argument is a compound with name R and arity N;
undefined, if the argument is a variable.

Implementing indexing
Compile-time: collect the set of (outermost) functors of nonvar terms
occurring as first args, build the case statement (see prev. slide)
Run-time: select the relevant clause list using the first arg. of the call.
This is practically a constant time operation, as it uses hashing.

If the clause list is a singleton, no choice point is created.
Otherwise a choice point is created, which will be removed before
entering the last branch.

An Introduction to Logic Programming 2024 Spring Semester 126 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Getting the most out of indexing

Get deep indexing through helper predicates (rewrite p/2 to q/2):
p(0, a).
p(s(0), b).
p(s(1), c).
p(9, z).

=⇒
q(0, a).
q(s(X), Y) :-

q_aux(X, Y).
q(9, z).

q_aux(0, b).
q_aux(1, c).

Pred. q(X,Y) will not create choice points if X is ground.
Indexing does not deal with arithmetic comparisons

E.g., N = 0 and N > 0 are not recognized as mutually exclusive.
Indexing and lists

Putting the (input) list in the first argument makes indexing work.
Indexing distinguishes between [] and [...|...]
(resp. functors: ’[]’/0 and ’.’/2).
For proper lists, the order of the two clauses is not relevant
For use with open ended lists: put the clause for [] first, to avoid an
infinite loop (an infinite choice may still remain)

An Introduction to Logic Programming 2024 Spring Semester 127 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Indexing list handling predicates

Predicate app/3 creates no choice points
if the first argument is a proper list:
% app(L1, L2, L3): L1 ⊕ L2 = L3. % 1st arg funct:
app([], L, L). % []/0
app([X|L1], L2, [X|L3]) :- % . /2

app(L1, L2, L3).

The same is true for revapp/3:
% revapp(L1, L2, L3):
% appending the reverse of L1 and L2 gives L3
revapp([], L, L). % []/0
revapp([X|L1], L2, L3) :- % . /2

revapp(L1, [X|L2], L3).

An Introduction to Logic Programming 2024 Spring Semester 128 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Indexing list handling predicates, cont’d

Getting the last element of a list: last0/2 leaves a choice point.
% last0(L, E): The last element of L is E.
last0([H], H). % . /2
last0([_|T], E) :- last0(T, E). % . /2

The variant last4/2 uses a helper predicate, creates no choice points:
last4([H|T], E) :- last4(T, H, E). (*)

% last4(T, H, E): The last element of [H|T] is E.
last4([], E, E). % []/0
last4([H|T], _, E) :- last4(T, H, E). % . /2

member0/2 (as defined earlier) always leaves a choice point.
% member0(E, L): E is an element of L.
member0(E, [E|_T]). % VAR
member0(E, [_H|T]) :- member0(E, T). % VAR

Write the head comment and the clauses of member1/3, so that member1/2
leaves no choice point when the last element of a (proper) list is returned.
member1(E, [H|T]) :- member1(T, H, E). % cf. (*)
% member1(T, H, E): ...

An Introduction to Logic Programming 2024 Spring Semester 129 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Using cut to make member/2 more efficient: BIP memberchk/2

Built-in predicate memberchk/2 could be defined as:
% First solution of the query "X is an element of list L".
memberchk(X, L) :- member(X, L), !.
Equivalent definitions of memberchk/2:
memberchk(X, [X|_]) :- !. memberchk(X, [Y|L]) :-
memberchk(X, [_|L]) :- (X = Y -> true

memberchk(X, L). ; memberchk(X, L)
).

Uses of memberchk/2
% memberchk(+X, +L): check if X is an element of proper list L
Does not scan the list tail on backtracking after a successful exit.
| ?- member(X, [1,2,3,4]), memberchk(X, [1,4,1,5,1]),

memberchk(X, [2,3,4]). (*)
With member throughout, goal (*), for X=1, would be called 3 times.
% memberchk(+X, ?L): make X an element of open ended list L
Adds X to the end of L, unless X unifies with an existing member of L
| ?- memberchk(1,L), memberchk(2,L), memberchk(1,L).

=⇒ L = [1,2|_A] ? ; no
No infinite choice here, due to the cut in memberchk.

An Introduction to Logic Programming 2024 Spring Semester 130 / 170

Declarative Programming with Prolog Efficient programming in Prolog

memberchk with open ended lists: a dictionary (ADVANCED)

A program for building and querying of a Hungarian-English dictionary:

dict(D) :-
(read(H-E) -> % The read(X) built-in predicate unifies X with

% a term read from the current input stream.
% Here: it fails if the term does not match H-E.

memberchk(H-E, D), % Add or search for an item.
write(’Added/Found’:H-E), nl, % Write out confirmation or result.
dict(D) % Continue building/querying.

; write(’Bye-bye’), nl % Exit
).

A sample run (program output shown in blue on the right):
| ?- dict(D).
|: alma-apple. Added/Found:alma-apple
|: korte-pear. Added/Found:korte-pear
|: alma-_. Added/Found:alma-apple
|: _-pear. Added/Found:korte-pear
|: seeya. Bye-bye
D = [alma-apple,korte-pear|_A] ?

An Introduction to Logic Programming 2024 Spring Semester 131 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Dangers of using the BIP cut (!)

Example: implement f(X) = (X==1 ? 2 : X) (if X=1→2, else→X)
We define several variants with the same spec: % pN(+X, ?Y): Y = f(X).

Version 0: Logic OK, but: leaves a choice point
p0(1, 2).
p0(X, X) :- \+ X=1.

Version 1: add a cut, no choice point left, but: X=1 still checked twice
p1(1, 2) :- !. % green cut, adding it leaves the solution set unchanged
p1(X, X) :- \+ X=1.

Version 2: remove the check from clause 2, but: see issue below
p2(1, 2) :- !. % red cut, does change the set of solutions
p2(X, X) /* :- \+ X=1 */ .

p2 produces the same results as p1 in mode (+,-)

But not in mode (+,+): ∃a, b so that p1(a,b) and p2(a,b) run differently
| ?- p1(1, 1). =⇒ no | ?- p2(1, 1). =⇒ yes

Final, correct and efficient version:
p3(1, Y) :- !, Y = 2. % set the output arg. after the ! (Base rule of cut)
p3(X, X) /* :- \+ X=1 */.

An Introduction to Logic Programming 2024 Spring Semester 132 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Interaction of indexing and the cut

The effect of cut is included in indexing, if the compiler can prove that the
cut will definitely be reached.This will happen when:

1 the cut is the first subgoal of the body;
2 if the 1st head arg. is a compound, it has only variable args;
3 all further head arguments are variables;
4 all variable occurrences in the head are distinct.

Predicate p3/2 satisfies condition 3, but p2/2 does not.
p2(1, 2) :- !. (1) p2(X, X). (2)
Since only the first argument is used in indexing, p2 has to create a choice
point, as | ?- p2(1,2). matches (1) while | ?- p2(1,1). matches (2)
The base rule of cut implies not only cleaner but also more efficient code:

Unification of output args should always be done after the cut!

To be on the safe side, use if-then-else instead of cut:
p(X, Y) :-

p3(1, Y) :- !, Y = 2. (X =:= 1 -> Y = 2
p3(X, X). Y = X

).
An Introduction to Logic Programming 2024 Spring Semester 133 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Efficiency of the cut and indexing (ADVANCED)

A Fibonacci-like sequence: f1 = 1; f2 = 2; fn = f⌊3n/4⌋ + f⌊2n/3⌋, n > 2

% ChPs left
fib(1, 1).
fib(2, 2).
fib(N, F) :- Body.

% no ChPs left
fibc(1, 1) :- !.
fibc(2, 2) :- !.
fibc(N, F) :- Body.

% no ChPs made
fibci(1, F) :- !, F = 1.
fibci(2, F) :- !, F = 2.
fibci(N, F) :- Body.

where Body =

N > 2, N2 is N*3//4, N3 is N*2//3,
fibxx(N2, F2), fibxx(N3, F3), F is F2+F3.

Run times for n = 6000
Pred. Glob. Local Trail ChP Total Succ. Fail. Total

stack stack stack stack mem. time time time
fib 1.2K 112M 37M 149M 299M 2.16s 0.30s 2.46s
fibc 1.2K 0.3K 18M 0.4K 18M 1.67s 0.03s 1.70s
fibci 1.2K 0.3K 0.1K 0.4K 2.0K 1.56s 0.00s 1.56s

For fibc, notice the large trail stack size, and non-zero failure time (for
cleaning the trail).
See BIP statistics/2 for obtaining time and memory data

An Introduction to Logic Programming 2024 Spring Semester 134 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Tail recursion

In general, recursion is expensive both in terms of time and space.
The special case of tail recursion can be compiled to a loop. Conditions:

1 the recursive call is the last to be executed in the clause body, i.e.:
it is textually the last subgoal in the body; or
the last subgoal is a disjunction/if-then-else, and the recursive
call is the last in one of the branches

2 no ChPs left in the predicate when the recursive call is reached
Example
% all_pos(+L): all elements of number list L are positive.
all_pos([]).
all_pos([X|L]) :-

X > 0, all_pos(L).

Tail recursion optimization, TRO: the memory allocated by the clause is
freed before the last call is executed.
This optimization is performed not only for recursive calls but for the last
calls in general (last call optimization, LCO).

An Introduction to Logic Programming 2024 Spring Semester 135 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Making a predicate tail recursive – accumulators

Example: the sum of a list of numbers. The left recursive variant:
% sum0(+List, -Sum): the sum of the elements of List is Sum.
sum0([], 0).
sum0([X|L], Sum) :- sum0(L, Sum0), Sum is Sum0+X.

Note that sum0([a1,. . ., an], S) =⇒ S = 0+an+. . . +a1 (right to left)
For TRO, define a helper pred, with an arg. storing the “sum so far”:
% sum(+List, +Sum0, -Sum):
% (Σ List) + Sum0 = Sum, i.e. Σ List = Sum-Sum0.
sum([], Sum, Sum).
sum([X|L], Sum0, Sum) :-

Sum1 is Sum0+X, % Increment the ‘‘sum so far’’
sum(L, Sum1, Sum). % recurse with the tail and the new sum so far

Arguments Sum0 and Sum form an accumulator pair: Sum0 is an
intermediate while Sum is the final value of the accumulator.
The initial value is supplied when defining sum/2:
% sumlist(+List, ?Sum): Σ List = Sum. Available from library(lists).
sumlist(List, Sum) :- sum(List, 0, Sum).

Note that sumlist([a1,. . ., an], S) =⇒ S = 0+a1+. . . +an (left to right)
An Introduction to Logic Programming 2024 Spring Semester 136 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Accumulators – making factorial tail-recursive

Two arguments of a pred. forming an accumulator pair: the declarative
equivalent of the imperative variable (i.e. a variable with a mutable state)
The two parts: the state of the mutable quantity at pred. entry and exit.
Example: making factorial tail-recursive. The mid-recursive version:
% fact0(N, F): F = N!.
fact0(N, F) :- (N =:= 0 -> F = 1

; N > 0, N1 is N-1, fact0(N1, F1), F is F1*N
).

| ?- fact0(4, F). =⇒ F = 24 ∼ 1*1*2*3*4

Helper predicate: fact(N, F0, F), F0 is the product accumulated so far.
% fact(N, F0, F): F = F0*N!.
fact(N, F0, F) :- (N =:= 0 -> F = F0

; N > 0, F1 is F0*N, N1 is N-1, fact(N1, F1, F)
).

fact(N, F) :-
fact(N, 1, F).

| ?- fact(4, F). =⇒ F = 24 ∼ 1*4*3*2*1

An Introduction to Logic Programming 2024 Spring Semester 137 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Accumulating lists – higher order approaches (ADVANCED)

Recap predicate revapp/3:
% revapp(L, R0, R): The reverse of L prepended to R0 gives R.
revapp0([], R0, R) :- R = R0.
revapp0([X|L], R0, R) :- R1 = [X|R0], revapp0(L, R1, R).
Introduce the list construction predicate cons/3
% L1 is a list constructed from the head X and tail L0.
cons(X, L0, L1) :- L1 = [X|L0].
revapp1([], R0, R) :- R = R0.
revapp1([X|L], R0, R) :- cons(X, R0, R1), revapp1(L, R1, R).
A higher order (HO) solution (in SWI use foldl instead of scanlist):
revapp2(L, R0, R) :- scanlist(cons, L, R0, R).
Summing a list, HO solution (% sum2(L, Sum): list L sums to Sum.)
plus(X, S0, S1) :- S1 is S0+X.
sum2(L, Sum) :- scanlist(plus, L, 0, Sum).
(ADV2) Appending lists, HO sol. (% app(L1, L2, L): L1 ⊕ L2 = L.)
% decomp(X, C, B): List C can be decomposed to head X and tail B
decomp(X, C, B) :- C = [X|B].
app(A, B, C) :- scanlist(decomp, A, C, B).

An Introduction to Logic Programming 2024 Spring Semester 138 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Accumulating lists – avoiding append

Example: calculate the list of leaf values of a tree. Without accumulators:
% tree_list0(+T, ?L): L is the list of the leaf values of tree T.
tree_list0(leaf(Value), [Value]).
tree_list0(node(Left, Right), L) :-

tree_list0(Left, L1), tree_list0(Right, L2), append(L1, L2, L).

Building the list of tree leaves using accumulators:
tree_list(Tree, L) :-

tree_list(Tree, [], L). % Initialize the list accumulator to []

% tree_list(+Tree, +L0, L): The list of the
% leaf values of Tree prepended to L0 is L.
tree_list(leaf(Value), L0, L) :- L = [Value|L0].
tree_list(node(Left, Right), L0, L) :-

tree_list(Right, L0, L1), tree_list(Left, L1, L).

| ?- tree_list(node(node(leaf(a),leaf(b)),leaf(c)), L). =⇒ L = [a,b,c]? ; no

Note that one of the two recursive calls is tail-recursive.
Also, there is no need to append the intermediate lists!

An Introduction to Logic Programming 2024 Spring Semester 139 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Accumulators for implementing imperative (mutable) variables

Let L = [x1, . . . ,] be a number list. xi is left-visible in L, iff ∀j < i .(xj < xi)
Determine the count of left-visible elements in a list of positive integers:

Imperative, C-like algorithm

int viscnt(list L) {
int MV = 0; // max visible
int VC = 0; // visible cnt

loop:
if (empty(L)) return VC;

{ int H = hd(L), L = tl(L);
if (H > MV)

{ VC += 1; MV = H; }
// else VC,MV unchanged

}
goto loop;

}

Prolog code

% List L has VC left-visible elements.
viscnt(L, VC) :- viscnt(L,

0,
0, VC).

% viscnt(L, MV, VC0, VC): L has VC-VC0
% left-visible elements which are > MV.
viscnt([], _, VC0, VC) :- VC = VC0.
viscnt(L0, MV0, VC0, VC) :- % (1)

L0 = [H|L1],
(H > MV0
-> VC1 is VC0+1, MV1 = H
; VC1 = VC0, MV1 = MV0 % (2)
),
viscnt(L1, MV1, VC1, VC). % (3)

An Introduction to Logic Programming 2024 Spring Semester 140 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Mapping a C loop to a Prolog predicate

Each C variable initialized before the loop and used in it becomes an
input argument of the Prolog predicate
Each C variable assigned to in the loop and used afterwards becomes an
output argument of the Prolog predicate
Each occurrence of a C variable is mapped to a Prolog variable,
whenever the variable is assigned, a new Prolog variable is needed,
e.g. MV is mapped to MV0, MV1, . . . :

The initial values (L0,MV0, . . .) are the args of the clause head1 (1)
If a branch of if-then(-else) changes a variable, while others don’t,
then the Prolog code of latter branches has to state that the new
Prolog variable is equal to the old one, (2)
At the end of the loop the Prolog predicate is called with arguments
corresponding to the current values of the C variables, (3)

1References of the form (n) point to the previous slide.
An Introduction to Logic Programming 2024 Spring Semester 141 / 170

Declarative Programming with Prolog Efficient programming in Prolog

Class practice task

% pbfo(+L, ?FO, ?I, ?N): The number of positive elements before
% the first odd element FO, occurring at index I is N.
% L is a proper list and all its elements are integers.
| ?- pbfo([8,2,-2,5,3,0], FO, I, N). =⇒ FO = 5, I = 4, N = 2 ? ; no
| ?- pbfo([8,2,-2,0], FO, I, N). =⇒ no

A C-like algorithm (the return value is the list [FO,I,N] or [] for failure)
list pbfo(list L) {

int I = 1, N = 0;
loop:

if (empty(L)) return nil(); // returning an empty list for failure
{ int H = hd(L);

L = tl(L);
if (H % 2 == 1) // if H is odd

return cons(H, cons(I, cons(N, nil()))); // return [H,I,N]
if (H > 0) N += 1;
I += 1;

}
goto loop; }

Rewrite the above to Prolog, using techniques shown on previous slides
An Introduction to Logic Programming 2024 Spring Semester 142 / 170

Declarative Programming with Prolog Further reading

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators
Further list processing predicates
Term ordering
Higher order predicates
Executable specifications
All solutions predicates
Efficient programming in Prolog
Further reading

An Introduction to Logic Programming 2024 Spring Semester 143 / 170

Declarative Programming with Prolog Further reading

Additional slides

Subsequent slides were not presented in the class,
these are included as further reading and for
reference purposes

An Introduction to Logic Programming 2024 Spring Semester 144 / 170

Declarative Programming with Prolog Further reading

Building and decomposing compounds: the univ predicate

BIP =.. /2 (pronounce univ) is a standard op. (xfx, 700; just as =, . . .)
Term =.. List holds if

Term = Fun(A1, . . ., An) and List = [Fun,A1,..., An],
where Fun is an atom and A1,..., An are arbitrary terms; or
Term = C and List = [C], where C is a constant.
(Constants are viewed as compounds with 0 arguments.)

Whenever you would like to use a var. as a compound name, use univ:
X = F(A1,. . .,An) causes syntax error, use X =.. [F,A1,. . .,An] instead
Call patterns for univ: +Term =.. ?List decomposes Term

-Term =.. +List constructs Term
Examples
| ?- edge(a,b,10) =.. L. =⇒ L = [edge,a,b,10]
| ?- Term =.. [edge,a,b,10]. =⇒ Term = edge(a,b,10)
| ?- apple =.. L. =⇒ L = [apple]
| ?- Term =.. [1234]. =⇒ Term = 1234
| ?- Term =.. L. =⇒ error
| ?- f(a,g(10,20)) =.. L. =⇒ L = [f,a,g(10,20)]
| ?- Term =.. [/,X,2+X]. =⇒ Term = X/(2+X)

An Introduction to Logic Programming 2024 Spring Semester 145 / 170

Declarative Programming with Prolog Further reading

Error handling in Prolog

A BIP for catching exceptions (errors): catch(:Goal, ?ETerm, :EGoal):
Recall: “:” marks a meta argument, i.e. a term which is a goal
BIP catch/3 runs Goal

If no exception is raised (no error occurs) during the execution of
Goal, catch ignores the remaining arguments
When an exception occurs, an exception term E is produced, which
contains the details of the exception

If E unifies with the 2nd argument of catch, ETerm, it runs EGoal
Otherwise catch propagates the exception further outwards,
giving a chance to surrounding catch goals
If the user code does not “catch” the exception, it is caught by
the top level, displaying the error term in a readable form.

| ?- X is Y+1.
! Instantiation error in argument 2 of (is)/2
! goal: _177 is _183+1
| ?- catch(X is Y+1, E, true).
E = error(instantiation_error,instantiation_error(_A is _B+1,2)) ? ; no
| ?- catch(X is Y+1, _, fail).
no

An Introduction to Logic Programming 2024 Spring Semester 146 / 170

Declarative Programming with Prolog Further reading

An interesting Prolog task

A job interview question: construct an arithmetic expression containing
integers 1, 3, 4, 6 each exactly once, using the four basic arithmetic
operators +, -, *, /, 0 or more times, so that the expression evaluates to 24
Let’s write a Prolog program for solving this task:

:- use_module(library(lists), [permutation/2]).

% arith_expr(+L, +OpL, +Val, -Expr) :
% Expr is an arithmetic expression containing only operators present
% in the list OpL (operators may be used 0 or more times) and
% integers given in list L (each integer has to appear exactly once),
% so that the value of the expression is Val.
arith_expr(L, OpL, Val, Expr) :-

permutation(L, PL), % permute the list of integers into PL
leaves_ops_expr(PL, OpL, Expr), % build Expr with PL as the leaves-list
catch(Expr =:= Val, _, fail). % check if Expr evaluates to Val, fail

% if there is a division-by-0 error.

An Introduction to Logic Programming 2024 Spring Semester 147 / 170

Declarative Programming with Prolog Further reading

An interesting Prolog task, cont’d

% leaves_ops_expr(+L, +OpL, ?Expr): Expr is an arithmetic expression
% which uses operators from OpL (0 or more times each) whose leaves,
% read left-to-right, form the list L.
leaves_ops_expr(L, _OpL, Expr) :-

L = [Expr]. % If L is a singleton, Expr is the only element
leaves_ops_expr(L, OpL, Expr) :-

append(L1, L2, L), % Split L to nonempty L1 and L2,
L1 \= [], L2 \= [],
leaves_ops_expr(L1, OpL, E1), % generate E1 from L1 (using OpL),
leaves_ops_expr(L2, OpL, E2), % generate E2 from L2 (using OpL),
member(Op, OpL), % choose an operator Op from OpL,
Expr =.. [Op,E1,E2]. % build the expression ‘E1 Op E2’

| ?- solve(66).
(3*4-1)*6
(4*3-1)*6
6*(3*4-1)
6*(4*3-1)
yes

| ?- solve(67).
yes

An Introduction to Logic Programming 2024 Spring Semester 148 / 170

Declarative Programming with Prolog Further reading

A motivating symbolic processing example

Polynomial: built from the atom ‘x’ and numbers using ops ‘+’ and ‘*’
Calculate the value of a polynomial for a given substitution of x
% value_of(+Poly, +X, ?V): Poly has the value V, for x=X
value_of0(x, X, V) :- V = X.
value_of0(N, _, V) :-

number(N), V = N.

value_of0(P1+P2, X, V) :-
value_of0(P1, X, V1),
value_of0(P2, X, V2),
V is V1+V2.

value_of0(Poly, X, V) :-
Poly = *(P1,P2),
value_of0(P1, X, V1),
value_of0(P2, X, V2),
PolyV = *(V1,V2),
V is PolyV.

value_of(x, X, V) :- !, V = X.
value_of(N, _, V) :-

number(N), !, V = N.

value_of(Poly, X, V) :-
Poly =.. [Func,P1,P2],
value_of(P1, X, V1),
value_of(P2, X, V2),
PolyV =.. [Func,V1,V2],
V is PolyV.

Predicate value_of works for all binary functions supported by is/2.
| ?- value_of(exp(100,min(x,1/x)), 2, V). =⇒ V = 10.0 ? ; no

An Introduction to Logic Programming 2024 Spring Semester 149 / 170

Declarative Programming with Prolog Further reading

Building and decomposing compounds: functor/3

functor(Term, Name, Arity):
Term has the name Name and arity Arity, i.e.
Term has the functor Name/Arity.

(A constant C is considered to have the name C and arity 0.)
Call patterns:
functor(+Term, ?Name, ?Arity) – decompose Term
functor(-Term, +Name, +Arity) – construct a most general Term (*)
If Term is output (*), it is unified with the most general term with the
given name and arity (with distinct new variables as arguments)

Examples:
| ?- functor(edge(a,b,1), F, N). =⇒ F = edge, N = 3
| ?- functor(E, edge, 3). =⇒ E = edge(_A,_B,_C)
| ?- functor(apple, F, N). =⇒ F = apple, N = 0
| ?- functor(Term, 122, 0). =⇒ Term = 122
| ?- functor(Term, edge, N). =⇒ error
| ?- functor(Term, 122, 1). =⇒ error
| ?- functor([1,2,3], F, N). =⇒ F = ’.’, N = 2
| ?- functor(Term, ., 2). =⇒ Term = [_A|_B]

An Introduction to Logic Programming 2024 Spring Semester 150 / 170

Declarative Programming with Prolog Further reading

Building and decomposing compounds: arg/3

arg(N, Compound, A): the Nth argument of Compound is A

Call pattern: arg(+N, +Compound, ?A), where N ≥ 0 holds
Execution: The Nth argument of Compound is unified with A.
If Compound has less than N arguments, or N = 0, arg/3 fails
Arguments are unified – arg/3 can also be used for instantiating a
variable argument of the structure (as in the second example below).

Examples:
| ?- arg(3, edge(a, b, 23), Arg). =⇒ Arg = 23
| ?- T=edge(_,_,_), arg(1, T, a),

arg(2, T, b), arg(3, T, 23). =⇒ T = edge(a,b,23)
| ?- arg(1, [1,2,3], A). =⇒ A = 1
| ?- arg(2, [1,2,3], B). =⇒ B = [2,3]

Predicate univ can be implemented using functor and arg, and vice
versa, for example:

Term =.. [F,A1,A2] ⇐⇒ functor(Term, F, 2), arg(1,
Term, A1), arg(2, Term, A2)

An Introduction to Logic Programming 2024 Spring Semester 151 / 170

Declarative Programming with Prolog Further reading

Finding arbitrary subterms using arg/3 and functor/3

Given a term T0 with a (not necessarily proper) subterm Tn at depth n, the
position of Tn within T0 is described by a selector [I1,. . .,In] (n ≥ 0):
select_subterm(T0, [I1,...,In], Tn) :-

arg(I1, T0, T1), arg(I2, T1, T2), ..., arg(In, Tn−1, Tn).
E.g. within term a*b+f(1,2,3)/c, [1] selects a*b, [1,2] selects b,
[2,1,3] selects 3, [] selects the whole term
Given a term, enumerate all subterms and their selectors.

% subterm(?T, ?Sub, ?Sel): Sub is subterm in T at position Sel.
subterm(X, X, []).
subterm(X, Sub, [I|Sel]) :-

compound(X), % it is important that X is not a var.
functor(X, _, Arity), % because functor would raise an error
between(1, Arity, I),
arg(I, X, Y), subterm(Y, Sub, Sel).

| ?- subterm(f(1,[b]), T, S). =⇒ T = f(1,[b]), S = [] ? ;
=⇒ T = 1, S = [1] ? ;
=⇒ T = [b], S = [2] ? ;
=⇒ T = b, S = [2,1] ? ;
=⇒ T = [], S = [2,2] ? ; no

An Introduction to Logic Programming 2024 Spring Semester 152 / 170

Declarative Programming with Prolog Further reading

Decomposing and building atoms

atom_codes(Atom, Cs): Cs is the list of character codes comprising Atom.
Call patterns: atom_codes(+Atom, ?Cs)

atom_codes(-Atom, +Cs)
Execution:

If Cs is a proper list of character codes then Atom is unified with
the atom composed of the given characters
Otherwise Atom has to be an atom, and Cs is unified with the list
of character codes comprising Atom

Examples:
| ?- atom_codes(ab, Cs). =⇒ Cs = [97,98]
| ?- atom_codes(ab, [0’a|L]). =⇒ L = [98]
| ?- Cs="bc", atom_codes(Atom, Cs). =⇒ Cs = [98,99], Atom = bc2

| ?- atom_codes(Atom, [0’a|L]). =⇒ error

2A string "abc..." is treated as a list of character codes of a, b,
An Introduction to Logic Programming 2024 Spring Semester 153 / 170

Declarative Programming with Prolog Further reading

Decomposing and building numbers

number_codes(Number, Cs): Cs is the list of character codes of Number.
Call patterns: number_codes(+Number, ?Cs)

number_codes(-Number, +Cs)
Execution:

If Cs is a proper list of character codes which is a number
according to Prolog syntax, then Number is unified with the
number composed of the given characters
Otherwise Number has to be a number, and Cs is unified with the
list of character codes comprising Number

Examples:
| ?- number_codes(12, Cs). =⇒ Cs = [49,50]
| ?- number_codes(0123, [0’1|L]). =⇒ L = [50,51]
| ?- number_codes(N, " - 12.0e1"). =⇒ N = -120.0
| ?- number_codes(N, "12e1"). =⇒ error (no decimal point)
| ?- number_codes(120.0, "12e1"). =⇒ no (The first arg. is given :-)

An Introduction to Logic Programming 2024 Spring Semester 154 / 170

Declarative Programming with Prolog Further reading

Dynamic predicates – an introduction

Dynamic predicates are Prolog predicates, with the following properties
The predicate can be modified during runtime by adding (asserting)
and removing (retracting) clauses
There can be 0 or more clauses of the predicate in the program text
The predicate is interpreted (slower execution)

A dynamic predicate can be created
by placing a directive in the program: :- dynamic(Predicate/Arity).
(preceding any clauses of the predicate in the program text); or
by using a database modification BIP3

Built-in predicates for database modification
Add a clause: asserta/1, assertz/1
Remove a clause (can be non-deterministic): retract/1
Retrieve a clause (can be non-deterministic): clause/2

Adding or removing clauses is permanent, this is not undone at
backtracking.

3The set of program clauses is often called the Prolog database.
An Introduction to Logic Programming 2024 Spring Semester 155 / 170

Declarative Programming with Prolog Further reading

Adding a clause: asserta/1, assertz/1

asserta(:Clause)4

the term Clause is interpreted as a clause, it has to be sufficiently
instantiated for its functor P/N to be to determined
If pred. P/N exists, it has to be dynamic, if not, it is made dynamic
a copy of Clause is added to pred. P/N as the first clause

By copying we mean systematically replacing variables with new ones.
assertz(:Clause)

Same as asserta, but Clause is added as the last clause
Most Prolog systems support the non-standard BIP assert/1, which
inserts the clause somewhere in the predicate (mostly ≡ assertz/1)
Examples:

| ?- assertz((p(1,X):-q(X))), asserta(p(2,0)), p(2, 0).
assertz((p(2,Z):-r(Z))), listing(p). =⇒ p(1, A) :- q(A).

p(2, A) :- r(A).

| ?- assertz(s(X,X)), s(U,V), U == V, X \== U. =⇒ V = U ? ; no
4character : indicates that the argument is a meta-argument.

An Introduction to Logic Programming 2024 Spring Semester 156 / 170

Declarative Programming with Prolog Further reading

Removing a clause: retract/1

retract(:Clause) where Clause viewed as a clause is sufficiently
instantiated so that its functor P/N can be determined:

looks up a clause of pred. P/N which unifies with Clause;
if found (and unified), removes the clause from the program;
on backtracking keeps looking up and removing further clauses

Example (continued from the previous slide):
| ?- listing(p), retract((p(2,X):-B)),

assertz((s(3,X):-B)), listing(p), listing(s), fail. =⇒ no

The output
p(2, 0).
p(1, A) :-

q(A).
p(2, A) :-

r(A).

p(1, A) :-
q(A).

p(2, A) :-
r(A).

s(3, 0).

p(1, A) :-
q(A).

s(3, 0).
s(3, A) :-

r(A).

An Introduction to Logic Programming 2024 Spring Semester 157 / 170

Declarative Programming with Prolog Further reading

An example – a simplified findall (ADVANCED)

Predicate findall1/3 implements the BIP findall/3, except for
not supporting nested invocations

:- dynamic(solution/1).

% findall1(T, Goal, L):
% L is the list of copies of T, for each solution of Goal
findall1(T, Goal, _L) :-

call(Goal),
asserta(solution(T)), % solutions stored in reverse order!
fail.

findall1(_Templ, _Goal, L) :-
solution_list([], L).

% solution_list(L0, L): L = rev(list of retracted solutions) ⊕ L0
solution_list(L0, L) :-

retract(solution(S)), !,
solution_list([S|L0], L).

solution_list(L, L).

| ?- findall1(Y, (member(X, [1,2,3]),Y is X*X), SL). =⇒ SL = [1,4,9]

An Introduction to Logic Programming 2024 Spring Semester 158 / 170

Declarative Programming with Prolog Further reading

Retrieving a clause: clause/2 (ADVANCED)

clause(:Head, ?Body) where Head is instantiated sufficiently so that its
functor P/N can be determined

looks up a clause of pred. P/N which unifies with (Head :- Body)5

if found exits with success (having performed the unification);
on backtracking keeps looking up further clauses

Example (continued from previous slides)
:- listing(p), clause(p(2, 0), Body).

p(2, 0).
p(1, A) :-

q(A).
p(2, A) :-

r(A).

=⇒ Body = true ? ;
=⇒ Body = r(0) ? ;
=⇒ no

5For facts. Body = true is assumed.
An Introduction to Logic Programming 2024 Spring Semester 159 / 170

Declarative Programming with Prolog Further reading

An example using clause/2: wallpaper tracing (ADVANCED)

An interpreter for tracing pure Prolog programs, with no BIPs.

% interp(G, D): Interprets and traces goal G with an indentation D.
interp(true, _) :- !.
interp((G1, G2), D) :- !,

interp(G1, D), interp(G2, D).
interp(G, D) :-

(trace(G, D, call)
; trace(G, D, fail), fail % shows the fail port, keeps backtracking
),
D2 is D+2,
clause(G, B), interp(B, D2),
(trace(G, D, exit)
; trace(G, D, redo), fail % shows the redo port, keeps backtracking
).

% Traces goal G at port Port with indentation D.
trace(G, D, Port) :-

(between(1, D, _), write(’ ’), fail % Writes out D spaces and fails
; write(Port), write(’: ’), write(G), nl
).

An Introduction to Logic Programming 2024 Spring Semester 160 / 170

Declarative Programming with Prolog Further reading

A sample run of the wallpaper trace interpreter (ADVANCED)

:- dynamic ap2/3,ap3/4. % (*)

ap2([], L, L).
ap2([X|L1], L2, [X|L3]) :-

ap2(L1, L2, L3).

ap3(L1, L2, L3, L123) :-
ap2(L1, L23, L123),
ap2(L2, L3, L23).

Assuming that above
text is stored in file, say,
app23.pl, line (*)
becomes unnecessary if
the file is loaded by

| ?- load_files(app23,
compilation_mode(

assert_all)).

| ?- interp(ap3(_,[b,c],L,[c,b,c,b]), 0).
call: ap3(_203,[b,c],_253,[c,b,c,b])

call: ap2(_203,_666,[c,b,c,b])
exit: ap2([],[c,b,c,b],[c,b,c,b])
call: ap2([b,c],_253,[c,b,c,b])
fail: ap2([b,c],_253,[c,b,c,b])
redo: ap2([],[c,b,c,b],[c,b,c,b])

call: ap2(_873,_666,[b,c,b])
exit: ap2([],[b,c,b],[b,c,b])

exit: ap2([c],[b,c,b],[c,b,c,b])
call: ap2([b,c],_253,[b,c,b])

call: ap2([c],_253,[c,b])
call: ap2([],_253,[b])
exit: ap2([],[b],[b])

exit: ap2([c],[b],[c,b])
exit: ap2([b,c],[b],[b,c,b])

exit: ap3([c],[b,c],[b],[c,b,c,b])
L = [b] ?

An Introduction to Logic Programming 2024 Spring Semester 161 / 170

Declarative Programming with Prolog Further reading

The Unification Algorithm

The unification algorithm takes (canonical) terms A and B as input.
It returns the most general unifier of A and B, σ = mgu(A,B), or failure.
In practice, the substitution σ has to be applied to the query at hand.
The (practical) unification algorithm:

1 If A and B are identical variables or constants, then return success.
2 Else, if A is a variable, then substitute A← B and return success.
3 Else, if B is a variable, then substitute B ← A and return success.

(Steps 2 and 3 can be executed in arbitrary order, i.e. when both A
and B are variables, one of them is substituted by the other)

4 Else, if A and B are compounds with the same name and arity,
and their arguments are A1,. . . ,AN and B1,. . . ,BN , resp.,
then for i = 1, . . . ,N do

Perform (recursively) the unification alg. for Ai and Bi ;
If the recursive invocation fails, return failure;

If the for-loop completes, return success.
5 In all other cases return failure (A and B are not unifiable)

An Introduction to Logic Programming 2024 Spring Semester 162 / 170

Declarative Programming with Prolog Further reading

The Occurs Check in unification (ADVANCED)

Can one unify X and f(Y,g(X))?
Theoretically: no, as there is no finite term X s.t. X = f(Y,g(X)),
(if X had a maximal depth d , then d = d + 2 would have to hold)
=⇒ a var. X cannot be bound to a compound containing X,
Theoretically, step 2 (and 3) of the unification alg. should include an
“occurs check”: before binding A← B check that no A occurs in B,
The (costly) check is almost always useless =⇒ not used by default.

No occurs check =⇒ so-called cyclic (infinite) terms may be created, e.g.
| ?- X = s(1,X). =⇒ X = s(1,s(1,s(1,s(1,s(...))))) ? ; no

Unification with occurs check is available as a standard BIP:
| ?- unify_with_occurs_check(X, s(1,X)). =⇒ no

Some Prologs (e.g. SICStus) support the unification and other operations
on cyclic terms
| ?- X = s(X), Y = s(s(Y)), X = Y. =⇒

X = s(s(s(s(s(...))))), Y = s(s(s(s(s(...))))) ?

(Other Prologs may go to infinite loop on this example.)

An Introduction to Logic Programming 2024 Spring Semester 163 / 170

Declarative Programming with Prolog Further reading

Unification – mathematical formulation (ADVANCED)

Preliminaries
A substitution is a function σ which maps variables to arbitrary Prolog
terms. Xσ denotes σ applied to variable X
Example: σ = {X←a, Y←s(b,B), Z←C}, Dom(σ) = {X, Y, Z}, e.g. Xσ = a
The substitution function can be naturally extended:

Tσ: σ applied to an arbitrary term T : all occurrences in T of
variables in Dom(σ) are simultaneously substituted according to σ
Example: f(g(Z,h),A,Y)σ = f(g(C,h),A,s(b,B))

Composition of substitutions:
σ ⊗ θ is a substitution obtained by first performing σ and then θ

Subst. σ ⊗ θ maps variables x ∈ Dom(σ) to (xσ)θ, while variables
y ∈ Dom(θ)\Dom(σ) to yθ (Dom(σ ⊗ θ) = Dom(σ)

⋃
Dom(θ)):

σ⊗θ = {x ← (xσ)θ | x ∈ Dom(σ)}
⋃
{ y ← yθ | y ∈ Dom(θ)\Dom(σ)}

For example, θ = {X←b, B←d}
σ ⊗ θ = {X←a, Y←s(b,d), Z←C, B←d}

An Introduction to Logic Programming 2024 Spring Semester 164 / 170

Declarative Programming with Prolog Further reading

Unification – mathematical formulation (ADVANCED)

The unification algorithm takes (canonical) terms A and B as input.
It returns the most general unifier of A and B, σ = mgu(A,B), or failure.

1 If A and B are identical variables or constants,
then return σ = {} (empty substitution).

2 Else, if A is a variable, then return σ = {A← B}
3 Else, if B is a variable, then return σ = {B ← A}

(the order of steps 2 and 3 is arbitrary, they may involve an occurs
check)

4 Else, if A and B are compounds with the same name and arity,
and their arguments are A1,. . . ,AN and B1,. . . ,BN resp.,
then initialize σ = {} and for i = 1, . . . ,N do

Perform (recursively) the unification alg. for Aiσ and Biσ;
If the recursive invocation fails, return failure,
otherwise set σ = σ ⊗mgu(Ai ,Bi)

If the above loop completes, return σ
5 In all other cases return failure (A and B are not unifiable)

An Introduction to Logic Programming 2024 Spring Semester 165 / 170

Declarative Programming with Prolog Further reading

The goal reduction execution algorithm

The definition of reduction step
Reduce a query Q to a new query NQ using a program clause Cli :

Split query Q into a first goal Q0 and a residual query RQ
Copy clause Cli , i.e. introduce new variables, and split the copy to a
head H and body B
Unify the goal Q0 and the head H

If the unification fails, exit the reduction step with failure
If the unification succeeds with a substitution σ, return the new
query NQ = (B,RQ)σ
(i.e. apply σ to both the body and the residual query)

reduce a query Q to a new query NQ by executing a built-in goal
(when the first goal is a built-in procedure call):

Split query Q into a built-in goal Q0 and a residual query RQ
Execute the BIP Q0

If the BIP fails then exit the reduction step with failure
If the BIP succeeds with a substitution σ then
return the new query NQ = RQσ

An Introduction to Logic Programming 2024 Spring Semester 166 / 170

Declarative Programming with Prolog Further reading

Prolog execution algorithm based on goal reduction
The algorithm uses a variable QU, storing a query, a variable I which is a
clause counter; and a stack consisting of pairs of the form <QU,I>

1 (Initialization:) The stack is initialized to empty, QU := initial query
2 (BIP:) If the first call of QU is built-in then perform a reduction step,

a. If it fails⇒ step 6.
b. If it is succeeds, QU := the result of reduction step,⇒ step 5.

3 (Non built-in procedure – initialize a clause counter) I := 1.
4 (Reduction step:) Select the list of clauses applicable to the first call of

QU.6 Assume the list has N elements.
a. If I > N⇒ step 6.
b. perform a reduction step between the Ith clause of the list and QU.
c. If this fails, then I := I+1,⇒ step 4 a.
d. If I < N (non-last clause), then push <QU,I> on the stack.
e. QU := the query returned by the reduction step

5 (Success:) If QU is nonempty⇒ step 2, otherwise exit with success.
6 (Failure:) If the stack is empty, then exit with failure.
7 (Backtrack:) Pop <QU,I> from the stack, I := I+1, and⇒ step 4.
6If there is no indexing, then this list will contain all clauses of the predicate.

With indexing this will be an appropriate subset of all clauses.
An Introduction to Logic Programming 2024 Spring Semester 167 / 170

Declarative Programming with Prolog Further reading

Principles of the SICStus Prolog module system

Each module should be placed in a separate file
A module directive should be placed at the beginning of the file:

:- module(ModuleName, [ExportedFunc1, ExportedFunc2, ...]).
ExportedFunci – the functor (Name/Arity) of an exported predicate
Example
:- module(drawing_lines, [draw/2]). % line 1 of file draw.pl
Built-in predicates for loading module files:

use_module(FileName)
use_module(FileName, [ImportedFunc1,ImportedFunc2,...])

ImportedFunci – the functor of an imported predicate
FileName – an atom (with the default file extension .pl);
or a special compound, such as library(LibraryName)

Examples:
:- use_module(draw). % load the above module
:- use_module(library(lists), [last/2]). % only import last/2
Goals can be module qualified: Mod:Goal runs Goal in module Mod
Modules do not hide the non-exported predicates, these can be called
from outside if the module qualified form is used

An Introduction to Logic Programming 2024 Spring Semester 168 / 170

Declarative Programming with Prolog Further reading

Meta predicates and modules

Predicate arguments in imported predicates may cause problems:

File module1.pl:
:- module(module1, [double/1]).

% (1)

double(X) :-
X, X.

p :- write(go).

File module2.pl:
:- module(module2, [q1/0,q2/0,r/0]).
:- use_module(module1).

q1 :- double(module1:p).

q2 :- double(module2:p).

r :- double(p). (2)

p :- write(ga).

Load file module2.pl, e,g, by | ?- [module2]., and run some goals:
| ?- q1. =⇒ gogo
| ?- q2. =⇒ gaga
| ?- r. =⇒ gogo :-(counter-intuitive

Solution: Tell Prolog that double has a meta-arg. by adding at (1) this:
:- meta_predicate double(:).

This causes (2) to be replaced by ‘r :- double(module2:p).’ at load time,
making predicates r and q2 identical.

An Introduction to Logic Programming 2024 Spring Semester 169 / 170

Declarative Programming with Prolog Further reading

Meta predicate declarations, module name expansion

Syntax of meta predicate declarations
:- meta_predicate ⟨ pred. name ⟩(⟨ modespec1 ⟩, . . ., ⟨ modespecn ⟩),

⟨ modespeci ⟩ can be ‘:’, ‘+’, ‘-’, or ‘?’.
Mode spec ‘:’ indicates that the given argument is a meta-argument

In all subsequent invocations of the given predicate the given arg. is
replaced by its module name expanded form, at load time

Other mode specs just document modes of non-meta arguments.
The module name expanded form of a term Term is:

Term itself, if Term is of the form M:X or it is a variable which occurs in
the clause head in a meta argument position; otherwise
SMod:Term, where SMod is the current source module (user by default)

Example, ctd. (double is declared a meta predicate in module1_m)
:- module(module3, [quadruple/1,r/0]).
:- use_module(module1_m). % the loaded form:
r :- double(p). =⇒ r :- double(module3:p).7

:- meta_predicate quadruple(:).
quadruple(X) :- double(X), double(X). =⇒ unchanged7

7The imported goal double gets a prefix “module1:”, not shown here, to save space.
An Introduction to Logic Programming 2024 Spring Semester 170 / 170

	 Overview
	Declarative Programming with Prolog
	Prolog – first steps
	Prolog execution models
	The syntax of the (unsweetened) Prolog language
	Further control constructs
	Operators
	Further list processing predicates
	Term ordering
	Higher order predicates
	Executable specifications
	All solutions predicates
	Efficient programming in Prolog
	Further reading

