Practice session 2

Exercise 2.1: Consider the following TBox:

Father \equiv Human $\sqcap \neg$ Female $\sqcap \exists$ hasChild. \top FatherOfGirls \equiv Father $\sqcap \forall$ hasChild.Female.

With respect to the above TBox consider the reasoning task of checking if FatherOfGirls is subsumed by \neg Female. First, reduce this task into a satisfiability check. Next, using the technique of expansion of named concepts, reduce this task to the satisfiability check of a concept *C* w.r.t. an empty TBox. What is this concept *C*?

Exercise 2.2: Consider the TBox \mathcal{T} consisting of the following two axioms:

Person≡∃hasParent.PersonPerson⊑Man ⊔ Woman.

Transform this TBox to a form which contains subsumption axioms only. Build the C_T internalisation concept of the TBox:

 $C_{\mathcal{T}} = (\neg C_1 \sqcup D_1) \sqcap (\neg C_2 \sqcup D_2) \sqcap \cdots \sqcap (\neg C_n \sqcup D_n),$

assuming that the TBox T contains the concept subsumption axioms $C_i \subseteq D_i$, i = 1, ..., n.

1

Exercise 2.3: Consider the task of checking the satisfiability of the concept *C* w.r.t. the TBox $T = \{T\}$, where

 $T = \exists$ hasChild⁻.Optimist $\sqsubseteq \forall$ hasChild.Optimist C =Optimist.

- (a) Construct the $C_{\mathcal{T}}$ internalisation concept of \mathcal{T} .
- (b) Use the technique of internalisation to reduce the above satisfiability problem to a satisfiability problem w.r.t. a TBox containing no concept axioms, i.e. construct the concept C_{C,T} and the TBox T_{C,T}:

$$C_{C,\mathcal{T}} = C \sqcap C_{\mathcal{T}} \sqcap \forall U.C_{\mathcal{T}}.$$
(2.1)

Recall that $\mathcal{T}_{C,\mathcal{T}}$ contains all the role axioms in \mathcal{T} , the axiom Trans(U), and the axiom $R \sqsubseteq U$ for every role R which appears in either C or \mathcal{T} . If inverse roles are also permitted by the DL language in question, then the axiom $\text{Inv}(R) \sqsubseteq U$ is also to be included in $\mathcal{T}_{C,\mathcal{T}}$, for every role R appearing in either C or \mathcal{T} .

- (c) Build an interpretation \mathcal{I}_0 consisting of a child, a parent, and a grandparent. Select a nonempty interpretation for concept *C* so that \mathcal{I}_0 satisfies \mathcal{T} . Extend \mathcal{I}_0 to an interpretation \mathcal{I}_1 that demonstrates that $C_{C,\mathcal{T}}$ is satisfiable w.r.t. $\mathcal{T}_{C,\mathcal{T}}$.
- (d) Construct an interpretation \mathcal{I}_2 that demonstrates that $C_{C,\mathcal{T}}$ is satisfiable w.r.t. $\mathcal{I}_{C,\mathcal{T}}$ (i.e. $\mathcal{I}_2 \models \mathcal{I}_{C,\mathcal{T}}$ and $(C_{C,\mathcal{T}})^{\mathcal{I}_2}$ is non-empty), but which, at the same time, is *not* a model of \mathcal{T} . Try to make the domain of \mathcal{I}_2 as small as possible.
- (e) Consider the following interpretation \mathcal{I}_3 :

$$\Delta^{\mathcal{I}_3} = \{a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3, \}$$
hasChild ^{\mathcal{I}_3} = $\{\langle a_1, a_2 \rangle, \langle a_2, a_3 \rangle, \langle b_1, b_2 \rangle, \langle b_2, b_3 \rangle, \langle c_1, c_2 \rangle, \langle c_2, c_3 \rangle\}$
Optimist ^{\mathcal{I}_3} = $\{a_1, a_2, b_1, c_2\}$

$$U^{\mathcal{I}_3} = \{\langle a_i, a_j \rangle | i \neq j \} \cup \{\langle b_i, b_j \rangle | i \neq j \} \cup \{\langle c_i, c_j \rangle | i \neq j \}.$$

Show that \mathcal{I}_3 is a model of the TBox $\mathcal{T}_{C,\mathcal{T}}$. Using the interpretation \mathcal{I}_3 construct the meanings of the three subterms of $C_{C,\mathcal{T}}$, as shown in (2.1). Build the interpretation of $C_{C,\mathcal{T}}$ in \mathcal{I}_3 .

Does \mathcal{I}_3 demonstrate that $C_{C,\mathcal{T}}$ is satisfiable w.r.t. $\mathcal{T}_{C,\mathcal{T}}$? Is \mathcal{I}_3 a model of \mathcal{T} ?

Try to transform the interpretation \mathcal{I}_3 in such a way that another interpretation \mathcal{I}'_3 is obtained that is a model of \mathcal{T} and in which *C* is non-empty.