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Abstract. Recently, there has been growing interest in Machine 

Learning as a Service (MLaaS). In MLaaS, an operator provides pre-

trained neural networks, with which inference on clients’ inputs can be 

performed. MLaaS is attractive in providing edge intelligence in an 

Internet of Things (IoT) setup for multiple reasons, for example because 

it relieves clients with limited capacity from the computationally heavy 

training process. However, MLaaS may lead to privacy threats for both 

the client and the provider. In particular, the input of the client may be 

sensitive information that the provider is not allowed to learn. The 

provider, on the other hand, may not want to reveal the parameters of the 

neural network to the client, because these parameters are the provider’s 

intellectual property. Besides, the output of the neural network might 

also reveal sensitive properties about the input. Lastly, traditional 

security solutions might fail in an IoT setup. In recent years, several 

cryptographic protocols have been devised for secure neural network 

inference (SNNI). Secure neural network inference entails the problem 

of computing the output of a neural network on the client’s input without 

revealing the input to the provider, nor the parameters of the neural 

network to the client. So far, SNNI approaches were optimized for 

efficiency and accuracy, mainly in cloud settings. The goal of this 

chapter is to investigate the applicability of SNNI approaches in an edge 

computing setup. In particular, with power-constrained edge and IoT 

devices in mind, we investigate power consumption and energy 

consumption characteristics of SNNI approaches. Taking into account 

the typical bandwidth of access networks relevant to edge and IoT, we 

also investigate the effect of bandwidth limitations on the duration and 

energy consumption of the SNNI process. Our results indicate that the 

power consumption of SNNI depends significantly on both the used 

 
1 This paper was published in: S. Pal, C. Savaglio, R. Minerva, F. C. Delicato (editors): IoT Edge 

Intelligence, Springer, pp. 265-288, 2024 
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1 Introduction 

With the rise in the availability of large amounts of data and computing resources, 

machine learning (ML) has gained huge importance. ML techniques like Neural 

Networks (NN) are promising ways to analyze data, to make decisions, and to predict 

future developments. ML has a wide variety of applications domains such as water 

quality evaluation [ZWY+2022], mental health prediction [CT2022], fake news 

detection [CA2023] and more [LYZ+2022] [GDL+2016].The use of ML typically 

consists of two phases: training and inference. In the training phase, a NN is trained by 

feeding an extensive dataset to find the best parameter values for the NN. In the 

inference phase, the NN is applied to new inputs. The training phase is often a tedious 

and time-consuming process. Because not everyone has the time, resources, data, and 

know-how to train a NN, Machine Learning as a Service (MLaaS) became popular 

[HLL+2021]. In MLaaS, a company or other party offers a pre-trained NN to its clients. 

This way, clients can benefit from inference with the NN, without needing to worry 

about the training phase. This is an incredibly useful application in the Internet of 

Things (IoT) [TKC+2020], for example patient monitoring by medical sensors 

[SRR+2021], or using IoT sensors to analyze real-time performance in automotive 

manufacturing [SAF+2018]. 

A typical MLaaS situation (Fig. 1) consists of two parties: the client holding an input 

𝑥 and a service provider holding a pre-trained neural network realizing a function 𝑓.  

This research focuses on the inference part: the client wants to know the output of the 

NN, available on a server owned by the service provider, applied to input 𝑥 held by the 

client. This could be easily achieved: the client sends 𝑥 to the server, the server 

calculates 𝑓(𝑥) and sends back the result to the client. 

However, such a naïve implementation of MLaaS would lead to significant threats 

to security and privacy [TM2021]. The client’s input may be confidential and the client 

may therefore be reluctant to send 𝑥 to the server. Furthermore, the output 𝑓(𝑥) of the 

NN on the given input could also be confidential, resulting in the need to retain this 

information from unauthorized parties. Besides, traditional security and privacy 

approaches may fail on IoT devices [SKA+2023], for example because these devices 

heavily rely on other nodes in the network [LXZ2015].  

An alternative implementation could consist in downloading the NN to the client and 

performing the inference there. However, this would also be problematic. For the 

service provider to train the model as accurately as possible, access to a large amount 

of precise data is needed, which may consist of sensitive information. This data, or 

properties of this data, could be stolen in the inference phase by the client. In addition, 

the service provider could be worried that the client or another adversary could steal 

the parameters of the NN, thus interfering with the business model of the service 

provider [QIU+2020]. Lastly, this may not work for IoT devices, since they often are 

power and resource constrained [LXZ2015]. 

Therefore, the aim is that the client receives 𝑓(𝑥), without learning anything about 
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the parameters of the NN (beyond what 𝑓(𝑥) might reveal about them), and the server 

does not learn anything about 𝑥 or 𝑓(𝑥). This is the Secure Neural Network Inference 

(SNNI) problem. In recent years, many different approaches have been proposed to 

solve the SNNI problem [MWC+2023]. 

The SNNI approaches proposed so far were mainly optimized for and evaluated in a 

setup where both the client and server computers are powerful machines, often in the 

cloud, connected by a network with high bandwidth. In addition, evaluation mostly 

focused on latency (i.e., the duration of the SNNI process). 

However, there is an increasing tendency to employ ML inference in an edge 

computing setup and/or in connection with the Internet of Things (IoT), often involving 

sensitive data, like medical data [LMD2021, SRR+2021]. In such a setup, security and 

privacy requirements have to be considered in conjunction with requirements stemming 

from the constrained resources of the involved devices and of the network [Man2022]. 

 

 
Fig. 1. Secure Neural Network Inference (SNNI) process in a Machine Learning as a Service 

(MLaaS) context. The neural network (NN) is already trained to realize a function 𝑓. The client 

provides an input 𝑥 to the NN and wants to know the output 𝑓(𝑥) of the NN for this input. 

 

In edge computing and IoT settings, energy consumption also plays a crucially 

important role [AAM+2021]. Client devices are often battery-powered, where the 

usefulness is heavily influenced by the battery life. Besides, client devices are often 

very constrained in terms of computing power. Companies, on the other hand, also want 

to keep energy consumption as low as possible because of energy costs and budget 

limitations, and should therefore try to avoid big energy overhead. Moreover, a server 

is often connected with many clients in a deeply connected IoT network. Metrics like 

energy and power consumption are therefore also of importance, and should be 

investigated. Another reason to limit energy consumption is the desire to reduce carbon 

emission in the fight against climate change. For example, an estimation made in the 

SMARTer 2030 report is that all ICT systems worldwide will make up for 2% of the 

global carbon emission in 2030 [Glo2015]. The growing number of IoT devices also 

contribute to the increase in global power consumption. Researchers also state that ICT 

programmers will have the potential to avoid 20% of the global greenhouse gas 

emissions with smart programming. However, the energy consumption of SNNI 

approaches has not been investigated yet. 

The aim of this paper is to provide insight into the applicability of proposed SNNI  

approaches for edge intelligence in both edge computing and IoT setups. Our goal is to 

achieve a better understanding of the factors that could potentially limit the deployment 

of SNNI for edge intelligence in edge computing and IoT setups. We focus on two 
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properties of such setups: (1) the importance of power and energy consumption, and (2) 

limited network bandwidth. We perform a set of experiments to investigate the power 

and energy consumption of two state-of-the-art SNNI approaches. In particular, we 

make the following contributions: 

• We empirically compare the two SNNI approaches on two different NNs in 

terms of energy and power consumption on both the client and the server 

side. 

• We investigate how power consumption changes over time during the 

SNNI process. 

• We investigate the impact of the network bandwidth between client and 

server on SNNI latency and on power and energy consumption on both the 

client and the server side. 

The results that we report in this paper offer many important insights into the 

applicability of existing SNNI approaches in edge or IoT setups, the factors for 

selecting one or the other SNNI approach, as well as pointers for future research, thus 

making progress towards secure edge intelligence. 

The rest of the paper is organized as follows. Section 2 introduces the necessary 

background knowledge. NNs, SNNI and the two approaches are discussed here. The 

logical design and technical setup, as well as the evaluation metrics of the experiments 

are discussed in Section 3. In Section 4, the initial measurements of both NNs is 

described and compared. In the second part, the relation between the bandwidth and the 

power consumption is explained. Section 5 presents the lessons learned, while Section 

6 discusses related work, and Section 7 concludes the paper. 

2 Preliminaries 

This section summarizes the necessary background in neural networks, secure neural 

network inference, the CrypTFlow2 and Cheetah SNNI approaches, and the benchmark 

NNs that will be used later in this paper. 

2.1 Neural Networks 

A feed-forward neural network (NN) computes a function, mapping an input vector to 

an output vector. The NN consists of a sequence of layers, numbered from 1 to 𝐿. The 

input of the first layer is the input of the NN, and the output of the last layer is the output 

of the NN. For 1 ≤ 𝑖 ≤ 𝐿 − 1, the output of layer 𝑖 serves as input of layer 𝑖 + 1. Each 

layer computes a function, and the function computed by the NN is the composition of 

the functions computed by the individual layers. 

Layers are often categorized as linear and non-linear. Typical linear layers are: 

• Fully-connected (FC): computes the output vector by multiplying the input 

vector with a given weight matrix. 

• Convolution (CONV): follows a more sophisticated definition, but can also be 

cast as multiplication of the input vector with a given matrix. 

• Batch normalization (BN): scales each element of the input vector by 

multiplying it with a given number and adding another given number to the 

result. 

Typical non-linear layers: 

• Activation functions: the same real function is applied to each element of the 

input vector. An often-used example is the ReLU function, which maps 𝑥 to 
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max(𝑥, 0). 

• Pooling functions: each element of the output vector is computed by applying 

a given function to a subset of the input numbers. An often-used example is 

max-pooling, in which the output number is the maximum of the considered 

input numbers. 

A NN typically contains many parameters, such as the matrices in FC and CONV 

layers. The aim of the training phase is to find appropriate values for these parameters, 

so that the NN computes the desired function, or at least an approximation of it. For 

this purpose, the NN is evaluated on inputs with a known desired output. Comparing 

the actual output of the NN with the desired output, the parameters can be tuned such 

that the actual output of the NN becomes closer to the desired output. 

During the inference phase, the NN is applied to new inputs for which no desired 

output is known. 

In many cases, the NN is used for classification, i.e., to determine which of a given 

set of classes the input belongs to. In such cases, the quality of the trained NN can be 

quantified using its accuracy: the ratio of inputs in a validation dataset for which the 

NN outputs the correct class. 

2.2 Secure Neural Network Inference 

In Machine Learning as a Service (MLaaS), a service provider has trained a NN and 

offers inference with this NN as a service. A client can use the service to obtain the 

output of the NN on a given input provided by the client. 

Such a scenario may involve some secrecy constraints. The input and the output may 

constitute sensitive information that the client wants to keep secret. The parameters of 

the NN constitute the intellectual property of the service provider which the service 

provider may not be willing to disclose. Thus, the secure neural network inference 

(SNNI) problem is to compute the output of the NN in such a way that the client only 

learns the output, but nothing about the parameters of the NN (beyond what the output 

might reveal), while the service provider learns nothing about the input nor the output. 

In recent years, several SNNI approaches have been proposed [MWC+2023]. They 

use sophisticated cryptographic protocols to solve the SNNI problem. 

In particular, SNNI can be cast as a secure 2-party computation (2PC) problem. 2PC 

means that two parties, typically denoted as Alice and Bob, compute 𝑓(𝑥, 𝑦), where 𝑓 

is a publicly known function, 𝑥 is Alice’s secret input and 𝑦 is Bob’s secret input. A 

2PC protocol guarantees that neither party learns anything about the other party’s input, 

beyond what the output reveals. In the case of SNNI, Alice is the client, Bob is the 

service provider, 𝑥 is the input to the NN, 𝑦 is the set of NN parameters (such as the 

elements of the weight matrices), and 𝑓 is the evaluation of the NN with parameters 𝑦 

on input 𝑥.2 

Several 2PC techniques exist that can be leveraged for SNNI. One such technique is 

additive secret-sharing. A number 𝑥 is secret-shared between two parties by generating 

two numbers 𝑥1 (given to one party) and 𝑥2 (given to the other party) in such a way that 

 
2 In this formulation of the SNNI problem, the structure of the NN is publicly known. 

A possible other formulation would entail that the structure of the NN is part of Bob’s 

secret input. However, we will stick to the formulation given above because it allows 

more efficient implementations and is in line with the assumptions underlying most of 

the state-of-the-art SNNI approaches. 
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𝑥1 + 𝑥2 = 𝑥 but otherwise 𝑥1 and 𝑥2 are random. It is possible to perform simple 

operations, such as addition and multiplication, on secret-shared numbers using 

appropriate protocols. Such protocols can be composed to compute more complicated 

functions on secret-shared numbers. 

Another useful 2PC primitive is Oblivious Transfer (OT). In OT, Alice has two 

messages 𝑚0 and 𝑚1, while Bob has a selection bit 𝑏 ∈ {0,1}. The aim is that Bob gets 

the message 𝑚𝑏, without learning anything about the other message, while Alice learns 

nothing. OT and its various extensions (e.g., for more than two messages) can be used 

as building blocks in many 2PC protocols. For example, the most efficient known 

protocols for computing some non-polynomial functions, such as ReLU, on secret-

shared numbers, use OT. 

Homomorphic encryption (HE) can also be used in the context of 2PC. An 

encryption scheme is called partially homomorphic if at least one operation on 

plaintexts (e.g., addition or multiplication) can be evaluated homomorphically, i.e., by 

appropriate manipulation of the corresponding ciphertexts. Fully homomorphic 

encryption (FHE) schemes support the homomorphic evaluation of both addition and 

multiplication. In a 2PC setting, FHE allows Alice to encrypt her input and send it to 

Bob, who can evaluate any polynomial function on Alice’s encrypted input, without 

learning Alice’s secret input. After sending the encrypted result to Alice, she can 

decrypt it to obtain the result in plaintext. 

Different 2PC protocols have different advantages and disadvantages. For example, 

homomorphic encryption is appropriate for evaluating linear layers of a NN, while for 

non-linear layers, OT-based protocols are more appropriate [HLH+2022]. Hence, many 

SNNI approaches combine different 2PC protocols on a per-layer basis. They use 

additive secret-sharing as an overarching scheme: as an invariant, the inputs to each 

layer are secret-shared between the parties, and the protocol for the layer yields its 

output again secret-shared between the parties. This way, different protocols can be 

composed, paving the way for a variety of SNNI approaches. Under appropriate 

conditions, it can be proven that such protocols satisfy the secrecy requirements 

[HLH+2022]. 

2.3 CrypTFlow2 / SCIHE / SCIOT 

CrypTFlow2 [RRK+2020] is a typical representative of SNNI approaches combining 

different types of protocols for different types of NN layers, using additive secret-

sharing as the overarching method. The major contribution of CrypTFlow2 is a set of 

sophisticated and highly optimized protocols for non-linear layers (ReLU, MaxPool, 

ArgMax) and division, using OT. (Division is used to maintain a fixed bitlength and in 

MeanPool layers.) 

For linear layers, CrypTFlow2 implements two different protocols, one based on HE 

and another based on OT. 

CrypTFlow2 ensures that its output is bitwise equal to the output of cleartext 

inference, i.e., the used security protocols do not distort the output in any way. For this 

reason, the SNNI approach of CrypTFlow2 is also called SCI, an abbreviation for 

Secure and Correct Inference. More precisely, CrypTFlow2 provides two SNNI 

approaches, denoted as SCIHE and SCIOT. SCIHE and SCIOT only differ in whether they 

handle linear layers with HE or with OT. 

In this work, we use SCIHE because it incurs less communication and is thus more 

efficient in the case of limited bandwidth than SCIOT [RRK+2020]. 
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2.4 Cheetah 

Cheetah [HLH+2022] is one of the most recent SNNI approaches. It provides a highly 

optimized solution for SNNI. Cheetah was shown to be significantly faster than 

previous approaches, such as CrypTFlow2 [RRK+2020], and able to perform secure 

inference with large neural networks such as ResNet50 in less than 2.5 minutes in WAN 

settings [HLH+2022]. 

In line with most other recent SNNI approaches, Cheetah (1) uses additive secret-

sharing as the overall 2PC scheme; (2) uses signed fixed-point arithmetic; (3) assumes 

that the NN architecture is known to both parties. 

The main novelties of Cheetah are: 

• For linear layers (fully-connected, convolution, batch normalization), 

Cheetah provides a new technique using homomorphic encryption. The 

used homomorphic encryption scheme is based on polynomials encoded as 

vectors. By arranging parameters carefully into the list of coefficients, 

homomorphic operations can be efficiently implemented as polynomial 

multiplication. Additionally, in contrast to previous approaches, the used 

arithmetic is not in the ring 𝑍𝑝 (for a prime 𝑝), but in the ring 𝑍2𝑘 (for a 

positive integer 𝑘), which makes implementation more efficient and also 

makes conversions between different rings unnecessary when switching 

between layers. 

• For non-linear layers, Cheetah uses improved versions of CrypTFlow2’s 

protocols. For truncation (i.e., division by a power of 2), Cheetah allows a 

small error, enabling a significant speedup of the protocol. A new OT 

extension protocol (silent OT) is used in the protocols of both truncation 

and comparison, with the latter being the basis for multiple further 

protocols, such as for ReLU. The truncation protocol can be further 

accelerated if the most significant bit of the input is known, which is the 

case for example after a ReLU. 

• Some further, smaller optimizations are introduced, for the special case of 

a convolution layer followed by a batch normalization layer, and for 

decreasing the amount of data transfer in the protocols based on 

homomorphic encryption. 

Cheetah was experimentally evaluated using cloud servers with 2.70 GHz CPU and 

16 GB RAM [HLH+2022]. Two network setups were used in the evaluation: LAN with 

384 MBps bandwidth and 0.3 ms latency, and WAN with 44 MBps bandwidth and 40 

ms latency. Using multiple NNs (including SqueezeNet, ResNet32, ResNet50, and 

DenseNet121), Cheetah was compared to and found superior to CrypTFlow2. (For a 

fair comparison, the code in SCIHE was modified to adopt the latest versions of the used 

libraries.) In addition, Cheetah was also compared to SecureQ8, a recent 3-party 

protocol. Cheetah proved faster than SecureQ8 in the WAN setting; however, in the 

LAN setting, SecureQ8 was faster than Cheetah. 

2.5 Benchmark neural networks 

In our experiments, we use two benchmark neural networks that were used in the past 

to evaluate CrypTFlow2 and Cheetah. Both of them are convolutional neural networks 

for image classification, but they significantly differ in terms of their size and their types 

of layers. The two networks are: 
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• SqueezeNet [IHM+2016]: a network of moderate size that was specifically 

created to achieve relatively high accuracy with a strictly limited size (less 

than 500 thousand trainable parameters). It consists of 

o 26 convolutional layers 

o 26 ReLU layers 

o 3 MaxPool layers 

o 1 AvgPool layer 

• ResNet50 [HZR+2016]: with over 23 million trainable parameters, 

ResNet50 is significantly larger than SqueezeNet. Moreover, ResNet50 

features a richer set of layer types:  

o 53 convolutional layers 

o 49 batch normalization layers 

o 98 truncation layers 

o 49 ReLU layers 

o 1 fully-connected layer 

o 1 MaxPool layer 

o 1 AvgPool layer 

o 1 ArgMax layer 

The protocols implementing secure inference with these two neural networks are 

readily available in both CrypTFlow2 and Cheetah. 

3 Design of experiments 

In this section, we describe what we want to experimentally investigate and how we are 

going to do that. We first describe our experiments on the logical level and define the 

evaluation metrics, followed by the description of the technical setup used in the 

experiments. 

3.1 Logical design of the experiments 

Existing SNNI approaches like CrypTFlow2 and Cheetah were evaluated in a cloud 

environment, using powerful computers on both server and client side, and assuming a 

wired connection (either LAN or WAN) between the two computers. As evaluation 

metrics, accuracy, latency (i.e., the time needed to perform an inference), and the 

amount of transferred data were used. 

In contrast, we are interested in the applicability of SNNI approaches in an edge 

computing or IoT environment. Applying SNNI in such an environment entails several 

challenges, from which we focus on two in this paper: 

• In edge computing, energy consumption and power consumption are very 

important. Many edge devices are battery powered, which may limit both 

the momentarily power draw of the device and the available energy budget 

for the inference process. 

• In edge computing, client and server machines may communicate over 

legacy wireless connections (e.g., 3G/4G), offering significantly lower 

bandwidth than what is available in typical wired LAN or WAN 

environments. 

To investigate these aspects, we perform two sets of experiments. In the first set of 

experiments, we compare two SNNI approaches (CrypTFlow2 and Cheetah), using two 

NNs (SqueezeNet and ResNet50), in terms of energy consumption and power 

consumption. We measure energy consumption and power consumption separately for 
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the client computer and the server computer, because in many edge computing 

scenarios, energy and power constraints are more stringent for the client than for the 

server. We also look at how power consumption changes over time during the inference 

process, and how it varies between different executions of the inference process. 

The second set of experiments focuses on the effect of the bandwidth available 

between client and server. For this purpose, we vary the available bandwidth, and 

compare again the two SNNI approaches with the two NNs. We measure the duration 

of the inference process as well as total energy consumption and average power 

consumption on the client and on the server computer. 

According to the experimental results of [HLH+2022], Cheetah was clearly superior 

to CrypTFlow2, in every tested situation and according to all considered metrics. An 

interesting question is whether this holds true in the extended set of situations 

considered in our experiments and considering our extended set of metrics. The results 

might change the preference for choosing a specific SNNI approach in a given situation. 

3.2 Evaluation metrics 

During our experiments, we collect the following metrics: 

• Latency: the duration of the secure inference process for one input. This is 

measured as the difference in wall-clock time between the time when the 

client starts and when the client finishes its part in the inference process. 

Note that the server can start earlier than the client but we disregard the time 

when the server is just waiting for the client, since the actual protocol 

execution starts only when the client joined. At the end of the protocol 

server and client finish at about the same time. Unit: second (s). 

• Average power consumption on the server side: the additional power 

consumption of the server computer caused by the SNNI program, averaged 

over the whole duration of the secure inference process. Note that only the 

duration of the protocol execution is taken into account, i.e., the setup time 

of the server before the client joins is disregarded. Unit: Watt (W). 

• Average power consumption on the client side: analogously to the server-

side power consumption, but measured on the client computer. 

• Total energy consumption of the server side: the integral of the 

instantaneous power consumption over the whole duration of the secure 

inference process. In line with the above, only the duration of the protocol 

execution is taken into account, i.e., the setup time of the server before the 

client joins is disregarded. Unit: Joule (J). 

• Total energy consumption on the client side: analogously to the server-side 

energy consumption, but measured on the client computer. 

3.3 Technical setup 

For performing the experiments, we use two identical computers, one as server and one 

as client. Both computers have the following specification: 

• CPU: Intel Xeon E-2378 @ 2.60 GHz, 8 cores 

• RAM: 64 GB 

• Network controller: Intel I350 

• Operating system: Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-71-generic 

x86_64) 
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During the execution of our experiments, the two computers are used for no other 

purpose; thus, no other workload is running on them. 

For measuring power and energy consumption, we use the Linux Hardware 

Monitoring (hwmon) interface3. Through this interface, we can obtain a new reading 

every second, giving the average power consumption of the system in the last second 

with a resolution of 1.0 W. By periodically measuring this value, we can calculate an 

approximation of the total energy consumption and the average power consumption of 

the system for a longer period of time. 

The two computers are connected by a direct cable connection. For simulating 

different network bandwidths, we use the Linux tc (traffic control) utility to throttle the 

data rate of the client computer. For measuring bandwidth, we use the iperf tool (version 

2.1.5)4. 

We use the latest version of Cheetah, which is commit 0b63d6f from 02 March 

20235. This codebase also includes a version of CrypTFlow2, which is also used in our 

experiments. We do not change any parameters of Cheetah or CrypTFlow2. 

4 Experimental Results 

In this section, we describe the results of our experiments. We start with some initial 

measurements to characterize the experimental environment in terms of bandwidth and 

idle power consumption. Then we conduct experiments on the power and energy 

consumption of Cheetah and CrypTFlow2 and report our findings in terms of both 

aggregated numbers (over the course of an inference) and the development of power 

consumption over time during inference. Finally, we analyze the impact of throttling 

the network bandwidth on power and energy consumption. 

4.1 Initial measurements 

We start our experiments by first measuring some basic properties of our experimental 

environment. 

Without using any bandwidth throttling, the network connection between the client 

and server computers is characterized by the following parameters: 

• Bandwidth between client and server: 941 Mbps 

• Round-trip time between client and server: 0.6 ms 

In addition, we measure the idle power consumption of both computers. For this 

purpose, we measure power consumption with a frequency of 1 sec, for a period of 10 

minutes. From these 600 measurements, we compute the mean and standard deviation. 

The results are shown in Table 1. 

 
3 https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface 
4 https://sourceforge.net/projects/iperf2/ 
5 https://github.com/Alibaba-Gemini-

Lab/OpenCheetah/commit/0b63d6f2cfe979a446a7999ee78d705b6ef5ab81 
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Table 1. Idle power consumption of the test machines 

 Mean Standard deviation 

Server 29.62 W 0.54 W 

Client 29.73 W 0.68 W 

 

From the low standard deviation, we conclude that the idle power consumption of both 

server and client is fairly stable. Therefore, we can measure the power consumption of 

running a program by measuring the power consumption of the system while the 

program is running and subtracting from this value the mean idle power consumption 

of the system. We report this difference as power consumption, and also compute 

energy consumption on the basis of this difference in the experiments described next. 

4.2 Power and energy comparison 

In our first experiment, we use the experimental setup as described above, without any 

modification of the bandwidth. We measure the average power consumption and the 

total energy consumption of performing one secure inference with different SNNI 

solutions and different neural networks. 

Table 2 presents an overview of the results. Each reported number is the result of 

averaging the metrics from 10 runs. The numbers under “Average power” are the result 

of additionally also averaging over the duration of the inference process. 
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Table 2. Comparison of performing one secure neural inference with Cheetah and SCIHE on 

two neural networks in terms of power and energy consumption. The shown numbers are the 

average of 10 measurements 

Neural 

network 

SNNI 

approach 

Participant Latency Average 

power 

Total 

energy 

SqueezeNet 

Cheetah 
Client 

25.5 s 
29.7 W 772.1 J 

Server 27.91 W 725.7 J 

SCIHE 
Client 

79.9 s 
9.96 W 796.9 J 

Server 25.33 W 2,026.57 J 

ResNet50 

Cheetah 
Client 

107.9 s 
25.53 W 2,757.61 J 

Server 42.31 W 4,569.9 J 

SCIHE 
Client 

371 s 
8.83 W 3,276.33 J 

Server 45.12 W 16,741.35 J 

 

In line with the results reported in [HLH+2022], we can see that Cheetah is 

significantly faster than SCIHE, on both neural networks. In light of this, it is also no 

surprise that the overall energy consumption (i.e., server and client together) of Cheetah 

is significantly less than that of SCIHE. 

However, investigating the server’s and the client’s energy consumption separately, 

we can see an interesting difference between Cheetah and SCIHE. In the case of Cheetah, 

the distribution of energy consumption between client and server is balanced, whereas 

in SCIHE, the energy consumption of the server is much larger than that of the client. 

Investigating the average power consumption leads to even more interesting 

findings. In terms of server-side power consumption, Cheetah and SCIHE have roughly 

equal results. However, as a consequence of the large power imbalance of SCIHE 

between client and server, the client-side power consumption of SCIHE is significantly 

lower than that of Cheetah. 

This leads to an interesting trade-off between client-side power consumption on the 

one hand and latency and overall energy consumption on the other hand. In a setup 

where client-side power consumption is not a major concern, Cheetah is more 

appropriate because of its lower latency and lower overall energy consumption. 

However, if client-side power consumption is a major limiting factor (especially for 

battery-powered client devices), then CrypTFlow2 is more appropriate. This is a new 

insight that was not visible in the experimental evaluation in existing work. 

4.3 Timeseries analysis 

To obtain a more detailed understanding of the power consumption characteristics of 

SNNI, we now look at how power consumption evolves over time during the secure 

inference process. 

The aim is to present the distribution of the power consumption at given points in 

time obtained from 𝑘 = 10 measurements. A difficulty lies in the fact that the latency 

of the entire inference process is not constant across different runs. Therefore, we use 

the following methodology for determining the average power consumption at given 

points in time (see also Fig. 2): 

1. We perform 𝑘 runs, storing the power readings for every second in every 

run, leading to 𝑘 time series. Let 𝑡𝑖 denote the duration of the 𝑖th run. 
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2. We determine the average latency 𝑡∗ =
1

𝑘
∑ 𝑡𝑖
𝑘
𝑖=1 . 

3. We modify the time scale of each time series in such a way that their 

duration equals the average latency. That is, the time stamp of every power 

reading in time series 𝑖 is multiplied by 𝑡∗/𝑡𝑖. 

4. We split the interval [0, ⌈𝑡∗⌉] into ⌈𝑡∗⌉ time slots with a size of 1 second.  

5. For each of these time slots, we determine the average and the standard 

deviation of the measured power consumption values whose time stamp 

(after the modification of step 3) falls into the given time slot. This is the 

resulting time series that we visualize. 

 

 
Fig. 2. Methodology for aggregating 𝑘 time series with different duration 

 

The results are shown in Fig. 3 for SqueezeNet and in Fig. 4 for ResNet50. A striking 

property of these plots is the large variance of the power consumption values over time. 

Short periods of low and high power consumption alternate quickly. In addition, when 

taking a closer look, it becomes apparent that in some periods the power consumption 

of the server and that of the client are closely correlated, whereas in other periods they 

are not. 

 

time series 
with different 

duration

time series 
scaled to their 

average duration

data points 
merged in each 

1-second interval
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(a) Cheetah client 

 
(b) SCIHE client 

 
(c) Cheetah server 

 
(d) SCIHE server 

Fig. 3. Power consumption over time while performing secure inference with the SqueezeNet 

neural network. Each plot shows results distilled from 10 runs: the line shows the mean, while 

the shaded area shows the standard deviation around the mean. The plots on the left-hand side 

show results of Cheetah, while the plots on the right-hand side show results of SCIHE, in both 

cases separately for the client (upper plot) and the server (lower plot). It should be noted that 

the scale of the axes is different in the different plots 

 

This seemingly strange phenomenon is actually not at all surprising. Remember that 

both CrypTFlow2 and Cheetah use different protocols for the different types of layers. 

The different protocols differ significantly in how much computation they require from 

the client and the server. Typically, linear and non-linear layers alternate, and the 

corresponding protocols are completely different in terms of being computation 

intensive or communication intensive. In some protocols, the load on server and client 

is similar, whereas in other protocols, the load distribution is strongly asymmetric. Also, 

layers of the same type can have different size, which also can cause significant 

differences in power consumption. 
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(a) Cheetah client 

 
(b) SCIHE client 

 
(c) Cheetah server 

 
(d) SCIHE server 

Fig. 4. Power consumption over time while performing secure inference with the ResNet50 

neural network. The same remarks apply as in the case of Fig. 3 

 

4.4 Impact of the bandwidth 

By throttling the data rate of the client, we emulate computer networks with smaller 

and smaller bandwidth, and measure the impact on latency, average power 

consumption, and total energy consumption. Specifically, we perform measurements 

with the following bandwidth values:  

• 941 Mbps (no throttling) 

• 95.6 Mbps (result of specifying a throttling target of 100 Mbps) 

• 19.2 Mbps (result of specifying a throttling target of 20 Mbps) 

• 3.89 Mbps (result of specifying a throttling target of 4 Mbps) 

We performed the experiments with both Cheetah and CrypTFlow2. However, based 

on the trend observed for the first three bandwidth values, we decided to not run 

CrypTFlow2 for the last (most constrained) bandwidth value. We had two reasons for 

this. First, the latency of CrypTFlow2 was increasing rapidly as the bandwidth was 

being reduced, which not only made our experiments last very long, but also made it 

clear that CrypTFlow2 was not practical in a system with this low bandwidth between 

client and server computer. Second, the average power consumption of CrypTFlow2 

was decreasing quickly as the bandwidth was reduced, and it approached the range of 

measurement errors in our power readings (see the standard deviation in idle power 

measurement in Section 4.1), which made further power measurement unreliable. 
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(a) Latency for SqueezeNet 

 
(b) Latency for ResNet50 

 
(c) Power consumption for SqueezeNet 

 
(d) Power consumption for ResNet50 

 

(e) Energy consumption for SqueezeNet 

 
(f) Energy consumption for ResNet50 

Fig. 5. Impact of the bandwidth between client and server on the latency, average power 

consumption, and total energy consumption of the secure inference process. Note the 

logarithmic scale of the horizontal axis in all plots; additionally, in the latency plots, also the 

vertical axes have a logarithmic scale. All reported numbers are the average from 10 runs. 

CrypTFlow2 was not run for the smallest considered bandwidth. 

 

The results are shown in Fig. 5. From subfigures (a) and (b) we can establish that with 

decreasing bandwidth between client and server, the latency of the secure inference 

process grows quickly, for both SNNI solution approaches and for both NNs. This is 

not surprising, given the large amount of data transfer between client and server during 
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the secure inference protocols. We can also observe that the latency difference between 

Cheetah and CrypTFlow2 (to Cheetah’s advantage) grows with decreasing bandwidth. 

This is again no surprise since Cheetah causes less data transfer between client and 

server than CrypTFlow2, as shown in [HLH+2022]. 

The results on average power consumption (subfigures (c) and (d)) are more 

interesting. We can observe consistently across all measurements that reducing the 

bandwidth leads to a reduction of average power consumption. This is probably due to 

the decreased bandwidth slowing down the whole secure inference protocol: as the 

bandwidth decreases, both client and server spend more time waiting for I/O, 

effectively reducing the rate with which they can perform computation. 

For similar reasons, since CrypTFlow2 has to transfer more data between client and 

server than Cheetah, CrypTFlow2 has lower average power consumption than Cheetah. 

This is superposed by a higher asymmetry between client and server in terms of 

computation, and thus average power consumption, for CrypTFlow2 than for Cheetah. 

As a result, the advantage of CrypTFlow2 over Cheetah in terms of average power 

consumption is much more significant on the client side than on the server side. 

The results for total energy consumption (subfigures (e) and (f)) are less conclusive. 

For CrypTFlow2, reducing the bandwidth between client and server seems to lead to 

higher total energy consumption, whereas for Cheetah, reducing the bandwidth seems 

to lead to no significant change or even to a slight reduction of total energy 

consumption. The reasons for this may require further, more in-depth analysis of the 

involved protocols. We can also observe that CrypTFlow2 is competitive with Cheetah 

in terms of client energy consumption, especially for high bandwidth values; however, 

in terms of server energy consumption, Cheetah has a significant advantage. 

5 Discussion 

In this section, we discuss the lessons learned from our experiments, the consequences 

for future research, and potential threats to the validity of our findings. 

5.1 Lessons learned 

In the following, we distill our key findings from the experiments. 

Energy and power consumption of SNNI do matter. As we have seen, secure 

inference can lead to significant energy consumption and significant instantaneous 

power consumption. In an edge computing or IoT setup, this can be problematic. 

Different SNNI approaches have different characteristics in terms of total energy 

consumption and average power consumption. Thus, depending on the specific 

constraints of the edge / IoT environment, one or the other SNNI approach may be more 

appropriate. While research in the field of SNNI so far focused mainly on reducing 

latency, constraints on power or energy consumption may be more stringent in some 

environments than constraints on latency. 

Energy consumption and power consumption need to be considered separately. 

Although there is a clear connection between power consumption and energy 

consumption, low power consumption does not guarantee low energy consumption, and 

also low energy consumption does not guarantee low power consumption. For example, 

we have seen cases where CrypTFlow2 leads to lower average power consumption, but 

Cheetah leads to lower total energy consumption. Therefore, it is important to consider 

if, in a given target environment, average power consumption or total energy 

consumption is more important, and this may necessitate different design choices in the 
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used SNNI protocols. 

Client and server power consumption can differ significantly. We have seen that, 

in terms of the balance between client-side and server-side power consumption, 

CrypTFlow2 is much more asymmetric than Cheetah, meaning that the CrypTFlow2 

client consumes less power than the server, and also less than the Cheetah client. This 

can give an advantage to CrypTFlow2 in environments where the power draw on the 

client side is strictly constrained. This consideration yields a more nuanced picture 

about the advantages and disadvantages of different SNNI approaches, something that 

was not considered in previous evaluations such as in [HLH+2022]. 

Power consumption varies significantly over time. The instantaneous power 

consumption fluctuates widely over time. This was consistently observed for both 

SNNI approaches, for both NNs, and for both client and server. The fluctuation is 

logical, given the varying types and sizes of layers that make up a NN, and the different 

protocols used for different layers. However, the strong fluctuations make it challenging 

to schedule such processes. 

Network bandwidth has major impact. We have found that the bandwidth 

between client and server significantly influences all considered metrics. Reducing the 

bandwidth leads to an increase in latency, a decrease in average power consumption, 

and can have different influence on total energy consumption. Bandwidth may also 

influence which SNNI approach performs best according to a given metric. In existing 

work, typically only a LAN and a WAN setup were tested, where even the WAN setup 

has relatively high bandwidth. Wireless networks used in many IoT and edge 

computing environments have lower bandwidth, which was typically not considered in 

the evaluation of existing works, thus potentially missing important insights into the 

suitability of different SNNI approaches for low-bandwidth environments. 

5.2 Consequences for future research 

Our findings have shown the importance of energy and power consumption in SNNI, 

as well as the large impact of the network bandwidth between client and server. These 

findings have important consequences on the design, implementation, and evaluation 

of SNNI approaches that should be taken into account in future work. 

First of all, more research is needed to understand the exact requirements on energy 

and power consumption of secure inference in typical SNNI use cases. In particular, it 

is important to understand the relative importance of requirements concerning latency, 

power consumption on the client respectively the server side, and energy consumption 

on the client respectively the server side. Beside the relative importance of these 

metrics, it is also important to understand the acceptable ranges for these metrics, e.g., 

the maximum acceptable client-side power consumption in typical SNNI use cases in 

edge computing. 

Second, more research is needed to devise SNNI methods optimized for low power 

consumption and/or low energy consumption and for limited bandwidth. This may 

include optimizing existing techniques for such environments, for example by shifting 

some of the load from the client to the server to better support battery-powered clients. 

On the other hand, completely new methods may be needed to achieve improvements 

on all considered metrics at the same time [CSM2023]. 

Finally, we need experimental evaluation and comparison of proposed SNNI 

approaches in realistic settings – for example, with low bandwidth between client and 

server – paying attention to the metrics relevant in IoT or edge computing settings, like 
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client-side energy consumption. That is, in contrast to the current practice of latency-

focused evaluation in LAN and WAN environments, also power consumption and 

energy consumption should be considered as additional metrics, and bandwidth 

limitations of typical wireless networks should also be tested. More realistic evaluation 

and comparison of SNNI approaches may lead to a preference for other methods than 

the one that performs best in terms of latency in a LAN or WAN environment. 

In addition to these direct consequences of our findings, it is also worth investigating 

whether an artificial cap on the bandwidth between client and server can help reduce 

power consumption if needed. Our experimental results suggest that this is possible. 

Thus, if there is a strict limit on power consumption, artificially throttling the network 

bandwidth could help keep the power consumption low. This way, a trade-off between 

power consumption and latency could be controlled directly via the bandwidth. 

5.3 Threats to validity 

We tried to perform our study carefully, but some threats to the validity of our study 

still remain. In the following, we review the most important threats to internal and 

external validity. 

Internal validity. Our measurements of power consumption and energy 

consumption assumed that the used machines have a stable level of idle power 

consumption, and all additional power consumption can be attributed to the secure 

inference process. It is conceivable that some other programs may also create additional 

power consumption at some points in time, thus influencing the power consumption 

that we attribute to the secure inference process. To mitigate this threat, we observed 

the level of idle power consumption over a longer period of time, without experiencing 

significant deviations (see Section 4.1). In addition, all of the reported numbers are the 

average of 10 measurements, thus decreasing the implication of random effects. 

Similarly, the way we measure latency also assumes that no other processes take a 

significant amount of time, compared to the latency of SNNI. Again, random effects 

like the occasional activation of some system services could impact the results. We 

mitigated this threat by averaging latency measurements over 10 runs. We did not 

observe major fluctuations in latency among the 10 runs in any of our experiments. 

External validity. It is not clear to what extent our findings transfer to other setups. 

To improve generalization possibilities from our findings, we performed experiments 

with two SNNI approaches and with two NNs. However, it is possible that repeating 

our experiments with other SNNI approaches, other NNs, on other computers, and using 

other computer networks, would yield significantly different results. Further 

experimental research could help establish an improved coverage of relevant setups. 

For example, it would be interesting to investigate the effects of a higher round-trip 

time between server and client, as well as scenarios in which multiple clients connect 

to the same server. 

6 Related work 

In recent years, the SNNI problem has received considerable research attention and 

several SNNI approaches have been proposed [MWC+2023]. CryptoNets was probably 

the first approach to offer end-to-end protection in the NN inference process, although 

in a very limited setting and with huge overhead [GDL+2016]. Subsequent work aimed 

mainly at reducing the overhead of SNNI. While the CryptoNets approach was based 

on homomorphic encryption, other work like DeepSecure used secure multi-party 
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computation protocols, such as garbled circuits [RRK2018]. Gazelle combined 

homomorphic encryption and secure multi-party computation, so that each layer of the 

NN can be evaluated with the most efficient protocol [JVC2018]. SecureML also used 

secure multi-party computation, but proposed a different setup, in which the actual 

protocol is carried out by two non-colluding servers, and the client only provides the 

input and collects the output [MZ2017]. Falcon used even three servers to further 

improve efficiency [WTB+2021]. XONN used binary neural networks (i.e., NNs in 

which each weight, bias, and activation value is either 1 or -1) to enable more efficient 

secure multi-party protocols [RSC+2019]. Delphi improved the protocols of Gazelle 

with several optimizations [MLS+2020]. CrypTFlow created a framework for 

automatically turning TensorFlow code into a secure multi-party computation protocol 

implementation [KRC+2020]. CrypTFlow2 extended the CrypTFlow framework with 

an efficient SNNI approach based on a combination of homomorphic encryption and 

different secure multi-party protocols [RRK+2020]. Cheetah further optimized the 

protocols of CrypTFlow2 to yield one of the most efficient SNNI implementations to 

date [HLH+2022]. 

All of the above works assumed a powerful client device with sufficient network 

bandwidth to the server. The proposed approaches were typically evaluated in a setting 

where both client and server were powerful cloud instances connected by a LAN or 

WAN. The constraints of typical edge computing or IoT setups were not considered. 

Also, power and energy consumption were not considered. 

Some researchers investigated the SNNI problem in an edge computing, mobile 

computing, or IoT context. Instead of using compute-intensive cryptographic protocols, 

a possible approach that was suggested is to split the evaluation of the NN between 

client and server in such a way that the client evaluates the first couple of layers and 

sends the resulting features to the server which then completes the inference 

[OSS+2020]. However, this approach comes with no security guarantee, and the 

empirical experience showed that many layers have to be processed by the client in 

order to sufficiently constrain the leakage of information about the input to the server. 

Another proposed approach consisted of using secure multi-party computation using 

two edge servers [HLF+2021]. In addition to assuming that the two edge servers do not 

collude, this approach also required a trusted third party to perform certain 

preprocessing tasks. A completely different approach is to perform the inference 

entirely on the client machine, in a trusted execution environment [HLL+2021]. 

However, this requires a relatively powerful client machine, with support for the 

appropriate technology on the hardware level. 

To summarize, the efforts culminating in CrypTFlow2 and Cheetah have created 

secure and efficient SNNI approaches, but failed to address the constraints of edge 

computing and IoT setups. On the other hand, existing work on SNNI for edge and IoT 

setups has serious limitations. Thus, there is a need to investigate paths for transferring 

Cheetah-type SNNI approaches to edge and IoT setups. Our work is a step into this 

direction. 

7 Conclusion 

In this paper, we focused on some important aspects of edge intelligence by deploying 

SNNI in the context of edge computing or IoT applications: energy and power 

consumption, and the impact of the bandwidth between client and server. We used 

CrypTFlow2 and Cheetah, two state-of-the-art SNNI approaches, and performed 
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controlled experiments with them in a dedicated client-server environment.  

Our experimental results revealed many interesting details. In particular: 

• SNNI leads to significant energy consumption, with considerable 

differences depending on the used SNNI approach and NN.  

• High energy consumption of SNNI does not necessarily mean high power 

consumption, and vice versa.  

• Different SNNI approaches can differ significantly in terms of the balance 

between server-side power consumption versus client-side power 

consumption.  

• Power consumption of SNNI may vary considerably over time.  

• Network bandwidth has major impact on all considered metrics.  

These insights can help choose the right SNNI approach in a given situation, 

considering the NN, power consumption constraints, network bandwidth etc. 

The gained insights also help inform future research into edge intelligence using 

SNNI in edge computing and IoT environments. In particular, we need more research 

to better understand the relevant requirements (in terms of power consumption, energy 

consumption, bandwidth) in such environments, to devise SNNI methods specifically 

optimized for such environments, and more experimental evaluation and comparison 

of SNNI methods in such environments. 
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