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THE BANDIT PROBLEM

= Play for T rounds attempting to
. |
minimize losses




Motivation:
& " advertising, clinical trials, ...

i,




EASINESS IN BANDITS — A TUTORIAL

Hardness in bandits
*Worst-case upper & lower bounds

Easiness in bandits

*Higher order bounds
- Stochastic bandits and the best of both worlds
* Prior-dependent bounds




NON-STOCHASTIC BANDITS

Parameters:
number of arms K, number of rounds T
Interaction:

Foreachroundt =1,2,...,T

» Learner chooses action I; € [K]
 Environment chooses losses ¢;; € [0,1] forall i
* Learnerincurs and observes loss ;|



| NON-STOCHASTIC BANDITS

Parameters:
number of arms K, number of rounds T
Interaction:

Foreachroundt =1,2,...,T

» Learner chooses action I; € [K]
 Environment chooses losses ¢;; € [0,1] forall i
* Learnerincurs and observes loss ;|

Goal: minimize expected regret

T T
R, = E ? —minz{’ :
t=1 (=




NON-STOCHASTIC BANDITS:
LOWER BOUNDS

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):
In the worst case, any algorithm will suffer a

regret of Q(VKT)

This result also holds for stochastic bandits, as the
counterexample is stochastic



NON-STOCHASTIC BANDITS:
LOWER BOUNDS

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):
In the worst case, any algorithm will suffer a

regret of Q(VKT)

This result also holds for stochastic bandits, as the
counterexample is stochastic

This talk:
how to go beyond this




NON-STOCHASTIC BANDITS:
UPPER BOUNDS

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
Parameter: n > 0.
Initialization: For all i, set wy ; = 1.

Foreachroundt =1,2,...,T
 Foralli, let

* Drawl; ~ p;.
 Foralli, let

- t,i
'Bt,i — p_t,l 1{It:l}
For all i, update weight as

_ —nt;
Wep1i = W€ Tt



THE REGRET OF EXP3

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):
The regret of EXP3 satisfies

Ry < /2KTlogK
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HEY, BUT THAT'S NOT MINIMAX!

Exp3 is strictly suboptimal: you can’t remove
the / log K (Audibert, Bubeck and Lugosi, 2014)
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Exp3 is strictly suboptimal: you can’t remove
the / log K (Audibert, Bubeck and Lugosi, 2014)

A minimax algorithm: PolyINF
p, = arg min (17 Lecs + Sa(p))
where S, (p)is the Tsallis eIn(tropy:
Sa(@) = — (1 - 2K, p%)

1-x



HEY, BUT THAT'S NOT MINIMAX!

Exp3 is strictly suboptimal: you can’t remove
the / log K (Audibert, Bubeck and Lugosi, 2014)
A minimax algorithm: PolyINF

p, = arg min (1P Leoy + Sa®))
where S, (p)is the Tsallis eln(tropy:

Theorem (Audibert and Bubeck, 2009, Audibert, Bubeck and Lugosi,
2014, Abernethy, Lee and Tewari, 2015):

The regret of PolyINF satisfies Ry < 2VKT




BEYOND MINIMAX #1:
HIGHER-ORDER BOUNDS



HIGHER-ORDER BOUNDS

Full information Bandit

minimax Ry = 0(\/T1ogK) m

first-order

second-order
_ 2
Sti = Xe 't

Cesa-Bianchi, Mansour, Stoltz (2005)

variance

2
Vi = Xe(e; —m)
Hazan and Kale (2010)

KX with a little cheating
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SECOND-ORDER BOUNDS

The Exp3 “proof™:
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The Exp3 “proof™:

Theorem (Auer, Cesa-Bianchi, Freund and Schapire, 2002):
The regret of EXP3 satisfies




HIGHER-ORDER BOUNDS

Full information Bandit

minimax Ry = 0(\/T1ogK) m

first-order

second-order
_ 2
Sti = Xe 't

Cesa-Bianchi, Mansour, Stoltz (2005)

variance

2
Vi = Xe(e; —m)
Hazan and Kale (2010)

KX with a little cheating



HIGHER-ORDER BOUNDS

Full information Bandit

minimax Ry = 0(\/T1ogK)

first-order

Lr;=X¢tei 0( Lz log K)
second-order Ry =0({X;S::)

Sri =2t

Cesa-Bianchi, Mansour, Stoltz (2005) Auer et al. (2002) + some hacking

variance
2
Vi =8 —m)

Hazan and Kale (2010)

KX with a little cheating



HIGHER-ORDER BOUNDS

Full information Bandit

minimax Ry = 0(\/T1ogK)

first-order

Lr;=X¢tei 0( Lz log K)
second-order Ry =0({X;S::)

Sri =2t

Cesa-Bianchi, Mansour, Stoltz (2005) Auer et al. (2002) + some hacking

variance
2
Vi =8 —m)

Hazan and Kale (2010)

KX with a little cheating



VARIANCE BOUNDS F-—-—------ '

____________

2
Need to replag:e it Di f?,i by >.; Zi(ft,i — HT,i) ’
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VARIANCE BOUNDS F-—-—------ '

2
Need to replag:e it Di i’?,i by >.; Zi({)t,i — MT,i) ’
where ur; = =¥ 4y

Hazan and Kale (2011), heavily paraphrased:

-Replace ur; by uy, (easy)

- Estimate p, ; by an appropriate fi; ;: reservoir
sampling in exploration rounds

" Use Exp3 with loss estimates
5 Cei—Hei -
Lei = + Uei
Pt,i




VARIANCE BOUNDS F-—-—------ '

2
Need to replag:e it Di i’?,i by Ye Xi(£ei — tiri)
where pr; = =3

Hazan and Kz: ' .
‘Replace u,, b| BUt that doesn’t

" Estimate u; ; work! Pir
Sampling ineg roaTTiaS
" Use Exp3 with loss estimates
5 _ Cei— Hei

Ut + Hg,i
* Pt *




THE RIGHT WAY TO GET VARIANCE
BOUNDS

Instead of Exp3, use SCRiBLe:
p; = arg min (pTiH + LP(p))

PEAK

with Lo_q; = $621(6e; + fie)
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THE RIGHT WAY TO GET VARIANCE
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regularizer”

Instead of Exp3, use SCRiBLe:
pe = arg min (Pth—1 + LI’(P))

PEAK
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with L_y; = XE2T(6p i + e )
.; ~appropriate unbiased
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THE RIGHT WAY TO GET VARIANCE
BOUNDS

“self-concordant

regularizer”

Instead of Exp3, use SCRiBLe:
pe = arg min (Pth—1 + LI’(P))

PEAK
L 7 _ Vt-1(4 ~
with L_y; = XE2T(6p i + e )
C.; ~appropriate unbiased

Theorem (Hazan and Kale, 2011):
The regret of the above algorithm satisfies

% - 2
Rr =0 (Kz Z:1 25:1(321' = :“T,i) )
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Full information Bandit

minimax 0(y/TlogK)

first-order

second-order Ry =0({X;S::)

Sri =2t

Cesa-Bianchi, Mansour, Stoltz (2005) Auer et al. (2002) + some hacking

Ry = 0(K% /% V:y)

Hazan and Kale (2010) Hazan and Kale (2011)

variance
2
Vi =8 —m)

KX with a little cheating



FIRST- ORDER BOUNDS

L e R R el ——

“Small-gain” bounds:
- Consider the gain game with g, ; = 1 — £ ;
- Auer, Cesa-Bianchi, Freund and Schapire (2002):

Ry = 0(\/KGr ;< logK)




FIRST- ORDER BOUNDS

L e R R el ——

“Small-gain” bounds:
- Consider the gain game with g, ; = 1 — £ ;
- Auer, Cesa-Bianchi, Freund and Schapire (2002):

Ry = 0(\/KGr ;< logK)

Problem:
only good if best expert is bad!



FIRST- ORDER BOUNDS

| should be easy?

I

L e R R el ——

“Small-gain” bounds: JKGr - 10gK)

A little trickier analysis gives

RT=0( thigt,ilogK) or RT=0(ZtZi£t,ilogK)



FIRST- ORDER BOUNDS

| should be easy?

I

L e R R el ——

“Small-gain” bounds: JKGr - 10gK)

A little trickier analysis gives

RT:O( thigt,ilogl() or RT=0(ZtZi£t,ilogK)
Problem:
one misbehaving action ruins the bound!




FIRST- ORDER BOUNDS

L e R R el ——

“Small-gain” bounds: NI NI{TTRIY
A little trickier analysis gives RZa=RdEOINEMITTTY

Actual first-order bounds:
> Stoltz (2005): K,/L%.

> Allenberg, Auer, Gyorfi and Ottucsak (2006): ,/K L.
> Rakhlin and Sridharan (2013): K3/2,/L}



FIRST- ORDER BOUNDS

L e R R el ——

“Small-gain” bounds: NI NI{TTRIY
A little trickier analysis gives RZa=RdEOINEMITTTY

Actual first-order bounds:
> Stoltz (2005): K,/L%.

‘Allenberg, Auer, Gyorfi and Ottucséak (2006): \/K L. ‘
> Rakhlin and Sridharan (2013): K3/2,/L}




THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
Parameter: n > 0.
Initialization: For all i, set wy ; = 1.

Foreachroundt =1,2,...,T
 Foralli, let

* Drawl; ~ p;.
 Foralli, let

- t,i

tei = - 1¢,-i-
* Foralli, update weight as

_ —nt;
Wep1i = W€ Tt



THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

Green (Allenberg, Auer, Gyorfi and Ottucsak, 2006)
Parameters:n > 0,y € (0,1).
Initialization: For all i, set wy ; = 1.

Foreachroundt =1,2,...,T

 Foralli, let
Wt i

pt,i — Z and l.et ﬁt,l' — 0 ]f pt‘i S y.

jWej
e DraW It ~ ﬁt'
 Foralli, let

~ t1
Cei = = L1g=g.
l

* Foralli, update weight as

_ —nb;
Wep1i = W€ Tt




THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

Analysis idea:
"Aslongasp;; = V. foran i, we have

Lt 1,0 < Lt 1,j + 0(10g(1/)/) /77)
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not too far apart”




| THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

Analysis idea:
"Aslongasp;; = V. foran i, we have

Lt 1,0 < Lt 1,j + 0(10g(1/)/) /77)

“the loss estimates are
not too far apart”

-Once p;; <y occurs, L, ; stops growing, so

L; < ZT,j + 0(log(1/y)/m) + 0(1/y)



THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

Getting back to the Exp3 proof:

loo K T K ]
~ 0g n ~
Ry < +—E E §pt,if?,i
n 2 :
_t=1 =1 .




THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

Getting back to the Exp3 proof:

log K
R
n 2

log K
LoLP
n 2

Ry <

Nl
s

<

)
=

-
1l
i

o~
Il
—



THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

Getting back to the Exp3 proof:

" logK n
R E
TS n +5 5

Nl
s

log K
<—=" 41§
n 2
logK r]
o

)

T,

'Mé'EMﬂ
1l
i

o~
Il
—

E[KLT,i*] + 0(K)



THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

Getting back to the Exp3 proof:

l K T K
. 0og n -
Rr < ==+ K[> ) pui??,
n 2 .
t=11=1 _
logK n <
M 2 s ’
] K l=1 |
0) ~
< i + 1 S E[KLr;]+006)
logK 77

S +2KLTL+O(K)



THE GREEN ALGORITHM (aLLenBERG ET AL., 2006)

Getting back to the Exp3 proof:

Theorem (Allenberg et al., 2006):
The regret of Green satisfies

Ry = 0(JKL; + K)
| =1

log K - 5

< i +%E[KL”*]+0(K)
log K -

< i +2 KLy + O(K)




A SIMPLER ALGORITHM: EXP3-IX

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
Parameter: n > 0.
Initialization: For all i, set wy ; = 1.

Foreachroundt =1,2,...,T
 Foralli, let

* Drawl; ~ p;.
 Foralli, let

- t,i
'Bt,i — p_t,l 1{It:l}
For all i, update weight as

_ —nP¢
Wit = Wy e b



A SIMPLER ALGORITHM: EXP3-IX

EXP3-1X (kocik et al., 2014, Neu 20153, Neu 2015b)
Parameter:n > 0,y > 0.
Initialization: For all i, set wy ; = 1.

Foreachroundt =1,2,...,T
 Foralli, let

* Drawl; ~ p;.
Forall i, let

« Forall i, update weig

_ —n P
Wit = Wy e b



A SIMPLER ALGORITHM: EXP3-IX

EXP3-1X (kocik et al., 2014, Neu 20153, Neu 2015b)

Theorem (Neu, 2015):
The regret of Exp3-IX satisfies

Ry = 0(JKL; + K)
Ftr — Z] Wt,j.

* Drawl; ~ p;.
 Foralli, let

« Forall i, update weig

_ —nt;
Wep1i = W€ Tt



IMPLICIT EXPLORATION IN ACTION

2 _ ft,i
ti —
Pei TV

La=03



IMPLICIT EXPLORATION IN ACTION

P =t 4
t,i - {It=i}
Pei TV
5x104 | | |
True
4f losses
3,
2,
1,
% 2 4 6 8 10



IMPLICIT EXPLORATION IN ACTION

P =t 4
t,i - {It=i}
Pei TV
5X104 T T T 5X104 ‘ —
True unbia:
4f losses | 4f
3 3
27 2
1 n
% 2 4 6 8 10 % 2 4 6 8 10
4 4



IMPLICIT EXPLORATION IN ACTION

A 'et’i
{r; = 1.0
Pei TV
5x104 | | 5x1o4 | | | |
True unbiased estimates’

4 losses * 4t +uniform
) exploration
2 2t
1 1t
00 2 4 6 8 10 00 2 4 6 8




IMPLICIT EXPLORATION IN ACTION

A~ 'et’i
te; = 1.0
Pei TV
5x104 | | | 5x104 | | | |
True X estimates
4f losses * 4}
3 3
2 2
1 1
00 2 4 6 8 10 00 2 4 6 8 10
x 10* x 10*



HIGHER-ORDER BOUNDS

Full information Bandit

minimax 0(y/TlogK)

first-order

second-order Ry =0({X;S::)

Sri =2t

Cesa-Bianchi, Mansour, Stoltz (2005) Auer et al. (2002) + some hacking

Ry = 0(K% /% V:y)

Hazan and Kale (2010) Hazan and Kale (2011)

variance
2
Vi =8 —m)

KX with a little cheating
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variance
2
Vi =8 —m)

KX with a little cheating



HIGHER-ORDER LOWER BOUNDS

Gerchinovitz and Lattimore (2016), heavily paraphrased:

Theorem:
No algorithm can do better than

Rr = Q(JL7K)



HIGHER-ORDER LOWER BOUNDS

Gerchinovitz and Lattimore (2016), heavily paraphrased:

Theorem:
No algorithm can do better than

Rr = Q(JL7K)

Theorem:
“No algorithm can do better than

Ry =02 Vi)




BEYOND MINIMAX #2:
STOCHASTIC LOSSES AND THE
“BEST OF BOTH WORLDS”
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THE BEST OF BOTH WORLDS

Is it possible to come up with an algorithm with
Ry = O(VKT)
for non-stochastic losses and
Rr=0(C(W)logT)

for stochastic losses?



THE BEST OF BOTH WORLDS

Is it possible to come up with an algorithm with
Ry = O(VKT)
for non-stochastic losses and
Rr=0(C(W)logT)

for stochastic losses?

YES*!!

*almost



THE BEST OF BOTH WORLDS:
ALGORITHMS

Bubeck and Slivkins (2012):
- Assume that environment is stochastic, act aggressively

* If the losses fail on a stochasticity test, then fall back to
Exp3

- Regret: O(v/KT) on adversarial, O(log? T) on stochastic



THE BEST OF BOTH WORLDS:
ALGORITHMS

Bubeck and Slivkins (2012):
- Assume that environment is stochastic, act aggressively

* If the losses fail on a stochasticity test, then fall back to
Exp3

- Regret: O(v/KT) on adversarial, O(log? T) on stochastic
Auer and Chiang (2016), see Peter’s talk tomorrow:
- Better test, better algorithm for stochastic losses

- Regret: O(,/KT log K) on adversarial, 0(C(v) logT) on
stochastic




A SIMPLE ALGORITHM:
EXP3-+ - (SELDIN AND SLIVKINS, 2014)

EXP3 (Auer, Cesa-Bianchi, Freund and Schapire, 1995, 2002)
Parameter: n > 0.
Initialization: For all i, set wy ; = 1.

Foreachroundt =1,2,...,T
 Foralli, let

* Drawl; ~ p;.
 Foralli, let

- t,i

tei = - 1¢,-i-
* Foralli, update weight as

_ —nt;
Wep1i = W€ Tt



A SIMPLE ALGORITHM:

EXP3-+ - (SELDIN AND SLIVKINS, 2014), PARAPHRASED

EXP3++ (ss, 2014)
Parameters: (1,), > 0, (++).
Initialization: For all i, set wy ; = 1.

Foreachroundt =1,2,...,T
Forall i, let
Wt i

Pei=(1-Xje) 50

+ &5
W gt,l
Draw I; ~ p;.
Forall i, let

~ t,i

tei = - 1¢,-4-
For all i, update weight as

Wii1,i = exp(—ntljt’l-)




EXP3++ ANALYSIS (Heaviry paraPHRASED)

Theorem (ss, 2014):
The regret of Exp3++ satisfies

Rr <4 TKlogK




EXP3++ ANALYSIS (Heaviry paraPHRASED)

Theorem (ss, 2014):
The regret of Exp3++ satisfies

Rr <4 TKlogK

Proof idea: the ¢, ;’s are small enough to not
change the standard Exp3 analysis:

er; = 0(y/logK /KT)




EXP3++ ANALYSIS (Heaviry paraPHRASED)

Theorem (ss, 2014):
The regret of Exp3++ satisfies

Rr=0 (C~(v) log3 T + C’(v))
in the stochastic case
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Proof ideas:
"LetA; =u; — u’
* Wishful thinking: If we haAd full information, then
—iN¢
~ —tNned;
Dii = Zje_tntAj < e M

holds for all suboptimal arms i
*Thus, the e>§pected number of suboptimal draws is

z : z : K
U A%



EXP3++ ANALYSIS (Heaviry paraPHRASED)

But we don’t have

Proof ideas: o
et = p — full info =(

* Wishful thinking: If we haAd full information, then
—iN¢

Dti = — -< e

holds for all suboptimal arms i
*Thus, the e>§pected number of suboptimal draws is

z : z : K
U A%
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- ldea: ensure that the estimated gap is “reasonable”:
tAy; & Loy — Ly = tA; — o(t)
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tAy; & Loy — Ly = tA; — o(t)
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for all suboptimal arms i




EXP3++ ANALYSIS (Heaviry paraPHRASED)

ensured by the exploration
parameters & ;!!!

- ldea: ensure that the estimated gap is “reasonable”:
tAtl def Ltl Lﬂz 2 tAl - O(t)

- For large enough ¢ (t > t*), we have tA;; = tA;/2
" This gives

e_tntAt,i —~
pti — s < e_tntAt,i < e_tntAi/z
Z e NtAt,j
for all suboptlmal arms i

-Thus

K
Ep“sr: +z ~tneli/2 = ¢+ +0<A>



EXP3++ ANALYSIS (Heaviry paraPHRASED)

ensured by the exploration

parameters & ;!!!
- ldea: ensure that the estimated gap is “reasonable”:
tAtl def Ltl Lﬂz 2 tAl - O(t)
- For large enough ¢ (t > t*), we have tA;; = tA;/2

" This gives

e~ Meled tn A tnel;/2
Dei = Ep—- <e Nt ti < e NeAj
Z e NtAt,j
for all Subopt]mal arms i The rest is grinding out the

asymptotics...

-Thus

K
Ep“sr: +z ~tneli/2 = ¢+ +0<A>



EXP3++ ANALYSIS (Heaviry paraPHRASED)

Bottom line:
“if there is a linear gap between

L, ; and L%, this should be exposed
in the estimated gap tA; ;”




EXP3++ ANALYSIS (Heaviry paraPHRASED)

Bottom line:
“if there is a linear gap between

L, ; and L%, this should be exposed
in the estimated gap tA; ;”

Corollaries: strong bounds
whenever there is such a gap:
« “contaminated stochastic”

« “adversarial with a gap”



EXP3++ ANALYSIS (Heaviry paraPHRASED)

Bottom line:
“if there is a linear gap between

L, ; and L%, this should be exposed
in the estimated gap tA; ;”

That’s the exact opposite of what
we need for 15t order bounds!

« “adversarial with a gap”



OPEN QUESTIONS

Is there a way to exploit gaps that are growing
slower than linear?

Is there a way to improve asymptotics? (inss'14,
t* is horribly big!)
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OPEN QUESTIONS

Is there a way to exploit gaps that are growing
slower than linear?

Is there a way to improve asymptotics? (inss'14,
t* is horribly big!)

So far, all positive results hold only or
oblivious adversaries—is it pgse o extend
these to adaptive ones?

See Peter’s talk tomorrow!
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PRIOR-DEPENDENT BOUNDS
FOR FULL INFO

Theorem
(Luo and Schapire, 2015, Koolen and Van Erven, 2015, Orabona and Pal, 2016)

There exist algorithms guaranteeing

Re(e) = 0 1 (1+ REGo1) )

for any fixed prior m € Ay and any comparator p € Ay

Theorem
(Even-Dar et al., 2007, Sani et al., 2014)

There exist algorithms guaranteeing
R;(i) = const
for any fixed i, while also guaranteeing

Ry = O(VT)
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Theorem
(Even-Dar et al., 2007, Sani et al., 2014)

There exist algorithms guaranteeing
R;(i) = const
for any fixed i, while also guaranteeing

Ry = O(VT)




PRIOR-DEPENDENT BOUNDS
FOR FULL INFO

Theorem
(Luo and Schaplre 2015, Koolen and Van Erven, 2015, Orabona and Pal, 2016)

Anythmg Slmllar 1aranteeing
possible for kE(p|n))>

for an bandits??  comparator p € Ag

(Even-Dar ¢ N O *
There ex1$t a
*not quite
for any ﬁxed [, WIlILe disu yudrariteeing

Ry = O(VT)




PRIOR-DEPENDENT BOUNDS FOR BANDITS

Theorem (Lattimore, 2015) paraphrased
The regrets R (i) need to satisfy

R+(i) = min {T, Z > T(j)}.
T

JES!

In particular,
R+ (i) = const implies R+(j) = Q(T)
* Fixing a prior m and gettinBa bound

ﬁT(P) =0 (\/sz(!?j/”j)

is not possible



PRIOR-DEPENDENT BOUNDS:
“POSITIVE™ RESULTS

Lattimore (2015):

" For any regret bound satisfying the condition, there
exists an algorithm achieving it in the stochastic

setting

*In particular,Zj % T is achievable (see also Rosin, 2011)

J

Neu (2016, made up on the flight here):
* For non-stochastic bandits, there is an algorithm with

Rr()=0
\

1L

KT softmax(n))



BEYOND MINIMAX:
CONCLUSIONS



CONCLUSIONS

Higher order bounds
* First-order bounds are possible like in full info
= Second order bounds: much weaker than full info

Best-of-both-world bounds
" Possible and strong against oblivious adversaries
* Only weak guarantees for adaptive adversaries

Prior dependent bounds
*Nothing fancy is possible
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