
Problem Statement (MagicBoard)

 Magic Board is a lock that has the shape of a rectangular board, divided into a grid of n × m unit
squares. Some of the unit squares contain a Magic Diamond. You are given the contents of the
Magic Board as a String[] board. The number of elements in board is n, and the length of each
element is m. Empty squares are denoted by periods ('.'), squares with a Magic Diamond are
denoted by '#'.

Let S = (S[0], S[1], ...) be a sequence of cells on the board. We will consider the cells in S one after
another, picking up a Magic Diamond from each of them. Doing this will unlock the Magic Board if
and only if S has the following properties:

• S contains each cell with a Magic Diamond exactly once.
• S does not contain any other cells.
• For each even i, S[i] and S[i+1] are in the same row of board.
• For each odd i, S[i] and S[i+1] are in the same column of board.

You are given the String[] board. Determine whether this Magic Board can be unlocked. Return
"YES" (quotes for clarity) if it can be unlocked and "NO" otherwise.

Definition

Class: MagicBoard
Method: ableToUnlock
Parameters: String[]
Returns: String
Method signature: String ableToUnlock(String[] board)
(be sure your method is public)

Constraints

-board will contain between 1 and 50 elements, inclusive.

-board[0] will contain between 1 and 50 characters, inclusive.

-All elements of board will contain the same number of characters.

-Each character in each element of board will be either '.' or '#'.

-board will contain at least one '#'.

Examples

0)
{"##",
 ".#"}

Returns: "YES"

The only solution: Start in the upper left corner, then move to the right, and finally move
down.

1)
{"#.",
 ".#"}

Returns: "NO"

In this case there is no solution. Regardless of which Magic Diamond we start with, we will not be
allowed to take the other one, as it is not in the same row.

2)
{"##",
 "##",
 "##"}

Returns: "YES"

3)
{"###",
 "###",
 "###"}

Returns: "NO"

4)
{"###",
 "..#",
 "###",
 "#..",
 "###"}

Returns: "NO"

5)
{"................",
 ".######..######.",
 ".######..######.",
 ".##......##..##.",
 ".##......##..##.",
 ".######..######.",
 ".######..######.",
 ".....##..##..##.",
 ".....##..##..##.",
 ".######..######.",
 ".######..######.",
 "................"}

Returns: "YES"

6)
{"#"}

Returns: "YES"

	Problem Statement (MagicBoard)
	Definition
	Constraints
	Examples

