

Problem A
Modular multiplication of polynomials

Consider polynomials whose coefficients are 0 and 1. Addition of two polynomials is achieved by 'adding' the
coefficients for the corresponding powers in the polynomials. The addition of coefficients is performed by
addition modulo 2, i.e., (0 + 0) mod 2 = 0, (0 + 1) mod 2 = 1, (1 + 0) mod 2 = 1, and (1 + 1) mod 2 = 0. Hence,
it is the same as the exclusive-or operation.

 (x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2

Subtraction of two polynomials is done similarly. Since subtraction of coefficients is performed by subtraction
modulo 2 which is also the exclusive-or operation, subtraction of polynomials is identical to addition of
polynomials.

 (x6 + x4 + x2 + x + 1) - (x7 + x + 1) = x7 + x6 + x4 + x2

Multiplication of two polynomials is done in the usual way (of course, addition of coefficients is performed by
addition modulo 2).

(x6 + x4 + x2 + x + 1) (x7 + x + 1)
= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

Multiplication of two polynomials f(x) and g(x) modulo a polynomial h(x) is the remainder of f(x)g(x) divided
by h(x).

(x6 + x4 + x2 + x + 1) (x7 + x + 1) modulo (x8 + x4 + x3 + x + 1)
= x7 + x6 + 1

The largest exponent of a polynomial is called its degree. For example, the degree of x7 + x6 + 1 is 7.

Given three polynomials f(x), g(x), and h(x), you are to write a program that computes f(x)g(x) modulo h(x).
We assume that the degrees of both f(x) and g(x) are less than the degree of h(x). The degree of a polynomial
is less than 1000.

Since coefficients of a polynomial are 0 or 1, a polynomial can be represented by d+1 and a bit string of
length d+1, where d is the degree of the polynomial and the bit string represents the coefficients of the
polynomial. For example, x7 + x6 + 1 can be represented by

 8 1 1 0 0 0 0 0 1.

Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each
test case consists of three lines that contain three polynomials f(x), g(x), and h(x), one per line. Each
polynomial is represented as described above.

Output
The output should contain the polynomial f(x)g(x) modulo h(x), one per line.

Sample Input

Output for the Sample Input

2
7 1 0 1 0 1 1 1
8 1 0 0 0 0 0 1 1
9 1 0 0 0 1 1 0 1 1
10 1 1 0 1 0 0 1 0 0 1
12 1 1 0 1 0 0 1 1 0 0 1 0
15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1

8 1 1 0 0 0 0 0 1
14 1 1 0 1 1 0 0 1 1 1 0 1 0 0

Problem B – Entropy

Background

An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with
“wasted” or “extra” information removed. In other words, entropy encoding removes information that was not
necessary in the first place to accurately encode the message. A high degree of entropy implies a message with a
great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high
entropy. Already compressed messages, such as JPEG graphics or ZIP archives, have very little entropy and do not
benefit from further attempts at entropy encoding.

English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same
number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency
than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the
new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII
uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits
to represent each possible glyph or character. How would an encoding scheme that used four bits for the above
letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is
solved using what is known as a “prefix-free variable-length” encoding.

In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message
are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph
is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit,
and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free
constraint was not enforced, then such a decoding would be impossible.

Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A”
with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16
bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re
using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by
encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit
patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with
“110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B,
C and D could be interchanged freely for any given encoding without increasing the size of the final encoded
message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of
4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original
encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it
simple to decode this into the original text even though the codes have varying bit lengths.

As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space
character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an
optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is,
that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces
with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011”
and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be
necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.

Input

The input file will contain a list of text strings, one per line. The text strings will consist only of uppercase
alphanumeric characters and underscores (which are used in place of spaces). The end of the input will be signalled
by a line containing only the word “END” as the text string. This line should not be processed.

Output

For each text string in the input, output the length in bits of the 8-bit ASCII encoding, the length in bits of an optimal
prefix-free variable-length encoding, and the compression ratio accurate to one decimal point.

Example

Input

AAAAABCD
THE_CAT_IN_THE_HAT
END

Output

64 13 4.9
144 51 2.8

Problem G� Gone Fishing

John is going on a �shing trip� He has h hours available �� � h � ���� and there are n lakes in the
area �� � n � �	� all reachable along a single� one
way road� John starts at lake �� but he can �nish
at any lake he wants� He can only travel from one lake to the next one� but he does not have to stop
at any lake unless he wishes to� For each i � �� � � � � n� �� the number of 	
minute intervals it takes to
travel from lake i to lake i� � is denoted ti �
 � ti � ����� For example� t� � � means that it takes �

minutes to travel from lake � to lake ��

To help plan his �shing trip� John has gathered some information about the lakes� For each lake i� the
number of �sh expected to be caught in the initial 	 minutes� denoted fi �fi �
�� is known� Each 	
minutes of �shing decreases the number of �sh expected to be caught in the next 	
minute interval by
a constant rate of di �di �
�� If the number of �sh expected to be caught in an interval is less than
or equal to di� there will be no more �sh left in the lake in the next interval� To simplify the planning�
John assumes that no one else will be �shing at the lakes to a�ect the number of �sh he expects to
catch�

Write a program to help John plan his �shing trip to maximize the number of �sh expected to be
caught� The number of minutes spent at each lake must be a multiple of 	�

Input

You will be given a number of cases in the input� Each case starts with a line containing n� This is
followed by a line containing h� Next� there is a line of n integers specifying fi �� � i � n�� then a line
of n integers di �� � i � n�� and �nally� a line of n� � integers ti �� � i � n � ��� Input is terminated
by a case in which n �
�

Output

For each test case� print the number of minutes spent at each lake� separated by commas� for the plan
achieving the maximum number of �sh expected to be caught �you should print the entire plan on one
line even if it exceeds �
 characters�� This is followed by a line containing the number of �sh expected�
If multiple plans exist� choose the one that spends as long as possible at lake �� even if no �sh are
expected to be caught in some intervals� If there is still a tie� choose the one that spends as long as
possible at lake �� and so on� Insert a blank line between cases�

Sample Input

�

�

�� �

� �

�

�

�

�� �� �� ��

� � � �

� � �

�

�

�� �� �� ��

� � � �

� � �

�

Sample Output

��� �

Number of fish expected� ��

���� �� �� �

Number of fish expected� �	�

���� ��� ��� ��

Number of fish expected� ���

Problem D
Optimal Programs

As you know, writing programs is often far from being easy. Things become even harder if your
programs have to be as fast as possible. And sometimes there is reason for them to be. Many large
programs such as operating systems or databases have “bottlenecks” – segments of code that get
executed over and over again, and make up for a large portion of the total running time. Here it
usually pays to rewrite that code portion in assembly language, since even small gains in running time
will matter a lot if the code is executed billions of times.

In this problem we will consider the task of automating the generation of optimal assembly code.
Given a function (as a series of input/output pairs), you are to come up with the shortest assembly
program that computes this function.

The programs you produce will have to run on a stack based machine, that supports only five
commands:ADD, SUB, MUL, DIV andDUP. The first four commands pop the two top elements from
the stack and push their sum, difference, product or integer quotient1, respectively, on the stack. The
DUP command pushes an additional copy of the top-most stack element on the stack.

So if the commands are applied to a stack with the two top elementsa andb (shown to the left),
the resulting stacks look as follows:

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

a

b

...

c

...

c

...

...

c

...

...

c

...

...

c

...

...

a

b

c

...

...

a+b b-a a*b b/a

a

Stack
Initial MULSUBADD DIV DUP

At the beginning of the execution of a program, the stack will contain a single integer only: the
input. At the end of the computation, the stack must also contain only one integer; this number is the
result of the computation.

There are three cases in which the stack machine enters an error state:

� A DIV-command is executed, and the top-most element of the stack is 0.

� A ADD, SUB, MUL or DIV-command is executed when the stack contains only one element.

� An operation produces a value greater than 30000 in absolute value.

1This corresponds to/ applied to two integers in C/C++, andDIV in Pascal.

D1

Input

The input consists of a series of function descriptions. Each description starts with a line containing a
single integern (n� 10), the number of input/output pairs to follow. The following two lines contains
n integers each:x1�x2� � � � �xn in the first line (all different), andy1�y2� � � � �yn in the second line. The
numbers will be no more than 30000 in absolute value.

The input is terminated by a test case starting withn � 0. This test case should not be processed.

Output

You are to find the shortest program that computes a functionf , such that f �xi� � yi for all i �
f1� � � � �ng. This implies that the program you output may not enter an error state if executed on the
inputsxi (although it may enter an error state for other inputs). Consider only programs that have at
most 10 statements.

For each function description, output first the number of the description. Then print out the se-
quence of commands that make up the shortest program to compute the given function. If there is
more than one such program, print the lexicographically smallest. If there is no program of at most
10 statements that computes the function, print the string “Impossible”. If the shortest program
consists of zero commands, print “Empty Sequence”.

Output a blank line after each test case.

Sample Input

4
1 2 3 4
0 -2 -6 -12
3
1 2 3
1 11 1998
1
1998
1998
0

Sample Output

Program 1
DUP DUP MUL SUB

Program 2
Impossible

Program 3
Empty sequence

D2

���� ���� ��	�
�� ��
��	�� ��	���� �

������� �� 	�
��
����
�

��� ����� ��	�
��
��� ��� ����
�����
��� �� ��

�� �������� ��	�� ��� ��� ����� ��	���� �������
��� ���� �� ���
��
��� ���
�� ��� ��� ����� ����� ��
���	� �� ���
����
����
���� �� ��	��� �����

���
� ����
��� ��� ������ �� ����� �� ������� ������ ����� �� 	���� � ������ �� ��� ��	���� ������ ���

� ��� �� ��
������ ����� ��� ��	�� ������ 	�� �� �� ��
���	� �� ����������	 ��� �����	� �� ������
������

�� ����
� ���
�
����� ������ �� ������ �� ��� ��	�� �� ���� ��� ��������	 ������	�� ���� � ��
�� �� ���

��	� �� ��� ��	� �� �� � ���� ��
� ���� ��� ��������
��� ���� ��� �������
���� �����������
��
�����	

��� ��	� �� � ���� ��� ����� �� ��� ������ ���� ����� �� ���� ��� ��������
��� ������� ��
�
��� ��

�������
������

�����

!�
��
������� �� � ���	��
������ ������
�
��������	 �� � ���
��
���� �� ��� ��	���� ������� �������� ��

� ��� �� ��	� ��
������� ��� ��	���� ������ �� ��"��� �� � ��� �� �������
����� #���� �� ���
� ��� ����
���

��
������$ ��� � ��� �� �����
����
���	 ��� �������
������ ��� "��� ���� �� �
������ ������
�
�������

�����
������� ����	��� � � �� � �
�
�"�� ��� ������ �� �������
����� #�������� %� &� '� � � � � � � &$� �

����
���� ��� ������ �� ����� �������
����
������ ��� � ����
���� ��� ������ �� �������
����� ���
�

��� ����
������ (�������	 ���� ��� � ����� �� ��� ���� �� �� �� ���
� �
�
�"�� � ���)��� ���� �������
�������
����� �� ��� �� �� ������
� �� ��� ��*� � ����� ��� �� ��� ���� � ����� ���
� �
�
�"�� ����

�������
���� � �� �
���
����� ����� +���� ���� �� � ���� ���� � ���	��
������� ����	�� � ����
����	 ���

������ �� ��	�� ��
��
� �� ��� ��	����� ��� ��������	 � ����� ��� �� ��� ���� �� �� �� ����
����	 ����

� ��	� �� �� ��
��
�� �� ��� ���� 	���	 ���� �� �� �� � ������
� � ���� �� #� ���� ������ �� ���),���

��� ���� ���� ��� ������
� ���� �� �� ��$� (�� ���
������ ������
��� ��� ���	�� �� ���� ���� �� � &-

����
����� ��� . � � � /%� +�� ������
�� ���� �� ���),��� ��� �� ��� ������� ��������� �����

������

0�
� ��	� ������ �� ���
�� �� ��������

����� ��
����� ��
� � �

����� ��
� ����� ������ �� ���� 1����"�� �� � "��� �� ����� '%� ��� ��
� ������
� �� �� ������� �� ���

������� ����� #2���� 	.% �
� (�� �*��
��� 3	.% ������ �� ������� �� -�$ 0�
� ����)������
�
���

������ �� ������ �� ��� ������� ������
��
���� ���� ��� ���� ������� ������
� ������ ��
������ ��

��
������
�� ������ ��	�� ������ �� ���
�� �� ��� ����� �� ���
� ���� ���� ������ �� ��� ��
��� ��� ���

������ ��
����� ��
� ��	� ���
�� ���� � ����4 ����� �� ��� ������ ���� ����� ��	� ���� ���� �� �����
���
��� ������ �� ���

���� ���� ��	�
�� ��
��	�� ��	���� &%

����	
 �����

� �� �

� � ����

� � ����

� � ����

� � ���	

� � ����

� 	 	�

� � ����	

� � ����

� 	 ����

� � ����

� � ����

� 	 ����

� � ��
�

� 	 ����

� 	 ����

� � ����

	 � 	���

� ���
�����

� �������

	 �����
�����

� ��������

�

� � ����

� � ����

� � ����

����	
 ������

�����
�����

��������
 ��

������� �

�����
����� �

������� �

��������
 ��

Un

Problem A� Triangle War

Triangle War is a two�player game played on the following triangular grid�

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

������

54

2 3

1

6

7 8 9 10

Two players� A and B� take turns �lling in any dotted line connecting two dots� with A starting �rst�
Once a line is �lled� it cannot be �lled again� If the line �lled by a player completes one or more
triangles� she owns the completed triangles and she is awarded another turn �i�e� the opponent skips a
turn�� The game ends after all dotted lines are �lled in� and the player with the most triangles wins the
game� The di�erence in the number of triangles owned by the two players is not important�

For example� if A �lls in the line between 	 and
 in the partial game on the left below�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

54

2 3

1

6

7 8 9 10

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

������

54

2 3

1

6

7 8 9 10

��
��
��
��

���
���
���
���

����������������������

����
����
����
����
����

����
����
����
����
����

����������������
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

A

Then� she owns the triangle labelled A and takes another turn to �ll in the line between � and
� B can
now own � triangles �if he wishes� by �lling in the line between 	 and �� then the one between
 and ��
and �nally the one between � and
� B would then make one more move before it is A�s turn again�

In this problem� you are given a number of moves that have already been made� From the partial
game� you should determine which player will win assuming that each player plays a perfect game from
that point on� That is� assume that each player always chooses the play that leads to the best possible
outcome for himself�herself�

Input

You will be given a number of games in the input� The �rst line of input is a positive integer indicating
the number of games to follow� Each game starts with an integer � � m � �� indicating the number of
moves that have been made in the game� The next m lines indicate the moves made by the two players
in order� each of the form i j �with i � j� indicating that the line between i and j is �lled in that
move� You may assume that all given moves are legal�

Output

For each game� print the game number and the result on one line as shown below� If A wins� print the
sentence �A wins�� If B wins� print �B wins��

U

Sample Input

�

�

� �

� �

� �

� �

� �

� �

�

� �

� �

� �

� �

� �

� �

� �

�

� �

� �

� �

� �

� �

� �

�	

� �

� �

� �

� �

� �

� �	

� �

� �

� �

� �

Sample Output

Game �
 B wins�

Game �
 A wins�

Game �
 A wins�

Game �
 B wins�

