Wahrscheinlichkeitstheorie und Statistik

7. Woche

Dávid Tóth (BME SZIT)

14., 17. Oktober 2024

Problem. Sei $X \sim \operatorname{Bin}\left(n; \frac{1}{2}\right)$, dann gilt

$$\mathbb{P}(X=k) = \binom{n}{k} \cdot \frac{1}{2^n}$$

für eine beliebige $0 \le k \le n$. Man berechnet diese Zahl leicht, wenn n (relativ) klein ist, aber für eine größere n ist es nich so offenbar, wie man den Binomialkoeffizient bestimmt.

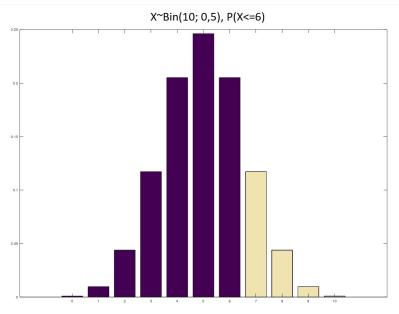
Schon für kleine n kann es aber mühsam sein, die Wahrscheinlichkeit

$$\mathbb{P}(X \le k) = \sum_{i=0}^{k} \mathbb{P}(X = i) = \frac{1}{2^{n}} \sum_{i=0}^{k} \binom{n}{i} = \sum_{i=0}^{k} \frac{n!}{2^{n} i! (n-i)!}$$

zu berechnen.

- Wir werden die Wahrscheinlichkeit $\mathbb{P}(X \leq k)$ approximieren.
- Zunächst interpretieren wir diese Wahrscheinlichkeit als ein Flächeninhalt.
- Nähmlich, die Wahrscheinlichkeit $\mathbb{P}(X = k)$ ist der Flächeninhalt eines Rechtecks mit Seiten 1 und $\mathbb{P}(X = k)$.
- Also ist die Wahrscheinlichkeit $\mathbb{P}(X \leq k)$ die Summe von Flächeninhalten einiger Spalten im Diagramm, wo die Breite der Spalten 1 ist, während die Höhe einer Spalte die entsprechende Wahrscheinlichkeit $\mathbb{P}(X=k)$ ist:

Spaltendiagramm für $X \sim \text{Bin}(10; 0,5)$



Damit wir diese Summe besser behandeln können, wir transformieren die Variable *X*:

- Um die Verteilung zu symmetrisieren, wir verschieben X um $\mathbb{E}(X) = \frac{n}{2}$ in die negative Richtung, also betrachten wir $X \mathbb{E}(X) = X \frac{n}{2}$.
- Diese transformierte Verteilung ist um Null symmetrisch, und

$$\mathbb{E}\left(X-\frac{n}{2}\right)=\mathbb{E}(X-\mathbb{E}(X))=\mathbb{E}(X)-\mathbb{E}(\mathbb{E}(X))=0.$$

• Wir benötigen noch eine Normalisierung, also dividieren wir durch $\mathbb{D}(X) = \frac{1}{2}\sqrt{n}$, und dann gilt

$$\mathbb{D}\left(\frac{X-\mathbb{E}(X)}{\mathbb{D}(X)}\right)=\mathbb{D}\left(\frac{X}{\mathbb{D}(X)}\right)=\frac{1}{\mathbb{D}(X)}\mathbb{D}(X)=1.$$

wegen der Eigenschaften der Standardabweichung.

Die transformierte Variable hat also den Erwartungswert 0 und die Standardabweichung 1, aber hier haben wir die speziellen Eigenschaften der Binomialverteilung nicht benutzt, nur die Endlichkeit und die Positivität von $\mathbb{D}(X)$.

Definition. Sei X eine Zufallsvariabe, deren Standardabweichung $\mathbb{D}(X)$ endlich und positiv ist. Dann existiert auch der Erwartungswert $\mathbb{E}(X)$, und die transformierte Variable

$$\frac{X - \mathbb{E}(X)}{\mathbb{D}(X)}$$

heißt die zugehörige *standaridisierte Variable*. Die obige Transformation heißt *Standardisierung*.

Bemerkung. Die obige Rechnung zeigt, dass eine standardisierte Variable immer den Erwartungswert 0 und die Standardabweichung 1 hat.

Zurück zum Beispiel $X \sim \operatorname{Bin}\left(n; \frac{1}{2}\right)$.

Die standardisierte Variable ist

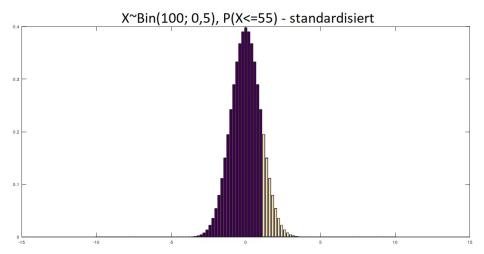
$$\frac{X-\frac{n}{2}}{\frac{\sqrt{n}}{2}},$$

und

$$\mathbb{P}(X \leq k) = \mathbb{P}\left(\frac{X - \frac{n}{2}}{\frac{\sqrt{n}}{2}} \leq \frac{k - \frac{n}{2}}{\frac{\sqrt{n}}{2}}\right).$$

- Die standardisierte Zufallsvariable nimmt ihre Werte im Intervall $[-\sqrt{n};\sqrt{n}]$ an, und die Differenz von benachbarten Werten ist $\frac{2}{\sqrt{n}}$.
- Wenn man die obige Wahrscheinlichkeit als eine Summe von Flächeninhalten einiger Rechtecke ausdrücken möchte (wie wir auf dem obigen Spaltendiagramm gesehen haben), dann muss man die Höhen durch $\frac{\sqrt{n}}{2}$ multiplizieren (weil die Breiten $\frac{2}{\sqrt{n}}$ sind).

Spaltendiagramm für $X \sim \text{Bin}(100; 0.5)$, standardisiert

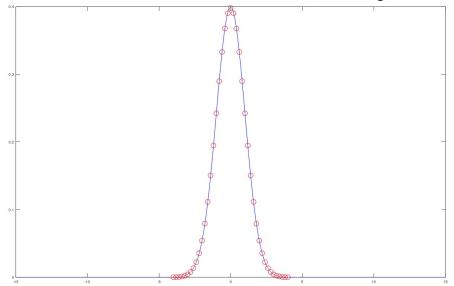


Wenn wir anstatt der Spalten nur die Höhe auf der Figur darstellen, dann können wir sehen, dass diese Werte gut zu einer bekannten Kurve, nähmlich zum Graph der Funktion

$$\varphi(t) := \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

passen. Diese Kurve ist die sogenannte Glockenkurve.

Die Funktion φ und die standardisierte Binomialverteilung



Also kann diese Summe von Flächeninhalten, d.h. die Wahrscheinlichkeit $\mathbb{P}\left(\frac{X-\mathbb{E}(X)}{\mathbb{D}(X)} \leq t\right)$ durch den Integral

$$\Phi(t) := \int_{-\infty}^t \varphi(y) \, dy$$

approximiert werden.

In der Tat, wenn t festgehalten ist, und n gegen ∞ konvergiert, dann konvergiert diese Wahrscheinlichkeit gegen $\Phi(t)$.

Bemerkungen.

- Wir halten die Bezeichnung φ und Φ fest.
- Die Integralfunktion Φ(t) kann nicht durch elementare Funktionen ausgedrückt werden, also gibt die Formel von Newton und Leibniz den Wert von Φ nicht.
- Die Werte von Φ können numerisch (z.B. mit einem Taschenrechner) approximiert werden. Die Werte kann man auch in einer Tabelle aussuchen.

In unserem Beispiel war die Variable X binomialverteilt mit dem Parametern n und $\frac{1}{2}$, aber anstatt $\frac{1}{2}$ kann eine beliebige reelle Zahl $p \in (0;1)$ gewählt werden. Dann ist aber die standardisierte Variable

$$\frac{X - \mathbb{E}(X)}{\mathbb{D}(X)} = \frac{X - np}{\sqrt{np(1 - p)}}.$$

Wir können anstatt des Ereignisses $\{X \le k\}$ solche Ereignisse nehmen, wo auch untere und obere Schranken betrachtet werden:

Satz. (de Moivre-Laplace) Sei $p \in (0;1)$ eine reelle Zalh zwischen 0 und 1, und sei $S_n \sim \operatorname{Bin}(n;p)$ eine binomialverteilte Zufallsvariable für jede $n \in \mathbb{N}^+$. Seien noch a < b reelle Zahlen, dann gilt

$$\lim_{n\to\infty}\mathbb{P}\left(a\leq\frac{S_n-\mathbb{E}(S_n)}{\mathbb{D}(S_n)}\leq b\right)=\int_a^b\varphi(t)\,dt=\Phi(b)-\Phi(a)$$

Hier gelten $\mathbb{E}(S_n) = np$ und $\mathbb{D}(S_n) = \sqrt{np(1-p)}$.

Bemerkung. Man kann im Satz die Werte $a=-\infty$ und auch $b=\infty$ wählen. Im ersten Fall schreibt man $\lim_{t\to -\infty} \Phi(t)=0$ statt $\Phi(a)$, und im zweiten Fall schreibt man $\lim_{t\to \infty} \Phi(t)=1$ statt $\Phi(b)$.

Diese Bemerkung enthält eine wichtige Behauptung:

$$1 = \lim_{b \to \infty} \Phi(b) = \lim_{b \to \infty} \int_{-\infty}^{b} \varphi(y) \, dy$$
$$= \int_{-\infty}^{\infty} \varphi(y) \, dy = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \, dy,$$

also ist φ eine Dichtefunktion.

Beweis. Die Funktion $\varphi(t)$ ist nichtnegativ. Wir zeigen, dass

$$\int_{-\infty}^{\infty} \varphi(y) \, dy = 1$$

gilt, also dass

$$\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy = \sqrt{2\pi}.$$

Anstatt der obigen Formel zeigen wir

$$\left(\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} \, dy\right)^2 = 2\pi.$$

In diesem Fall können wir auf der Ebene integrieren:

$$\left(\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy\right)^2 = \left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy\right)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} dx dy$$
$$= \lim_{R \to \infty} \iint_{B_R} e^{-\frac{x^2+y^2}{2}} dx dy,$$

wo B_R der Kreis mit Radius R ist, dessen Mittelpunkt im Ursprung liegt.

Nun gehen wir zu Polarkoordinaten über:

$$\lim_{R \to \infty} \iint_{B_R} e^{-\frac{x^2 + y^2}{2}} dx \, dy = \lim_{R \to \infty} \int_0^{2\pi} \int_0^R e^{-\frac{r^2}{2}} r \, dr \, d\varphi$$

$$= 2\pi \lim_{R \to \infty} \int_0^R r e^{-\frac{r^2}{2}} \, dr$$

$$= 2\pi \lim_{R \to \infty} \left[-e^{-\frac{r^2}{2}} \right]_0^R$$

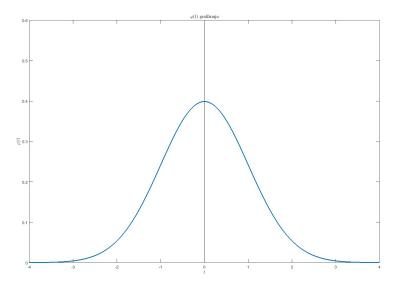
$$= 2\pi \lim_{R \to \infty} \left(1 - e^{-\frac{R^2}{2}} \right) = 2\pi.$$

Definition. Eine Zufallsvariable X heisst standardnormalverteilt (sztenderd normális eloszlású), falls X (absolut) stetig ist, und die Dichtefunktion von X

$$arphi(t) = rac{1}{\sqrt{2\pi}}e^{-rac{t^2}{2}} \qquad (t \in \mathbb{R})$$

ist. Wir benutzen dann die Bezeichnung $X \sim N(0; 1)$.

Der Graph von $\varphi(t)$



Erwartungswert der Standardnormalverteilung:

$$\int_{-\infty}^{\infty} y \varphi(y) \, dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y e^{-\frac{y^2}{2}} \, dy = \frac{1}{\sqrt{2\pi}} \left[-e^{-\frac{y^2}{2}} \right]_{-\infty}^{\infty} = 0.$$

Varianz der Standardnormalverteilung:

Sei X eine standardnormalverteilte Zufallsvariable. Wir benutzen die Transformationsformel für den Erwartungswert und partielle Integration:

$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} y^2 \varphi(y) \, dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^2 e^{-\frac{y^2}{2}} \, dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y \frac{\partial}{\partial y} \left(-e^{-\frac{y^2}{2}} \right) \, dy$$

$$= \frac{1}{\sqrt{2\pi}} \left[-y e^{-\frac{y^2}{2}} \right]_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} \, dy$$

$$= 0 + 1 = 1.$$

Varianz der Standardnormalverteilung:

Dann gilt

$$\mathbb{D}^{2}(X) = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2} = 1 - 0 = 1.$$

Lemma. Seien $\mu, \sigma \in \mathbb{R}$ reelle Zahlen mit $\sigma > 0$. Sei noch X eine (absolut) stetige Zufallsvariable mit Dichtefunktion $f_X(t)$. Dann ist auch $Y = \sigma X + \mu$ eine (absolut) stetige Zufallsvariable mit Dichtefunktion

$$f_Y(t) = \frac{1}{\sigma} \cdot f_X\left(\frac{t-\mu}{\sigma}\right).$$

Beweis. Wir bestimmen die Verteilungsfunktion $F_Y(t)$ von Y:

$$F_{Y}(t) = \mathbb{P}(Y \le t) = \mathbb{P}(\sigma X + \mu \le t)$$
$$= \mathbb{P}\left(X \le \frac{t - \mu}{\sigma}\right) = \int_{-\infty}^{\frac{t - \mu}{\sigma}} f_{X}(y) \, dy.$$

Wir ersezten y durch $\frac{u-\mu}{\sigma}$, dann müssen wir $\frac{1}{\sigma}du$ statt dy schreiben.

Beweis.

$$F_Y(t) = \int_{-\infty}^{\frac{t-\mu}{\sigma}} f_X(y) dy = \int_{-\infty}^t \frac{1}{\sigma} f_X\left(\frac{u-\mu}{\sigma}\right) du.$$

Die Funktion $\frac{1}{\sigma}f_X\left(\frac{u-\mu}{\sigma}\right)$ ist nichtnegativ und Riemann-integrierbar, also ist $\frac{1}{\sigma}f_X\left(\frac{u-\mu}{\sigma}\right)$ die Dichtefunktion von Y (und deshalb ist Y stetig).

Korollar. Sei $X \sim N(0;1)$ eine standardnormalverteilte Zufallsvariable, und seien $\mu, \sigma \in \mathbb{R}$ reelle Zahlen mit $\sigma > 0$. Dann ist die Dichtefunktion der stetigen Zufallsvariablen $\sigma X + \mu$

$$\frac{1}{\sigma}\varphi\left(\frac{t-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}.$$

Definition. Eine Zufallsvariable X heisst normalverteilt (normális eloszlású) mit Parametern μ und σ^2 , falls X (absolut) stetig ist, und die Dichtefunktion von X durch die Formel

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

angegeben ist. Wir benutzen dann die Bezeichnung $X \sim N(\mu; \sigma^2)$.

Also: wenn X eine standardnormalverteilte Zufallsvariable ist, und $\mu,\sigma\in\mathbb{R}$ reelle Zahlen mit $\sigma>0$ sind, dann ist $\sigma X+\mu$ eine normalverteilte Zufallsvariable mit Parametern μ und σ^2 .

$$X \sim N(0;1) \Longrightarrow \sigma X + \mu \sim N(\mu; \sigma^2).$$

Behauptung. Sei Y eine normalverteilte Zufallsvariable mit Parametern μ und σ^2 . Dann gibt es eine standardnormalverteilte Zufallsvariable X, für die $Y = \sigma X + \mu$ gilt. (Wir nehmen an, dass σ positiv ist.)

Beweis. Sei $X=\frac{Y-\mu}{\sigma}=\frac{1}{\sigma}Y-\frac{\mu}{\sigma}$, dann ist die Dichtefunktion von X wegen des Lemmas

$$\sigma f_{Y}\left(rac{t+\mu/\sigma}{1/\sigma}
ight)=arphi(t),$$

wo $f_Y(t)$ die Dichtefunktion von Y ist. Also gelten $X \sim N(0;1)$ und auch $Y = \sigma X + \mu$.

Sei $Y \sim N(\mu; \sigma^2)$ eine normalverteilte Zufallsvariable, und sei $X = \frac{Y - \mu}{\sigma}$, dann gelten $X \sim N(0; 1)$ und $Y = \sigma X + \mu$, also

$$\mathbb{E}(Y) = \mathbb{E}(\sigma X + \mu) = \sigma \mathbb{E}(X) + \mu = \sigma \cdot 0 + \mu = \mu$$

und

$$\mathbb{D}(Y) = \mathbb{D}(\sigma X + \mu) = \mathbb{D}(\sigma X) = \sigma \mathbb{D}(X) = \sigma \cdot 1 = \sigma.$$

D.h. die Parameter von Y sind der Erwartungswert und die Varianz von Y, und

$$X = \frac{Y - \mathbb{E}(Y)}{\mathbb{D}(Y)}$$

ist die zugehörige standardisierte Variable.

Bemerkung. Sei $Y \sim \mathcal{N}(\mu; \sigma^2)$ eine normalverteilte Zufallsvariable, und seien $\nu, \rho \in \mathbb{R}$ reelle Zahlen mit $\rho > 0$. Dann ist die Transformation $\rho Y + \nu$ auch eine normalverteilte Zufallsvariable.

Es gilt

$$\mathbb{E}(\rho Y + \nu) = \rho \mathbb{E}(Y) + \nu = \rho \mu + \nu$$

und

$$\mathbb{D}(\rho Y + \nu) = \mathbb{D}(\rho Y) = \rho \mathbb{D}(Y) = \rho \sigma.$$

Also
$$\rho Y + \nu \sim N(\rho \mu + \nu; (\rho \sigma)^2)$$
.

Beweis der Bemerkung. Sei $Y \sim N(\mu; \sigma^2)$, dann

$$X = \frac{Y - \mu}{\sigma} \sim N(0; 1),$$

und $Y = \sigma X + \mu$, also

$$\rho Y + \nu = \rho(\sigma X + \mu) + \nu = \rho \sigma X + \rho \mu + \nu,$$

d.h.
$$\rho Y + \nu \sim N(\rho \mu + \nu; (\rho \sigma)^2)$$
.

Verteilungsfunktion der Normalverteilung

Erinnerung. Sei $X \sim N(0; 1)$ eine standardnormalverteilte Variable. Die Dichtefunktion von X ist

$$arphi(t) = rac{1}{\sqrt{2\pi}} e^{-rac{t^2}{2}} \qquad (t \in \mathbb{R}),$$

d.h. die Verteilungsfunktion von X ist

$$\Phi(t) = \int_{-\infty}^t \varphi(y) \, dy = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \, dy.$$

Ihre Werte können numerisch berechnet werden. Sie sind in einer Verteilungstabelle angegeben (siehe die Webseite).

Verteilungsfunktion der Normalverteilung

Behauptung. $\Phi(-t) = 1 - \Phi(t)$ gilt für jede $t \in \mathbb{R}$.

Beweis.

$$\Phi(-t) = \int_{-\infty}^{-t} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy - \int_{-t}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

$$= 1 - \int_{-t}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy.$$

Wir ersetzen y = -u, dann müssen wir dy = -du schreiben, und die Integrationsgrenzen ändern sich:

$$y = -t \Rightarrow u = t$$
, $y = \infty \Rightarrow u = -\infty$.

Verteilungsfunktion der Normalverteilung

Behauptung. $\Phi(-t) = 1 - \Phi(t)$ gilt für jede $t \in \mathbb{R}$.

Beweis. Also

$$\Phi(-t) = 1 + \int_{t}^{-\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du$$

$$= 1 - \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du = 1 - \Phi(t).$$

Verteilungsfunktion der Normalverteilung

Bemerkungen.

- In der Verteilungstabelle sind die Werte von Φ an nichtnegativen Stellen angegeben. An negativen Stellen kann der Wert von Φ durch die Formel $\Phi(-t)=1-\Phi(t)$ berechnet werden.
- Der obige Beweis kann für alle geraden Funktionen durchgeführt werden (eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist gerade, falls f(-x) = f(x) für jede $x \in \mathbb{R}$ gilt), denn wir haben nur diese Eigenschaft von φ benutzt. D.h.: falls X eine stetige Zufallsvariable ist, deren Dichtefunktion gerade ist, dann gilt

$$F_X(-t) = 1 - F_X(t).$$

Verteilungsfunktion der Normalverteilung

Behauptung. Sei $Y \sim N(\mu; \sigma^2)$ eine normalverteilte Zufallsvariable mit Parametern μ und σ^2 , dann ist die Verteilungsfunktion von Y

$$\Phi\left(\frac{t-\mu}{\sigma}\right).$$

Beweis. Die Dichtefunktion von Y ist

$$\frac{1}{\sigma}\varphi\left(\frac{t-\mu}{\sigma}\right),\,$$

also ist die Verteilungsfunktion von Y

$$F_Y(t) = \int_{-\infty}^t \frac{1}{\sigma} \varphi\left(\frac{y-\mu}{\sigma}\right) dy.$$

Verteilungsfunktion der Normalverteilung

Beweis.

$$F_Y(t) = \int_{-\infty}^t \frac{1}{\sigma} \varphi\left(\frac{y-\mu}{\sigma}\right) dy.$$

Wir ersetzen $\frac{y-\mu}{\sigma}=u$, dann schreibt man $dy=\sigma du$, und falls $y=-\infty$, dann ist auch $u=-\infty$, und im Fall y=t gilt $u=\frac{t-\mu}{\sigma}$. Also

$$F_{Y}(t) = \int_{-\infty}^{(t-\mu)/\sigma} \varphi(u) \ du = \Phi\left(\frac{t-\mu}{\sigma}\right).$$

Normalverteilung

Bemerkung. Die Normalverteilung kann eine gute Approximation sein, wenn eine zufällige Quantität von vielen kleinen, mehr oder weniger unabhängigen Faktoren beeinflusst ist.

Zum Beispiel: Durchschnittstemperatur pro Monat, Körpergröße in einem Land

Normalverteilung

Beispiel. Der Messfehler einer Waage kann aufgrund Erfahrungswerte approximativ als normalverteilt mit Parametern $\mu=0$ mg (entspricht optimaler Justierung) und $\sigma=0.45$ mg angenommen werden. Wie groß ist die Wahrscheinlichkeit dafür, dass eine Messung um weniger als 0.9 mg vom korrekten Wert abweicht?

Modellieren wir den Messfehler als eine normalverteilte Zufallsvariable $X\sim N(0;0,2025)$ (0,2025 = 0,45²), so gilt

$$\mathbb{P}(|X| \le 0.9) = \mathbb{P}(-0.9 \le X \le 0.9)$$
$$= \Phi\left(\frac{0.9}{0.45}\right) - \Phi\left(-\frac{0.9}{0.45}\right)$$

Normalverteilung

Wir verwenden die Formel $\Phi(-t) = 1 - \Phi(t)$:

$$\mathbb{P}(|X| \le 0.9) = \Phi\left(\frac{0.9}{0.45}\right) - \Phi\left(-\frac{0.9}{0.45}\right)$$
$$= 2\Phi\left(\frac{0.9}{0.45}\right) - 1$$
$$= 2\Phi(2) - 1$$
$$\approx 2 \cdot 0.9772 - 1 = 0.9544$$

Satz von de Moivre-Laplace

Beispiel. Sei $X \sim \operatorname{Bin}(100; 0{,}314)$ eine binomialverteilte Zufallsvariable. Wir benutzen den Satz von de Moivre–Laplace, um den approximativen Wert von $\mathbb{P}(X \leq 25)$ zu bestimmen:

$$\mathbb{E}(X) = 100 \cdot 0.314 = 31.4,$$

$$\mathbb{D}(X) = \sqrt{100 \cdot 0.314(1 - 0.314)} \approx 4.6412,$$

also

$$\mathbb{P}(X \le 25) = \mathbb{P}\left(\frac{X - 31,4}{4,6412} \le \frac{25 - 31,4}{4,6412}\right)$$
$$= \mathbb{P}\left(\frac{X - 31,4}{4,6412} \le -1,379\right)$$
$$\approx \Phi(-1,379) = 1 - \Phi(1,379) \approx 0,0838.$$

Bemerkung.

- Die Verteilungsfunktion $F_X(t) = \mathbb{P}(X \le t)$ beschreibt die Verteilung einer allgemeinen Zufallsvariablen X.
- Wenn wir das gemeinsame Verhalten von mehreren Variablen X_1, \ldots, X_n überblicken möchten, so können wir die Wahrscheinlichkeiten $\mathbb{P}(X_1 \leq t_1, \ldots, X_n \leq t_n)$ benutzen.
- Diese Wahrscheinlichkeiten bestimmen die Wahrscheinlichkeit aller Ereignisse, die anhand der n Variablen ausgedrückt werden kann.

Definition. Seien X_1, \ldots, X_n auf demselben Wahrscheinlichkeitsraum definierte Zufallsvariablen. Dann heißt die Funktion

$$\underline{X}:\Omega\to\mathbb{R}^n, \qquad \underline{X}(\omega)=(X_1(\omega),\ldots,X_n(\omega))$$

ein n-dimensionaler Zufallsvektor (valószínűségi vektorváltozó). Die Verteilungsfunktion von \underline{X} ist durch

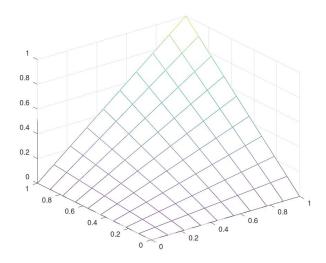
$$F_{\underline{X}}: \mathbb{R}^n \to [0; 1],$$

 $F_{\underline{X}}(t) = F_{\underline{X}}(t_1, \dots, t_n) = \mathbb{P}(X_1 \le t_1, \dots, X_n \le t_n)$

definiert.

Beispiel. Ein Punkt wird zufällig im Einheitsquadrat gewählt. Seien (X, Y) die Koordinaten des Punktes. Was ist die Verteilungsfunktion des Zufallsvektors (X, Y)?

$$F_{X,Y}(x,y) = \left\{ \begin{array}{l} 0, & \text{falls } x < 0 \text{ oder } y < 0, \\ xy, & \text{falls } 0 \leq x,y < 1, \\ x, & \text{falls } 0 \leq x < 1 \text{ und } y \geq 1, \\ y, & \text{falls } 0 \leq y < 1 \text{ und } x \geq 1, \\ 1, & \text{ansonsten.} \end{array} \right.$$



Definition. Ein Zufallsvektor $\underline{X}:\Omega\to\mathbb{R}^n$ heißt (absolut) stetig, falls eine Riemann-integrierbare Funktion $f_{\underline{X}}:\mathbb{R}^n\to[0;\infty)$ gibt, für die Gleichung

$$F_{\underline{X}}(t_1,\ldots,t_n)=\int_{-\infty}^{t_1}\cdots\int_{-\infty}^{t_n}f_{\underline{X}}(s_1,\ldots,s_n)\,ds_n\ldots ds_1$$

für jede $t_1, \ldots, t_n \in \mathbb{R}$ gilt. Die Funktion $f_{\underline{X}}$ heißt *die Dichte* oder *Dichtefunktion* von \underline{X} .

Behauptung. Sei $\underline{X}:\Omega\to\mathbb{R}^n$ ein absolut stetiger Zufallsvektor mit Dichtefunktion $f_{\underline{X}}$, und sei $H\subset\mathbb{R}^n$ eine Jordan-messbare Menge, also eine Menge, deren n-dimensionale Volumen (Jordan-Maß) definiert ist. Dann gilt

$$\mathbb{P}(\underline{X} \in H) = \int_{H} f_{\underline{X}}(\underline{y}) \, d\underline{y}.$$

Vgl. mit der eindimensionaler Behauptung

$$\mathbb{P}(a < X < b) = \int_a^b f_X(y) \, dy.$$

Behauptung. Sei $\underline{X}:\Omega\to\mathbb{R}^n$ ein absolut stetiger Zufallsvektor mit Verteilungsfunktion $F_{\underline{X}}$. Dann ist die Dichtefunktion $f_{\underline{X}}$ von \underline{X} durch die Formel

$$f_{\underline{X}}(t_1,\ldots,t_n) = \left\{ \begin{array}{ll} \partial_{t_1}\ldots\partial_{t_n}F_{\underline{X}}(t_1,\ldots,t_n), & \mathrm{falls} \; \leftarrow \; \mathrm{existiert}, \\ & 0 \; \; \mathrm{ansonsten} \end{array} \right.$$

angegeben.

Bemerkung.

- Die Reihenfolge der Ableitungen in der Behuaptung ist nicht entscheidend.
- Im eindimensionalen Fall war die stetigkeit eine Konsequenz, hier ist sie eine Annahme.

Beispiel. Ein Punkt wird zufällig im Einheitsquadrat gewählt. Seien (X, Y) die Koordinaten des Punktes. Die Verteilungsfunktion von (X, Y) ist

$$F_{X,Y}(x,y) = \left\{ \begin{array}{ll} 0, & \mathrm{falls} \ x < 0 \ \mathrm{oder} \ y < 0, \\ xy, & \mathrm{falls} \ 0 \leq x, y < 1, \\ x, & \mathrm{falls} \ 0 \leq x < 1 \ \mathrm{und} \ y \geq 1, \\ y, & \mathrm{falls} \ 0 \leq y < 1 \ \mathrm{und} \ x \geq 1, \\ 1, & \mathrm{ansonsten.} \end{array} \right.$$

Dann ist die Dichtefunktion von (X, Y)

$$f_{(X,Y)}(x,y) = \left\{ \begin{array}{ll} 1, & \mathrm{falls} \ 0 < x,y < 1, \\ 0 & \mathrm{sonst.} \end{array} \right.$$

Behauptung. Eine Riemann-integrierbare Funktion $f: \mathbb{R}^n \to [0, \infty)$ ist dann und nur dann eine Dichtefunktion eines Zufallsvektors, falls

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(t_1, \ldots, t_n) dt_1 \ldots dt_n = 1$$

gilt.

Definition. Sei $\underline{X} = (X_1, \dots, X_n)$ ein Zufallsvektor. Seine Komponenten X_1, \dots, X_n sind dann Zufallsvariablen. Die Verteilungen von X_1, \dots, X_n beziechnet man als *Randverteilungen* von \underline{X} .

Behauptung. Sei $\underline{X} = (X_1, \dots, X_n)$ ein absolut stetiger Zufallsvektor mit Dichtefunktion $f_{\underline{X}}$. Dann ist die Variable X_i für jeden Index $i = 1, \dots, n$ absolut stetig mit Dichtefunktion

$$f_{X_{i}}(t_{i}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\underline{X}}(y_{1}, \dots, y_{i-1}, t_{i}, y_{i+1}, \dots, y_{n}) dy_{1} \dots dy_{i-1} dy_{i+1} \dots dy_{n}$$

$$(\forall t_{i} \in \mathbb{R}).$$

Im obigen Beispiel:

$$f_{(X,Y)}(x,y) = \begin{cases} 1, & \text{falls } 0 < x, y < 1, \\ 0 & \text{sonst,} \end{cases}$$

also

$$f_X(x) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) \, dy = \begin{cases} 1, & \text{falls } 0 < x < 1, \\ 0 & \text{sonst,} \end{cases}$$

und

$$f_Y(y) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dx = \begin{cases} 1, & \text{falls } 0 < y < 1, \\ 0 & \text{sonst.} \end{cases}$$

Bemerkung. Wenn die Zufallsvariablen X_1, \ldots, X_n absolut stetig sind, dann ist es nicht automatisch, dass der Zufallsvektor $\underline{X} = (X_1, \ldots, X_n)$ absolut stetig ist.

Sei zum Beispiel X_1 eine uniformverteilte Variable auf dem Intervall [0; 1], und sei noch $X_2=X_1$. Dann gilt

$$egin{aligned} F_{(X_1,X_2)}(s,t) &= \mathbb{P}(X_1 \leq s, X_2 \leq t) \ &= \mathbb{P}(X_1 \leq \min\{s,t\}) \ &= \left\{ egin{aligned} 0, & ext{falls } \min\{s,t\} < 0, \ \min\{s,t\}, & ext{falls } 0 \leq \min\{s,t\} < 1, \ 1, & ext{falls } \min\{s,t\} \geq 1. \end{aligned}
ight. \end{aligned}$$

Also

$$F_{(X_1,X_2)}(s,t) = \begin{cases} 0, & \text{falls } \min\{s,t\} < 0, \\ t, & \text{falls } 0 \le t < 1, \ t < s \\ s, & \text{falls } 0 \le s < 1, \ s \le t \\ 1, & \text{falls } \min\{s,t\} \ge 1. \end{cases}$$

Dann ist $\partial_s\partial_t F_{(X_1,X_2)}(s,t)=0$, falls die Ableitungen existieren. Aber die Nullfunktion ist nicht eine Dichtefunktion, d.h. der Zufallsvektor (X_1,X_2) kann nicht absolut stetig sein.

Erinnerung. Die *diskreten* Zufallsvariablen X_1, \ldots, X_n sind genau dann (gemeinsam) unabhängig, falls die Ereignisse $\{X_1=t_1\},\ldots,\{X_n=t_n\}$ für alle $t_1,\ldots,t_n\in\mathbb{R}$ gemeinsam unabhängig sind.

Bemerkungen.

- Ein typisches Beispiel: Ergebnisse unabhängiger Experimente.
- Eine Teilmenge unabhängiger Zufallsvariablen ist unabhängig.

Im Allgemeinen: die Ereignisse $\{X_i = t_i\}$ bestimmen eine Verteilung nicht immer, stattdessen können wir die Ereignisse $\{X_i \leq t_i\}$ benutzen.

Definition. Die Zufallsvariablen X_1, \ldots, X_n sind paarweise/gemeinsam unabhängig, falls die Ereignisse $\{X_1 \leq t_1\}, \ldots, \{X_n \leq t_n\}$ für alle $t_1, \ldots, t_n \in \mathbb{R}$ paarweise/gemeinsam unabhängig sind.

Bemerkung. Für diskrete Variablen sind die alte und die neue Definition äquivalent.

Behauptung. Die Zufallsvariablen X_1, \ldots, X_n sind dann und nur dann (gemeinsam) unabhängig, falls

$$F_{(X_1,...,X_n)}(t_1,...,t_n) = F_{X_1}(t_1)...F_{X_n}(t_n)$$

für alle $t_1, \ldots, t_n \in \mathbb{R}$ gilt.

Behauptung. Die absolut stetigen Zufallsvariablen X_1, \ldots, X_n mit den Dichtefunktionen f_{X_1}, \ldots, f_{X_n} sind dann und nur dann (gemeinsam) unabhängig, falls $\underline{X} = (X_1, \ldots, X_n)$ ein stetiger Zufallsvektor mit der Dichtefunktion f_X ist, für die die Gleichung

$$f_{(X_1,\ldots,X_n)}(t_1,\ldots,t_n)=f_{X_1}(t_1)\ldots f_{X_n}(t_n)$$

für alle $t_1, \ldots, t_n \in \mathbb{R}$ gilt.

Im obigen Beispiel:

$$f_{(X,Y)}(x,y) = \begin{cases} 1, & \text{falls } 0 < x, y < 1, \\ 0 & \text{sonst,} \end{cases}$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) \, dy = \left\{ \begin{array}{ll} 1, & \text{falls } 0 < x < 1, \\ 0 & \text{sonst}, \end{array} \right.$$

und

$$f_Y(y) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dx = \begin{cases} 1, & \text{falls } 0 < y < 1, \\ 0 & \text{sonst,} \end{cases}$$

also

$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y),$$

d.h.: X und Y sind unabhängig.

Bemerkung. Ähnlicherweise zeigt man, dass die Koordinaten eines Punktes, der in einem beliebigen Rechteck/Quader zufällig gewählt wird, unabhängig sind. Also entsprechen unabhängige uniform zufällige Wahlen von reellen Zahlen einer Wahl eines Punktes in der Ebene/im Raum (wie es früher erwähnt wurde).

Wie im diskreten Fall, die Folgende Behautpungen gelten auch im Allgemeinen:

Behauptung. Seien X und Y unabhängige Zufallsvariablen mit endlichen Erwartungswerten $\mathbb{E}(X)$ und $\mathbb{E}(Y)$. Dann ist auch $\mathbb{E}(XY)$ endlich und $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ gilt.

Korollar. Seien X_1,\ldots,X_n paarweise unabhängige Zufallsvariablen, für die $\mathbb{D}^2(X_1),\ldots,\mathbb{D}^2(X_n)$ endlich sind. Dann ist auch $\mathbb{D}^2(X_1+\cdots+X_n)$ endlich, und

$$\mathbb{D}^2(X_1+\ldots+X_n)=\mathbb{D}^2(X_1)+\cdots+\mathbb{D}^2(X_n).$$

Satz. Sei $\underline{X}=(X_1,\ldots,X_n)$ ein absolut stetiger Zufallsvektor mit Dichtefunktion $f_{\underline{X}}$. Sei noch $g:\mathbb{R}^n\to\mathbb{R}$ eine Funktion, für die der Erwartungswert $\overline{\mathbb{E}}(g(X_1,\ldots,X_n))$ existiert. Dann gilt

$$\mathbb{E}(g(X_1,\ldots,X_n)) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(t_1,\ldots,t_n) f_{\underline{X}}(t_1,\ldots,t_n) dt_1 \ldots dt_n.$$

Es folgt, dass

$$\mathbb{E}(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} stf_{(X,Y)}(s,t) \, ds \, dt$$

gilt, falls $\mathbb{E}(XY)$ existiert.

Aufgabe. Wählen wir einen Punkt im Quadrat $[0;1] \times [0;1]$ zufällig, was ist der Erwartungswert des Produkts der Koordinaten?

Seien X, Y unabhängige Zufallsvariablen. Wie bestimmt man dann die Verteilung der Zufallsvariablen $X \pm Y$?

Definition. Seien X und Y unabhängige Zufallsvariablen. Dann heißt die Verteilung von X+Y die Faltung (konvolúció) der Verteilungen von X und Y.

Satz. (Faltungsformel für diskrete Zufallsvariablen) Seien X und Y diskrete und unabhängige Zufallsvariablen. Dann gilt

$$\mathbb{P}(X + Y = z) = \sum_{s \in \text{ran } X} \mathbb{P}(X = s, Y = z - s)$$
$$= \sum_{s \in \text{ran } X} \mathbb{P}(X = s) \mathbb{P}(Y = z - s)$$

für alle $z \in \mathbb{R}$.

Beispiel. Seien $X \sim \operatorname{Poi}(\lambda_1)$ und $Y \sim \operatorname{Poi}(\lambda_2)$ unabhängige Zufallsvariablen. Dann ist auch X + Y Poisson-verteilt mit Parameter $\lambda_1 + \lambda_2$. Wirklich, für alle $n \in \mathbb{N}$ gilt wegen der Faltungsformel

$$\mathbb{P}(X + Y = n) = \sum_{k=0}^{\infty} \mathbb{P}(X = k) \mathbb{P}(Y = n - k)$$

$$= \sum_{k=0}^{n} e^{-(\lambda_1 + \lambda_2)} \frac{\lambda_1^k \lambda_2^{n-k}}{k!(n-k)!}$$

$$= \sum_{k=0}^{n} e^{-(\lambda_1 + \lambda_2)} \frac{\lambda_1^k \lambda_2^{n-k} n!}{k!(n-k)!n!}$$

$$\mathbb{P}(X+Y=n) = \sum_{k=0}^{n} e^{-(\lambda_1 + \lambda_2)} \frac{\lambda_1^k \lambda_2^{n-k} n!}{k!(n-k)!n!}$$
$$= e^{-(\lambda_1 + \lambda_2)} \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} \lambda_1^k \lambda_2^{n-k}$$
$$= e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!}.$$

Satz. (Faltungsformel für absolut stetige Zufallsvariablen) Seien X und Y absolut stetige und unabhängige Zufallsvariablen mit Dichtefunktionen f_X und f_Y . Dann ist auch die Summe X+Y absolut stetig mit Dichtefunktion

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(t) f_Y(z-t) dt.$$

Definition. Die Funktion $f_{X+Y} =: f_X * f_Y$ heißt die Faltung (konvolúció) der Dichtefunktionen f_X und f_Y .

Beispiel. Seien $X,Y \sim \operatorname{Exp}(\lambda)$ unabhängige Zufallsvariablen. Dann gilt für z>0

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(t) f_Y(z-t) dt$$
$$= \int_0^z \lambda e^{-\lambda t} \lambda e^{-\lambda(z-t)} dt$$
$$= \lambda^2 e^{-\lambda z} \int_0^z 1 dt$$
$$= \lambda^2 z e^{-\lambda z}.$$

Beispiel. Durch vollständige Induktion zeigt man ähnlicherweise, dass die Summe von n unabhängigen exponentialverteilten Variablen $X_1, \ldots, X_n \sim \operatorname{Exp}(\lambda)$ die folgende Dichtefunktion hat:

$$f_{\sum_{i=1}^{n} X_i}(z) = \begin{cases} \frac{\lambda^n z^{n-1} e^{-\lambda z}}{(n-1)!} & \text{falls } z > 0, \\ 0 & \text{sonst.} \end{cases}$$

Diese Dichtefunktion bestimmt eine sogenannte Gamma-Verteilung mit Parametern n und λ .

Satz. Seien $X \sim N(\mu_1; \sigma_1^2)$ und $Y \sim N(\mu_2; \sigma_2^2)$ unabhängige nomalverteilte Zufallsvariablen. Dann gilt

$$X + Y \sim N(\mu_1 + \mu_2; \sigma_1^2 + \sigma_2^2).$$

Beweis. Wenn die Behauptung für $\mu_1 = \mu_2 = 0$ gilt, dann gilt auch im Allgemeinen:

$$X \sim N(\mu_1; \sigma_1^2) \Rightarrow X - \mu_1 \sim N(0; \sigma_1^2),$$

 $Y \sim N(\mu_2; \sigma_2^2) \Rightarrow Y - \mu_2 \sim N(0; \sigma_2^2),$

also wenn $X - \mu_1 + Y - \mu_2 \sim N(0; \sigma_1^2 + \sigma_2^2)$ gilt, dann erhalten wir $X + Y \sim N(\mu_1 + \mu_2; \sigma_1^2 + \sigma_2^2).$

$$X + Y \sim N(\mu_1 + \mu_2; \sigma_1^2 + \sigma_2^2)$$

Beweis für $\mu_1 = \mu_2 = 0$.

$$\begin{split} f_{X+Y}(z) &= \int_{-\infty}^{\infty} f_X(t) f_Y(z-t) \, dt \\ &= \frac{1}{2\pi\sigma_1\sigma_2} \int_{-\infty}^{\infty} e^{-\frac{1}{2} \left(\frac{t^2}{\sigma_1^2} + \frac{(z-t)^2}{\sigma_2^2}\right)} \, dt \\ &= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{z^2}{2(\sigma_1^2 + \sigma_2^2)}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} \left(\frac{t^2}{\sigma_1^2} + \frac{(z-t)^2}{\sigma_2^2} - \frac{z^2}{\sigma_1^2 + \sigma_2^2}\right)} \, dt \\ &= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{z^2}{2(\sigma_1^2 + \sigma_2^2)}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} \left(\frac{t(\sigma_1^2 + \sigma_2^2) - z\sigma_1\sigma_2}{\sigma_1\sigma_2\sqrt{\sigma_1^2 + \sigma_2^2}}\right)^2} \, dt. \end{split}$$

Nun führen wir eine neue Variable ein:

$$w = \frac{t(\sigma_1^2 + \sigma_2^2) - z\sigma_1\sigma_2}{\sigma_1\sigma_2\sqrt{\sigma_1^2 + \sigma_2^2}}.$$

Dann gilt

$$\begin{split} f_{X+Y}(z) &= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{z^2}{2(\sigma_1^2 + \sigma_2^2)}} \frac{\sigma_1\sigma_2}{\sqrt{\sigma_1^2 + \sigma_2^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}w^2} \, dw \\ &= \frac{1}{2\pi} e^{-\frac{z^2}{2(\sigma_1^2 + \sigma_2^2)}} \frac{1}{\sqrt{\sigma_1^2 + \sigma_2^2}} \sqrt{2\pi} \\ &= \frac{1}{\sqrt{2\pi}\sqrt{\sigma_1^2 + \sigma_2^2}} e^{-\frac{z^2}{2(\sigma_1^2 + \sigma_2^2)}}. \end{split}$$

Definition. Seien $X_1, \ldots, X_n \sim N(0;1)$ unabhängige standardnormalverteilte Zufallsvariablen. Die Verteilung der Quadratsumme $X_1^2 + \cdots + X_n^2$ heißt die χ^2 -Verteilung mit n Freiheitsgraden.

Bezeichnung: $X_1^2 + \cdots + X_n^2 \sim \chi^2(n)$

Bemerkung.

• Wenn $X_1, \ldots, X_n \sim N(0; 1)$ unabhängig und standardnormalverteilt sind, dann gilt

$$\mathbb{E}(X_1^2 + \dots + X_n^2) = \mathbb{E}(X_1^2) + \dots + \mathbb{E}(X_n^2)$$

= $n\mathbb{E}(X_1^2) = n(\mathbb{D}^2(X_1) + \mathbb{E}(X_1)^2) = n$.

Ahnlich ergibt sich wegen der Unabhängigkeit

$$\mathbb{D}^{2}(X_{1}^{2} + \dots + X_{n}^{2}) = \mathbb{D}^{2}(X_{1}^{2}) + \dots + \mathbb{D}^{2}(X_{n}^{2})$$
$$= n\mathbb{D}^{2}(X_{1}^{2}) = n(\mathbb{E}(X_{1}^{4}) - \mathbb{E}(X_{1}^{2})^{2}) = n(\mathbb{E}(X_{1}^{4}) - 1).$$

Man berechnet anhand der Transformationsformel für den Erwartungswert, dass $\mathbb{E}(X_1^4)=3$ gilt, also

$$\mathbb{D}^2(X_1^2+\cdots+X_n^2)=2n.$$

Bemerkungen.

• Wir haben schon die Dichtefunktion einer $\chi^2(1)$ -verteilten Variablen X berechnet (siehe Aufgabe 7. des 7. Übungsblatts):

$$f_X(t) = egin{cases} rac{1}{\sqrt{2\pi t}} \mathrm{e}^{-rac{t}{2}} & \mathrm{falls} \ 0 < t, \ 0 & \mathrm{ansonsten.} \end{cases}$$

- Falls $X \sim \chi^2(n)$ und $Y \sim \chi^2(m)$ unabhängig sind, dann gilt auch $X + Y \sim \chi^2(n+m)$.
- Also kann man die obige Dichtefunktion und die Faltungsformel benutzen, um die Dichtefunktion einer $\chi^2(n)$ -verteilten Variablen durch vollständige Induktion zu bestimmen.

Behauptung. Die Dichtefunktion einer $\chi^2(n)$ -verteilten Variablen ist

$$f(t) = \begin{cases} \frac{t^{\frac{n}{2}-1}e^{-\frac{t}{2}}}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)}, & \text{falls } t > 0, \\ 0 & \text{sonst}, \end{cases}$$

wo

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx \qquad (a > 0).$$

Bemerkung. Die obige Funktion Γ ist die sogenannte Gammafunktion. Sie ist die analytische Fortsetzung der Faktorielle (der Fakultät). D.h.: für eine positive ganze Zahl n gilt

$$\Gamma(n)=(n-1)!.$$

Weiter, $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, und für jede positive reelle Zahl a > 0 gilt

$$\Gamma(a+1)=a\Gamma(a),$$

also

$$\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!!}{2^n}\sqrt{\pi},$$

wo
$$(2n-1)!! = (2n-1)(2n-3)\cdots 3\cdot 1$$
.

Die Dichtefunktion einer $\chi^2(n)$ -verteilten Variablen ist

$$f(t) = \begin{cases} \frac{t^{\frac{n}{2}-1}e^{-\frac{t}{2}}}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)}, & \text{falls } t > 0, \\ 0 & \text{sonst.} \end{cases}$$

Bemerkung. Für n=2 gibt diese Formel die Dichte der Exponentialverteilung mit Parameter 1/2. Also ist die Summe von n unabhängigen Variablen X_1,\ldots,X_n mit $X_i\sim \operatorname{Exp}(1/2)$ Chi-Quadrat-verteilt mit Freiheitsgrad 2n.

Bemerkungen.

- Die χ^2 -Verteilungen sind auch Spezialfälle der sogenannten Gamma-Verteilungen.
- Die χ^2 -Verteilungen sind fundamental Verteilungen in der Statistik.
- Die Wurzel der χ^2 -Verteilung tritt auch in der Physik auf. Wenn $X_1, X_2, X_3 \sim N(0;1)$ unabhängig und standardnormalverteilt sind, dann heißt die Verteilung von $\sqrt{X_1^2 + X_2^2 + X_3^2}$ die Maxwell-Boltzmann-Verteilung. Sie beschreibt die statistische Verteilung des Absolutbetrags der Teilchengeschwindigkeiten in einem idealen Gas im thermodynamischen Gleichgewicht bei ruhendem Schwerpunkt.