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Summary

This dissertation considers problems from various fields in graph theory. A common theme between
the first two theses is that the results are related to some graph parameters which are expressible
with a homomorphism to some universal graph class. The third thesis addresses problems with closer
relation to information theory.

We say that a graph G admits a homomorphism to a graph H if there exists an edge preserving
map from the vertex set of GG to the vertex set of . A well-known example for a graph parameter
which can be expressed via graph homomorphism is the chromatic number. A graph G has chromatic
number at most c if and only if it has a homomorphism to K, the complete graph on c vertices. In
this case we call the complete graphs universal graphs for the chromatic number. In 1966 Stephen
Hedetniemi formulated a conjecture that the chromatic number of the so-called tensor product of
two graphs is equal to the minimum of the chromatic numbers of the factors. However, it is easy
to see, that the chromatic number of the product is at most the chromatic number of the factors.
Therefore, the conjecture essentially asked whether the reverse inequality holds as well. In other
words, the conjecture asked whether if the product has a homomorphism to some complete graph
then one of the factors should have it as well. This conjecture was refuted after a long time and in the
later counterexamples a special graph class played an important role. These graphs are the universal
graphs for the so-called wide-colorings. Determining their multichromatic number became relevant
in the search for even smaller counterexamples. My first thesis deals with this question.

Multichromatic numbers are other good examples of graph parameters expressible via homomor-
phisms. In this case the universal graphs for this parameter are the Kneser graphs, K G(n, k) with
parameters n > 2k. Kneser graphs form a famous graph class whose chromatic number was deter-
mined by Lovasz in his celebrated paper, where he proved, using topological tools, that the upper
bound n — 2k + 2, constructed and conjectured to be tight by Kneser, is indeed the correct value.
Soon afterwards Schrijver found that a certain induced subgraph SG(n, k) of KG(n, k), now called
Schrijver graph, still has chromatic number n — 2k + 2 and moreover, it is also vertex-critical for
this property, that is, deleting any of its vertices the chromatic number becomes smaller. Kneser and
Schrijver graphs (with the same parameters) share the value for another graph parameter, namely
the fractional chromatic number, which is % for both. However, none of them are vertex-critical for
this parameter. This suggested the problem of finding critical subgraphs of Schrijver graphs for the
fractional chromatic number, which is the subject of my second thesis. The found special subgraph
turned out to be isomorphic to another known graph, the circular complete graph, K, /i, which is the
universal graph for yet another coloring parameter, the so-called circular chromatic number.

My third thesis is related to information theory. In the usual setting one considers binary se-
quences as codewords and asks how many codewords of a given length can be constructed in such
a way that any two of them differs in at least d bits. However, the binary sequences could encode
graphs on a labeled vertex set and this way more general "distance" requirements can be formulated.
E.g. if the requirement is to contain a triangle in the intersection of the edge sets, then we get the
famous conjecture of Simonovits and S6s which was proven by Ellis, Filmus and Friedgut. The role of
the intersection can be replaced by, for example, the symmetric difference of the edge sets of the two
graphs (which we can arrive to from the basic code distance problem), and apart from the containment
of a triangle or other fixed graph it is also interesting to examine global conditions like connectedness
or Hamiltonicity. The last chapter of my dissertation explores this generalization.
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Osszefoglal6

Ezen disszertécio a grafelmélet kiillonbozé teriileteir6l szarmazé problémakat vizsgal. Az elsé két
tézisben kozos elem, hogy az eredmények néhany olyan grafparaméterhez kapcsolédnak, amelyek
valamilyen univerzalis grafosztalyba vezet6 homomorfizmussal kifejezhet6ek. A harmadik tézis az
informacidelmélethez is kapcsol6doé problémakkal foglalkozik.

Azt mondjuk, hogy létezik homomorfizmus egy G grafbol egy H grafba, ha létezik egy éltarto
leképezés G csucshalmazabdl H cstiicshalmazaba. Egy jol ismert példa ilyen grafhomomorfizmussal
kifejezhet6 grafparaméterre a kromatikus szam. Egy G graf kromatikus szama akkor és csak akkor
legfeljebb c, ha létezik homomorfizmus G-b6l K -be, a ¢ csucsu teljes grafba. Ebben az esetben a
teljes grafokat a kromatikus szdmhoz tartozé univerzalis grafoknak nevezziik. 1966-ban Stephen He-
detniemi megfogalmazta azt a sejtést, hogy két graf igynevezett tenzorszorzatanak kromatikus szama
egyenl6 a faktorok kromatikus szdméanak minimumaval. Kénnyen belathat6 azonban, hogy a szorzat
kromatikus szdma legfeljebb a faktorok kromatikus szama. Ezért a sejtés lényegében azt kérdezte,
hogy az elleniranyu egyenlétlenség is teljestil-e. Mas szoval, igaz-e, hogy ha a szorzatbol van homo-
morfizmus valamilyen teljes grafba, akkor legalabb az egyik tényez6bél szintén van homomorfizmus
ugyanebbe a teljes grafba. Ezt a sejtést hosszt idé utan megcafoltak, és a kés6bbi ellenpéldakban
fontos szerepet jatszott egy specialis grafosztaly. Ezek a grafok az univerzalis grafok az ugynevezett
széles szinezéshez. Multikromatikus szamuk meghatarozasa a még kisebb ellenpéldak keresésében
valt fontossa. A disszertaciom elsé tézise ezzel a kérdéssel foglalkozik.

A multikromatikus szam egy masik j6 példaja a homomorfizmussal kifejezhet6 grafparaméterek-
nek. Ebben az esetben a paraméter univerzalis grafjai a K G(n, k) Kneser-grafok, n > 2k paraméte-
rekkel. A Kneser-grafok egy hires grafosztalyt alkotnak, amelynek kromatikus szamanak meghataro-
zasa Lovasz attor6 eredménye. Bizonyitasaban topologikus modszereket hasznalt (ezzel 6sszekotve a
matematika e két agat), hogy belassa, hogy a korabban Kneser altal fels6 korlatként mar bizonyitott
és pontosnak sejtett n — 2k + 2 érték valdban pontos. Nem sokkal késébb Schrijver észrevette, hogy
a KG(n, k) egy bizonyos feszitett SG(n, k) részgrafja, amelyet ma mar Schrijver-grafnak neveziink,
még mindig n — 2k + 2 kromatikus, rdadasul e paraméterre nézve csucskritikus is, azaz barmelyik csu-
csat torolve a kromatikus szama csokken. A Kneser- és a Schrijver-grafoknak (azonos paraméterekkel)
egy masik grafparamétere, nevezetesen a frakcionalis kromatikus szdma is megegyezik, mindkett6-
nek 7. Azonban a Schrijver graf sem cstcskritikus erre a paraméterre. Ez motivalta a Schrijver grafok
frakcionalis kromatikus szamra kritikus részgrafjainak keresését, ami a disszertaciom masodik tézisé-
nek témaja. A megtalalt specialis részgrafokrol kideriilt, hogy izomorfak egy masik ismert grafosztaly
tagjaival, a K, cirkularis teljes grafokkal, amelyek egy masik szinezési paraméter, az igynevezett
cirkuléris kromatikus szam univerzalis grafjai.

A harmadik tézisem az informacidelmélethez is kapcsolodik. A témakorben szokasosan a kod-
szavak binaris sorozatok, és a kozponti kérdés az, hogy hany adott hosszisagu kodszé konstrualhaté
ugy, hogy koziilik barmelyik kettd legalabb d bitben kiillonb6zzon. A binaris sorozatok azonban ko-
dolhatnak grafokat egy felcimkézett csicshalmazon, ezzel lehet8séget adva arra, hogy altalanosabb
Ltavolsag” kovetelmények is megfogalmazhatok legyenek. Ha példaul a kovetelmény az, hogy a grafok
élhalmazainak a metszetében legyen haromszog, akkor megkapjuk Simonovits és Sos hires sejtését,
amelyet Ellis, Filmus és Friedgut bizonyitott. A metszet szerepe helyettesitheté példaul a két graf
élhalmazainak szimmetrikus differenciajaval is (ami a fent emlitett szokasos probléma kozvetlen alta-
lanositasa), és a haromszog vagy egyéb rogzitett graf tartalmazasa mellett érdekes globalis feltételeket
is vizsgalni, mint példaul az 6sszefiiggéség vagy a Hamiltonicitas. Disszertaciom utolsé fejezete ezt
az altalanositast vizsgalja.
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CHAPTER 1

Introduction

In graph theory, a much-studied graph parameter is the chromatic number, which is used in practice
for problems such as frequency or time allocation. In many cases, the behavior of the chromatic num-
ber is difficult to understand. An example of this is how this parameter behaves in graph products. In
1966 Stephen Hedetniemi formulated the conjecture that the chromatic number of the so-called ten-
sor product of two graphs is equal to the minimum of the chromatic number of the factors. It is clear,
however, that the chromatic number of the product is at most the chromatic number of the factors.
Therefore, the conjecture essentially asked whether the reverse inequality holds as well. This question
remained unanswered for a long time, but in 2019, it was disproved [Shi19]. The first counterexample
found was very large both in terms of the vertex number of the factors and their chromatic number.
Later, smaller counterexamples were found [Zhu21; Tar22a; Wro20; Tar23] and now the conjecture is
fully settled, meaning that for any number c if both factors have chromatic numbers greater than c,
we know whether their product can be c-colorable or not.

Other interesting, well-studied and closely related graph parameters are the so-called fractional
chromatic number and multichromatic numbers. In the earlier counterexamples to Hedetniemi’s con-
jecture the fractional chromatic number turned out to be an important parameter and in the later
counterexamples the multichromatic numbers of some special graph classes came into play. My first
thesis addresses some questions within this topic. It is also worth mentioning that Hedetniemi-type
problems in which we consider other parameters of the graphs involved in place of the chromatic
number, were formulated as well. In the case of the fractional chromatic number it is known that the
Hedetniemi-type conjecture is true [Zhu11].

Multichromatic numbers are closely related to Kneser graphs - as those parameters can be ex-
pressed with homomorphisms to corresponding Kneser graphs - a famous graph class whose chro-
matic number was determined by Lovasz in his celebrated paper [Lov78], where he proved that the
already known upper bound that was conjectured to be tight is tight indeed. However, in general,
those graphs are not vertex critical for this parameter, meaning that after a vertex removal the chro-
matic number does not necessarily decrease. Schrijver observed that special induced subgraphs, now
called Schrijver graphs, have the same chromatic number as the Kneser graph (with the same param-
eters), and they are vertex critical for that. Moreover, Kneser and Schrijver graphs (with the same
parameters) share the same fractional chromatic number as well [Tal03; ST06], but even the Schri-
jver graph is not critical for that (except for some special cases). My second thesis focuses on finding
induced subgraphs of Schrijver graphs with the same fractional chromatic number, which are also
vertex-critical for that parameter.



1. INTRODUCTION

A research direction different from the ones mentioned above is to investigate the maximum size
of graph families where some relation of any two members of the family (considered as the codewords)
satisfies some prescribed condition. An example of this is the famous conjecture of Simonovits and
So6s [SS76] proven by Ellis, Filmus and Friedgut [EFF12a], that determines the maximum possible
cardinality of a family of graphs on n labeled vertices in which the intersection of any two members
contains a triangle. The role of the intersection can be replaced, to get new interesting questions, e.g.
by the symmetric difference of the edge sets of the two graphs. It is what we can arrive to if the basic
code distance problem (how many binary sequences of a given length can be given at most if any two
differ in at least a given number of coordinates) is modified so that we do not prescribe the minimum
distance of any two codewords but require that they differ in some specific structure. Apart from the
containment of a triangle it is also interesting to examine global conditions like connectedness or
Hamiltonicity.

Organisation of the dissertation by theses

The first two theses are related to special graphs classes. These graphs serve as universal graphs for
some coloring parameters, meaning, that if a graph G has the required coloring parameter then it has
a homomorphism to the corresponding special graph. We say that a graph G admits a homomorphism
to a graph H if there exists an edge preserving map from the vertex set of GG to the vertex set of H and
we denote the existence of such a homomorphism by G — H. One can easily see that, for example,
the chromatic number can be expressed in such a way. A graph G has chromatic number at most c if
and only if it has a homomorphism to K, the complete graph on c vertices. In the first and the second
theses the universal graphs (or their subgraphs) for the so-called s-wide coloring and multicoloring
are explored.

The third thesis is more directly related to information theory, codewords which can be defined
on graphs are investigated there.

The theorem numbers in the following summary chapters of these theses generally align with the
numbering in the theses themselves, but not in every case. The reason for this is that not all theorems
are included in the summary, a different order sometimes seemed more advantageous for the concise
description, and some theorems have been merged.

Chapter 2 — Multichromatic Numbers of Widely Colorable Graphs

As mentioned in the Introduction, related to the Hedetniemi conjecture, a certain multichromatic
number of a special graph class became interesting. This graph class plays an important role in the
theory of wide colorings. A vertex-coloring of a graph is called s-wide if the two endvertices of every
walk of length 25— 1 receive different colors in it. It is easy to see that this is one possible generalization
of the term coloring in graph theory, as 1-wide coloring is equivalent to the proper graph coloring. It
can be shown that a graph is s-widely colorable with ¢ colors if and only if it admits a homomorphism
into the following universal graph [ST06] denoted by W (s, t) some special cases of which appeared
in the related question.

V(W(s,t)) ={(x1...2¢) : Yix; €{0,1,...,s},iz; =0, Ijx; =1},

EW(s,t)) ={{(z1...2¢),(y1...y)} : Vi |x; —yi| =1 orz; = y; = s}.

If we set s = 1, then we get W(1,t) = K; by the definition, which is in line with our earlier
observation that the complete graphs are universal graphs for proper colorings.



Multicoloring is when we color the vertices of a graph G with n colors in such a way that every
vertex receives k distinct colors and if two vertices « and v are adjacent then the set of colors received
by w is disjoint from the set of colors received by v. Formally, it is a function f : v — {ci,...,cx}
where for Vi € [k] ¢; € [n], such that if {u,v} € E(G) then f(u) N f(v) = 0 (where [k] =
{1,2,...,k} and similarly [n] = {1,2,...,n}). Such colorings were first considered by Geller and
Stahl, see [GS75; Sta76]. Stahl [Sta76] introduced the corresponding multichromatic number y(G)
as the minimum number of colors needed for such a coloring, called a k-fold coloring. (This graph
parameter can also be expressed by the existence of a homomorphism into some universal graph as
discussed in the next section.)

The fractional chromatic number x ¢(G) can be defined as

0) = g {9,

With my advisor in [j1] we have determined the exact values for the k-th multichromatic numbers
for the above mentioned W (s, t) universal graphs in cases when £k < s.

This work was motivated by a question of Tardif in [Tar22a], where he constructed a counterex-
ample graph pair GG, H to the Hedetniemi conjecture, where G and H had large chromatic numbers,
more than 14, but their product was 14-colorable. In that counterexample G was W (3, 9)[K}], the
graph which is obtained by blowing up each vertex of W (3, 9) into a clique of size 4, fully connecting
the cliques corresponding to originally adjacent vertices in W (3, 9). It is easy to see that the chromatic
number of this graph is exactly the 4-th multichromatic number of W (3, 9). In hope for constructing
smaller counterexamples in a similar way he asked whether x (W (3,¢)[K3]) = x3(W (3,1)) is large,
in particular, for t = 8 more than 12 and for ¢ = 7 more than 11. He also observed that in general

Xk(W (s, ) >t +2(k — 1)

holds. In other words, he asked if strict inequality is true in the special case when s = k = 3 and
t = 7 or t = 8. We have answered his question in the negative and generalized the result to all ¢ and
k<s:

Theorem 2.2.1. Ifk < s, then
xk(W(s,t)) =t+2(k —1).

We also showed that this result cannot be generalized for arbitrarily large k& (with respect to s).

Theorem 2.2.2. For all pairs of positive integerst > 3 and s > 1 there exists some threshold ko =
ko(s,t) > s for which
Xe(W(s,t)) >t+2(k—1)

whenever k > k.

We also managed to prove the following theorems about the fractional chromatic number of a
W (s, t) graph. For that we have used some previous results concerning Mycielki graphs s-wide col-
orability [BS05; SST24; GJS04; ST06]. The Mycielskian M (G) of a graph G is a result of a graph
operation, introduced by Mycielski [Myc55], which does not increase the clique number of the graph
G, but it increases its chromatic number. The construction can be generalised (see Chapter 1 of the
dissertation) to get h-level Mycielskians My}, (G), where the original construction M (G) = Ms(G).
The effect of the original Mycielski construction, M2(G), on the fractional chromatic number were
investigated in [LPU95], where a simple function was given:
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-

xf(M(G)) = x¢(G) +

~—

X (G
For a general h, the fractional chromatic number x s (M (G
He proved that the value of x #(G) also determines x ¢ (M (G)).

~—

) was studied by Tardif in [Tar01].
)
1
Xf(Mp(G)) = xf(G) + 5= .

e RS () -y

Using this result we managed to prove the following two theorems by showing the existence of
homomorphisms from Mss_o(W (s,t)) to W (s,t+ 1) and from W (s, t + 1) to Ms(W (s,t)).

Theorem 2.2.3.

Xf(W(S, t)) —2
(xr(W(s,t)) —1)%72 —1
< xp(W(s,t+1))

Xf(W(sa t)) —2
(xf(W(s,t)) = 1)* =1

xr(W(s, 1)) +

< Xf(W(Svt)) +

Theorem 2.2.4. For any fixed positive integer s we have

lim x (W (s,t)) = oc.

t—o00

Chapter 3 — Critical Subgraphs of Schrijver Graphs for the Fractional Chromatic
Number

As the W (s, t) graphs were universal graphs for wide-colorings, Kneser graphs are the universal
graphs for multicolorings, meaning that the k-th multichromatic number of a graph is at most n if
and only if it admints a homomorphism to the Kneser graph K'G(n, k). For positive integers n > 2k
the Kneser graph K'G(n, k) is defined on the vertex set that consists of the (Z) k-element subsets of
[n] with two such subsets forming an edge if and only if they are disjoint:

V(KG(n, k) = <[Z]>

E(KG(n,k)) = {{A,B} : AN B = 0}.

Kneser [Kne55] observed that the chromatic number of KG(n, k) is at most n — 2k + 2 and con-
jectured that this upper bound is tight. This was proved many years later by Lovasz in his celebrated
paper [Lov78] using the Borsuk-Ulam theorem. Soon afterwards Schrijver [Sch78] found that a cer-
tain induced subgraph SG(n, k) of KG(n, k), now called Schrijver graph, still has chromatic number
n — 2k + 2 and moreover, it is also vertex-critical for this property, that is, deleting any of its vertices
the chromatic number becomes smaller.

The fractional chromatic number of KG(n, k) is 7 (which is a simple consequence of the Erd6s-
Ko-Rado theorem [EKR61]). Schrijver graphs SG(n, k) share this fractional chromatic value [Tal03;
ST06], but most Schrijver graphs are not vertex-critical for this parameter (the only exceptions are
the trivial cases) and this suggested the problem of finding critical subgraphs of Schrijver graphs for
the fractional chromatic number.



In a joint paper [j3] with my advisor we worked on this problem. We defined a natural property
for the sets representing the vertices and named the subgraph formed by the vertices satisfying this
property Q(n, k) (the formal definition of Q(n, k) can be found in Chapter 3 of the dissertation). A
basic property of these graphs is the following:

Theorem 2.3.1. Letn > 2k and { > 2 be any positive integer. Then the graphs Q(n, k) and Q(¢n, lk)
are isomorphic.

Based on the above theorem, when studying the properties of Q(n, k) graphs, we can always
assume that ged(n, k) = 1.

Theorem 2.3.2. Assumen > 2k, gcd(n, k) = 1 and let a and b be the smallest positive integers for
which ak = bn — 1. The graph Q(n, k) C SG(n, k) satisfies the following properties.
C s Q. K)) = 2 = xp(SG(n, k).
VU € V(Q(n, k) xr(Q(n, k)\{U}) = § < %, thatisQ(n, k) is vertex-critical for the fractional
chromatic number.
* Q(n, k) contains an induced subgraph isomorphic to Q(a,b).

While proving this result we realised that the above theorem is true because the found special
subgraph is isomorphic to another known graph, the circular complete graph, K, /i, which is the
universal graph for yet another coloring parameter, the circular chromatic number. The definitions of
the circular complete graph K, ;. for n > 2k and the related circular chromatic number x. are the
following:

V(Knk) =10,1,...,n—1}

E(K) = {{i,j} b <li—j| <n—k},
_p
Xc¢(G) = min {q p < |V(G)],G — Kp/q} )
Theorem 2.3.3. Q(n, k) is isomorphic with the circular complete graph Kn/k wheneverged(n, k) = 1.

It was known for circular complete graphs that they are vertex-critical for the fractional chromatic
number, but edge-criticality was not studied before (neither for the fractional nor for the circular
chromatic number). We also investigated this question. For that we called an edge {7, j} € E(k, ;)
a shortest edge if |i — j| = k or |i — j| = n — k. (The name comes from the fact that these are the
shortest edges when the vertices are arranged in order along a circle.)

Theorem 2.3.4. Ifged(n, k) = 1, e € E(K,, ;) and a,b are defined as the smallest positive integers
for which ak = bn — 1 then

if e is a shortest edge
otherwise.

X (i \ ) = Xel K\ {e}) = {

ESINESIS]

Finally, we proved that SG(n, k) itself is vertex critical for the fractional chromatic number only
in some trivial cases.

Theorem 2.3.5. YU € V(SG(n,k)) xf(SG(n,k)\ {U}) < xs(SG(n,k)) if and only if one of the
following holds: k = 1,n = 2k, orn = 2k + 1.
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Chapter 4 - Graph Codes

In a joint work [j2] with Noga Alon, Janos Korner, Aleksa Milojevi¢ and Gabor Simonyi we inves-
tigated the maximum size of graph families on a common vertex set of cardinality n such that the
symmetric difference of the edge sets of any two members of the family satisfies some prescribed
condition. Note, that if the prescribed condition is just to contain at least d edges, then we get back
the basic code distance problem: How many codewords of length (g) can be given such that any two
of them differ in at least d coordinates?

In this subsection I will list some of the results that we had (see Chapter 4 of the dissertation for
more). We considered global properties like connectedness, Hamiltonicity as well as local properties
like containment of a triangle and some more. Formally all these can be described by saying that
the graph defined by the symmetric difference of the edge sets of any two of our graphs belong to a
prescribed family of graphs (namely those that are connected, contain a Hamiltonian cycle, or contain
a triangle, etc.)

Let F be a fixed class of graphs. A graph family G on n labeled vertices is called F-good if for any
pair G, G’ € G the graph G ® G’ defined by

V(GaG) =V(G)=V(G) =I[n],

E(GoG") ={e:ec (E(G)\E(G)) U(EG)\E(G)}
belongs to F.

Let M r(n) denote the maximum possible size of an F-good family on n vertices. We were inter-
ested in the value of Mr(n) for various classes F. The followings theorems give this value in some
cases we considered.

Theorem 2.4.1. Let F. denote the class of connected graphs and F». the class of 2-connected graphs.
Then
Mfc (n) = 2n_1’ M]_—Qc(n) = 2n_2

Theorem 2.4.2. Let Fyy, denote the class of graphs containing a Hamiltonian path and F ;. denote the
class of graphs containing a Hamiltonian cycle. Then for infinitely many values of n we have

Mg, (n) = 2", Mg, (n) = 2",

In the above listed theorems for proving the maximality of Mx(n) for the family F in question
we used the following lemma.

Lemma 2.4.1. For any graph class F we have
Mz(n) - Dr(n) < 2(3),

where Dx(n) denotes the "dual" of Mr(n), i.e. the maximum possible size of a graph family on
n labeled vertices, the symmetric difference of no two members of which belongs to F. Note that
denoting by F the class containing exactly those graphs that do not belong to F we actually have
Dz (n) = Mz(n). In all of the proofs of the above mentioned theorems we cunstructed 7-good and
F-good families, A and B respectively, of "matching sizes", meaning that |A| - |B| = 2(), proving
that they are both maximal. However, this technique does not work for every class of graphs.



1.3. Application

Theorem 2.4.3. Let Fg denote the class of graphs containing a spanning star, that is a vertex connected
to all other vertices in the graph. Then we have

n+1 ifn is odd
n ifn is even.

Mzy(n) = {
The dual family does not have a mathcing size, as
2(2)-151 < Dy (n) < 2(2)-5.

For local conditions we could also use Lemma 2.4.1.

Theorem 2.4.4. Let Fi., denote the class of graphs containing a triangle. Then we have

Mz, (n) < o(5)-T5115]
This upper bound is sharp whenn < 6.

The above theorem is just a special case of a more general one, which brings extremal graph
theory in the picture. Let ex(n, G) denote the maximum number of edges an n-vertex graph can have
without containing a subgraph isomorphc to GG and let F denote the class of graphs containing the
graph G as a subgraph.

Theorem 2.4.5.
M (n) < 206,

It turns out that asymptotically this upper bound is tight. To state that formally, we also defined a
capacity-type asymptotic invariant and we showed that this invariant is upper bounded by a simple
function of the chromatic number. Let

Rz, (n) = ] log, M7, (n)

2
nin—1
and call the following always-existing limit the distance capacity:

DC(Fg) := lim Rz (n).
Using the Erd6s-Stone-Simonovits theorem [ES46; ES66], stating that

lim ex(n,G) _ 1

n— 00 (g) B X(G) - 1’
we get DC(Fq) < ﬁ Moreover, equality can also be proven.

Theorem 2.4.6. If x(G) > 2 then we have DC(F¢) = ﬁ

1.3 Application

This thesis mainly concerns theoretical results that are interesting on their own right and connected
to various parts of graph theory. Nevertheless, in the next subsection the connection of the fractional
chromatic number and the multichromatic numbers to information theory will be explained, provid-
ing a more application based point of view of the results of the first two theses. For the last thesis,
as it was already mentioned, defining codewords as graphs is a generalization of the classical code
distance problem, therefore no further explanation is needed for its relevance to information theory.

7



1. INTRODUCTION

Shannon capacity

Several problems in information theory lead to the definition of special graph parameters and the most
famous example of this is the Shannon capacity of graphs [Sha56], which is the tight upper bound on
the rate at which information can be transmitted over a discrete, memoryless communication channel
with zero error probability.

One can model the communication channel as a graph: the transmittable letters are the vertices
and a pair of them are connected if and only if they are distinguishable by the receiver. We consider
two t-length codewords distinguishable if they are distinguishable in at least one index. Generally,
we are interested in the maximum number of pairwise distinguishable ¢-length codewords.

Definition 3.1.1. For two graphs G and H their O R-product G - H is defined as follows

V(G- H) = V(G) x V(H),
E(G-H)={{(g1,h1)(g2,h2)} : 91,92 € V(G), h1, he € V(H),
{91,92} € E(G) or{h1,he} € E(H)}.

Let G denote the t-fold O R-product of G by itself. By definition, the pairwise distinguishable
t-length messages form a clique in G? for a channel modeled by a graph G, so the question is to
determine the clique number w(G?).

One can easily see that this value is always at most |V (G)|". Furthermore, the clique number is
super-multiplicative with respect to the O R-product, meaning that for every pair of graphs G and
H, the inequality w(G - H) > w(G) - w(H) holds. So it makes sense to normalize this value by
taking the ¢ root. In fact, we are interested in the asymptotics of this value. The formal definition
of the Shannon capacity is given below. (In the literature it is sometimes defined differently, by the
complementary graph.)

| t

Definition 3.1.2. The Shannon capacity of a graph G is defined as

C(G) := limsup \/w(G?).
t—o0

The value of the Shannon capacity is unknown even for graphs with a very simple structure, for
example the exact value is not known for any odd cycle longer than 5 (the case of the 5-cycle is a
famous result of Laszlé Lovasz [Lov79]). From the work of Bohman and Holzman [BH03] we know
that the Shannon capacity of odd cycles (or their complements in the different interpretation of the
problem) is strictly greater than its trivial lower bound 2. This lower bound, given by Bohman and
Holzman, was recently improved in [Zhu25a]. Due to the considerable difficulty to determine this
parameter, even in smaller cases, it is already an interesting result if only some bound is given. It
follows from the definition of Shannon capacity, that w(G), the clique number of the graph G, is
always a lower bound. And certain graph coloring parameters can serve as upper bounds.

Lemma 3.1.1. Let p(G) be a graph parameter. If the following two conditions hold then C(G) < ¢(G).
1 w(G) < 9(G),
2. (G- H) < p(Q)-@(H) holds for every pair of graphs G and H.

The fractional chromatic number satisfies these two conditions, therefore, that as well as x;(G) /k
for every k are all upper bounds for this difficult to determine parameter.



1.3. Application

Remark. An interesting fact is that the chromatic number (as a special case of x;(G)/k where
k = 1) also satisfies these conditions. Hence, for those graphs where w(G) = x(G) = ¢ the Shannon
capacity is known, C'(G) = c as well. This was the original motivation of Claude Berge to investigate
perfect graphs (cf. [Ber97]).

It is also worth noting that the fractional chromatic number of graphs can be interpreted as an
information theoretic parameter. In the case where feedback is allowed on the channel, a single graph
alone cannot fully model it. However, among the memoryless channels that can be modeled by a
given graph it will be true for the worst one that the fractional chromatic number gives the theoretical
upper bound on the rate at which information can be transmitted over that channel with zero error
probability [Sha56]. Furthermore, this parameter is similar to the Shannon capacity in another way
as well, as it can be expressed as the normalized value of the chromatic number of a corresponding
power graph [BS74; MP71].

Remark. As it was mentioned in the Introduction, Hedetniemi-type conjectures can be formulated
for other graph parameters as well. The question is interesting whenever the value of that parameter
for the product is at most as large as the values of the parameter for the factors. The Shannon capacity
satisfies this condition. However, we do not know if the analogous conjecture holds for the Shannon
capacity or not. In [Sim21] a lower bound on the Shannon capacity of a product graph were given
and some graphs are shown that may provide counterexamples.






CHAPTER 2

Multichromatic Numbers of Widely
Colorable Graphs

As mentioned in the Introduction, the first thesis, motivated by the search for small counterexamples
to Hedetniemi’s Conjecture, focuses on a question about the multichromatic numbers of the universal
graphs for wide-colorings. Before getting to the result, we first need to know what are wide colorings
and multichromatic numbers.

2.1 Wide coloring

A vertex-coloring of a graph is called s-wide if the two endvertices of every walk of length 25 — 1
receives different colors in it. If every vertex gets a different color then the coloring is s-wide if and
only if the graph does not contain any odd cycle shorter than 2s + 1. The interesting phenomenon is
that some graphs have s-wide colorings that are also optimal colorings.

A 1-wide coloring is just a proper coloring. 2-wide colorings were first investigated by Gyarfas,
Jensen, and Stiebitz [GJS04] who, answering a question of Harvey and Murty, showed the existence of
a t-chromatic graph for every ¢ > 2 with the additional property that it admits a ¢-coloring in which
the neighborhood of every color class is an independent set. The analogous statement including more
distant neighborhoods is also proved in [G]S04].

3-wide colorings (that are called simply wide colorings in [ST06]) turned out to be relevant con-
cerning the local chromatic number of several graph families whose chromatic number can be de-
termined by the topological method of Lovasz [Lov78], for more details and also for the relevance of
s-wide colorability in the context of the circular chromatic number cf. [ST06].

A graph homomorphism from a graph F' to a graph G is an edge-preserving map of the vertex set
of F' to the vertex set of G. The existence of such a map is denoted by F' — G. It is easy to see that
G — K, is equivalent to the ¢-colorability of the graph G, that is, to x(G) < t. We refer to the book
[HNO04] for a general treatment of the theory of graph homomorphisms.

Several other types of graph colorings can also be expressed by the existence of a graph homo-
morphism to some target graph and s-wide colorability is no exception. It is proved independently in
[BS05] and [ST06] (and already in [GJS04] for the s = 2 case) that s-wide colorability with ¢ colors
is equivalent to the existence of a homomorphism to the following graph we denote by W (s, t) as in
[STo6].

V(W(s,t)) ={(x1...2¢) : Yix; €{0,1,...,s},Niz; =0, Ij x; =1},

11



2. MuLrticHROMATIC NUMBERS OF WIDELY COLORABLE GRAPHS

EW(s,t)) ={{(z1...2¢), (Y1...y¢)} : Vi |x; —yi| = Lorz; = y; = s}.

Proposition 2.1. ([BS05; GJS04; ST06]) A graph G admits an s-wide coloring using t colors if and only
ifG — W(s,t).

A different incarnation of the graphs W (s, t) appears in the papers [Haj09; Tar05; Wro19], where
(following Wrochna’s notation in [Wro19]) a graph operation {2, is given for every odd integer k£ and
when applied to the complete graph K; for £ = 2s — 1 then the resulting graph is isomorphic to
W (s, t). We will give and make use of this alternative definition in Section 2.3.

It is easy to see that W (s, t) can be properly colored with ¢ colors: set the color of vertex (x7 . .. x¢)
to be the unique ¢ for which z; = 0. It is proved in [BS05; GJS04; ST06] (cf. also the chromatic
properties of the more general {2 construction in [Haj09; Tar05; Wro19]) that this coloring is optimal,
that is,

x(W(s,t)) =t. (2.1)

This represents the surprising fact that there are ¢-chromatic graphs that can be optimally colored
in such a way that the complete d-neighborhood of any color class is an independent set for every
d < s. (By d-neighborhood of a color class we mean the set of vertices at distance exactly d from the
closest element of the color class. In fact, if GG is s-widely colored then not only the d-neighborhoods
of color classes form independent sets for d < s but all those vertices that can be attained via walks
of length d from the given color class.) The proof of ¢-chromaticity of W (s, t) goes via showing that
some other graphs that are known to be ¢-chromatic admit a homomorphism into W (s, t). These
graphs include generalized Mycielski graphs, Schrijver graphs, and Borsuk graphs of appropriate pa-
rameters (for the definition of generalized Mycielski graphs see Section 2.4; cf. [Sch78; EH67; Mat07]
for the definition of Schrijver graphs and Borsuk graphs and [ST06] for further details). This shows,
in particular, that generalized Mycielski graphs, Schrijver graphs, and Borsuk graphs admit s-wide
colorings. A common property of all these graphs is that their chromatic number can be determined
by the already mentioned topological method introduced by Lovéasz in his celebrated paper [Lov78]
proving Kneser’s conjecture.

2.2 Multichromatic numbers

For n, k positive integers satisfying n > 2k the Kneser graph KG(n, k) is defined on ([Z]), the set
of all k-element subsets of the n-element set [n] = {1,2,...,n} as vertex set. Two vertices are
adjacent if and only if the k-element subsets they represent are disjoint. It is not hard to show that
X(KG(n,k)) <n—2k+ 2 (for all n, k satisfying n > 2k) and Kneser [Kne55] conjectured that this
estimate is sharp. This was proved by Lovasz [Lov78] thereby establishing the following result.

Theorem (Lovasz-Kneser theorem).

X(KG(n,k)) =n— 2k + 2.

For more about the topological method we refer to the excellent book by Matousek [Mat07].

The existence of a homomorphism to the Kneser graph K G(n, k) can also be interpreted as a coloring
property: G — KG(n, k) holds if and only if we can color the vertices of G with n colors in such
a way that every vertex receives k distinct colors and if two vertices u and v are adjacent then the
set of colors received by u is disjoint from the set of colors received by v. Such colorings were first

12



2.2. Multichromatic numbers

considered by Geller and Stahl, see [GS75; Sta76]. Stahl [Sta76] introduced the corresponding chro-
matic number x(G) as the minimum number of colors needed for such a coloring, called a k-fold
coloring and i (G) the k-fold chromatic number in [SU97] (or k-tuple chromatic number in [HN04]).
The fractional chromatic number x ;(G) can be defined as

X7 (G) = i%f{x’f](f) } — inf {% .G — KG(n, k:)} .

Note the immediate consequence of this definition that if G — H then x ¢(G) < x¢(H).

As multichromatic numbers generalize the chromatic number (the latter being the special case for
k = 1), determining their exact value (that is the value of the k-fold chromatic numbers for various
k’s) can be even more problematic than giving the value of the chromatic number. Indeed, while the
chromatic number of Kneser graphs is already known by the Lovasz-Kneser theorem, it is only a still
open conjecture due to Stahl what homomorphisms exist and what do not between Kneser graphs,
see Section 6.2 of [HN04] for details, cf. also [TZ19].

The starting point of our investigations was a question by Tardif [Tar22a] who observed that (2.1)
combined with the Lovasz-Kneser theorem implies that

Xr(W(s,t)) >t+2(r—1) (2.2)

and that equality holds for r = s = 2. (This is also true in the case of = s = 1 when it simply means
X(K;) = t.) Tardif asked if there is equality also for r = s = 3. In particular, he was interested in
whether W (3,8) /A KG(12,3) and/or W (3,7) /A KG(11,3) is true. Our main result will imply that
this is actually not the case and equality does hold for » = s = 3. The motivation for Tardif’s question,
as already mentioned in the Introduction, came from recent developments concerning Hedetniemi’s
conjecture in which wide colorings also turned out to be relevant.

Hedetniemi’s conjecture asked whether the so-called categorical (or tensor) product G x H satis-
fies x(G x H) = min{x(G), x(H)}. The conjecture is equivalent to say that G x H — K, im-
plies that G — K. or H — K, must hold. (Although the latter directly only means x(G x H) >
min{x(G), x(H)}, the reverse inequality is essentially trivial.) If this holds for K, then K. is called
multiplicative. Hedetniemi’s conjecture formulated in 1966 thus stated that K. is multiplicative for
every positive integer c. This is trivial for ¢ = 1, easy for ¢ = 2. For ¢ = 3, it is a far from trivial
result by El-Zahar and Sauer [ES85]. For no other c it was decided (whether K. is multiplicative or
not) until 2019, when a breakthrough by Yaroslav Shitov took place who proved in [Shi19] that the
conjecture is not true by constructing counterexamples for large enough ¢’s. The smallest ¢ for which
Shitov’s construction disproved the conjecture was extremely large (about 3% according to an esti-
mate in [Wro020]). This value was dramatically improved within a relatively short time. Using Shitov’s
ideas in a clever way, Zhu [Zhu21] first reduced c to 125. Then, developing the method further, Tardif
[Tar22a] showed a counterexample for ¢ = 13. He remarked that his construction would also work
for ¢ = 12 and 11, respectively, provided that W (3,8) 4 KG(12,3) and W (3,7) /4 KG(11,3).

Our main result is the following that shows as a special case that these homomorphisms do exist.

Theorem 2.2.
Xs(Wi(s,t)) =t+2(s—1).

Later Wrochna [Wro20] managed to improve on Tardif’s result using the ideas in [Tar22a] in a differ-
ent way and proving that K. is not multiplicative for any ¢ > 5 thus leaving ¢ = 4 the only open case.
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Now, the ¢ = 4 case is settled by Tardif [Tar23], K is also not multiplicative. (For more details about
Hedetniemi’s conjecture see the recent papers cited above or Tardif’s survey [Tar08] or a recent one

[Zhu25b] by Zhu.)

The chapter is organized as follows. We present the proof of Theorem 2.2 in Section 2.3. In Section 2.4
we elaborate on the problem of what we can say about x,(WW (s, t)) for general r. It will be an im-
mediate consequence of Theorem 2.2 combined with Tardif’s observation (2.2) that x, (W (s,t)) =
t + 2(r — 1) whenever r < s. We will also observe that we cannot have equality in (2.2) for large
enough r. We will also show that the fractional chromatic number of W (s, t) goes to infinity when ¢
grows and s remains fixed. The chapter concludes with some observations about the position of the
graphs W (s, t) in the homomorphism order of graphs.

2.3 Proof of the main result

First we give the alternative definition of the graphs W (s, t) using the graph operation ;. We put
k = 2s — 1 and give the definition of only Q9,1 (K}) that we will use and refer to [Wro19] for the
construction 9,1 (G) for general graphs G.

Definition 2.1. The graph Qos_1(K}) is defined as follows.
V(Q2s-1(Ky)) =

{(Ag,Al, R ,As_l) (Vi A; C [t], ’A0| =1,A1 #0,Vi e {0, ce. 78—3} A; C Ajyo, As—oNAs_1 = @},

E(QQSfl(Kt)) - {{(AOa Ala LRI Asfl)) (BO, Bla ... 7B371) :
Vi € {O, 1,...,5s— 2} A; C Biy1,B; C Ai+1 and As_1 N Bs_1 = @}
Note that the above conditions also imply that A;,_1 N A; = () forall 1 < ¢ < s — 1 whenever
(Ao, Al, e As—l) S V(Qgs_l(Kt)).
It is straightforward and well-known (see e.g. [Wro19; Wro020]) that we have

W(S, t) = QQS,I(Kt).

Indeed, one can easily check that the following function g : V(W (s,t)) — V(€Q2s-1(K%)) provides
an isomorphism between W (s, t) and Qos_1(K3).

qg: (1131 . ..{L‘t) — (Ao,Al,... ,Asfl),

where
Vie{0,1,...,s—1}: A; ={j:2z; <iandz; =i (mod 2)}.

Remark 1. We gave both descriptions of the graphs W (s, t), because we believe that both are useful.
In particular, we will formulate the proof of Theorem 2.2 using the description of Q9s_1(K}) as we
believe that it makes the presentation of the proof easier to follow. Nevertheless, when we were think-
ing about the proof we felt we could understand the structure of these graphs better by considering its
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vertices as the sequences given in its definition as W (s, t). (It is also remarked in [Wro20] that it is the
W (s, ) type description from which one easily sees that the number of vertices is ¢ (s =1 —(s—1)!1).)

Next we recall Tardif’s observation (2.2) that we state as a lemma for further reference and also prove
it for the sake of completeness.

Lemma 2.3 (Tardif [Tar22al]). For all positive integers r and s
Xr(W(s,t)) = t+2(r = 1).

Proof. We cannot have W (s,t) — KG(t+h,r)forh < 2(r—1)as x(KG(t+h,r)) =t+h—2r+2
by the Lovasz-Kneser theorem and this value is less than t = x (W (s, t)) whenever h < 2(r — 1). O

Proof of Theorem 2.2. We need to show
Xs(W(s,1)) = Xxs(Q2s-1(Ky)) =t +2(s = 1).

Lemma 2.3 already shows that the right hand side is a lower bound thus our task is to prove the reverse
inequality which is equivalent to the existence of a graph homomorphism from W (s, ) = Qa1 (K})
to KG(t + 2(s — 1), s). Below we give such a homomorphism

f : (AO)A1)~ . 'aAS—l) — {ZUa--' 728—1}7

where {z0,...,25-1} € ([t+2(8571)]) =V(KG(t+2(s—1),s)).ForU = (Ao, A1, ..., As_1) we will
use the notation z; = f;(U) when f((Ao, A1,...,45-1)) = {20,...,25—1}. (Note that we do not
assume that the z;’s are monotonically increasing with respect to their indices, we only need that all

of them are distinct for a given f(U) = {z0,...,2s-1})-

First assume that s > 3 is odd. (The s = 1 case is a trivial special case of (2.1).)

For every eveni € {2,...,s — 1} we consider the three sets A;_2, A;_1, A; and for each such triple
we define two elements of f(U), namely f;_1(U) = z;_; and f;(U) = z; as follows. According to the
relative sizes of these three sets we will decide which of the elements t+i—1, ¢+, (t+s—1)+i—1 =
t+s+i—2and (t+s—1)+1i =1+ s+ i — 1 will be put into the set f(U). For every even i
we will either put two of these elements into f(U) or if not then we will find enough elements from
[t] to compensate this hiatus. This will give us s — 1 distinct elements of f(U). Finally we will define
fo(U) as the missing s-th element of f(U). The rules are as follows.

i) If |[A;—2| > |Aij—1| thenlet f;_1(U) = t+¢—1and f;(U) =t +i.If |A;—1] > |Ai, then let
fiei(U) =t+s+i—2and f;(U) =t+ s+ i — 1. (Note that since A;_o C A, at most one of the

above two inequalities can hold so our definition is meaningful.)

ii) If |Ai—2| < |Ai—1] < |Ai|, then we must have |A; \ A;_2| > 2. In that case choose 2 distinct
elements of A; \ A;_2 (these will be elements from [t]) to be f;_1(U) and f;(U).

iil) If |A;—o| < |Ai—1| = | 4|, then |A; \ A;—2| > 1. Let f;—1(U) be an arbitrary element of 4; \ A;_o
and let

f(U) . t+s+1—2 ifmin(Ai_l UAZ) € A4
! o t+s+1—1 ifmin(Ai,l UAZ) € A;.

Note that since A;—1 N A; = 0, f;(U) will be well defined.
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iv) If |Ai,2| = |Ai,1| < |A,L , then let
f; (U) . t+1—1 ifmin(Ai_Q U Ai—l) € Ao
-1 - t+1 if mil’l(Ai_Q U Az’—l) € A;_q.

Since A;_ 9N A;—1 =10, fi_1(U) is well defined. Let f;(U) be an arbitrary element of A; \ A;_5. Such
a choice is possible as A; \ A;_2 # () in this case.

v)If |A;_2| = |Ai—1| = | A;| (which means A; = A;_5) then let

4 4 . {t+i—1,t+8+i—1} ifmin(Ai_lLJAi)GAi
{flil(U)’ fl(U)} o { {t +i,t+s+1i— 2} ifmiH(Ai,1 U Az) € A;_1.

Note that since A; = A;_o, this formula is similar to the previous ones.
vi) Finally, let fo(U) be equal to the unique h € Ay.

Note that by the above we have defined f;(U) for every 0 < j < s — 1 and if j # j’ then f;(U) #
f;7(U) thus we have f(U) € V(KG(t + 2(s — 1), s) as needed. We have to prove that f is indeed
a graph homomorphism from W (s,t) = Qgs_1(K}) to KG(t 4+ 2(s — 1), s). We do this first and
consider the case of even s (that will be similar) afterwards.

Consider U = (Ag, A1,...,As—1) and U’ = (By, By, ..., Bs_1). We have to show that if f(U) N
f(U") #0,then {U,U’'} ¢ E(Qas—1(K2)).

Assume that f(U) N f(U’) # () and we have h € f(U) N f(U’) for some h € [t]. Then we have h
appearing in some A; and some By, where both j and k are even. In particular, h € A,_1 N By_1,
thus As_1 N Bs_1 # 0, therefore U and U’ cannot be adjacent.

Now assume that f(U) N f(U’) # 0 but the intersection is disjoint from [t] thus we have ¢t + d €
FO) N f(U') for some 1 < d < 2s — 2.

Ifdisoddandd < s — 1,thend = ¢ — 1 for some even 2 < ¢ < s — 1, thus t + d € f(U) means
t+d=t+1i—1= f;_1(U).If this happens then either |4;_o| > |A;—1| or |A;—2| = |A4;_1] and
min(A;—o U A;_1) € A;_o. Similarly, t +d =t 4+ i — 1 € f(U’) implies that either | B;_3| > | B;_1]
or |B;_2| = |Bj-1]| and min(B;_2 U B;_1) € B;_5. Assume for contradiction that {U, U’} is an edge
of our graph Qs5_1(K}). Then we must have A;_o C B;_; and B;_2 C A;_; implying

|Ai—o| < |Bi—1| < |Bi—2| < |Ai—1] < |Ai—2],

therefore we must have equality everywhere. By A; o C B;_j and B;—o C A;_1 (that follows
from {U,U’'} € FE(Qgs-1(K¢))) this implies A;_ o = B;_1 and B;_y = A;_1 and therefore
J := min(A;_2 U A;_1) = min(B;_2 U B;_1). Our assumption on d then implies both j € A; 5
and j € B;_o = A;_1 which is impossible by A; o N A; 1 = 0.

The situation is similar for the other possible values of d. If d = ¢ < s—1iseven,thent+d =t+1i €
f(U)N f(U’) for some adjacent vertices U, U’ would again imply

|Ai—2| = |Bi—1| = |Bi—2| = |Ai—1]
and thus A;_» = B;_1,B;_o = A;_1 as above. Our assumption on d now would imply for j =

min(A4;_oU A;_1) = min(B;_2 U B;_1) that it must be both in 4;_; and in B;_1 = A;_ leading to
the same contradiction as in the previous paragraph.
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2.3. Proof of the main result

Fors—1 < dandt+d e f(U)N f(U') for adjacent vertices U, U’ we get a similar contradiction. In
particular, this assumption implies |A;_1| > |A4;| and |B;_1| > |B;]| that by the adjacency of U and
U’ (meaning, in particular, A;_; C B; and B;_1 C A;) would imply

|Ai—1| = |Bi| = [Bi—1] = A

and thus A;_; = B; and B;_1 = A;. Then we obtain that k¥ := min(A4;_; U 4;) = min(B; U B;_1)
should belong (depending on the parity of d) to both A;_ and B;_1 = A; ortoboth A;and B; = A;_;
leading to the same contradiction that A;_1 N A; # (). This finishes the proof for odd s.

Now assume that s is even. We need only some minor modifications compared to the odd s case. Let us
now foreveryoddi € {3,...,s—1} define f;_1(U) and f;(U) almost the same way as in points i)- v)
above. (The only difference will be that the values ¢+7—1 and ¢+ are shifted by 1 to become ¢+ and
t 4+ i+ 1.In case of s = 2 the modified rules (i’)-(v’) will not apply, only those will that we denote by
(vi’) and (vii’) below.) This gives the last s — 2 values of the set f(U) = {fo(U), f1(U), ..., fs—1(U)},
what is left is to define fo(U) and f1(U) by a modified version of the sixth point above that has now
two parts. The modified rules are as follows.

i) If|Ai,2| > |Ai,1| then let fz;l(U) =t + 4 and fz(U) =t+1+ 1. If|AZ;1| > |AZ
fica(U)=t+s+i—2and f;(U)=t+s+i—1.

ii’) and iii’) are identical to ii) and iii), respectively.

iv’) If|A7,_2| = ‘Ai—l‘ < ’AZ‘, then let

, then let

Fia(U) = t+1 ifmin(A;—o U A;—1) € Ai—o
i1 - t+i+1 ifmin(Ai,Q U Aifl) € Ai_q.
Let f;(U) be an arbitrary element of A; \ A;_».
v)If |Ai,2| = |Ai,1| = |A1| then let

' : . {t +i,t+s+1— 1} ifmin(AZ-,l U Al) S Al
{fz_l(U)’ fz(U)} - { {t +i+1,t+s+1— 2} ifmin(Ai_l U Az) e A;_1.

Note again that since A; = A;_o, this formula is similar to the ones in cases iii’) and iv’).

vi') If |A1| = |Ap|, then let

F (U) . t+1 ifmin(Ao U Al) € Ay
0 o t+2 ileiIl(AoUAl) € A

Note that in this case both Ay and A; contains only one element and the value of fo(U) ist + 1 or
t + 2 depending on which of the two is smaller. At the same time let

fi(U) = h where A; = {h},

that is, h € [t] is the unique element of A;.

vii') If |A;| > | Ao, then since | Ag| = 1 we have | 41| > 2. Now choose two arbitrary distinct elements
0fA1 for fo(U) and fl(U)

Note that we have |A;| > 1 = | Ap| by the definition of Q951 (K}), so we do not have to consider the
possibility that |Ag| > |A1], it never occurs.
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2. MuLrticHROMATIC NUMBERS OF WIDELY COLORABLE GRAPHS

With this definition of f(U) the proof that f is a graph homomorphism is essentially identical to that
we presented in the odd s case. The main difference is that now those j € [t] that appear as elements
of the sets f(U) are all elements of some A; where 7 is odd, while the corresponding i’s were all even
in the case of odd s. The rest of the arguments work the same way as in the case of odd s.

This completes the proof. 0

We remark that by the composition of homomorphisms Theorem 2.2 determines the s-fold chromatic
number of every s-widely colorable ¢-chromatic graph.

2.4 On other multichromatic numbers of W (s, t)

An immediate consequence of Theorem 2.2 is that we can give the multichromatic numbers

Xr(W (s, t)) forall r < s.

Corollary 2.4. Ifr < s, then
Xe (W (s,8)) = £ +2(r —1).

The proof follows from the following simple lemma (which is essentially Lemma 2.3.(iv) of [Wro19])
combined with Tardif’s observation given in Lemma 2.3.

Lemma 2.5 ([Wro19]). Foralll <r < s we have
W(s,t) — W(r,t)

Proof. Define the following function for all 0 < a < s.

(a) = a fo<a<r
Y= r ifr<a<s.

It is straightforward to check that the mapping g : (z1...2¢) — (¢(z1)...¢(x¢)) is a homomor-
phism from W (s, t) to W(r,t) forall1 <r <s.

Proof of Corollary 2.4. In view of Lemma 2.3 it is enough to prove that x, (W (s,t)) is at most the
claimed value if r < s. Applying Lemma 2.5 and Theorem 2.2 to r < s we have

W(s,t) > W(r,t) > KG({t+2(r —1),7)
implying
Xr(W(s,t)) <t+2(r—1)
as needed. O

For r > s we do not know the value of x,(W(s,t)). We know from Lemma 2.3 though that
Xr(W(s,t)) > t + 2(r — 1) so the question naturally arises whether we could have equality here
for every r. Below we show that this is not the case.

Proposition 2.6. For all pairs of positive integerst > 3 and s > 1 there exists some threshold ro =
ro(s,t) > s for which
Xr(W(s,t)) >t+2(r—1) (2.3)

wheneverr > rq.
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2.4. On other multichromatic numbers of W (s, t)

Proof. Assume for the sake of contradiction that for some fixed s and ¢ we have x,. (W (s,t)) =t +
2(r—1) for arbitrarily large 7. That would imply that x ¢ (W (s, t)) < lim, w
this cannot be true since W (s, t) is not bipartite for ¢ > 3 and thus it contains an odd cycle Cqp 1 for

some positive integer b. Thus we must have x (W (s,t)) > x¢(Caopy1) = L;rl, anumber larger than

2 with the constant value %. ]

= 2. However,

The problem of determining the smallest possible r for which (2.3) holds is left as an open problem.
It is frustrating that we were not able to decide even whether this value is just s + 1 as the proof of
Theorem 2.2 might suggest or larger.

Remark 2. The previous proof does not specify b as its value is not essential there. Nevertheless one
can easily see that W (s, 3) = Cgs_3. It is also easy to see that g,(W (s, t)), the odd girth of W (s, t)
must be at least 25 + 1 and we have equality here for ¢ > 2s + 1 since a cycle Cysy1 is formed in
W (s,2s + 1) by the vertices given by the sequence (0,1,2,...,s,s,s — 1,...,2,1) and its cyclic
permutations. (For larger ¢ these sequences can be extended by an arbitrary number of coordinates
equal to s.) As one of the referees noted g,(W(s,t)) = 2s + 1 for t > 2s + 1 is also immediately
implied by Proposition 1 and the fact that C'y511 admits an s-wide coloring with at most ¢ colors. In

fact, the unpublished paper by Baum and Stiebitz [BS05] gives the general formula 2s — 1 + 2 ’72753—7 21-‘
for the odd girth of W (s, t).

The previous proof raises the question what we can say about the fractional chromatic number of
the graphs W (s, t). As a consequence of Theorem 2.2 we know x (W (s,t)) < w and the
previous simple proof implies that it is at least 2 + 35%2 for ¢ > 3. Unfortunately we were not able to
prove matching lower and upper bounds. But we can at least show that for any fixed s the fractional

chromatic number of W (s, t) gets arbitrarily large as ¢ tends to infinity.

Theorem 2.7. For any fixed positive integer s we have

lim x (W (s,t)) = oo.

t—o00

The proof will be a simple consequence of the (already known) fact that certain generalized Mycielski
graphs admit s-wide colorings. To give more details we introduce generalized Mycielski graphs below.

Definition 2.2. The h-level generalized Mycielskian M, (G) of a graph G is defined as follows.
V(MR(G)) = {(v,7) : v € V(G),0 <j < h—1}U{z},

E(Mp(G)) = {{(u,1), (v,4)} : uwv € E(G) and (|i — j| = Lori=j =0} U{{z, (v, (h = 1))},

The d times iterated h-level generalized Mycielskian M, (Mp(... Mp(G)...)) of a graph G will be
denoted by M}(Ld) (G).

The term Mycielskian of a graph G usually refers to M (G) = Ms(G) and Mycielski graphs are the
iterated Mycielkians of K3 introduced by Mycielski [Myc55] as triangle-free graphs whose chromatic
number grows by one at every iteration. The property x (M (G)) = x(G) + 1 is well-known to hold
for any G but the analogous equality is not always true for h-level Mycielskians if h > 2, cf. Tardif
[Tar01]. Nevertheless Stiebitz [Sti85] showed that x (M} (G)) = x(G)+1is also true if G is a complete
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graph or an odd cycle. (More generally one can say that this is the case whenever G is a graph for
which the topological lower bound on the chromatic number by Lovasz [Lov78] is sharp, cf. [GJS04;
Mat07; Sti85] or [ST06] for more details.) So by Stiebitz’s result we have

XMW (Ky)) = d + 2

for all positive integers d and h.

The t-chromaticity of W (s,t) is proved in [BS05; GJS04; ST06] by showing the existence of ¢-
chromatic graphs that admit a homomorphism into W (s, t). In case of [BS05; GJS04] these are gen-
eralized Mycielski graphs M, f(f_z) (K3) for appropriately large h. (Since [BS05] is unpublished and
[GJS04] gives this explicitly only for s = 2, we give some more details for the sake of completeness.
Nevertheless, this is a straightforward generalization of the construction given in [GJS04] as already
noted in [ST06] where the case s = 3 is made explicit. So the following is a straightforward extension
of Lemma 4.3 from [ST06] also attributed to [G]JS04] there.)

Lemma 2.8 ([GJS04])). If G has an s-wide coloring with t colors, then Mszs_o(G) has an s-wide col-
oring witht + 1 colors.

Proof. Fix an s-wide coloring ¢y : V(G) — [t] of G. Let ¢ : V(M35_2(G)) — [t] U {7} be the
following coloring using the additional color 7. Set ¢(z) = 7 and

[ ifje{s,s+2,...,3s —4}
C((U7J)) - { CO(’U) OtherWiSe-

If we have a walk of odd length between vertices (u, ) and (v, j) with ¢(u,7) = c(v,j) € [t] that
walk must either traverse the vertex z or use an edge of the form {(a,0), (b,0)}. In the latter case
the walk projects down to a walk of the same length between v and v in G with ¢o(u) = ¢o(v) so its
length must be at least 2s + 1 by ¢y being s-wide. In case the walk traverses z we can assume that we
have i # j mod 2 and thus without loss of generality j = s mod 2 implying that j < s — 2. But then
the distance between (v, j) and z is already at least 2s, so the length of our walk is at least 2s + 1.

Since deleting the set of vertices {(v,0)},cv () from M3;s_2(G) the remaining induced subgraph is
bipartite and ~y appears only on one side of this bipartite graph, any odd length walk between two
vertices colored v must use an edge of the form {(u,0), (v,0)}. But the distance of any ~y-colored
vertex from such vertices is at least s, so such a walk also cannot be shorter than 2s + 1. Thus c is
indeed an s-wide coloring. g

For M(G) = M>(G) Larsen, Propp and Ullman [LPU95] made the very nice observation that
X#(M(G)) can be given by a simple function of x s(G), namely

1
Xf(M(G)) = x5(G) + m

This was later generalized by Tardif for generalized Mycielskians.

Theorem 2.9 (Tardif [Tar01]).

1
My, (G)) = G .
Xf( n(G)) Xf( )+ Z?:_()I(Xf(G) _ 1)i
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2.4. On other multichromatic numbers of W (s, t)

Note that for non-bipartite graphs Tardif’s theorem gives

xf(G) —2
(xs(G)=Dh =1

Xr(Mn(G)) = xs(G) +

and it implies that y s (1, ,(Ld) (@)) tends to infinity as d goes to infinity for any fixed finite A.

Proof of Theorem 2.7. The proof is already immediate by the foregoing. Lemma 2.8 and Tardif’s Theo-
rem 2.9 together imply that

1
S (W (s, 1) — 1)

Xf(Wis, t+ 1)) = xp(Mas—2(W (s, 1)) = x5 (W(s, 1)) +

Y

and this implies the statement.

In view of Lemma 2.8 it may be interesting to note that while a generalized Mycielskian of W (s, ?)
admits a homomorphism into W (s, ¢ + 1), the latter also admits a (very natural) homomorphism into
another generalized Mycielksian of W (s, t).

Proposition 2.10.
W(s,t+1) — My(W(s,1)).

Proof. We explicitly give the homomorphism. Let

((x1...2¢),8 —x441)  fagpg >0and (x1...2¢) € V(W(s,t))
g((x1...x1)) =< ((01...1),s—1) if{i:z;=1}={t+1}
z ifxy =0.

(In fact, in the second case ((01...1), s—1) can be substituted by an arbitrarily chosen ((y1 ... y:), s—
1) for which (y1 ...y) € V(W (s, t)).)
It is straightforward to check that the given function is indeed a graph homomorphism. g
Thus we obtained that in the homomorphism order of graphs (cf. [HN04]) in which F' < G if and
only if ' — G we have W (s, t + 1) sandwiched between two different generalized Mycialskians of
W (s,t), in particular,

My 5(W (s,8)) < W(s,t+1) < My(W(s,1)). (24)
This excludes the possibility that our upper bound w on x f(W (s, t)) provided by Theorem 2.2

would be tight at least for all sufficiently large ¢, because then the difference x (W (s,t + 1)) —
x7(W (s,t)) would be equal to % for large ¢ contradicting Tardif’s Theorem 2.9. Note that (2.4) implies

xs(W(s, 1)) — 2
(xp(W (s, 1)) =1)%72 =1
< Xf(W(Svt + 1))

xr(W(s, 1)) —2
(s (W (s, 1)) =1)° =1

xr(W(s, 1)) +

<xs(W(s, 1)) +

With a little more considerations we can also show that W (s, ¢ + 1) is actually strictly sandwiched
between the above two generalized Mycielskians of W (s, ¢) if s > 1 and ¢ > 2.

21



2. MuLrticHROMATIC NUMBERS OF WIDELY COLORABLE GRAPHS

Proposition 2.11. Ifs > 2,t > 3 then
Mss_o(W(s,t)) < W(s,t +1) < Ms(W(s,1)). (2.5)
For s = 1 all three graphs are isomorphic to Kyy1. Fors > 1,1 = 2 we have
Mss_2(W(s,2)) = Cos—3 = W(s,3) < Ms(W(s,2)) = Cogyi.

Proof. It is well-known and easy to prove that if GG is a vertex-color-critical graph (that is, one from
which deleting any vertex its chromatic number decreases) and x (M, (G)) = x(G) + 1, then M}, (G)
is also vertex-color-critical (see this e.g. as Problem 9.18 in the book [Lov93] for h = 2). It is shown
independently both in [BS05] and [ST06] that W (s, t) is edge-color-critical for every s > 1,¢ > 2.
Thus all three graphs appearing in (2.5) are vertex-color-critical. Since they all have the same chro-
matic number this implies that any homomorphism that exists between any two of them should be
onto. This also means that if any two of them would be homomorphically equivalent, then those two
should have the same number of vertices, in particular, any homomorphism between them is a one-
to-one mapping between their vertex sets. This is clearly not the case for the homomorphism given
in the proof of Proposition 2.10 since several distinct vertices (their exact number is s — (s — 1)?) are
mapped to the vertex z unless s = 1.

If a homomorphism between M3z,_o(W (s, t)) and W (s, t+ 1) was one-to-one then by the edge-color-
criticality of W (s, t + 1) it cannot happen that we map two non-adjacent vertices of Mzs_o(W (s,1))
to two adjacent ones of W (s, t 4 1), since then deleting the latter adjacency we would still have a
homomorphism but into a graph of smaller chromatic number. Thus such a homomorphism would
then be an isomorphism, that is the two graphs would be isomorphic which is clearly not the case if
5> landt > 2. (A quick way to see this is the following. The maximum degree of W (s, ¢+ 1) is 201
attained by vertices (7 . ..2441) for which |{i : z; = 1}| is equal to 1 or 2. The maximum degree of
Mss_o(W(s,t))is |V (W (s,t))| = t(st~! — (s — 1)!~1) that cannot be a power of 2 for s > 1 unless
t = 2.) The remaining cases in the statement are straightforward to check. O
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CHAPTER 3

Critical Subgraphs for the Fractional
Chromatic Number

Some definitions (such as that of Kneser graphs, homomorphism, etc.) were given in the previous
chapter; however, for the sake of completeness, we include them in this chapter as well. Kneser graphs
KG(n, k) are defined for every pair of positive integers n, k satisfying n > 2k. Kneser [Kne55] ob-
served (using different terminology) that their chromatic number is not more than n — 2k + 2 and
conjectured that this upper bound is tight. This was proved by Lovasz in his celebrated paper [Lov78]
using the Borsuk-Ulam theorem. Soon afterwards Schrijver [Sch78] found that a certain induced sub-
graph SG(n, k) of KG(n,k), now called Schrijver graph, still has chromatic number n — 2k + 2
and is also vertex-critical for this property, that is, deleting any of its vertices the chromatic num-
ber becomes smaller. It is also well-known that the fractional chromatic number of KG(n, k) is 7,
a consequence of the vertex-transitivity of these graphs and the Erd6s—Ko-Rado theorem. Proving a
conjecture of Holroyd and Johnson [Hol99] Talbot [Tal03] gave the exact value of the independence
number of Schrijver graphs that easily implies, as already observed in [ST06], that their fractional
chromatic number is also 7. Most Schrijver graphs are not vertex-critical for this property (the only
exceptions are the trivial cases when k = 1, n = 2k, or n = 2k + 1, cf. Corollary 3.16 in Section 3.2)
and this suggests the problem of finding critical subgraphs of Schrijver graphs for the fractional chro-
matic number. In this chapter we present such a subgraph for all values of n and k with n > 2k.
These subgraphs, that turn out to be isomorphic to the circular (also called rational) complete graphs
Ky forn' = m, K = m, are vertex-transitive, so deleting any of their vertices the value
of the fractional chromatic number drops to the same smaller value. We also locate the edges of these
special subgraphs that are critical for the fractional chromatic number and show that their deletion
already results in the same decrease of the fractional chromatic number as the deletion of a vertex.

In the next section we give the necessary definitions to define the above mentioned vertex-critical
subgraph and state our main theorem. A proposition is also given there claiming the relation to circu-
lar complete graphs. From the latter the theorem will easily follow via known results about circular
complete graphs. Section 3.2 contains the proof of the mentioned proposition thus completing the
proof of our main result. The last section is devoted to characterizing the critical edges of circular
complete graphs for the fractional chromatic number.
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3. CRITICAL SUBGRAPHS FOR THE FRACTIONAL CHROMATIC NUMBER

3.1 Well-spread subsets and the subgraph Q(n, k)

Definition 3.1. For positive integers n > 2k the Kneser graph KG(n, k) is defined on the vertex set
that consists of the (},) k-element subsets of [n] = {1,...n} with two such subsets forming an edge if
and only if they are disjoint. A k-subset X of [n| is called r-separated if for any two of its elements x, y
we haver < |r — y| < n — r. The Schrijver graph SG(n, k) is the subgraph of KG(n, k) induced by
vertices representing 2-separated sets.

Notice that arranging the elements of the basic set [n] around a cycle, the r-separated sets are exactly
those any two elements of which have at least 7 — 1 elements on both of the two arcs between them
on this cycle.

The following theorem is a condensed version of the well-known results in [Lov78; Sch78].

Theorem 3.1 (Lovasz-Kneser and Schrijver theorem [Lov78; Sch78]). For every n > 2k we
have
X(SG(n,k)) = x(KG(n,k)) =n — 2k + 2.

Moreover, SG(n, k) is vertex-color-critical, i.e.,

VX € V(SG(n,k)): x(SG(n,k)\ {X})=n—2k+1.

The graphs KG(n, k) and SG(n, k) are widely investigated, cf. e.g. [Bra10; Bra11; BL03; Che11; KS17;
KS20; KS22; BV18; Meu05; ST20] to mention just a few more of the results related to them.

Recall that a graph homomorphism from graph F' to graph G is an edge-preserving map f : V(F') —
V(G), that is one for which {u,v} € E(F) implies { f(u), f(v)} € E(G). The existence of a graph
homomorphism from F' to GG is denoted by F' — G.

Definition 3.2. The fractional chromatic number x t(G) of a graph G can be defined as

xs(G) = min{% : G — KG(n, k:)}.

It follows from the definition that ' — G implies x ¢(F) < xf(G), in particular this is always the
case if F' is a subgraph of G.

It is well-known that, denoting the independence number of graph G by a(G), one always has

xf(G) > |Z((g))|

and equality holds whenever the graph is vertex-transitive, see e.g. [SU97] for this and other basic
facts about the fractional chromatic number.

The independence number of Kneser graphs is given by the famous Erd6s—Ko-Rado theorem.

Theorem 3.2 (Erd6s-Ko-Rado [EKR61]).

o(KG(n, k) = <Z: 1)

Moreover, forn > 2k the only independent sets of this size are the ones whose vertices represent k-element
subsets that all contain a fixed element i € [n].
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Corollary 3.3 (cf. e.g. [SU97]).
n
xf(KG(n, k) = T

Holroyd and Johnson [Hol99] conjectured that a similar phenomenon to the one expressed by the
Erd6és—Ko-Rado theorem is also true for Schrijver graphs and more generally, for families of 7-
separated sets. Here we state the result only for r = 2.

Theorem 3.4 (Talbot [Tal03]).

awam¢»=<”;fzv.

Moreover, forn > 2k, n # 2k + 2 the only independent sets of this size in SG(n, k) are the ones whose
vertices represent k-element subsets that all contain a fixed element i € [n]. Forn = 2k + 2 other
independent sets of this size exist, too.

Since |V (SG(n,k))| = %(”;ﬁ;l) and obviously x f(SG(n, k)) < xf(KG(n, k)) the above theorem

has the following immediate consequence already noted in [ST06].

Corollary 3.5.
n

Let C), denote the cycle on vertex set [n] where the edges are formed by the pairs of vertices {7,741}
fori € {1,...,n— 1} and {1, n}. In particular, the vertices of SG(n, k) are exactly the independent
sets of size k in C,,. (We will refer to this cycle as the defining cycle for SG(n, k).)

Definition 3.3. We call a subset U of V (C),) well-spread if for any two sets A, B C [n] with |A| =
|B| < n — 1 satisfying that both induce a (connected) path in C), we have

IANU| - |BNU|| < 1.

The induced subgraph of SG(n, k) on all well-spread k-subsets will be denoted by Q(n, k).

Example 1. For n = 11 the set U = {1,4, 8} is well-spread but the set U’ = {1,4,9} is not as the
size of its intersection with the 4-element sets {1,2, 3,4} and {5,6, 7,8} of consecutive vertices of
C,, differs by 2.

Now we state a basic property of the graphs Q(n, k).

Proposition 3.6. Letn > 2k and ¢ > 2 be any positive integer. Then the graphs Q(n, k) and Q({n, (k)
are isomorphic.
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Proof. Let U C V(Cyy,) = [¢n] be a well-spread set of size £k. We will show that rotating the set U n
times along the cycle Cy, it will map to itself and that will easily imply the statement.

Consider the n-element sets A; C [¢n],i € [¢n] defined by
Aji={iyi+1,...,i+n—1},

where the addition is intended modulo #n (and 0 is represented by ¢n), that is the sets A; are exactly
those subsets of [¢n] that induce a path of length n — 1 in Cy,,. First we show that the number of pairs
in the set

{(j,4i): i € [tn],j € AinU},

where j € [¢n] and A; is one of the sets just defined is ¢kn. Indeed, since each j € U will appear in
exactly n distinct A;’s and |U| = (k, this claim follows. Since there are ¢n distinct A;’s, this means
that if any A; would contain less than k& elements of U, then some other A; should contain more
than k elements of U. However, this would imply that these two sets, A; and A;/ are of the same size,
both induce a path of Cy,, and the size of their intersection with U differs by at least 2. This would
contradict the well-spread property of U, so this is impossible. The situation is similar if any A; would
contain more than & elements of U, therefore we have

Vi: |[A;iNU| = k.

This implies that we have j € U if and only if j + n (mod ¢n) € U for every j € V(Cy,) (otherwise
|A; NU| = |Aj41 NU| would not be satisfied). Hence, if we have X € V(Q(¢n, (k)), that is X is a
well-spread (¢k)-subset of [¢n], and we rotate the defining cycle Cy,, exactly n times, then we get a
vertex Y € Q(¢n, (k), that is identical to X.

Let g : V(Cp,) — V(C,,) be defined by

L V—lJ
giir—=i—mn|——
n

and for a subset X = {z1,..., 24} C ([Z;]) we let g(X) denote the set {g(x1),...,9(zw)} C
V(Cy,). The foregoing implies that if X € V(Q(¢n,lk)) then §(X) € V(Q(n,k)). It also follows
that for X, Y € V(Q(n,k)) we have g(X) N g(Y) = 0 & X NY = (. The latter means that
Q(n, k) = Q(¢n, lk) and this proves the statement. O

Example 2. Let n = 7,k = 3 and { = 2. Then the statement of Proposition 3.6 is that (14, 6) is
isomorphic to Q(7, 3). The vertices of (7, 3) are the 3-element sets

(1,3,5),12,4,6),{3,5,7}, {4,6,1},{5,7,2}, {6, 1,3}, {7, 2, 4}.
The vertices of (14, 6) are
(1,3,5,8,10,12}, {2, 4,6,9,11,13}, {3,5,7, 10, 12, 14},

{4,6,8,11,13,1},{5,7,9,12,14,2},{6,8,10,13,1,3},{7,9, 11, 14,2, 4}.

Note that the latter seven sets have the form {i,i 4+ 2,7+ 4,7+ 7,7+ 9,7 + 11}. Thus if we identify
iand i+ 7 for every i € {1,2,...,7} (the mapping g defined in the proof of Proposition 3.6 does
essentially this by mapping both to ), then the seven vertices of (14, 6) become identical to the
seven vertices of Q(7, 3).
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3.1. Well-spread subsets and the subgraph Q(n, k)

Note that Proposition 3.6 implies that Q(n, k) = Q (m, m), therefore when discussing

the properties of Q(n, k) we may assume that ged(n, k) = 1.

Now we can already state our result on the vertex-criticality of Q(n, k) for the fractional chromatic
number.

Theorem 3.7. Assumen > 2k, gcd(n,k) = 1 and let a and b be the smallest positive integers for
which ak = bn — 1. The graph Q(n, k) C SG(n, k) satisfies the following properties.
C X QU k) = B = x7(SG(n, ).
VU € V(Q(n, k) xr(Q(n, k)\{U}) = § < %, thatisQ(n, k) is vertex-critical for the fractional
chromatic number.
* Q(n, k) contains an induced subgraph isomorphic to Q(a,b).

For an example see Example 3 after Proposition 3.8.

For proving Theorem 3.7 it will be enough to show that if gcd(n, k) = 1 then the Q(n, k) subgraph
is isomorphic to the circular (also called rational) complete graph K, /;, that we define next.

Definition 3.4. The circular complete graph K, ;. is defined as follows:
V(Knw) =10,1,...,n—1}

E(Ky ) ={{i,j} : k<li—jl<n—k}
The name circular complete graph refers to the central role of K, /. in the following definition.

Definition 3.5. The circular chromatic number x.(G) of a graph G can be defined as
Xe(G) = min {2’ < [V(Q),G— Kp/q} .

For detailed accounts on the circular chromatic number see the survey articles [Zhu01; Zhu06] or
Section 6.1 of the book [HN04].

Some important properties of the graphs K, ;. are that they are vertex-transitive, that K, /5. is homo-
morphically equivalent to K, » whenever 7 = Z—: and that x (K, ;) = {%] (for these and further
properties, see [HN04]). Note that the just stated homomorph equivalence cannot be an isomorphism
if n # n’ since then |V (K, ;)| = n # n' = |V(K, r)|. This is a crucial difference between the
graphs K,/ and Q(n, k) and shows that the condition ged(n, k) = 1 cannot be dropped in the
following statement from which Theorem 3.7 already easily follows.

Proposition 3.8. The graph Q(n, k) is isomorphic with the circular complete graph K, ;;, whenever
ged(n, k) = 1.
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Proof of Theorem 3.7 from Proposition 3.8. 1t is known that the fractional chromatic number of K, /. is
n/k since it is vertex transitive and has n vertices, while its independence number is & (cf. [HN04]).
This already implies the first statement of Theorem 3.7. It is also known that removing any vertex z
from K, i, the remaining graph K, ), — {2} is homomorphically equivalent to K, where a and b
are the unique solution for the equation nb — ka = 1, see Lemma 6.6 in [HHN04], where a retract of
Kok — {z} which is isomorphic to K, /b is shown. This implies the second and third statement of
Theorem 3.7. g

Example 3. Let n = 8,k = 3. Figure 3.4 (see it at the end of Section 3.2) illustrates the vertices
of Q(8,3) and its isomorphism with Ky /3. The values of a and b as defined in Theorem 3.7 will be
a = 5,b = 2. Deleting, say vertex Xy = {1, 3,6} (cf. Figure 3.4 for the labeling of the vertices as X;’s)
the remaining graph admits a homomorphism to its subgraph induced by the vertices X5 = {3, 5, 8},
X3 = {1,4,6}, X4 = {2,5,7}, X5 = {3,6,8}, X¢ = {1,4, 7} which is isomorphic to Q(5,2) =
K59 = Cs having fractional chromatic number 5 /2.

Thus our main task is to prove Proposition 3.8. This is done in the next section.

3.2 Q(n,k)and K, ;,

Our argument will need the following alternative characterization of well-spread k-subsets.

Lemma 3.9. Let U C V(C,,) be fixed and let A, B C V(C,,) be any two sets inducing a path in the
graph C,, both starting and ending with vertices of C,, that belong to U. The subset U C V(C,,) is
well-spread if and only if for any two such sets A, B that also satisfy |[ANU| = |BNU| we have

1Al = |B]| < 1.

Proof. Assume to the contrary that for two sets A, B as in the statement ||A| — |B|| > 2 and w.l.o.g.
assume that |A| — 2 > | B|. Then, we can modify the subset A by removing its two extremal (that is
starting and ending) vertices and |A| — |B| — 2 more vertices from one end. This way we obtain a
path A’ for which |A’'| = |B| but ||A'NU| — |[BNU]|| > 2 which means that U is not well-spread by
Definition 3.3.

For the other direction suppose that U is not well-spread. Then there exist A, B C V(C,,) both
inducing a path in C,, for which |A| = |B| but ||[ANU| — |BNU|| > 2. Wlo.g. assume, that
|JANU| > |BNU|+ 2. We may assume that A induces a path in C), that both starts and ends with
elements of U because otherwise we can make both A and B shorter so that | AN U| does not change
while |B N U| may only become smaller, so the relations |[A N U| > |BNU| + 2 and |A| = |B|
remain valid. Now extend B at both of its ends until it will contain a new element of U at both ends,
that is we obtain a B’ which induces a path of C,, that both starts and ends with elements of U and
intersects U in |B N U| + 2 elements. If this number is still less than s := |A N U| then extend B’
further (on one end) to make it a similar path containing exactly s elements of U. Since in the first
step we extended B at both ends we certainly have | B'| > | A|+ 2, so A and B’ are two sets satisfying
the conditions in the statement for which || A| — |B’|| < 1 does not hold. This completes the proof. [J

Example 4. Let n = 11 and U = {1,4,8} which is easy to check to be well-spread according to
Definition 3.3. Also, if A = {1,2,3,4} and B = {4,5,6, 7,8}, then they satisfy the conditions in
Lemma 3.9 and also satisfy ||A| — |B|| < 1. On the other hand, U’ = {1,4,9} is not well-spread
as we already have seen in Example 1 as its intersection with the 4-element sets {1,2, 3,4} and
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3.2. Q(n,k) and K,, 3,

{5,6,7,8} differs by 2. Accordingly, the sets A = {1,2,3,4} and B’ := {4,5,6,7,8,9} satisfy
|[ANU'| = |B'nU'|, —|B|| < 1.
(See Figure 3.1 for an illustration.)

L)

Figure 3.1: This figure shows sets U and U’ along with the sets A, B and B’ described in Example 4.

Note that a set U C V(C),) need not be 2-separated for being well-spread. Moreover, the following
observations hold for U and U := V (C,,) \ U.

Observation 3.10. U is well-spread if and only if U is well-spread.

Proof. If A, B C V(C,,), |A| = |B| and both of them induce a path, then
1ANT| = [BNU|| = [I(JA| = [AnTU)| = [(1B] = [BN U] = [IBNU| = [AnU]],

so||[ANTU|—|BNU]| < 1lisequivalentto ||[ANU| - |BNU|| < 1.

Observation 3.11. IfU is well-spread and gcd(n, |U|) = 1 (and n > 2) then exactly one of U and U
is a 2-separated set.

Proof. Assume U is well-spread, then so is U as well by Observation 3.10. If |U| = |[U| = n/2
(in which case both |U| and |U]| are 2-separated, alternatingly containing the vertices of C,,), then
ged(n, |U]) = n/2 # 1. So w.lo.g. U has less than n/2 elements. Then U must contain two adjacent
vertices of the cycle C,,, say u; and Us. If U would also contain two adjacent vertices of C,,, say u;
and ug then taking A = {u;,us} and B = {uy,us} we would have two sets with |A| = |B| = 2 for
which [ANU| =2and |BNU| = 0, so U cannot be well-spread, a contradiction. O

In what follows we denote by f; the i-fold clockwise rotation of the defining cycle. In particular, for
j e V(Cy) welet f;(j) =i+ j, where addition is meant modulo n and 0 is represented by n. For a

setX:{xl,.. xh} CV( ) ( )—{fz(ycl) ,fz(xh)}
Lemma 3.12. Let U, W C V(C,,) be two well-spread sets of the same size k. Then there is a bijection

between the elements of U and W that is given by a rotation of the cycle C,,. The graph Q(n, k) is
vertex-transitive for any n and k and if gcd(n, k) = 1 then |V (Q(n, k))| = n.
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Proof. Let U be a well-spread set of size k on the cycle Cy,. If gcd(n, k) # 1 then we have already seen
in the proof of Proposition 3.6 that every well-spread set maps to itself when we rotate the defining
cycle C), by Wﬁzk) elements. In particular, there are only |V(Q(m, m))] distinct well-
spread subsets of V' (C),) and they behave exactly as the well-spread sets we obtain on V (C " k))
ged(n,
when identifying every element of V' (C,,) that are m distance apart. This means that we may

assume, that we do from now on, that ged(n, k) = 1.

Call z,y € U U-consecutive in U if one of the arcs between them does not contain any other z € U.
By Lemma 3.9 if x,y € U are U-consecutive, then = and y should be ¢ := L%J or L%J + 1 distance
apart on V (C,,), that is, they are separated by gy — 1 or ¢ other elements of the cycle. If n = gok + 7
then we have exactly r; U-consecutive pairs whose distance is gy + 1 and k — r; U-consecutive
pairs that have distance qo. Let U = {1, x9,...,x}, where the indices are chosen so that each
Zi4+1 is the U-consecutive element of x; as we go along the cycle C,, in the clockwise direction. Let
(a1,a2,,...,a;) be the sequence of numbers that denote the distances of U-consecutive elements,
that is, a; is the distance of x;11 from z; (in the clockwise direction) for each ¢ € {1,...,k — 1}
and ay, is the (also clockwise) distance of x; from zj. We identify two sequences (a1, ...,ax) and
(b1,...,by) if one can be obtained from the other by cyclically permuting its elements, that is, if
(a1,az2,...,a) = (bit1,bi42 ..., bk, b1, ..., b;) for some i and call it the placement pattern of U. In
case U has only 1 element, we consider its placement pattern to be (n). Notice that if two k-element
subsets U and W of V(C),) have the same placement pattern then they must be rotations of each
other, so to prove the first statement of the Lemma it is enough to prove that any two well-spread
k-subsets of V' (C),) should have the same placement pattern. This is what we do next.

Remove gy — 1 vertices of C), from the arcs between every pair of U-consecutive elements. This way
we obtain a shorter cycle C;,_(4_1), on which U is still well-spread and U= V(Crp—(go—1)k) \ U is
also well-spread by Observation 3.10. On this shorter cycle U is not 2-separated any more (since there
were U-consecutive elements in U separated by exactly gy — 1 other elements that are now removed),
so U is a 2-separated set by Observation 3.11. Using the notation ny := n — (g0 — 1)k = k +
we have |U| = n; — [U| = r1 and the U-consecutive elements of U are separated by ¢; := {%J
or by g1 — 1 elements of U. Now performing the previous removal process with C),, in the place of
C,, and its r-element subset U; := U in place of U is essentially performing a second step of the
Euclidean algorithm with k& + 71 and r; (instead of k£ and r; but this is not an essential difference since
ged(k 4+ r1,r1) = ged(k,r1) = ged(n, k) = 1). This means that now we remove g; — 1 elements
of the current cycle between any two U;-consecutive elements of U;. That results in a cycle C,, of
length ng := ny — |U1|(q1 — 1) = n1 — (g1 — 1)1 and we have U as its subset that is not 2-separated
any more (since it did have Uj-consecutive elements separated by exactly ¢; — 1 other elements).
Thus by Observation 3.11 Uy := V(Cy,) \ Uy is 2-separated. It has size no — |U1| = n1 — qir1 =: r2,
that is, ng = r1 + 72 and we clearly have ged(r1 + r2,72) = ged(r1,72) = 1. We can go on iterating
this process. Let U; be a 2-separated well-spread set on C),, with U;-consecutive elements having
distance ¢; and ¢; + 1 on V(Cy,, ). We remove ¢; — 1 elements not belonging to U; between any two
Uj-consecutive elements of U;. This way we obtain the cycle Cy,, ., withn; 1 = n; — |U;[(¢; — 1), and
assuming ged(n;, |U;|) = 1 we will have ged(nit1, |U;|) = 1. Define U1y := V(C,,,,,) \ Ui. Then
Uiy is 2-separated on C,,,, , and ged(nii1, |Ui11]) = 1 also holds, so we can continue until we will
arrive to a situation where we have a cycle C,,, for some m = ny, and our current 2-separated set U},

will have only ged(n, k) = 1 element. This process is illutrated on Figure 3.2 for n = 14,k = 5.

We can place the remaining 1-element set on our final cycle C);, into m different points, but the m
different sets we can get this way are obviously just rotations of each other. In other words, their
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3.2. Q(n,k) and K,, 3,

placement pattern is the same for every possible choice. Now observe that our removal process was
completely deterministic, thus so is also its reversed process. This means that if at every step we make
a note of how many elements were removed between two U;-consecutive elements of the current U;
on Cy, (these are simply the numbers ¢; — 1) to obtain the shorter cycle Cy,,, , and U; 41 = [ni41]\ Us,
then getting back U; on C,,, from U; is also determined. It simply means that we should put back
the appropriate number of removed elements between any pair of U;-consecutive elements of U; on
Ch, - (This is also illustrated on Figure 3.2 if we follow the three pictures from right to left.)

The foregoing implies that if the placement pattern of U;, is uniquely determined, then so is the
placement pattern of U;. As we have seen the placement pattern of our final 1-element set Uy, is
uniquely determined, thus the placement pattern of U itself on the original C), is also uniquely de-
termined. This proves the first statement in the Lemma and implies |V (Q(n, k))| < n.

We still have to prove the two statements in the last sentence of the Lemma, that is that ged(n, k) = 1
also implies |V (Q(n, k))| = n from which vertex-transitivity follows also for the other cases via
Proposition 3.6.

If U is well-spread, then so is f;(U), so the latter is also a vertex of Q(n, k). Let ¢ be the smallest
positive integer ¢ for which f;(U) = U for some vertex U € V(Q(n, k)). Since we have ¢ < n, it is
enough to prove that if ged(n, k) = 1, then ¢ cannot be smaller than n. Thus we assume ged(n, k) = 1
and first we show that ¢ is a divisor of n. Indeed, let n = ¢t + r, where r < t. Then for some vertex
U we have fu(U) = U and f,.(U) = f(f(U)) = fn(U) = U implying r = 0 by the minimality of
t. Thus ¢ divides n.

Now we show that / = % also divides k. Assume f;(u1) = us. Then we must have f;(u;) = w151
for every i € {1,...,k} (addition in the indices intended modulo % with k identified to 0) otherwise
we could not have f;(U) = U. Therefore uy = f(u1) = for(u1) = u14¢(s—1) showing £(s — 1) = k
meaning that ¢ divides k. (Here we used that f,, “winds around” C,, exactly once.) Since ¢ also divides
n, it should be 1, therefore t = n. O

Figure 3.2: The process in the proof of Lemma 3.12 performed for n = 14, k = 5. In the first picture
we see the defining cycle C4 where the elements of a well-spread 5-subset U are illustrated by empty
circles. The second picture shows the situation after removing one of the one or two elements we have
between any pair of U-consecutive elements of U. This results in the cycle Cy of the second picture
where the empty circles still denote the elements of U, while the elements of U; = [9] \ U are shown
by the remaining 4 black dots. Then we remove one element of the original set U from between any
pair of U;-consecutive elements of U; to obtain the third picture with Cy,, = C5 and the 1-element
set Us.

The following Corollary is essentially implicit already in the proof of the previous Lemma, yet we
state it separately for further reference.
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Corollary 3.13. Ifged(n, k) = 1 then for every X, Y € V(Q(n,k)) there is a unique rotation of C,,
that maps X toY.

Proof. We have |V (Q(n, k))| = n, where the vertices can only be different by some rotation and we
have exactly n possible rotations for each vertex. g

Lemma 3.14. Let gcd(n, k) = 1 and X, Y € V(Q(n,k)) be such that XY ¢ E(Q(n,k)), that is,
XNY #0. Let f: V(Cy) — V(Cy,) be the unique clockwise rotation moving X toY and let i be an
element of X N'Y. Then the number of elements of Y on the arc of C,, between i and f(i) (moving from
i to f(i) in the clockwise direction) is independent of the choice of i € X NY.

Proof. Leti,j € XNY and let A and B be the arcs of C), between i and f(¢) and between j and f (),
respectively (i, f(i) and j, f(j) included). We obviously have |A| = | B|. Assume to the contrary of
the statement that w.l.o.g. [ANY |+ 1 < |BNY/|. Add the minimal number of consecutive vertices
to A from C), in the same (clockwise) direction to get A’, such that [A'NY| = [BNY|. AsY €
V(SG(n, k)), we have that Y is a 2-separated set. So, since A ended with f(i) € Y, |A'| > |A|+2 =
| B| + 2. Since A" and B are arcs starting and ending with elements of Y and also containing the same
number of elements of Y, this gives a contradiction by Lemma 3.9 with the well-spreadness of Y. [J

Definition 3.6. Under the conditions of Lemma 3.14 we call vertex Y € V(Q(n,k)) a right j-jumper
of vertex X € V(Q(n, k)) if the number of elements of Y on the arc of C,, strictly between i and f (i)
forsomei € X N'Y (moving from i to f(i) in the clockwise direction) is j — 1.

Note that by Lemma 3.14 the previous definition is meaningful as it does not depend on the choice of
e XNY.

(S8
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Y:
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Figure 3.3: This figure shows the well-spread set X = {1,4,8,11,15,18,22} in the defining cycle
(a4 together with its two 4-jumpers Y and Z as discussed in Example 5. The elements 1 € X and
15 € Y are darkened on the first pair of pictures to emphasize that 1 will be mapped to 15 by the
unique rotation moving X to Y. Similarly, 4 € X and 17 € Z are darkened in the second pair of
pictures, because the unique rotation moving X to Z maps 4 to 17.
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Example 5. Let n = 24,k = 7. Then X = {1,4,8,11,15,18,22} and Y = {1,5,8,12,15, 18,22}
are two intersecting well-spread subsets of [24], therefore two non-adjacent vertices of (24, 7). The
unique rotation that moves X to Y is fi4, the 14-fold clockwise rotation of the defining cycle. In
particular, it maps element 1 to 15 and Y has three other elements on the arc between these two, so
Y is a 4-jumper of X. There is one more 4-jumper of X, namely Z = {4,7,11,14,17,21,24}. We
have Z = f13(X), in particular, element 4 is moved to 17 and there are three other elements of Z on
the clockwise arc connecting 4 to 17. (See Figure 3.3 for an illustration.)

Corollary 3.15. Ifgcd(n, k) = 1 then the degree of every vertex in Q(n, k) isn — 2k + 1.

Proof. We show that each vertex is non-adjacent to exactly 2k — 2 vertices different from itself from
which the statement follows. By vertex-transitivity it is enough to show this to an arbitrary vertex
X e V(Q(n,k)).

If Y is another vertex for which {X,Y} ¢ E(Q(n,k)), then there is some u € X NY,s0Y isa
j-jumper of X for some j. Since any two vertices of QQ(n, k) are rotations of each other, we know
that Y = f;(X) for some i. We claim that if ged(n, k) = 1 and j is fixed then there are exactly two
distinct values i can take in the set {1,2,...,n—1}. Indeed, by Lemma 3.9 the length of the clockwise
arc from u to f;(u) can take only two different values (differing by 1) and if ged(n, k) = 1 then two
such distinct values exist indeed. (Otherwise for some 0 < i < nand U € V(Q(n,k)) we would
have f;(u) € U for every u € U implying f;(U) = U. But we have already seen in the proof of
Lemma 3.12 that this is impossible if gcd(n, k) = 1.) Lemma 3.14 implies that j will not depend on
the choice of u € X NY which also implies that we cannot get the same f; for two different j’s. This
means that the number of non-neighbors of an X € V(Q(n, k)) different from itself is exactly twice
the number of possible values of j, that is 2(k — 1) as claimed. g

Now we show that SG(n, k) itself is critical for the fractional chromatic number only in the cases
already mentioned in the Introduction.

Corollary 3.16. We have Q(n,k) = SG(n,k) if and only if k = 1,n = 2k, orn = 2k + 1. In
particular, SG(n, k) is vertex-critical for the fractional chromatic number in exactly these cases.

Proof. We know from Schrijver’s theorem, that x (SG(n, k)) = n — 2k + 2. By Corollary 3.15 this is
exactly one more than the (maximum) degree of Q(n, k). Thus, since SG(n, k) is connected, Brooks’
theorem implies that in case SG(n, k) = Q(n, k) we must have that SG(n, k) is a complete graph
or an odd cycle. This happens only in the cases listed in the statement and in those cases we indeed

have Q(n, k) = SG(n, k). O
Now we have all the necessary lemmas to prove that our Q(n, k) graph is isomorphic to the circular
complete graph K, /,, whenever gcd(n, k) = 1.

Proof of Proposition 3.8. As |V (Q(n, k))| = |V (K,;)| = n and in both graphs each vertex has degree
n — 2k + 1 it is enough to show a bijection between the vertex sets that maps non-adjacent vertices
to non-adjacent vertices.

Fix avertex Xg € V(Q(n, k)) andletforeveryi € {1,...,n—1} X; = fi(Xo).Lety : V(Q(n,k)) —
V(K1) be defined by
© : Xy — uk (modn)

This is a one-to-one function since ged(n, k) = 1. Now look at X,, # X, arbitrary non-adjacent
vertices in Q(n, k). Let £ := |u — v| be their distance measured in rotations. If they are not adjacent,
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then one of them must be a right j-jumper of the other for some j € {1,..., k—1}. Since all j-jumpers
in Q(n, k) have to be either £ or £ — 1 rotations apart, or they all have to be ¢ or £ + 1 rotations apart
one of the equations (k — z){ + z({ + 1) = jn or (k — x)¢ + x(¢ — 1) = jn has an integral solution
with 0 < x < k. (This is because if we consider the clockwise arc from each z € X, to the 2/ € X,
for which this arc contains j elements of X, including z’ but excluding z, then we cover C,, exactly
j times.) That means that k¢ must belong to the same congruent class modulo n as x or —z, meaning
that in the image the vertices uk (mod n) and vk (mod n), whose distance is |u — v|k = ¢k, should
be either less than k, or more than n — k apart, i.e., they are indeed non-adjacent in K, /. O
Example 6. Let n = 8, k = 3. The vertices of Q(n, k) are the sets {1,3,6},{2,4,7},{3,5,8},{1,4,6},
{2,5,7},{3,6,8},{1,4,7},{2,5,8}. Choosing X to be {1, 3,6} the mapping given in the proof of
Proposition 3.8 above sends the above vertices into vertices 0,3,6,1,4,7,2,5 of Ky/3, respectively.
Vertices belonging to disjoint sets in V' (Q(8, 3)) are mapped to adjacent vertices of Ky /3. Since both
graphs are 3-uniform, this shows that they are isomorphic. (For an illustration see Figure 3.4.)

1

Xo: 3 L Xt 7 N €

Figure 3.4: This figure shows how the sets X; are mapped to the vertices of Kg/3 as described in
Example 6.

With the above we have completed the proof of Theorem 3.7. The following is an easy consequence
of Proposition 3.8.

Corollary 3.17. For alln > 2k we have

Q. k) = | 7]

Proof. From Proposition 3.8 and the properties of the circular complete graphs it follows that

n

K@) = x(Kwn) = || = [7].

’r_ n ’r_ k
where n’ = 7gcd(n,k)’k = Zed(nh) O

Note that Corollary 3.17 gives a second proof for Corollary 3.16 as Q(n, k) = SG(n,k) implies
the equality of their chromatic number and n — 2k + 2 = [%W also implies that we must have

n=2kn=2k+1lork=1.
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3.3 Critical edges

Here we are going to prove a strengthening of the second statement of Theorem 3.7.

Definition 3.7. An edge {i,j} € E(K,;) of the circular complete graph K,y is called a shortest
edge if|i —j| =kor|i—jl=n—k.

We remark that in terms of Q(n, k) a shortest edge of K, /;, (when ged(n, k) = 1) belongs to one that
connects a vertex X € V(Q(n, k)) to a vertex that can be obtained by one rotation along the defining
cycle. This can be read out from the proof of Proposition 3.8.

Theorem 3.18. An edge of K, ), is critical for the fractional chromatic number if and only if
gcd(n, k) = 1 and e is a shortest-edge. The same statement holds also if we exchange the word “frac-
tional” to “circular” in the previous sentence. More precisely, ifged(n, k) = 1, e € E(K,,;,) and a, b are
defined as in Theorem 3.7 then

if e is a shortest edge
otherwise.

X Enpp \ fed) = xelEp \ {e}) = {

ESINESHIS]

Proof. For both parameters x (K, /) = Xc(Ky/,) = % is a trivial upper bound and x (K, ;) =
Xc(Kqpp) = § is alower bound, because K,y is a subgraph of K, ;. (see Lemma 6.6 in [FIN04]). It is
well-known that x 1(G) < x.(G) holds for any graph G (cf. [HN04]), so it is enough to prove that if
ged(n, k) > 1 or e is not a shortest edge then x (K, /5 \ {e}) > 7, while if ged(n, k) = 1 and eis a
shortest edge then x.(K,, /i \ {e}) < 7.

If ged(n, k) > 1 then K, /;, is homomorphically equivalent to K,/ for n' = m, K = m
and since |V (K, /i1)| = n' < n = |V(K, ;)| in this case, K, /, cannot have any critical edges. Thus

from now on we assume ged(n, k) = 1.

It is well-known that the independence number (K, ;) = k (see this as a Claim within the proof
of Theorem 6.3 in [HN04]). One can also easily show that if n > 2k (and for n > 2k, ged(n, k) = 1
this is always the case) the only independent sets of K, /. with size exactly k consist of k cyclically
consecutive elements. That is, a largest independent set must have the form {i,i+1,...,i+k — 1},
where addition is intended modulo n. Indeed, if S is an independent set in K, /;, having size k and
jeSthenSC{j—k+1,j—k+2,...,5,5+1,...,j+k—1} and since Vh € {1,...,k — 1} :
{j—h,j—h+k} € E(K, /), |S| = k implies that exactly one of the vertices j —h and j —h+k must
belong to S for every h € {1,...,k—1}.If S was not a set of cyclically consecutive vertices, then we
musthaveah € {2,...,k—1} forwhichj—h e Sandj—h+1¢ S. Then |S|=k,j—h+1¢S5
implies j — h + k + 1 € S by the foregoing. However j — hand j — h + k + 1 are adjacent in K, /j,
(whenever n > 2k) contradicting that S is an independent set.

Since x ¢(G) > |Z((g)) | and for K, i, we have equality because K, , is vertex-transitive, x (/< /5, \

{e}) < xy (I, ) is possible only if a(K,, ;. \ {e}) > a(K,, ;) = k. This requires that e = {z,y}
for two vertices ,y for which there exists a set U C V(K ;) of size [U| = k — 1 for which
r,y ¢ U and both U U {z} and U U {y} are k-element independent sets of K, /.. Since k-element
independent sets are formed by cyclically consecutive elements, this means that w.l.o.g. we must have
U={x+1,...,x+k— 1} and y = x + k, in which case {x, y} is a shortest edge.
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3. CRITICAL SUBGRAPHS FOR THE FRACTIONAL CHROMATIC NUMBER

What is left to prove is that if ged(n, k) = 1 and e = {x,z + k} is a shortest edge then we have
Xe(Kp e \{e}) < . To show this we give a homomorphism from K, /. \ {e} to K, /; \ {2 }. By Lemma
6.6 in [HN04] we know that a rectract of K, ;. \ {2} is isomorphic to K, so by transitivity of the
existence of homomorphisms we get that K, /,\{e} — K. Let f : V(I . \{e}) = V (K, /\{z})
be the function f(z) = r+1and f(i) = i Vi € [n]\{z}. Since the neighborhood of 7 in V'( K, /,\ {e})
is{z+k+1,...,x+n—k} whichisasubsetof {z +k+1,...,2+n — k+ 1}, the neighborhood
ofz + 1in V(K \ {€}) and also in V (K, 4, \ {x}), f is indeed a homomorphism. O
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CHAPTER 4

Graph Codes

Celebrated problems of extremal combinatorics may get an exciting new flavour when the presence of
some special structure is imposed in the condition. A prominent example is the famous Simonovits—
Sés conjecture [SS76] proven by Ellis, Filmus and Friedgut [EFF12b], which determines the maximum
possible cardinality of a family of graphs on n labeled vertices in which the intersection of any two
members contains a triangle. (The result of [EFF12b] shows, along with several far reaching gener-
alizations, that the best is to take all graphs containing a given triangle, just as it was conjectured
in [SS76]. This is clearly reminiscent of the Erd6s—Ko—Rado theorem [EKR61].) As another example
we can also mention the Ramsey type problem investigated in [KS95] that was also initiated by a
question of S6s and can be considered as a graph version of the first unsolved case of the so-called
perfect hashing problem. (For details we refer to [KS95]).

In this chapter we study several problems we arrive to if the basic code distance problem (how
many binary sequences of a given length can be given at most if any two differ in at least a given num-
ber of coordinates) is modified so that we do not prescribe the minimum distance of any two code-
words but require that they differ in some specific structure. In particular, just as in the Simonovits-
So6s problem we seek the largest family of (not necessarily induced) subgraphs of a complete graph
such that the symmetric difference of the edge sets of any two graphs in the family has some required
property. We will consider properties like connectedness, Hamiltonicity, containment of a triangle
and some more. Formally all these can be described by saying that the graph defined by the sym-
metric difference of the edge sets of any two of our graphs belongs to a prescribed family of graphs
(namely those that are connected, contain a Hamiltonian cycle, or contain a triangle, etc.)

Let F be a fixed class of graphs. A graph family G on n labeled vertices is called F-good if for any
pair of distinct G, G’ € G the graph G & G’ defined by

V(G G)=V(G)=V(G)=n],
where [n] = {1,...,n} and
E(Go @) ={e:ec (E(G)\ E(G)U(EG)\ EG))}

belongs to F.

Let M r(n) denote the maximum possible size of an F-good family on n vertices. We are interested
in the value of Mz(n) for various classes F. We will give exact answers or both lower and upper
bounds in several cases.

We mention that codes where the codewords are described by graphs already appear in the liter-
ature. In [Ton02], for example, Tonchev looked at the usual code distance problem restricted to codes
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whose codewords are characteristic vectors of edge sets of graphs. Gray codes on graphs are also
considered, see [Miit22], where the graphs representing the codewords should have some similarity
properties if they are consecutive in a certain listing. Problems analogous to the present ones though
restricted to special graph classes were also considered in [KMS12] and [CFK14]. A very interesting
result along these lines is the one in [KS18].

The chapter is organised as follows. In Section 4.1 we give a general upper bound that will turn out
to be sharp in several of the cases we consider. In Section 4.2 we consider classes F defined by some
global criterion as connectivity or 2-connectivity, Hamiltonicity or containing a full star, that is, a
vertex of degree n — 1. We determine Mx(n) for infinitely many values of n and for all n in the first
and the last case. In most of the cases when we give sharp bounds it is via also solving the problem we
call dual: we give the largest possible size of a graph family for which the symmetric difference of no
two of its members satisfies the original requirement. The case of the full star is an exception in this
sense, nevertheless we also solve the dual problem in that case for all even n by using a celebrated
lemma of Shearer. In Section 4.3 we consider classes F defined by local conditions. This means that
for certifying the condition it is enough to see just a special part of the graph pair at hand. A capacity-
type asymptotic invariant is natural to define in these cases. It turns out that when the requirement
is that the pairwise symmetric differences contain a certain subgraph then this asymptotic invariant
depends only on the chromatic number of the graph to be contained. The final section contains a
collection of open problems.

4.1 A general upper bound

To bound Mz (n) for various graph classes F it will often be useful to also consider the related problem
of constructing large graph families in which no pair satisfies the condition prescribed by F.

Definition 4.1. For a class of graphs F let D z(n) denote the maximum possible size of a graph family
on n labeled vertices (that is, each member of the family has [n] = {1,...,n} as vertex set), the sym-
metric difference of no two members of which belongs to F. Determining D z(n) will be referred to as
the dual problem of determining Mx(n).

Note that denoting by F the class containing exactly those graphs that do not belong to F we actually
have

Dy(n) = Mx(n),
that is the requirement of having no symmetric difference in F is clearly the same as saying that all
symmetric differences belong to the complementary family F. Nevertheless, we will use the D z(n)
notation to emphasize the dual nature of the problem in those cases.

Lemma 4.1. For any graph class F we have
2

Mz(n) - Dr(n) < 2(2),

Proof. Let us define a graph H r whose vertices are all the possible (simple) graphs on the vertex set
[n]. Connect two such vertices if and only if the corresponding pair of graphs have their symmetric
difference belonging to F. Then by definition we have

Mxr(n) =w(Hr) and Dr(n) = a(Hg),
where w(H) and «(H) denote the clique number and the independence number of the graph H,

AN

respectively. Observe that Hr is vertex-transitive, (in fact it is a Cayley graph of the group Z2(
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Indeed, if G; and G are two graphs forming vertices of Hr then taking the symmetric difference of
all n-vertex graphs forming vertices of Hr with the graph G & G2 is an automorphism of H r that
maps G to Gla. Since a vertex-transitive graph H always satisfies o( H)w(H ) < |V (H)| (this can be
seen by using that the fractional chromatic number x ;(H) always satisfies w(H) < xy(H ), while if

H is a vertex-transitive graph we also have x;(H) = “a/((II—LII)) |, cf. [SU97]), the statement follows. [

The above lemma makes it possible to bound M z(n) from above by bounding D z(n) from below. In
particular, whenever we construct two families of graphs A and B on [n] such that A, A’ € A implies
A® A" € Fand B,B' € Bimplies B® B’ ¢ F, while |A||B| = 2(5), then we know that |A| and
|B| realize the optimal values Mr(n) and Dx(n) for such families. Below we will see several cases
when this simple technique can indeed be used to obtain these optimal values. An exception to this
phenomenon is also presented by Theorems 4.7 and 4.8.

Remark 1. Tt is worth noting that Lemma 4.1 can be proven in a different way, with no reference to the
fractional chromatic number. Indeed, if Gy, . . ., G}, is an F-good family, while 77, . .., T}, is a family
satisfying the conditions of the dual problem, then all the symmetric differences of the form G; © T}

are different, implying km < 2(5). This is true because if G; © Tj and G, @ T would be the same
for some {3, j} # {r, s}, then (G; @ T;) ® (G, ® T,) would be the empty graph that could also be
written (by commutativity and associativity of the symmetric difference) as (G; @ G) ® (T; @ T5).
This would mean that G; ® G, and T} @ T are two identical graphs. But if one of them is the empty
graph (that is, G; = G, or T; = T}), then the other cannot be empty and if both are nonempty, then
one of them belongs to F while the other one does not, so this is impossible.

4.2 Global conditions

Connectivity

When we speak about the class of connected graphs in the following theorem, we mean graphs with
a single connected component, and hence without isolated vertices.

Theorem 4.2. Let F. denote the class of connected graphs. Then
]\4]:C (Tl,) =on-1

Proof. First we give a very simple dual family .. Let it consist of all graphs on [n] in which the vertex

labeled 7 is isolated. Clearly |B.| = 2("2") (that is the number of all graphs on [n — 1]) and n is also
isolated in the symmetric difference of any two of them, so no such symmetric difference is connected,
2

This gives Dx,(n) > 2("2") and thus by Lemma 4.1 we have

n—1

Mz (n) < 2()=("2") = on-1,

Now we show that this upper bound can be attained. Let the family .A. consist of all those graphs
on [n] that are the vertex-disjoint union of two complete graphs (where each vertex belongs to one
of them) including the case when one of the two is on the empty set. Clearly, the number of these
graphs is just half the number of subsets of [n], that is exactly 2"~!. All we have to show is that the
symmetric difference of any two of these graphs is connected. Choose two arbitrary graphs G and G’
from our family. Let G be the union of complete graphs on the complementary vertex sets K and L,
while G’ be the sameon K’ and L. Let A= KNL,B=L'NL,C=LNK andD=K' NK.It
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is possible that one, but only one of A, B, C, D is empty. The edges of G & G’ are all the edges of the
complete bipartite graph with partite classes A U C' and B U D, so it must be connected. O

With just a little more consideration one can also treat the case of 2-connectedness at least for
even n.

Theorem 4.3. Let Fy. denote the class of 2-connected graphs. Then if n is even, we have
Mgz, (n) = 2"72

Proof. The proof is a modification of the previous one, therefore we use the notation introduced there.
The construction given there may result in symmetric differences that are not 2-connected only if
AUC or BU D contains only one element. For even n this can be avoided if we consider only such
graphs in our construction where the bipartition of [n] defining the individual graphs has an even
number of elements in both partite classes K and L. This proves the lower bound.

For the upper bound we consider all graphs in which the vertex n is either isolated or it has one
fixed neighbor, say n — 1. The symmetric difference of any two such graphs is not 2-connected, since
n has at most one neighbor in it. The number of such graphs is just twice the number of graphs in

which n is an isolated point, that is, 2("3 ")+ proving the matching upper bound by Lemma 4.1. 0

Remark 2. The upper bound proven in Theorem 4.3 clearly holds also for odd n but we have not
found a matching construction in general. For n = 3 a triangle and the empty graph would do, still
achieving the upper bound. But for larger odd n the best we could do is to take only those graphs
from our construction for which in the corresponding bipartition the smaller partition class has an
odd number of elements if n = 1 (mod 4) and it has an even number of elements if n = 3 (mod 4).

The number of graphs obtained this way is on—2 _ ( ("7:”’? ) 2),

Remark 3. Changing the graphs to their complements in the proofs of Theorems 4.2 and 4.3 makes
these graph families vector spaces over the 2-element field, while they still satisfy the conditions as
the symmetric differences do not change by complementation (or by taking the symmetric difference
of all elements with any fixed graph which is the complete graph in case of complementation).

It does not sound surprising that if we step further on to k-connectedness for & > 2 then the problem
becomes rather more complicated. Nevertheless, if we insist on linear codes, that is graph families
closed under the symmetric difference operation then for & = 3 we can still determine the largest
possible cardinality for infinitely many values on n using Hamming codes.

Theorem 4.4. Let F3. be the class of 3-connected graphs and let M ](_-?C (n) denote the size of a largest
possible linear graph family on vertex set [n] any two members of which have a 3-connected symmetric
difference. If n = 2¥ — 1 for some integer k > 2, then

0

= (n) — 2n7k71 )

Proof. First we prove that Dz, _(n) > n2("2") holds in general. Consider the family of all graphs on
vertex set [n] in which the degree of vertex n is at most 1. There are exactly n2("2") such graphs. The
symmetric difference of any two of these graphs is at most 2-connected, since the vertex n has degree
at most 2 in all these symmetric differences. This proves the claimed inequality and by Lemma 4.1
this implies Mz, (n) < 2"~ 1/n.

It is well-known that if a family of subsets of a finite set contains the empty set and is closed under
the symmetric difference operation then the cardinality of this set must be a power of 2. This follows
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immediately from linear algebra and the fact that such a family forms a vector space over GF'(2),
cf. e.g. Lemma 3.1 in Kozlov’s book [Koz08] where a simple combinatorial proof of this fact is also
presented. Since a linear graph family code on [n] can be viewed as a collection of subsets of F(K},),
this implies that M ](_é)c (n) is a power of 2. Since we obviously have M %)C (n) < Mg, (n), the upper

bound proved above implies M](f) (n) < 24 with d = [logy 1271 giving

3c
M) (n) < 2

for n = 2% — 1, k > 2, which proves the required upper bound.

For the lower bound consider the Hamming code Cg7(n) with length n = 2% — 1 that exists for every
k > 2. (For a nice quick account on Hamming codes see e.g. [Ber15].) It is a linear code with minimum
distance 3 that consists of 2" ¥ binary codewords having the property that if ¢ = (c1,...,c,) be-
longs to the code then so does also ¢ = (¢1, .. ., ¢,) where ¢; = 1 — ¢;. For each codeword ¢ € Cg(n)
consider the bipartition of [n] into the subsets K., L., where K. = {i: ¢; =0}, L = {i : ¢; = 1}
and the complete bipartite graph Gk, 1. with partite classes K, L. Note that by the above men-
tioned property of Hamming codes we have ¢ € Cy(n) if and only if ¢ € Cy(n) and thus since
GkeLe = G e We get 5|Cp(n)| = 2771 different complete bipartite graphs this way. All we
have to prove is that the symmetric difference of any two of our graphs is 3-connected. This is equiv-
alent to show that if ¢’ # ¢, ¢, then the cardinality of both partite classes of G Ke,Le ®G KLy that
isof (KcNKe)U (LeN Ler) and (Ke N Ler) U (K N Le) is at least 3. However, this immediately
follows from the fact that the codeword ¢’ must differ from both ¢ and € in at least 3 coordinates. This
completes the proof. g

Hamiltonicity

A graph is connected if and only if it contains a spanning tree. Next we consider what happens if we
require the containment of specific spanning trees: a path in this subsection and a star in the next
one.

Theorem 4.5. Let Fp, denote the class of graphs containing a Hamiltonian path. Then for infinitely
many values of n we have
M]:Hp(n) = on-1

In particular, this holds whenever n = p orn = 2p — 1 for some odd prime p.

To prove the above theorem we will refer to the following old conjecture that is known to be true in
several special cases. To state it we need the notion of perfect 1-factorization. It means the partition of
the edge set of a graph into perfect matchings such that the union of any two of them is a Hamiltonian
cycle.

Perfect 1-factorization conjecture (P1FC)(Kotzig [Kot64]). The complete graph K, has a perfect
1-factorization for all even n > 2.

This conjecture is still open in general, however it is known to hold in several special cases, for
example, whenever n = p + 1 (Kotzig [Kot64]) or n = 2p for some odd prime p (Anderson [And73]
and Nakamura [Nak75], cf. also Kobayashi [Kob89]). For a recent survey, see Rosa [Ros19], according
to which the smallest open case of the conjecture is n = 64.
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Proof of Theorem 4.5. Since Hamiltonian paths are connected, it follows from the proof of Theorem 4.2
that 2”1 is again an upper bound. Now we show that it is also a lower bound whenever the Perfect
1-factorization conjecture holds for n + 1. (Note that if the conjecture is true, then this means that
our statement holds for all odd numbers at least 3, while for 1 it is void.)

Let n be an odd number for which K, has a perfect 1-factorization M and v a fixed vertex of K, ;.
Note that deleting the edge incident to v from all matchings belonging to M we obtain n matchings
of K, such that the union of any two of them is a Hamiltonian path in K,, := K,4+1 \ {v}. Now
consider all those subgraphs of K, that can be obtained as the union of an even number of these n
matchings. Clearly, the symmetric difference of any two of them is also the union of at least two of
these matchings and thus contains a Hamiltonian path. The number of graphs obtained this way is
27~! matching the upper bound. U

The case of Hamiltonian cycles can be treated essentially the same way:.

Theorem 4.6. Let Fp. denote the class of graphs containing a Hamiltonian cycle. For all even values
of n for which the P1FC holds, we have

M;Hc(n) =" 2,

In particular, this is the case if n = p + 1 orn = 2p for some odd prime p.

Proof. Since Hamiltonian cycles are 2-connected, it follows from the proof of Theorem 4.3 that 22
is again an upper bound.

Let n be an even number for which the P1FC holds and let M be a perfect 1-factorization of K,,. Note
that M contains n — 1 matchings (indeed the edge-chromatic number of K, for even n is n — 1).
Now consider the 22 graphs we can obtain as the union of an even number of matchings from M.
Clearly, the symmetric difference of any two of them contains a Hamiltonian cycle. O

Remark 4. Since Hamiltonian cycles are 2-connected graphs the proof of Theorem 4.6 obviously
gives an alternative proof of Theorem 4.3 for those values of n for which the Perfect 1-factorization
conjecture is known to hold. (The situation is similar for Theorems 4.5 versus 4.2.) On the other
hand, the construction in the proof of Theorem 4.3 utterly fails to give a good lower bound for the
value of Mz, (n) investigated in Theorem 4.6. Indeed, the symmetric difference of two graphs in the
construction given in the proof of Theorem 4.3 contains a Hamiltonian cycle if and only if the sets
denoted by AUC and BU D in that proof both have cardinality 5 and this happens exactly when the
partition classes of the partitions (K, L) and (K’, L') are orthogonal in the sense that representing
these bipartitions by characteristic vectors consisting of +1 and —1 coordinates in the obvious way,
we get a collection of vectors that are pairwise orthogonal. So their number cannot be more than just
n and we can give exactly n such vectors if and only if an n x n Hadamard matrix exists.

Containing a spanning star

We have seen in the previous subsection that if we want every symmetric difference to contain a
spanning tree which is a path, then for infinitely many values of n our family can be just as large as if
we did not want more than just the connectedness of these symmetric differences. In this subsection
we show that if the required spanning tree is a star, then the largest possible family is drastically
smaller.
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Theorem 4.7. Let Fg denote the class of graphs containing a spanning star, that is a vertex connected
to all other vertices in the graph. Then we have

n+1 ifn is odd

Mzs(n) = { n ifn is even.

Proof. First we prove the upper bound. Let Gy, ..., Gy, be an Fg-good family on the vertex set [n].
Consider the complete graph K,,, whose vertices are labeled with the graphs Gy, ..., G,. For each
edge {G;, G;} of this graph assign an element h € [n] for which h is adjacent to all other elements
of [n] in the graph G; & G;. By the definition of Fg-goodness such an h exists for every pair of
our graphs. Now observe that if an element a € [n] is assigned to two distinct edges e and f of
our graph K,,, then e and f must be independent edges. Indeed, if that was not the case then we
would have e = {G;,G;}, f = {G;, Gy} for some i, j, k € [n] and a would be a full-degree vertex
(that is one, connected to all other vertices) in both of the graphs G; ® G; and G; @ G} But since
G ® Gy = (G; ® G§) ® (G; @ Gy), that would mean that a is an isolated vertex in G; @ Gy, so
no vertex of this latter graph can have full degree contradicting the Fg-goodness of our family. Thus
our assignment of vertices from [n] to the edges of our K, partitions the edge set of K, into sets
of independent edges (every partition class consisting of the edges with the same assigned label), in
other words, it defines a proper edge-coloring of K,. This means that the number of possible labels,
which is n, should be at least as large as the edge-chromatic number x.(K,,) of K,,. Since the latter
is m — 1 for even m and m for odd m, turning it around we obtain that for odd n we must have
m < n + 1 and for even n we must have m < n.

Now we show that the upper bound we proved is sharp. First assume that n is odd and con-
sider a complete graph K, on the vertices vy, ...,v,4+1 along with an optimal edge-coloring
¢: E(Kp+1) — [n] of this graph. This edge-coloring partitions E (K, 1) into n disjoint match-
ings Mj, ..., M,, where M; consists of the edges colored j for every j € [n]. Now we construct the
graphs G1, ..., Gp41 by telling for each potential edge ¢j of the complete graph on [n] which Gi’s
will contain it and which ones will not. Consider the edge ¢j and the union of the matchings M; and
M; (note that these matchings are in the “other” complete graph on n + 1 vertices). This union is a
bipartite graph on the vertex set {vy, ..., v,4+1} with two equal size partite classes A and B. Let ij
be an edge of the graph G, if and only if v, € A. (So 7j will be an edge of exactly half of our graphs
G1,...,Gpt1.) Do this similarly for all edges of K, the complete graph on vertex set [n]. This way
we defined our n + 1 graphs. We have to show that they form an Fg-good family.

To this end consider two of our graphs, say G}, and Gj. The edge {vy, v} has got some color
in our coloring ¢, call this color j. This means that {vj,, v} belongs to the matching M;. We claim
this means that j € [n] is a full-degree vertex of G}, @ Gy. The latter is equivalent to the statement
that every edge ji incident to the point j appears in exactly one of the graphs GGy, and Gy,. But this
follows from the way we constructed our graphs: when we decided about the edge ji we considered
the matchings M; and M and the bipartite graph their union defines. Since {v, v} € M;, the points
vy, and vy, are always in different partite classes of this bipartite graph, so whichever was called A,
exactly one of vy, and vy, belonged to it. Thus the edge ij was declared to be an edge of exactly one of
GG1, and Gy Since this is so for every ¢ # 7, j is indeed a full-degree vertex in G, & Gg.

Assume now that n is even. Then n — 1 is odd and we can construct graphs G1, ..., G, on vertex
set [n — 1] = {1,...,n — 1} as given in the previous paragraph. These are not yet good, however,
since we have an nth vertex that does not appear yet in any of the graphs. Note that we have n — 1
matchings M, ..., M,_ involved in the construction so far whose indices are just the first n — 1
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vertices of our graphs. Think about the additional vertex n as the index of an additional “matching”
M, that has no edges at all. We decide about the involvement of the edges ni (¢ < n) in our graphs
analogously as we did for the earlier edges: Consider the bipartite graph M; U M,,, that consists of
just the edges of M, so it is a perfect matching on the vertex set {vy,...,v,}. Let the two partite
classes defined by this perfect matching be A and B and add the edge ni to the graph G}, if and only
if vy, belongs to A. Now we can prove analogously to the odd case that the symmetric difference of
any two of our graphs contains a vertex of degree n — 1. Consider GG, and G'.. The edge between vy,
and vy, in the auxiliary complete graph belongs to exactly one of the matchings M; and every edge
ij is in exactly one of the graphs G, and G ifi € {1,...,5 — 1,7+ 1,...,n}. This completes the
proof. O

The following remark is due to Gabor Tardos [Tar22b].

Remark 5. The statement and proof of the above theorem can also be presented in a more compact
form as follows. There exists m graphs on vertex set [n] forming an Fg-good family if and only if
Xe(Km) < n. The proof is essentially the same what was shown above but in the second part we
do not have to distinguish between odd and even n, rather just say that My, ..., M, are the color
classes of a proper edge-coloring of K, (some of which may be empty) and then define the graphs
Gh, ..., Gy, the same way as above.

The only graph family code proven to be optimal and nonlinear (or not the coset of a linear code) in
this chapter is the one appearing in the above Theorem 4.7. This is also the first case so far when the
upper bound is proven without the use of Lemma 4.1. This suggests the question of what could be
said about the dual problem in this case. The next theorem solves this dual problem for even values
of n also showing that Lemma 4.1 would not give a sharp upper bound for Mz, (n).

Theorem 4.8. Ifn is even, then

|3

Drg(n) = 202)

When n is odd, then we have

n

2(5)="3" < Dr (n) < 205)-5.

For the proof we will need the following celebrated result from [Chu+86] (see also Corollary 15.7.7 in
[AS16]).

Shearer’s Lemma([Chu+86]). Let S be a finite set and Ay, ..., Ay, be subsets of S such that every
element of S is contained in at least k of the sets Ay, ..., Ay,. Let M be a collection of subsets of S and
let My ={TNA;: T € M} for1 <i <m.Then

IMF < TT IMl.
i=1
Proof of Theorem 4.8. We will prove
2(3)-T31 < Dry(n) < 2(3)-%

that implies both the even and the odd case. For the lower bound fix a subgraph T' of K, with the
minimum number |5 | of edges such that no vertex is isolated and take all possible subgraphs of K,

n

that contain none of the edges of 7. The number of such subgraphs is 2(2)=51 and no two of them
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has a symmetric difference that contains all edges incident to any fixed vertex. This proves the lower
bound.

For the upper bound consider a graph family M that satisfies the condition that no two of its elements
have a symmetric difference with a vertex of degree n — 1. For i = 1,...,n let S; be the set of
n — 1 edges (of K,,) incident to vertex i. Then for any 7,7’ € M we cannot have E(T") N S; =
Si\ (E(T)NS;), that is, E(T') and E(T") cannot be complementary on any S;. So if M, denotes
the family of graphs obtained by taking the projection of all graphs from M to the edge set S;, then
|M;] < 2772, Since each edge of K, appears in exactly two of the sets S;, we can apply Shearer’s
Lemma to these sets with k = 2. This gives

’M|2 < H‘Mz| < 2n(n—2).

i=1
Taking square roots we get the upper bound. g

Note that if we restrict attention to linear graph families for the dual problem treated in Theorem 4.8,
then using again that the cardinality of such a family should be a power of 2 (cf. the similar argument
in the proof of Theorem 4.4) we get that our lower bound is also sharp for odd values of n.

4.3 Local conditions

In the previous section we investigated Mz (n) in cases when the required symmetric differences
contain specific spanning subgraphs, therefore to check whether these conditions are satisfied we
have to consider our graphs on the whole vertex set. Now we turn to families 7 defined by containing
some fixed small finite graphs, so the nature of these conditions will be local.

General local conditions

Definition 4.2. A graph class L defines alocal condition if it has the property that whenever H; is an
induced subgraph of Hy and H; belongs to L then so does also Hs. In short, we will refer to such an L
as a local graph class.

Note that the above definition implies that whenever two graphs F' and G are in the £-good relation
(thatis, ' ® G € L) then any F’ with F'[U] = F and G’ with G'[U] = G for some U C V(F') =
V(@) (that is, F’ and G’ induce subgraphs isomorphic to F' and G, respectively, on the same subset
U of their vertex set) are also in the £-good relation. This means that if two graphs are in this relation
then there is always some local certificate for this.

Here are some examples of local graph classes that we considered.

1. L = {H : L C H} for some fixed finite simple graph L. That is £ contains all graphs that
contain a (not necessarily induced) subgraph isomorphic to L. When L is such a family we will use
the simplified notation My, (n) for M (n).

2. L = Coad := {H : Cox+1 C H for some integer 1 < k}, that is, Coqq contains all graphs that
contain an odd cycle.

In the following we prove some general results related to M (n) for local graph classes £ and will
further investigate the special case belonging to our first example above in the next subsection. Later,
we will focus on M, (n) and Mc_,, (n).
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The next proposition gives a straightforward upper bound on the value of M/(n). It is in terms of
ex(n, L) that, as usually in extremal graph theory, denotes the maximum number of edges a graph
on n vertices can have without containing any L € L as a subgraph.

Proposition 4.9. For any local graph class L
Mg(n) < 2(;)—61’(71,[:)'

Proof. Consider an n-vertex graph H satisfying |E(H)| = ex(n, L) and containing no subgraph
isomorphic to any L € L. The family of all subgraphs of H clearly satisfies the requirements of the
dual problem of M (n). This is because no subgraph of H can have a subgraph belonging to £ and the
symmetric difference of two such subgraphs is also a subgraph of H so such a symmetric difference
can also not contain any L € £. This family has size 2¢*("£) thus the claimed upper bound follows
from Lemma 4.1. O

Proposition 4.9 and our following results will justify the relevance of the following notion in our
current setting.

Definition 4.3. The rate R, (n) of an optimal graph family code on n vertices satisfying the require-
ment prescribed by the local graph class L is defined as

2

Rp(n) = Y o

logy Mc(n).

We will soon see that the value limsup,,_, . Ry (n) is strictly positive for any £ belonging to this
section. We will use the following theorem due to Wilson to show that the limit actually exists for all
local graph classes.

Wilson’s Theorem([Wil76]). For every finite simple graph T' there exists a threshold ny(T") such that
ifn > no(T) and the following two conditions hold then the edge set of the complete graph K,, can be
partitioned into subgraphs each of which is isomorphic toT'. The two conditions are:

1. (3) is divisible by | E(T)

2.n — 1 is divisible by the greatest common divisor of the degrees of vertices inT'.

>

Note that the two conditions in the above theorem are obviously necessary. The decomposition of K,
in the conclusion of the theorem is called a T-design when it exists, cf. [ABB08].

Theorem 4.10. Let L be an arbitrary fixed local graph class. Then the value lim,,_,o, R, (n) exists and
is bounded from below by R (n) for everyn.

Proof. Let n be an arbitrary natural number and let G = {G1, ..., Gy, } be an optimal graph family
code for £ with V(G;) = [n],7 € {1,...,m}, that is one with m = M, (n). By Wilson’s theorem a
K, -design exists for Ky, whenever N is large enough and both n — 1 divides N — 1 and (Z) divides
(Z) Take such an N and consider the K,,-design on Ky consisting of the subgraphs K1), ... K,

Nngg:ll)) and each K () is isomorphic to K,,. Now let gj:= {ng), A G%)} be an optimal

graph family code for £ on V/(K)) for every j € {1,...,7}. (Obviously, we can choose each G; to
be isomorphic to G.) Now define a graph family code on K for £ as the collection of graphs that
can be written in the form of G4 = U;Zl ngj) where a = (ay,...,a,) runs through all possible
sequences satisfying a; € {1, ..., m} for every . Since there are m" such sequences a, this way we

where r =
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have m" different graphs in our family. They form indeed a graph family code for £ since for any two
of them, G¢ and Gy, there is some j for which a; # b; and thus Gq © Gy Ding Ga; © Gi; 2ina L for
some L € L. This implies M(N) > m" and thus

Re(N) 2

logy m" = logy Mg (n) = Re(n).

2
n(n —1)

The requirements for N are satisfied if N = kn(n — 1) + 1 and k is large enough. (Also for N =
kn(n — 1) 4+ n and large enough k but considering the former is enough for our argument.) Since
M (n) is clearly monotone nondecreasing in n (as we can always ignore some vertices and consider
a graph family code only on the rest), we can write that for any kn(n—1)+1 < < (k+1)n(n—1)

(kn(n—l)+1) (kn(ngl)-l»l)

: ®)

we have M(i) > m'” for r = ~——%——=. Introducing the sequence b; := m” for r =

2
N(N =1)

2
whenever kn(n — 1) +1 <i < (k+ 1)n(n — 1) we can write

2
lim inf ———— logy M () > liminf

s (i — 1) iy o bi =
kn(n—1)+1
liminf——— 1 % -
oo (DD 0821 -
2
(kn(n—l)—l—l) 9
lim inf Z logom = Rr(n).

k—o0 ((’Hl)g(n*l)) n(n —1)
This proves that lim,, .o, R, (n) exists and is equal to sup,, Rz (n). O

Remark 6. The above proof is similar to proving that the limit defining the Shannon capacity of graphs
exists which is usually done using Fekete’s Lemma. Here, however, there are some technical subtleties
(because of the divisibility requirements for N) that made it simpler to present a full proof than to
refer simply to Fekete’s Lemma.

In view of Theorem 4.10 the following definition is meaningful.

Definition 4.4. The distance capacity (or distancity for short) of a local graph class L is defined as
DC(L) = le Rr(n).

Based on Turan’s celebrated theorem [Tur41] (cf. also e.g. in [Diel7]) and the famous theorem of
Erd6s and Stone [ES46], Erd6s and Simonovits [ES66] proved that if £ is an arbitrary family of (at
least 2-chromatic) graphs, then
L 1
lim ex(ﬁ’ ) 1o , (4.1)
n—oo (2) Xmin(ﬁ) -1

where xmin(£) = minzez x(L) and x(G) denotes the chromatic number of graph G as in the previ-
ous chapters.

Note that Proposition 4.9 and the above result determining the order of magnitude of ex(n, £) has
the following immediate consequence for the distancity.

Corollary 4.11. For any local graph class £ with X min(L) > 2 we have

1
PO = T
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Containing a prescribed subgraph

Now we focus on local graph classes mentioned in our first example after Definition 4.2: we have some
fixed finite simple graph L and consider £ = {H : L C H}. As said above in this case we will use
the notation M, (n) for M (n) and similarly, we will also denote Rz (n) and DC(L) by Ry (n) and
DC(L), respectively. We prove that in this case the upper bound of Corollary 4.11 is always sharp.

Theorem 4.12. For any fixed graph L we have

1

DC(L) =~

For the proof we will use a result by Erdés, Frankl and Rdl [EFR86] about the number F),(L) of
graphs on n labeled vertices containing no subgraph isomorphic to L.

Erd6s-Frankl-Rodl Theorem([EFR86]). Suppose x(L) = r > 3. Then

Fn(L) _ Qex(n,Kr)(lJro(l)).

Note that this gives
Fu(z) = 28 (s o)

by (4.1) (in fact, already directly by Turan’s theorem).

While the proof of the Erdés-Frankl-Rodl theorem is based on Szemerédi’s Regularity Lemma, a sim-
ilar result for bipartite L easily follows from (4.1) (or from the K6vari—-S6s-Turan Theorem [KST54)).

Indeed, it implies that if L is bipartite then F, (L) < (6((72;))) for any € > 0 provided n > ng(¢), and
2

that implies the claimed statement. (To see the latter one can use the well-known fact, cf. e.g. Lemma
2.3 in [CK11], that

£ _ oth(@)to(1))

at ’

where h(z) = —xlogyx — (1 — ) logy(1 — z) is the binary entropy function and 0 < o < 1is
meant to be such that at is an integer. Applying this for ¢ := (g) and a = € we obtain that for any

0 < € < 1 the number (6((271))) is more than 2°(2) for some positive §.)
2

Proof of Theorem 4.12. It follows immediately from Corollary 4.11 that the right hand side is an upper

bound on the left hand side so we only have to prove the reverse inequality.

To this end let G, denote the graph whose vertices are all possible graphs on n labeled vertices and
two are connected if and only if their symmetric difference does not contain L as a subgraph. (Note
that this is just the complementary graph of H r used in the proof of Lemma 4.1 when F is set to be
the local graph class £ belonging to our problem.) Then M/, (n) is equal to the independence number
a(Gr) of Gr. Clearly, Gy, is vertex-transitive (cf. the argument in the proof of Lemma 4.1 for Hr),
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in particular, it is regular. Since the degree of its vertex representing the edgeless graph is just F), (L),
we get (denoting the maximum degree of a graph G by A(G)) that

V(G — V(G|
AGL)+1 F,(L)+1

Mrp(n) =a(Gr) >

22 _ () (s te)
2(3) (1_ D= +0(1))
by the Erd6s—Frankl-R&dl theorem (and by the above discussion also for bipartite graphs). Putting
this inequality into the definition of DC'(L) the required result follows. g

Corollary 4.13. Let G be a set of graphs, each containing at least one edge, and let Lg be the local graph
class containing all graphs that contain at least one G € G as a subgraph. Then

1 1

Do) = =1~ @) =1

In particular,
1
DC(Coaa) = DC(K3) = 5.

Proof. The second statement is clearly a special case of the first one, so it is enough to prove the latter.
It is a straightforward consequence of Corollary 4.11 that the left hand side is bounded from above by
the right hand side. For the reverse inequality note the trivial fact that DC(Lg) > DC(G) for any
G € G. Applying this for some G € G that satisfies x(G) = mingeg X(G) = Xmin(Lg) the statement
follows from Theorem 4.12. g

Remark 8. Tt is straightforward from the foregoing that the above results also determine for any graph
family G the asymptotic behaviour of the value D/ (n) belonging to the dual problem. Indeed, by

Lemma 4.1 and Corollary 4.13 we have that lim,,_, ﬁ log Dg,(n) <1-DC(Lg) =1— m

2
while a matching lower bound follows from the argument in the proof of Proposition 4.9. Thus we
have

o
Xmin(g) —1
for any graph family G. This means that by taking all subgraphs of a graph with the largest possible

number of edges without containing a subgraph from G we obtain asymptotically a largest family of
graphs no two of which have any G € G in their symmetric difference.

. 2
Ay e D) =1 -

Containing a triangle or an odd cycle

In this subsection we are investigating M, (n) for small values of n and the simplest 3-chromatic
graph, which is the triangle K3. We will also look at the analogous problem when K3, the cycle of
length 3 is replaced by the family of all odd cycles.

For L = K3 the bound of Proposition 4.9 gives us Mg, (n) < 2(3)=T2115), Below we show that this
upper bound is tight whenever n is at most 6.

The first part of the following Proposition is very simple and we present it only for the sake of com-
pleteness.
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Proposition 4.14. We have M, (3) = 2 and Mg, (4) = 4.

Proof. For n = 3 the statement is trivial: take the empty graph and a triangle on three vertices, this
2-element family already achieves the value of the upper bound which is 2 for n = 3.

For n = 4 we give the following four graphs on the vertex set {1, 2, 3,4} by their edge sets. Let
E(Go) =0,E(Gy) = {12,23,13, 34},

E(Gy) ={23,34,24,14}, E(G3) = {12,13,24,14}.

It takes an easy checking that the symmetric difference of any two of these graphs contains a triangle.
Since the upper bound in Proposition 4.9 is also 4 in this case, this proves that Mg, (4) = 4. O

Remark 9. Note that both of the above simple constructions are closed under the symmetric differ-
ence operation, that is they form a linear space over GF'(2) when the graphs are represented by the
characteristic vectors of their edge sets. In fact, the second construction could also be presented as
the vector space generated in this sense by any two of the graphs G1, Ga, Gs.

Proposition 4.15.
Mk, (5) = 16.

Proof. The value of the upper bound in Proposition 4.9 gives 16 for n = 5, so we only have to prove
that 16 is also a lower bound. To this end we will give a set of graphs forming a vector space in the
sense of Remark 9. We will give this vector space by a set of generators, although in a somewhat
redundant way. (Our reason to keep this redundancy is that the construction has more symmetry this
way.)

Think about the vertices {1,2,3,4,5} as if they were given on a circle at the vertices of a regular
pentagon in their natural order. Consider the graph with edge set

E(Gy) == {12,23,13,35}.

Let G2, G'3, G4, G'5 be the four graphs we obtain from G by rotating it along the circle containing
the vertices so that vertex 1 moves to 2, 2 to 3, etc. Thus we have

E(Go) = {23,34,24,41}, E(Gs) = {34,45,35,52),

E(G4) = {45,51,41,13}, E(G5) = {51, 12,52, 24}.

Now we consider the linear space the characteristic vectors of the edge sets of these five graphs G;, i €
{1,2,3,4,5} generate. These graphs can be defined as the elements of the family G = {G : I C [5]},
where

G = @ic1G,

meaning that V(G) = [5] and E(G) contains exactly those edges that appear in an odd number of
the graphs G; with i € 1.

Note that every edge of the underlying K5 on [5] appears in exactly two of the graphs G1, ..., G5,
therefore for I = [5] we have that G is the empty graph just as Gy is. This implies that for every
I C [5]and I := [5] \ I we have G; = G7, thus every graph in our graph family has exactly two
representations as G for some I C [5]. (The two representations are given by I and I as we have seen.
It also follows that if J # I, I then Gj # G, otherwise we would have G ;g1 be the empty graph for
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Ja I ¢ {0,[5]} contradicting that every edge appears exactly twice in the sets E(G;), i = 1,...,5.)
Thus we have indeed %25 = 16 graphs in our family matching our upper bound for n = 4.

We have to show that the symmetric difference of any two of our graphs contains a triangle. Since our
construction is closed for the symmetric difference operation this is equivalent to say that all graphs
in our family except the empty graph contains a triangle. Since G; = G7 it is enough to prove that
G contains a triangle for all 1 < |I| < 2,1 C [5]. This is easy to see when |I| = 1. For subsets
with |I| = 2 it is enough to check this for I = {1,2} and I = {1, 3} by the rotational symmetry of
our construction. But these two cases are easy to check: Gy 5y contains the triangles on the triples
of vertices 1, 2,4 and 1, 3, 4, while G, 3) contains the triangle on vertices 1, 2, 3. O

Proposition 4.16.
Mg, (6) = 64.

Proof. The value of the upper bound given by Proposition 4.9 is 20 for L = K3 and n = 6, so we need
to prove only the lower bound.

To this end we give a construction of 64 graphs forming a graph family code on [6] for K. The
construction will have several similarities to that in Proposition 4.15 though with somewhat less
symmetry. But again our graphs will form a vector space in the sense of Remark 6 to be specified
through a set of seven generators that altogether cover each one of the edges of the underlying K¢
exactly twice, so every member of our graph family will have exactly two representations by the
generators just as in the proof of Proposition 4.15. Here are the details.

Think about the 6 vertices 1, ..., 6 as being on a circle in the vertices of a regular hexagon in their
natural order as we go around the circle. Our first four generator graphs are the following four edge-
disjoint triangles (plus three isolated points) given by their edge sets as follows.

E(G1) = {12,23,13}, E(G2) = {34,45,35},

E(G3) = {56,16,15}, E(G4) = {24, 46, 26}.

The other three graphs are three K4’s (plus two isolated vertices) that are rotations of each other, in
particular,
E(G5) ={12,24,45,15,14, 25}, E(Gg) = {23, 35, 56, 26, 25, 36},

E(Gr) = {34,46,16,13, 36, 14}.

It is easy to check that the above seven graphs cover each edge of the underlying Kj exactly twice.
Just as in the proof of Proposition 4.15 this implies that the generated family of graphs of the form

G = ®ic1G;

where I runs through all subsets of [7] contains exactly two representations of this form for each of
its members, namely

Gy =Gy ifand onlyif J = [7] \ I.

Thus our family has 25 = 64 members that matches our upper bound. Now we have to show that the
symmetric difference of every pair of our graphs contains a triangle. Since the family is closed under
symmetric difference this is equivalent to every Gy except Gy = (7] containing a triangle. To show
this we consider the representation of each of our graphs as Gy where I contains at most one of the
three K4 generators, thatis [I N {5,6,7}| < 1. When I N {5,6,7} = () but [ itself is nonempty then

51



4. GrarH CODES

this is trivial as in such a case (7 is the union of some of the edge-disjoint graphs Gy, . .., G4 each of
which is a triangle itself. In case | N {5,6, 7}| = 1, then by symmetry we may assume w.l.o.g. that
IN{5,6,7} = {5}. Then if we also have {1,2} C I then the triangles on vertices 1,3,4 and 2, 3,5
(and two more) will be contained in GG;. So we may assume that at least one of (G; and G is not part
of our representation of G; and by symmetry, we may assume 2 ¢ I. But then to avoid the triangles
on vertices 1,4, 5 and 2,4, 5 being in G; we need both 3 € I and 4 € I. In this case, however, we will

have the triangle on vertices 4, 5, 6 present in G;. This completes the proof. 4
2 1 2 1 2
g : oo g o=
d
G Ga Gs G145

Figure 4.1: Graphs G1, G4, G5 and their generated graph G{; 4 5) in the proof of Proposition 4.16.

Recall Coqq be the class of all graphs containing an odd cycle. Since ex(n,Coqd) = ex(n, K3) the
upper bound of Proposition 4.9 is also 2(5) =215 ) for Me,,,(n). Since K3 = ('3 is an odd cycle, we
obviously have Mg, (n) < Mc_,,(n) and so by Propositions 4.14, 4.15 and 4.16 the previous upper
bound is also sharp for Mc¢_,, (n) whenn € {3,4, 5, 6}. Although we could not prove that M, (7) is
also equal to this upper bound, we can show this at least for Mc_,, (7).

Proposition 4.17.
Me,,,(7) = 2°.

Proof. The upper bound 2(3)-T3115] i equal to 27, so it is enough to prove that this is also a lower
bound. This we do similarly as in the proofs of Propositions 4.15 and 4.16.

Again, we think about the seven vertices forming the set [7] as the vertices of a regular 7-gon around
a cycle in their natural order. We define 7 4+ 3 = 10 simple graphs (i1, ..., G7 and Gg, . . ., G that
will generate our family. Let GG; be the triangle with edges 12,24, 14 and Ga, .. ., G7 be its six pos-
sible rotated versions, that is the triangles with edge sets {23, 35,25}, {34, 46, 36},...,{17,13,37},
respectively. Note that these seven triangles cover all pairs of vertices exactly once, that is, they form a
Steiner triple system. The three other graphs GGs, G, G1¢ are three edge-disjoint seven-cycles, namely
those with edge sets

{12, 23,34, 45,56, 67,17}, {13, 35,57, 27, 24, 46, 16}, {14, 47, 37, 36, 26, 25, 15},

respectively. Note that these three graphs also cover all pairs of vertices exactly once and that the
edge sets of a G; for i € [7] and G with j € {8,9, 10} intersect in exactly one element. Since our ten
graphs cover the edges of the underlying K7 exactly twice, just as in the proofs of Propositions 4.15
and 4.16 the generated family

Dic1Gi
as I runs over all subsets of {1, ..., 10} will have exactly 2% distinct members each of which is repre-
sented by two subsets of {1, ..., 10}, some I and its complement. All we are left to show for proving

Me,,,(7) > 2%is that each such G except Gy = G10) contains an odd cycle. If I C [7], this is obvious

52



4.4. Open problems

and so is also if I C {8,9,10}. When both I N [7] and I N {8, 9, 10} are nonempty, then we consider
that representation G which has [/ N[7]| < 3.1f we have [IN{8,9,10}| = 1 then whichever 7-cycle
we have (that is, whichever of Gg, Gy, G1¢) it will have two consecutive edges that do not appear in
either of the at most three triangles. If we take the first pair of such edges (as we go along our 7-cycle
in an appropriate direction) for which the previous one is an edge of one of our triangles (since we
take at least one triangle and each triangle intersects each 7-cycle, such an edge must exist), then the
construction ensures that these two consecutive edges close up to a K3 in our G. In case we have
two 7-cycles in our G representation, then those create 7 distinct K3’s in their union. Each of our
triangles intersects exactly three of those seven K3’s created, so if we have |I N [7]| < 2 then at least
one of these seven K3’s remain untouched. Thus we are left with the case of two 7-cycles and exactly
three triangles. For this case let us switch to the complementary representation with four triangles
and one 7-cycle. By symmetry, we may assume that our 7-cycle is Gg. If the four triangles are such
that two consecutive edges of G's do not appear in any of them then we can finish the argument as
before. If this is not the case, then the four triangles must leave three such edges of G uncovered
which form a matching. Because of symmetry we may assume that these are the edges 12, 34, 56.
This also tells us exactly which are the four triangles we have in the representation of G, namely
those that contain the remaining four edges, that is, Go, G4, G¢ and G7. In this case G contains the
K3, for example, on the vertices 2, 5, 6. Finally, if we have all the three 7-cycles in our representation
then the complementary representation has no 7-cycle at all and this case we have already covered.

This completes the proof. 0
| ! : ;a |4
3 3 3 3
[ )
Z o) Z o) Y, = Y,
6 6~ 4
° 5 )
[ ) [ ]
G Gs Gy G138

Figure 4.2: Graphs G1, i3, G's and their generated graph G{; 35} in the proof of Proposition 4.17.

4.4 Open problems

In the final section of our paper [j2] we have listed some related open problems. Some of these have
been investigated or even answered since then. Here we will list all the problems and give reference
to their solutions if there is one.

Linear codes

Problem 1. For what graph families F is it true that M r(n) is achieved by a linear graph family code,
that is one that is closed under the symmetric difference operation?

Our results here include examples where this is the case as well as ones in which it is not. Indeed
in Theorem 4.7 the precise answer is n or n + 1, and if this is not a power of 2 there is no optimal
linear solution. Another family of examples in which the optimal family cannot be achieved by a
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linear example is that in which the family F is the family of all graphs with at most 2r edges, where

r is chosen so that the sum .
3 (5)
1

=0
is not a power of 2. Indeed, by a theorem of Kleitman [Kle66] (for usual codes) the size of the optimum
family here is the size of the family of all graphs with at most r edges.

Although it is not exactly an answer to this question, in [Alo24] Alon investigated the dual prob-
lem, D z(n). In particular, he was interested in the cases, where F contains all copies of a single graph
H on n vertices. So his question was about the maximum size of a graph family — which he called
H-code - the symmetric difference of no two members of which is a graph isomorphic to H. He
looked at graph families F like cliques, stars and matchings and also investigated the asymptotics of

dr(n) = D](E%l). He also studied the linear variant of these problems, that is, the version when the
2

H-code is closed under symmetric difference. For this linear version, in [Ver25] Versteegen provided
a general upper bound on D z(n) when F contains all copies of an arbitrary single graph H.

Asymmetric differences

The construction in the proof of Theorem 4.2 has the property that for any two of its graphs G and
G’ with an equal number of edges their two asymmetric differences

G\ G' = ([n], B(G)\ E(G")) and G'\ G = ([n], E(G") \ E(G))
are isomorphic. This suggests the following question.

Problem 2. What is the maximum possible size of a graph family A of graphs on n vertices satisfying
that if A, A" € Athen A\ A’ and A’ \ A are isomorphic?

In [GJS23] Gishboliner, Jin and Sudakov completely resolved our question by showing that the

1/(n n
maximum possible size of such a family is exactly 23((3)=15)) and even characterized all the extremal
constructions.

Phase transitions

Theorems 4.5 and 4.7 show a huge difference between requiring a spanning path or a spanning star
in the symmetric differences. One may wonder what happens “in between”. Note that if we formulate
this “in betweenness” so that we want to have a spanning tree with diameter at most k, then while
with & = 2 we are at Theorem 4.7 and with k = n — 1 at Theorem 4.5, already for k¥ = 3 we
get the same result as for £ = n — 1 by the construction in the proof of Theorem 4.2. (This is simply
because complete bipartite graphs contain spanning trees of diameter at most 3.) So it seems plausible
to formulate questions in terms of more specific “natural” sequences of spanning trees 77,75, . ... (In
the problem below the notation M7;, (n) is meant to denote the largest possible cardinality of a family
of graphs on vertex set [n] such that the symmetric difference of any two of them contains 7}, as a

subgraph.)
Problem 3. For what “natural” sequences T, T, ..., T;, ... of trees (with T; having exactly i vertices
for every i) will the value of M, (n) grow only linearly inn? A similar question is valid if T; is replaced

by T;, some “natural” family of i-vertex trees.
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4.4. Open problems

In [Bai+24] Bai, Gao, Ma and Wu partially solved this problem by proving the following result.
Theorem ([Bai+24]) For infinitely many n and all integers 3 < £ < % + 2, we have

Mp,(n) > 2("=2),

where Fy denotes the family of graphs containing a spanning tree that has exactly ¢ leaves. In particular,
this holds whenever n > 64 andn = p orn = 2p — 1 for odd primes p.

Exact cardinality

Propositions 4.14, 4.15, 4.16, 4.17 showed that the upper bound of Proposition 4.9 can be sharp for small
values of n for the requirement that a triangle or at least an odd cycle is contained in the symmetric
differences. It would be interesting to know whether this can also happen for large values of n.

Problem 4. Is
My, (n) = 2(2)-51L5]

true always or at least for infinitely many values of n? Even if this is not so, does the analogous equality
hold for Mc,,,(n)?

Note that there are much better known estimates for the number of triangle-free graphs on n labeled
vertices than the one we have used here, in fact, it is known that almost all of these graphs are bipartite
[EKR76]. While this improves the gap between the upper and lower bounds that follow from our
proofs for M, (n), it is still far from determining its precise value.

55






Publications

Number of publications:

Number of peer-reviewed journal papers (written in English):

Number of articles in journals indexed by WoS or Scopus:

Number of publications (in English) with at least 50% contribution of the author:

W | DN W W U

Number of peer-reviewed publications:
Number of citations: 12
Number of independent citations: 9

Publications Linked to the Theses
Journal Papers

[j1] Anna Gujgiczer and Gabor Simonyi. On multichromatic numbers of widely colorable graphs.
Journal of Graph Theory 100(2), 2022, pp. 346—361. por: 10.1002/jgt.22785.

[j2] Noga Alon, Anna Gujgiczer, Janos Korner, Aleksa Milojevi¢, and Gabor Simonyi. Structured
codes of graphs. SIAM journal on Discrete Mathematics 37(1), 2023, pp. 379-403. por: 10.1137/
22M1487989.

[j3] Anna Gujgiczer and Gabor Simonyi. Critical subgraphs of Schrijver graphs for the fractional
chromatic number. Graphs and Combinatorics 40, 2024. po1: 10.1007/s00373-024-02782-9.

Additional Publications (Not Linked to Theses)
International Conference and Workshop Papers

[c4] Anna Gujgiczer, Gabor Simonyi, and Gabor Tardos. On the generalized Mycielskian of com-
plements of odd cycles. In: Proceedings of the 12th Japanese-Hungarian Symposium on Discrete
Mathematics and Its Applications, pp. 485-488. 2023.

[¢5] Anna Gujgiczer, Marton Elekes, Oszkar Semerath, and Andras Voros. Towards model-based
support for regression testing. In: 24th PhD Mini-Symposium (Minisy@ DMIS 2017), pp. 26—29.
2017.

57


https://doi.org/10.1002/jgt.22785
https://doi.org/10.1137/22M1487989
https://doi.org/10.1137/22M1487989
https://doi.org/10.1007/s00373-024-02782-9




[ABB0S]

[Alo24]
[And73]

[AS16]

[Bai+24]

[Ber15]
[Ber97]

[BHO3]

[BLO3]

[Bra10]

[Bral1]

[BS05]

[BS74]

[BV18]

Bibliography

Peter Adams, Darryn Bryant, and Melinda Buchanan. A survey on the existence of G-
designs. Journal of Combinatorial Designs 16(5), 2008, pp. 373-410.

Noga Alon. Graph-codes. European journal of Combinatorics 116, 2024, p. 103880.

Bruce A. Anderson. Finite topologies and Hamiltonian paths. 7. Combin. Theory, Ser. B 14,
1973, pp. 87-93.

Noga Alon and Joel Spencer. The Probabilistic Method, Fourth edition. John Wiley & Sons,
2016.

Bo Bai, Yu Gao, Jie Ma, and Yuze Wu. Phase transitions of structured codes of graphs.
SIAM Fournal on Discrete Mathematics 38(2), 2024, pp. 1902-1914.

Elwyn Berlekamp. Algebraic Coding Theory (Revised Edition). World Scientific, 2015.

Claude Berge. Motivations and history of some of my conjectures. In: Proceedings of an
International Symposium on Graphs and Combinatorics, pp. 61-70. 1997.

Tom Bohman and Ron Holzman. A nontrivial lower bound on the Shannon capacities
of the complements of odd cycles. IEEE Transactions on Information Theory 49(3), 2003,
pp. 721-722.

Anders Bjorner and Mark de Longueville. Neighborhood complexes of stable Kneser
graphs. Combinatorica 23(1), 2003, pp. 23-34.

Benjamin Braun. Symmetries of the stable Kneser graphs. Advances in Applied Mathemat-
ics 45(1), 2010, pp. 12-14.

Benjamin Braun. Independence complexes of stable Kneser graphs. Electronic Journal of
Combinatorics 18(1), 2011, Paper 118.

Stephan Baum and Michael Stiebitz. Coloring of graphs without short odd paths between
vertices of the same color class. unpublished manuscript, 2005.

Claude Berge and Mikl6s Simonovits. The coloring numbers of the direct product of two
hypergraphs. In: Hypergraph Seminar, Lecture Notes in Math. 411, pp. 21-33. 1974.

Bart Sevenster Bart Litjens Sven Polak and Lluis Vena. On the chromatic number of a
subgraph of the Kneser graph. Electronic Notes in Discrete Mathematics 68, 2018, pp. 227—
232.

59



BIBLIOGRAPHY

[CFK14]

[Chel1]

[Chu+86]

[CK11]

[Die17]

[EFF12a]

[EFF12b]

[EFR86]

[EH67]

[EKR61]

[EKR76]

[ES46]

[ES66]

[ES85]

[GJS04]

[GJS23]

[GS75]

[Hajo9]

[HN04]

60

Gérard Cohen, Emanuela Fachini, and Janos Koérner. Connector families of graphs. Graphs
Combin. 30(6), 2014, pp. 1417-1425.

Peng-An Chen. A new coloring theorem of Kneser graphs. Journal of Combinatorial The-
ory, Series A 118, 2011, pp. 1062-1071.

Fan R. K. Chung, Peter Frankl, Ronald L. Graham, and James B. Shearer. Some intersection
theorems for ordered sets and graphs. J. Combin. Theory, Ser. A 43, 1986, pp. 23-37.

Imre Csiszar and Janos Korner. Information theory. Coding theorems for discrete memory-
less systems. Second edition. Cambridge University Press, 2011.

Reinhard Diestel. Graph Theory, Fifth edition. Vol. 173. Graduate Texts in Mathematics.
Springer, 2017.

David Ellis, Yuval Filmus, and Ehud Friedgut. Triangle-intersecting families of graphs.
Journal of the European Mathematical Society 14(3), 2012, pp. 841-885.

David Ellis, Yuval Filmus, and Ehud Friedgut. Triangle-intersecting families of graphs.
Journal of the European Mathematical Society 14(3), 2012, pp. 841-885.

Paul Erdés, Peter Frankl, and Vojtéch Rodl. The asymptotic number of graphs not contain-
ing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin.
2(2), 1986, pp. 113-121.

Pal Erdés and Andras Hajnal. On chromatic graphs. Mat. Lapok 18, 1967. In Hungarian,
pp. 1-4.

Paul Erdés, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets.
Quarterly Journal of Mathematics, Oxford Series 12, 1961, pp. 313-318.

Paul Erdés, Daniel J. Kleitman, and Bruce L. Rothschild. Asymptotic enumeration of K-
free graphs. Colloquio Internazionale sulle Teorie Combinatorie 2(17), 1976, pp. 19-27.

Paul Erd6s and Arthur H. Stone. On the structure of linear graphs. Bulletin of the American
Mathematical Society 52, 1946, pp. 1087-1091.

Paul Erdés and Miklés Simonovits. A limit theorem in graph theory. Studia Scientiarum
Mathematicarum Hungarica 1, 1966, pp. 51-57.

Mohamed El-Zahar and Norbert Sauer. The chromatic number of the product of two 4-
chromatic graphs is 4. Combinatorica 5, 1985, pp. 121-126.

Andras Gyarfas, Tommy Jensen, and Michael Stiebitz. On graphs with strongly indepen-
dent color-classes. Journal of Graph Theory 46(1), 2004, pp. 1-14.

Lior Gishboliner, Zhihan Jin, and Benny Sudakov. Difference-isomorphic graph families.
arXiv preprint arXiv:2312.06610, 2023.

Dennis Geller and Saul Stahl. The chromatic number and other functions of the lexico-
graphic product. Journal of Combinatorial Theory, Series B 19(1), 1975, pp. 87-95.

Hossein Hajiabolhassan. On colorings of graph powers. Discrete Mathematics 309, 2009,
pp. 4299-4305.

Pavol Hell and Jaroslav Nesetfil. Graphs and Homomorphisms. Oxford University Press,
2004.



Bibliography

[Hol99]

[Kle66]

[KMS12]

[Kne55]
[Kob89]

[Kot64]

[Koz08]

[KS17]

[KS18]

[KS20]

[KS22]

[KS95]

[KST54]

[Lov78]

[Lov79]

[Lov93]

[LPU95]

[Mat07]

[Meu05]

[MP71]

Fred C. Holroyd. Problem 338 (bcc16.25), Erdés—Ko-Rado at the court of King Arthur.
Discrete Mathematics 197/198, 1999. See also as 'Problem BCC16.25” at https://webspace.
maths.gmul.ac.uk/p.j.cameron/bcc/allprobs.pdf, p. 812.

Daniel J. Kleitman. On a combinatorial conjecture of Erdés. J. Combinatorial Theory 1,
1966, pp. 209-214.

Janos Korner, Silvia Messuti, and Gabor Simonyi. Families of graph—-different Hamilton
paths. SIAM Journal on Discrete Mathematics 26, 2012, pp. 321-329.

Martin Kneser. Aufgabe 300. Jahresber. Deutsch., Math. Verein. 58, 1955, p. 27.

Midori Kobayashi. On perfect one-factorization of the complete graph. Graphs Combin. 5,
1989, pp. 351-353.

Anton Kotzig. Hamilton graphs and Hamilton circuits. In: Theory of Graphs and Its Appli-
cations, Publ. House Czechoslovak Acad. Sci., 1964.

Dmitry Kozlov. Combinatorial Algebraic Topology. Springer Verlag, 2008.

Tomas Kaiser and Matéj Stehlik. Schrijver graphs and projective quadrangulations. In:
Robin Thomas Martin Loebl Jaroslav Nesetfil (ed.), A Journey Through Discrete Mathe-
matics: A Tribute to Jiri MatouSek, pp. 505-526. Springer, 2017.

Istvan Kovacs and Daniel Soltész. Triangle-different Hamiltonian paths. . Combin. The-
ory, Ser. B 129, 2018, pp. 1-17.

Tomas Kaiser and Matéj Stehlik. Edge-critical subgraphs of Schrijver graphs. Journal of
Combinatorial Theory, Series B 144, 2020, pp. 191-196.

Tomas Kaiser and Matéj Stehlik. Edge-critical subgraphs of Schrijver graphs II: The gen-
eral case. Journal of Combinatorial Theory, Series B 152, 2022, pp. 453-482.

Janos Korner and Gabor Simonyi. Trifference. Studia Sci. Math. Hungar. 30, 1995. Also in:
Combinatorics and its Applications to the Regularity and Irregularity of Structures, W. A.
Deuber and V. T. Sés eds., Akadémiai Kiadd, Budapest, pp. 95-103.

Tamas Kévari, Vera T. Sos, and Pal Turan. On a problem of k. zarankiewicz. Collog. Math.
3, 1954, pp. 50-57.

Laszl6 Lovasz. Kneser’s conjecture, chromatic number, and homotopy. Journal of Combi-
natorial Theory, Series A 25(3), 1978, pp. 319-324.

Laszl6 Lovasz. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory 25(1), 1979, pp. 1-7.

Laszlo Lovasz. Combinatorial Problems and Exercises. 2nd. Akadémiai Kiad6 and Elsevier,
1993.

Michael Larsen, James Propp, and Daniel Ullman. The fractional chromatic number of
Mycielski’s graphs. Journal of Graph Theory 19(3), 1995, pp. 411-416.

Jifi Matousek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Com-
binatorics and Geometry. Springer-Verlag, 2007.

Frédéric Meunier. A topological lower bound for the circular chromatic number of Schri-
jver graphs. Journal of Graph Theory 49, 2005, pp. 257-261.

Robert J McEliece and Edward C Posner. Hide and seek, data storage, and entropy. The
Annals of Mathematical Statistics 42(5), 1971, pp. 1706-1716.

61


https://webspace.maths.qmul.ac.uk/p.j.cameron/bcc/allprobs.pdf
https://webspace.maths.qmul.ac.uk/p.j.cameron/bcc/allprobs.pdf

BIBLIOGRAPHY

[Miit22]

[Myc55]

[Nak75]

[Ros19]
[Sch78]

[Sha56]

[Shi19]

[Sim21]

[SS76]

[SST24]

[ST06]

[ST20]

[Sta76]

[Sti85]

[SU97]

[Talo3]

[Tar01]

[Tar05]

[Tar08]

[Tar22a]

[Tar22b]

62

Torsten Miitze. Combinatorial Gray codes—an updated survey. arXiv:2202.01280
[math.CO]. 2022.

Jan Mycielski. Sur le coloriage des graphs. Colloquium Mathematicum 3, 1955, pp. 161-
162.

Gisaku Nakamura. Dudeney’s round table problem for the cases of n=p+1 and n=2p (in
japanese). Sugaku Sem. 159, 1975, pp. 24-29.

Alexander Rosa. Perfect 1-factorizations. Mathematica Slovaca 69(3), 2019, pp. 479-496.

Alexander Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wisk. (3)
26(3), 1978, pp. 454-461.

Claude Shannon. The zero-error capacity of a noisy channel. IRE Transactions on Infor-
mation Theory 2(3), 1956, pp. 8—-19.

Yaroslav Shitov. Counterexamples to Hedetniemi’s conjecture. Annals of Mathematics
190(2), 2019, pp. 663-667.

Géabor Simonyi. Shannon capacity and the categorical product. The Electronic Journal of
Combinatorics 28, 2021, P1.51.

Miklés Simonovits and Vera T. Sos. Graph intersection theorems. In: Proc. Collog. Combi-
natorics and Graph Theory, Orsay, Paris, pp. 389-391. 1976.

Michael Stiebitz, Thomas Schweser, and Bjarne Toft. Brooks’ Theorem: Graph Coloring and
Critical Graphs. Springer, 2024.

Gébor Simonyi and Gabor Tardos. Local chromatic number, Ky Fan’s theorem, and circu-
lar colorings. Combinatorica 26, 2006, pp. 587—-626.

Gébor Simonyi and Gabor Tardos. On 4-chromatic Schrijver graphs: their structure, non-
3-colorability, and critical edges. Acta Mathematica Hungarica 161, 2020, pp. 583-617.

Saul Stahl. n-tuple colorings and associated graphs. Journal of Combinatorial Theory, Series
B 20(2), 1976, pp. 185-203.

Michael Stiebitz. Beitrage zur Theorie der farbungscritischen Graphen. Habilitation the-
sis. TH Ilmenau, 1985.

Edward R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley and Sons, 1997.

John Talbot. Intersecting families of separated sets. Journal of the London Mathematical
Society (2) 68(1), 2003, pp. 37-51.

Claude Tardif. Fractional chromatic numbers of cones over graphs. Journal of Graph The-
ory 38(2), 2001, pp. 87-94.

Claude Tardif. Multiplicative graphs and semi-lattice endomorphisms in the category of
graphs. Journal of Combinatorial Theory, Series B 95, 2005, pp. 338—345.

Claude Tardif. Hedetniemi’s conjecture, 40 years later. Graph Theory Notes N. Y. 54, 2008,
pp. 46-57.

Claude Tardif. The chromatic number of the product of 14-chromatic graphs can be 13.
Combinatorica 42, 2022, pp. 301-308.

Gabor Tardos. private communication. 2022.



Bibliography

[Tar23]

[Ton02]

[Tur41]

[TZ19]

[Ver25]

[Wil76]

[Wro19]

[Wro20]

[Zhuo1]

[Zhu06]

[Zhu11]

[Zhu21]

[Zhu25a]

[Zhu25b]

Claude Tardif. The chromatic number of the product of 5-chromatic graphs can be 4.
Combinatorica 43(6), 2023, pp. 1067-1073.

Vladimir D. Tonchev. Error-correcting codes from graphs. Discrete Math. 257, 2002,
pp- 549-557.

Pal Turan. Egy grafelméleti széls6értékfeladatrol. Kozépiskolai Matematikai és Fizikai
Lapok 48, 1941, pp. 436-452.

Claude Tardif and Xuding Zhu. A note on Hedetniemi’s conjecture, Stahl’s conjecture and
the Poljak-Rodl function. Electronic Journal of Combinatorics 26, 2019, P4.34.

Leo Versteegen. Upper bounds for linear graph codes. Random Structures & Algorithms
66(1), 2025, e21263.

Richard M. Wilson. Decompositions of complete graphs into subgraphs isomorphic to a
given graph. In: Proceedings of the Fifth British Combinatorial Conference, vol. 15, pp. 647—
659. Utilitas Math., 1976.

Marcin Wrochna. On inverse powers of graphs and topological implications of Hedet-
niemi’s conjecture. Journal of Combinatorial Theory, Series B 139, 2019, pp. 267-295. arXiv:
arXiv:1712.03196 [math.C0O].

Marcin Wrochna. Smaller counterexamples to Hedetniemi’s conjecture. arXiv:2012.13558,
2020.

Xuding Zhu. Circular chromatic number: a survey. Discrete Mathematics 229, 2001,
pp- 371-410.

Xuding Zhu. Recent developments in circular colouring of graphs. In: Martin Klazar, Jan
Kratochvil, Martin Loebl, Jifi Matousek, Pavel Valtr, and Robin Thomas (eds.), Topics in
Discrete Mathematics, Algorithms and Combinatorics, vol. 26, pp. 497-550. Springer, 2006.

Xuding Zhu. The fractional version of Hedetniemi’s conjecture is true. European Journal
of Combinatorics 32(7), 2011, pp. 1168-1175.

Xuding Zhu. Relatively small counterexamples to Hedetniemi’s conjecture. Journal of
Combinatorial Theory, Series B 146, 2021, pp. 141-150.

Daniel Zhu. An improved lower bound on the Shannon capacities of complements of odd
cycles. Proceedings of the American Mathematical Society 153, 2025, pp. 1751-1759.

Xuding Zhu. A survey on Hedetniemi’s conjecture. arXiv:2502.16078, 2025.

63


https://arxiv.org/abs/arXiv:1712.03196

	1 Introduction
	1.3 Application

	2 Multichromatic Numbers of Widely Colorable Graphs
	2.1 Wide coloring
	2.2 Multichromatic numbers
	2.3 Proof of the main result
	2.4 On other multichromatic numbers of W(s,t)

	3 Critical Subgraphs for the Fractional Chromatic Number
	3.1 Well-spread subsets and the subgraph Q(n,k)
	3.2 Q(n,k) and Kn/k
	3.3 Critical edges

	4 Graph Codes
	4.1 A general upper bound
	4.2 Global conditions
	4.3 Local conditions
	4.4 Open problems

	Publications
	Bibliography

