Practice session 1

Exercise 1.1: Consider the interpretation $\mathcal{I}_x = \langle \Delta, I \rangle$, where

First, evaluate the meanings of the concept expressions appearing on the left and right hand side of the following AL axioms, in the example interpretation I_x . Next, decide if the interpretation I_x is a model of the axiom.

- (a) $\forall hasChild. \perp \sqsubseteq \neg Female.$
- (b) \forall hasChild.Female $\sqsubseteq \exists$ hasChild. \top .
- (c) $\forall hasChild. \perp \sqsubseteq \forall hasChild. Female.$
- (d) Female $\Box \forall$ hasChild.Female $\sqsubseteq \exists$ hasChild. \top .
- (e) \forall hasChild.Female $\sqcap \forall$ hasChild. \neg Female $\equiv \forall$ hasChild. \bot .

Decide which of the above axioms will be satisfied by all their interpretations.

Exercise 1.2: Is there an interpretation which is a model of axiom (b) listed in the above Exercise 1.1? If so, give an example. Try to provide a simpler reformulation of axiom (b).

Exercise 1.3: Consider the DL axioms listed under (a)–(e) in Exercise 1.1, and let T =Female $\sqsubseteq \exists hasChild. \top$.

- (a) Decide which of the axioms (a)–(e) is a consequence of an empty TBox.
- (b) Decide which of the axioms is a consequence of a TBox containing the only axiom T.
- (c) Is there an axiom among these which is equivalent to T?

Exercise 1.4: Decide if the following concepts can be formalised using the language \mathcal{AL} and its extensions \mathcal{C}, \mathcal{U} , and \mathcal{E} . If so, formulate a concept expression corresponding to the given concept.

- (a) People with at least one tall child.
- (b) People with at most one tall child.
- (c) People with at least one child who is either blonde or tall.
- (d) People all of whose children are either blonde or tall.
- (e) People who do not have at least one tall child.
- (f) People none of whose children are either blonde or tall.

Try to give multiple equivalent formalisations of the concepts above. For each, list the single-letter abbreviations of the language extensions it uses.

Exercise 1.5: Using the semantics of *ALC* decide which of the following statements hold.

 $\begin{array}{ll} \text{(a) } \{C \equiv \top\} \models \forall R.C \equiv \top. \\ \text{(b) } \{\forall R.C \equiv \top\} \models C \equiv \top. \\ \text{(c) } \{C \equiv \bot\} \models \exists R.C \equiv \bot. \\ \text{(e) } \models \forall R.C_1 \sqcap \forall R.C_2 \sqsubseteq \forall R.(C_1 \sqcap C_2). \\ \text{(g) } \models \exists R.C_1 \sqcap \exists R.C_2 \sqsubseteq \exists R.(C_1 \sqcap C_2). \\ \text{(i) } \models \forall R.C_1 \sqcup \forall R.C_2 \sqsubseteq \forall R.(C_1 \sqcup C_2). \\ \text{(j) } \models \forall R.C_1 \sqcup \forall R.C_2 \sqsubseteq \forall R.(C_1 \sqcup C_2). \\ \text{(k) } \models \exists R.C_1 \sqcup \exists R.C_2 \sqsubseteq \exists R.(C_1 \sqcup C_2). \\ \text{(k) } \models \exists R.C_1 \sqcup \exists R.C_2 \sqsubseteq \exists R.(C_1 \sqcup C_2). \\ \text{(l) } \models \forall R.C_1 \sqcup \exists R.C_2 \sqsupseteq \exists R.(C_1 \sqcup C_2). \\ \text{(l) } \models \exists R.C_1 \sqcup \exists R.C_2 \sqsupseteq \exists R.(C_1 \sqcup C_2). \\ \text{(l) } \models \exists R.C_1 \sqcup \exists R.C_2 \sqsupseteq \exists R.(C_1 \sqcup C_2). \\ \text{(l) } \models \exists R.C_1 \sqcup \exists R.C_2 \sqsupseteq \exists R.(C_1 \sqcup C_2). \\ \end{array}$

Exercise 1.6: Decide if the following concepts and statements can be formalised in the ALCN language. If so, formulate the appropriate concept expression or terminological axiom.

- (a) People with at least one blonde child.
- (b) People with at most one child.
- (c) People with exactly one child.
- (d) People with exactly one blonde child.
- (e) Mothers having at least three children are optimists.
- (f) Anyone can have at most one spouse.

Exercise 1.7: Consider the following roles: hasParent, hasMother, hasFather, hasSpouse, hasAncestor, hasRelative. Build the role hierarchy of this set of roles, i.e. list all the role inclusion axioms involving these roles. Also declare the appropriate roles transitive.

Exercise 1.8: Consider the roles listed in Exercise 1.7, together with the role axioms provided by you as the solution to the exercise. Decide which of the roles are simple.

Exercise 1.9: Formalise the following concepts and statements using the SHI language. Use the hasParent, hasSibling, and hasPart atomic roles only.

- (a) People with at least one tall child.
- (b) People who only have tall children.
- (c) Children with at least one tall parent.
- (d) Parts of a car.
- (e) A car which has critical parts that are faulty is itself faulty.
- (f) Children of a parent with at least one tall child are either tall themselves or have a tall sibling.

Exercise 1.10: Formalise the following concepts and statements using the SHIQ language. Use the atomic roles hasParent and hasComponent.

- (a) People with at least two tall children.
- (b) Cars with at most two faulty components.
- (c) A reliable system is not faulty if it has at most one faulty component.¹

Exercise 1.11: Transform the following English sentences into a TBox using the concepts Human, Man, Woman, MarriedMan, Female, and the role hasWife.

- (a) A man is a human who is not female.
- (b) A married man is a man.
- (c) A married man is someone who has a wife.
- (d) A wife of a man is a woman.
- (e) A woman is a female human.
- (f) No man can have more than one wife.
- (g) No woman can be the wife of two men.

Split the above TBox into a definitional part and a background knowledge part. Show that this TBox is definitorial. Make a sample base interpretation and derive the meaning of the name symbols.

Exercise 1.12: Build the expansion of the TBox you supplied as a solution to Exercise 1.11.

¹ Reliable systems use certain techniques, such as duplication of components, to achieve correct behaviour even if some of their components are faulty.

Exercise 1.13: For each of the following reasoning tasks construct a concept *C*, such that the given reasoning task is equivalent to checking if *C* is unsatisfiable.

- (a) Is MarriedMan subsumed by Human?
- (b) Does \exists hasWife. \top include Human?
- (c) Is MarriedMan disjoint from Woman?
- (d) Are the concepts \exists hasWife. \top and \exists hasWife⁻. \top disjoint?
- (e) Are the concepts Man U Woman and Human equivalent?

In the context of the TBox of Exercise 1.11, decide which of the above reasoning tasks should return a positive answer.

Exercise 1.14: Consider the following interpretation \mathcal{I}_p :

$$\begin{split} \Delta^{\mathcal{I}_p} &= \{a, b, c, d, e\};\\ \textbf{Faulty}^{\mathcal{I}_p} &= \{a, d, e\};\\ \textbf{ReliableSystem}^{\mathcal{I}_p} &= \{a\};\\ \textbf{hasComponent}^{\mathcal{I}_p} &= \{\langle a, b \rangle, \langle a, c \rangle, \langle b, d \rangle, \langle c, e \rangle\}. \end{split}$$

Find out the meanings, in interpretation \mathcal{I}_p , of the following concept expressions and terminological axioms:

- (a) Faulty $\Box \neg ReliableSystem$.
- (b) \forall hasComponent⁻.¬Faulty.
- (c) \exists hasComponent⁻.¬Faulty.
- (d) \exists hasComponent⁻.Faulty.
- (e) (\leqslant 1hasComponent.Faulty).
- (f) (\geq 4hasComponent.Faulty).
- (g) (\leq 1hasComponent. \exists hasComponent.Faulty).
- (h) (\geq 2hasComponent. \exists hasComponent.(\neg Faulty \sqcup (\geq 2hasComponent⁻. \top))).
- (i) Trans(hasComponent).
- (j) \exists hasComponent.Faulty $\sqsubseteq \exists$ hasComponent⁻.Faulty.
- (k) \exists hasComponent.Faulty \sqsubseteq Faulty $\sqcup \exists$ hasComponent⁻.¬Faulty.
- (1) Faulty \sqcap ReliableSystem \sqsubseteq (\ge 2hasComponent.Faulty).
- (m) ReliableSystem $\sqcup \exists hasComponent^-$.ReliableSystem $\equiv \top$.
- (n) \neg Faulty \sqsubseteq (\leqslant 1hasComponent.Faulty).