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1 Introduction
In graph theory, a much-studied graph parameter is the chromatic number, which
is used in practice for problems such as frequency or time allocation. Inmany cases,
the behavior of the chromatic number is di!cult to understand. An example of this
is how this parameter behaves in graph products. In 1966 Stephen Hedetniemi for-
mulated the conjecture that the chromatic number of the so-called tensor product
of two graphs is equal to the minimum of the chromatic number of the factors. It
is clear, however, that the chromatic number of the product is at most the chro-
matic number of the factors. Therefore, the conjecture essentially asked whether
the reverse inequality holds as well. This question remained unanswered for a long
time, but in 2019, it was disproved [Shi19]. The "rst counterexample found was
very large both in terms of the vertex number of the factors and their chromatic
number. Later, smaller counterexamples were found [Zhu21; Tar22; Wro20; Tar23]
and now the conjecture is fully settled, meaning that for any number c if both fac-
tors have chromatic numbers greater than c, we know whether their product can
be c-colorable or not.

Other interesting, well-studied and closely related graph parameters are the
so-called fractional chromatic number and multichromatic numbers. In the ear-
lier counterexamples to Hedetniemi’s conjecture the fractional chromatic number
turned out to be an important parameter and in the later counterexamples the
multichromatic numbers of some special graph classes came into play. My "rst
thesis addresses some questions within this topic. It is also worth mentioning that
Hedetniemi-type problems in which we consider other parameters of the graphs
involved in place of the chromatic number, were formulated as well. In the case of
the fractional chromatic number it is known that the Hedetniemi-type conjecture
is true [Zhu11].

Multichromatic numbers are closely related to Kneser graphs - as those pa-
rameters can be expressed with homomorphisms to corresponding Kneser graphs
- a famous graph class whose chromatic number was determined by Lovász in his
celebrated paper [Lov78], where he proved that the already known upper bound
that was conjectured to be tight is tight indeed. However, in general, those graphs
are not vertex critical for this parameter, meaning that after a vertex removal the
chromatic number does not necessarily decrease. Schrijver observed that special
induced subgraphs, now called Schrijver graphs, have the same chromatic number
as the Kneser graph (with the same parameters), and they are vertex critical for
that. Moreover, Kneser and Schrijver graphs (with the same parameters) share the
same fractional chromatic number as well [Tal03; ST06], but even the Schrijver
graph is not critical for that (except for some special cases). My second thesis fo-
cuses on "nding induced subgraphs of Schrijver graphs with the same fractional
chromatic number, which are also vertex-critical for that parameter.

2



2 Summary of the theses

A research direction di#erent from the ones mentioned above is to investigate
the maximum size of graph families where some relation of any two members of
the family (considered as the codewords) satis"es some prescribed condition. An
example of this is the famous conjecture of Simonovits and Sós [SS76] proven by
Ellis, Filmus and Friedgut [EFF12], that determines the maximum possible cardi-
nality of a family of graphs on n labeled vertices in which the intersection of any
two members contains a triangle. The role of the intersection can be replaced, to
get new interesting questions, e.g. by the symmetric di#erence of the edge sets of
the two graphs. It is what we can arrive to if the basic code distance problem (how
many binary sequences of a given length can be given at most if any two di#er
in at least a given number of coordinates) is modi"ed so that we do not prescribe
the minimum distance of any two codewords but require that they di#er in some
speci"c structure. Apart from the containment of a triangle it is also interesting to
examine global conditions like connectedness or Hamiltonicity.

2 Summary of the theses
The "rst two theses are related to special graphs classes. These graphs serve as
universal graphs for some coloring parameters, meaning, that if a graphG has the
required coloring parameter then it has a homomorphism to the corresponding
special graph. We say that a graph G admits a homomorphism to a graph H if
there exists an edge preserving map from the vertex set ofG to the vertex set ofH
and we denote the existence of such a homomorphism by G → H . One can easily
see that, for example, the chromatic number can be expressed in such a way. A
graph G has chromatic number at most c if and only if it has a homomorphism to
Kc, the complete graph on c vertices. In the "rst and the second theses the universal
graphs (or their subgraphs) for the so-called s-wide coloring and multicoloring are
explored.

The third thesis is more directly related to information theory, codewords
which can be de"ned on graphs are investigated there.

The theorem numbers in the following summary chapters of these theses gen-
erally align with the numbering in the theses themselves, but not in every case.
The reason for this is that not all theorems are included in the summary, a di#er-
ent order sometimes seemed more advantageous for the concise description, and
some theorems have been merged.

2.2 Multichromatic Numbers of Widely Colorable Graphs
As mentioned in the Introduction, related to the Hedetniemi conjecture, a certain
multichromatic number of a special graph class became interesting. This graph
class plays an important role in the theory of wide colorings. A vertex-coloring
of a graph is called s-wide if the two endvertices of every walk of length 2s ↑ 1
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receive di#erent colors in it. It is easy to see that this is one possible generalization
of the term coloring in graph theory, as 1-wide coloring is equivalent to the proper
graph coloring. It can be shown that a graph is s-widely colorable with t colors if
and only if it admits a homomorphism into the following universal graph [ST06]
denoted by W (s, t) some special cases of which appeared in the related question.

V (W (s, t)) = {(x1 . . . xt) : ↓i xi ↔ {0, 1, . . . , s}, ↗!i xi = 0, ↗j xj = 1},

E(W (s, t)) = {{(x1 . . . xt), (y1 . . . yt)} : ↓i |xi ↑ yi| = 1 or xi = yi = s}.

If we set s = 1, thenwe getW (1, t) = Kt by the de"nition, which is in linewith
our earlier observation that the complete graphs are universal graphs for proper
colorings.

Multicoloring is when we color the vertices of a graphG with n colors in such
a way that every vertex receives k distinct colors and if two vertices u and v are ad-
jacent then the set of colors received by u is disjoint from the set of colors received
by v. Formally, it is a function f : v ↘→ {c1, . . . , ck} where for ↓i ↔ [k] ci ↔ [n],
such that if {u, v} ↔ E(G) then f(u) ≃ f(v) = ⇐ (where [k] = {1, 2, . . . , k}
and similarly [n] = {1, 2, . . . , n}). Such colorings were "rst considered by Geller
and Stahl, see [GS75; Sta76]. Stahl [Sta76] introduced the corresponding multi-
chromatic number ωk(G) as the minimum number of colors needed for such a
coloring, called a k-fold coloring. (This graph parameter can also be expressed by
the existence of a homomorphism into some universal graph as discussed in the
next section.)

The fractional chromatic number ωf (G) can be de"ned as

ωf (G) = inf
k

{
ωk(G)

k

}
.

With my advisor in [j1] we have determined the exact values for the k-th mul-
tichromatic numbers for the above mentioned W (s, t) universal graphs in cases
when k ⇒ s.

This work was motivated by a question of Tardif in [Tar22], where he con-
structed a counterexample graph pair G,H to the Hedetniemi conjecture, where
G and H had large chromatic numbers, more than 14, but their product was 14-
colorable. In that counterexampleGwasW (3, 9)[K4], the graph which is obtained
by blowing up each vertex of W (3, 9) into a clique of size 4, fully connecting the
cliques corresponding to originally adjacent vertices in W (3, 9). It is easy to see
that the chromatic number of this graph is exactly the 4-th multichromatic num-
ber ofW (3, 9). In hope for constructing smaller counterexamples in a similar way
he asked whether ω(W (3, t)[K3]) = ω3(W (3, t)) is large, in particular, for t = 8
more than 12 and for t = 7 more than 11. He also observed that in general

ωk(W (s, t)) ⇑ t+ 2(k ↑ 1)
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holds. In other words, he asked if strict inequality is true in the special case when
s = k = 3 and t = 7 or t = 8. We have answered his question in the negative and
generalized the result to all t and k ⇒ s:

Theorem 2.2.1. If k ⇒ s, then

ωk(W (s, t)) = t+ 2(k ↑ 1).

We also showed that this result cannot be generalized for arbitrarily large k
(with respect to s).

Theorem 2.2.2. For all pairs of positive integers t ⇑ 3 and s ⇑ 1 there exists some
threshold k0 = k0(s, t) > s for which

ωk(W (s, t)) > t+ 2(k ↑ 1)

whenever k ⇑ k0.

We also managed to prove the following theorems about the fractional chro-
matic number of a W (s, t) graph. For that we have used some previous results
concerning Mycielki graphs s-wide colorability [BS05; SST24; GJS04; ST06]. The
Mycielskian M(G) of a graph G is a result of a graph operation, introduced by
Mycielski [Myc55], which does not increase the clique number of the graphG, but
it increases its chromatic number. The construction can be generalised (see Chap-
ter 1 of the dissertation) to get h-level Mycielskians Mh(G), where the original
construction M(G) = M2(G). The e#ect of the original Mycielski construction,
M2(G), on the fractional chromatic number were investigated in [LPU95], where
a simple function was given:

ωf (M(G)) = ωf (G) +
1

ωf (G)
.

For a general h, the fractional chromatic number ωf (Mh(G)) was studied by
Tardif in [Tar01]. He proved that the value of ωf (G) also determines ωf (Mh(G)).

ωf (Mh(G)) = ωf (G) +
1

∑
h→1
i=0 (ωf (G)↑ 1)i

.

Using this result we managed to prove the following two theorems by showing
the existence of homomorphisms from M3s→2(W (s, t)) to W (s, t + 1) and from
W (s, t+ 1) toMs(W (s, t)).

Theorem 2.2.3.

ωf (W (s, t)) +
ωf (W (s, t))↑ 2

(ωf (W (s, t))↑ 1)3s→2 ↑ 1

⇒ ωf (W (s, t+ 1))

⇒ ωf (W (s, t)) +
ωf (W (s, t))↑ 2

(ωf (W (s, t))↑ 1)s ↑ 1
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Theorem 2.2.4. For any !xed positive integer s we have

lim
t↑↓

ωf (W (s, t)) = ⇓.

2.3 Critical Subgraphs of Schrijver Graphs for the Fractional
Chromatic Number

As the W (s, t) graphs were universal graphs for wide-colorings, Kneser graphs
are the universal graphs for multicolorings, meaning that the k-th multichromatic
number of a graph is at most n if and only if it admints a homomorphism to the
Kneser graphKG(n, k). For positive integers n ⇑ 2k the Kneser graphKG(n, k)
is de"ned on the vertex set that consists of the

(
n

k

)
k-element subsets of [n] with

two such subsets forming an edge if and only if they are disjoint:

V (KG(n, k)) =

(
[n]

k

)

E(KG(n, k)) = {{A,B} : A ≃B = ⇐}.

Kneser [Kne55] observed that the chromatic number ofKG(n, k) is at most n↑
2k+2 and conjectured that this upper bound is tight. This was proved many years
later by Lovász in his celebrated paper [Lov78] using the Borsuk-Ulam theorem.
Soon afterwards Schrijver [Sch78] found that a certain induced subgraph SG(n, k)
of KG(n, k), now called Schrijver graph, still has chromatic number n ↑ 2k + 2
and moreover, it is also vertex-critical for this property, that is, deleting any of its
vertices the chromatic number becomes smaller.

The fractional chromatic number of KG(n, k) is n

k
(which is a simple conse-

quence of the Erd$s-Ko-Rado theorem [EKR61]). Schrijver graphs SG(n, k) share
this fractional chromatic value [Tal03; ST06], but most Schrijver graphs are not
vertex-critical for this parameter (the only exceptions are the trivial cases) and
this suggested the problem of "nding critical subgraphs of Schrijver graphs for
the fractional chromatic number.

In a joint paper [j3] with my advisor we worked on this problem. We de"ned
a natural property for the sets representing the vertices and named the subgraph
formed by the vertices satisfying this property Q(n, k) (the formal de"nition of
Q(n, k) can be found in Chapter 3 of the dissertation). A basic property of these
graphs is the following:

Theorem 2.3.1. Let n ⇑ 2k and ε ⇑ 2 be any positive integer. Then the graphs
Q(n, k) and Q(εn, εk) are isomorphic.

Based on the above theorem, when studying the properties of Q(n, k) graphs,
we can always assume that gcd(n, k) = 1.
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Theorem 2.3.2. Assume n ⇑ 2k, gcd(n, k) = 1 and let a and b be the smallest
positive integers for which ak = bn↑ 1. The graphQ(n, k) ⇔ SG(n, k) satis!es the
following properties.

• ωf (Q(n, k)) = n

k
= ωf (SG(n, k)).

• ↓U ↔ V (Q(n, k)) ωf (Q(n, k) \ {U}) = a

b
< n

k
, that is Q(n, k) is vertex-

critical for the fractional chromatic number.
• Q(n, k) contains an induced subgraph isomorphic to Q(a, b).

While proving this result we realised that the above theorem is true because the
found special subgraph is isomorphic to another known graph, the circular com-
plete graph,Kn/k, which is the universal graph for yet another coloring parameter,
the circular chromatic number. The de"nitions of the circular complete graphKn/k

for n ⇑ 2k and the related circular chromatic number ωc are the following:

V (Kn/k) = {0, 1, . . . , n↑ 1}

E(Kn/k) = {{i, j} : k ⇒ |i↑ j| ⇒ n↑ k},

ωc(G) = min

{
p

q
: p ⇒ |V (G)|, G → Kp/q

}
.

Theorem 2.3.3. Q(n, k) is isomorphic with the circular complete graphKn/k when-
ever gcd(n, k) = 1.

It was known for circular complete graphs that they are vertex-critical for the
fractional chromatic number, but edge-criticality was not studied before (neither
for the fractional nor for the circular chromatic number). We also investigated this
question. For that we called an edge {i, j} ↔ E(Kn/k) a shortest edge if |i↑ j| = k
or |i↑ j| = n↑k. (The name comes from the fact that these are the shortest edges
when the vertices are arranged in order along a circle.)

Theorem 2.3.4. If gcd(n, k) = 1, e ↔ E(Kn/k) and a, b are de!ned as the smallest
positive integers for which ak = bn↑ 1 then

ωf (Kn/k \ {e}) = ωc(Kn/k \ {e}) =
{

a

b
if e is a shortest edge

n

k
otherwise.

Finally, we proved that SG(n, k) itself is vertex critical for the fractional chro-
matic number only in some trivial cases.

Theorem 2.3.5. ↓U ↔ V (SG(n, k)) ωf (SG(n, k) \ {U}) < ωf (SG(n, k)) if and
only if one of the following holds: k = 1, n = 2k, or n = 2k + 1.
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2.4 Graph Codes
In a joint work [j2] with Noga Alon, János Körner, Aleksa Milojevi% and Gábor
Simonyi we investigated the maximum size of graph families on a common vertex
set of cardinality n such that the symmetric di#erence of the edge sets of any
two members of the family satis"es some prescribed condition. Note, that if the
prescribed condition is just to contain at least d edges, then we get back the basic
code distance problem: Howmany codewords of length

(
n

2

)
can be given such that

any two of them di#er in at least d coordinates?
In this subsection I will list some of the results that we had (see Chapter 4

of the dissertation for more). We considered global properties like connectedness,
Hamiltonicity as well as local properties like containment of a triangle and some
more. Formally all these can be described by saying that the graph de"ned by the
symmetric di#erence of the edge sets of any two of our graphs belong to a pre-
scribed family of graphs (namely those that are connected, contain a Hamiltonian
cycle, or contain a triangle, etc.)

LetF be a "xed class of graphs. A graph family G on n labeled vertices is called
F-good if for any pair G,G↔ ↔ G the graph G↖G↔ de"ned by

V (G↖G↔) = V (G) = V (G↔) = [n],

E(G↖G↔) = {e : e ↔ (E(G) \ E(G↔)) ↙ (E(G↔) \ E(G))}

belongs to F .
Let MF(n) denote the maximum possible size of an F-good family on n ver-

tices. We were interested in the value ofMF(n) for various classes F . The follow-
ings theorems give this value in some cases we considered.

Theorem 2.4.1. Let Fc denote the class of connected graphs and F2c the class of
2-connected graphs. Then

MFc
(n) = 2n→1, MF2c(n) = 2n→2.

Theorem 2.4.2. Let FHp denote the class of graphs containing a Hamiltonian path
andFHc denote the class of graphs containing a Hamiltonian cycle. Then for in!nitely
many values of n we have

MFHp
(n) = 2n→1, MFHc

(n) = 2n→2.

In the above listed theorems for proving the maximality ofMF(n) for the fam-
ily F in question we used the following lemma.

Lemma 2.4.1. For any graph class F we have

MF(n) ·DF(n) ⇒ 2(
n

2),
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where DF(n) denotes the "dual" of MF(n), i.e. the maximum possible size of a
graph family on n labeled vertices, the symmetric di#erence of no two members
of which belongs to F . Note that denoting by F the class containing exactly those
graphs that do not belong to F we actually have DF(n) = MF(n). In all of the
proofs of the above mentioned theorems we cunstructedF-good andF-good fam-
ilies, A and B respectively, of "matching sizes", meaning that |A| · |B| = 2(

n

2),
proving that they are both maximal. However, this technique does not work for
every class of graphs.

Theorem 2.4.3. Let FS denote the class of graphs containing a spanning star, that
is a vertex connected to all other vertices in the graph. Then we have

MFS
(n) =

{
n+ 1 if n is odd
n if n is even.

The dual family does not have a mathcing size, as

2(
n

2)→↗n

2 ↘ ⇒ DFS
(n) ⇒ 2(

n

2)→
n

2 .

For local conditions we could also use Lemma 2.4.1.

Theorem 2.4.4. Let FK3 denote the class of graphs containing a triangle. Then we
have

MFK3
(n) ⇒ 2(

n

2)→↗n

2 ↘≃
n

2 ⇐.

This upper bound is sharp when n ⇒ 6.

The above theorem is just a special case of a more general one, which brings
extremal graph theory in the picture. Let ex(n,G) denote the maximum number
of edges an n-vertex graph can have without containing a subgraph isomorphc to
G and let FG denote the class of graphs containing the graph G as a subgraph.

Theorem 2.4.5.
MFG

(n) ⇒ 2(
n

2)→ex(n,G).

It turns out that asymptotically this upper bound is tight. To state that for-
mally, we also de"ned a capacity-type asymptotic invariant and we showed that
this invariant is upper bounded by a simple function of the chromatic number. Let

RFG
(n) :=

2

n(n↑ 1)
log2 MFG

(n)

and call the following always-existing limit the distance capacity:

DC(FG) := lim
n↑↓

RFG
(n).

9
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Using the Erd$s-Stone-Simonovits theorem [ES46; ES66], stating that

lim
n↑↓

ex(n,G)(
n

2

) = 1↑ 1

ω(G)↑ 1
,

we get DC(FG) ⇒ 1
ω(G)→1 . Moreover, equality can also be proven.

Theorem 2.4.6. If ω(G) ⇑ 2 then we have DC(FG) =
1

ω(G)→1 .

3 Application of the New Results
This thesis mainly concerns theoretical results that are interesting on their own
right and connected to various parts of graph theory. Nevertheless, in the next
subsection the connection of the fractional chromatic number and the multichro-
matic numbers to information theory will be explained, providing a more applica-
tion based point of view of the results of the "rst two theses. For the last thesis, as
it was already mentioned, de"ning codewords as graphs is a generalization of the
classical code distance problem, therefore no further explanation is needed for its
relevance to information theory.

3.1 Shannon capacity
Several problems in information theory lead to the de"nition of special graph pa-
rameters and the most famous example of this is the Shannon capacity of graphs
[Sha56], which is the tight upper bound on the rate at which information can be
transmitted over a discrete, memoryless communication channel with zero error
probability.

One can model the communication channel as a graph: the transmittable let-
ters are the vertices and a pair of them are connected if and only if they are dis-
tinguishable by the receiver. We consider two t-length codewords distinguishable
if they are distinguishable in at least one index. Generally, we are interested in the
maximum number of pairwise distinguishable t-length codewords.

De!nition 3.1.1. For two graphs G and H their OR-product G · H is de!ned as
follows

V (G ·H) = V (G)∝ V (H),

E(G ·H) = {{(g1, h1)(g2, h2)} : g1, g2 ↔ V (G), h1, h2 ↔ V (H),

{g1, g2} ↔ E(G) or {h1, h2} ↔ E(H)}.

Let Gt denote the t-fold OR-product of G by itself. By de"nition, the pairwise
distinguishable t-length messages form a clique in Gt for a channel modeled by a
graph G, so the question is to determine the clique number ϑ(Gt).

10
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One can easily see that this value is always at most |V (G)|t. Furthermore, the
clique number is super-multiplicative with respect to the OR-product, meaning
that for every pair of graphs G and H , the inequality ϑ(G · H) ⇑ ϑ(G) · ϑ(H)
holds. So itmakes sense to normalize this value by taking the tth root. In fact, we are
interested in the asymptotics of this value. The formal de"nition of the Shannon
capacity is given below. (In the literature it is sometimes de"ned di#erently, by the
complementary graph.)

De!nition 3.1.2. The Shannon capacity of a graph G is de!ned as

C(G) := lim sup
t↑↓

t

√
ϑ(Gt).

The value of the Shannon capacity is unknown even for graphs with a very
simple structure, for example the exact value is not known for any odd cycle longer
than 5 (the case of the 5-cycle is a famous result of László Lovász [Lov79]). From
the work of Bohman and Holzman [BH03] we know that the Shannon capacity of
odd cycles (or their complements in the di#erent interpretation of the problem) is
strictly greater than its trivial lower bound 2. This lower bound, given by Bohman
andHolzman, was recently improved in [Zhu25]. Due to the considerable di!culty
to determine this parameter, even in smaller cases, it is already an interesting result
if only some bound is given. It follows from the de"nition of Shannon capacity, that
ϑ(G), the clique number of the graph G, is always a lower bound. And certain
graph coloring parameters can serve as upper bounds.

Lemma 3.1.1. Let ϖ(G) be a graph parameter. If the following two conditions hold
then C(G) ⇒ ϖ(G).

1. ϑ(G) ⇒ ϖ(G),
2. ϖ(G ·H) ⇒ ϖ(G) · ϖ(H) holds for every pair of graphs G and H .

The fractional chromatic number satis"es these two conditions, therefore, that
as well as ωk(G)/k for every k are all upper bounds for this di!cult to determine
parameter.

Remark. An interesting fact is that the chromatic number (as a special case of
ωk(G)/k where k = 1) also satis"es these conditions. Hence, for those graphs
where ϑ(G) = ω(G) = c the Shannon capacity is known, C(G) = c as well.
This was the original motivation of Claude Berge to investigate perfect graphs (cf.
[Ber97]).

It is also worth noting that the fractional chromatic number of graphs can be
interpreted as an information theoretic parameter. In the case where feedback is al-
lowed on the channel, a single graph alone cannot fully model it. However, among
the memoryless channels that can be modeled by a given graph it will be true for
the worst one that the fractional chromatic number gives the theoretical upper
bound on the rate at which information can be transmitted over that channel with

11
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zero error probability [Sha56]. Furthermore, this parameter is similar to the Shan-
non capacity in another way as well, as it can be expressed as the normalized value
of the chromatic number of a corresponding power graph [BS74; MP71].

Remark.As it was mentioned in the Introduction, Hedetniemi-type conjectures
can be formulated for other graph parameters as well. The question is interesting
whenever the value of that parameter for the product is at most as large as the
values of the parameter for the factors. The Shannon capacity satis"es this condi-
tion. However, we do not know if the analogous conjecture holds for the Shannon
capacity or not. In [Sim21] a lower bound on the Shannon capacity of a product
graph were given and some graphs are shown that may provide counterexamples.

12
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