
Definitions and Theorems

Probability Theory, Fall 2023

by:

Padmini Mukkamala

Budapest University of Technology and Economics

Last updated: November 19, 2023



Contents

Sample questions 2

Lecture 1 3

Lecture 2 4

Lecture 3 6

Lecture 4 7

Lecture 5 8

Lecture 6 10

Lecture 7 11

Lecture 8 12

Lecture 9 13

Lecture 10 14

Lecture 11 15

Lecture 12 16

Lecture 13 17

Lecture 14 17

Lecture 15 20

Lecture 16 21

Lecture 17 21

Lecture 17 22

Lecture 18 23

Lecture 19 24

1



Sample questions

Sample theory questions (from Fall 2021)

1. State the following definition/theorem.

(a) When are random variables X1, X2, ..., Xn said to be (jointly) independent? (n > 0)

(b) State the linear regression line of Y in terms of X, giving the coefficients in terms of covariance,
standard deviation and expected value of X and Y .

Solution: Random variablesX1, X2, ..., Xn are said to be (jointly) independent if for every x1, x2, ..., xn ∈
R, the events {X1 ≤ x1}, ..., {Xn ≤ xn} are independent.

If V ar(X), V ar(Y ) and Cov(X,Y ) are finite, and V ar(X) ̸= 0, then the linear regression line of Y in
terms of X is defined as βX + α, where,

β =
Cov(X,Y )

V ar(X)
, α = E(Y )− βE(X)

.

2. State the following definition/theorem.

(a) What is the correlation coefficient of random variables X and Y in terms of covariance and
standard deviations of X and Y , and under what conditions is it defined?

(b) What conditions must a Riemann integrable function f : R → R statisfy so that there is a random
variable X such that f is its probability density function?

Solution: If Cov(X,Y ), V ar(X), V ar(Y ) are finite and σX ̸= 0 and σY ̸= 0, then the correlation
ρ(X,Y ) is denifed as,

ρ(X,Y ) =
Cov(X,Y )

σXσY

.

For f to be a density function, f must be non-negative and∫ ∞

−∞
f(x)dx = 1

.

3. State the following definition/theorem.

(a) Define the expected value of a simple random variable.

(b) Under what conditions can we express the expected value of the product of two random variables
X and Y in terms of E(X) and E(Y )? What is the relation under those conditions?

Solution: The expected value for a simple random variable X is given by,

E(X) =
∑

k∈Range(X)

k · P (X = k)

If X and Y are independent and if E(XY ), E(X) and E(Y ) exist, then,

E(XY ) = E(X)E(Y )

.

4. State the following definition/theorem.

(a) Let (X,Y ) be a continuous random variable vector. What is the condition density function of Y
given X?

(b) Let X be a simple (discrete) random variable and g : R → R a function, such that E(g(X)) exists.
State E(g(X)) using the distribution of X.
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Solution:

fY |X(y|x) = fX,Y (x, y)

fX(x)
=

fX,Y (x, y)∫∞
−∞ fX,Y (x, u)du

for those values x, y ∈ R, where fX(x) ̸= 0. It is defined as fY |X(y|x) = 0 if fX(x) = 0.

E(g(X)) =
∑

k∈Range(X)

g(k) · P (X = k)

Lecture 1

Definition of Probabilistic measure

De Morgan’s Laws for two events: A ∪B = A ∩B and A ∩B = A ∪B.

De Morgan’s Laws for many events:
∞⋃
i=1

Ai =
∞⋂
i=1

Ai and ∩∞
i=1Ai = ∪∞

i=1Ai.

Mutually exclusive: Two events A and B are said to be mutually exclusive if A ∩B = ∅.

Sigma Algebra: Given a sample space Ω and a collection F of subsets of Ω is called a sigma algebra if,

� Ω ∈ F

� closed under taking complements: for any A ⊆ Ω, if A ∈ F , then, Ω \A ∈ F

� closed under countable unions: for any countable sequence of subsets A1, A2, A3, . . . in F , ∪∞
i=1Ai ∈

F

By applying De-Morgan’s Laws, we can see that sigma algebras are closed under intersections.

Probabity measure: Given a sample space Ω and a sigma algebra F , a measure P : F → [0, 1] is said to
be a probability measure if,

� P (Ω) = 1

� (sigma additivity) For any finite or countable collection of mutually exclusive events A1, A2, ... ∈ F ,
P (∪∞

i=1Ai) =
∑∞

i=1 P (Ai).

Note: Sigma additivity is defined for a collection of mutually exclusive events, that is, for any i ̸= j,
Ai ∩Aj = ∅.

Probability space: The triple (Ω,F , P ), where Ω is the sample space, F a ’proper’ collection of events,
and P a probability measure on F , is said to be a probability space.

Some consequences of the definition of Probability measure:
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� P (∅) = 0

� P (A) = 1− P (A)

� If A ⊆ B, then P (A) ≤ P (B)

� P (A ∩B) + P (A ∩B) = P (A)

Inclusion-Exclusion or Poincare’s Formula.
For two events: P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2).
For three events: P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3) − P (A1 ∩ A2) − P (A2 ∩ A3) − P (A3 ∩
A1) + P (A1 ∩A2 ∩A3).
For many events:

P (∪n
i=1Ai) =

∑
i

P (Ai)−
∑
i1<i2

P (Ai1 ∩Ai2) + ...+
∑

i1<i2<...<ir

(−1)r+1P (Ai1 ∩ ... ∩Air ) + ...

...+ (−1)n+1P (A1 ∩A2 ∩ ... ∩An)

Proof will be done tomorrow!

Boole’s Inequality: For any collection A1, ...An of events and a probability measure P ,

P (∪n
i=1Ai) ≤

n∑
i=1

P (Ai)

Let [n] denote {1, 2, . . . , n}. We define Sk =
∑

{i1,i2,...,ik}⊂[n] P (Ai1 ∩Ai2 ∩ . . . ∩Aik). Then,

Bonferroni’s Inequalities: For any collection A1, ...An of events and a probability measure P ,

P (∪n
i=1Ai) ≤

m∑
k=1

(−1)k−1Sk, for any odd m

P (∪n
i=1Ai) ≥

m∑
k=1

(−1)k−1Sk, for any even m

Limit properties.
Property 1: Given a sequence A1 ⊆ A2 ⊆ ... ⊆ An ⊆ ... of increasing events and a probability measure
P , then,

P (∪iAi) = lim
n→∞

P (An)

Property 2: Given a sequence A1 ⊇ A2 ⊇ ... ⊇ An ⊇ ... of decreasing events and a probability measure
P , then,

P (∩iAi) = lim
n→∞

P (An)

Lecture 2

Basic Combinatorics for Classical Probability
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In classical probability, where Ω consists of equally likely outcomes, probability of an event is just the number
of favorable outcomes divided by the total number of outcomes. We will now learn several efficient ways to
count outcomes.

To ADD or to MULTIPLY: When you count the total number of outcomes of two independent
experiments, for example, number of rolls of two dice rolled independently, the number of ways of
drawing a card each from two seperate decks of cards etc, then the total number of outcomes is the
product of the number of outcomes of each experiment. In the two examples it is 6× 6 and 52× 52.

On the other hand if we want the total number of outcomes from two mutually exclusive events, then
we must add the number of outcomes in each. For example, if we want the number of rolls of two dice
where the first dice is either 1 or 2, then there are 6 outcomes of the kind 1, ∗ and 6 of the kind 2, ∗, and
these are mutually exlusive. So the total number of outcomes is 6 + 6 = 12. As another example, in a
class of 3 girls and 3 boys, how can we pick two students where the gender of both students is the same?
The event that both students are girls and that both picked students are boys are mutually exlusive.
The number of ways of picking two girls is 3, and two boys is also 3, so the total number of outcomes is
3 + 3 = 6.

Ordered subsets with replacement: Given n distinct objects, say numbered 1, 2, ..., n, we want to pick
an ordered multiset of k elements (a certain number may repeat in the multiset). For example if n = 3
and k = 2, then the ordered multisets are 11, 12, 13, 21, 22, 23, 31, 32, 33.

The number of ways of doing this is nk

Variations: Ordered subsets without replacement: Given n distinct objects, say numbered 1, 2, ..., n, we
want to pick an ordered subset of k of them. For example if n = 3 and k = 2, then the ordered subsets
are 12, 13, 21, 23, 31, 32.

The number of ways of doing this is n · (n− 1) · . . . · (n− k + 1) = n!
(n−k)!

Combinations: Unordered subsets without replacement: Given n distinct objects, say numbered
1, 2, ..., n, we want to pick an unordered subset of k of them. For example if n = 3 and k = 2, then the
unordered subsets are 12, 13, 23.

The number of ways of doing this is n·(n−1)·...·(n−k+1)
k! = n!

(n−k)!k! . This quantity is denoted by by the

binomial coefficient
(
n
k

)
and it is read as ”n choose k”.

Unordered subsets with replacement: Given n distinct objects, say numbered 1, 2, ..., n, we want to pick
an unordered multiset of k elements (a certain number may repeat in the multiset). For example if
n = 3 and k = 2, then the unordered multisets are 11, 12, 13, 22, 23, 33.

A good way to think of this is there are k 0’s with n − 1 1’s inbetween and the number of 0’s between
the i − 1 and ith 1 are the number of i’s in our chosen unordered multiset of k elements. We can see
that every multiset has a unique such sequence, while every sequence corresponds to a unique multiset.
So the number of multisets is equal to the number of ways of picking the position of n − 1 1’s from a
sequence of n− 1 1’s and k 0’s, which is

(
n+k−1
n−1

)
.

Some identities of the binomial coefficients:

(
n

k

)
=

(
n

n− k

)
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(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
Try to think of double counting proofs for these.

Binomial theorem: (x+ y)n =
∑n

i=0

(
n
i

)
xiyn−i.

Consequence: 2n =
∑n

i=0

(
n
i

)
.

We can also see the consequence with double counting, where we will count all possible subsets of a
{1, 2, ..., n} in two different ways. To get a subset, for each element we have two options, either it is in
the set or not, that gives us 2n different subsets. On the other hand, we can count the number of subsets
by counting the different subsets with i elements and summing these numbers up for i = 0, 1, ..., n, this
gives us the right hand side of the equation.

Note: In the above binomial theorem, taking y = 1, we get (1 + x)n =
∑n

i=0

(
n
i

)
xi, and you can integrate or

differentiate both sides with respect to x to get new identities.

Proof of general case of Inclusion Exclusion. Pick an element x ∈ Ω. Let x be in exactly m of the sets
A1, A2, ..., An. Then notice that s will not contribute to Sj , j > m because intersection of more than
m sets will necessarily not contain x. We further note that x is counted exactly

(
m
i

)
times in Si, where

i ≤ m. Then the contribution of x on the LHS is 1, while on the RHS it is
∑m

i=1(−1)i+1
(
m
i

)
. This is

precisely the statement of the binomial theorem.

Theorem:
∑k

i=0(−1)i
(
n
i

)
= (−1)k

(
n−1
k

)
.

Proof by induction: base case k = 0 is trivial. For induction step, we need to check
(−1)k+1(

(
n

k+1

)
−
(
n−1
k

)
) = (−1)k+1

(
n−1
k+1

)
.

A direct consequence is the Bonferroni inequalities discussed in the previous lecture.

Lecture 3

Conditional Probability

Conditional Probability: Given two events A,B and a probability measure P , if P (B) > 0, that is the
probability of the event B is non-zero, then the conditional probability of the event A given that B is

true is defined as P (A|B) = P (A∩B)
P (B) .

Independence: Given two events A,B and a probability measure P , we say that the events are indepen-
dent if P (A ∩B) = P (A)P (B).
Note: if the probabilities of the events are non-zero, then for independent events, P (A|B) = P (A),
and P (B|A) = P (B), but we don’t take this as the definition of independence because the conditional
probabilities are not always defined.

Lemma: If two events A,B are independent, then A and B are also independent.
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Multiplication Rule (two events): For any two events A1, A2, not necessarily independent, if the condi-
tional probability P (A2|A1) exists (i.e. P (A1) > 0), then: P (A1 ∩A2) = P (A1) · P (A2|A1).
Note: it is good to think of the events A1 and A2 occuring chronologically in that order and this rule
is useful when the conditional probabilities are defined and much more straightforward to analyse than
the probabilities of the intersection of the events.

Multiplication Rule (many events): For any events A1, A2, ..., An, not necessarily independent, if for all
1 < i ≤ n the conditional probability P (Ai|Ai−1 ∩ ... ∩A1) exists, then:

P (∩n
i=1Ai) = P (A1)P (A2|A1)P (A3|A1 ∩A2)...P (An|A1 ∩ ... ∩An−1)

Note: as before it is good to think of the events A1, ..., An as occuring chronologically in that order.

Pairwise Independence: Events A1, A2, ..., An are said to be pairwise independent if ∀i ̸= j, the events
Ai and Aj are independent, that is, P (Ai ∩Ai) = P (Ai)P (Aj).

Total Independence: Events A1, A2, ..., An are said to be totally independent if for every I =
{i1, i2, ..., ik} ⊂ {1, 2, ..., n}, P (Ai1 ∩Ai2 ∩ ... ∩Aik) = P (Ai1)P (Ai2)...P (Aik).

Partition: A partition of a sample space Ω is a collection of mutually exclusive events whose union is Ω.
That is, events A1, A2, ..., An are said to be a partition of Ω if ∀i ̸= j, Ai ∩Aj = ∅ and ∪n

i=1Ai = Ω.

Law of Total Probability: Given a partition A1, A2, ..., An of a sample space Ω such that P (Ai) > 0, ∀i,
and another event B, then, P (B) =

∑n
i=1 P (B|Ai)P (Ai).

Note: The right hand side in the equation above can be rewritten, using the definition of conditional
probability as,

∑n
i=1 P (B ∩Ai).

Bayes Theorem: Given a partition A1, A2, ..., An of a sample space Ω such that P (Ai) > 0, ∀i, and
another event B such that P (B) > 0, then, for a given k,

P (Ak|B) =
P (B|Ak)P (Ak)∑n
i=1 P (B|Ai)P (Ai)

Note: Again, this can be simplified using the definition of conditional probability as, P (B∩Ak)∑n
i=1 P (B∩Ai)

, which

using the law of total probability is P (B∩Ak)
P (B) .

Lecture 4

Discrete Random Variables

Note: this lecture started with a lot of material we couldn’t finish in the previous three lectures. In particular,
we did: proof of Inclusion-exclusion, proof of Bonferroni inequalities, Pairwise and Total Independence.

Random Variable: Any numerical function X : Ω → R is called a Random variable. We can further
classify random variables based on the range of X:
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� If the range of X is finite, then it is called a simple random variable. Example: For a single coin
toss, let X(Heads) = 1 and X(Tails) = 0 is a simple random variable. The outcome of a dice roll
is a simple random variable.

� If the range of X is discrete (countable), then X is called a discrete random variable. Simple
random variables are necessarily discrete. Consider the experiment of tossing a fair coin until it
lands on Heads. Let the number of tosses be the random variable X. Then X is a discrete (but
not a simple) random variable.

� If the range of X is continuous, then X is a continuous random variable. For example, consider
a unit circle and let X be the random variable denoting the distance of a randomly chosen point
from the center. Then X is a continuous random variable.

Probability Mass Function (pmf): Given a probability space {Ω,F , P}, and a discrete random variable
X : Ω → R, a function pX : Range(X) → [0, 1] is called a probability mass function of X, if for any
x ∈ Range(X) we have,

� pX(x) = P (X = x) is defined as = P (Ax) where Ax = {ω|X(ω) = x} belongs to F for every
x ∈ Range(X).

�

∑
x pX(x) = 1.

Cumulative Distribution Function (cdf): Given a random variable X and its probability mass function
pX , we define the cumulative distribution function FX(a) as follows:

FX(a) = P (X ≤ a) =
∑
x≤a

pX(x)

This is also called a step function for discrete random variable because of its shape.
Note: FX(a) is also defined in a lot of literature as P (X < a). All the discussion that follows can be
carried out with this definition also, just with minor adjustments in the proofs.

� FX : R → [0, 1]

� limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1

� FX is a monotone increasing function, i.e. ∀a ≤ b, F (a) ≤ F (b)

� FX is right continuous, i.e. limx→a+ FX(x) = FX(a).

Transform of a random variable: Let X be a random variable and f : R → R a function. Then we call
f(X) a transform of X.

When X is a discrete random variable, we can find the pmf of f(X) by noticing that P (f(X) = k) =
P ({ω|f(X(ω)) = k}.

Lecture 5

Some standard discrete random variables
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We will now look at four standard discrete distributions which turn up in most practical situations: Indica-
tor/Bernoulli, Binomial, Geometric and Poisson distributions.

Indicator Random Variable: Given a sample space Ω and an event A ⊆ Ω, we say that the indicator
random variable of the event A, denoted by 1A is the random variable with Range(1A) = {0, 1} and has
the following pmf:

1A(ω) =

{
1, ω ∈ A

0, ω /∈ A

If P (A) = p ≥ 0, then this is also denoted by 1(p), and p is said to be the parameter of the Indicator
random variable.

Indicator Random variables are very useful because they give is simple mathematical ways to represent set
operations.

For any two events A and B, if their indicator random variables are 1A and 1B , then we can check that,

� 1A∩B = 1A · 1B

� 1A∪B = 1A + 1B − 1A∩B

Bernoulli Random Variable: It is the same random variable as Indicator, only we think of the event A
as success in the experiment and A as failure.

X(ω) =

{
1, ω is a Success

0, ω is a Failure

Binomial Random Variable: A Binomial random variable Bin(n, p) is used to denote the number
of successes in n independent, identical Bernoulli trials, each with a probability p of success. So,
if X ∼ Bin(n, p), by which we mean X is a random variable with Bin(n, p) distribution, then,
Range(X) = {0, 1, ...n}.

We note that if X ∼ Bin(n, p), then pX(i) =
(
n
i

)
pi(1− p)n−i, where 0 ≤ i ≤ n.

And we can check that this is a valid probability mass function by checking that,

n∑
i=0

(
n

i

)
pi(1− p)n−i = 1

Notice that Binomial random variables are defined with two parameters, n ∈ N, and 0 ≤ p ≤ 1.

(Note: the following is not the same as Geometric probability examples we did in first lecture where we
found probability by looking for areas in geometric figues. The following is a discrete random variable.)

Geometric Distribution: A random variable X ∼ Geo(p) is said to have geometric distribution with
parameter p, if Range(X) = {1, 2, ...}, the natural numbers, and pX(i) = (1− p)i−1p, i ≥ 1.

Note: It is good to think of Geometric distribution as a random variable counting the number of times
a Bernoulli experiment (with probability of success p) is repeated until it results in a success.

Also further note that Geometric distributions are defined on one parameter, 0 ≤ p ≤ 1.
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The Poisson distribution is used when we have a very large collection of independent small probability events
and we are interested in the number of occurances in a fixed time interval. For example, number of cars
that will have a flat tyre on a certain day (there are millions of cars, and each has a very minor probability
of having a flat tyre, and each of these are independent events). We notice that for two disjoint intervals of
time of same length, since all events are independent, the average number of occurances in both intervals
must be the same. We call this average λ.

Poisson distribution: A random variable X ∼ Pois(λ) has Poisson distribution with parameter λ > 0
(lambda), if its probability mass function is given by,

pX(i) = P (X = i) = e−λλ
i

i!
, i = 0, 1, 2, ...

Here, λ denotes the average number of occurances in a fixed time interval. Note: in P (X = i), we are
computing the probability of i occurrances in the same time interval. If the duration of the time interval
is changed, then λ should be changed accordingly.

Poisson approximation of Binomial distribution: Let X ∼ Bin(n, p), where n is large and the parameter
p is small, so that λ = np is moderate. Then,

P (X = i) =
(
n
i

)
pi(1− p)n−i =

(ni)
ni λ

i(1− λ
n )

n−i

If np → λ as n → ∞, then the above tends to e−λ λi

i! .
So, for large n and a small p, we can approximate Bin(n, p) with Pois(np).

Lecture 6

Expected value

The lecture started with why Poisson distribution can be used to approximate Binomial, which can be found
at the end of Lecture 5.

Expected Value: The expected value of a discrete random variable X, denoted E(X) or µX , is defined
as

E(X) = µX =
∑

x∈Range(X)

xP (X = x) =
∑

x∈Range(X)

xpX(x)

Note: The expected value is always defined for simple random variables. For general discrete random
variables, it is defined if the sum is absolutely convergent, i.e.

∑
x |x|pX(x) = L for some limit L.

Properties of Expected Value:

� Translation: E(X + b) = E(X) + b

� Scaling: E(aX) = aE(X)

Linearity of Expectation: For any two (not necessarily independent) random variables X and Y such
that expected value of both exists, E(X + Y ) = E(X) + E(Y ).

Product of RVs: For any two independent random variables X and Y such that their expected values
exist, E(XY ) = E(X)E(Y ).
Note: Here independence is crucial, the result may not be true if X and Y are not independent.
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LOTUS (Law of the Unconscious Statistician):

E(g(X)) =
∑

x∈Range(X)

g(x)pX(x)

provided this series is absolutely convergent, that is,
∑

|g(x)|pX(x) exists.

Variance: The Variance of a random variable X, denoted V ar(X), is defined as E((X − µX)2) which
can be further simplified to E(X2)− (E(X))2.
Note: As for the expected value, variance is defined if the series in its computation is absolutely conver-
gent.

Standard Deviation: For any random variable X, the standard deviation σX =
√

V ar(X). It is used to
find the ’spread’ of the random variable in the same units as the variable.

Moments: The ith moment of a random variable X is defined as E((Xi)).

Lecture 7

Variance and MGF, Quicksort

A nice application of Linearity of Expectation is proving the average case running time of Quicksort. In
Quicksort, at every stage the algorithm picks a pivot and divides the list into two of elements smaller and
greater than the pivot, after which we recursively call quicksort on the two smaller arrays.

The first key observation we can see is that we can construct a Binary Search Tree with the first pivot as
root, the pivot for the smaller elements as the root of the left subtree etc. We notice that the number of
comparisons made in Quicksort is the same as number of comparisons made in constructing this BST from
a sequence of numbers. So average running time is the same as the average cost of making a BST from a
random permutation of numbers.

Let x1, x2, ..., xn be a random permutation. We notice that the BST after the insertion of x1, x2, ..., xj is
sufficient to determine if xi will be compared with xj . In this subtree, the numbers x1, x2, ..., xj determine
j + 1 intervals. For example if the numbers were 3, 1, 5, 2, 4, then the numbers in order are 1, 2, 3, 4, 5 and
these define the six intervals (−∞, 1), (1, 2), (2, 3), (3, 4), (4, 5) and (5,∞). Our key observation is the follow-
ing:

Lemma: xi is compared with xj during insertion if and only if it is in the two neighboring intervals
around xj in the intervals defined by x1, x2, ..., xj .

Proof: this follows directly from the property of an in-order traversal of BST, that if (xk, xl) is an interval
then one of them must be an ancestor of the other, say xk is the ancestor. Then, during insertion, if
xi is in this interval, then it will be compared with every element on the path in BST from xk to xl,
including them.

Theorem: Average runtime of making a BST from a random permutation is O(n log n).
Proof: Let x1, x2, ..., xn be a random permutation and let 1i,j be the indicator random variable of
whether xi and xj are compared during the construction of the BST from this permutation.
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Then, the total cost of building the BST is

X =
∑
i

∑
j<i

1i,j

What we are interested in is E(X). Using Linearity of Expectation, this is,

=
∑
i

∑
j<i

P (xi is compared with xj)

We now note that in a random permuation of j + 1 numbers, x1, x2, ..., xj and xi, the probability that

xi and xj are adjacent is 2·j!
(j+1)! =

2
j+1 .

We can easily see that this sum is O(n log n).

Properties of Variance

� V ar(X) ≥ 0. Also, if V ar(X) = 0, then it is ’almost surely’ a constant.

� V ar(aX + b) = a2V ar(X). Then, σaX+b = |a|σX .

Properties of MGF:

� MX(0) = 1

� M
(i)
X (0) = E(Xi), that is, the ith derivative of the MGF evaluated at 0 gives the ith moment.

� Positivity: MX(t) ≥ 0,∀t ∈ R

� Translation: MX+b(t) = ebtMX(t)

� Scaling: MaX(t) = MX(at)

� Sum: For any two independent random variables X and Y , MX+Y (t) = MX(t)MY (t)

� The MGF determines the distribution of the random variable, so two random variables with the
same MGFs must have the same distribution. Mathematically, if MX(t) = MY (t),∀t ∈ R, then,
FX(a) = FY (a),∀a ∈ R.

� Limits of MGF: For a sequence of random variables Xn and another random variable X, if
MXn

(t) → MX(t), then, fXn
→ fX . Note: this property has deliberately been phrased a lit-

tle vaguely because we haven’t really discussed what notion of ’convergence’ of functions we are
using.

Lecture 8

Joint distributions (discrete), Continuous Random Variables

Joint Probability Mass Function: Given two discrete random variables X and Y , the joint probability
mass function is a function, pX,Y : R2 → [0, 1], such that,∑

x

∑
y

pX,Y (x, y) = 1

Here we think of pX,Y (x, y) as the probability that X = x and Y = y.
Where its obvious, the subscript X,Y is dropped and it is written as p(x, y).

12



Marginal Probability Mass Functions: The probability mass functions of X, pX(x) and of Y , pY (y) are
called the marginal probability mass functions.

The marginal probability mass functions can be derived from the joint mass function as follows:

pX(x) =
∑
y

pX,Y (x, y)

pY (y) =
∑
x

pX,Y (x, y)

The expected value of any function g(X,Y ) is given by∑
x

∑
y

g(x, y)pX,Y (x, y)

Independence: Two random variables X and Y are said to be independent if pX,Y (x, y) = pX(x)pY (y),
∀x, y ∈ R.

Let X and Y be two independent random variables. Then,

E(XY ) = E(X)E(Y )

.

Continuous Random variable: X is said to be a continuous random variable, if there exists a Riemann
integrable function fX : R → [0,∞) such that for any a ∈ R, FX(a) = P (X ≤ a) =

∫ a

−∞ fX(x)dx. In

particular,
∫∞
−∞ fX(x)dx = 1.

fX is said to be the probability density function of the random variable X.

Properties of the Cumulative distribution function:

� FX is a monotone increasing function, i.e., FX(a) ≤ FX(b), ∀a ≤ b.

� It is continuous from right, i.e., limx→a+ FX(x) = F (a).

� Limits: limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

For any continuous random variable X, the probability of interval (a, b], or, P (a < x ≤ b) =
∫ b

a
fX(x)dx.

Note: this is also the probability of the intervals [a, b), [a, b] and (a, b).

Lecture 9

Uniform distribution, Exponential distribution

13



Uniform Distribution: X ∼ U(a, b) is said to have uniform distribution if its pdf is given by

fX(x) =

{
1

b−a if a < x < b

0 otherwise

It is good to think of Uniform distribution as each point in the range of X being equally likely, so the
probability density function must be a constant over the range of X. This reasoning is very useful when
we will look at Uniform distributions in higher dimensions.

The probability distribution of the time between two consecutive events in a Poisson process (many small
probability independent events with a constant average rate of occurance) has exponential distribution.

Exponential distribution: X ∼ Exp(λ) is said to have exponential distribution if it is a continuous
random variable with the following probability density function,

fX(x) =

{
λe−λx if x ≥ 0

0 otherwise

for some λ > 0. Here λ denotes the average number of occurances in unit time.

The cumulative distribution function for the Exponential distribution is given by

FX(x) =

{
1− e−λx x ≥ 0

0 x < 0
.

Memoryless property: A random variable X (continuous or discrete) is said to have memoryless property
if the following is true:

P (X > t+ s|X > s) = P (X > t)

for all s, t in the range of X.

Theorem: The distribution of a discrete (continuous) RV is memoryless if and only if it is Geometric
(Exponential).
Proof: Let us assume X is discrete and has memoryless property. Then, P (X > t+s|X > s) = P (X > t)

=⇒ P (X>t+s)
P (X>s) = P (X > t) =⇒ P (X > t+ s) = P (X > s)P (X > t).

Let us set P (X = 1) = p, then P (X > 1) = (1− p). Using the equation above, P (X > i) = (1− p)i and
so P (X = i) = P (X > i− 1)− P (X > i) = (1− p)i−1p.
Similar proof can be used to show that any continuous distribution that has the memoryless property is
necessarily Exponential.

Lecture 10

Expected value, Transforms

Expected value: Given a continuous random variable X with probability density function fX(x), if∫∞
−∞ |x|fX(x)dx = L for some real number L (that is, the integral is absolutely convergent), then the
expected value of X is given by,

E(X) =

∫ ∞

−∞
xfX(x)dx

14



Note: We have the same properties for expected value (scaling, translation, Lotus, linearity) as in the
discrete case.

We also noted that for a discrete random variable whose range is a subset of the positive integers, then
E(X) =

∑n
i=0 P (X > i).

We got this result by rearranging the terms in the summation for expected value.

If X is continuous random variable with non-negative range, then the continuous analog for the formula
above is,

E(X) =

∫ ∞

0

(1− FX(x))dx =

∫ ∞

0

P (X > x)dx

We did not prove this assertion but noted that if we look at the area computed by the expected value
in the graph of FX , then it is the region above the curve, which can be summed up in two ways.

Transformation: Given a random variable X, Y = g(X) is called a transformation of X. It is called a
linear transformation if g(X) = aX + b for some constants a, b.

Steps for solving problems involving transforms, given Y = g(X):

� Find the range(Y ).

� FY (y) = P (Y ≤ y) = P (g(X) ≤ y), here we use g−1 (but carefully!) to write FY (y) in terms of FX().

� differentiate FY to get fY .

Lecture 11

Joint continuous distributions, Expected value

Joint Probability Density Function: Random variables X and Y , are said to be jointly continuous, if
there exists a non-negative Riemann integrable function fX,Y (x, y) : R2 → R, such that

FX,Y (a, b) = P (X ≤ a, Y ≤ b) =

∫ a

−∞

∫ b

−∞
fX,Y (x, y)dxdy

Here, fX,Y (x, y) is said to be the joint probability density function, and FX,Y (x, y) is the joint cumulative
distribution function.
Note that, in particular this would imply that,∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy = 1

It follows that given the joint CDF FX,Y (x, y),

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y)

15



Marginal probability density functions: Given two random variables X,Y and their joint probability
density function fX,Y (x, y), the marginal probability density functions are as follows:

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy

and

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

Many jointly continuous variables: Random variables X1, X2, ...Xn are said to be jointly continuous, if
there exists a non-negative Riemann integrable function fX1,X2,...Xn(x1, x2, ..., xn) : Rn → R, such that

FX1,X2,...Xn
(a1, a2, ..., an) =

∫ a1

−∞
...

∫ an

−∞
fX1,X2,..Xn

(x1, x2, ..., xn)dx1dx2...dxn

and in particular, this would imply that,∫ ∞

−∞
...

∫ ∞

−∞
fX1,X2,..Xn

(x1, x2, ..., xn)dx1dx2...dxn = 1

Independence: Two random variables X and Y are said to be independent if FX,Y (x, y) =
FX(x)FY (y), ∀x, y ∈ R.
Taking partial derivative of the above with respect to x and y, we can see that,

fX,Y (x, y) = fX(x)fY (y), ∀x, y ∈ R

Expected Value: Let X,Y be two random variables. Then, for any function g(X,Y ), the expected value
is defined as

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y)dxdy

provided that
∫∞
−∞

∫∞
−∞ |g(x, y)|fX,Y (x, y)dxdy is defined.

Lecture 12

Covariance, Correlation, Covariance matrix

Covariance: Let X,Y be two random variables. Then, the covariance of X and Y , denoted by Cov(X,Y )
is defined as E((X − µX)(Y − µY )). Because of Linearity of expectation, this is E(XY )− µXµY .

If two random variables X,Y are independent, then E(XY ) = µXµY , so Cov(X,Y ) = 0.
Note: If X,Y are two random variables such that Cov(X,Y ) = 0, it does not imply that X,Y are
independent!

Properties of Covariance

16



� (Commutative) Cov(X,Y ) = Cov(Y,X).

� If X,Y are independent, Cov(X,Y ) = 0. (Note: The converse is not true! Cov(X,Y ) = 0 does
not imply that X,Y are independent.

� Cov(aX + b, Y ) = aCov(X,Y )

� Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

Recall that we defined the Variance of a random variable X as V ar(X) = E((X − µX)2). This we can
see is E((X − µX)(X − µX)) = Cov(X,X).

Properties of Variance

� V ar(X) ≥ 0. Also, if V ar(X) = 0, then it is ’almost surely’ a constant.

� V ar(aX + b) = a2V ar(X). Then, σaX+b = |a|σX .

� V ar(X+Y ) = V ar(X)+V ar(Y )+2Cov(X,Y ). In particular, if X,Y are independent, then
V ar(X + Y ) = V ar(X) + V ar(Y ).

� V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y ).

Correlation coefficient : Given two random variables,X,Y , the correlation coefficient, denoted by ρ(X,Y )

(pronounced ’Row’ X, Y), is defined as Cov(X,Y )
σXσY

.

Theorem: For any two random variables X and Y , −1 ≤ ρ(X,Y ) ≤ 1.

All the discussion of multiple random variables is much more succintly expressed as vectors. Again consider
X1, X2 as two random variables with joint pmf pX1,X2

. We could instead think of them as a random variable

vector, X =

(
X1

X2

)
. The joint pmf will be the same, only denoted by the vector pX .

Expected value of the random variable vector can be obtained by taking the expected value of each of its

components, µX = E(X) = E

(
X1

X2

)
=

(
E(X1)
E(X2)

)
.

Covariance Matrix: The Covariance Matrix for X is denoted by Σ and is defined as follows: Σ =
Cov(X,X) = E((X − µX)(X − µX)T )

= E

(
(X1 − µ1)

2 (X1 − µ1)(X2 − µ2)
(X1 − µ1)(X2 − µ2) (X2 − µ2)

2

)
=

(
V ar(X1) Cov(X1, X2)

Cov(X1, X2) V ar(X2)

)

Properties of the Covariance Matrix: Let X be a random variable vector and A a matrix of constants.
Then ΣA = Cov(AX,AX) = ACov(X,X)AT = AΣAT .
Where Σ is the Covariance matrix of X and ΣA is the Covariance matrix of AX.

Lecture 13

The probabilitic method
Here we saw applications of probability in some elegant results in discrete math. No notes for this, you
snooze you loose!
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Lecture 14

Central Limit Theorem, Normal distribution

Standardization: For any random variable X with expected value µ and standard deviation σ, we call
Z = X−µ

σ the standardization of X. We note here that Z will have expected value 0 and standard
deviation 1.

Given X1, X2, ..., Xn independent identically distributed random variables, all with expected value µ and
standard deviation σ, the random variable X =

∑n
i=1 Xi has expected value nµ and standard deviation

√
nσ, and so it can be standardized as

∑n
i=1 Xi−nµ√

nσ
.

Central Limit Theorem (Simplified version): Let X1, X2, X3, ... be a sequence of independent, identically
distributed random variables, with E(Xi) = 0 and V ar(Xi) = E(X2

i ) = 1, ∀i. Further let Zn =
X1+X2+...+Xn√

n
. Then,

lim
n→∞

MZn
(t) → e

1
2 t

2

Central Limit Theorem: Let X1, X2, X3, ... be a sequence of independent, identically distributed random
variables. Let E(Xi) = µ and V ar(Xi) = σ2, ∀i. Further let Zn = X1+X2+...+Xn−nµ

σ
√
n

. Then,

lim
n→∞

MZn
(t) → e

1
2 t

2

Normal distribution: A continuous random variable X is said to have Normal distribution N(µ, σ2), if
its probability density function is defined as follows:

fX(x) =
1√
2πσ

e−
1
2

(x−µ)2

σ2

Where µ ∈ R and σ ∈ [0,∞) or R+.

Standard Normal Distribution: When the parameters µ = 0 and σ2 = 1, then the distribution is called
the Standard Normal Distribution and denoted by N(0, 1). We usually use the letter Z for a random
variable with standard normal distribution. So,

fZ(z) =
1√
2π

e−
1
2 z

2

Φ(a): The CDF of the standard Normal distribution is denoted by Φ(a) (pronounced as Fi in Five).

So, for Z ∼ N(0, 1), Φ(a) = P (Z ≤ a) =
∫ a

−∞
1
2π e

− 1
2 z

2

dz. This integral doesn’t have a nice solution in
elementary functions but can be approximated.
The density function fZ(z), or the bell curve, is symmetric about 0. This gives us the very useful
property that P (Z ≤ −a) = P (Z ≥ a), ∀a.

Below is the table for Φ(a):
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Standardization of the general normal distribution: X ∼ N(µ, σ2), then the transform X−µ
σ has standard

normal distribution. So to find P (X ≤ a), we use the fact that this is equal to P (X−µ
σ ≤ a−µ

σ ) = Φ(a−µ
σ ).

Moments of standard normal distribution: Let Mi = E(Zi) denote the ith moment of the standard
normal distribution N(0, 1). Then, Mi = (i− 1)Mi−2, M0 = 1 and M1 = 0.

Variance and Standard Deviation: For Z ∼ N(0, 1), the standard normal variable,

E(Z) = 0, and V ar(Z) = σZ = 1

For X ∼ N(µ, σ2), a variable with general normal distribution,

E(X) = µ, V ar(X) = σ2 and σX = σ
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MGF: The moment generating function of the standard normal distribution is = e
1
2 t

2

Using Linearity and Scaling properties of MGFs, we can see that the MGF of the general normal
distribution is = eµt+

1
2σ

2t2

Lecture 15

Bivariate Normal Distribution

Transformation of a Normal Distribution: The linear transform of a random variable with normal
distribution will also have normal distribution. More formally, letX ∼ N(µ, σ2). Further, let Y = aX+b.
Then Y ∼ N(aµ+ b, a2σ2).
Note: This gives us the potential to transform any normal distribution to the standard normal distri-
bution. This process is called Standardization. If X ∼ N(µ, σ2), then X−µ

σ ∼ N(0, 1). And so every
normal distribution is just a linear transform of the standard normal distribution, that is, it is obtained
by scaling and translating the standard normal distribution.

Radially symmetric distributions: Suppose X,Y are two independent random variables, where we also
know that the joint density function only depends on the distance from the origin. Then (X,Y )T must
have the standard normal distribution (upto a constant factor). That is X,Y ∼ N(0, σ2) for some
σ > 0.

Standard Bivariate Normal distribution: Denoted by Z =

(
Z1

Z2

)
, the standard bivariate normal

random variable consists of two independent random variables with standard normal distribution. So,
the joint probability density function is given by,

fZ1,Z2(z1, z2) =
1

2π
e−

1
2 (z

2
1+z2

2)

E(Z) =

(
0
0

)
The covariance matrix is the identity matrix. Recall,

Σ = Cov(Z) =

(
V ar(Z1) Cov(Z1, Z2)

Cov(Z1, Z2) V ar(Z2)

)
=

(
1 0
0 1

)

Convolution of Normals: Given two independent random variables X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2), any

linear combination of them also has normal distribution. In particular, for any two non-zero constants
c1, c2 ∈ R, c1X1 + c2X2 ∼ N(c1µ1 + c2µ2, c

2
1σ

2
1 + c22σ

2
2).

From this we can conclude that for any linear transform matrix A, the two components of the transform
AZ where Z is the random variable vector with standard bivariate normal distribution, also have normal
distribution. We use this to define the general bivariate normal distribution vector.

General Bivariate Normal distribution: A random variable vector X has a bivariate normal distribution
if ∃A ∈ R2×2 and a µ ∈ R2 such that X = AZ + µ, where Z is the standard bivariate normal
distribution random variable vector.
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We can notice the following properties of X:

E(X) =

(
µ1

µ2

)
= µ

ΣX = Cov(X) = AAT

Joint Probability Density Function: The joint probability density functon of X ∼ N(µ,Σ) is given by,

fX(x1, x2) =
1

(
√
2π)2|Σ|e

− 1
2 (X−µ)T (Σ)−1(X−µ).

It is useful to note that for any matrix

(
a b
c d

)
, let the determinant D = ad− bc be non-zero. Then, the

inverse of the matrix is given by 1
D

(
d −b
−c a

)
.

Properties of the bivariate normal distribution: Let X1, X2 be the components of a bivariate normal
distribution. Then the following are true:

� Linear combination c1X1 + c2X2, for non-zero c1, c2, has normal distribution.

� If X1, X2 are uncorrelated, then they are independent. (Counter example to this in general case is
let X be standard normal and Y = WX where W takes values 1 and −1 with probability 1

2 .

� Regression E(X2|X1) is the linear regression.

Lecture 16

Simple Linear Regression

Method of Least squares for Simple Linear Regression: The linear transform of X given by βX + α,
where α, β ∈ R, which minimize the error in estimation of Y , represented by E((Y −(βX+α))2) (method
of least squares), is given by:

β =
Cov(X,Y )

σ2
X

α = E(Y )− Cov(X,Y )

σ2
X

E(X)

and the error of such an approximation is,

= σ2
Y (1− (ρ(X,Y ))2)

where ρ(X,Y ) is the correlation coefficient.

Lecture 17

Conditional distributions (discrete, continuous)

‘
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Joint Conditional Mass Function: For two random variables X,Y , the joint conditional probability mass
function of X conditioned on a specific value of Y = y where pY (y) ̸= 0, is given by,

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

We can think of pX|Y (·|y) as an updated probability mass function for the variable X. In particular,∑
x

pX|Y (x|y) = 1

Some properties of the joint conditional probability mass function:

�

∑
x pX|Y (x|y) = 1, or pX|Y is a probability mass function for X.

� pX|Y (x|y) = pX(x) when X and Y are independent.

� FX|Y (a|y) =
∑

x≤a pX|Y (x|y), since pX|Y is a pmf, we have to sum it as before to get the joint
conditional cumulative distribution function.

Joint Conditional Probability Density Function: For two continuous random variables X,Y with joint
pdf given by fX,Y (x, y), for the values of Y = y where the density function fY (y) ̸= 0, there the joint
conditional probability density function is given by,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

Joint Conditional Cumulative Distribution Function:

FX|Y (a|y) =
∫ a

−∞
fX|Y (x|y)dx

Lecture 17

Regression, Law of Total Expectation, Law of Total Probability

Conditional Expectation: The conditional expected value of a discrete random variable Y , conditioned
on X = c is as follows:

E(Y |X = c) =
∑
y

ypY |X(y|c)

while if Y is continuous, then its given by,

E(Y |X = c) =

∫ ∞

−∞
yfY |X(y|c)dy
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Regression: The function E(Y |X = x), also written as E(Y |X), is called the Regression of the variable
Y in terms of X. It is the function of x which minimizes the least squares error of approximating Y
with a function of X, or, E((Y − g(X))2) is minimized if g(X) = E(Y |X = x).
Here Y is called the ’dependent’ variable, while X is called the ’independent’ variable.

Properties of Regression:

� E(aY + b|X) = aE(Y |X) + b.

� For any function h(X), E(h(X)Y |X) = h(X)E(Y |X). In particular, E(h(X)|X) = h(X).

� E((Y − g(X))2) is minimum for g(X) = E(Y |X).

Karger’s Algorithm: please see for further details.

Lecture 18

Law of Total Expectation, Law of Total Probability

For any random variable X, E(|X − c|) is minimized when c is the median, that is,
∫∞
c

fX(x)dx = 1
2 .

Steiner Equality: For any random variable X, E((X − c)2) is minimized when c = µ, where µ = E(X).

Law of Total Expectation: For any two random variables X,Y , we have E(E(Y |X)) = E(Y ).
Proof sketch for simple random variables (range is finite).

E(E(Y |X)) =
∑

x E(Y |X = x)pX(x) =
∑

x

(∑
y ypY |X(y|x)

)
pX(x) =

∑
x

(∑
y y

pX,Y (x,y)
pX(x)

)
pX(x)

For simple random variables X and Y , it is easy to see that we can rearrange the above terms to get,
=

∑
x

∑
y ypX,Y (x, y) = E(Y )

Note: the above proof, with more care, can be modified to work for infinite and continuous random
variables.

Note: It is important to note that in E(E(Y |X)), the outer expected value is taken in terms of the random
variable X, while the inner one in terms of Y where Y here has the conditional distribution (either pY |X or
fY |X).

Proof of Property 3: Let g(X) be a function that minimizes E((Y − g(X))2).
Using Law of Total expectation, we can write this as,

E(E((Y − g(X))2|X = x))

where the outer expectation is over the variable X and the inner over the random variable Y conditioned
on X = x. We recall Steiner’s inequality that, E((X − c)2) is minimized when c = E(X). Then the
above expected value is minimized when,

g(X) = E(Y |X = x)

So regression function, E(Y |X = x) can be thought of as the best approximation of Y as a function of
X (best in terms of least squared errors).
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Law of Total Probability: For any event A,

P (A) =

∫ ∞

−∞
P (A|X = x)fX(x)dx

Lecture 19

Inequalities

We continue this week with proof of the theorem that E((Y − g(X))2) is minimized for g(X) = E(Y |X).

We also note without proof that if (X,Y ) has bivariate normal distribution then E(Y |X) is the same as the
linear regression of Y in terms of X and use it to solve some problems.

Markov Inequality: Given a positive random variable X (P (X < 0) = 0), the following is true for any
real number a > 0:

P (X ≥ a) ≤ E(X)

a

Chebyshev’s Inequality: Given any random variable X with mean µ and standard deviation σ, the
following is true for any real number a > 0:

P (|X − µ| ≥ a) ≤ σ2

a2

Another way of writing it using the standardization of X:

P (
∣∣∣X − µ

σ

∣∣∣ ≥ a) ≤ 1

a2

In this second inequality, a = 2, 3, 4 gives the probability of X being within 2, 3, 4 standard deviations
of the mean is at least 75%, 89% and 93.75% respectively.

Chernoff’s bounds: Given any random variable X, the following is true for any real number a (not
necessarily positive):

P (X ≥ a) ≤ MX(t)

eta
,∀t > 0

Note that we optimize the parameter t to get the best bound.

Weak Law of Large Numbers: Given a sequence X1, X2, ..., of i.i.d random variables (pairwise inde-
pendence is sufficient) with mean µ and standard deviation σ, we define a new sequence of averages,

Xn =
∑n

i=1 Xi

n . Then the following is true for all ϵ > 0:

lim
n→∞

P (|Xn − µ| > ϵ) = 0

Strong Law of Large Numbers: Given a sequence X1, X2, ..., of i.i.d random variables with mean µ, we

define a new sequence of averages, Xn =
∑n

i=1 Xi

n . Then the following is true for all ϵ > 0:

P ( lim
n→∞

Xn → µ) = 1
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or in other words, Xn almost surely (with probability 1) converges to the mean µ.
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Wish you Good Luck in all future endeavors!
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