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Summary

This dissertation considers problems from various "elds in graph theory. A common theme between
the "rst two theses is that the results are related to some graph parameters which are expressible
with a homomorphism to some universal graph class. The third thesis addresses problems with closer
relation to information theory.

We say that a graph G admits a homomorphism to a graph H if there exists an edge preserving
map from the vertex set of G to the vertex set of H . A well-known example for a graph parameter
which can be expressed via graph homomorphism is the chromatic number. A graphG has chromatic
number at most c if and only if it has a homomorphism to Kc, the complete graph on c vertices. In
this case we call the complete graphs universal graphs for the chromatic number. In 1966 Stephen
Hedetniemi formulated a conjecture that the chromatic number of the so-called tensor product of
two graphs is equal to the minimum of the chromatic numbers of the factors. However, it is easy
to see, that the chromatic number of the product is at most the chromatic number of the factors.
Therefore, the conjecture essentially asked whether the reverse inequality holds as well. In other
words, the conjecture asked whether if the product has a homomorphism to some complete graph
then one of the factors should have it as well. This conjecture was refuted after a long time and in the
later counterexamples a special graph class played an important role. These graphs are the universal
graphs for the so-called wide-colorings. Determining their multichromatic number became relevant
in the search for even smaller counterexamples. My "rst thesis deals with this question.

Multichromatic numbers are other good examples of graph parameters expressible via homomor-
phisms. In this case the universal graphs for this parameter are the Kneser graphs, KG(n, k) with
parameters n → 2k. Kneser graphs form a famous graph class whose chromatic number was deter-
mined by Lovász in his celebrated paper, where he proved, using topological tools, that the upper
bound n ↑ 2k + 2, constructed and conjectured to be tight by Kneser, is indeed the correct value.
Soon afterwards Schrijver found that a certain induced subgraph SG(n, k) of KG(n, k), now called
Schrijver graph, still has chromatic number n ↑ 2k + 2 and moreover, it is also vertex-critical for
this property, that is, deleting any of its vertices the chromatic number becomes smaller. Kneser and
Schrijver graphs (with the same parameters) share the value for another graph parameter, namely
the fractional chromatic number, which is n

k
for both. However, none of them are vertex-critical for

this parameter. This suggested the problem of "nding critical subgraphs of Schrijver graphs for the
fractional chromatic number, which is the subject of my second thesis. The found special subgraph
turned out to be isomorphic to another known graph, the circular complete graph,Kn/k, which is the
universal graph for yet another coloring parameter, the so-called circular chromatic number.

My third thesis is related to information theory. In the usual setting one considers binary se-
quences as codewords and asks how many codewords of a given length can be constructed in such
a way that any two of them di#ers in at least d bits. However, the binary sequences could encode
graphs on a labeled vertex set and this way more general "distance" requirements can be formulated.
E.g. if the requirement is to contain a triangle in the intersection of the edge sets, then we get the
famous conjecture of Simonovits and Sós which was proven by Ellis, Filmus and Friedgut. The role of
the intersection can be replaced by, for example, the symmetric di#erence of the edge sets of the two
graphs (which we can arrive to from the basic code distance problem), and apart from the containment
of a triangle or other "xed graph it is also interesting to examine global conditions like connectedness
or Hamiltonicity. The last chapter of my dissertation explores this generalization.
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sszefoglaló

Ezen disszertáció a gráfelmélet különböz$ területeir$l származó problémákat vizsgál. Az els$ két
tézisben közös elem, hogy az eredmények néhány olyan gráfparaméterhez kapcsolódnak, amelyek
valamilyen univerzális gráfosztályba vezet$ homomor"zmussal kifejezhet$ek. A harmadik tézis az
információelmélethez is kapcsolódó problémákkal foglalkozik.

Azt mondjuk, hogy létezik homomor"zmus egy G gráfból egy H gráfba, ha létezik egy éltartó
leképezés G csúcshalmazából H csúcshalmazába. Egy jól ismert példa ilyen gráfhomomor"zmussal
kifejezhet$ gráfparaméterre a kromatikus szám. Egy G gráf kromatikus száma akkor és csak akkor
legfeljebb c, ha létezik homomor"zmus G-b$l Kc-be, a c csúcsú teljes gráfba. Ebben az esetben a
teljes gráfokat a kromatikus számhoz tartozó univerzális gráfoknak nevezzük. 1966-ban Stephen He-
detniemi megfogalmazta azt a sejtést, hogy két gráf úgynevezett tenzorszorzatának kromatikus száma
egyenl$ a faktorok kromatikus számának minimumával. Könnyen belátható azonban, hogy a szorzat
kromatikus száma legfeljebb a faktorok kromatikus száma. Ezért a sejtés lényegében azt kérdezte,
hogy az ellenirányú egyenl$tlenség is teljesül-e. Más szóval, igaz-e, hogy ha a szorzatból van homo-
mor"zmus valamilyen teljes gráfba, akkor legalább az egyik tényez$b$l szintén van homomor"zmus
ugyanebbe a teljes gráfba. Ezt a sejtést hosszú id$ után megcáfolták, és a kés$bbi ellenpéldákban
fontos szerepet játszott egy speciális gráfosztály. Ezek a gráfok az univerzális gráfok az úgynevezett
széles színezéshez. Multikromatikus számuk meghatározása a még kisebb ellenpéldák keresésében
vált fontossá. A disszertációm els$ tézise ezzel a kérdéssel foglalkozik.

A multikromatikus szám egy másik jó példája a homomor"zmussal kifejezhet$ gráfparaméterek-
nek. Ebben az esetben a paraméter univerzális gráfjai a KG(n, k) Kneser-gráfok, n → 2k paraméte-
rekkel. A Kneser-gráfok egy híres gráfosztályt alkotnak, amelynek kromatikus számának meghatáro-
zása Lovász áttör$ eredménye. Bizonyításában topologikus módszereket használt (ezzel összekötve a
matematika e két ágát), hogy belássa, hogy a korábban Kneser által fels$ korlátként már bizonyított
és pontosnak sejtett n↑ 2k + 2 érték valóban pontos. Nem sokkal kés$bb Schrijver észrevette, hogy
aKG(n, k) egy bizonyos feszített SG(n, k) részgráfja, amelyet ma már Schrijver-gráfnak nevezünk,
még mindig n↑2k+2 kromatikus, ráadásul e paraméterre nézve csúcskritikus is, azaz bármelyik csú-
csát törölve a kromatikus száma csökken. A Kneser- és a Schrijver-gráfoknak (azonos paraméterekkel)
egy másik gráfparamétere, nevezetesen a frakcionális kromatikus száma is megegyezik, mindkett$-
nek n

k
. Azonban a Schrijver gráf sem csúcskritikus erre a paraméterre. Ez motiválta a Schrijver gráfok

frakcionális kromatikus számra kritikus részgráfjainak keresését, ami a disszertációmmásodik tézisé-
nek témája. A megtalált speciális részgráfokról kiderült, hogy izomorfak egy másik ismert gráfosztály
tagjaival, a Kn/k cirkuláris teljes gráfokkal, amelyek egy másik színezési paraméter, az úgynevezett
cirkuláris kromatikus szám univerzális gráfjai.

A harmadik tézisem az információelmélethez is kapcsolódik. A témakörben szokásosan a kód-
szavak bináris sorozatok, és a központi kérdés az, hogy hány adott hosszúságú kódszó konstruálható
úgy, hogy közülük bármelyik kett$ legalább d bitben különbözzön. A bináris sorozatok azonban kó-
dolhatnak gráfokat egy felcímkézett csúcshalmazon, ezzel lehet$séget adva arra, hogy általánosabb
„távolság” követelmények ismegfogalmazhatók legyenek. Ha például a követelmény az, hogy a gráfok
élhalmazainak a metszetében legyen háromszög, akkor megkapjuk Simonovits és Sós híres sejtését,
amelyet Ellis, Filmus és Friedgut bizonyított. A metszet szerepe helyettesíthet$ például a két gráf
élhalmazainak szimmetrikus di#erenciájával is (ami a fent említett szokásos probléma közvetlen álta-
lánosítása), és a háromszög vagy egyéb rögzített gráf tartalmazása mellett érdekes globális feltételeket
is vizsgálni, mint például az összefügg$ség vagy a Hamiltonicitás. Disszertációm utolsó fejezete ezt
az általánosítást vizsgálja.
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C!"#$%&1
Introduction

In graph theory, a much-studied graph parameter is the chromatic number, which is used in practice
for problems such as frequency or time allocation. In many cases, the behavior of the chromatic num-
ber is di%cult to understand. An example of this is how this parameter behaves in graph products. In
1966 Stephen Hedetniemi formulated the conjecture that the chromatic number of the so-called ten-
sor product of two graphs is equal to the minimum of the chromatic number of the factors. It is clear,
however, that the chromatic number of the product is at most the chromatic number of the factors.
Therefore, the conjecture essentially asked whether the reverse inequality holds as well. This question
remained unanswered for a long time, but in 2019, it was disproved [Shi19]. The "rst counterexample
found was very large both in terms of the vertex number of the factors and their chromatic number.
Later, smaller counterexamples were found [Zhu21; Tar22a; Wro20; Tar23] and now the conjecture is
fully settled, meaning that for any number c if both factors have chromatic numbers greater than c,
we know whether their product can be c-colorable or not.

Other interesting, well-studied and closely related graph parameters are the so-called fractional
chromatic number and multichromatic numbers. In the earlier counterexamples to Hedetniemi’s con-
jecture the fractional chromatic number turned out to be an important parameter and in the later
counterexamples the multichromatic numbers of some special graph classes came into play. My "rst
thesis addresses some questions within this topic. It is also worth mentioning that Hedetniemi-type
problems in which we consider other parameters of the graphs involved in place of the chromatic
number, were formulated as well. In the case of the fractional chromatic number it is known that the
Hedetniemi-type conjecture is true [Zhu11].

Multichromatic numbers are closely related to Kneser graphs - as those parameters can be ex-
pressed with homomorphisms to corresponding Kneser graphs - a famous graph class whose chro-
matic number was determined by Lovász in his celebrated paper [Lov78], where he proved that the
already known upper bound that was conjectured to be tight is tight indeed. However, in general,
those graphs are not vertex critical for this parameter, meaning that after a vertex removal the chro-
matic number does not necessarily decrease. Schrijver observed that special induced subgraphs, now
called Schrijver graphs, have the same chromatic number as the Kneser graph (with the same param-
eters), and they are vertex critical for that. Moreover, Kneser and Schrijver graphs (with the same
parameters) share the same fractional chromatic number as well [Tal03; ST06], but even the Schri-
jver graph is not critical for that (except for some special cases). My second thesis focuses on "nding
induced subgraphs of Schrijver graphs with the same fractional chromatic number, which are also
vertex-critical for that parameter.

1
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A research direction di#erent from the ones mentioned above is to investigate the maximum size
of graph families where some relation of any twomembers of the family (considered as the codewords)
satis"es some prescribed condition. An example of this is the famous conjecture of Simonovits and
Sós [SS76] proven by Ellis, Filmus and Friedgut [EFF12a], that determines the maximum possible
cardinality of a family of graphs on n labeled vertices in which the intersection of any two members
contains a triangle. The role of the intersection can be replaced, to get new interesting questions, e.g.
by the symmetric di#erence of the edge sets of the two graphs. It is what we can arrive to if the basic
code distance problem (how many binary sequences of a given length can be given at most if any two
di#er in at least a given number of coordinates) is modi"ed so that we do not prescribe the minimum
distance of any two codewords but require that they di#er in some speci"c structure. Apart from the
containment of a triangle it is also interesting to examine global conditions like connectedness or
Hamiltonicity.

Organisation of the dissertation by theses

The "rst two theses are related to special graphs classes. These graphs serve as universal graphs for
some coloring parameters, meaning, that if a graphG has the required coloring parameter then it has
a homomorphism to the corresponding special graph.We say that a graphG admits a homomorphism
to a graphH if there exists an edge preserving map from the vertex set ofG to the vertex set ofH and
we denote the existence of such a homomorphism by G ↓ H . One can easily see that, for example,
the chromatic number can be expressed in such a way. A graph G has chromatic number at most c if
and only if it has a homomorphism toKc, the complete graph on c vertices. In the "rst and the second
theses the universal graphs (or their subgraphs) for the so-called s-wide coloring and multicoloring
are explored.

The third thesis is more directly related to information theory, codewords which can be de"ned
on graphs are investigated there.

The theorem numbers in the following summary chapters of these theses generally align with the
numbering in the theses themselves, but not in every case. The reason for this is that not all theorems
are included in the summary, a di#erent order sometimes seemed more advantageous for the concise
description, and some theorems have been merged.

Chapter 2 – Multichromatic Numbers of Widely Colorable Graphs

As mentioned in the Introduction, related to the Hedetniemi conjecture, a certain multichromatic
number of a special graph class became interesting. This graph class plays an important role in the
theory of wide colorings. A vertex-coloring of a graph is called s-wide if the two endvertices of every
walk of length 2s↑1 receive di#erent colors in it. It is easy to see that this is one possible generalization
of the term coloring in graph theory, as 1-wide coloring is equivalent to the proper graph coloring. It
can be shown that a graph is s-widely colorable with t colors if and only if it admits a homomorphism
into the following universal graph [ST06] denoted by W (s, t) some special cases of which appeared
in the related question.

V (W (s, t)) = {(x1 . . . xt) : ↔i xi ↗ {0, 1, . . . , s}, ↘!i xi = 0, ↘j xj = 1},

E(W (s, t)) = {{(x1 . . . xt), (y1 . . . yt)} : ↔i |xi ↑ yi| = 1 or xi = yi = s}.

If we set s = 1, then we get W (1, t) = Kt by the de"nition, which is in line with our earlier
observation that the complete graphs are universal graphs for proper colorings.

2



Multicoloring is when we color the vertices of a graph G with n colors in such a way that every
vertex receives k distinct colors and if two vertices u and v are adjacent then the set of colors received
by u is disjoint from the set of colors received by v. Formally, it is a function f : v ≃↓ {c1, . . . , ck}
where for ↔i ↗ [k] ci ↗ [n], such that if {u, v} ↗ E(G) then f(u) ⇐ f(v) = ⇒ (where [k] =
{1, 2, . . . , k} and similarly [n] = {1, 2, . . . , n}). Such colorings were "rst considered by Geller and
Stahl, see [GS75; Sta76]. Stahl [Sta76] introduced the corresponding multichromatic number ωk(G)
as the minimum number of colors needed for such a coloring, called a k-fold coloring. (This graph
parameter can also be expressed by the existence of a homomorphism into some universal graph as
discussed in the next section.)

The fractional chromatic number ωf (G) can be de"ned as

ωf (G) = inf
k

{
ωk(G)

k

}
.

Withmy advisor in [j1] we have determined the exact values for the k-th multichromatic numbers
for the above mentionedW (s, t) universal graphs in cases when k ⇑ s.

This work was motivated by a question of Tardif in [Tar22a], where he constructed a counterex-
ample graph pair G,H to the Hedetniemi conjecture, where G andH had large chromatic numbers,
more than 14, but their product was 14-colorable. In that counterexample G was W (3, 9)[K4], the
graph which is obtained by blowing up each vertex ofW (3, 9) into a clique of size 4, fully connecting
the cliques corresponding to originally adjacent vertices inW (3, 9). It is easy to see that the chromatic
number of this graph is exactly the 4-th multichromatic number ofW (3, 9). In hope for constructing
smaller counterexamples in a similar way he asked whether ω(W (3, t)[K3]) = ω3(W (3, t)) is large,
in particular, for t = 8 more than 12 and for t = 7 more than 11. He also observed that in general

ωk(W (s, t)) → t+ 2(k ↑ 1)

holds. In other words, he asked if strict inequality is true in the special case when s = k = 3 and
t = 7 or t = 8. We have answered his question in the negative and generalized the result to all t and
k ⇑ s:

Theorem 2.2.1. If k ⇑ s, then
ωk(W (s, t)) = t+ 2(k ↑ 1).

We also showed that this result cannot be generalized for arbitrarily large k (with respect to s).

Theorem 2.2.2. For all pairs of positive integers t → 3 and s → 1 there exists some threshold k0 =
k0(s, t) > s for which

ωk(W (s, t)) > t+ 2(k ↑ 1)

whenever k → k0.

We also managed to prove the following theorems about the fractional chromatic number of a
W (s, t) graph. For that we have used some previous results concerning Mycielki graphs s-wide col-
orability [BS05; SST24; GJS04; ST06]. The Mycielskian M(G) of a graph G is a result of a graph
operation, introduced by Mycielski [Myc55], which does not increase the clique number of the graph
G, but it increases its chromatic number. The construction can be generalised (see Chapter 1 of the
dissertation) to get h-level Mycielskians Mh(G), where the original construction M(G) = M2(G).
The e#ect of the original Mycielski construction, M2(G), on the fractional chromatic number were
investigated in [LPU95], where a simple function was given:

3
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ωf (M(G)) = ωf (G) +
1

ωf (G)
.

For a general h, the fractional chromatic number ωf (Mh(G)) was studied by Tardif in [Tar01].
He proved that the value of ωf (G) also determines ωf (Mh(G)).

ωf (Mh(G)) = ωf (G) +
1

∑
h→1
i=0 (ωf (G)↑ 1)i

.

Using this result we managed to prove the following two theorems by showing the existence of
homomorphisms fromM3s→2(W (s, t)) to W (s, t+ 1) and from W (s, t+ 1) toMs(W (s, t)).

Theorem 2.2.3.
ωf (W (s, t)) +

ωf (W (s, t))↑ 2

(ωf (W (s, t))↑ 1)3s→2 ↑ 1

⇑ ωf (W (s, t+ 1))

⇑ ωf (W (s, t)) +
ωf (W (s, t))↑ 2

(ωf (W (s, t))↑ 1)s ↑ 1

Theorem 2.2.4. For any !xed positive integer s we have

lim
t↑↓

ωf (W (s, t)) = ⇓.

Chapter 3 – Critical Subgraphs of Schrijver Graphs for the Fractional Chromatic
Number

As the W (s, t) graphs were universal graphs for wide-colorings, Kneser graphs are the universal
graphs for multicolorings, meaning that the k-th multichromatic number of a graph is at most n if
and only if it admints a homomorphism to the Kneser graphKG(n, k). For positive integers n → 2k
the Kneser graph KG(n, k) is de"ned on the vertex set that consists of the

(
n

k

)
k-element subsets of

[n] with two such subsets forming an edge if and only if they are disjoint:

V (KG(n, k)) =

(
[n]

k

)

E(KG(n, k)) = {{A,B} : A ⇐B = ⇒}.

Kneser [Kne55] observed that the chromatic number ofKG(n, k) is at most n↑ 2k+2 and con-
jectured that this upper bound is tight. This was proved many years later by Lovász in his celebrated
paper [Lov78] using the Borsuk-Ulam theorem. Soon afterwards Schrijver [Sch78] found that a cer-
tain induced subgraph SG(n, k) ofKG(n, k), now called Schrijver graph, still has chromatic number
n↑ 2k+2 and moreover, it is also vertex-critical for this property, that is, deleting any of its vertices
the chromatic number becomes smaller.

The fractional chromatic number ofKG(n, k) is n

k
(which is a simple consequence of the Erd$s-

Ko-Rado theorem [EKR61]). Schrijver graphs SG(n, k) share this fractional chromatic value [Tal03;
ST06], but most Schrijver graphs are not vertex-critical for this parameter (the only exceptions are
the trivial cases) and this suggested the problem of "nding critical subgraphs of Schrijver graphs for
the fractional chromatic number.

4



In a joint paper [j3] with my advisor we worked on this problem. We de"ned a natural property
for the sets representing the vertices and named the subgraph formed by the vertices satisfying this
property Q(n, k) (the formal de"nition of Q(n, k) can be found in Chapter 3 of the dissertation). A
basic property of these graphs is the following:

Theorem 2.3.1. Let n → 2k and ε → 2 be any positive integer. Then the graphsQ(n, k) andQ(εn, εk)
are isomorphic.

Based on the above theorem, when studying the properties of Q(n, k) graphs, we can always
assume that gcd(n, k) = 1.

Theorem 2.3.2. Assume n → 2k, gcd(n, k) = 1 and let a and b be the smallest positive integers for
which ak = bn↑ 1. The graph Q(n, k) ⇔ SG(n, k) satis!es the following properties.

• ωf (Q(n, k)) = n

k
= ωf (SG(n, k)).

• ↔U ↗ V (Q(n, k)) ωf (Q(n, k)\{U}) = a

b
< n

k
, that isQ(n, k) is vertex-critical for the fractional

chromatic number.
• Q(n, k) contains an induced subgraph isomorphic to Q(a, b).

While proving this result we realised that the above theorem is true because the found special
subgraph is isomorphic to another known graph, the circular complete graph, Kn/k, which is the
universal graph for yet another coloring parameter, the circular chromatic number. The de"nitions of
the circular complete graph Kn/k for n → 2k and the related circular chromatic number ωc are the
following:

V (Kn/k) = {0, 1, . . . , n↑ 1}

E(Kn/k) = {{i, j} : k ⇑ |i↑ j| ⇑ n↑ k},

ωc(G) = min

{
p

q
: p ⇑ |V (G)|, G ↓ Kp/q

}
.

Theorem 2.3.3. Q(n, k) is isomorphic with the circular complete graphKn/k whenever gcd(n, k) = 1.

It was known for circular complete graphs that they are vertex-critical for the fractional chromatic
number, but edge-criticality was not studied before (neither for the fractional nor for the circular
chromatic number). We also investigated this question. For that we called an edge {i, j} ↗ E(Kn/k)
a shortest edge if |i ↑ j| = k or |i ↑ j| = n ↑ k. (The name comes from the fact that these are the
shortest edges when the vertices are arranged in order along a circle.)

Theorem 2.3.4. If gcd(n, k) = 1, e ↗ E(Kn/k) and a, b are de!ned as the smallest positive integers
for which ak = bn↑ 1 then

ωf (Kn/k \ {e}) = ωc(Kn/k \ {e}) =
{

a

b
if e is a shortest edge

n

k
otherwise.

Finally, we proved that SG(n, k) itself is vertex critical for the fractional chromatic number only
in some trivial cases.

Theorem 2.3.5. ↔U ↗ V (SG(n, k)) ωf (SG(n, k) \ {U}) < ωf (SG(n, k)) if and only if one of the
following holds: k = 1, n = 2k, or n = 2k + 1.
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Chapter 4 – Graph Codes

In a joint work [j2] with Noga Alon, János Körner, Aleksa Milojevi& and Gábor Simonyi we inves-
tigated the maximum size of graph families on a common vertex set of cardinality n such that the
symmetric di#erence of the edge sets of any two members of the family satis"es some prescribed
condition. Note, that if the prescribed condition is just to contain at least d edges, then we get back
the basic code distance problem: How many codewords of length

(
n

2

)
can be given such that any two

of them di#er in at least d coordinates?
In this subsection I will list some of the results that we had (see Chapter 4 of the dissertation for

more). We considered global properties like connectedness, Hamiltonicity as well as local properties
like containment of a triangle and some more. Formally all these can be described by saying that
the graph de"ned by the symmetric di#erence of the edge sets of any two of our graphs belong to a
prescribed family of graphs (namely those that are connected, contain a Hamiltonian cycle, or contain
a triangle, etc.)

Let F be a "xed class of graphs. A graph family G on n labeled vertices is called F-good if for any
pair G,G↔ ↗ G the graph G↖G↔ de"ned by

V (G↖G↔) = V (G) = V (G↔) = [n],

E(G↖G↔) = {e : e ↗ (E(G) \ E(G↔)) ↙ (E(G↔) \ E(G))}

belongs to F .
LetMF (n) denote the maximum possible size of an F-good family on n vertices. We were inter-

ested in the value of MF (n) for various classes F . The followings theorems give this value in some
cases we considered.

Theorem 2.4.1. Let Fc denote the class of connected graphs and F2c the class of 2-connected graphs.
Then

MFc
(n) = 2n→1, MF2c(n) = 2n→2.

Theorem 2.4.2. LetFHp denote the class of graphs containing a Hamiltonian path andFHc denote the
class of graphs containing a Hamiltonian cycle. Then for in!nitely many values of n we have

MFHp
(n) = 2n→1, MFHc

(n) = 2n→2.

In the above listed theorems for proving the maximality of MF (n) for the family F in question
we used the following lemma.

Lemma 2.4.1. For any graph class F we have

MF (n) ·DF (n) ⇑ 2(
n

2),

where DF (n) denotes the "dual" of MF (n), i.e. the maximum possible size of a graph family on
n labeled vertices, the symmetric di#erence of no two members of which belongs to F . Note that
denoting by F the class containing exactly those graphs that do not belong to F we actually have
DF (n) = MF (n). In all of the proofs of the above mentioned theorems we cunstructed F-good and
F-good families, A and B respectively, of "matching sizes", meaning that |A| · |B| = 2(

n

2), proving
that they are both maximal. However, this technique does not work for every class of graphs.
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1.3. Application

Theorem 2.4.3. LetFS denote the class of graphs containing a spanning star, that is a vertex connected
to all other vertices in the graph. Then we have

MFS
(n) =

{
n+ 1 if n is odd
n if n is even.

The dual family does not have a mathcing size, as

2(
n

2)→↗n

2 ↘ ⇑ DFS
(n) ⇑ 2(

n

2)→
n

2 .

For local conditions we could also use Lemma 2.4.1.

Theorem 2.4.4. Let FK3 denote the class of graphs containing a triangle. Then we have

MFK3
(n) ⇑ 2(

n

2)→↗n

2 ↘≃
n

2 ⇐.

This upper bound is sharp when n ⇑ 6.

The above theorem is just a special case of a more general one, which brings extremal graph
theory in the picture. Let ex(n,G) denote the maximum number of edges an n-vertex graph can have
without containing a subgraph isomorphc to G and let FG denote the class of graphs containing the
graph G as a subgraph.

Theorem 2.4.5.
MFG

(n) ⇑ 2(
n

2)→ex(n,G).

It turns out that asymptotically this upper bound is tight. To state that formally, we also de"ned a
capacity-type asymptotic invariant and we showed that this invariant is upper bounded by a simple
function of the chromatic number. Let

RFG
(n) :=

2

n(n↑ 1)
log2MFG

(n)

and call the following always-existing limit the distance capacity:

DC(FG) := lim
n↑↓

RFG
(n).

Using the Erd$s-Stone-Simonovits theorem [ES46; ES66], stating that

lim
n↑↓

ex(n,G)(
n

2

) = 1↑ 1

ω(G)↑ 1
,

we get DC(FG) ⇑ 1
ω(G)→1 . Moreover, equality can also be proven.

Theorem 2.4.6. If ω(G) → 2 then we have DC(FG) =
1

ω(G)→1 .

1.3 Application

This thesis mainly concerns theoretical results that are interesting on their own right and connected
to various parts of graph theory. Nevertheless, in the next subsection the connection of the fractional
chromatic number and the multichromatic numbers to information theory will be explained, provid-
ing a more application based point of view of the results of the "rst two theses. For the last thesis,
as it was already mentioned, de"ning codewords as graphs is a generalization of the classical code
distance problem, therefore no further explanation is needed for its relevance to information theory.

7
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Shannon capacity

Several problems in information theory lead to the de"nition of special graph parameters and themost
famous example of this is the Shannon capacity of graphs [Sha56], which is the tight upper bound on
the rate at which information can be transmitted over a discrete, memoryless communication channel
with zero error probability.

One can model the communication channel as a graph: the transmittable letters are the vertices
and a pair of them are connected if and only if they are distinguishable by the receiver. We consider
two t-length codewords distinguishable if they are distinguishable in at least one index. Generally,
we are interested in the maximum number of pairwise distinguishable t-length codewords.

De"nition 3.1.1. For two graphs G and H their OR-product G ·H is de!ned as follows

V (G ·H) = V (G)∝ V (H),

E(G ·H) = {{(g1, h1)(g2, h2)} : g1, g2 ↗ V (G), h1, h2 ↗ V (H),

{g1, g2} ↗ E(G) or {h1, h2} ↗ E(H)}.

Let Gt denote the t-fold OR-product of G by itself. By de"nition, the pairwise distinguishable
t-length messages form a clique in Gt for a channel modeled by a graph G, so the question is to
determine the clique number ϑ(Gt).

One can easily see that this value is always at most |V (G)|t. Furthermore, the clique number is
super-multiplicative with respect to the OR-product, meaning that for every pair of graphs G and
H , the inequality ϑ(G · H) → ϑ(G) · ϑ(H) holds. So it makes sense to normalize this value by
taking the tth root. In fact, we are interested in the asymptotics of this value. The formal de"nition
of the Shannon capacity is given below. (In the literature it is sometimes de"ned di#erently, by the
complementary graph.)

De"nition 3.1.2. The Shannon capacity of a graph G is de!ned as

C(G) := lim sup
t↑↓

t

√
ϑ(Gt).

The value of the Shannon capacity is unknown even for graphs with a very simple structure, for
example the exact value is not known for any odd cycle longer than 5 (the case of the 5-cycle is a
famous result of László Lovász [Lov79]). From the work of Bohman and Holzman [BH03] we know
that the Shannon capacity of odd cycles (or their complements in the di#erent interpretation of the
problem) is strictly greater than its trivial lower bound 2. This lower bound, given by Bohman and
Holzman, was recently improved in [Zhu25a]. Due to the considerable di%culty to determine this
parameter, even in smaller cases, it is already an interesting result if only some bound is given. It
follows from the de"nition of Shannon capacity, that ϑ(G), the clique number of the graph G, is
always a lower bound. And certain graph coloring parameters can serve as upper bounds.

Lemma 3.1.1. Let ϖ(G) be a graph parameter. If the following two conditions hold thenC(G) ⇑ ϖ(G).
1. ϑ(G) ⇑ ϖ(G),
2. ϖ(G ·H) ⇑ ϖ(G) · ϖ(H) holds for every pair of graphs G and H .

The fractional chromatic number satis"es these two conditions, therefore, that as well as ωk(G)/k
for every k are all upper bounds for this di%cult to determine parameter.
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1.3. Application

Remark. An interesting fact is that the chromatic number (as a special case of ωk(G)/k where
k = 1) also satis"es these conditions. Hence, for those graphs where ϑ(G) = ω(G) = c the Shannon
capacity is known, C(G) = c as well. This was the original motivation of Claude Berge to investigate
perfect graphs (cf. [Ber97]).

It is also worth noting that the fractional chromatic number of graphs can be interpreted as an
information theoretic parameter. In the case where feedback is allowed on the channel, a single graph
alone cannot fully model it. However, among the memoryless channels that can be modeled by a
given graph it will be true for the worst one that the fractional chromatic number gives the theoretical
upper bound on the rate at which information can be transmitted over that channel with zero error
probability [Sha56]. Furthermore, this parameter is similar to the Shannon capacity in another way
as well, as it can be expressed as the normalized value of the chromatic number of a corresponding
power graph [BS74; MP71].

Remark. As it was mentioned in the Introduction, Hedetniemi-type conjectures can be formulated
for other graph parameters as well. The question is interesting whenever the value of that parameter
for the product is at most as large as the values of the parameter for the factors. The Shannon capacity
satis"es this condition. However, we do not know if the analogous conjecture holds for the Shannon
capacity or not. In [Sim21] a lower bound on the Shannon capacity of a product graph were given
and some graphs are shown that may provide counterexamples.

9





C!"#$%&2
Multichromatic Numbers of Widely

Colorable Graphs

As mentioned in the Introduction, the "rst thesis, motivated by the search for small counterexamples
to Hedetniemi’s Conjecture, focuses on a question about the multichromatic numbers of the universal
graphs for wide-colorings. Before getting to the result, we "rst need to know what are wide colorings
and multichromatic numbers.

2.1 Wide coloring

A vertex-coloring of a graph is called s-wide if the two endvertices of every walk of length 2s ↑ 1
receives di#erent colors in it. If every vertex gets a di#erent color then the coloring is s-wide if and
only if the graph does not contain any odd cycle shorter than 2s+1. The interesting phenomenon is
that some graphs have s-wide colorings that are also optimal colorings.

A 1-wide coloring is just a proper coloring. 2-wide colorings were "rst investigated by Gyárfás,
Jensen, and Stiebitz [GJS04] who, answering a question of Harvey and Murty, showed the existence of
a t-chromatic graph for every t → 2 with the additional property that it admits a t-coloring in which
the neighborhood of every color class is an independent set. The analogous statement including more
distant neighborhoods is also proved in [GJS04].

3-wide colorings (that are called simply wide colorings in [ST06]) turned out to be relevant con-
cerning the local chromatic number of several graph families whose chromatic number can be de-
termined by the topological method of Lovász [Lov78], for more details and also for the relevance of
s-wide colorability in the context of the circular chromatic number cf. [ST06].

A graph homomorphism from a graph F to a graphG is an edge-preserving map of the vertex set
of F to the vertex set of G. The existence of such a map is denoted by F ↓ G. It is easy to see that
G ↓ Kt is equivalent to the t-colorability of the graph G, that is, to ω(G) ⇑ t. We refer to the book
[HN04] for a general treatment of the theory of graph homomorphisms.

Several other types of graph colorings can also be expressed by the existence of a graph homo-
morphism to some target graph and s-wide colorability is no exception. It is proved independently in
[BS05] and [ST06] (and already in [GJS04] for the s = 2 case) that s-wide colorability with t colors
is equivalent to the existence of a homomorphism to the following graph we denote byW (s, t) as in
[ST06].

V (W (s, t)) = {(x1 . . . xt) : ↔i xi ↗ {0, 1, . . . , s}, ↘!i xi = 0, ↘j xj = 1},

11
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E(W (s, t)) = {{(x1 . . . xt), (y1 . . . yt)} : ↔i |xi ↑ yi| = 1 or xi = yi = s}.

Proposition 2.1. ([BS05; GJS04; ST06]) A graphG admits an s-wide coloring using t colors if and only
if G ↓ W (s, t).

A di#erent incarnation of the graphsW (s, t) appears in the papers [Haj09; Tar05; Wro19], where
(following Wrochna’s notation in [Wro19]) a graph operation !k is given for every odd integer k and
when applied to the complete graph Kt for k = 2s ↑ 1 then the resulting graph is isomorphic to
W (s, t). We will give and make use of this alternative de"nition in Section 2.3.

It is easy to see thatW (s, t) can be properly colored with t colors: set the color of vertex (x1 . . . xt)
to be the unique i for which xi = 0. It is proved in [BS05; GJS04; ST06] (cf. also the chromatic
properties of the more general!k construction in [Haj09; Tar05; Wro19]) that this coloring is optimal,
that is,

ω(W (s, t)) = t. (2.1)

This represents the surprising fact that there are t-chromatic graphs that can be optimally colored
in such a way that the complete d-neighborhood of any color class is an independent set for every
d < s. (By d-neighborhood of a color class we mean the set of vertices at distance exactly d from the
closest element of the color class. In fact, if G is s-widely colored then not only the d-neighborhoods
of color classes form independent sets for d < s but all those vertices that can be attained via walks
of length d from the given color class.) The proof of t-chromaticity of W (s, t) goes via showing that
some other graphs that are known to be t-chromatic admit a homomorphism into W (s, t). These
graphs include generalized Mycielski graphs, Schrijver graphs, and Borsuk graphs of appropriate pa-
rameters (for the de"nition of generalized Mycielski graphs see Section 2.4; cf. [Sch78; EH67; Mat07]
for the de"nition of Schrijver graphs and Borsuk graphs and [ST06] for further details). This shows,
in particular, that generalized Mycielski graphs, Schrijver graphs, and Borsuk graphs admit s-wide
colorings. A common property of all these graphs is that their chromatic number can be determined
by the already mentioned topological method introduced by Lovász in his celebrated paper [Lov78]
proving Kneser’s conjecture.

2.2 Multichromatic numbers

For n, k positive integers satisfying n → 2k the Kneser graph KG(n, k) is de"ned on
([n]
k

)
, the set

of all k-element subsets of the n-element set [n] = {1, 2, . . . , n} as vertex set. Two vertices are
adjacent if and only if the k-element subsets they represent are disjoint. It is not hard to show that
ω(KG(n, k)) ⇑ n↑ 2k + 2 (for all n, k satisfying n → 2k) and Kneser [Kne55] conjectured that this
estimate is sharp. This was proved by Lovász [Lov78] thereby establishing the following result.

Theorem (Lovász-Kneser theorem).

ω(KG(n, k)) = n↑ 2k + 2.

For more about the topological method we refer to the excellent book by Matou’ek [Mat07].

The existence of a homomorphism to the Kneser graphKG(n, k) can also be interpreted as a coloring
property: G ↓ KG(n, k) holds if and only if we can color the vertices of G with n colors in such
a way that every vertex receives k distinct colors and if two vertices u and v are adjacent then the
set of colors received by u is disjoint from the set of colors received by v. Such colorings were "rst
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2.2. Multichromatic numbers

considered by Geller and Stahl, see [GS75; Sta76]. Stahl [Sta76] introduced the corresponding chro-
matic number ωk(G) as the minimum number of colors needed for such a coloring, called a k-fold
coloring and ωk(G) the k-fold chromatic number in [SU97] (or k-tuple chromatic number in [HN04]).
The fractional chromatic number ωf (G) can be de"ned as

ωf (G) = inf
k

{
ωk(G)

k

}
= inf

{n

k
: G ↓ KG(n, k)

}
.

Note the immediate consequence of this de"nition that if G ↓ H then ωf (G) ⇑ ωf (H).

As multichromatic numbers generalize the chromatic number (the latter being the special case for
k = 1), determining their exact value (that is the value of the k-fold chromatic numbers for various
k’s) can be even more problematic than giving the value of the chromatic number. Indeed, while the
chromatic number of Kneser graphs is already known by the Lovász-Kneser theorem, it is only a still
open conjecture due to Stahl what homomorphisms exist and what do not between Kneser graphs,
see Section 6.2 of [HN04] for details, cf. also [TZ19].

The starting point of our investigations was a question by Tardif [Tar22a] who observed that (2.1)
combined with the Lovász-Kneser theorem implies that

ωr(W (s, t)) → t+ 2(r ↑ 1) (2.2)

and that equality holds for r = s = 2. (This is also true in the case of r = s = 1when it simply means
ω(Kt) = t.) Tardif asked if there is equality also for r = s = 3. In particular, he was interested in
whetherW (3, 8) ′↓ KG(12, 3) and/orW (3, 7) ′↓ KG(11, 3) is true. Our main result will imply that
this is actually not the case and equality does hold for r = s = 3. Themotivation for Tardif’s question,
as already mentioned in the Introduction, came from recent developments concerning Hedetniemi’s
conjecture in which wide colorings also turned out to be relevant.

Hedetniemi’s conjecture asked whether the so-called categorical (or tensor) product G ∝ H satis-
"es ω(G ∝ H) = min{ω(G),ω(H)}. The conjecture is equivalent to say that G ∝ H ↓ Kc im-
plies that G ↓ Kc or H ↓ Kc must hold. (Although the latter directly only means ω(G ∝ H) →
min{ω(G),ω(H)}, the reverse inequality is essentially trivial.) If this holds forKc, thenKc is called
multiplicative. Hedetniemi’s conjecture formulated in 1966 thus stated that Kc is multiplicative for
every positive integer c. This is trivial for c = 1, easy for c = 2. For c = 3, it is a far from trivial
result by El-Zahar and Sauer [ES85]. For no other c it was decided (whether Kc is multiplicative or
not) until 2019, when a breakthrough by Yaroslav Shitov took place who proved in [Shi19] that the
conjecture is not true by constructing counterexamples for large enough c’s. The smallest c for which
Shitov’s construction disproved the conjecture was extremely large (about 395 according to an esti-
mate in [Wro20]). This value was dramatically improved within a relatively short time. Using Shitov’s
ideas in a clever way, Zhu [Zhu21] "rst reduced c to 125. Then, developing the method further, Tardif
[Tar22a] showed a counterexample for c = 13. He remarked that his construction would also work
for c = 12 and 11, respectively, provided that W (3, 8) ′↓ KG(12, 3) and W (3, 7) ′↓ KG(11, 3).
Our main result is the following that shows as a special case that these homomorphisms do exist.

Theorem 2.2.
ωs(W (s, t)) = t+ 2(s↑ 1).

Later Wrochna [Wro20] managed to improve on Tardif’s result using the ideas in [Tar22a] in a di#er-
ent way and proving thatKc is not multiplicative for any c → 5 thus leaving c = 4 the only open case.
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Now, the c = 4 case is settled by Tardif [Tar23],K4 is also not multiplicative. (For more details about
Hedetniemi’s conjecture see the recent papers cited above or Tardif’s survey [Tar08] or a recent one
[Zhu25b] by Zhu.)

The chapter is organized as follows. We present the proof of Theorem 2.2 in Section 2.3. In Section 2.4
we elaborate on the problem of what we can say about ωr(W (s, t)) for general r. It will be an im-
mediate consequence of Theorem 2.2 combined with Tardif’s observation (2.2) that ωr(W (s, t)) =
t + 2(r ↑ 1) whenever r ⇑ s. We will also observe that we cannot have equality in (2.2) for large
enough r. We will also show that the fractional chromatic number ofW (s, t) goes to in"nity when t
grows and s remains "xed. The chapter concludes with some observations about the position of the
graphs W (s, t) in the homomorphism order of graphs.

2.3 Proof of the main result

First we give the alternative de"nition of the graphs W (s, t) using the graph operation !k. We put
k = 2s ↑ 1 and give the de"nition of only !2s→1(Kt) that we will use and refer to [Wro19] for the
construction !2s→1(G) for general graphs G.

De"nition 2.1. The graph !2s→1(Kt) is de!ned as follows.

V (!2s→1(Kt)) =

{(A0, A1, . . . , As→1) : ↔i Ai ⇔ [t], |A0| = 1, A1 ′= ⇒, ↔i ↗ {0, . . . , s↑3}Ai ⇔ Ai+2, As→2⇐As→1 = ⇒},

E(!2s→1(Kt)) = {{(A0, A1, . . . , As→1), (B0, B1, . . . , Bs→1) :

↔i ↗ {0, 1, . . . , s↑ 2} Ai ⇔ Bi+1, Bi ⇔ Ai+1 and As→1 ⇐Bs→1 = ⇒}.

Note that the above conditions also imply that Ai→1 ⇐ Ai = ⇒ for all 1 ⇑ i ⇑ s ↑ 1 whenever
(A0, A1, . . . , As→1) ↗ V (!2s→1(Kt)).

It is straightforward and well-known (see e.g. [Wro19; Wro20]) that we have

W (s, t) ∞= !2s→1(Kt).

Indeed, one can easily check that the following function g : V (W (s, t)) ↓ V (!2s→1(Kt)) provides
an isomorphism betweenW (s, t) and !2s→1(Kt).

g : (x1 . . . xt) ≃↓ (A0, A1, . . . , As→1),

where
↔i ↗ {0, 1, . . . , s↑ 1} : Ai = {j : xj ⇑ i and xj ∈ i (mod 2)}.

Remark 1. We gave both descriptions of the graphs W (s, t), because we believe that both are useful.
In particular, we will formulate the proof of Theorem 2.2 using the description of !2s→1(Kt) as we
believe that it makes the presentation of the proof easier to follow. Nevertheless, when we were think-
ing about the proof we felt we could understand the structure of these graphs better by considering its
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2.3. Proof of the main result

vertices as the sequences given in its de"nition asW (s, t). (It is also remarked in [Wro20] that it is the
W (s, t) type description fromwhich one easily sees that the number of vertices is t(st→1↑(s↑1)t→1).)

Next we recall Tardif’s observation (2.2) that we state as a lemma for further reference and also prove
it for the sake of completeness.

Lemma 2.3 (Tardif [Tar22a]). For all positive integers r and s

ωr(W (s, t)) → t+ 2(r ↑ 1).

Proof. We cannot haveW (s, t) ↓ KG(t+h, r) for h < 2(r↑1) as ω(KG(t+h, r)) = t+h↑2r+2
by the Lovász-Kneser theorem and this value is less than t = ω(W (s, t)) whenever h < 2(r ↑ 1).

Proof of Theorem 2.2. We need to show

ωs(W (s, t)) = ωs(!2s→1(Kt)) = t+ 2(s↑ 1).

Lemma 2.3 already shows that the right hand side is a lower bound thus our task is to prove the reverse
inequality which is equivalent to the existence of a graph homomorphism fromW (s, t) ∞= !2s→1(Kt)
to KG(t+ 2(s↑ 1), s). Below we give such a homomorphism

f : (A0, A1, . . . , As→1) ≃↓ {z0, . . . , zs→1},

where {z0, . . . , zs→1} ↗
([t+2(s→1)]

s

)
= V (KG(t+2(s↑ 1), s)). For U = (A0, A1, . . . , As→1)we will

use the notation zi = fi(U) when f((A0, A1, . . . , As→1)) = {z0, . . . , zs→1}. (Note that we do not
assume that the zi’s are monotonically increasing with respect to their indices, we only need that all
of them are distinct for a given f(U) = {z0, . . . , zs→1}).

First assume that s → 3 is odd. (The s = 1 case is a trivial special case of (2.1).)
For every even i ↗ {2, . . . , s↑ 1} we consider the three sets Ai→2, Ai→1, Ai and for each such triple
we de"ne two elements of f(U), namely fi→1(U) = zi→1 and fi(U) = zi as follows. According to the
relative sizes of these three sets we will decide which of the elements t+i↑1, t+i, (t+s↑1)+i↑1 =
t + s + i ↑ 2, and (t + s ↑ 1) + i = t + s + i ↑ 1 will be put into the set f(U). For every even i
we will either put two of these elements into f(U) or if not then we will "nd enough elements from
[t] to compensate this hiatus. This will give us s↑ 1 distinct elements of f(U). Finally we will de"ne
f0(U) as the missing s-th element of f(U). The rules are as follows.

i) If |Ai→2| > |Ai→1| then let fi→1(U) = t + i ↑ 1 and fi(U) = t + i. If |Ai→1| > |Ai|, then let
fi→1(U) = t + s + i ↑ 2 and fi(U) = t + s + i ↑ 1. (Note that since Ai→2 ⇔ Ai at most one of the
above two inequalities can hold so our de"nition is meaningful.)

ii) If |Ai→2| < |Ai→1| < |Ai|, then we must have |Ai \ Ai→2| → 2. In that case choose 2 distinct
elements of Ai \Ai→2 (these will be elements from [t]) to be fi→1(U) and fi(U).

iii) If |Ai→2| < |Ai→1| = |Ai|, then |Ai \Ai→2| → 1. Let fi→1(U) be an arbitrary element of Ai \Ai→2

and let
fi(U) =

{
t+ s+ i↑ 2 if min(Ai→1 ↙Ai) ↗ Ai→1

t+ s+ i↑ 1 if min(Ai→1 ↙Ai) ↗ Ai.

Note that since Ai→1 ⇐Ai = ⇒, fi(U) will be well de"ned.
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iv) If |Ai→2| = |Ai→1| < |Ai|, then let

fi→1(U) =

{
t+ i↑ 1 if min(Ai→2 ↙Ai→1) ↗ Ai→2

t+ i if min(Ai→2 ↙Ai→1) ↗ Ai→1.

Since Ai→2 ⇐Ai→1 = ⇒, fi→1(U) is well de"ned. Let fi(U) be an arbitrary element of Ai \Ai→2. Such
a choice is possible as Ai \Ai→2 ′= ⇒ in this case.

v) If |Ai→2| = |Ai→1| = |Ai| (which means Ai = Ai→2) then let

{fi→1(U), fi(U)} =

{
{t+ i↑ 1, t+ s+ i↑ 1} if min(Ai→1 ↙Ai) ↗ Ai

{t+ i, t+ s+ i↑ 2} if min(Ai→1 ↙Ai) ↗ Ai→1.

Note that since Ai = Ai→2, this formula is similar to the previous ones.

vi) Finally, let f0(U) be equal to the unique h ↗ A0.

Note that by the above we have de"ned fj(U) for every 0 ⇑ j ⇑ s ↑ 1 and if j ′= j↔ then fj(U) ′=
fj→(U) thus we have f(U) ↗ V (KG(t + 2(s ↑ 1), s) as needed. We have to prove that f is indeed
a graph homomorphism from W (s, t) ∞= !2s→1(Kt) to KG(t + 2(s ↑ 1), s). We do this "rst and
consider the case of even s (that will be similar) afterwards.

Consider U = (A0, A1, . . . , As→1) and U ↔ = (B0, B1, . . . , Bs→1). We have to show that if f(U) ⇐
f(U ↔) ′= ⇒, then {U,U ↔} /↗ E(!2s→1(Kt)).

Assume that f(U) ⇐ f(U ↔) ′= ⇒ and we have h ↗ f(U) ⇐ f(U ↔) for some h ↗ [t]. Then we have h
appearing in some Aj and some Bk, where both j and k are even. In particular, h ↗ As→1 ⇐ Bs→1,
thus As→1 ⇐Bs→1 ′= ⇒, therefore U and U ↔ cannot be adjacent.

Now assume that f(U) ⇐ f(U ↔) ′= ⇒ but the intersection is disjoint from [t] thus we have t + d ↗
f(U) ⇐ f(U ↔) for some 1 ⇑ d ⇑ 2s↑ 2.

If d is odd and d ⇑ s ↑ 1, then d = i ↑ 1 for some even 2 ⇑ i ⇑ s ↑ 1, thus t + d ↗ f(U) means
t + d = t + i ↑ 1 = fi→1(U). If this happens then either |Ai→2| > |Ai→1| or |Ai→2| = |Ai→1| and
min(Ai→2 ↙ Ai→1) ↗ Ai→2. Similarly, t+ d = t+ i↑ 1 ↗ f(U ↔) implies that either |Bi→2| > |Bi→1|
or |Bi→2| = |Bi→1| andmin(Bi→2 ↙Bi→1) ↗ Bi→2. Assume for contradiction that {U,U ↔} is an edge
of our graph !2s→1(Kt). Then we must have Ai→2 ⇔ Bi→1 and Bi→2 ⇔ Ai→1 implying

|Ai→2| ⇑ |Bi→1| ⇑ |Bi→2| ⇑ |Ai→1| ⇑ |Ai→2|,

therefore we must have equality everywhere. By Ai→2 ⇔ Bi→1 and Bi→2 ⇔ Ai→1 (that follows
from {U,U ↔} ↗ E(!2s→1(Kt))) this implies Ai→2 = Bi→1 and Bi→2 = Ai→1 and therefore
j := min(Ai→2 ↙ Ai→1) = min(Bi→2 ↙ Bi→1). Our assumption on d then implies both j ↗ Ai→2

and j ↗ Bi→2 = Ai→1 which is impossible by Ai→2 ⇐Ai→1 = ⇒.

The situation is similar for the other possible values of d. If d = i ⇑ s↑1 is even, then t+d = t+ i ↗
f(U) ⇐ f(U ↔) for some adjacent vertices U,U ↔ would again imply

|Ai→2| = |Bi→1| = |Bi→2| = |Ai→1|

and thus Ai→2 = Bi→1, Bi→2 = Ai→1 as above. Our assumption on d now would imply for j =
min(Ai→2 ↙Ai→1) = min(Bi→2 ↙Bi→1) that it must be both in Ai→1 and in Bi→1 = Ai→2 leading to
the same contradiction as in the previous paragraph.
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2.3. Proof of the main result

For s↑ 1 < d and t+ d ↗ f(U)⇐ f(U ↔) for adjacent vertices U,U ↔ we get a similar contradiction. In
particular, this assumption implies |Ai→1| → |Ai| and |Bi→1| → |Bi| that by the adjacency of U and
U ↔ (meaning, in particular, Ai→1 ⇔ Bi and Bi→1 ⇔ Ai) would imply

|Ai→1| = |Bi| = |Bi→1| = |Ai|

and thus Ai→1 = Bi and Bi→1 = Ai. Then we obtain that k := min(Ai→1 ↙ Ai) = min(Bi ↙ Bi→1)
should belong (depending on the parity of d) to bothAi→1 andBi→1 = Ai or to bothAi andBi = Ai→1

leading to the same contradiction that Ai→1 ⇐Ai ′= ⇒. This "nishes the proof for odd s.

Now assume that s is even.We need only someminor modi"cations compared to the odd s case. Let us
now for every odd i ↗ {3, . . . , s↑1} de"ne fi→1(U) and fi(U) almost the same way as in points i)– v)
above. (The only di#erence will be that the values t+i↑1 and t+i are shifted by 1 to become t+i and
t+ i+1. In case of s = 2 the modi"ed rules (i’)-(v’) will not apply, only those will that we denote by
(vi’) and (vii’) below.) This gives the last s↑2 values of the set f(U) = {f0(U), f1(U), . . . , fs→1(U)},
what is left is to de"ne f0(U) and f1(U) by a modi"ed version of the sixth point above that has now
two parts. The modi"ed rules are as follows.

i’) If |Ai→2| > |Ai→1| then let fi→1(U) = t + i and fi(U) = t + i + 1. If |Ai→1| > |Ai|, then let
fi→1(U) = t+ s+ i↑ 2 and fi(U) = t+ s+ i↑ 1.

ii’) and iii’) are identical to ii) and iii), respectively.

iv’) If |Ai→2| = |Ai→1| < |Ai|, then let

fi→1(U) =

{
t+ i if min(Ai→2 ↙Ai→1) ↗ Ai→2

t+ i+ 1 if min(Ai→2 ↙Ai→1) ↗ Ai→1.

Let fi(U) be an arbitrary element of Ai \Ai→2.

v’) If |Ai→2| = |Ai→1| = |Ai| then let

{fi→1(U), fi(U)} =

{
{t+ i, t+ s+ i↑ 1} if min(Ai→1 ↙Ai) ↗ Ai

{t+ i+ 1, t+ s+ i↑ 2} if min(Ai→1 ↙Ai) ↗ Ai→1.

Note again that since Ai = Ai→2, this formula is similar to the ones in cases iii’) and iv’).

vi’) If |A1| = |A0|, then let

f0(U) =

{
t+ 1 if min(A0 ↙A1) ↗ A0

t+ 2 if min(A0 ↙A1) ↗ A1.

Note that in this case both A0 and A1 contains only one element and the value of f0(U) is t + 1 or
t+ 2 depending on which of the two is smaller. At the same time let

f1(U) = h where A1 = {h},

that is, h ↗ [t] is the unique element of A1.

vii’) If |A1| > |A0|, then since |A0| = 1we have |A1| → 2. Now choose two arbitrary distinct elements
of A1 for f0(U) and f1(U).

Note that we have |A1| → 1 = |A0| by the de"nition of !2s→1(Kt), so we do not have to consider the
possibility that |A0| > |A1|, it never occurs.
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With this de"nition of f(U) the proof that f is a graph homomorphism is essentially identical to that
we presented in the odd s case. The main di#erence is that now those j ↗ [t] that appear as elements
of the sets f(U) are all elements of some Ai where i is odd, while the corresponding i’s were all even
in the case of odd s. The rest of the arguments work the same way as in the case of odd s.

This completes the proof. ↭
We remark that by the composition of homomorphisms Theorem 2.2 determines the s-fold chromatic
number of every s-widely colorable t-chromatic graph.

2.4 On other multichromatic numbers ofW (s, t)

An immediate consequence of Theorem 2.2 is that we can give the multichromatic numbers
ωr(W (s, t)) for all r ⇑ s.

Corollary 2.4. If r ⇑ s, then
ωr(W (s, t)) = t+ 2(r ↑ 1).

The proof follows from the following simple lemma (which is essentially Lemma 2.3.(iv) of [Wro19])
combined with Tardif’s observation given in Lemma 2.3.

Lemma 2.5 ([Wro19]). For all 1 ⇑ r ⇑ s we have

W (s, t) ↓ W (r, t)

Proof. De"ne the following function for all 0 ⇑ a ⇑ s.

ϖ(a) =

{
a if 0 ⇑ a ⇑ r
r if r < a ⇑ s.

It is straightforward to check that the mapping g : (x1 . . . xt) ≃↓ (ϖ(x1) . . .ϖ(xt)) is a homomor-
phism from W (s, t) to W (r, t) for all 1 ⇑ r ⇑ s.

Proof of Corollary 2.4. In view of Lemma 2.3 it is enough to prove that ωr(W (s, t)) is at most the
claimed value if r ⇑ s. Applying Lemma 2.5 and Theorem 2.2 to r ⇑ s we have

W (s, t) ↓ W (r, t) ↓ KG(t+ 2(r ↑ 1), r)

implying
ωr(W (s, t)) ⇑ t+ 2(r ↑ 1)

as needed. ↭
For r > s we do not know the value of ωr(W (s, t)). We know from Lemma 2.3 though that
ωr(W (s, t)) → t + 2(r ↑ 1) so the question naturally arises whether we could have equality here
for every r. Below we show that this is not the case.

Proposition 2.6. For all pairs of positive integers t → 3 and s → 1 there exists some threshold r0 =
r0(s, t) > s for which

ωr(W (s, t)) > t+ 2(r ↑ 1) (2.3)

whenever r → r0.

18



2.4. On other multichromatic numbers of W (s, t)

Proof. Assume for the sake of contradiction that for some "xed s and t we have ωr(W (s, t)) = t +

2(r↑1) for arbitrarily large r. That would imply that ωf (W (s, t)) ⇑ limr↑↓
t+2(r→1)

r
= 2.However,

this cannot be true sinceW (s, t) is not bipartite for t → 3 and thus it contains an odd cycle C2b+1 for
some positive integer b. Thus we must have ωf (W (s, t)) → ωf (C2b+1) =

2b+1
b

, a number larger than
2 with the constant value 1

b
. ↭

The problem of determining the smallest possible r for which (2.3) holds is left as an open problem.
It is frustrating that we were not able to decide even whether this value is just s + 1 as the proof of
Theorem 2.2 might suggest or larger.

Remark 2. The previous proof does not specify b as its value is not essential there. Nevertheless one
can easily see that W (s, 3) ∞= C6s→3. It is also easy to see that go(W (s, t)), the odd girth of W (s, t)
must be at least 2s + 1 and we have equality here for t → 2s + 1 since a cycle C2s+1 is formed in
W (s, 2s + 1) by the vertices given by the sequence (0, 1, 2, . . . , s, s, s ↑ 1, . . . , 2, 1) and its cyclic
permutations. (For larger t these sequences can be extended by an arbitrary number of coordinates
equal to s.) As one of the referees noted go(W (s, t)) = 2s + 1 for t → 2s + 1 is also immediately
implied by Proposition 1 and the fact that C2s+1 admits an s-wide coloring with at most t colors. In
fact, the unpublished paper by Baum and Stiebitz [BS05] gives the general formula 2s↑ 1+2

⌈
2s→1
t→2

⌉

for the odd girth ofW (s, t).

The previous proof raises the question what we can say about the fractional chromatic number of
the graphs W (s, t). As a consequence of Theorem 2.2 we know ωf (W (s, t)) ⇑ t+2(s→1)

s
and the

previous simple proof implies that it is at least 2+ 1
3s→2 for t → 3. Unfortunately we were not able to

prove matching lower and upper bounds. But we can at least show that for any "xed s the fractional
chromatic number ofW (s, t) gets arbitrarily large as t tends to in"nity.

Theorem 2.7. For any !xed positive integer s we have

lim
t↑↓

ωf (W (s, t)) = ⇓.

The proof will be a simple consequence of the (already known) fact that certain generalized Mycielski
graphs admit s-wide colorings. To give more details we introduce generalizedMycielski graphs below.

De"nition 2.2. The h-level generalized MycielskianMh(G) of a graph G is de!ned as follows.

V (Mh(G)) = {(v, j) : v ↗ V (G), 0 ⇑ j ⇑ h↑ 1} ↙ {z}.

E(Mh(G)) = {{(u, i), (v, j)} : uv ↗ E(G) and (|i↑ j| = 1 or i = j = 0} ↙ {{z, (v, (h↑ 1))}.

The d times iterated h-level generalized Mycielskian Mh(Mh(. . .Mh(G) . . . )) of a graph G will be
denoted byM (d)

h
(G).

The term Mycielskian of a graph G usually refers to M(G) = M2(G) and Mycielski graphs are the
iterated Mycielkians ofK2 introduced by Mycielski [Myc55] as triangle-free graphs whose chromatic
number grows by one at every iteration. The property ω(M(G)) = ω(G) + 1 is well-known to hold
for any G but the analogous equality is not always true for h-level Mycielskians if h > 2, cf. Tardif
[Tar01]. Nevertheless Stiebitz [Sti85] showed thatω(Mh(G)) = ω(G)+1 is also true ifG is a complete
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graph or an odd cycle. (More generally one can say that this is the case whenever G is a graph for
which the topological lower bound on the chromatic number by Lovász [Lov78] is sharp, cf. [GJS04;
Mat07; Sti85] or [ST06] for more details.) So by Stiebitz’s result we have

ω(M (d)
h

(K2)) = d+ 2

for all positive integers d and h.

The t-chromaticity of W (s, t) is proved in [BS05; GJS04; ST06] by showing the existence of t-
chromatic graphs that admit a homomorphism into W (s, t). In case of [BS05; GJS04] these are gen-
eralized Mycielski graphs M (t→2)

h
(K2) for appropriately large h. (Since [BS05] is unpublished and

[GJS04] gives this explicitly only for s = 2, we give some more details for the sake of completeness.
Nevertheless, this is a straightforward generalization of the construction given in [GJS04] as already
noted in [ST06] where the case s = 3 is made explicit. So the following is a straightforward extension
of Lemma 4.3 from [ST06] also attributed to [GJS04] there.)

Lemma 2.8 ([GJS04])). If G has an s-wide coloring with t colors, then M3s→2(G) has an s-wide col-
oring with t+ 1 colors.

Proof. Fix an s-wide coloring c0 : V (G) ↓ [t] of G. Let c : V (M3s→2(G)) ↓ [t] ↙ {ϱ} be the
following coloring using the additional color ϱ. Set c(z) = ϱ and

c((v, j)) =

{
ϱ if j ↗ {s, s+ 2, . . . , 3s↑ 4}
c0(v) otherwise.

If we have a walk of odd length between vertices (u, i) and (v, j) with c(u, i) = c(v, j) ↗ [t] that
walk must either traverse the vertex z or use an edge of the form {(a, 0), (b, 0)}. In the latter case
the walk projects down to a walk of the same length between u and v in G with c0(u) = c0(v) so its
length must be at least 2s+1 by c0 being s-wide. In case the walk traverses z we can assume that we
have i ′∈ j mod 2 and thus without loss of generality j ∈ s mod 2 implying that j ⇑ s↑ 2. But then
the distance between (v, j) and z is already at least 2s, so the length of our walk is at least 2s+ 1.
Since deleting the set of vertices {(v, 0)}v⇒V (G) from M3s→2(G) the remaining induced subgraph is
bipartite and ϱ appears only on one side of this bipartite graph, any odd length walk between two
vertices colored ϱ must use an edge of the form {(u, 0), (v, 0)}. But the distance of any ϱ-colored
vertex from such vertices is at least s, so such a walk also cannot be shorter than 2s + 1. Thus c is
indeed an s-wide coloring. ↭
For M(G) = M2(G) Larsen, Propp and Ullman [LPU95] made the very nice observation that
ωf (M(G)) can be given by a simple function of ωf (G), namely

ωf (M(G)) = ωf (G) +
1

ωf (G)
.

This was later generalized by Tardif for generalized Mycielskians.

Theorem 2.9 (Tardif [Tar01]).

ωf (Mh(G)) = ωf (G) +
1

∑
h→1
i=0 (ωf (G)↑ 1)i

.
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Note that for non-bipartite graphs Tardif’s theorem gives

ωf (Mh(G)) = ωf (G) +
ωf (G)↑ 2

(ωf (G)↑ 1)h ↑ 1
.

and it implies that ωf (M
(d)
h

(G)) tends to in"nity as d goes to in"nity for any "xed "nite h.

Proof of Theorem 2.7. The proof is already immediate by the foregoing. Lemma 2.8 and Tardif’s Theo-
rem 2.9 together imply that

ωf (W (s, t+ 1)) → ωf (M3s→2(W (s, t))) = ωf (W (s, t)) +
1

∑3s→3
i=0 (ωf (W (s, t))↑ 1)i

,

and this implies the statement.

In view of Lemma 2.8 it may be interesting to note that while a generalized Mycielskian of W (s, t)
admits a homomorphism intoW (s, t+1), the latter also admits a (very natural) homomorphism into
another generalized Mycielksian ofW (s, t).

Proposition 2.10.
W (s, t+ 1) ↓ Ms(W (s, t)).

Proof. We explicitly give the homomorphism. Let

g((x1 . . . xt+1)) =






((x1 . . . xt), s↑ xt+1) if xt+1 > 0 and (x1 . . . xt) ↗ V (W (s, t))
((01 . . . 1), s↑ 1) if {i : xi = 1} = {t+ 1}
z if xt+1 = 0.

(In fact, in the second case ((01 . . . 1), s↑1) can be substituted by an arbitrarily chosen ((y1 . . . yt), s↑
1) for which (y1 . . . yt) ↗ V (W (s, t)).)
It is straightforward to check that the given function is indeed a graph homomorphism. ↭
Thus we obtained that in the homomorphism order of graphs (cf. [HN04]) in which F ∋ G if and
only if F ↓ G we have W (s, t + 1) sandwiched between two di#erent generalized Mycialskians of
W (s, t), in particular,

M3s→2(W (s, t)) ∋ W (s, t+ 1) ∋ Ms(W (s, t)). (2.4)

This excludes the possibility that our upper bound t+2(s→1)
s

on ωf (W (s, t)) provided by Theorem 2.2
would be tight at least for all su%ciently large t, because then the di#erence ωf (W (s, t + 1)) ↑
ωf (W (s, t))would be equal to 1

s
for large t contradicting Tardif’s Theorem 2.9. Note that (2.4) implies

ωf (W (s, t)) +
ωf (W (s, t))↑ 2

(ωf (W (s, t))↑ 1)3s→2 ↑ 1

⇑ ωf (W (s, t+ 1))

⇑ ωf (W (s, t)) +
ωf (W (s, t))↑ 2

(ωf (W (s, t))↑ 1)s ↑ 1
.

With a little more considerations we can also show that W (s, t + 1) is actually strictly sandwiched
between the above two generalized Mycielskians ofW (s, t) if s > 1 and t > 2.
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Proposition 2.11. If s → 2, t → 3 then

M3s→2(W (s, t)) △ W (s, t+ 1) △ Ms(W (s, t)). (2.5)

For s = 1 all three graphs are isomorphic to Kt+1. For s > 1, t = 2 we have

M3s→2(W (s, 2)) ∞= C6s→3
∞= W (s, 3) △ Ms(W (s, 2)) ∞= C2s+1.

Proof. It is well-known and easy to prove that if G is a vertex-color-critical graph (that is, one from
which deleting any vertex its chromatic number decreases) and ω(Mh(G)) = ω(G)+1, thenMh(G)
is also vertex-color-critical (see this e.g. as Problem 9.18 in the book [Lov93] for h = 2). It is shown
independently both in [BS05] and [ST06] that W (s, t) is edge-color-critical for every s → 1, t → 2.
Thus all three graphs appearing in (2.5) are vertex-color-critical. Since they all have the same chro-
matic number this implies that any homomorphism that exists between any two of them should be
onto. This also means that if any two of them would be homomorphically equivalent, then those two
should have the same number of vertices, in particular, any homomorphism between them is a one-
to-one mapping between their vertex sets. This is clearly not the case for the homomorphism given
in the proof of Proposition 2.10 since several distinct vertices (their exact number is st↑ (s↑ 1)t) are
mapped to the vertex z unless s = 1.
If a homomorphism betweenM3s→2(W (s, t)) andW (s, t+1)was one-to-one then by the edge-color-
criticality ofW (s, t+1) it cannot happen that we map two non-adjacent vertices ofM3s→2(W (s, t))
to two adjacent ones of W (s, t + 1), since then deleting the latter adjacency we would still have a
homomorphism but into a graph of smaller chromatic number. Thus such a homomorphism would
then be an isomorphism, that is the two graphs would be isomorphic which is clearly not the case if
s > 1 and t > 2. (A quick way to see this is the following. The maximum degree ofW (s, t+1) is 2t→1

attained by vertices (x1 . . . xt+1) for which |{i : xi = 1}| is equal to 1 or 2. The maximum degree of
M3s→2(W (s, t)) is |V (W (s, t))| = t(st→1 ↑ (s↑ 1)t→1) that cannot be a power of 2 for s > 1 unless
t = 2.) The remaining cases in the statement are straightforward to check. ↭

22



C!"#$%&3
Critical Subgraphs for the Fractional

Chromatic Number

Some de"nitions (such as that of Kneser graphs, homomorphism, etc.) were given in the previous
chapter; however, for the sake of completeness, we include them in this chapter as well. Kneser graphs
KG(n, k) are de"ned for every pair of positive integers n, k satisfying n → 2k. Kneser [Kne55] ob-
served (using di#erent terminology) that their chromatic number is not more than n ↑ 2k + 2 and
conjectured that this upper bound is tight. This was proved by Lovász in his celebrated paper [Lov78]
using the Borsuk-Ulam theorem. Soon afterwards Schrijver [Sch78] found that a certain induced sub-
graph SG(n, k) of KG(n, k), now called Schrijver graph, still has chromatic number n ↑ 2k + 2
and is also vertex-critical for this property, that is, deleting any of its vertices the chromatic num-
ber becomes smaller. It is also well-known that the fractional chromatic number of KG(n, k) is n

k
,

a consequence of the vertex-transitivity of these graphs and the Erd$s–Ko–Rado theorem. Proving a
conjecture of Holroyd and Johnson [Hol99] Talbot [Tal03] gave the exact value of the independence
number of Schrijver graphs that easily implies, as already observed in [ST06], that their fractional
chromatic number is also n

k
. Most Schrijver graphs are not vertex-critical for this property (the only

exceptions are the trivial cases when k = 1, n = 2k, or n = 2k + 1, cf. Corollary 3.16 in Section 3.2)
and this suggests the problem of "nding critical subgraphs of Schrijver graphs for the fractional chro-
matic number. In this chapter we present such a subgraph for all values of n and k with n → 2k.
These subgraphs, that turn out to be isomorphic to the circular (also called rational) complete graphs
Kn→/k→ for n↔ = n

gcd(n,k) , k
↔ = k

gcd(n,k) , are vertex-transitive, so deleting any of their vertices the value
of the fractional chromatic number drops to the same smaller value. We also locate the edges of these
special subgraphs that are critical for the fractional chromatic number and show that their deletion
already results in the same decrease of the fractional chromatic number as the deletion of a vertex.

In the next section we give the necessary de"nitions to de"ne the above mentioned vertex-critical
subgraph and state our main theorem. A proposition is also given there claiming the relation to circu-
lar complete graphs. From the latter the theorem will easily follow via known results about circular
complete graphs. Section 3.2 contains the proof of the mentioned proposition thus completing the
proof of our main result. The last section is devoted to characterizing the critical edges of circular
complete graphs for the fractional chromatic number.
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3.1 Well-spread subsets and the subgraph Q(n, k)

De"nition 3.1. For positive integers n → 2k the Kneser graph KG(n, k) is de!ned on the vertex set
that consists of the

(
n

k

)
k-element subsets of [n] = {1, . . . n} with two such subsets forming an edge if

and only if they are disjoint. A k-subset X of [n] is called r-separated if for any two of its elements x, y
we have r ⇑ |x ↑ y| ⇑ n ↑ r. The Schrijver graph SG(n, k) is the subgraph of KG(n, k) induced by
vertices representing 2-separated sets.

Notice that arranging the elements of the basic set [n] around a cycle, the r-separated sets are exactly
those any two elements of which have at least r ↑ 1 elements on both of the two arcs between them
on this cycle.

The following theorem is a condensed version of the well-known results in [Lov78; Sch78].

Theorem 3.1 (Lovász–Kneser and Schrijver theorem [Lov78; Sch78]). For every n → 2k we
have

ω(SG(n, k)) = ω(KG(n, k)) = n↑ 2k + 2.

Moreover, SG(n, k) is vertex-color-critical, i.e.,

↔X ↗ V (SG(n, k)) : ω(SG(n, k) \ {X}) = n↑ 2k + 1.

The graphsKG(n, k) and SG(n, k) are widely investigated, cf. e.g. [Bra10; Bra11; BL03; Che11; KS17;
KS20; KS22; BV18; Meu05; ST20] to mention just a few more of the results related to them.

Recall that a graph homomorphism from graph F to graphG is an edge-preserving map f : V (F ) ↓
V (G), that is one for which {u, v} ↗ E(F ) implies {f(u), f(v)} ↗ E(G). The existence of a graph
homomorphism from F to G is denoted by F ↓ G.

De"nition 3.2. The fractional chromatic number ωf (G) of a graph G can be de!ned as

ωf (G) = min
{n

k
: G ↓ KG(n, k)

}
.

It follows from the de"nition that F ↓ G implies ωf (F ) ⇑ ωf (G), in particular this is always the
case if F is a subgraph of G.

It is well-known that, denoting the independence number of graph G by ς(G), one always has

ωf (G) → |V (G)|
ς(G)

and equality holds whenever the graph is vertex-transitive, see e.g. [SU97] for this and other basic
facts about the fractional chromatic number.

The independence number of Kneser graphs is given by the famous Erd$s–Ko–Rado theorem.

Theorem 3.2 (Erd!s–Ko–Rado [EKR61]).

ς(KG(n, k)) =

(
n↑ 1

k ↑ 1

)
.

Moreover, for n > 2k the only independent sets of this size are the ones whose vertices represent k-element
subsets that all contain a !xed element i ↗ [n].
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Corollary 3.3 (cf. e.g. [SU97]).
ωf (KG(n, k)) =

n

k
.

Holroyd and Johnson [Hol99] conjectured that a similar phenomenon to the one expressed by the
Erd$s–Ko–Rado theorem is also true for Schrijver graphs and more generally, for families of r-
separated sets. Here we state the result only for r = 2.

Theorem 3.4 (Talbot [Tal03]).

ς(SG(n, k)) =

(
n↑ k ↑ 1

k ↑ 1

)
.

Moreover, for n > 2k, n ′= 2k + 2 the only independent sets of this size in SG(n, k) are the ones whose
vertices represent k-element subsets that all contain a !xed element i ↗ [n]. For n = 2k + 2 other
independent sets of this size exist, too.

Since |V (SG(n, k))| = n

k

(
n→k→1
k→1

)
and obviously ωf (SG(n, k)) ⇑ ωf (KG(n, k)) the above theorem

has the following immediate consequence already noted in [ST06].

Corollary 3.5.
ωf (SG(n, k)) =

n

k
.

LetCn denote the cycle on vertex set [n]where the edges are formed by the pairs of vertices {i, i+1}
for i ↗ {1, . . . , n↑ 1} and {1, n}. In particular, the vertices of SG(n, k) are exactly the independent
sets of size k in Cn. (We will refer to this cycle as the de!ning cycle for SG(n, k).)

De"nition 3.3. We call a subset U of V (Cn) well-spread if for any two sets A,B ⇔ [n] with |A| =
|B| ⇑ n↑ 1 satisfying that both induce a (connected) path in Cn we have

||A ⇐ U |↑ |B ⇐ U || ⇑ 1.

The induced subgraph of SG(n, k) on all well-spread k-subsets will be denoted by Q(n, k).

Example 1. For n = 11 the set U = {1, 4, 8} is well-spread but the set U ↔ = {1, 4, 9} is not as the
size of its intersection with the 4-element sets {1, 2, 3, 4} and {5, 6, 7, 8} of consecutive vertices of
Cn di#ers by 2.

Now we state a basic property of the graphs Q(n, k).

Proposition 3.6. Let n → 2k and ε → 2 be any positive integer. Then the graphsQ(n, k) andQ(εn, εk)
are isomorphic.
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Proof. Let U ⇔ V (Cεn) = [εn] be a well-spread set of size εk. We will show that rotating the set U n
times along the cycle Cεn it will map to itself and that will easily imply the statement.
Consider the n-element sets Ai ⇔ [εn], i ↗ [εn] de"ned by

Ai := {i, i+ 1, . . . , i+ n↑ 1},

where the addition is intended modulo εn (and 0 is represented by εn), that is the sets Ai are exactly
those subsets of [εn] that induce a path of length n↑1 in Cεn. First we show that the number of pairs
in the set

{(j, Ai) : i ↗ [εn], j ↗ Ai ⇐ U},

where j ↗ [εn] and Ai is one of the sets just de"ned is εkn. Indeed, since each j ↗ U will appear in
exactly n distinct Ai’s and |U | = εk, this claim follows. Since there are εn distinct Ai’s, this means
that if any Ai would contain less than k elements of U , then some other Ai→ should contain more
than k elements of U . However, this would imply that these two sets, Ai and Ai→ are of the same size,
both induce a path of Cεn and the size of their intersection with U di#ers by at least 2. This would
contradict the well-spread property ofU , so this is impossible. The situation is similar if anyAi would
contain more than k elements of U , therefore we have

↔i : |Ai ⇐ U | = k.

This implies that we have j ↗ U if and only if j + n (mod εn) ↗ U for every j ↗ V (Cεn) (otherwise
|Aj ⇐ U | = |Aj+1 ⇐ U | would not be satis"ed). Hence, if we have X ↗ V (Q(εn, εk)), that is X is a
well-spread (εk)-subset of [εn], and we rotate the de"ning cycle Cεn exactly n times, then we get a
vertex Y ↗ Q(εn, εk), that is identical to X .
Let g : V (Cεn) ↓ V (Cn) be de"ned by

g : i ≃↓ i↑ n


i↑ 1

n



and for a subset X = {x1, . . . , xεk} ⇔
([εn]
εk

)
we let ĝ(X) denote the set {g(x1), . . . , g(xεk)} ⇔

V (Cn). The foregoing implies that if X ↗ V (Q(εn, εk)) then ĝ(X) ↗ V (Q(n, k)). It also follows
that for X,Y ↗ V (Q(n, k)) we have ĝ(X) ⇐ ĝ(Y ) = ⇒ ▽ X ⇐ Y = ⇒. The latter means that
Q(n, k) ∞= Q(εn, εk) and this proves the statement. ↭
Example 2. Let n = 7, k = 3 and ε = 2. Then the statement of Proposition 3.6 is that Q(14, 6) is
isomorphic to Q(7, 3). The vertices of Q(7, 3) are the 3-element sets

{1, 3, 5}, {2, 4, 6}, {3, 5, 7}, {4, 6, 1}, {5, 7, 2}, {6, 1, 3}, {7, 2, 4}.

The vertices of Q(14, 6) are

{1, 3, 5, 8, 10, 12}, {2, 4, 6, 9, 11, 13}, {3, 5, 7, 10, 12, 14},

{4, 6, 8, 11, 13, 1}, {5, 7, 9, 12, 14, 2}, {6, 8, 10, 13, 1, 3}, {7, 9, 11, 14, 2, 4}.

Note that the latter seven sets have the form {i, i+ 2, i+ 4, i+ 7, i+ 9, i+ 11}. Thus if we identify
i and i + 7 for every i ↗ {1, 2, . . . , 7} (the mapping g de"ned in the proof of Proposition 3.6 does
essentially this by mapping both to i), then the seven vertices of Q(14, 6) become identical to the
seven vertices of Q(7, 3).
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Note that Proposition 3.6 implies that Q(n, k) ∞= Q


n

gcd(n,k) ,
k

gcd(n,k)


, therefore when discussing

the properties of Q(n, k) we may assume that gcd(n, k) = 1.

Now we can already state our result on the vertex-criticality of Q(n, k) for the fractional chromatic
number.

Theorem 3.7. Assume n → 2k, gcd(n, k) = 1 and let a and b be the smallest positive integers for
which ak = bn↑ 1. The graph Q(n, k) ⇔ SG(n, k) satis!es the following properties.

• ωf (Q(n, k)) = n

k
= ωf (SG(n, k)).

• ↔U ↗ V (Q(n, k)) ωf (Q(n, k)\{U}) = a

b
< n

k
, that isQ(n, k) is vertex-critical for the fractional

chromatic number.
• Q(n, k) contains an induced subgraph isomorphic to Q(a, b).

For an example see Example 3 after Proposition 3.8.

For proving Theorem 3.7 it will be enough to show that if gcd(n, k) = 1 then the Q(n, k) subgraph
is isomorphic to the circular (also called rational) complete graphKn/k that we de"ne next.

De"nition 3.4. The circular complete graphKn/k is de!ned as follows:

V (Kn/k) = {0, 1, . . . , n↑ 1}

E(Kn/k) = {{i, j} : k ⇑ |i↑ j| ⇑ n↑ k.}

The name circular complete graph refers to the central role ofKn/k in the following de"nition.

De"nition 3.5. The circular chromatic number ωc(G) of a graph G can be de!ned as

ωc(G) = min

{
p

q
: p ⇑ |V (G)|, G ↓ Kp/q

}
.

For detailed accounts on the circular chromatic number see the survey articles [Zhu01; Zhu06] or
Section 6.1 of the book [HN04].

Some important properties of the graphsKn/k are that they are vertex-transitive, thatKn/k is homo-
morphically equivalent to Kn→/k→ whenever n

k
= n

→

k→ and that ω(Kn/k) =

n

k


(for these and further

properties, see [HN04]). Note that the just stated homomorph equivalence cannot be an isomorphism
if n ′= n↔ since then |V (Kn/k)| = n ′= n↔ = |V (Kn→/k→)|. This is a crucial di#erence between the
graphs Kn/k and Q(n, k) and shows that the condition gcd(n, k) = 1 cannot be dropped in the
following statement from which Theorem 3.7 already easily follows.

Proposition 3.8. The graph Q(n, k) is isomorphic with the circular complete graph Kn/k whenever
gcd(n, k) = 1.
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Proof of Theorem 3.7 from Proposition 3.8. It is known that the fractional chromatic number ofKn/k is
n/k since it is vertex transitive and has n vertices, while its independence number is k (cf. [HN04]).
This already implies the "rst statement of Theorem 3.7. It is also known that removing any vertex x
fromKn/k, the remaining graphKn/k ↑ {x} is homomorphically equivalent toKa/b, where a and b
are the unique solution for the equation nb ↑ ka = 1, see Lemma 6.6 in [HN04], where a retract of
Kn/k ↑ {x} which is isomorphic to Ka/b is shown. This implies the second and third statement of
Theorem 3.7. ↭
Example 3. Let n = 8, k = 3. Figure 3.4 (see it at the end of Section 3.2) illustrates the vertices
of Q(8, 3) and its isomorphism with K8/3. The values of a and b as de"ned in Theorem 3.7 will be
a = 5, b = 2. Deleting, say vertexX0 = {1, 3, 6} (cf. Figure 3.4 for the labeling of the vertices asXi’s)
the remaining graph admits a homomorphism to its subgraph induced by the verticesX2 = {3, 5, 8},
X3 = {1, 4, 6}, X4 = {2, 5, 7}, X5 = {3, 6, 8}, X6 = {1, 4, 7} which is isomorphic to Q(5, 2) ∞=
K5/2

∞= C5 having fractional chromatic number 5/2.

Thus our main task is to prove Proposition 3.8. This is done in the next section.

3.2 Q(n, k) and Kn/k

Our argument will need the following alternative characterization of well-spread k-subsets.

Lemma 3.9. Let U ⇔ V (Cn) be !xed and let A,B ⇔ V (Cn) be any two sets inducing a path in the
graph Cn both starting and ending with vertices of Cn that belong to U . The subset U ⇔ V (Cn) is
well-spread if and only if for any two such sets A,B that also satisfy |A ⇐ U | = |B ⇐ U | we have

||A|↑ |B|| ⇑ 1.

Proof. Assume to the contrary that for two sets A,B as in the statement ||A|↑ |B|| → 2 and w.l.o.g.
assume that |A|↑ 2 → |B|. Then, we can modify the subset A by removing its two extremal (that is
starting and ending) vertices and |A| ↑ |B| ↑ 2 more vertices from one end. This way we obtain a
path A↔ for which |A↔| = |B| but ||A↔ ⇐U |↑ |B ⇐U || → 2 which means that U is not well-spread by
De"nition 3.3.
For the other direction suppose that U is not well-spread. Then there exist A,B ⇔ V (Cn) both
inducing a path in Cn for which |A| = |B| but ||A ⇐ U | ↑ |B ⇐ U || → 2. W.l.o.g. assume, that
|A ⇐ U | → |B ⇐ U |+ 2. We may assume that A induces a path in Cn that both starts and ends with
elements of U because otherwise we can make bothA andB shorter so that |A⇐U | does not change
while |B ⇐ U | may only become smaller, so the relations |A ⇐ U | → |B ⇐ U | + 2 and |A| = |B|
remain valid. Now extend B at both of its ends until it will contain a new element of U at both ends,
that is we obtain a B↔ which induces a path of Cn that both starts and ends with elements of U and
intersects U in |B ⇐ U | + 2 elements. If this number is still less than s := |A ⇐ U | then extend B↔

further (on one end) to make it a similar path containing exactly s elements of U . Since in the "rst
step we extendedB at both ends we certainly have |B↔| → |A|+2, soA andB↔ are two sets satisfying
the conditions in the statement for which ||A|↑ |B↔|| ⇑ 1 does not hold. This completes the proof.↭
Example 4. Let n = 11 and U = {1, 4, 8} which is easy to check to be well-spread according to
De"nition 3.3. Also, if A = {1, 2, 3, 4} and B = {4, 5, 6, 7, 8}, then they satisfy the conditions in
Lemma 3.9 and also satisfy ||A| ↑ |B|| ⇑ 1. On the other hand, U ↔ = {1, 4, 9} is not well-spread
as we already have seen in Example 1 as its intersection with the 4-element sets {1, 2, 3, 4} and
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{5, 6, 7, 8} di#ers by 2. Accordingly, the sets A = {1, 2, 3, 4} and B↔ := {4, 5, 6, 7, 8, 9} satisfy
|A⇐U ↔| = |B↔ ⇐U ↔|, they both start and end with elements of U , but do not satisfy ||A|↑ |B↔|| ⇑ 1.
(See Figure 3.1 for an illustration.)

U :

1

4

8

A

B

U → :

1

49

A

B→

Figure 3.1: This "gure shows sets U and U ↔ along with the sets A, B and B↔ described in Example 4.

Note that a set U ⇔ V (Cn) need not be 2-separated for being well-spread. Moreover, the following
observations hold for U and U := V (Cn) \ U .

Observation 3.10. U is well-spread if and only if U is well-spread.

Proof. If A,B ⇔ V (Cn), |A| = |B| and both of them induce a path, then

||A ⇐ U |↑ |B ⇐ U || = ||(|A|↑ |A ⇐ U |)|↑ |(|B|↑ |B ⇐ U |)|| = ||B ⇐ U |↑ |A ⇐ U ||,

so ||A ⇐ U |↑ |B ⇐ U || ⇑ 1 is equivalent to ||A ⇐ U |↑ |B ⇐ U || ⇑ 1.

Observation 3.11. If U is well-spread and gcd(n, |U |) = 1 (and n > 2) then exactly one of U and U
is a 2-separated set.

Proof. Assume U is well-spread, then so is U as well by Observation 3.10. If |U | = |U | = n/2
(in which case both |U | and |U | are 2-separated, alternatingly containing the vertices of Cn), then
gcd(n, |U |) = n/2 ′= 1. So w.l.o.g. U has less than n/2 elements. Then U must contain two adjacent
vertices of the cycle Cn, say u1 and u2. If U would also contain two adjacent vertices of Cn, say u1
and u2 then taking A = {u1, u2} and B = {u1, u2} we would have two sets with |A| = |B| = 2 for
which |A ⇐ U | = 2 and |B ⇐ U | = 0, so U cannot be well-spread, a contradiction. ↭
In what follows we denote by fi the i-fold clockwise rotation of the de"ning cycle. In particular, for
j ↗ V (Cn) we let fi(j) = i + j, where addition is meant modulo n and 0 is represented by n. For a
set X = {x1, . . . , xh} ⇔ V (Cn) fi(X) = {fi(x1), . . . , fi(xh)}.

Lemma 3.12. Let U,W ⇔ V (Cn) be two well-spread sets of the same size k. Then there is a bijection
between the elements of U and W that is given by a rotation of the cycle Cn. The graph Q(n, k) is
vertex-transitive for any n and k and if gcd(n, k) = 1 then |V (Q(n, k))| = n.
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Proof. Let U be a well-spread set of size k on the cycleCn. If gcd(n, k) ′= 1 then we have already seen
in the proof of Proposition 3.6 that every well-spread set maps to itself when we rotate the de"ning
cycle Cn by n

gcd(n,k) elements. In particular, there are only |V (Q( n

gcd(n,k) ,
k

gcd(n,k)))| distinct well-
spread subsets of V (Cn) and they behave exactly as the well-spread sets we obtain on V (C n

gcd(n,k)
)

when identifying every element of V (Cn) that are n

gcd(n,k) distance apart. This means that we may
assume, that we do from now on, that gcd(n, k) = 1.
Call x, y ↗ U U -consecutive in U if one of the arcs between them does not contain any other z ↗ U .
By Lemma 3.9 if x, y ↗ U are U -consecutive, then x and y should be q0 :=


n

k


or


n

k


+ 1 distance

apart on V (Cn), that is, they are separated by q0↑1 or q0 other elements of the cycle. If n = q0k+r1
then we have exactly r1 U -consecutive pairs whose distance is q0 + 1 and k ↑ r1 U -consecutive
pairs that have distance q0. Let U = {x1, x2, . . . , xk}, where the indices are chosen so that each
xi+1 is the U -consecutive element of xi as we go along the cycle Cn in the clockwise direction. Let
(a1, a2, , . . . , ak) be the sequence of numbers that denote the distances of U -consecutive elements,
that is, ai is the distance of xi+1 from xi (in the clockwise direction) for each i ↗ {1, . . . , k ↑ 1}
and ak is the (also clockwise) distance of x1 from xk. We identify two sequences (a1, . . . , ak) and
(b1, . . . , bk) if one can be obtained from the other by cyclically permuting its elements, that is, if
(a1, a2, . . . , ak) = (bi+1, bi+2 . . . , bk, b1, . . . , bi) for some i and call it the placement pattern of U . In
case U has only 1 element, we consider its placement pattern to be (n). Notice that if two k-element
subsets U and W of V (Cn) have the same placement pattern then they must be rotations of each
other, so to prove the "rst statement of the Lemma it is enough to prove that any two well-spread
k-subsets of V (Cn) should have the same placement pattern. This is what we do next.

Remove q0 ↑ 1 vertices of Cn from the arcs between every pair of U -consecutive elements. This way
we obtain a shorter cycle Cn→(q0→1)k on which U is still well-spread and U = V (Cn→(q0→1)k) \ U is
also well-spread by Observation 3.10. On this shorter cycle U is not 2-separated any more (since there
were U -consecutive elements in U separated by exactly q0↑1 other elements that are now removed),
so U is a 2-separated set by Observation 3.11. Using the notation n1 := n ↑ (q0 ↑ 1)k = k + r1

we have |U | = n1 ↑ |U | = r1 and the U -consecutive elements of U are separated by q1 :=

k+r1
r1



or by q1 ↑ 1 elements of U . Now performing the previous removal process with Cn1 in the place of
Cn and its r1-element subset U1 := U in place of U is essentially performing a second step of the
Euclidean algorithm with k+r1 and r1 (instead of k and r1 but this is not an essential di#erence since
gcd(k + r1, r1) = gcd(k, r1) = gcd(n, k) = 1). This means that now we remove q1 ↑ 1 elements
of the current cycle between any two U1-consecutive elements of U1. That results in a cycle Cn2 of
length n2 := n1↑ |U1|(q1↑1) = n1↑ (q1↑1)r1 and we have U1 as its subset that is not 2-separated
any more (since it did have U1-consecutive elements separated by exactly q1 ↑ 1 other elements).
Thus by Observation 3.11 U2 := V (Cn2) \U1 is 2-separated. It has size n2 ↑ |U1| = n1 ↑ q1r1 =: r2,
that is, n2 = r1 + r2 and we clearly have gcd(r1 + r2, r2) = gcd(r1, r2) = 1. We can go on iterating
this process. Let Ui be a 2-separated well-spread set on Cni

with Ui-consecutive elements having
distance qi and qi + 1 on V (Cni

). We remove qi ↑ 1 elements not belonging to Ui between any two
Ui-consecutive elements of Ui. This way we obtain the cycleCni+1 with ni+1 = ni↑ |Ui|(qi↑1), and
assuming gcd(ni, |Ui|) = 1 we will have gcd(ni+1, |Ui|) = 1. De"ne Ui+1 := V (Cni+1) \ Ui. Then
Ui+1 is 2-separated on Cni+1 and gcd(ni+1, |Ui+1|) = 1 also holds, so we can continue until we will
arrive to a situation where we have a cycle Cm for somem = nh and our current 2-separated set Uh

will have only gcd(n, k) = 1 element. This process is illutrated on Figure 3.2 for n = 14, k = 5.

We can place the remaining 1-element set on our "nal cycle Cm into m di#erent points, but the m
di#erent sets we can get this way are obviously just rotations of each other. In other words, their
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placement pattern is the same for every possible choice. Now observe that our removal process was
completely deterministic, thus so is also its reversed process. This means that if at every step we make
a note of how many elements were removed between two Ui-consecutive elements of the current Ui

onCni
(these are simply the numbers qi↑1) to obtain the shorter cycleCni+1 and Ui+1 = [ni+1]\Ui,

then getting back Ui on Cni
from Ui+1 is also determined. It simply means that we should put back

the appropriate number of removed elements between any pair of Ui-consecutive elements of Ui on
Cni+1 . (This is also illustrated on Figure 3.2 if we follow the three pictures from right to left.)

The foregoing implies that if the placement pattern of Ui+1 is uniquely determined, then so is the
placement pattern of Ui. As we have seen the placement pattern of our "nal 1-element set Uh is
uniquely determined, thus the placement pattern of U itself on the original Cn is also uniquely de-
termined. This proves the "rst statement in the Lemma and implies |V (Q(n, k))| ⇑ n.

We still have to prove the two statements in the last sentence of the Lemma, that is that gcd(n, k) = 1
also implies |V (Q(n, k))| = n from which vertex-transitivity follows also for the other cases via
Proposition 3.6.

If U is well-spread, then so is fi(U), so the latter is also a vertex of Q(n, k). Let t be the smallest
positive integer i for which fi(U) = U for some vertex U ↗ V (Q(n, k)). Since we have t ⇑ n, it is
enough to prove that if gcd(n, k) = 1, then t cannot be smaller than n. Thus we assume gcd(n, k) = 1
and "rst we show that t is a divisor of n. Indeed, let n = εt + r, where r < t. Then for some vertex
U we have fεt(U) = U and fr(U) = fr(fεt(U)) = fn(U) = U implying r = 0 by the minimality of
t. Thus t divides n.

Now we show that ε = n

t
also divides k. Assume ft(u1) = us. Then we must have ft(ui) = ui+s→1

for every i ↗ {1, . . . , k} (addition in the indices intended modulo k with k identi"ed to 0) otherwise
we could not have ft(U) = U . Therefore u1 = fn(u1) = fεt(u1) = u1+ε(s→1) showing ε(s↑ 1) = k
meaning that ε divides k. (Here we used that fn “winds around” Cn exactly once.) Since ε also divides
n, it should be 1, therefore t = n. ↭

→ →

Figure 3.2: The process in the proof of Lemma 3.12 performed for n = 14, k = 5. In the "rst picture
we see the de"ning cycleC14 where the elements of a well-spread 5-subsetU are illustrated by empty
circles. The second picture shows the situation after removing one of the one or two elements we have
between any pair of U -consecutive elements of U . This results in the cycle C9 of the second picture
where the empty circles still denote the elements of U , while the elements of U1 = [9] \U are shown
by the remaining 4 black dots. Then we remove one element of the original set U from between any
pair of U1-consecutive elements of U1 to obtain the third picture with Cn2 = C5 and the 1-element
set U2.

The following Corollary is essentially implicit already in the proof of the previous Lemma, yet we
state it separately for further reference.
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Corollary 3.13. If gcd(n, k) = 1 then for every X,Y ↗ V (Q(n, k)) there is a unique rotation of Cn

that maps X to Y .

Proof. We have |V (Q(n, k))| = n, where the vertices can only be di#erent by some rotation and we
have exactly n possible rotations for each vertex. ↭

Lemma 3.14. Let gcd(n, k) = 1 and X,Y ↗ V (Q(n, k)) be such that XY /↗ E(Q(n, k)), that is,
X ⇐ Y ′= ⇒. Let f : V (Cn) ↓ V (Cn) be the unique clockwise rotation moving X to Y and let i be an
element ofX ⇐ Y . Then the number of elements of Y on the arc of Cn between i and f(i) (moving from
i to f(i) in the clockwise direction) is independent of the choice of i ↗ X ⇐ Y .

Proof. Let i, j ↗ X⇐Y and letA andB be the arcs ofCn between i and f(i) and between j and f(j),
respectively (i, f(i) and j, f(j) included). We obviously have |A| = |B|. Assume to the contrary of
the statement that w.l.o.g. |A ⇐ Y | + 1 ⇑ |B ⇐ Y |. Add the minimal number of consecutive vertices
to A from Cn in the same (clockwise) direction to get A↔, such that |A↔ ⇐ Y | = |B ⇐ Y |. As Y ↗
V (SG(n, k)), we have that Y is a 2-separated set. So, sinceA ended with f(i) ↗ Y , |A↔| → |A|+2 =
|B|+2. SinceA↔ andB are arcs starting and ending with elements of Y and also containing the same
number of elements of Y , this gives a contradiction by Lemma 3.9 with the well-spreadness of Y . ↭

De"nition 3.6. Under the conditions of Lemma 3.14 we call vertex Y ↗ V (Q(n, k)) a right j-jumper
of vertex X ↗ V (Q(n, k)) if the number of elements of Y on the arc of Cn strictly between i and f(i)
for some i ↗ X ⇐ Y (moving from i to f(i) in the clockwise direction) is j ↑ 1.

Note that by Lemma 3.14 the previous de"nition is meaningful as it does not depend on the choice of
i ↗ X ⇐ Y .

X :

1

4

8

1115

18

22

Y :

15

18

22

1

5

8

12

X :

1

4

8

1115

18

22

Z :

14

17

21

24

4

7

11

Figure 3.3: This "gure shows the well-spread set X = {1, 4, 8, 11, 15, 18, 22} in the de"ning cycle
C24 together with its two 4-jumpers Y and Z as discussed in Example 5. The elements 1 ↗ X and
15 ↗ Y are darkened on the "rst pair of pictures to emphasize that 1 will be mapped to 15 by the
unique rotation moving X to Y . Similarly, 4 ↗ X and 17 ↗ Z are darkened in the second pair of
pictures, because the unique rotation moving X to Z maps 4 to 17.
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3.2. Q(n, k) andKn/k

Example 5. Let n = 24, k = 7. Then X = {1, 4, 8, 11, 15, 18, 22} and Y = {1, 5, 8, 12, 15, 18, 22}
are two intersecting well-spread subsets of [24], therefore two non-adjacent vertices ofQ(24, 7). The
unique rotation that moves X to Y is f14, the 14-fold clockwise rotation of the de"ning cycle. In
particular, it maps element 1 to 15 and Y has three other elements on the arc between these two, so
Y is a 4-jumper of X . There is one more 4-jumper of X , namely Z = {4, 7, 11, 14, 17, 21, 24}. We
have Z = f13(X), in particular, element 4 is moved to 17 and there are three other elements of Z on
the clockwise arc connecting 4 to 17. (See Figure 3.3 for an illustration.)

Corollary 3.15. If gcd(n, k) = 1 then the degree of every vertex in Q(n, k) is n↑ 2k + 1.

Proof. We show that each vertex is non-adjacent to exactly 2k ↑ 2 vertices di#erent from itself from
which the statement follows. By vertex-transitivity it is enough to show this to an arbitrary vertex
X ↗ V (Q(n, k)).
If Y is another vertex for which {X,Y } /↗ E(Q(n, k)), then there is some u ↗ X ⇐ Y , so Y is a
j-jumper of X for some j. Since any two vertices of Q(n, k) are rotations of each other, we know
that Y = fi(X) for some i. We claim that if gcd(n, k) = 1 and j is "xed then there are exactly two
distinct values i can take in the set {1, 2, . . . , n↑1}. Indeed, by Lemma 3.9 the length of the clockwise
arc from u to fi(u) can take only two di#erent values (di#ering by 1) and if gcd(n, k) = 1 then two
such distinct values exist indeed. (Otherwise for some 0 < i < n and U ↗ V (Q(n, k)) we would
have fi(u) ↗ U for every u ↗ U implying fi(U) = U . But we have already seen in the proof of
Lemma 3.12 that this is impossible if gcd(n, k) = 1.) Lemma 3.14 implies that j will not depend on
the choice of u ↗ X ⇐Y which also implies that we cannot get the same fi for two di#erent j’s. This
means that the number of non-neighbors of anX ↗ V (Q(n, k)) di#erent from itself is exactly twice
the number of possible values of j, that is 2(k ↑ 1) as claimed. ↭
Now we show that SG(n, k) itself is critical for the fractional chromatic number only in the cases
already mentioned in the Introduction.

Corollary 3.16. We have Q(n, k) = SG(n, k) if and only if k = 1, n = 2k, or n = 2k + 1. In
particular, SG(n, k) is vertex-critical for the fractional chromatic number in exactly these cases.

Proof. We know from Schrijver’s theorem, that ω(SG(n, k)) = n↑ 2k + 2. By Corollary 3.15 this is
exactly one more than the (maximum) degree ofQ(n, k). Thus, since SG(n, k) is connected, Brooks’
theorem implies that in case SG(n, k) = Q(n, k) we must have that SG(n, k) is a complete graph
or an odd cycle. This happens only in the cases listed in the statement and in those cases we indeed
have Q(n, k) = SG(n, k). ↭
Now we have all the necessary lemmas to prove that our Q(n, k) graph is isomorphic to the circular
complete graph Kn/k whenever gcd(n, k) = 1.

Proof of Proposition 3.8. As |V (Q(n, k))| = |V (Kn/k)| = n and in both graphs each vertex has degree
n↑ 2k + 1 it is enough to show a bijection between the vertex sets that maps non-adjacent vertices
to non-adjacent vertices.

Fix a vertexX0 ↗ V (Q(n, k)) and let for every i ↗ {1, . . . , n↑1}Xi = fi(X0). Letϖ : V (Q(n, k)) ↓
V (Kn/k) be de"ned by

ϖ : Xu ≃↓ uk (mod n)

This is a one-to-one function since gcd(n, k) = 1. Now look at Xu ′= Xv arbitrary non-adjacent
vertices in Q(n, k). Let ε := |u↑ v| be their distance measured in rotations. If they are not adjacent,
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then one of themmust be a right j-jumper of the other for some j ↗ {1, . . . , k↑1}. Since all j-jumpers
inQ(n, k) have to be either ε or ε↑ 1 rotations apart, or they all have to be ε or ε+1 rotations apart
one of the equations (k ↑ x)ε+ x(ε+ 1) = jn or (k ↑ x)ε+ x(ε↑ 1) = jn has an integral solution
with 0 < x < k. (This is because if we consider the clockwise arc from each z ↗ Xu to the z↔ ↗ Xu

for which this arc contains j elements of Xu including z↔ but excluding z, then we cover Cn exactly
j times.) That means that kεmust belong to the same congruent class modulo n as x or↑x, meaning
that in the image the vertices uk (mod n) and vk (mod n), whose distance is |u ↑ v|k = εk, should
be either less than k, or more than n↑ k apart, i.e., they are indeed non-adjacent inKn/k. ↭
Example 6. Let n = 8, k = 3. The vertices ofQ(n, k) are the sets {1, 3, 6}, {2, 4, 7}, {3, 5, 8}, {1, 4, 6},
{2, 5, 7}, {3, 6, 8}, {1, 4, 7}, {2, 5, 8}. Choosing X0 to be {1, 3, 6} the mapping given in the proof of
Proposition 3.8 above sends the above vertices into vertices 0, 3, 6, 1, 4, 7, 2, 5 of K8/3, respectively.
Vertices belonging to disjoint sets in V (Q(8, 3)) are mapped to adjacent vertices ofK8/3. Since both
graphs are 3-uniform, this shows that they are isomorphic. (For an illustration see Figure 3.4.)

X0 :

1

3

6

, X1 :

2

4

7 , . . . , X7 :

8 2

5

K8/3 :

X0

X1

X2

X3

X4

X5

X6

X7

Figure 3.4: This "gure shows how the sets Xi are mapped to the vertices of K8/3 as described in
Example 6.

With the above we have completed the proof of Theorem 3.7. The following is an easy consequence
of Proposition 3.8.

Corollary 3.17. For all n → 2k we have

ω(Q(n, k)) =
⌈n
k

⌉
.

Proof. From Proposition 3.8 and the properties of the circular complete graphs it follows that

ω(Q(n, k)) = ω(Kn→/k→) =


n↔

k↔


=

⌈n
k

⌉
,

where n↔ = n

gcd(n,k) , k
↔ = k

gcd(n,k) . ↭
Note that Corollary 3.17 gives a second proof for Corollary 3.16 as Q(n, k) = SG(n, k) implies
the equality of their chromatic number and n ↑ 2k + 2 =


n

k


also implies that we must have

n = 2k, n = 2k + 1 or k = 1.
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3.3. Critical edges

3.3 Critical edges

Here we are going to prove a strengthening of the second statement of Theorem 3.7.

De"nition 3.7. An edge {i, j} ↗ E(Kn/k) of the circular complete graph Kn/k is called a shortest
edge if |i↑ j| = k or |i↑ j| = n↑ k.

We remark that in terms ofQ(n, k) a shortest edge ofKn/k (when gcd(n, k) = 1) belongs to one that
connects a vertexX ↗ V (Q(n, k)) to a vertex that can be obtained by one rotation along the de"ning
cycle. This can be read out from the proof of Proposition 3.8.

Theorem 3.18. An edge of Kn/k is critical for the fractional chromatic number if and only if
gcd(n, k) = 1 and e is a shortest-edge. The same statement holds also if we exchange the word “frac-
tional” to “circular” in the previous sentence. More precisely, if gcd(n, k) = 1, e ↗ E(Kn/k) and a, b are
de!ned as in Theorem 3.7 then

ωf (Kn/k \ {e}) = ωc(Kn/k \ {e}) =
{

a

b
if e is a shortest edge

n

k
otherwise.

Proof. For both parameters ωf (Kn/k) = ωc(Kn/k) = n

k
is a trivial upper bound and ωf (Ka/b) =

ωc(Ka/b) =
a

b
is a lower bound, becauseKa/b is a subgraph ofKn/k (see Lemma 6.6 in [HN04]). It is

well-known that ωf (G) ⇑ ωc(G) holds for any graph G (cf. [HN04]), so it is enough to prove that if
gcd(n, k) > 1 or e is not a shortest edge then ωf (Kn/k \ {e}) → n

k
, while if gcd(n, k) = 1 and e is a

shortest edge then ωc(Kn/k \ {e}) ⇑ a

b
.

If gcd(n, k) > 1 then Kn/k is homomorphically equivalent to Kn→/k→ for n↔ = n

gcd(n,k) , k
↔ = k

gcd(n,k)

and since |V (Kn→/k→)| = n↔ < n = |V (Kn/k)| in this case,Kn/k cannot have any critical edges. Thus
from now on we assume gcd(n, k) = 1.

It is well-known that the independence number ς(Kn/k) = k (see this as a Claim within the proof
of Theorem 6.3 in [HN04]). One can also easily show that if n > 2k (and for n → 2k, gcd(n, k) = 1
this is always the case) the only independent sets of Kn/k with size exactly k consist of k cyclically
consecutive elements. That is, a largest independent set must have the form {i, i+1, . . . , i+ k↑ 1},
where addition is intended modulo n. Indeed, if S is an independent set in Kn/k having size k and
j ↗ S then S ⇔ {j ↑ k + 1, j ↑ k + 2, . . . , j, j + 1, . . . , j + k ↑ 1} and since ↔h ↗ {1, . . . , k ↑ 1} :
{j↑h, j↑h+k} ↗ E(Kn/k), |S| = k implies that exactly one of the vertices j↑h and j↑h+kmust
belong to S for every h ↗ {1, . . . , k↑1}. If S was not a set of cyclically consecutive vertices, then we
must have a h ↗ {2, . . . , k↑ 1} for which j↑h ↗ S and j↑h+1 /↗ S. Then |S| = k, j↑h+1 /↗ S
implies j ↑ h+ k + 1 ↗ S by the foregoing. However j ↑ h and j ↑ h+ k + 1 are adjacent inKn/k

(whenever n > 2k) contradicting that S is an independent set.

Since ωf (G) → |V (G)|
ϑ(G) and for Kn/k we have equality because Kn/k is vertex-transitive, ωf (Kn/k \

{e}) < ωf (Kn/k) is possible only if ς(Kn/k \ {e}) > ς(Kn/k) = k. This requires that e = {x, y}
for two vertices x, y for which there exists a set U ⇔ V (Kn/k) of size |U | = k ↑ 1 for which
x, y /↗ U and both U ↙ {x} and U ↙ {y} are k-element independent sets of Kn/k. Since k-element
independent sets are formed by cyclically consecutive elements, this means that w.l.o.g. we must have
U = {x+ 1, . . . , x+ k ↑ 1} and y = x+ k, in which case {x, y} is a shortest edge.
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What is left to prove is that if gcd(n, k) = 1 and e = {x, x + k} is a shortest edge then we have
ωc(Kn/k\{e}) ⇑ a

b
. To show this we give a homomorphism fromKn/k\{e} toKn/k\{x}. By Lemma

6.6 in [HN04] we know that a rectract of Kn/k \ {x} is isomorphic to Ka/b, so by transitivity of the
existence of homomorphismswe get thatKn/k\{e} ↓ Ka/b. Let f : V (Kn/k\{e}) ↓ V (Kn/k\{x})
be the function f(x) = x+1 and f(i) = i ↔i ↗ [n]\{x}. Since the neighborhood of x in V (Kn/k\{e})
is {x+ k+1, . . . , x+n↑ k} which is a subset of {x+ k+1, . . . , x+n↑ k+1}, the neighborhood
of x+ 1 in V (Kn/k \ {e}) and also in V (Kn/k \ {x}), f is indeed a homomorphism. ↭
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Graph Codes

Celebrated problems of extremal combinatorics may get an exciting new (avour when the presence of
some special structure is imposed in the condition. A prominent example is the famous Simonovits–
Sós conjecture [SS76] proven by Ellis, Filmus and Friedgut [EFF12b], which determines the maximum
possible cardinality of a family of graphs on n labeled vertices in which the intersection of any two
members contains a triangle. (The result of [EFF12b] shows, along with several far reaching gener-
alizations, that the best is to take all graphs containing a given triangle, just as it was conjectured
in [SS76]. This is clearly reminiscent of the Erd$s–Ko–Rado theorem [EKR61].) As another example
we can also mention the Ramsey type problem investigated in [KS95] that was also initiated by a
question of Sós and can be considered as a graph version of the "rst unsolved case of the so-called
perfect hashing problem. (For details we refer to [KS95]).

In this chapter we study several problems we arrive to if the basic code distance problem (how
many binary sequences of a given length can be given at most if any two di#er in at least a given num-
ber of coordinates) is modi"ed so that we do not prescribe the minimum distance of any two code-
words but require that they di#er in some speci"c structure. In particular, just as in the Simonovits–
Sós problem we seek the largest family of (not necessarily induced) subgraphs of a complete graph
such that the symmetric di#erence of the edge sets of any two graphs in the family has some required
property. We will consider properties like connectedness, Hamiltonicity, containment of a triangle
and some more. Formally all these can be described by saying that the graph de"ned by the sym-
metric di#erence of the edge sets of any two of our graphs belongs to a prescribed family of graphs
(namely those that are connected, contain a Hamiltonian cycle, or contain a triangle, etc.)

Let F be a "xed class of graphs. A graph family G on n labeled vertices is called F-good if for any
pair of distinct G,G↔ ↗ G the graph G↖G↔ de"ned by

V (G↖G↔) = V (G) = V (G↔) = [n],

where [n] = {1, . . . , n} and

E(G↖G↔) = {e : e ↗ (E(G) \ E(G↔)) ↙ (E(G↔) \ E(G))}

belongs to F .
LetMF (n) denote themaximumpossible size of anF-good family onn vertices.We are interested

in the value of MF (n) for various classes F . We will give exact answers or both lower and upper
bounds in several cases.

We mention that codes where the codewords are described by graphs already appear in the liter-
ature. In [Ton02], for example, Tonchev looked at the usual code distance problem restricted to codes
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whose codewords are characteristic vectors of edge sets of graphs. Gray codes on graphs are also
considered, see [Müt22], where the graphs representing the codewords should have some similarity
properties if they are consecutive in a certain listing. Problems analogous to the present ones though
restricted to special graph classes were also considered in [KMS12] and [CFK14]. A very interesting
result along these lines is the one in [KS18].
The chapter is organised as follows. In Section 4.1 we give a general upper bound that will turn out
to be sharp in several of the cases we consider. In Section 4.2 we consider classes F de"ned by some
global criterion as connectivity or 2-connectivity, Hamiltonicity or containing a full star, that is, a
vertex of degree n↑ 1. We determineMF (n) for in"nitely many values of n and for all n in the "rst
and the last case. In most of the cases when we give sharp bounds it is via also solving the problem we
call dual: we give the largest possible size of a graph family for which the symmetric di#erence of no
two of its members satis"es the original requirement. The case of the full star is an exception in this
sense, nevertheless we also solve the dual problem in that case for all even n by using a celebrated
lemma of Shearer. In Section 4.3 we consider classes F de"ned by local conditions. This means that
for certifying the condition it is enough to see just a special part of the graph pair at hand. A capacity-
type asymptotic invariant is natural to de"ne in these cases. It turns out that when the requirement
is that the pairwise symmetric di#erences contain a certain subgraph then this asymptotic invariant
depends only on the chromatic number of the graph to be contained. The "nal section contains a
collection of open problems.

4.1 A general upper bound

To boundMF (n) for various graph classesF it will often be useful to also consider the related problem
of constructing large graph families in which no pair satis"es the condition prescribed by F .

De"nition 4.1. For a class of graphs F letDF (n) denote the maximum possible size of a graph family
on n labeled vertices (that is, each member of the family has [n] = {1, . . . , n} as vertex set), the sym-
metric di"erence of no two members of which belongs to F . Determining DF (n) will be referred to as
the dual problem of determiningMF (n).

Note that denoting byF the class containing exactly those graphs that do not belong toF we actually
have

DF (n) = MF (n),

that is the requirement of having no symmetric di#erence in F is clearly the same as saying that all
symmetric di#erences belong to the complementary family F . Nevertheless, we will use the DF (n)
notation to emphasize the dual nature of the problem in those cases.

Lemma 4.1. For any graph class F we have

MF (n) ·DF (n) ⇑ 2(
n

2).

Proof. Let us de"ne a graph HF whose vertices are all the possible (simple) graphs on the vertex set
[n]. Connect two such vertices if and only if the corresponding pair of graphs have their symmetric
di#erence belonging to F . Then by de"nition we have

MF (n) = ϑ(HF ) and DF (n) = ς(HF ),

where ϑ(H) and ς(H) denote the clique number and the independence number of the graph H ,

respectively. Observe that HF is vertex-transitive, (in fact it is a Cayley graph of the group Z
(n2)
2 ).
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Indeed, if G1 and G2 are two graphs forming vertices ofHF then taking the symmetric di#erence of
all n-vertex graphs forming vertices of HF with the graph G1 ↖G2 is an automorphism of HF that
mapsG1 toG2. Since a vertex-transitive graphH always satis"es ς(H)ϑ(H) ⇑ |V (H)| (this can be
seen by using that the fractional chromatic number ωf (H) always satis"es ϑ(H) ⇑ ωf (H), while if
H is a vertex-transitive graph we also have ωf (H) = |V (H)|

ϑ(H) , cf. [SU97]), the statement follows. ↭

The above lemma makes it possible to boundMF (n) from above by boundingDF (n) from below. In
particular, whenever we construct two families of graphsA and B on [n] such thatA,A↔ ↗ A implies
A ↖ A↔ ↗ F and B,B↔ ↗ B implies B ↖ B↔ /↗ F , while |A||B| = 2(

n

2), then we know that |A| and
|B| realize the optimal values MF (n) and DF (n) for such families. Below we will see several cases
when this simple technique can indeed be used to obtain these optimal values. An exception to this
phenomenon is also presented by Theorems 4.7 and 4.8.

Remark 1. It is worth noting that Lemma 4.1 can be proven in a di#erent way, with no reference to the
fractional chromatic number. Indeed, ifG1, . . . , Gk is an F-good family, while T1, . . . , Tm is a family
satisfying the conditions of the dual problem, then all the symmetric di#erences of the form Gi ↖ Tj

are di#erent, implying km ⇑ 2(
n

2). This is true because if Gi ↖ Tj and Gr ↖ Ts would be the same
for some {i, j} ′= {r, s}, then (Gi ↖ Tj) ↖ (Gr ↖ Ts) would be the empty graph that could also be
written (by commutativity and associativity of the symmetric di#erence) as (Gi ↖Gr)↖ (Tj ↖ Ts).
This would mean that Gi ↖Gr and Tj ↖ Ts are two identical graphs. But if one of them is the empty
graph (that is, Gi = Gr or Tj = Ts), then the other cannot be empty and if both are nonempty, then
one of them belongs to F while the other one does not, so this is impossible.

4.2 Global conditions

Connectivity

When we speak about the class of connected graphs in the following theorem, we mean graphs with
a single connected component, and hence without isolated vertices.

Theorem 4.2. Let Fc denote the class of connected graphs. Then

MFc
(n) = 2n→1.

Proof. First we give a very simple dual family Bc. Let it consist of all graphs on [n] in which the vertex
labeled n is isolated. Clearly |Bc| = 2(

n↑1
2 ) (that is the number of all graphs on [n↑ 1]) and n is also

isolated in the symmetric di#erence of any two of them, so no such symmetric di#erence is connected,
This gives DFc

(n) → 2(
n↑1
2 ) and thus by Lemma 4.1 we have

MFc
(n) ⇑ 2(

n

2)→(
n↑1
2 ) = 2n→1.

Now we show that this upper bound can be attained. Let the familyAc consist of all those graphs
on [n] that are the vertex-disjoint union of two complete graphs (where each vertex belongs to one
of them) including the case when one of the two is on the empty set. Clearly, the number of these
graphs is just half the number of subsets of [n], that is exactly 2n→1. All we have to show is that the
symmetric di#erence of any two of these graphs is connected. Choose two arbitrary graphsG andG↔

from our family. Let G be the union of complete graphs on the complementary vertex sets K and L,
while G↔ be the same on K ↔ and L↔. Let A = K ⇐ L↔, B = L↔ ⇐ L,C = L ⇐K ↔ and D = K ↔ ⇐K . It
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is possible that one, but only one of A,B,C,D is empty. The edges ofG↖G↔ are all the edges of the
complete bipartite graph with partite classes A ↙ C and B ↙D, so it must be connected. ↭

With just a little more consideration one can also treat the case of 2-connectedness at least for
even n.

Theorem 4.3. Let F2c denote the class of 2-connected graphs. Then if n is even, we have

MF2c(n) = 2n→2.

Proof. The proof is a modi"cation of the previous one, therefore we use the notation introduced there.
The construction given there may result in symmetric di#erences that are not 2-connected only if
A ↙ C or B ↙D contains only one element. For even n this can be avoided if we consider only such
graphs in our construction where the bipartition of [n] de"ning the individual graphs has an even
number of elements in both partite classesK and L. This proves the lower bound.

For the upper bound we consider all graphs in which the vertex n is either isolated or it has one
"xed neighbor, say n↑ 1. The symmetric di#erence of any two such graphs is not 2-connected, since
n has at most one neighbor in it. The number of such graphs is just twice the number of graphs in
which n is an isolated point, that is, 2(

n↑1
2 )+1 proving the matching upper bound by Lemma 4.1. ↭

Remark 2. The upper bound proven in Theorem 4.3 clearly holds also for odd n but we have not
found a matching construction in general. For n = 3 a triangle and the empty graph would do, still
achieving the upper bound. But for larger odd n the best we could do is to take only those graphs
from our construction for which in the corresponding bipartition the smaller partition class has an
odd number of elements if n ∈ 1 (mod 4) and it has an even number of elements if n ∈ 3 (mod 4).
The number of graphs obtained this way is 2n→2 ↑

(
n→2

(n→3)/2

)
.

Remark 3. Changing the graphs to their complements in the proofs of Theorems 4.2 and 4.3 makes
these graph families vector spaces over the 2-element "eld, while they still satisfy the conditions as
the symmetric di#erences do not change by complementation (or by taking the symmetric di#erence
of all elements with any "xed graph which is the complete graph in case of complementation).

It does not sound surprising that if we step further on to k-connectedness for k > 2 then the problem
becomes rather more complicated. Nevertheless, if we insist on linear codes, that is graph families
closed under the symmetric di#erence operation then for k = 3 we can still determine the largest
possible cardinality for in"nitely many values on n using Hamming codes.

Theorem 4.4. Let F3c be the class of 3-connected graphs and let M (ε)
F3c

(n) denote the size of a largest
possible linear graph family on vertex set [n] any two members of which have a 3-connected symmetric
di"erence. If n = 2k ↑ 1 for some integer k → 2, then

M (ε)
F3c

(n) = 2n→k→1.

Proof. First we prove that DF3c(n) → n2(
n↑1
2 ) holds in general. Consider the family of all graphs on

vertex set [n] in which the degree of vertex n is at most 1. There are exactly n2(
n↑1
2 ) such graphs. The

symmetric di#erence of any two of these graphs is at most 2-connected, since the vertex n has degree
at most 2 in all these symmetric di#erences. This proves the claimed inequality and by Lemma 4.1
this impliesMF3c(n) ⇑ 2n→1/n.
It is well-known that if a family of subsets of a "nite set contains the empty set and is closed under
the symmetric di#erence operation then the cardinality of this set must be a power of 2. This follows
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immediately from linear algebra and the fact that such a family forms a vector space over GF (2),
cf. e.g. Lemma 3.1 in Kozlov’s book [Koz08] where a simple combinatorial proof of this fact is also
presented. Since a linear graph family code on [n] can be viewed as a collection of subsets of E(Kn),
this implies that M (ε)

F3c
(n) is a power of 2. Since we obviously have M (ε)

F3c
(n) ⇑ MF3c(n), the upper

bound proved above impliesM (ε)
F3c

(n) ⇑ 2d with d = ̸log2 1
n
2n→17 giving

M (ε)
F3c

(n) ⇑ 2n→k→1

for n = 2k ↑ 1, k → 2, which proves the required upper bound.
For the lower bound consider the Hamming code CH(n) with length n = 2k ↑ 1 that exists for every
k → 2. (For a nice quick account on Hamming codes see e.g. [Ber15].) It is a linear code with minimum
distance 3 that consists of 2n→k binary codewords having the property that if c = (c1, . . . , cn) be-
longs to the code then so does also c̄ = (c̄1, . . . , c̄n)where c̄i = 1↑ ci. For each codeword c ↗ CH(n)
consider the bipartition of [n] into the subsets Kc, Lc, where Kc = {i : ci = 0}, Lc = {i : ci = 1}
and the complete bipartite graph GKc,Lc with partite classes Kc, Lc. Note that by the above men-
tioned property of Hamming codes we have c ↗ CH(n) if and only if c̄ ↗ CH(n) and thus since
GKc,Lc = GKc̄,Lc̄ , we get

1
2 |CH(n)| = 2n→k→1 di#erent complete bipartite graphs this way. All we

have to prove is that the symmetric di#erence of any two of our graphs is 3-connected. This is equiv-
alent to show that if c↔ ′= c, c̄, then the cardinality of both partite classes of GKc,Lc ↖GKc→ ,Lc→ , that
is of (Kc ⇐Kc→) ↙ (Lc ⇐ Lc→) and (Kc ⇐ Lc→) ↙ (Kc→ ⇐ Lc) is at least 3. However, this immediately
follows from the fact that the codeword c↔ must di#er from both c and c̄ in at least 3 coordinates. This
completes the proof. ↭

Hamiltonicity

A graph is connected if and only if it contains a spanning tree. Next we consider what happens if we
require the containment of speci"c spanning trees: a path in this subsection and a star in the next
one.

Theorem 4.5. Let FHp denote the class of graphs containing a Hamiltonian path. Then for in!nitely
many values of n we have

MFHp(n) = 2n→1.

In particular, this holds whenever n = p or n = 2p↑ 1 for some odd prime p.

To prove the above theorem we will refer to the following old conjecture that is known to be true in
several special cases. To state it we need the notion of perfect 1-factorization. It means the partition of
the edge set of a graph into perfect matchings such that the union of any two of them is a Hamiltonian
cycle.

Perfect 1-factorization conjecture (P1FC)(Kotzig [Kot64]). The complete graph Kn has a perfect
1-factorization for all even n > 2.

This conjecture is still open in general, however it is known to hold in several special cases, for
example, whenever n = p + 1 (Kotzig [Kot64]) or n = 2p for some odd prime p (Anderson [And73]
and Nakamura [Nak75], cf. also Kobayashi [Kob89]). For a recent survey, see Rosa [Ros19], according
to which the smallest open case of the conjecture is n = 64.
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Proof of Theorem 4.5. Since Hamiltonian paths are connected, it follows from the proof of Theorem 4.2
that 2n→1 is again an upper bound. Now we show that it is also a lower bound whenever the Perfect
1-factorization conjecture holds for n + 1. (Note that if the conjecture is true, then this means that
our statement holds for all odd numbers at least 3, while for 1 it is void.)

Let n be an odd number for whichKn+1 has a perfect 1-factorizationM and v a "xed vertex ofKn+1.
Note that deleting the edge incident to v from all matchings belonging to M we obtain n matchings
of Kn such that the union of any two of them is a Hamiltonian path in Kn := Kn+1 \ {v}. Now
consider all those subgraphs of Kn that can be obtained as the union of an even number of these n
matchings. Clearly, the symmetric di#erence of any two of them is also the union of at least two of
these matchings and thus contains a Hamiltonian path. The number of graphs obtained this way is
2n→1, matching the upper bound. ↭
The case of Hamiltonian cycles can be treated essentially the same way.

Theorem 4.6. Let FHc denote the class of graphs containing a Hamiltonian cycle. For all even values
of n for which the P1FC holds, we have

MFHc(n) = 2n→2.

In particular, this is the case if n = p+ 1 or n = 2p for some odd prime p.

Proof. Since Hamiltonian cycles are 2-connected, it follows from the proof of Theorem 4.3 that 2n→2

is again an upper bound.

Let n be an even number for which the P1FC holds and letM be a perfect 1-factorization ofKn. Note
that M contains n ↑ 1 matchings (indeed the edge-chromatic number of Kn for even n is n ↑ 1).
Now consider the 2n→2 graphs we can obtain as the union of an even number of matchings fromM.
Clearly, the symmetric di#erence of any two of them contains a Hamiltonian cycle. ↭
Remark 4. Since Hamiltonian cycles are 2-connected graphs the proof of Theorem 4.6 obviously
gives an alternative proof of Theorem 4.3 for those values of n for which the Perfect 1-factorization
conjecture is known to hold. (The situation is similar for Theorems 4.5 versus 4.2.) On the other
hand, the construction in the proof of Theorem 4.3 utterly fails to give a good lower bound for the
value ofMFHc

(n) investigated in Theorem 4.6. Indeed, the symmetric di#erence of two graphs in the
construction given in the proof of Theorem 4.3 contains a Hamiltonian cycle if and only if the sets
denoted byA↙C andB↙D in that proof both have cardinality n

2 and this happens exactly when the
partition classes of the partitions (K,L) and (K ↔, L↔) are orthogonal in the sense that representing
these bipartitions by characteristic vectors consisting of +1 and ↑1 coordinates in the obvious way,
we get a collection of vectors that are pairwise orthogonal. So their number cannot be more than just
n and we can give exactly n such vectors if and only if an n∝ n Hadamard matrix exists.

Containing a spanning star

We have seen in the previous subsection that if we want every symmetric di#erence to contain a
spanning tree which is a path, then for in"nitely many values of n our family can be just as large as if
we did not want more than just the connectedness of these symmetric di#erences. In this subsection
we show that if the required spanning tree is a star, then the largest possible family is drastically
smaller.
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Theorem 4.7. Let FS denote the class of graphs containing a spanning star, that is a vertex connected
to all other vertices in the graph. Then we have

MFS
(n) =

{
n+ 1 if n is odd
n if n is even.

Proof. First we prove the upper bound. Let G1, . . . , Gm be an FS-good family on the vertex set [n].
Consider the complete graph Km whose vertices are labeled with the graphs G1, . . . , Gm. For each
edge {Gi, Gj} of this graph assign an element h ↗ [n] for which h is adjacent to all other elements
of [n] in the graph Gi ↖ Gj . By the de"nition of FS-goodness such an h exists for every pair of
our graphs. Now observe that if an element a ↗ [n] is assigned to two distinct edges e and f of
our graph Km, then e and f must be independent edges. Indeed, if that was not the case then we
would have e = {Gi, Gj}, f = {Gi, Gk} for some i, j, k ↗ [n] and a would be a full-degree vertex
(that is one, connected to all other vertices) in both of the graphs Gi ↖ Gj and Gi ↖ Gk. But since
Gj ↖ Gk = (Gi ↖ Gj) ↖ (Gi ↖ Gk), that would mean that a is an isolated vertex in Gj ↖ Gk, so
no vertex of this latter graph can have full degree contradicting the FS-goodness of our family. Thus
our assignment of vertices from [n] to the edges of our Km partitions the edge set of Km into sets
of independent edges (every partition class consisting of the edges with the same assigned label), in
other words, it de"nes a proper edge-coloring ofKm. This means that the number of possible labels,
which is n, should be at least as large as the edge-chromatic number ωe(Km) ofKm. Since the latter
is m ↑ 1 for even m and m for odd m, turning it around we obtain that for odd n we must have
m ⇑ n+ 1 and for even n we must havem ⇑ n.

Now we show that the upper bound we proved is sharp. First assume that n is odd and con-
sider a complete graph Kn+1 on the vertices v1, . . . , vn+1 along with an optimal edge-coloring
c : E(Kn+1) ↓ [n] of this graph. This edge-coloring partitions E(Kn+1) into n disjoint match-
ings M1, . . . ,Mn, where Mj consists of the edges colored j for every j ↗ [n]. Now we construct the
graphs G1, . . . , Gn+1 by telling for each potential edge ij of the complete graph on [n] which Gk’s
will contain it and which ones will not. Consider the edge ij and the union of the matchingsMi and
Mj (note that these matchings are in the “other” complete graph on n + 1 vertices). This union is a
bipartite graph on the vertex set {v1, . . . , vn+1} with two equal size partite classes A and B. Let ij
be an edge of the graph Gk if and only if vk ↗ A. (So ij will be an edge of exactly half of our graphs
G1, . . . , Gn+1.) Do this similarly for all edges of Kn, the complete graph on vertex set [n]. This way
we de"ned our n+ 1 graphs. We have to show that they form an FS-good family.

To this end consider two of our graphs, say Gh and Gk. The edge {vh, vk} has got some color
in our coloring c, call this color j. This means that {vh, vk} belongs to the matching Mj . We claim
this means that j ↗ [n] is a full-degree vertex of Gh ↖ Gk. The latter is equivalent to the statement
that every edge ji incident to the point j appears in exactly one of the graphs Gh and Gk. But this
follows from the way we constructed our graphs: when we decided about the edge ji we considered
the matchingsMi andMj and the bipartite graph their union de"nes. Since {vh, vk} ↗ Mj , the points
vh and vk are always in di#erent partite classes of this bipartite graph, so whichever was called A,
exactly one of vh and vk belonged to it. Thus the edge ij was declared to be an edge of exactly one of
Gh and Gk. Since this is so for every i ′= j, j is indeed a full-degree vertex in Gh ↖Gk.

Assume now that n is even. Then n ↑ 1 is odd and we can construct graphs G1, . . . , Gn on vertex
set [n ↑ 1] = {1, . . . , n ↑ 1} as given in the previous paragraph. These are not yet good, however,
since we have an nth vertex that does not appear yet in any of the graphs. Note that we have n ↑ 1
matchings M1, . . . ,Mn→1 involved in the construction so far whose indices are just the "rst n ↑ 1

43



4. G&"#! C()%0

vertices of our graphs. Think about the additional vertex n as the index of an additional “matching”
Mn that has no edges at all. We decide about the involvement of the edges ni (i < n) in our graphs
analogously as we did for the earlier edges: Consider the bipartite graph Mi ↙ Mn, that consists of
just the edges of Mi, so it is a perfect matching on the vertex set {v1, . . . , vn}. Let the two partite
classes de"ned by this perfect matching be A and B and add the edge ni to the graph Gh if and only
if vh belongs to A. Now we can prove analogously to the odd case that the symmetric di#erence of
any two of our graphs contains a vertex of degree n↑ 1. Consider Gh and Gk. The edge between vh
and vk in the auxiliary complete graph belongs to exactly one of the matchings Mj and every edge
ij is in exactly one of the graphs Gh and Gk if i ↗ {1, . . . , j ↑ 1, j + 1, . . . , n}. This completes the
proof. ↭

The following remark is due to Gábor Tardos [Tar22b].
Remark 5. The statement and proof of the above theorem can also be presented in a more compact
form as follows. There exists m graphs on vertex set [n] forming an FS-good family if and only if
ωe(Km) ⇑ n. The proof is essentially the same what was shown above but in the second part we
do not have to distinguish between odd and even n, rather just say that M1, . . . ,Mn are the color
classes of a proper edge-coloring of Km (some of which may be empty) and then de"ne the graphs
G1, . . . , Gm the same way as above.

The only graph family code proven to be optimal and nonlinear (or not the coset of a linear code) in
this chapter is the one appearing in the above Theorem 4.7. This is also the "rst case so far when the
upper bound is proven without the use of Lemma 4.1. This suggests the question of what could be
said about the dual problem in this case. The next theorem solves this dual problem for even values
of n also showing that Lemma 4.1 would not give a sharp upper bound forMFS

(n).

Theorem 4.8. If n is even, then
DFS

(n) = 2(
n

2)→
n

2 .

When n is odd, then we have
2(

n

2)→
n+1
2 ⇑ DFS

(n) ⇑ 2(
n

2)→
n

2 .

For the proof we will need the following celebrated result from [Chu+86] (see also Corollary 15.7.7 in
[AS16]).

Shearer’s Lemma([Chu+86]). Let S be a !nite set and A1, . . . , Am be subsets of S such that every
element of S is contained in at least k of the sets A1, . . . , Am. LetM be a collection of subsets of S and
let Mi = {T ⇐Ai : T ↗ M} for 1 ⇑ i ⇑ m. Then

|M|k ⇑
m

i=1

|Mi|.

Proof of Theorem 4.8.We will prove

2(
n

2)→↗n

2 ↘ ⇑ DFS
(n) ⇑ 2(

n

2)→
n

2

that implies both the even and the odd case. For the lower bound "x a subgraph T of Kn with the
minimum number ∀n2 ∃ of edges such that no vertex is isolated and take all possible subgraphs ofKn

that contain none of the edges of T . The number of such subgraphs is 2(
n

2)→↗n

2 ↘ and no two of them
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has a symmetric di#erence that contains all edges incident to any "xed vertex. This proves the lower
bound.
For the upper bound consider a graph familyM that satis"es the condition that no two of its elements
have a symmetric di#erence with a vertex of degree n ↑ 1. For i = 1, . . . , n let Si be the set of
n ↑ 1 edges (of Kn) incident to vertex i. Then for any T, T ↔ ↗ M we cannot have E(T ↔) ⇐ Si =
Si \ (E(T ) ⇐ Si), that is, E(T ) and E(T ↔) cannot be complementary on any Si. So if Mi denotes
the family of graphs obtained by taking the projection of all graphs from M to the edge set Si, then
|Mi| ⇑ 2n→2. Since each edge of Kn appears in exactly two of the sets Si, we can apply Shearer’s
Lemma to these sets with k = 2. This gives

|M|2 ⇑
n

i=1

|Mi| ⇑ 2n(n→2).

Taking square roots we get the upper bound. ↭
Note that if we restrict attention to linear graph families for the dual problem treated in Theorem 4.8,
then using again that the cardinality of such a family should be a power of 2 (cf. the similar argument
in the proof of Theorem 4.4) we get that our lower bound is also sharp for odd values of n.

4.3 Local conditions

In the previous section we investigated MF (n) in cases when the required symmetric di#erences
contain speci"c spanning subgraphs, therefore to check whether these conditions are satis"ed we
have to consider our graphs on the whole vertex set. Nowwe turn to familiesF de"ned by containing
some "xed small "nite graphs, so the nature of these conditions will be local.

General local conditions

De"nition 4.2. A graph class L de!nes a local condition if it has the property that wheneverH1 is an
induced subgraph of H2 and H1 belongs to L then so does also H2. In short, we will refer to such an L
as a local graph class.

Note that the above de"nition implies that whenever two graphs F and G are in the L-good relation
(that is, F ↖ G ↗ L) then any F ↔ with F ↔[U ] ∞= F and G↔ with G↔[U ] ∞= G for some U ⇔ V (F ↔) =
V (G↔) (that is, F ↔ and G↔ induce subgraphs isomorphic to F and G, respectively, on the same subset
U of their vertex set) are also in the L-good relation. This means that if two graphs are in this relation
then there is always some local certi"cate for this.

Here are some examples of local graph classes that we considered.
1. L = {H : L ⇔ H} for some "xed "nite simple graph L. That is L contains all graphs that
contain a (not necessarily induced) subgraph isomorphic to L. When L is such a family we will use
the simpli"ed notation ML(n) for ML(n).
2. L = Codd := {H : C2k+1 ⇔ H for some integer 1 ⇑ k}, that is, Codd contains all graphs that
contain an odd cycle.

In the following we prove some general results related to ML(n) for local graph classes L and will
further investigate the special case belonging to our "rst example above in the next subsection. Later,
we will focus onMK3(n) and MCodd(n).
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The next proposition gives a straightforward upper bound on the value of ML(n). It is in terms of
ex(n,L) that, as usually in extremal graph theory, denotes the maximum number of edges a graph
on n vertices can have without containing any L ↗ L as a subgraph.

Proposition 4.9. For any local graph class L

ML(n) ⇑ 2(
n

2)→ex(n,L).

Proof. Consider an n-vertex graph H satisfying |E(H)| = ex(n,L) and containing no subgraph
isomorphic to any L ↗ L. The family of all subgraphs of H clearly satis"es the requirements of the
dual problem ofML(n). This is because no subgraph ofH can have a subgraph belonging toL and the
symmetric di#erence of two such subgraphs is also a subgraph of H so such a symmetric di#erence
can also not contain any L ↗ L. This family has size 2ex(n,L), thus the claimed upper bound follows
from Lemma 4.1. ↭
Proposition 4.9 and our following results will justify the relevance of the following notion in our
current setting.

De"nition 4.3. The rate RL(n) of an optimal graph family code on n vertices satisfying the require-
ment prescribed by the local graph class L is de!ned as

RL(n) :=
2

n(n↑ 1)
log2ML(n).

We will soon see that the value lim supn↑↓RL(n) is strictly positive for any L belonging to this
section. We will use the following theorem due to Wilson to show that the limit actually exists for all
local graph classes.

Wilson’s Theorem([Wil76]). For every !nite simple graph T there exists a threshold n0(T ) such that
if n > n0(T ) and the following two conditions hold then the edge set of the complete graph Kn can be
partitioned into subgraphs each of which is isomorphic to T . The two conditions are:
1.
(
n

2

)
is divisible by |E(T )|;

2. n↑ 1 is divisible by the greatest common divisor of the degrees of vertices in T .

Note that the two conditions in the above theorem are obviously necessary. The decomposition ofKn

in the conclusion of the theorem is called a T -design when it exists, cf. [ABB08].

Theorem 4.10. Let L be an arbitrary !xed local graph class. Then the value limn↑↓RL(n) exists and
is bounded from below by RL(n) for every n.

Proof. Let n be an arbitrary natural number and let G = {G1, . . . , Gm} be an optimal graph family
code for L with V (Gi) = [n], i ↗ {1, . . . ,m}, that is one with m = ML(n). By Wilson’s theorem a
Kn-design exists forKN , wheneverN is large enough and both n↑ 1 dividesN ↑ 1 and

(
n

2

)
divides(

n

2

)
. Take such anN and consider theKn-design onKN consisting of the subgraphsK(1), . . . ,K(r),

where r = N(N→1)
n(n→1) and eachK(i) is isomorphic toKn. Now let Gj := {G(j)

1 , . . . , G(j)
m } be an optimal

graph family code for L on V (K(j)) for every j ↗ {1, . . . , r}. (Obviously, we can choose each Gj to
be isomorphic to G.) Now de"ne a graph family code on KN for L as the collection of graphs that
can be written in the form of Ga := ↙r

j=1G
(j)
aj where a = (a1, . . . , ar) runs through all possible

sequences satisfying ai ↗ {1, . . . ,m} for every i. Since there are mr such sequences a, this way we

46



4.3. Local conditions

havemr di#erent graphs in our family. They form indeed a graph family code for L since for any two
of them,Ga andGb there is some j for which aj ′= bj and thusGa↖Gb ¬ind Gaj

↖Gbj
¬ind L for

some L ↗ L. This impliesML(N) → mr and thus

RL(N) → 2

N(N ↑ 1)
log2m

r =
2

n(n↑ 1)
log2ML(n) = RL(n).

The requirements for N are satis"ed if N = kn(n ↑ 1) + 1 and k is large enough. (Also for N =
kn(n ↑ 1) + n and large enough k but considering the former is enough for our argument.) Since
ML(n) is clearly monotone nondecreasing in n (as we can always ignore some vertices and consider
a graph family code only on the rest), we can write that for any kn(n↑1)+1 ⇑ i ⇑ (k+1)n(n↑1)

we have ML(i) → mr for r =
(kn(n↑1)+1

2 )
(n2)

. Introducing the sequence bi := mr for r =
(kn(n↑1)+1

2 )
(n2)

whenever kn(n↑ 1) + 1 ⇑ i ⇑ (k + 1)n(n↑ 1) we can write

lim inf
i↑↓

2

i(i↑ 1)
log2ML(i) → lim inf

i↑↓

2

i(i↑ 1)
log2 bi →

lim inf
k↑↓

1
((k+1)n(n→1)

2

) log2m
(kn(n↑1)+1

2 )
(n2) =

lim inf
k↑↓

(
kn(n→1)+1

2

)
((k+1)n(n→1)

2

)
2

n(n↑ 1)
log2m = RL(n).

This proves that limn↑↓RL(n) exists and is equal to supnRL(n). ↭
Remark 6. The above proof is similar to proving that the limit de"ning the Shannon capacity of graphs
exists which is usually done using Fekete’s Lemma. Here, however, there are some technical subtleties
(because of the divisibility requirements for N ) that made it simpler to present a full proof than to
refer simply to Fekete’s Lemma.
In view of Theorem 4.10 the following de"nition is meaningful.

De"nition 4.4. The distance capacity (or distancity for short) of a local graph class L is de!ned as

DC(L) := lim
n↑↓

RL(n).

Based on Turán’s celebrated theorem [Tur41] (cf. also e.g. in [Die17]) and the famous theorem of
Erd$s and Stone [ES46], Erd$s and Simonovits [ES66] proved that if L is an arbitrary family of (at
least 2-chromatic) graphs, then

lim
n↑↓

ex(n,L)(
n

2

) = 1↑ 1

ωmin(L)↑ 1
, (4.1)

where ωmin(L) = minL⇒L ω(L) and ω(G) denotes the chromatic number of graph G as in the previ-
ous chapters.
Note that Proposition 4.9 and the above result determining the order of magnitude of ex(n,L) has
the following immediate consequence for the distancity.

Corollary 4.11. For any local graph class L with ωmin(L) → 2 we have

DC(L) ⇑ 1

ωmin(L)↑ 1
.
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Containing a prescribed subgraph

Nowwe focus on local graph classes mentioned in our "rst example after De"nition 4.2: we have some
"xed "nite simple graph L and consider L = {H : L ⇔ H}. As said above in this case we will use
the notation ML(n) for ML(n) and similarly, we will also denote RL(n) and DC(L) by RL(n) and
DC(L), respectively. We prove that in this case the upper bound of Corollary 4.11 is always sharp.

Theorem 4.12. For any !xed graph L we have

DC(L) =
1

ω(L)↑ 1
.

For the proof we will use a result by Erd$s, Frankl and Rödl [EFR86] about the number Fn(L) of
graphs on n labeled vertices containing no subgraph isomorphic to L.

Erd!s–Frankl–Rödl Theorem([EFR86]). Suppose ω(L) = r → 3. Then

Fn(L) = 2ex(n,Kr)(1+o(1)).

Note that this gives

Fn(L) = 2(
n

2)
(
1→ 1

ω(L)↑1+o(1)
)

by (4.1) (in fact, already directly by Turán’s theorem).

While the proof of the Erd$s-Frankl-Rödl theorem is based on Szemerédi’s Regularity Lemma, a sim-
ilar result for bipartite L easily follows from (4.1) (or from the K$vári–Sós–Turán Theorem [KST54]).
Indeed, it implies that if L is bipartite then Fn(L) <

( (n2)
ϖ(n2)

)
for any φ > 0 provided n > n0(φ), and

that implies the claimed statement. (To see the latter one can use the well-known fact, cf. e.g. Lemma
2.3 in [CK11], that (

t

ςt

)
= 2t(h(ϑ)+o(1)),

where h(x) = ↑x log2 x ↑ (1 ↑ x) log2(1 ↑ x) is the binary entropy function and 0 ⇑ ς ⇑ 1 is
meant to be such that ςt is an integer. Applying this for t :=

(
n

2

)
and ς = φ we obtain that for any

0 < φ < 1 the number
( (n2)
ϖ(n2)

)
is more than 2ϱ(

n

2) for some positive ↼.)

Proof of Theorem 4.12. It follows immediately from Corollary 4.11 that the right hand side is an upper
bound on the left hand side so we only have to prove the reverse inequality.
To this end let GL denote the graph whose vertices are all possible graphs on n labeled vertices and
two are connected if and only if their symmetric di#erence does not contain L as a subgraph. (Note
that this is just the complementary graph of HF used in the proof of Lemma 4.1 when F is set to be
the local graph class L belonging to our problem.) ThenML(n) is equal to the independence number
ς(GL) of GL. Clearly, GL is vertex-transitive (cf. the argument in the proof of Lemma 4.1 for HF ),
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4.3. Local conditions

in particular, it is regular. Since the degree of its vertex representing the edgeless graph is just Fn(L),
we get (denoting the maximum degree of a graph G by ”(G)) that

ML(n) = ς(GL) →
|V (GL)|

”(GL) + 1
=

|V (GL)|
Fn(L) + 1

=

2(
n

2)

2(
n

2)
(
1→ 1

ω(L)↑1+o(1)
) = 2(

n

2)
(

1
ω(L)↑1+o(1)

)

by the Erd$s–Frankl–Rödl theorem (and by the above discussion also for bipartite graphs). Putting
this inequality into the de"nition of DC(L) the required result follows. ↭

Corollary 4.13. Let G be a set of graphs, each containing at least one edge, and letLG be the local graph
class containing all graphs that contain at least one G ↗ G as a subgraph. Then

DC(LG) =
1

ωmin(LG)↑ 1
=

1

ωmin(G)↑ 1
.

In particular,

DC(Codd) = DC(K3) =
1

2
.

Proof. The second statement is clearly a special case of the "rst one, so it is enough to prove the latter.
It is a straightforward consequence of Corollary 4.11 that the left hand side is bounded from above by
the right hand side. For the reverse inequality note the trivial fact that DC(LG) → DC(G) for any
G ↗ G. Applying this for someG ↗ G that satis"es ω(G) = minG⇒G ω(G) = ωmin(LG) the statement
follows from Theorem 4.12. ↭
Remark 8. It is straightforward from the foregoing that the above results also determine for any graph
family G the asymptotic behaviour of the value DLG (n) belonging to the dual problem. Indeed, by
Lemma 4.1 and Corollary 4.13 we have that limn↑↓

1
(n2)

logDLG (n) ⇑ 1↑DC(LG) = 1↑ 1
ωmin(G)→1

while a matching lower bound follows from the argument in the proof of Proposition 4.9. Thus we
have

lim
n↑↓

2

n(n↑ 1)
logDLG (n) = 1↑ 1

ωmin(G)↑ 1

for any graph family G. This means that by taking all subgraphs of a graph with the largest possible
number of edges without containing a subgraph from G we obtain asymptotically a largest family of
graphs no two of which have any G ↗ G in their symmetric di#erence.

Containing a triangle or an odd cycle

In this subsection we are investigating ML(n) for small values of n and the simplest 3-chromatic
graph, which is the triangle K3. We will also look at the analogous problem when K3, the cycle of
length 3 is replaced by the family of all odd cycles.

For L = K3 the bound of Proposition 4.9 gives us MK3(n) ⇑ 2(
n

2)→↗n

2 ↘≃
n

2 ⇐. Below we show that this
upper bound is tight whenever n is at most 6.

The "rst part of the following Proposition is very simple and we present it only for the sake of com-
pleteness.
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Proposition 4.14. We have MK3(3) = 2 and MK3(4) = 4.

Proof. For n = 3 the statement is trivial: take the empty graph and a triangle on three vertices, this
2-element family already achieves the value of the upper bound which is 2 for n = 3.

For n = 4 we give the following four graphs on the vertex set {1, 2, 3, 4} by their edge sets. Let

E(G0) = ⇒, E(G1) = {12, 23, 13, 34},

E(G2) = {23, 34, 24, 14}, E(G3) = {12, 13, 24, 14}.

It takes an easy checking that the symmetric di#erence of any two of these graphs contains a triangle.
Since the upper bound in Proposition 4.9 is also 4 in this case, this proves that MK3(4) = 4. ↭
Remark 9. Note that both of the above simple constructions are closed under the symmetric di#er-
ence operation, that is they form a linear space over GF (2) when the graphs are represented by the
characteristic vectors of their edge sets. In fact, the second construction could also be presented as
the vector space generated in this sense by any two of the graphs G1, G2, G3.

Proposition 4.15.
MK3(5) = 16.

Proof. The value of the upper bound in Proposition 4.9 gives 16 for n = 5, so we only have to prove
that 16 is also a lower bound. To this end we will give a set of graphs forming a vector space in the
sense of Remark 9. We will give this vector space by a set of generators, although in a somewhat
redundant way. (Our reason to keep this redundancy is that the construction has more symmetry this
way.)
Think about the vertices {1, 2, 3, 4, 5} as if they were given on a circle at the vertices of a regular
pentagon in their natural order. Consider the graph with edge set

E(G1) := {12, 23, 13, 35}.

Let G2, G3, G4, G5 be the four graphs we obtain from G1 by rotating it along the circle containing
the vertices so that vertex 1 moves to 2, 2 to 3, etc. Thus we have

E(G2) = {23, 34, 24, 41}, E(G3) = {34, 45, 35, 52),

E(G4) = {45, 51, 41, 13}, E(G5) = {51, 12, 52, 24}.

Nowwe consider the linear space the characteristic vectors of the edge sets of these "ve graphsGi, i ↗
{1, 2, 3, 4, 5} generate. These graphs can be de"ned as the elements of the family G = {GI : I ⇔ [5]},
where

GI = ↖i⇒IGi,

meaning that V (GI) = [5] and E(GI) contains exactly those edges that appear in an odd number of
the graphs Gi with i ↗ I .

Note that every edge of the underlying K5 on [5] appears in exactly two of the graphs G1, . . . , G5,
therefore for I = [5] we have that GI is the empty graph just as G⇑ is. This implies that for every
I ⇔ [5] and I := [5] \ I we have GI = G

I
, thus every graph in our graph family has exactly two

representations asGI for some I ⇔ [5]. (The two representations are given by I and I as we have seen.
It also follows that if J ′= I, I thenGJ ′= GI , otherwise we would haveGJ⇓I be the empty graph for
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4.3. Local conditions

J ↖ I /↗ {⇒, [5]} contradicting that every edge appears exactly twice in the sets E(Gi), i = 1, . . . , 5.)
Thus we have indeed 1

22
5 = 16 graphs in our family matching our upper bound for n = 4.

We have to show that the symmetric di#erence of any two of our graphs contains a triangle. Since our
construction is closed for the symmetric di#erence operation this is equivalent to say that all graphs
in our family except the empty graph contains a triangle. Since GI = G

I
it is enough to prove that

GI contains a triangle for all 1 ⇑ |I| ⇑ 2, I ⇔ [5]. This is easy to see when |I| = 1. For subsets
with |I| = 2 it is enough to check this for I = {1, 2} and I = {1, 3} by the rotational symmetry of
our construction. But these two cases are easy to check: G{1,2} contains the triangles on the triples
of vertices 1, 2, 4 and 1, 3, 4, while G{1,3} contains the triangle on vertices 1, 2, 3. ↭

Proposition 4.16.
MK3(6) = 64.

Proof. The value of the upper bound given by Proposition 4.9 is 26 for L = K3 and n = 6, so we need
to prove only the lower bound.
To this end we give a construction of 64 graphs forming a graph family code on [6] for K3. The
construction will have several similarities to that in Proposition 4.15 though with somewhat less
symmetry. But again our graphs will form a vector space in the sense of Remark 6 to be speci"ed
through a set of seven generators that altogether cover each one of the edges of the underlying K6

exactly twice, so every member of our graph family will have exactly two representations by the
generators just as in the proof of Proposition 4.15. Here are the details.
Think about the 6 vertices 1, . . . , 6 as being on a circle in the vertices of a regular hexagon in their
natural order as we go around the circle. Our "rst four generator graphs are the following four edge-
disjoint triangles (plus three isolated points) given by their edge sets as follows.

E(G1) = {12, 23, 13}, E(G2) = {34, 45, 35},

E(G3) = {56, 16, 15}, E(G4) = {24, 46, 26}.

The other three graphs are three K4’s (plus two isolated vertices) that are rotations of each other, in
particular,

E(G5) = {12, 24, 45, 15, 14, 25}, E(G6) = {23, 35, 56, 26, 25, 36},

E(G7) = {34, 46, 16, 13, 36, 14}.

It is easy to check that the above seven graphs cover each edge of the underlying K6 exactly twice.
Just as in the proof of Proposition 4.15 this implies that the generated family of graphs of the form

GI = ↖i⇒IGi

where I runs through all subsets of [7] contains exactly two representations of this form for each of
its members, namely

GI = GJ if and only if J = [7] \ I.

Thus our family has 26 = 64members that matches our upper bound. Now we have to show that the
symmetric di#erence of every pair of our graphs contains a triangle. Since the family is closed under
symmetric di#erence this is equivalent to every GI except G⇑ = G[7] containing a triangle. To show
this we consider the representation of each of our graphs as GI where I contains at most one of the
threeK4 generators, that is |I ⇐ {5, 6, 7}| ⇑ 1. When I ⇐ {5, 6, 7} = ⇒ but I itself is nonempty then
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this is trivial as in such a caseGI is the union of some of the edge-disjoint graphsG1, . . . , G4 each of
which is a triangle itself. In case |I ⇐ {5, 6, 7}| = 1, then by symmetry we may assume w.l.o.g. that
I ⇐ {5, 6, 7} = {5}. Then if we also have {1, 2} ⇔ I then the triangles on vertices 1, 3, 4 and 2, 3, 5
(and two more) will be contained in GI . So we may assume that at least one of G1 and G2 is not part
of our representation of GI and by symmetry, we may assume 2 /↗ I . But then to avoid the triangles
on vertices 1, 4, 5 and 2, 4, 5 being inGI we need both 3 ↗ I and 4 ↗ I . In this case, however, we will
have the triangle on vertices 4, 5, 6 present in GI . This completes the proof. ↭

1 2

3

45

6 →

1 2

3

45

6 →

1 2

3

45

6 =

1 2

3

45

6

G1 G4 G5 G{1,4,5}

Figure 4.1: Graphs G1, G4, G5 and their generated graph G{1,4,5} in the proof of Proposition 4.16.

Recall Codd be the class of all graphs containing an odd cycle. Since ex(n, Codd) = ex(n,K3) the
upper bound of Proposition 4.9 is also 2(

n

2)→↗n

2 ↘≃
n

2 ⇐ for MCodd(n). Since K3
∞= C3 is an odd cycle, we

obviously have MK3(n) ⇑ MCodd(n) and so by Propositions 4.14, 4.15 and 4.16 the previous upper
bound is also sharp forMCodd(n) when n ↗ {3, 4, 5, 6}. Although we could not prove thatMK3(7) is
also equal to this upper bound, we can show this at least forMCodd(7).

Proposition 4.17.
MCodd(7) = 29.

Proof. The upper bound 2(
n

2)→↗n

2 ↘≃
n

2 ⇐ is equal to 29, so it is enough to prove that this is also a lower
bound. This we do similarly as in the proofs of Propositions 4.15 and 4.16.
Again, we think about the seven vertices forming the set [7] as the vertices of a regular 7-gon around
a cycle in their natural order. We de"ne 7 + 3 = 10 simple graphs G1, . . . , G7 and G8, . . . , G10 that
will generate our family. Let G1 be the triangle with edges 12, 24, 14 and G2, . . . , G7 be its six pos-
sible rotated versions, that is the triangles with edge sets {23, 35, 25}, {34, 46, 36}, . . . , {17, 13, 37},
respectively. Note that these seven triangles cover all pairs of vertices exactly once, that is, they form a
Steiner triple system. The three other graphsG8, G9, G10 are three edge-disjoint seven-cycles, namely
those with edge sets

{12, 23, 34, 45, 56, 67, 17}, {13, 35, 57, 27, 24, 46, 16}, {14, 47, 37, 36, 26, 25, 15},

respectively. Note that these three graphs also cover all pairs of vertices exactly once and that the
edge sets of aGi for i ↗ [7] andGj with j ↗ {8, 9, 10} intersect in exactly one element. Since our ten
graphs cover the edges of the underlying K7 exactly twice, just as in the proofs of Propositions 4.15
and 4.16 the generated family

↖i⇒IGi

as I runs over all subsets of {1, . . . , 10}will have exactly 29 distinct members each of which is repre-
sented by two subsets of {1, . . . , 10}, some I and its complement. All we are left to show for proving
MCodd(7) → 29 is that each suchGI exceptG⇑ = G[10] contains an odd cycle. If I ⇔ [7], this is obvious
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and so is also if I ⇔ {8, 9, 10}. When both I ⇐ [7] and I ⇐ {8, 9, 10} are nonempty, then we consider
that representationGI which has |I ⇐ [7]| ⇑ 3. If we have |I ⇐{8, 9, 10}| = 1 then whichever 7-cycle
we have (that is, whichever of G8, G9, G10) it will have two consecutive edges that do not appear in
either of the at most three triangles. If we take the "rst pair of such edges (as we go along our 7-cycle
in an appropriate direction) for which the previous one is an edge of one of our triangles (since we
take at least one triangle and each triangle intersects each 7-cycle, such an edge must exist), then the
construction ensures that these two consecutive edges close up to a K3 in our GI . In case we have
two 7-cycles in our GI representation, then those create 7 distinct K3’s in their union. Each of our
triangles intersects exactly three of those sevenK3’s created, so if we have |I ⇐ [7]| ⇑ 2 then at least
one of these sevenK3’s remain untouched. Thus we are left with the case of two 7-cycles and exactly
three triangles. For this case let us switch to the complementary representation with four triangles
and one 7-cycle. By symmetry, we may assume that our 7-cycle is G8. If the four triangles are such
that two consecutive edges of G8 do not appear in any of them then we can "nish the argument as
before. If this is not the case, then the four triangles must leave three such edges of G8 uncovered
which form a matching. Because of symmetry we may assume that these are the edges 12, 34, 56.
This also tells us exactly which are the four triangles we have in the representation of GI , namely
those that contain the remaining four edges, that is, G2, G4, G6 and G7. In this case GI contains the
K3, for example, on the vertices 2, 5, 6. Finally, if we have all the three 7-cycles in our representation
then the complementary representation has no 7-cycle at all and this case we have already covered.
This completes the proof. ↭
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Figure 4.2: Graphs G1, G3, G8 and their generated graph G{1,3,8} in the proof of Proposition 4.17.

4.4 Open problems

In the "nal section of our paper [j2] we have listed some related open problems. Some of these have
been investigated or even answered since then. Here we will list all the problems and give reference
to their solutions if there is one.

Linear codes

Problem 1. For what graph families F is it true thatMF (n) is achieved by a linear graph family code,
that is one that is closed under the symmetric di"erence operation?

Our results here include examples where this is the case as well as ones in which it is not. Indeed
in Theorem 4.7 the precise answer is n or n + 1, and if this is not a power of 2 there is no optimal
linear solution. Another family of examples in which the optimal family cannot be achieved by a
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linear example is that in which the family F is the family of all graphs with at most 2r edges, where
r is chosen so that the sum

r

i=0

((
n

2

)

i

)

is not a power of 2. Indeed, by a theorem of Kleitman [Kle66] (for usual codes) the size of the optimum
family here is the size of the family of all graphs with at most r edges.

Although it is not exactly an answer to this question, in [Alo24] Alon investigated the dual prob-
lem,DF (n). In particular, he was interested in the cases, whereF contains all copies of a single graph
H on n vertices. So his question was about the maximum size of a graph family – which he called
H-code – the symmetric di#erence of no two members of which is a graph isomorphic to H . He
looked at graph families F like cliques, stars and matchings and also investigated the asymptotics of
dF (n) = DF (n)

2(
n

2)
. He also studied the linear variant of these problems, that is, the version when the

H-code is closed under symmetric di#erence. For this linear version, in [Ver25] Versteegen provided
a general upper bound on DF (n) when F contains all copies of an arbitrary single graph H .

Asymmetric di#erences

The construction in the proof of Theorem 4.2 has the property that for any two of its graphs G and
G↔ with an equal number of edges their two asymmetric di#erences

G \G↔ = ([n], E(G) \ E(G↔)) and G↔ \G = ([n], E(G↔) \ E(G))

are isomorphic. This suggests the following question.

Problem 2. What is the maximum possible size of a graph family A of graphs on n vertices satisfying
that if A,A↔ ↗ A then A \A↔ and A↔ \A are isomorphic?

In [GJS23] Gishboliner, Jin and Sudakov completely resolved our question by showing that the
maximum possible size of such a family is exactly 2

1
2 ((

n

2)→≃n

2 ⇐) and even characterized all the extremal
constructions.

Phase transitions

Theorems 4.5 and 4.7 show a huge di#erence between requiring a spanning path or a spanning star
in the symmetric di#erences. One may wonder what happens “in between”. Note that if we formulate
this “in betweenness” so that we want to have a spanning tree with diameter at most k, then while
with k = 2 we are at Theorem 4.7 and with k = n ↑ 1 at Theorem 4.5, already for k = 3 we
get the same result as for k = n↑ 1 by the construction in the proof of Theorem 4.2. (This is simply
because complete bipartite graphs contain spanning trees of diameter at most 3.) So it seems plausible
to formulate questions in terms of more speci"c “natural” sequences of spanning trees T1, T2, . . . . (In
the problem below the notationMTn

(n) is meant to denote the largest possible cardinality of a family
of graphs on vertex set [n] such that the symmetric di#erence of any two of them contains Tn as a
subgraph.)

Problem 3. For what “natural” sequences T1, T2, . . . , Ti, . . . of trees (with Ti having exactly i vertices
for every i) will the value ofMTn

(n) grow only linearly in n? A similar question is valid if Ti is replaced
by Ti, some “natural” family of i-vertex trees.
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In [Bai+24] Bai, Gao, Ma and Wu partially solved this problem by proving the following result.
Theorem ([Bai+24]) For in!nitely many n and all integers 3 ⇑ ε ⇑ n→1

12logn + 2, we have

MFε
(n) → 2(n→2),

where Fε denotes the family of graphs containing a spanning tree that has exactly ε leaves. In particular,
this holds whenever n → 64 and n = p or n = 2p↑ 1 for odd primes p.

Exact cardinality

Propositions 4.14, 4.15, 4.16, 4.17 showed that the upper bound of Proposition 4.9 can be sharp for small
values of n for the requirement that a triangle or at least an odd cycle is contained in the symmetric
di#erences. It would be interesting to know whether this can also happen for large values of n.

Problem 4. Is
MK3(n) = 2(

n

2)→↗n

2 ↘≃
n

2 ⇐

true always or at least for in!nitely many values of n? Even if this is not so, does the analogous equality
hold for MCodd(n)?

Note that there are much better known estimates for the number of triangle-free graphs on n labeled
vertices than the one we have used here, in fact, it is known that almost all of these graphs are bipartite
[EKR76]. While this improves the gap between the upper and lower bounds that follow from our
proofs for MK3(n), it is still far from determining its precise value.
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