Problem Statement (DecodeDigits)

A simple way to encode a word into a string of digits is to replace each letter by its order in the alphabet. That is, "a" will change to " 1 ", " b " to " 2 ", ..., and "z" to " 26 ". For example, encode("cow")="31523" and encode("cat")="3120".
Sadly, this encoding cannot always be uniquely decoded, because two different words can yield the same string of digits when encoded. For example, encode("beard")=encode("yard")="251184".
String A is a subsequence of string B if it is possible to erase some letters of B (possibly none, possibly all of them) to obtain A. For example, "cage" is a subsequence of "cabbages".
You are given a String \mathbf{D} containing a string of digits. If there is no string Y such that encode $(\mathrm{Y})=\mathbf{D}$, return the String "NONE". Otherwise, find and return the longest string X with the following property: whenever encode $(\mathrm{Y})=\mathbf{D}, \mathrm{X}$ is a subsequence of Y . If there are multiple such strings, return the lexicographically smallest one.

Definition

Class: DecodeDigits

Method: solve
Parameters: String
Returns: String
Method signature: String solve(String D)
(be sure your method is public)

Constraints

-D will contain between 1 and 50 characters, inclusive.
-Each character in \mathbf{D} will be a digit (${ }^{\prime} 0$ '-'9').

Examples

0)

"38956"

Returns: "chief"
There is only one way to decode this string of digits.
1)
"13919156"

Returns: "if"
This string of digits can be decoded in 8 different ways. Each of them contains an "i" followed by an "f".
2)
"1122"

Returns: ""
We have encode("kbb")=encode("aav")="1122". The strings "kbb" and "aav" have no common subsequence other than the empty one.

3)

"3120"

Returns: "cat"
The only valid decoding of this string is "cat".
4)
"0"

Returns: "NONE"

