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Kivonat

A piacon jelenleg elérhető kvantumalgoritmus-futtató keretrendszerek (IBM Qiskit, Google
Cirq) a számításaikat a qubitek számában exponenciális méretű unitér mátrixokkal való-
sítják meg. Ennek következménye, hogy igen kis méretű bemenetek esetén is meglehetősen
nagy mennyiségű memóriára van szükségük. Bár a meglévő rendszerek használnak bizonyos
optimalizációs módszereket, ezek sokszor nem tudnak nagyságrendi javulást eredményezni
(például a ritka mátrixos tárolási mód) vagy csak nagyon speciális algoritmusokra alkal-
mazhatók (Clifford-kapuk). A gyakorlatban ez azt jelenti, hogy az óriáscégekkel szemben
egy átlagos felhasználó sok algoritmus esetében még viszonylag kis méretű bemeneteken
sem tud ésszerű keretek között kísérletezni, az túl nagy hardverköltséggel járna.

A hardverszükséglet csökkenthető olyan algoritmussal, amely memóriát spórol, meg-
növekedett futásidőért cserébe. Például az unitér mátrixok éppen szükséges részmátrixai
futás közben "on-the-fly" kiszámíthatóak, vagy akár a mátrixműveletek teljes egészükben
helyettesíthetőek az azokkal ekvivalens hagyományos algoritmusokkal. Bár a korábban
említett, a piacon elterjedt futtató keretrendszerek nyílt forráskódúak, sajnos az architek-
túrájuk szerves részét képezi az unitér mátrix tárolása, így azok bővítése ilyen irányban
nem megoldható.

Dolgozatomban ezért egy ilyen memóriaoptimalizációs módszertan kidolgozásával és
az ahhoz kapcsolódó, általános felhasználási körű kvantumalgoritmus-szimuláló keretrend-
szer megvalósításával foglalkozom. Bemutatom azokat a klasszikus algoritmus és architek-
túra tervezési lépéseket, melyek a rendszer alapját képezik, továbbá azt, hogy a keret-
rendszert hogyan lehet kvantumalgoritmusokkal kapcsolatos kutatások során felhasználni.
A keretrendszer célja elsősorban az, hogy a kisebb erőforrással rendelkező felhasználók
számára megnövelje a gyakorlati tesztek futtathatóságának a korlátait és ezzel elősegítse
az elméleti kutatómunkát. Ennek megfelelően az elkészült rendszert és a hozzá tartozó
dokumentációt mindenki számára elérhetővé teszem open-source licenszelt formában az
interneten.
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Abstract

The quantum algorithm execution frameworks currently available on the market (IBM
Qiskit, Google Cirq) implement their computations using unitary matrices of exponential
size in the number of qubits. Consequently, they require large amounts of memory, even
for small inputs. Although existing frameworks use some optimization methods, these
often cannot provide improvements of an order of magnitude (e.g. sparse matrix storage
mode) or are only applicable in special cases (Clifford gates). In practice, in contrast to
a large company, the average user cannot experiment within reasonable limits, for many
algorithms, even with relatively small inputs, as this would incur outstanding hardware
costs.
Algorithms that save memory in exchange for increased runtime can reduce these hardware
expenses. For example, any submatrix of the unitary matrix can be computed on-the-fly
during runtime, or the equivalent conventional algorithm can replace the unitary matrix
operation. Although the currently available frameworks are open-source, they store the
unitary matrices in memory as an integral part of their architecture, making it impossible
to incorporate these memory optimization techniques.
In my paper, I focus on developing these memory optimization methodologies and imple-
menting them in a general-purpose quantum algorithm simulation framework. I present
the classical algorithm and architecture design steps that form the basis of the system and
demonstrate how this system can be used in quantum algorithm research. The framework
is primarily intended to be used in a resource-constrained environment to enable running
tests on a larger number of qubits, thus facilitating theoretical research. Accordingly, I will
make the system and its documentation available to everyone in an open-source licensed
form.
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Chapter 1

Introduction

In this chapter I introduce the concept of Quantum Turing-machines and the so-called P
versus NP problem, in particular its relations to bioinformatical problems, such as protein
folding.

1.1 Quantum and classical computers

Originally the idea of a quantum computer was suggested by Richard Feynman in a 1982
article[9], where he explains that currently existing classical computers are ill-equipped to
deal with the complexity of the calculations required to simulate quantum physics. His
suggestion was to replace the current hardware standard with one, which works based on
quantum physical phenomena, thus giving it the capability to simulate the very thing it
is based on.
The current computational model we use for classical computers is called the Turing-
machine. These new types of computers are so different from classical ones that they
run based on a completely different set of rules. Following the work of many computer
scientists (Benioff[3], Deutsch[7], and Bernstein and Vazirani[5]), the computational model
for Quantum computers was mathematically defined in the late 1980s: the Quantum
Turing machine.
In the classical world, on the Turing machine, mathematicians and computer scientists
have been working on coming up with fast solutions to all kinds of algorithmic problems.
Many of these problems have important real-life applications, but nobody has been able
to come up with a fast solution to them. A subcategory of these unsolved problems is the
ones where at least we are able to verify in a fast manner if a solution is correct, these are
called the ’NP’ problems. A simple way to use the verifier algorithm to solve a problem is
to look at all of the possible solutions (the domain of the problem) and verify every one
of them, until we find a correct solution. This runs in O(N) linear time relative to the
size of the problem’s domain. The question is, can we do something faster? This is one of
the famous Millennium Prize Problems set by the Clay Mathematics Institute a hundred
years ago, the P versus NP problem. This problem has eluded computer scientists for a
century.
In the quantum world, on the Quantum Turing machine, there exists a better method for
the classical linear verifier search, which can do it in O(

√
N) time, relative to the size of

the problem’s domain. This algorithm is called Grover’s search. It has also been proven
by Bennett, Bernstein, Brassard, and Vazirani, that this is asymptotically tight[4].
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1.2 Application of quantum algorithms in bioinformatics

An interesting area for algorithmic research is bioinformatics. Many problems here have
significant impact on our everyday lives since discoveries in this area can help us solve
many of today’s major global problems, for example, aiding the creation of more effective
medical treatments, advancing our understanding of genetic diseases, developing resistant
crops to tackle a global food crisis or inventing novel technologies to reduce and revert
environmental pollution. I am particularly interested in computer-aided drug design,
where problems such as protein folding[6] and molecular docking[1] turn out to be NP-
hard ones, which means that despite decades of effort, we have yet to come up with efficient
solutions to them using classical computers.
In the past year I have been researching protein folding and how to implement it on a
general-purpose quantum computer. I have ran into a significant problem: I was unable to
run any experiments of usable size, mainly due to limitations in memory. Due to quantum
parallelism, the memory requirements of running a quantum calculation simulation are
super-exponential. In particular, there is one component in Qiskit, which seemed to come
back in any form of model I have tried to implement: a quantum gate for taking the sum
of n qubits, called the WeightedAdder class.
This component came to my attention, because a natural way to encode protein structures
is by creating a 2D or 3D grid and laying the aminoacid chain down on it[8], as seen below.

Figure 1.1: HP model of protein folding[8]

From a single vertex in a 3D grid, we can step in 4 or 6 directions: up, down, left, right
and inwards and outwards in the 3D case. We can encode these naturally, using one-hot
encoding, by introducing 6 bits of information. If we assume that the chain starts in the
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origin, then we can encode a chain shape by giving the directions of the (n − 1) steps it
takes.
A chain like this is viable, when it doesn’t cross over itself. A chain’s optimality is assessed
by counting how many pairs of various aminoacids are neighbouring each other. To answer
both of these questions, we must be able to calculate relative distances between any two
points of the chain. Using the directinal one-hot encoding model, these questions can be
answered by taking the sum of some qubits.
Using these operations, we can create a quantum oracle, that assesses the optimality of
a particular chain and use Grover’s quantum search algorithm to find the best possible
solution.
Unfortunately, while Qiskit itself is open-source, it’s architecture (similarly to other quan-
tum computing frameworks) is designed from the core to store the matrices of various
operations (such as the WeightedAdder operation) in its memory and retrieve this infor-
mation during simulation. This means that I am unable to correct this single operation
in Qiskit.

1.3 Contents of this dissertation

In order to reduce the memory requirements for any quantum computation simulation,
I have to be able to reduce storing large operation matrices in memory whenever I can.
This requires a completely different architecture.
The scope of this report is designing and implementing this architecture, particularly
solving the problem with WeightedAdder. While the original motivation for the focus on
this specific component comes from protein folding, bioinformatics is out of scope for this
paper. Instead, I will be taking a much simpler problem, a generic version of Sudoku,
which also requires the WeightedAdder component and Grover-search to be solved.
The remaining chapters are structured as follows: In Chapter 2 I introduce Grover’s search
algorithm framework and solve a generalized version of the Sudoku puzzle with it. I iterate
over the necessary components from this solution, the particular operators needed for the
oracle and the amplitude amplification technique’s implementation. In Chapter 3 I lay
down the mathematical foundations for a quantum simulator framework’s implementation,
particularly the solution to applying a quantum operator to a subset of the registers in the
system, then I introduce the quantum operators and their implementations in my system.
Finally, I describe the architectural design patterns used in the system. In Chapter 4 I
summarize the results of this paper and lay down my plans for the future.
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Chapter 2

Grover’s algorithm

Grover’s search algorithm[13] is a quantum algorithm framework, that takes a user-defined
solution verifier algorithm (the oracle) and turns it into a Θ(

√
N)[4] solver. This provides

a quadratic speedup over the classical brute force equivalent.

2.1 Introduction to Grover’s search algorithm framework

Many sources call this a database search algorithm, since in Grover’s original paper it
was described as such. However, the ’database’ here is an abstract entity, that represents
the entire domain of the problem, while the so-called ’marked’ elements are the correct
solutions in this domain, for which the oracle would return a ’YES’ answer. Using the
terms ’problem domain’ instead of ’database’, ’verifier algorithm’ insead of ’oracle’ and
’solutions’ instead of ’marked elements’ makes Grover’s importance and connection to the
P versus NP problem clearer and the details of the algorithm easier to understand.
Another common description of Grover’s search algorithm is that it can solve ’unstruc-
tured search problems’. What they mean by this is that the algorithm doesn’t construct
a solution by iterating over partial solutions or improving a non-solution step-by-step.
Constrast this with for example how Prim’s minimum spanning tree algorithm iterates on
partial solutions by connecting the remaining vertices of the graph one at a time. This
requires knowledge of the graph and knowledge of how to build a minimal spanning tree
one vertex at a time.
Grover doesn’t need to know the structure of the original problem, the relationship between
partial solutions or how to improve non-solutions. It only needs to know how to verify a
solution. It starts by taking all of the entities from the problem’s domain with uniform
distribution.
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Figure 2.1: Grover starts out with the uniform distribution[11]

Then, it uses the verifier algorithm in a process to manipulate their probabilities until the
correct entities’ probabilities are very high, while the incorrect entities’ probabilities are
very low. This process is called amplitude amplification.

Figure 2.2: Grover amplifies the amplitude(s) of the correct solution(s)[11]

Finally, it samples from this probability distribution, which results in a correct solution
entity with a high chance.
Working with a probability distribution over an exponentially large set of entities is only
possible in a memory-efficient way on a quantum computer, thanks to the quantum phys-
ical nature of qubits.
A register of classical bits can only represent a single entity (encoded as a binary number),
we would need separate registers to represent a set and we can only operate on the entire
set in a linear fashion, one register at a time. In contrast, a register of quantum bits, or
’qubits’ itself can represent a set of entities (a set of binary numbers) from the domain
using the quantum physical phenomenon of superposition with a probability distribution
over these elements.
The manipulation of these probabilities happens using quantum operators or gates, which
are the basis of all quantum algorithms on gated general-purpose quantum computers.
However, we do not have access to this probability distribution or the high probability
elements in it. The only thing we can do is read the register, which is an operation that
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samples a single entity from the current probability distribution in the register, destroying
it in the process. We are unable to ’iterate’ the contents of the register or know what the
probability of the resulting element was from the sampling.
This is the reason why quantum parallelism is not as trivial as the name suggests: while
we can run the computation itself in parallel, gaining access to the information that we
stored in the register is difficult and destructive. Amplitude amplification is a technique
that we use to fix this problem, however it requires O(

√
N) time, where N is the size of

the problem’s domain, where N = 2n if the quantum register has n qubits.
One of the most important property of quantum registers is that they can even represent
probability distributions, even ones where the individual qubits are not independent.
This is called quantum entanglement.
The simplest forms of quantum entanglement are Bell states, which can occur between
two qubits. In one of these Bell states, the probability distribution of our 2 qubit quantum
registers is "00" with 50% probability and "11" with 50%. Reading the contents of just
the first qubit will result in a 50% chance of reading a 0 and a 50% chance of reading a 1.
However, once we know the result from the first qubit, we can be 100% sure, that when
we sample the second qubit, we will get the same number as a result from it.

2.2 Showcasing the algorithm on a simple task

In the original Sudoku puzzle, we have a (32 · 32) table, that must be filled with numbers
between 1 and 9. A correct solution to a puzzle is where each row, column and distinct
(3 · 3) square has unique numbers.

(a) Empty (b) Solved

Figure 2.3: Sudoku puzzle

In order demonstrate memory usage scaling, I generalize this Sudoku to a table of size
(n2 · n2), where each row, column and (n · n) distinct subsquare of the table must be a
unique number from the [1, n2] interval.
The only solution for n = 1 is trivial.

6



(a) Empty (b) Solved

Figure 2.4: Sudoku puzzle (n = 1)

An example solution for n = 2.

(a) Empty (b) Solved

Figure 2.5: Sudoku puzzle (n = 2)

n = 3 is normal Sudoku.
And an example for n = 4 is the following.

(a) Empty (b) Solved

Figure 2.6: Sudoku puzzle (n = 4)

2.3 Designing a quantum solver for the Sudoku puzzle

In this section I first define the Sudoku problem’s representation in a binary form, then
design the verifier algorithm (quantum oracle) for the puzzle, finally I go over the remaining
parts of Grover’s framework and the amplitude amplification technique it uses.
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2.3.1 Register definitions

The first step is to encode the problem using quantum registers. The size-n Sudoku table
has n2 rows and columns. Every cell in it is represented by a quantum register:

cell[i][j] = |0 . . . 010 . . . 0⟩ , ∀ (0 ≤ i, j < n2).

The length (qubits) of the register is n2 and the number in the cell is represented using one-
hot encoding. One-hot encoding means, that a number between 0 and b − 1 is represented
by a b bit register, each number corresponding to a single bit being 1 in the register:

cell[i][j][k] =
{

|1⟩ cell(i,j)’s number is (k + 1)
|0⟩ otherwise

, ∀( 0 ≤ i, j, k < n2).

In Qiskit, once the qubit registers are added to a circuit, they can be indexed using a
single dimensional index, such as:

cell[i][j][k] = cell[i · n4 + j · n2 + k], ∀ (0 ≤ i, j, k < n2).

2.3.2 Oracle operator

In this section I define the verification algorithm used by Grover’s framework. This is
done by creating constraints for the Sudoku cells’ registers.

2.3.2.1 Constraint definitions

I will verify if a solution is correct, using uniqueness constraints. These constraints
will all be using the same scheme, which I define as UNIQUE_ONE([x0, . . . , xn−1])
constraint, where [x0, . . . , xn−1] is a list of single-dimensional indexes. If
a UNIQUE_ONE([x0, . . . , xn−1]) constraint is applied, the qubits with indexes
[x0, . . . , xn−1] must contain exactly one |1⟩.
The verifications are defined as follows.

Cells shall be one-hot encoded

Every (i, j) row and column index pair corresponds to a cell. The qubits in this cells,
indexed by k shall have a single |1⟩ among them:

UNIQUE_ONE([i · n4 + j · n2 + k]0≤k<n2), ∀0 ≤ i, j < n2.

Numbers in each row shall be unique

8



For every i row and every k one-hot encoded number position, the k number should be
present in the ith row exactly once, indexed by the j columns:

UNIQUE_ONE([i · n4 + j · n2 + k]0≤j<n2), ∀0 ≤ i, k < n2.

Numbers in each column shall be unique

For every j column and every k one-hot encoded number position, the k number should
be present in the jth column exactly once, indexed by the i rows:

UNIQUE_ONE([i · n4 + j · n2 + k]0≤i<n2), ∀0 ≤ j, k < n2.

Numbers in each square shall be unique

In order to create this constraint, the row and column indexes must be taken apart into
an inner and outer index:

i = iouter · n + iinner, 0 ≤ iouter, iinner < n,

j = jouter · n + jinner, 0 ≤ jouter, jinner < n.

This way iouter and jouter index the squares the constraint is applied to, while iinner and
jinner index their internal cells.
Then, for every square, indexed by the (iouter, jouter) pair and every k one-hot encoded
number position, the k number should be present in the (iouter, jouter) square exactly once,
indexed by the (iinner, jinner) cell index pairs:

UNIQUE_ONE([(iouter · n + iinner) · n4 + (jouter · n + jinner) · n2 + k]0≤iinner,jinner<n,

∀0 ≤ iouter, jouter < n,

∀0 ≤ k < n2.

2.3.2.2 Implementation of the UNIQUE_ONE constraint

In order to implement a UNIQUE_ONE([x0, . . . , xn−1]) constraint, we use the
WeightedAdder component from Qiskit. This takes n qubits and sums them up into
a log2(n) sized array. We want the sum to be exactly 1, which means that the output of
the sum array should be equal to |0 . . . 01⟩. Adding a NOT gate to the least significant
qubit, the output should be |0 . . . 0⟩. This can be tested using a multi-controlled NOT , or
M − CNOT gate.

9



Figure 2.7: UNIQUE_ONE constraint implementation

For multiple UNIQUE_ONE constraints, the results can be aggregated using a final multi-
controlled CNOT gate, or using a single, common M − CNOT gate for all of them.
In the end, this final MCNOT operation is applied to a single, |oracle⟩ qubit in the circuit.

2.3.3 Grover’s framework: The amplitude amplification technique

This chapter is based on the chapter on Grover’s algorithm from the Qiskit Texbook[11].
Let us denote the cells[i][j][k] qubits with the |cells⟩ qubit vector!
In the beginning, Grover initializes this vector to the uniform distribution:

|s⟩ = 1√
N

N−1∑
x=0

|x⟩ .

This is done by applying an n-dimensional Hadamard-matrix to the |0 . . . 0⟩ vector:

|s⟩ = H⊗n |0⟩ .

We can see this initial state in the following figure.
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Figure 2.8: Initialization[11]

On the right hand side, the individual amplitudes are represented for all elements in the
|cells⟩ vector. This can be seen as an N -dimensional vector. Since we are only interested
in what is the probability of sampling a correct solution, we can project this N -dimensional
vector-space into a 2-dimensional one, where the dimensions correspond to the probability
of a solution and a non-solution sampling. The x-axis, or |s′⟩ represents non-solutions,
while the y-axis, or |w⟩ represents the solutions.
In order to create a Grover’s oracle from the oracle function defined in the previous section,
I initialize the |oracle⟩ qubit to |−⟩ = 1√

2 |0⟩− 1√
2 |1⟩. When the oracle circuit is applied to

|oracle⟩ = |−⟩, the phase kickback effect results in a negative amplitude multiplier exactly
on the elements in the |cells⟩ vector, which are solutions according to the oracle.
This effect can be seen on these figures:

Figure 2.9: Phase kickback[11]

On the right-hand side, the solutions amplitudes are flipped. Since the solutions constutire
the y-axis on the left-hand side, this results in a reflection over the x-axis.
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Finally, another reflection is performed, which reflexts over the average amplitude in the
current superposition. For non-solution elements this decreases their overall probability,
while the flipped solution elements gain probability.

Figure 2.10: Reflect over the average amplitude[11]

On the left-hand side this can be represented by a reflextion over the initial (uniform)
distribution, the |s⟩ vector. This operation is called the diffuser operator, which is imple-
mented by a Grover matrix.
Together, these two reflections constitute a rotation towards the |w⟩ solution axis with a
degree that depends on the size of the search space (N) and the number of solutions (M).
In order to reach the |w⟩ axis as close as possible, the rotation must be performed

√
N
M

times.
In order to recompute the oracle on the new search space, first the old results must be
erased from the ancilla (sum) qubits in the system. Since the WeightedAdder operator
works internally with CNOT gates, erasing the result can be done by applying the same
circuit in reverse order.

2.4 The tools needed to implement Grover’s algorithm

In this capter I have introduced Grover’s algorithm and how to use it to solve a generalized
version of the Sudoku puzzle.
In order to use this framework, 4 operators must be implemented in the system:
the Hadamard (for the phase-kickback), the Grover (the diffuser operator), the Sum
(WeightedAdder) and the Multi-controlled NOT gate (for the oracle bit).
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Chapter 3

Simulation of quantum algorithms
in a memory-efficient way

In this chapter I will examine the architecture and implementation of the framework that
is capable of running simulations of gated general-purpose quantum computation.

3.1 Design goals

For an n qubit register, the register itself must be stored using 2n complex numbers (the
probability amplitudes of each of the 2n 0/1 variations), however the size of the matrix
that is applied to it is (2n)2, which is considerably larger.
Qiskit uses a lot of memory, because it stores every single quantum operator matrix in
memory. Furhermore, even if the operation is the same, if it is applied multiple times,
individual instances of the matrix are created. This is extremely wasteful.
While it uses some techniques to reduce the memory allocations, such as sparse matrix
representation, this cannot fundamentally get around the issue, that the architecture itself
does not allow flexibility of operator representation.
Instead of storing the matrices in-memory I will be designing a system where operators can
be created without the need for a matrix representation at all, or when that is not possible
the currently used column of the matrix can be generated "on-the-fly" for application.

3.2 Quantum registers

The first step in the implementation process is designing the inner workings of the quantum
registers. In order to represent an n qubit register, we must store 2n complex numbers,
the probability amplitudes of each of the possible 0/1 bit representations, as follows:

13



|0 . . . 000⟩ → c0

|0 . . . 001⟩ → c1

|0 . . . 010⟩ → c2

|0 . . . 011⟩ → c3

. . .

|1 . . . 111⟩ → c2n−1,

where c0, . . . , c2n−1 ∈ C.
When multiple registers are present in the system, handling operators that are only ap-
plied to some of the registers becomes problematic. Since qubits can be entangled, every
single new register added to the system multiplies the amount of storage required for the
probability amplitudes.

3.2.1 General solution

Let there be r registers in the system,

{R0, . . . , Rr−1}

and let ni be number of qubits in register Ri, where 0 ≤ i < r.
The total number of qubits in the system is therefore

n =
r−1∑
i=0

ni.

Then, let U be an operation, a unitary (square) matrix, that is applied to k of the registers:

{Rr0 , . . . , Rrk−1}, 0 ≤ rj < r, 0 ≤ j < k, k ≤ r.

The number of qubits U must operate on is therefore

m =
k−1∑
j=0

nrj .

which means that matrix U is of size (M × M), where

M = 2m =
k−1∏
j=0

2(nrj ).
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The complex probability amplitudes for all possible register contents in the system are
stored in a single array C of complex numbers. The size of C is

N = 2n =
r−1∏
i=0

2ni

and its contents are

C = [C[0], . . . , C[N − 1]] ∈ CN .

Let us introduce binary indexing sequences on C. A sequence of qubits

|bn−1, bn−2, . . . , b2, b1, b0⟩

is a binary indexing sequence on C and it corresponds to

C[|bn−1, bn−2, . . . , b2, b1, b0⟩] = C[B],

where

B =
n−1∑
i=0

bi · 2i.

A binary indexing sequence is partitioned by the registers in the following way:

|bn−1, bn−2, . . . , b2, b1, b0⟩ = |Rr−1|Rr−2| . . . |R2|R1|R0⟩ .

Similarly, a single cell of matrix U can be indexed using 2-dimensional binary indexing
sequences. Matrix U is indexed by the following two m dimensional qubit sequences:

|am−1, an−2, . . . , a2, a1, a0⟩

and

|bm−1, bn−2, . . . , b2, b1, b0⟩

and it corresponds to

U [|am−1, an−2, . . . , a2, a1, a0⟩][|bm−1, bn−2, . . . , b2, b1, b0⟩] = U [A][B],
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where

A =
n−1∑
i=0

ai · 2i

and

B =
n−1∑
i=0

bi · 2i.

A 2-dimensional binary indexing sequence on matrix U can also be partitioned by the
registers U is applied to, in the following ways:

|am−1, am−2, . . . , a2, a1, a0⟩ =
∣∣Rrk−1 |Rrk−2 | . . . |Rr2 |Rr1 |Rr0

〉
and

|bm−1, bm−2, . . . , b2, b1, b0⟩ =
∣∣Rrk−1 |Rrk−2 | . . . |Rr2 |Rr1 |Rr0

〉
.

To implement the application of matrix U to registers {Rr0 , . . . , Rrk−1} in the system, the
C array must be rearranged, so that U can be applied to continuous subsequences of C.
This can be done via a bit-mapping on the binary indexing sequences. The qubits cor-
responding to the registers {Rr0 , . . . , Rrk−1} are moved to the lower end of the sequence,
while the rest of the registers to the upper end.
Let us index the registers U is not applied to with {s0, . . . , sn−k−1}, so that

{0, . . . , n − 1} = {r0, . . . , rk−1}∪̇{s0, . . . , sn−k−1}.

Then, the binary index sequence mapping (BISM) is defined as

BISM : |Rr−1|Rr−2| . . . |R2|R1|R0⟩ →
∣∣Rsr−k−1 | . . . |Rs0 |Rrk−1 | . . . |Rr0

〉
.

The BISM function can be used to define the permutation on the C array, by mapping

C ′[BISM(B)] = C[B], 0 ≤ B < N.

The C ′ array’s binary indexing sequences can now be partitioned into an upper and lower
region, such as
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∣∣b′
n−1, . . . , b′

m|b′
m−1, . . . b′

0
〉

,

where the lower region’s indexing sequences correspond 1-to-1 to the U unitary matrix
operation’s second dimension.
With everything set up, we can now define the application of U to C ′. Let the resulting
register contents be R′, where

R′[
∣∣b′

n−1, . . . , b′
k|a′

k−1, . . . a′
0
〉
] =

∑
0≤i<m

∀bi∈{0,1}

U [
∣∣a′

m−1, . . . , a′
0
〉
][
∣∣b′

m−1, . . . , b′
0
〉
] · C ′[

∣∣b′
m−1, . . . , b′

0
〉
].

(3.1)

During this application, we can see that the matrix is read in a column-by-column fashion,
which means that we only need to generate a single column of U .
In cases where the operation is a mapping or aggregation itself (such as the WeightedAdder
from the Grover’s search), it can be performed without generating the column itself,
the same permutation logic is used, but instead of generating an entire row of U , the∣∣a′

m−1, . . . , a′
0
〉

"output index" is calculated based on the
∣∣b′

m−1, . . . , b′
0
〉

"input index" by a
function

u :
∣∣b′

m−1, . . . , b′
0
〉

→
∣∣a′

m−1, . . . , a′
0
〉

,

which then replaces the matrix multiplication as follows:

R′[
∣∣b′

n−1, . . . , b′
k|a′

k−1, . . . a′
0
〉
] =

∑
0≤i<m

∀bi∈{0,1}
u(|b′

m−1,...,b′
0⟩)=|a′

m−1,...,a′
0⟩

C ′[
∣∣b′

m−1, . . . , b′
0
〉
]. (3.2)

These equations are the basis of the memory-efficiency of this framework.
Finally, the R′ array must be inverse-permuted back to the original order of the indexing
qubits

R[B] = R′[BISM(B)], 0 ≤ B < N.

3.2.2 Presenting the solution on an example

For example when 3 registers are present, R0 consisting of 1 qubit, R1 consisting of 1
qubits and R2 consisting of 2 qubits, then the binary indexing sequence of the amplitude
registers is the following: |R2,0, R2,1; R1,0; R0,0⟩.
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The probability amplitudes stored are the following:

|00, 0, 0⟩ → c0 |10, 0, 0⟩ → c8

|00, 0, 1⟩ → c1 |10, 0, 1⟩ → c9

|00, 1, 0⟩ → c2 |10, 1, 0⟩ → c10

|00, 1, 1⟩ → c3 |10, 1, 1⟩ → c11

|01, 0, 0⟩ → c4 |11, 0, 0⟩ → c12

|01, 0, 1⟩ → c5 |11, 0, 1⟩ → c13

|01, 1, 0⟩ → c6 |11, 1, 0⟩ → c14

|01, 1, 1⟩ → c7 |11, 1, 1⟩ → c15.

The simplest solution would be to apply a "no-operation" operator, or the identity matrix
to the remaining registers, however this will not scale well memory-wise with the number
of registers increasing in the system.
Instead I implemented the register handling in a way that allowed me to skip storing
"no-operation" matrices in the memory completely. In order to apply an operator to only
some registers in the system, the probability amplitudes are re-arranged in a way so that
a continuous section of memory corresponds to a column of the matrix. This way, the
matrix operation can be applied to sections of probability amplitudes iteratively.
For example, if we apply a 3 qubit operator to the registers R0 and R2, then the previous
table is rearranged so that the bits corresponding to R0 and R2 are pushed towards the
least significant bit in the following way:

|R2,1, R2,1; R1,0; R0,0⟩ → |R1,0; R2,0, R2,1; R0,0⟩ .

|00, 0, 0⟩ → |0, 00, 0⟩′ → c′
0 → c0 |10, 0, 0⟩ → |0, 10, 0⟩′ → c′

4 → c8

|00, 0, 1⟩ → |0, 00, 1⟩′ → c′
1 → c1 |10, 0, 1⟩ → |0, 10, 1⟩′ → c′

5 → c9

|00, 1, 0⟩ → |1, 00, 0⟩′ → c′
8 → c2 |10, 1, 0⟩ → |1, 10, 0⟩′ → c′

12 → c10

|00, 1, 1⟩ → |1, 00, 1⟩′ → c′
9 → c3 |10, 1, 1⟩ → |1, 10, 1⟩′ → c′

13 → c11

|01, 0, 0⟩ → |0, 01, 0⟩′ → c′
2 → c4 |11, 0, 0⟩ → |0, 11, 0⟩′ → c′

6 → c12

|01, 0, 1⟩ → |0, 01, 1⟩′ → c′
3 → c5 |11, 0, 1⟩ → |0, 11, 1⟩′ → c′

7 → c13

|01, 1, 0⟩ → |1, 01, 0⟩′ → c′
10 → c6 |11, 1, 0⟩ → |1, 11, 0⟩′ → c′

14 → c14

|01, 1, 1⟩ → |1, 01, 1⟩′ → c′
11 → c7 |11, 1, 1⟩ → |1, 11, 1⟩′ → c′

15 → c15.

Then, the 3 qubit operator U8×8, which is an (8 × 8) matrix can be applied iteratively in
the following way:

1. Apply U8×8 to the probability amplitudes corresponding to R1,0 = |0⟩:
[c0, c1, c4, c5, c8, c9, c12, c13] = [c′

0, c′
1, c′

2, c′
3, c′

4, c′
5, c′

6, c′
7].
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The resulting vector is the first half of the complete result:
[r′

0, r′
1, r′

2, r′
3, r′

4, r′
5, r′

6, r′
7].

2. Apply U8×8 to the probability amplitudes corresponding to R1,0 = |1⟩ :
[c2, c3, c6, c7, c10, c11, c14, c15] = [c′

8, c′
9, c′

10, c′
11, c′

12, c′
13, c′

14, c′
15].

The resulting vector is the second half of the complete result:
[r′

8, r′
9, r′

10, r′
11, r′

12, r′
13, r′

14, r′
15].

3. Iterate over all values for the untouched register R1 and aggregate the results:
[r′

0, r′
1, r′

2, r′
3, r′

4, r′
5, r′

6, r′
7, r′

8, r′
9, r′

10, r′
11, r′

12, r′
13, r′

14, r′
15]..

4. Revert the mapping to the original indexes:
[r′

0, r′
1, r′

2, r′
3, r′

4, r′
5, r′

6, r′
7, r′

8, r′
9, r′

10, r′
11, r′

12, r′
13, r′

14, r′
15] =

[r0, r1, r4, r5, r8, r9, r12, r13, r2, r3, r6, r7, r10, r11, r14, r15].

3.3 Quantum operators

In order to implement Grover’s algorithm the following operators are needed: Hadamard,
Grover (diffuser matrix), Sum (WeightedAdder), and Multi-Controlled NOT.

3.3.1 Hadamard

The Hadamard matrix is defined as follows. First, the (2 × 2) H matrix is the following:

H = 1√
2

(
1 1
1 −1

)
.

A (2n × 2n) dimensional Hadamard matrix can be created by taking the tensor product
of the (2 × 2) H matrix n times: H⊗n.
From this equation the jth column of the ith row of the (2n ×2n) matrix can be defined by
taking the BITWISE_AND between the i and j indexes in binary form, then counting
the set bits in that selector, to decide which cells should get a negative multiplier, as
follows:

H[i][j] = 1√
2n

· (−1)COUNT_BITS(i 2 BITWISE_AND j 2 )
.

This equation is directly implemented and a single column of H is generated on-the-fly
when H is applied, using equation (3.1).

3.3.2 Grover

The Grover matrix is the diffusion operator from Grover’s algorithm. It is defined using
the H⊗n matrix, as follows.
Let’s define the register |D⟩ to be the following:
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|D⟩ = H⊗n |0⟩ = 1√
2n

2n−1∑
i=0

|i⟩ .

Then G is the following matrix:

G = 2 |D⟩ ⟨D| − I.

If N = 2n, then G can be represented as follows:

G =


2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N...
... . . . ...

2
N

2
N

. . . 2
N − 1

 .

It is straightforward to implement G, since the the jth column is 2
N , except for the jth

cell, where it is 2
N − 1. This matrix is also generated on-the-fly, column-by-column, using

equation (3.1).

3.3.3 Sum

The sum operator is one, that can be represented directly using equation (3.2), by defining
the

u : |bm−1, . . . , b0⟩ → |am−1, . . . , a0⟩

function.
First, the m qubits of the opetor are partitioned into two parts: input and output

m = s + ⌈log2(s)⌉,

since the sum of s qubits can be represented on ⌈log2(s)⌉ bits.
Then, u is defined as

u : |0, . . . , 0, bs−1 . . . , b0⟩ → |COUNT_BITS(bs−1 . . . , b0), bs−1 . . . , b0⟩ .

3.3.4 Multi-controlled NOT

Similarly to Sum, a Multi-controlled NOT operator is defined using an u function, which
applies the NOT operator to its most significant bit, when any of the other bits are set.
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u : |bm−1, bm−2 . . . , b0⟩ → |(∨(bm−2 . . . , b0) ⊕ bm−1), bm−2 . . . , b0⟩ .

3.4 Implementation and design patterns

In the UML diagram below, we can see the part of the system that deals with these
memory-efficient operators.

Figure 3.1: Strategy and Visitor pattern

The goal of this framework is to allow the user to define quantum operators in a memory-
efficient way. There are two types of operators: the ones that are columnwise generated
on-the-fly and the u function operators, directly interacting with the binary indexing
sequences of the registers.
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The code for register handling, the BISM operator and the permutation of the probability
amplitudes is common amongst all operators. When these operators are being used, they
must be callable from the same interface, to ensure that they are interchangeable and can
be inherited from.
In order to achieve this, I have implemented the Strategy design pattern. The intent of
this pattern, according to the Design Patterns book[12], is to define a family of algorithms,
encapsulate each one, and make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it. In this pattern, a common interface is defined for
all operators, with the implementation dependent on the specific operator. This common
interface will later allow me to pontentially generate circuit diagrams for an implemented
quantum algorithm.
The QOp class is the base class of all of the others. The Hadamard, Grover, Sum and Mcnot
classes all inherit from it. In particular, the Hadamard and Grover classes only redefine
the row and column methods. The generic implementation of the apply method in QOp
then uses these methods to apply the operator on the QRegisters.
The get_bit_mask_mapping and get_qubit_mapping methods deal with the probability
amplitude permutation and the BISM mapping. They are protected, so inherited classes
can make use of them too.
The Sum and Mcnot required me to implement a form of inversion-of-control. In the first
iteration, a third class (an Orchestrator) received both the registers and the operator
it should apply to them, iteratively generated the necessary rows from the operator and
applied them onto the registers. This was poblematic, because this type of control flow
made it difficult to implement the Sum and Mcnot operators, since they calculate their
result without relying on an explicit representation row format.
The knowledge of how an operator should be applied to the registers should be given
to the operator itself, since the framework relies on clever, operator-specific memory-
efficient implementations to function. This is exactly what the Visitor pattern is used for.
According to the Design Patterns book[12] we can “Use the Visitor pattern when many
distinct and unrelated operations need to be performed on objects in an object structure,
and [we] want to avoid "polluting" their classes with these operations. Visitor lets [us]
keep related operations together by defining them in one class. When the object structure
is shared by many applications, use Visitor to put operations in just those applications that
need them.”
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Chapter 4

Summary of results

My goal for the future is to explore quantum solutions to classically NP-hard problems
and their connection to Grover’s search algorithm. I am interested in computer-aided
drug design, particularly the NP-hard problems of protein folding and molecular docking.
While researching protein folding, I found a simplified model that is still NP-hard but
can be implemented on a gated general-purpose quantum computer. However, I ran into
a hard memory limit since the largest computable protein chain contained at most four
amino acids, on which the problem is trivial.
I looked into various open-source quantum computational frameworks, notably Qiskit and
how I might reduce their memory requirements. These frameworks focus on a different
goal: to allow the programming of quantum computers their respective vendors sell, which
means that simulation, especially memory-efficient simulation, is not their primary con-
cern. Their implementation uses sparse-matrix representation of each unitary matrix and
allocates the resources for each individual instance of them. This made it very difficult
and expensive to use them for my usecase, which is testing my quantum algorithms for
protein folding on even relatively small inputs.
The primary goal of this framework is to reduce memory-usage of simulation while trading
in runtime. For research purposes, it is acceptable to wait for example a few days for a
simulation of protein folding runs on a relatively high-end PC, however it is not cost-
effective to buy terabytes of memory or rent a memory-optimized virtual machine from
the cloud.
In this dissertation, I have developed the mathematical framework for implementing
general-purpose software for gated quantum computer simulations. These developments
have been:

• The logic of handling the probability amplitudes in the current set of registers and
applying operators to a subset of these registers using qubit mapping permutations
on their binary indexing sequences.

• The architecture allows individual tricks for memory-efficient operator implementa-
tion, such as on-the-fly generation and the u function method.

• The building blocks for Grover’s algorithm’s implementation, the Hadamard, Grover,
Sum and MCnot operators.
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4.1 Source code availability

The source code for the framework is available at the following link under the open-source
MIT License:
https://github.com/nemkin/qmem

4.2 Plans for the future

My goals for the future with this framework is to finish the implementation of Grover’s
algorithm by connecting the implemented building blocks.
In addition, I would like to introduce unit testing for the individual components of the soft-
ware. Since all of these operators rely heavily on custom implementation, it is important
that their correctness is verified. In particular, I would like to explore methamorphic test-
ing, in which the operators are tested by verifying if they admit to certain mathematical
properties, such as the self-adjointness of the Hamilton-operator.
Furthermore, I would like to extend the available operators in the framework so that other
types of algorithms can be implemented in it as well.
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