
Concurrent Task Programming of Robotic
Agents in TeleoR

Keith L. Clark1 2 and Peter J. Robinson2

1 Department of Computing, Imperial College London
www.doc.ic.ac.uk/~klc klc@ic.ac.uk

2 School if ITEE, University of Queensland, Brisbane
www.itee.uq.edu.au/~pjr pjr@itee.uq.edu.au

Abstract. TeleoR is a major extension of Nilsson’s Teleo-Reactive (TR)
rule based robotic agent programming language. Programs comprise se-
quences of guarded action rules grouped into parameterised procedures.
The guards are deductive queries to a set of rapidly changing percept and
other dynamic facts in the agent’s Belief Store. The actions are either
tuples of primitive actions for external robotic resources, to be executed
in parallel, or a single call to a TeleoR procedure, which can be a re-
cursive call. The guards form a sub-goal tree routed at the guard of the
first rule. When partially instantiated by the arguments of some call, this
guard is the goal of the call.

TeleoR extends TR in being typed and higher order, with extra forms
of rules that allow finer control over sub-goal achieving task behaviour.
Its Belief Store inference language is a higher order logic+function rule
language, QuLog. QuLog also has action rules for programming behaviour
threads within an agent. The action of a TeleoR rule may be a combi-
nation of the action of a TR rule and a sequence of QuLog actions.

TeleoR’s most important extension of TR is the concept of task atomic
procedures, arguments of which may belong to a special but program
specific resource type. This allows the high level programming of multi-
tasking agents using multiple robotic resources. When two or more tasks
need to use overlapping resources their use is alternated between task
atomic calls in each task, in such a way that there is no interference,
deadlock or task starvation.

The co-ordination of the use of the resources is done by code generated by
the TeleoR compiler for the task atomic procedures. It is a concurrent
algorithm in which the concurrent tasks atomically query and update
special co-ordination facts in the agent’s Belief Store. The TeleoR pro-
grammer does not need to know about this co-ordination.

This multi-task programming is illustrated by giving the essentials of
a program for an agent controlling two robotic arms in multiple block
tower assembly tasks. It has been used to control both a Python interac-
tive graphical simulation and a Baxter robot building real block towers,
in each case with help or hindrance from a human. The arms move in
parallel whenever it can be done without risk of clashing.

2 Clark & Robinson

1 Introduction

TeleoR is a major extension of Nilsson’s Teleo-Reactive (TR) language [22]. Both
are mid-level robotic agent programming languages. They assume basic level
routines written in procedural programming languages such as C. These routines
will do sensor interpretation, particularly for camera images, and may implement
quite complex robotic resource control actions such as moving a jointed arm to
a given co-ordinate location, or to be next to a detectable object.

The results of the sensor interpretation routines become available to the
robotic agent as rapidly changing percept facts held in its Belief Store. An ex-
ample is on table(1), reporting that a block labelled with the number 1 is ‘seen’
directly on top of the table. The action routines are invokable by the agent by
starting an action such as put on block(1), when the agent believes no block
is directly on top of block 1. This normally, eventually puts the currently held
block, say block 8, on top of block 1.

Why the caveat normally, eventually? It is because we assume the environ-
ment may be affected not only be robotic actions but by exogenous events.
Before the action of putting the held block on top of block 1 completes, another
block may be placed on top of block 1 by an interfering person, meaning that a
required condition for the put on block(1) arm action no longer holds. Block 1

may also be temporarily moved to be out of reach of the arm. Only when there
are no interfering exogenous events, or the events do not for ever thwart the
robotic action, will the action eventually succeed.

TR and TeleoR are languages for deciding to invoke the C implemented arm
action because doing so will achieve some logically expressed sub-goal of a current
task goal, assuming the current percept beliefs accurately describe the world.
This sub-goal might be to have block 8 be directly on top of block 1, on route
to a task goal of building the block tower [5,3,8,1].

A simple two thread architecture for a TeleoR agent is depicted in Figure 1.
Notice that the percept thread’s update of the Belief Store, and the determining
of a new action response, are both atomic. Having determined an action response,
TeleoR evaluator thread will suspend until the Belief Store is updated. It is re-
activated immediately the Belief Store is updated to determine a new tuple As

of robotic actions. Any currently executing action not in As is terminated, any
new action is started, and other actions are allowed to continue perhaps with
modified parameter values - move(4) may become move(3).

In the next section we describe standard TeleoR syntax, which corresponds
to TR syntax, and we informally give the unusual operation semantics of TR and
standard TeleoR, which is formally defined in Chapter 5 of [7]. In the following
two sections we describe the features of TeleoR not in TR, first for programming
single task agents, and then for programming multi-tasking agents sharing and
interleaving the use of a set of robotic resources to achieve their different but
compatible goals. We conclude by mentioning related work, and our plans for
further extensions of TeleoR and our agent architecture.

The paper assumes familiarity with logic programming [19] and robot be-
havioural programming [16],[20].

Concurrent Task Programming of Robotic Agents in TeleoR 3

Belief Store
Dynamic Percept Facts

Fixed Knowledge Rules &
Facts

?
 TeleoR

Evaluator

?

Percepts
Handler

Sensor data
as percept
facts

Action control
messages

 Atomic
Updates Atomic re-evaluation

of rule guards after
each atomic update

Fig. 1. Simple Two Thread TeleoR Agent Architecture

2 Standard TeleoR procedure syntax and informal
operational semantics

A standard syntax TeleoR procedure, corresponding to a TR procedure, com-
prises a parameterised sequence of committed choice guarded action rules of the
form:

p(X1,..,Xk){
G1 ∼> A1
.

.

Gn ∼> An
}

Here the Gi are the guards, the Ai the actions, and the parameters X1,..,Xk can
appear in any guard or action. When a procedure is called the parameter values
partially instantiate the guarded rules which are tried in the order given.

A rule guard is a QuLog query to the agent’s Belief Store. QuLog is a flex-
ibly typed higher order logic+function+action rule programming language, see
Chapter 3 of [7]. Its dynamic facts constitute the agent’s changing beliefs. Its
rules and fixed facts comprise the agent’s knowledge, allowing higher level and
context dependent interpretation of the Belief Store dynamic facts.

A rule action is a tuple of robotic resource actions executed in parallel, e.g.
move(4.5),turn(left,0.5), or a single call to a TeleoR procedure, which may
be a recursive call.

Example procedure calling an auxiliary procedure Here are two pro-
cedures for trying to get a mobile robot close to something Th making use of

4 Clark & Robinson

independent move and turn actions, and a general see percept. We use the
Prolog convention that variables begin with an upper case letter or underscore.

get_close_to(Th){
see(Th,close,_) ∼> ()
see(Th,near,_) ∼> approach_until(close,Th,3.0,1.0)
see(Th,far,_) ∼> approach_until(near,Th,4.5,0.5)
true ∼> turn(right,0.5)
}

approach_until(Dist,Th,Fs,Ts){
see(Th,Dist,_) ∼> () % Th being approached is now Dist away
see(Th,_,centre) ∼> move(Fs)
see(Th,_,Dir) ∼> move(Fs),turn(Dir,Ts)
% Dir is left or right. move forward turning Dir to bring back into centre view.
}

The underscores in the see conditions of the first procedure, and the first rule of
the second procedure, indicate that the orientation of the seen Th is not relevant
for the action of the rule. Those in the last two rules of the second procedure
indicate that the distance is not relevant.

move has one argument, a numerical forward speed. turn has two arguments,
a direction of turn left, right or centre and a turn speed. The second call to
approach_until has a higher forward speed and a lower correctional turn speed
as Th is further away. So, there is more time to bring it back into centre view.

see is a three argument percept that identifies the thing seen from a small set
of alternative objects that a vision routine can recognise, it gives a qualitative
measure of its distance from the robot’s on-board camera, as close, near or far,
and indicates whether the seen thing is within, or to the left or right of a central
area of the camera’s field of view.

Guards as goals and goal regression The guards of a TeleoR procedure
call should lie on a sub-goal tree routed at the guard of the first rule. When
partially instantiated by the values of parameters X1,..,Xk of some call, this
guard instance G1

′ is the goal of the call.
The goal of get_close_to(bottle) is ∃Dir see(bottle,close,Dir). The goal

of approach_until(near,bottle,4.5,0.5) is ∃Dir see(bottle,near,Dir).
If an action Aj is started when its guard is the first inferable guard, and

continued whilst this is the case, it should be such that it will normally, eventually

result in progression up the sub-goal tree of guards. That is, eventually the guard
of an earlier rule Gi, i < j, should become the first inferable guard. Nilsson calls
Gj the regression of Gi through Aj .

As an example, let us consider the second procedure. Suppose for the call
approach_until(near,bottle,4.5,0.5) the last rule is the first rule with an in-
ferable guard. It must be the case that see(bottle,far,Dir), where Dir is left

or right, is the latest percept. If the distance argument was near the first rule

Concurrent Task Programming of Robotic Agents in TeleoR 5

of the procedure call would have been fired. If it was close, the first rule of
get_close_to(bootle) would have fired and the approach_until call would no
longer be active. If Dir=left, the action is move(4.5),turn(Dir,0.5). This is
move forward accompanied by a parallel turn. Providing the see percept in the
Belief Store continues to be see(bottle,far,left), this parallel pair of actions
will continue. It should normally eventually result in either the first rule firing,
because the latest received percept is see(bottle,near,Dir), for some Dir, or
in the second rule firing, because see(bottle,far,centre) is the latest received
percept.

The reader might like to satisfy themselves that this property holds for all
the rules of the two procedures. A similar program is discussed in more detail in
Chapter 2 of [7].

Covering all eventualities The partially instantiated guards of a procedure
call should also be such that for every Belief Store state in which the call may be
active there will be at least one inferable guard. Nilsson calls this the completeness

property of a procedure. This property holds for both our example procedures.
For the first it trivially holds since the last rule will always be fired if no earlier
rule can be fired. It holds for the second procedure given the two guard contexts
from which it is called in the first procedure, both of which require a see percept
to be in the Belief Store while the call is active.

Universal conditional plans Nilsson calls a complete TR procedure satisfying
the regression property a universal procedure for achieving its goal for any call.
It may also be viewed as a universal conditional plan for achieving its call goals.
These concepts also apply to TeleoR procedures.

Informal operational semantics for a standard TeleoR task A task is
launched by calling some procedure such that the task goal is implied by the
call’s goal. The first rule of the call with a guard instance inferable from the
current Belief Store is fired, resulting in a fully determined action. If this is a
procedure call, its first rule with an inferable guard is fired, and so on until a
rule with robotic actions is fired. Its actions are started.

When each new batch of percepts arrives, perhaps via a ROS [24] interface,
this process of finding and firing the first rule of each call with an inferable guard
is restarted. This is in order to determine as quickly as possible the appropriate
tuple of robotic actions response to the new percepts. Actions that were in the
last tuple of actions are allowed to continue, perhaps modified. Other actions of
the last tuple are stopped. New actions are started. For example, if the last tuple
of actions was move(4.5), turn(left,0.5) and the new tuple is just move(3), the
turn action is stopped and the move action argument is modified to 3.

Elasticity of complete procedure programs This reactive operational se-
mantics means that each TeleoR procedure is not only a universal conditional

6 Clark & Robinson

plan for its call goals, it is also a plan that recovers from setbacks and imme-
diately responds to opportunities. If, after a Belief Store update a higher rule of
some call PCall can unexpectedly be fired, perhaps because of a helping exoge-
nous event, that rule will be fired jumping upwards in the task’s sub-goal tree.
If instead a lower rule of PCall must be fired, a detected unexpected result of
some robotic action, or a detected result of a interfering exogenous event, this
means that the climb up the sub-goal tree of PCall’s rule guards must be re-
attempted from a different sub-goal of its call goal. There has been a setback
in the progress towards the task goal but the recovery response action should
normally and eventually result in its being achieved.

For our example procedures, for a task call get_close_to(bottle), suppose
that initially there is no see percept in the agent’s Belief Store. The last rule of
the call will be fired. Assuming there is at least one bottle in the environment
of the robot within range of its camera, before the robot has completed a 360
degree turn one of the first three rules should fire. If it is the first rule, the task
goal has been achieved. Its () empty action will cause the turn action to be
stopped.

Now suppose that the bottle is moved away from the robot and the percept
see(bottle,far,left) is received. Immediately the program tries to recover from
this outside interference by firing the call’s second rule. The third rule of the
auxiliary call approach until(near,bottle,4.5,0.5) will then be fired causing
the robot to move forward slowly, swerving slightly to the left. As it is doing
this, and before either the bottle is seen in centre view or as near, suppose the
bottle is moved back to be close to the robot and in view. The robot has been
helped. The first rule of get_close_to(bottle) will again be fired, with the result
that both the move and the turn actions will be terminated.

In fact, if it is only ever called from get_close_to(bottle), the first rule of
approach until auxiliary call will never be fired as its firing will always be pre-
empted by the firing of a different rule of the parent call. This is typical for an
auxiliary procedure. Unless it is the initial procedure call of some task, its goal
achieved first rule usually does not get fired. This is because the procedure has
been called to achieve the guard of a higher rule of its parent procedure call and
that higher rule will be fired as soon as the goal of the auxiliary procedure call
has been achieved, pre-empting the firing of its goal achieved rule.

There is a scenario in which the task goal will never be achieved. This will
happen if whenever the robot is about to get close to a bottle the bottle is either
moved out of sight or further away. The robot will doggedly chase the bottle
until its battery runs out.

From deliberation to reaction Although not the case for our example pro-
cedures, typically, initially called TeleoR procedures query the percept facts
through several levels of defined relations. Via procedure call actions, they even-
tually call a TeleoR procedure that directly queries the percept facts and mostly
has non-procedure call actions. So, for TeleoR and TR the interface between de-
liberation about what sub-plans to invoke to achieve a task goal, to the invoking

Concurrent Task Programming of Robotic Agents in TeleoR 7

of a sensor reactive behaviour to directly control robotic resources, is a sequence
of procedure calls.

3 Extra features of TeleoR for programming single task
agents

The TeleoR extension of TR was created in two stages. The first stage was to
make the language more suited to programming single task agents controlling
real robotic resources, perhaps via a ROS interface. A primary concern was to
have a compile time guarantee that actions sent out to robotic resources would
be fully determined and correctly typed. To this end TeleoR was made a typed
language, and the untyped Prolog like Belief Store inference language of TR, as
used in [22], was replaced by the typed higher order language QuLog. This has
a declarative core of logic + function rules and a top layer of imperative rules
for programming agent threads. Imperative rules can use query relations and
call functions but can also execute primitive actions for forking new threads,
for updating an agent’s Belief Store dynamic facts, and for inter-agent message
communication. The communication uses our independently developed external
communications server Pedro [27].

Type definitions and declarations A TeleoR procedure named p must be
given a type declaration of the form:

tel p(t1,..,tk) % declaration of the argument types of p

where each ti is a QuLog type expression.
In addition, the predicate names and argument types of the percept facts

must be declared, as well as the names and argument types of the robotic ac-
tions. The actions are also classified as discrete or durative. A discrete action
executes for a short time and cannot be prematurely terminated, for example a
bleep sound. A durative action can be stopped and modified before it naturally
terminates, and may not even naturally terminate. An example is move(S) which
makes a mobile robot move forwards more or less in a straight line at a speed
S. S can be changed causing the robot to speed up or slow down, and the action
continues unless explicitly stopped. For our two example procedures we need to
have:

def thing ::= bottle | basket | ..
% Enumerative type def. of the recognisable things
def dir ::= left | centre | right
def distance ::= close | near | far
percept see(thing,distance,dir) % Just one percept relation
durative move(num), turn(dir,num) % Two independent durative actions
tel get_close_to(thing) % Type declarations for the two TeleoR procs.
tel approach_until(distance,thing,num,num)

8 Clark & Robinson

The relations that query the percept facts, defined by rules as well as facts,
must have their argument types and modes of use declared. The modes of use
specify which arguments must be given as fully determined (ground) values, and
which can be underspecified, given as an unbound variable or a non-variable term
containing variables (a template term) when the relation definition is ‘called’.
Arguments that do not need to be ground in the relation call, but which will be
given a ground value if the call succeeds, are annotated with a preceding ?.

The TeleoR compiler uses the declared types of the parameters of a procedure,
which must always be given ground values when it is called, the argument types
for the percept relations, and the moded argument types for the program defined
and built-in relations, to check that:

– each rule guard only has correctly typed queries for percepts, rule defined
and primitive relations,

– all arguments moded as needing to be ground will have ground values when
a relation is queried by the left to right evaluation of guard conditions,

– all variables in the rule’s action will have correctly typed ground values if
the guard succeeds.

Communication and Belief Store update actions We mentioned earlier that
a QuLog action call sequence can be optionally added to the robotic action of a
TeleoR guarded action rule. The most useful QuLog primitive actions to use are
message send actions, and Belief Store update actions within an agent.

Messages are communicated between agents using our Pedro [27] commu-
nications server. This supports both peer-to-peer communication, in which the
recipient agent is identified by an email address style agent handle of the form
agent name@host name, and publish/subscribe communication. For the latter, the
destination of the recipient is given as pedro and the message is forwarded to
all agents that have a current subscription lodged with the Pedro server which
covers the notified message.

As a simple example of the use of a notification and a Belief Store update we
could change the first rule of our first example procedure to be

see(Th,close,_) ∼> () ++ update_count(Th,OldC); count(Th,OldC+1) to pedro

using the QuLog dynamic relation declaration and update action rule

dyn count_for(thing,nat)
count_for(bottle,0)
count_for(basket,0)
count_for(....)
....
act update_count(thing,?nat)
update_count(Th,C) :: count_for(Th,C) ∼>

forget count_for(Th,C) remember count_for(Th,C+1)
% Atomic update of count for fact for Th

Concurrent Task Programming of Robotic Agents in TeleoR 9

Each time the robot gets close to a thing it updates a count fact in the Belief Store

of how many times this has happened. It also sends out a notification of the new
count value which will be forwarded to every agent that has lodged a covering
subscription with the Pedro server of the of form count(_,N) :: integer(N).

With communication and Belief Store update actions a single task TeleoR

agent now has the three thread architecture of Figure 2. All incoming messages

Belief Store
Dynamic Percept Facts

Fixed Knowledge Rules &
Facts

?
 TeleoR

Evaluator

?

Percepts
Handler

Sensor data
as percept
facts

Action control
messages

 Atomic
Updates Atomic re-evaluation

of rule guards after
each atomic update

Message
Handler

 Atomic
Updates

Messages to
other agents/processes

Messages from/to
other agents/processes

 Atomic
Updates

Fig. 2. Single Task Three Thread TeleoR Agent Architecture

go to the message handling thread which must also lodge and maintain the
agent’s Pedro subscriptions. How this is done, and how the agent’s message
handling thread handles received messages is outside the scope of this paper. It
is explained in Chapter 3 of [7].

The TeleoR single task extensions of TR are more fully described in [6]. The
paper has an example of the use of communication between two mobile robots
co-operatively collecting bottles and delivering to a drop area. Communication
is used so that each robot knows how many bottles they have jointly collected,
stopping when a certain total is reached. It is also used to compensate for poor
vision. Another robot can be seen and its distance determined but its direction of
travel cannot be perceived. Communication allows the robots to avoid collisions
with minimal divergence from their current path.

The main focus of this paper is the TeleoR programming of a multi-tasking
agent where each task is a TeleoR evaluation thread within the agent. Each thread
can therefore access the same set of percepts and any facts that are remembered
by a task thread. This is because percepts and remembered facts are all stored
in the shared Belief Store. Any communication is via Belief Store updates.

10 Clark & Robinson

We shall just need to make use of two new forms of rule that have a different
semantics from the standard TR style rules with respect to how long its action
continues after a rule has been fired.

until rules: Guard until UCond ∼>Action

When the rule is fired with firing instance Guard′ of its guard, the corresponding
fully instantiated Action′ will continue whilst remains inferable from the changing
Belief Store, even if a higher rule of the procedure call could be fired, providing the
corresponding instance UCond′ of the until condition also remains inferable. As
soon as Guard′ is no longer inferable, or UCond′ is not inferable, Action′ will be
replaced by the action of another rule firing of the procedure call providing this
is still active. (The new rule firing could be a refiring of the same rule, with a
different inferable instance of the Guard). This form a rule is often used to allow
Action′ to over-achieve the guard of an earlier rule of the procedure call.

while rules: Guard while WCond ∼>Action

After the rule as been fired with inferred guard instance Guard′, the corresponding
instance WCond′ becomes an alternative to Guard′. Providing no earlier rule
becomes fireable after a Belief Store update, the corresponding action Action′ will
be continued if Guard′ or WCond′ remains inferable. WCond is not an alternative
firing condition. The rule is not equivalent to Guard or WCond ∼>Action.

while...until rules: Guard while WCond until UCond ∼>Action

This rule allows the Action′ action instance to continue even if a higher rule can
be fired, providing either Guard′ or WCond′ remains inferable. We shall not need
this form of rule for our example program.

4 Multi-tasking and task atomic procedures

The second phase of extension of Nilsson’s TR, and arguably the more important,
were changes to the language and the way a source program is analysed and
compiled. This was to allow the high level programming of multi-tasking agents
dynamically sharing the use of multiple robotic resources. This second extension
is the primary subject of this paper.

Special robotic resource type The resources that must be shared are iden-
tified by declaring a special resource type. The granularity of the interleaved
sharing of the resources is then specified by the declaration that certain proce-
dures that have resource arguments are task atomic. A task atomic procedure
call is a critical region for a task. The procedure call may be entered only if
all its resource arguments are free. Whilst the task is firing rules of that task
atomic call no other task can use any of its resources. The resources are released
immediately the task atomic call is no longer active, because of a different rule
firing in an ancestor call. This frees them for use by a waiting task, or for re-use
by the same task if no other task is waiting to use any of the freed resources.

Concurrent Task Programming of Robotic Agents in TeleoR 11

Avoiding deadlock To avoid deadlock, only the resource arguments of the
first task atomic call TaCall entered by a task T1 may be used throughout the
evaluation of TaCall. This is guaranteed by a compiler check that only the re-
source arguments of each task atomic procedure TaP are passed as arguments to
auxiliary procedure calls that may be made directly or indirectly from TaP . So
after having acquired the resource needs of its initial task atomic procedure call,
task T1 will not need to wait for extra resources in order to enter an inner task
atomic call. The compiler also makes sure that only the resource arguments of
TaCall are used as action parameters of any rule that might be fired by TaCall

and any auxiliary procedure calls it might make.
Deadlock could occur if an extra resource was needed by T1 which was being

used by a concurrent task T2, and T2 also required an extra resource being used
by T1. Breaking the deadlock by releasing resources when extra resources are
required would mean that the task atomic calls were not task atomic.

4.1 Architecture of a multi-tasking agent using multiple resources

An agent that can concurrently execute several tasks using multiple resources has
an architecture as depicted in Figure 3. All the tasks threads are active and on
each percepts update they re-compute their sequence of fired rules.

The co-ordination of the use of resources is done by the tasks themselves
using code generated by the TeleoR compiler for each task atomic procedure.
This atomically queries and updates special co-ordination facts in the agent’s
Belief Store. These record which tasks are currently running , i.e. inside a task
atomic call, and which tasks are currently waiting for resources, and when they
started waiting. Because the execution of threads is time shared the waiting
start times are different and define a wait queue order. Separate resources facts
record the resource use and resource needs of each task.

The running tasks respond to a Belief Store update in any order. If a running
task exits its initial task atomic call it typically suspends at the firing of a rule
that has a new task atomic call as its action, which could be a new call to the
procedure of the call it just exited. The compiled code for the task then updates
the task’s resources fact to the resource needs of the new call, forgets the task’s
running fact, and remembers a waiting fact for the task recording the current
time. This puts it at the end of the current queue of waiting tasks.

The waiting tasks respond to a Belief Store update in wait queue order. The
response to a Belief Store update by a waiting task may also result in the need to
enter a different task atomic call, with a corresponding update of its resources

fact, but not its waiting fact.

Transition from waiting to running preventing starvation After each
Belief Store update, after it has determined any change of resource needs, a
waiting task will immediately transition to a running task if none of its resource
needs are being used by a running task or is needed by a waiting task ahead of
it on the wait queue. (As all these other tasks have already responded to the

12 Clark & Robinson

latest Belief Store update their recorded resource needs are up to date.) If this
check succeeds, the waiting task immediately transitions to a running task by
forgetting its waiting fact and remembering a running fact. Its resources fact
is unchanged. Not allowing a waiting task to become a running tasks if a task
ahead of it on the wait queue has overlapping resource needs prevents starvation.

TR procs.

Sensor
data

Control
actions for
different
robotic
resources

BeliefStore

Dynamic
Facts

Percepts
Handler

TR Eval.
Threads

Task1
Using
R1,R2

Task2
Using

R3

Task3
Waiting for

R1,R3

Task4
Waiting for

R1,R5 Fixed
Facts &
Rules

?

Fig. 3. Multi-Task TeleoR Agent Architecture without Communication

Multi-resource multi-tasking example We exemplify TeleoR programming
of a multi-tasking multi-resource using agent with a program for an agent sharing
two robot arm resources between multiple concurrent configuration tasks. We use
the classic block tower configuration task. Two arms are needed as blocks are
distributed over three tables as in Figure 4, and each arm can only reach two
tables: a home table and a shared table between the two home tables.

A task to build a tower using blocks labelled [2,6,3,1] on table2, with block
1 directly on the table, can mostly just use arm2. However, when block 6 needs
to be fetched to be put on top of block 3, the task must first use arm1 to move
block 6 to the shared table, so arm2 can reach it to put it on top of 3 on table2.
So the arms must be dynamically acquired by tower building tasks.

Let us suppose the agent has a concurrent task to build tower [4,7,9,10]

on table1. (All the concurrent tasks must use different blocks.) That second
task can mostly use arm1. However, when 4 needs to be put on top of 7, arm2

must be used to first transfer this block to shared. Since the tasks are running
concurrently we cannot allow either task to just start using the other arm when
it has the need.

Stable sub-goals to prevent interference of compatible tasks We must
have a way for a task to occasionally release resources, but only if the task
has achieved a stable sub-goal of its task goal unless the attempt to achieve

Concurrent Task Programming of Robotic Agents in TeleoR 13

 1
 3
 2

 4
 7 5 9 10

6
 8

shared table1 table2

arm1 arm2

Fig. 4. Two Arm Multi Tower Building

that sub-goal has been aborted. The stable sub-goal concept was introduced by
Benson and Nilsson in [2] for use by a TR multi-tasking scheduler that alternated
evaluation of several tasks with no concurrent execution.

A stable sub-goal is one that will not be undone by another task when it
acquires the released resources. For tasks building towers of different blocks, an
un-stable sub-goal would be holding(arm1,3). If the arm1 resource is then ac-
quired by another task, block 3 will be put down somewhere to free the arm, un-
doing the sub-goal holding(arm1,3). A stable sub-goal would be on(3,1). When
achieved, the arm1 resource may be released because no other task will have need
to move block 3.

To avoid interference between tasks, the agent programmer must ensure that
only tasks with compatible goals are executed concurrently, and that every task
atomic procedure has call goals that are stable.

Avoiding arm clashes The ability by both arms to reach over to the shared
table means there is a risk that one concurrent task will try to use arm1 to fetch
a block from that table, at the same time as another task uses arm2 to put down
or pickup a block using the table. The arms may then clash. We can avoid this
by making the shared table a resource that must be acquired before a task can
access it, and by assuming that after putting a block down on the shared table
an arm immediately and automatically swings back to its home table if not being
used straight away to pick up a block from the shared table. For uniformity of
programming we make all three tables resources, even though the home tables
cannot be used independently of the arm for which they are the home table.

5 A TeleoR tower builder program for an agent controlling
two independent robotic arms

The percepts will be facts recording which blocks are directly on a table and
which blocks are directly on top of other blocks. We also need percepts record-
ing that an arm is holding a block and the table above which it is currently
positioned. We need a recursive sub tower definition that holds when each block
on a list of blocks is directly on the next block, except for the last block on the

14 Clark & Robinson

list which is directly on a named table. A tower is then a sub tower such that
the first block is clear - has no block on top of it.

We will have durative pickup, put on block and put on table actions that
name the arm and table resources that are to be used. For a put on table(Arm,Tab)

action we assume there will always be a space on Tab to put down the held block.

5.1 The tower building ontology

The key definitions we need are given below with explanatory comments.

def block ::= 1..16 % blocks are labelled 1 to 16
def arm ::= arm1 | arm2
def table ::= table1 | table2 | shared
def resource == arm || table
% Union def. of resource type. Must be defined when multi-tasking using multiple
% robotic resources. Its values are used as arguments of actions and
% task atom procedures to indicate the resources that they use.

percept on(block,block), holding(arm,block),
on_table(block,table), over(arm,table)

def durative ::= pickup(arm,block,table) | put_on_table(arm,table) |
put_on_block(arm,block,table)

rel tower(list(block),?table)
tower([Block,..Blocks],Tab) <=

not exists OnBlk on(OnBlk,Block) & % Block is not covered
sub_tower([Block,..Blocks],Tab)

rel sub_tower(list(block),?table)
sub_tower([Block],Tab) <= on_table(Block,Tab)
sub_tower([Block1,Block2,..Blocks],Tab) <=

on(Block1,Block2) &
sub_tower([Block2,..Blocks],Tab)

fun other(arm) -> arm
other(arm1) -> arm2
other(arm2) -> arm1

rel can_reach_block(arm,block,?table)
% arm can reach block if it is somewhere on table and arm can reach table.
can_reach_block(Arm,Block,Tab) <=

somewhere_on(Block,Tab) & can_reach_table(Arm,Tab)

rel can_reach_table(?arm,?table)
can_reach_table(_Arm,shared) % Either arm can reach shared table.
can_reach_table(arm1,table1) % Each arm can reach its home table.
can_reach_table(arm2,table2)

rel somewhere_on(block,?table)
% block is either directly on table or is inside a tower on table.
somewhere_on(Block,Tab) <= on_table(Block,Tab)
somewhere_on(Block,Tab) <=

on(Block,UBlock) & somewhere_on(UBlock,Tab)

Concurrent Task Programming of Robotic Agents in TeleoR 15

The pattern [Block1,Block2,..Blocks] denotes a list with first two elements
Block1 and Block2 with Blocks being the list of remaining elements. As OnBlk

only appears in one condition, not exists OnBlk on(OnBlk,Block) can simplified
to not on(,Block) with anonymous variable implicitly existentially quantified
inside the negation.

The five defined relations can all be used to check or to find the table argu-
ment. This test or generate flexibility is indicated by the ?table moded type in
their type declarations.

5.2 The makeTower procedure

The task start procedure is makeTower defined below. It has three arguments. The
second is the list of blocks to be configured as a tower. The first is the primary
arm to be used, and the third is that arm’s home table on which the tower is to
be built. The program assumes that only blocks that are located somewhere on
one of the three tables will be configured as a tower. We also give three of the
auxiliary procedures that are called.

task_start makeTower(arm,list(block),table)
makeTower(Arm,Blocks,Tab){

tower(Blocks,Tab) ∼> () % Call goal achieved, do nothing

sub_tower(Blocks,Tab) & Blocks=[Blk,..Blks]
until not holding(Arm,_) ∼>

makeClear(Blk,Tab)
% Blk, the first block of Blocks, must be covered. Make it clear. until condition
% prevents firing of rule 1 until block directly on Blk has been put down on Tab

Blocks=[Blk] ∼> moveAcrossToTable(Arm,Blk,Tab)
% Should eventually achieve guard of rule 1

Blocks=[Blk1,Blk2,..Blks] & tower([Blk2,..Blks],Tab) ∼>
moveAcrossToBlock(Arm,Blk1,Blk2,Tab)

% Move of Blk1 to be on top of Blk2 should eventually achieve
% guard of rule 1. Both arms and the shared table may need to be used.

Blocks=[_,..Blks] ∼> makeTower(Arm,Blks,Tab)
% Recursive call action should eventually achieve guard of rule above.
}

tel moveAcrossToTable(arm,block,table)
moveAcrossToTable(Arm,Blk,Tab){

on_table(Blk,Tab) ∼> ()

% Two rules below are while rules as their guards will not be inferable
% after Blk is picked up, but while condition holding(Arm,Blk) will be.
can_reach_block(Arm,Blk,BlkTab) & not over(other(Arm),BlkTab)

while holding(Arm,Blk) ∼>
oneArmMoveToTable(Arm,Blk,BlkTab,Tab)

% BlkTab is Arm’s home table or shared. The move to Tab can be
% done task atomically using resources Arm, Tab and possibly shared.

16 Clark & Robinson

OArm=other(Arm) & can_reach_block(OArm,Blk,BlkTab) &
not over(Arm,shared)

while holding(OArm,Blk) ∼>
oneArmMoveToTable(OArm,Blk,BlkTab,shared)

% BlkTab is other(Arm)’s home table. Blk must first be task
% atomically moved to shared using resources other(Arm), BlkTab, shared.

true ∼> ()
% This rule will fire if the arm that will not be used to pick up Blk is perceived
% as being over shared until it has automatically moved back to its home table.
}

tel moveAcrossToBlock(arm,block,table,table)
% Like moveAcrossToTable using oneArmMoveToTable, oneArmMoveToBlock

task_atomic oneArmMoveToTable(arm,block,table,table)
% The arm and possibly two tables, the arm’s home table and shared, need
% to be available resources for this task before the procedure is entered.
oneArmMoveToTable(Arm,Blk,BlkTab,Tab){

on_table(Blk,Tab) ∼> ()

holding(Arm,Blk) ∼> put_on_table(Arm,Tab)

not on(_,Blk) ∼> pickup(Arm,Blk,BlkTab)

true ∼> makeClear(Arm,Blk,BlkTab)
}

tel makeClear(arm,block,table)
% makeClear and oneArmMoveToTable are mutually recursive.
makeClear(Arm,Blk,BlkTab){

not on(_,Blk) ∼> ()

on(OthrBlk,Blk) until not holding(Arm,OthrBlk) ∼>
oneArmMoveToTable(Arm,OthrBlk,BlkTab,BlkTab)

% Do not fire rule 1 until OthrBlk has been put down.
}

task_atomic oneArmMoveToBlock(arm,block,table,block,table)
% Similar rules to the other task atomic procedure

The above makeTower procedure has the same number of rules as Nilsson’s one
arm tower builder given in [22]. The guards of the first, third and fourth rules
identify the table Tab on which the tower or sub-tower is located.

Rules 3 and 4 have calls to procedures moveAcrossToTable, moveAcrossToBlock
respectively, both of which may need to use both arms. If the block to be moved
by a call to moveAcrossToTable is located on the other arm’s home table, it will
use two task atomic oneArmMoveToTable calls. The first is to transfer Blk from
wherever it is located on BlkTab to shared, using other(Arm). The second is to
transfer it from shared to Tab, using Arm.

So, when Blk has been placed on shared, another task can acquire shared

and/or other(Arm) to do some task atomic move needed for the construction
of its tower. If this other task needs shared and Arm, and other(Arm) is not

Concurrent Task Programming of Robotic Agents in TeleoR 17

acquired by a task, it will automatically move back to be over its home table.
But other(Arm) could be acquired by a task just needing to move a block on
other(Arm)’s home table. The result would be parallel use of the two arms.

We leave the reader to check that all the procedures are universal procedures
for their goals. As with the mobile robot TeleoR procedures, these procedures will
automatically recover from hindrance and take immediate advantage of help.

As an example of recovery from hindrance, suppose that a tower [2,7,3,1]
is being built on table1 and [7,3,1] has already been built on the table. Task
makeTower(arm1,[2,7,3,1],table1) will call moveAcrossToBlock(arm1,2,7,table1)
to move 2 from where ever it may be located to be on top of block 7 by fir-
ing its 4th rule. Suppose block 2 is located on shared. The next call will be
oneArmMoveToBlock(arm1,2,shared,7,table1), a task atomic call. The task may
now have to suspend waiting for its turn to use the three resources arm1, shared,
table1. Whilst it is suspended suppose that someone moves block 2 onto table2.
Immediately the moveAcrossToBlock(arm1,2,7,table1) call will switch to firing
its third rule and want to enter the call oneArmMoveToTable(arm2,2,shared), a
different task atomic call. As this requires different resources, arm2 and shared,
the task may be able to acquire them straight away to put block 2 back onto
shared.

Regarding taking advantage of help, suppose that whilst waiting to enter
the call oneArmMoveToBlock(arm1,2,shared,7,table1) an outside party picks up
block 2 and puts it on top of 7. Immediately the next batch of percepts arrives
recording the new position of block 2, the initial makeTower call will fire its rule
1, task goal achieved.

TeleoR Software and Demo Programs The QuLog+TeleoR software, its doc-
umentation, demo programs and Python robot simulations can be downloaded
from http://staff.itee.uq.edu.au/pjr/HomePages/QulogHome.html. Videos show-
ing TeleoR being used to control Python simulated robot arms building block
towers, and a Baxter robot using both its arms to build real block towers, are
available at https://www.doc.ic.ac.uk/∼klc. In each case the controlling agent
is both helped and hindered. It uses the arms in parallel whenever this can be
done without risk of the ams clashing.

6 Related Work

Benson and Nilsson [2] describe a multi-tasking architecture in which TR proce-
dures are represented as trees with the regressions represented by branches in
the tree. There is a fork in the tree when there are different ways of achieving
the guard sub-goal at the fork. Tasks are run one at a time until they achieve a
stable sub-goal of their task goal. There is no parallel use of resources.

A TR variant for control of a mid-sized robot for RoboCup competitions is
described in [12]. Rules can have multiple robotic actions to be executed in
parallel but no procedure call actions.

18 Clark & Robinson

GRUE [11] is a TR architecture especially developed for programming characters
in computer games. There is also the concept of a resource, although not in the
sense that we use that term. A GRUE resource is not a game character, which
would be a resource as we use the term, but an artefact such as money or food
that can be acquired by a game character.

Choi [4] presents a concurrent extension of the logic based reactive skill de-
scription language Icarus [5]. It uses constraints to allocate the resources to
tasks. Kinny [17] describes an abstract multi-tasking agent programming lan-
guage with unordered event triggered rules with logic queries as guards. There
is concurrent task execution but no independently useable resources.

GOAL[14] is an agent programming framework that can use a variety of logical
representations for the beliefs and knowledge of the agent, although Prolog is
normally used. A key component of the agent state is a set of goals that are
conjunctions of beliefs that the agent should achieve. There is no concurrency
but the achievement of several goals can be serially interleaved.

ConGolog [10] is a concurrent agent programming language based on the situ-
ation calculus. Execution can interleave inference selection of actions from a non-
deterministic program with additional planing generation of actions. ReadyLog

[9] is another variant of GoLog that has program constructs for real time reactive
control. It has been used to control robocup soccer playing robots.

Soar is a general purpose agent architecture with its roots in cognitive psy-
chology. It is a very mature system with many man years of development effort.
It was the first cognitive agent architecture to be used for robotic control [13].

FLUX [28], LPS [18] and 2APL [8] are logic based approaches to programming sin-
gle task software agents that can be used for robotic agents. None offer compile
time guarantees of type and mode safe inference, and of type correct and ground
actions. Others [26], [1] acknowledge the need for type safe agent programming
languages. GRL [15] and FROB [23] are typed functional robot programming lan-
guages.

A comprehensive survey of extensions and applications of the teleo-reactive
paradigm is given in [21].

7 Future Work

Achieve goal actions and event triggered tasks The main planned fu-
ture work is the incorporation of the concepts from the BDI concept language
AgentSpeak(L)[25], and its implementation in Jason [3]. We will extend TeleoR

rules so that they can have achieve Goal actions in addition to direct procedure
calls and tuples of robotic actions. An extra non-deterministic top layer of option
selection knowledge rules, perhaps of the form

for Goal try ProcCall <= BSQuery

can then used to find alternative TeleoR procedure calls that will normally, even-
tually achieve their call goal which is or implies instance Goal′ of Goal, where the
fired TeleoR rule action is achieve Goal′. The corresponding instance BSQuery′ of

Concurrent Task Programming of Robotic Agents in TeleoR 19

the rule’s pre-condition is an extra Belief Store query that must also succeed in
order for the instance ProcCall′′, determined by the match againts Goal′ and a
successful BSQuery′ evaluation, to be tried. An extended operational semantics
for TeleoR could then allow failure of such ProcCalls with backtracking to see if
an alternative procedure call might be used for the achieve Goal′ action.

As in Jason, these same selection rules can be used when the agent is asked
to achieve a goal by another agent. They enable inter-agent task requests at the
level of a common descriptive ontology for the environment, and do not require
other agents or humans to know the names and argument types of the task
procedures that can be executed by each agent.

We will also add similar rules for starting tasks whenever a significant Belief
Store update occurs. These rules generalise the Jason rules for responding to the
addition of removal of a single belief, and might have the form

on Update do ProcCall <= BSQuery

Update is a list of ++p, --q terms where p and q are names of Belief Store dynamic
relations. They denote update events, ++p being the event of remembering a new
fact for p, --q being the event of forgetting a fact for q. BSQuery will be repeatedly
tried immediately after one or more of these update events has occurred. If it
succeeds, the corresponding instance of ProcCall will be launched as a new task.

Background threads and task scheduling We believe that adding back-
ground activity QuLog threads that can learn about the environment, perhaps
to construct and/or update a topological map, generalise or abduce beliefs, or
discover and repair belief inconsistencies, will enhance the cognitive ability of
our robotic agents. One such thread could also respond to goal requests and
Belief Store updates that trigger tasks.

We will also explore the usefulness of priority scheduling of tasks without
task starvation, and the use of knowledge rules to determine when tasks should
be suspended and resumed, and when they should be terminated.

References

1. M. Baldoni, C. Baroglio, and F. Capuzzimati. Typing Multi-Agent Systems via
Commitments. In Proc. of the 2nd Int. Workshop on Engineering Multi-Agent
Systems (EMAS 2014), 2014.

2. S. Benson and N. Nilsson. Reacting planning and learning in an autonomous agent.
In K. Furukawa, D. Michie, and S. Muggleton, editors, Machine Intelligence 14.
Oxford University Press, 1995.

3. R. H. Bordini, J. F. Hubner, and M. Wooldridge. Programming multi-agent systems
in AgentSpeak using Jason. Wiley-Interscience, 2007.

4. D. Choi. Concurrent execution in a cognitive architecture. In Proceedings of the
31st Annual Meeting of the Cognitive Science Society. Amsterdam, Netherlands:
Cognitive Science Society, 2009.

5. D. Choi and P. Langley. The Icarus Cognitive Architecture. Cognitive Systems
Research, 2017.

20 Clark & Robinson

6. K. L. Clark and P. J. Robinson. Robotic Agent Programming in TeleoR. In
Proceedings of International Conference of Robotics and Automation. IEEE, 2015.

7. K. L. Clark and P. J. Robinson. Programming Communicating Robotic Agents: A
Multi-tasking Teleo-Reactive Approach. Springer, 2018. To appear, first 5 chapters
on: teleoreactiveprograms.net.

8. M. Destani. 2APL: A practical agent programming language. Autonomous Agents
and Multi-agent Systems, 16:214–248, 2008.

9. A. Ferrein and G. Lakemeyer. Logic-based robot control in highly dynamic do-
mains. Robotics and Autonomous Systems, 56:980–991, 2008.

10. G. Giacomo, Y. Lesperance, and H. Levesque. ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence, 1–2(121):109–
169, 2000.

11. E. Gordon and B. Logan. A goal processing architecture for game agents. In
Proceedings of AAMAS, 2003.

12. G. Gubisch, G. Steinbauer, M. Weiglhofer, and F. Wotawa. A teleo-reactive ar-
chitecture for fast reactive and robust control of mobile robots. New Frontiers in
Applied Artificial Intelligence, pages 541–550, 2008.

13. S. Hanford, O. Janrathitikarn, and L. N. Long. Control of mobile robots using the
Soar cognitive architecture. Journal of Aerospace Computing, Information, and
Communication, 6(2):69–91, 2009.

14. K. V. Hindriks. Programming Rational Agents in GOAL. In Multi-Agent Pro-
gramming: Languages and Tools and Applications, pages 119–157. Springer, 2009.

15. I. Horswill. Functional programming of behavior-based systems. Autonomous
Robots, 2000.

16. J. Jones and D. Roth. Robot programming: a practical guide to behavior-based
robotics. McGraw-Hill, 2004.

17. D. Kinny. The ψ calculus: An algebraic agent language. In Intelligent Agents VII.
Springer, 2002.

18. R. Kowalski and F. Sadri. Teleo-reactive abductive logic programs. In A. Artikis,
R. Craven, N. Kesim, B. Sadighi, and K. Stathis, editors, Festschrift for Marek
Sergot. Springer, 2012.

19. H. Levesque. Thinking as Computation. MIT Press, 2012.
20. M. J. Mataric. The Robotics Primer. MIT Press, 2007.
21. J. L. Morales, P. Sanchez, and D. Alonso. A systematic literature review of the

Teleo-Reactive paradigm. Artificial Intelligence Review, 20(1), 2012.
22. N. J. Nilsson. Teleo-Reactive programs and the triple-tower architecture. Electronic

Transactions on Artificial Intelligence, 5:99–110, 2001.
23. J. Peterson, G. Hager, and P. Hudak. Language for declarative robot programming.

In International Conference on Robotics and Automation, 1999.
24. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler, and A. Ng. ROS: an open-source Robot Operating System, 2009.
At:www.robotics.stanford.edu/∼ang/papers/icraoss09-ROS.pdf.

25. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In Seventh European Workshop on Modelling Autonomous Agents in a
Multi-AgentWorld, LNAI, pages 42–55. Springer, 1996.

26. A. Ricci and A. Santi. Typing Multi-agent programs in simpAL. In Promas,
volume 7837 of LNAI. Springer, 2013.

27. P. J. Robinson and K. L. Clark. Pedro: A publish/subscribe server using Prolog
technology. Software Practice and Experience, 40(4):313–329, 2010.

28. M. Thielscher. Reasoning Robots: The Art and Science of Programming Robotic
Agents. Springer-Verlag, 2005.

