Practice session 2

Exercise 2.1: Consider the following TBox:

$$
\begin{aligned}
\text { Father } & \equiv \text { Human } \sqcap \neg \text { Female } \sqcap \exists \text { hasChild. } \top \\
\text { FatherOfGirls } & \equiv \text { Father } \sqcap \forall \text { hasChild.Female. }
\end{aligned}
$$

With respect to the above TBox consider the reasoning task of checking if FatherOfGirls is subsumed by \neg Female. First, reduce this task into a satisfiability check. Next, using the technique of expansion of named concepts, reduce this task to the satisfiability check of a concept C w.r.t. an empty TBox. What is this concept C ?

Exercise 2.2: Consider the TBox \mathcal{T} consisting of the following two axioms:

$$
\begin{aligned}
& \text { Person } \equiv \exists \text { hasParent.Person } \\
& \text { Person } \sqsubseteq \text { Man } \sqcup \text { Woman. }
\end{aligned}
$$

Transform this TBox to a form which contains subsumption axioms only. Build the $C_{\mathcal{T}}$ internalisation concept of the TBox:

$$
C_{\mathcal{T}}=\left(\neg C_{1} \sqcup D_{1}\right) \sqcap\left(\neg C_{2} \sqcup D_{2}\right) \sqcap \cdots \sqcap\left(\neg C_{n} \sqcup D_{n}\right),
$$

assuming that the TBox \mathcal{T} contains the concept subsumption axioms $C_{i} \sqsubseteq D_{i}, i=1, \ldots, n$.

Exercise 2.3: Consider the task of checking the satisfiability of the concept C w.r.t. the TBox $\mathcal{T}=\{T\}$, where

$$
\begin{aligned}
& T=\exists \text { hasChild }^{-} \text {.Optimist } \sqsubseteq \forall \text { hasChild.Optimist } \\
& C=\text { Optimist. }
\end{aligned}
$$

(a) Construct the $C_{\mathcal{T}}$ internalisation concept of \mathcal{T}.
(b) Use the technique of internalisation to reduce the above satisfiability problem to a satisfiability problem w.r.t. a TBox containing no concept axioms, i.e. construct the concept $C_{C, \mathcal{T}}$ and the TBox $\mathcal{T}_{C, \mathcal{T}}$:

$$
\begin{equation*}
C_{C, \mathcal{T}}=C \sqcap C_{\mathcal{T}} \sqcap \forall U \cdot C_{\mathcal{T}} . \tag{2.1}
\end{equation*}
$$

Recall that $\mathcal{T}_{C, \mathcal{T}}$ contains all the role axioms in \mathcal{T}, the axiom $\operatorname{Trans}(U)$, and the axiom $R \sqsubseteq U$ for every role R which appears in either C or \mathcal{T}. If inverse roles are also permitted by the DL language in question, then the axiom $\operatorname{lnv}(R) \sqsubseteq U$ is also to be included in $\mathcal{T}_{C, \mathcal{T}}$, for every role R appearing in either C or \mathcal{T}.
(c) Build an interpretation \mathcal{I}_{0} consisting of a child, a parent, and a grandparent. Select a nonempty interpretation for concept C so that \mathcal{I}_{0} satisfies \mathcal{T}. Extend \mathcal{I}_{0} to an interpretation \mathcal{I}_{1} that demonstrates that $C_{C, \mathcal{T}}$ is satisfiable w.r.t. $\mathcal{T}_{C, \mathcal{T}}$.
(d) Construct an interpretation \mathcal{I}_{2} that demonstrates that $C_{C, \mathcal{T}}$ is satisfiable w.r.t. $\mathcal{T}_{C, \mathcal{T}}$ (i.e. $\mathcal{I}_{2} \models \mathcal{T}_{C, \mathcal{T}}$ and $\left(C_{C, \mathcal{T}}\right)^{\mathcal{I}_{2}}$ is non-empty), but which, at the same time, is not a model of \mathcal{T}. Try to make the domain of \mathcal{I}_{2} as small as possible.
(e) Consider the following interpretation \mathcal{I}_{3} :

$$
\begin{aligned}
\Delta^{\mathcal{I}_{3}} & =\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3},\right\} \\
\text { hasChild }{ }^{\mathcal{I}_{3}} & =\left\{\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle,\left\langle\mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle,\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}\right\rangle,\left\langle\mathrm{b}_{2}, \mathrm{~b}_{3}\right\rangle,\left\langle\mathrm{c}_{1}, \mathrm{c}_{2}\right\rangle,\left\langle\mathrm{c}_{2}, \mathrm{c}_{3}\right\rangle\right\} \\
\text { Optimist }{ }^{\mathcal{I}_{3}} & =\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{1}, \mathrm{c}_{2}\right\} \\
U^{\mathcal{I}_{3}} & =\left\{\left\langle\mathrm{a}_{i}, \mathrm{a}_{j}\right\rangle \mid i \neq j\right\} \cup\left\{\left\langle\mathrm{b}_{i}, \mathrm{~b}_{j}\right\rangle \mid i \neq j\right\} \cup\left\{\left\langle\mathrm{c}_{i}, \mathrm{c}_{j}\right\rangle \mid i \neq j\right\} .
\end{aligned}
$$

Show that \mathcal{I}_{3} is a model of the TBox $\mathcal{I}_{C, \mathcal{T}}$. Using the interpretation \mathcal{I}_{3} construct the meanings of the three subterms of $C_{C, \mathcal{T}}$, as shown in (2.1). Build the interpretation of $C_{C, \mathcal{T}}$ in \mathcal{I}_{3}.
Does \mathcal{I}_{3} demonstrate that $C_{C, \mathcal{T}}$ is satisfiable w.r.t. $\mathcal{I}_{C, \mathcal{T}}$? Is \mathcal{I}_{3} a model of \mathcal{T} ?
Try to transform the interpretation \mathcal{I}_{3} in such a way that another interpretation \mathcal{I}_{3}^{\prime} is obtained that is a model of \mathcal{T} and in which C is non-empty.

