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Reification – introductory example

Consider variables U in 0..9 and V in 0..9

Try encoding the constraint ex1geq5(U,V): exactly one of U and V is ≥ 5.
A possible helper: ’x>=5<->b’(X, B): The boolean (i.e. 0 or 1 valued)
variable B takes the value 1 iff X #>= 5 holds
Try implementing this helper constraint using an arithmetic constraint

’x>=5<->b’(X, B) :- B #= X/5.

Using the helper it is easy to implement ex1geq5(U,V):
ex1geq5(U, V) :- ’x>=5<->b’(U, B1), ’x>=5<->b’(V, B2),

B1 + B2 #= 1.

The ’x>=5<->b’(X, B) helper constraint reflects (or reifies) the truth value
of X #>= 5 in the boolean variable B

library(clpfd) supports reified constraints in general:
’x>=5<->b’(X, B) :-

X #>= 5 #<=> B.

This works without any limitation on the domain of X.
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Reification – what is it?

Reification = reflecting the truth value of a constraint into a 0/1-variable
Form: C #<=> B, where C is a constraint and B is a 0/1-variable
Example: (X #>= 5) #<=> B (*)
Meaning: C holds if and only if B=1

4 implications:
If C holds, then B must be 1
If ¬C holds, then B must be 0
If B=1, then C must hold
If B=0, then ¬C must hold

Not every constraint can be reified
Arithmetic formula constraints (#=, #=<, etc.) can be reified
The X in ConstRange membership constraint can be reified,
e.g. rewrite (*) to a membership constraint: (X in 5..sup) #<=> B
Global constraints (e.g. all_distinct/1, sum/3) cannot be reified
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Reification – what is it good for?

1 Use the 0/1-variables – that reflect the truth value of reified constraints –
in propositional (logical) constraints

2 Use the 0/1-variables – that reflect the truth value of reified constraints –
in arithmetic constraints

3 Combine multiple constraints with the help of propositional (logical)
operators
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1. Propositional constraints

Propositional connectives allowed by SICStus Prolog CLPFD:
#\ Q negation op(710, fy, #\ ).
P #/\ Q conjunction op(720, yfx, #/\ ).
P #\ Q exclusive or op(730, yfx, #\ ).
P #\/ Q disjunction op(740, yfx, #\/ ).
P #=> Q implication op(750, xfy, #=> ).
Q #<= P implication op(750, yfx, #<= ).
P #<=> Q equivalence op(760, yfx, #<=>).

The operand of a propositional constraint can be
a variable B, whose domain automatically becomes 0..1; or
an integer (0 or 1); or
a reifiable constraint; or
recursively, a propositional constraint.

The propositional constraints are built from variables, integers and
reifiable constraints using the above operators
Example: (X#>5) #<=> B1, (Y#>7) #<=> B2, B1 #\/ B2
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2. Using 0/1-variables in arithmetic constraints

0/1-variables can be used just like any other FD-variable, e.g., in
arithmetic calculations
Typical usage: counting the number of times a given constraint holds
Example:
% pcount(L, N): list L has N positive elements.
pcount([X|Xs], N) :-

(X #> 0) #<=> B,
N1 #= N-B,
pcount(Xs, N1).

pcount([], 0).
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3. Combining constraints by means of propositional operators

It is possible to combine multiple constraints with the help of propositional
(logical) operators

Example:
(X#>5) #\/ (Y#>7)
Handled by transforming it to a set of reifications and arithmetic
constraints:
(X#>5) #<=> B1, (Y#>7) #<=> B2, B1+B2#>0
Not possible with non-reifiable constraints

Example: (X#>5) #\/ all_different([X,Y]) will lead to an
error
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Executing reified constraints

Posting the constraint C #<=> B immediately implies B in 0..1

The execution of C #<=> B requires three daemons:
When B is instantiated:

if B=1, post C; if B=0, post ¬C
When C is entailed (i.e. the store implies C), set B to 1
When C is disentailed (i.e. ¬C is entailed), set B to 0
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Entailment levels

Detecting entailment can be done with different levels of precision:
A reified membership constraint C detects domain-entailment, i.e. B is set
as soon as C is a consequence of the store
A linear arithmetic constraint C is guaranteed to detect bound-entailment,
i.e. B is set as soon as C is a consequence of the interval closure of the
store

The interval closure is obtained by removing the ‘holes’ in the
domains
Example:

Store: X in {1,3}, Y in {2,4}, Z in {2,4}
Interval closure: X in {1,2,3}, Y in {2,3,4}, Z in {2,3,4}
Constraint: (X+Y#\=Z) #<=> B
The store actually implies X+Y 6=Z (odd+even6=even), but its
interval closure does not
=⇒ Result will be B in 0..1 instead of B=1

At the latest when a constraint becomes ground, its (dis)entailment is
detected
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Conversion from pure Prolog

Scheme for converting pure Prolog conditionals to CLPFD code using
reification:

foo(...) :- NonrecTest.
foo(...) :-

( Cond -> Then
; Else
),
foo(...).

foo(...) :- NonrecTest#.
foo(...) :-

Cond# #<=> B,
B #=> Then#,
#\ B #=> Else#,
foo(...).

Cond, Then, Else and NonrecTest

should contain solely arithmetic tests and operations
are transformed to their constraint counterparts (mostly by simply
inserting #-s): Cond#, Then#, Else# and NonrecTest#
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Conversion from pure Prolog – example

% pcount(L, N): L has N positive elements.

pcount_pure(L,N) :-
pcount_pure1(L,0,N).

pcount_pure1([],N,N).
pcount_pure1([X|Xs],N0,N) :-

( X>0 -> N1 is N0+1
; N1=N0
),
pcount_pure1(Xs,N1,N).

pcount_clpfd(L,N) :-
pcount_clpfd1(L,0,N).

pcount_clpfd1([],N,N).
pcount_clpfd1([X|Xs],N0,N) :-

X#>0 #<=> B,
B #=> N1#=N0+1,
#\ B #=> N1#=N0,
pcount_clpfd1(Xs,N1,N).
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Handling disjunctions

Example: intervals [x , x + 5) and [y , y + 5) are disjoint:
(x + 5 ≤ y) ∨ (y + 5 ≤ x)

Reification-based solution
| ?- domain([X,Y], 0, 6), X+5 #=< Y #\/ Y+5 #=< X.

⇒ X in 0..6, Y in 0..6

Speculative solution
| ?- domain([X,Y], 0, 6), (X+5 #=< Y ; Y+5 #=< X).

⇒ X in 0..1, Y in 5..6 ? ;
⇒ X in 5..6, Y in 0..1 ? ; no

Solution (hack?) with a clever use of arithmetics:
| ?- domain([X,Y], 0, 6),

scalar_product([1,-1],[X,Y],#=,D,[consistency(domain)]),
abs(D) #>= 5.

⇒ X in (0..1)\/(5..6), Y in (0..1)\/(5..6) ?
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Constructive disjunction (CD)

Assume a disjunction C1 ∨ . . . ∨ Cn

Let D(X ,S) = the domain of X in store S
The idea of constructive disjunction:

For each i , let Si be the store obtained by adding Ci to S
Proceed with store SU , the union of Si , i.e. for all X ,
D(X ,SU) = ∪iD(X ,Si )

Algorithmically:
For each i :

post Ci
save the new domains of the variables
undo Ci

Narrow the domain of each variable to the union of its saved domains
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Manipulating the domains – reflection predicates

The representation of a constraint variable contains
the size of the domain
the lower bound of the domain
the upper bound of the domain
the domain as an FD-set (internal representation format)

The above pieces of information can be obtained (in constant time) using
fd_size(X, Size): Size is the size (number of elements) of the
domain of X (integer or sup).
fd_min(X, Min): Min is the lower bound of X’s domain;
Min can be an integer or the atom inf
fd_max(X, Max): Max is the upper bound of X’s domain (integer or sup).
fd_set(X, Set): Set is the domain of X in FD-set format

Further reflection predicates
fd_dom(X, Range): Range is the domain of X in ConstRange format
fd_degree(X, D): D is the number of constraints attached to X
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FD-set vs. ConstRange format

| ?- X in 1..9, X#\=5, fd_set(X,S), fd_dom(X,R).

⇒ S = [[1|4],[6|9]], R = (1..4)\/(6..9)

FD-set is an internal format; user code should not make any assumptions
about its representation
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Manipulating the domains – FD-set operations

Some of the many useful operations:
is_fdset(Set): Set is a proper FD-set.
empty_fdset(Set): Set is an empty FD-set.
fdset_parts(Set, Min, Max, Rest): Set consists of an initial interval
Min..Max and a remaining FD-set Rest. Can be used both for splitting and
composing.
fdset_interval(Set, Min, Max): Set represents the interval Min..Max.
fdset_union(Set1, Set2, Union): The union of Set1 and Set2 is Union.
fdset_union(Sets, Union): The union of the list of FD-sets Sets is Union.
fdset_instersection/[2,3]: analogous to fdset_union/[2,3]

fdset_complement(Set1, Set2): Set2 is the complement of Set1.
list_to_fdset(List, Set), fdset_to_list(Set, List): conversions
between FD-sets and lists
X in_set Set: Similar to X in Range but for FD-sets
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Implementing constructive disjunction

Computing the CD of a list of constraints Cs wrt. a single variable Var:
cdisj(Cs, Var) :-

findall(S, (member(C,Cs),C,fd_set(Var,S)), Doms),
fdset_union(Doms,Set),
Var in_set Set.

Usage:
| ?- domain([X,Y],0,6), cdisj([X+5#=<Y,Y+5#=<X], X).

⇒ X in(0..1)\/(5..6), Y in 0..6 ?

CD is not a constraint, but a one-off pruning technique.
As it interacts with other constraints, may improve on domain consistency:
| ?- domain([X,Y], 0, 20), X+Y #= 20, cdisj([X#=<5,Y#=<5],X).

⇒ X in(0..5)\/(15..20), ...
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Shaving – a special case of constructive disjunction

Basic idea: “What if” X = v? (. . . and hope for failure.) If this fails without
labeling =⇒ X 6= v , otherwise do nothing.
Shaving an integer V off the domain of X is like a constr. disjunction
(X = v) ∨ (X 6= v) w.r.t. X (but only the X = v case is checked)
shave_value(V, X) :- \+ X = V, !, X in \{V}.
shave_value(_, _).

Shaving all values in X ’s domain {v1, . . . , vn} is the same as performing
a constructive disjunction for (X = v1) ∨ . . . ∨ (X = vn) w.r.t. X
shave_all0(X) :- fd_set(X, FD), fdset_to_list(FD, L),

shvals(L, X).

shvals([], _).
shvals([V|Vs], X) :- shave_value(V, X), shvals(Vs, X).

A variant using findall:
shave_all(X) :- fd_set(X, FD), fdset_to_list(FD, L),

findall(X, member(X,L), Vs),
list_to_fdset(Vs, FD1), X in_set FD1.
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An example for shaving, from a kakuro puzzle

Kakuro puzzle: like a crossword, but with distinct digits 1–9 instead of
letters; sums of digits are given as clues.
% L is a list of N distinct digits 1..9 with sum Sum.
kakuro(N, L, Sum) :-

length(L, N), domain(L, 1, 9), all_distinct(L), sum(L,#=,Sum).

Example: a 4 letter “word” [A,B,C,D], the sum is 23, domains:
sample_domains(L) :- L = [A,_,C,D], A in {5,9}, C in {6,8,9}, D=4.

| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L).
⇒ A in {5}\/{9}, B in (1..3)\/(5..8), C in {6}\/(8..9) ?

Only B gets pruned:
4 pruned because of all_distinct
9 pruned because of sum
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An example for shaving, from a kakuro puzzle

Shaving 9 off C shows the value 9 for C is infeasible:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L),

shave_value(9,C). ⇒ ..., C in {6}\/{8} ?

Shaving off the whole domain of B leaves just three values:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L), shave_all(B).

⇒ ..., B in {2}\/{6}\/{8}, ... ?

These two shaving operations happen to achieve domain consistency:
| ?- kakuro(4, L, 23), sample_domains(L), labeling([], L).

⇒ L = [5,6,8,4] ? ; L = [5,8,6,4] ? ; L = [9,2,8,4] ? ; no
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When to perform shaving?

Shaving may be applied repeatedly, until a fixpoint (may not pay off)
Shaving is normally done during labeling. To reduce its costs, one may:

limit it to variables with small enough domain (e.g. of size 2)
perform it only after every nth labeling step (requires global variables)

Example:
% Label the variables in Vars; after every Nth value assignment,
% shave the domain of variable X
labeling_with_shaving(X,N,Vars) :-

bb_put(i,0),
labeling([value(shave_during_labeling(X,N))],Vars).

% Auxiliary predicate, called by labeling in every iteration.
% X and N are given in the call to labeling, V is the next variable
shave_during_labeling(X,N,V,_Rest,_BB0,_BB) :-

labeling([],[V]),
bb_get(i,I),
( I<N -> I1 is I+1, bb_put(i,I1)
; shave_all(X), bb_put(i,0)
).
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