
Declarative Programming with Constraints Reified constraints

Contents

2 Declarative Programming with Constraints
Motivation
Constraint Logic Programming (CLP)
CLPFD basics
CLPFD internals
Reified constraints
Combinatorial constraints
Labeling
FDBG
Improving efficiency
Modelling
Disjunctions in CLPFD
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 214 / 323

Declarative Programming with Constraints Reified constraints

Reification – introductory example

Consider variables U in 0..9 and V in 0..9

Try encoding the constraint ex1geq5(U,V): exactly one of U and V is ≥ 5.
A possible helper: ’x>=5<->b’(X, B): The boolean (i.e. 0 or 1 valued)
variable B takes the value 1 iff X #>= 5 holds
Try implementing this helper constraint using an arithmetic constraint

’x>=5<->b’(X, B) :- B #= X/5.

Using the helper it is easy to implement ex1geq5(U,V):
ex1geq5(U, V) :- ’x>=5<->b’(U, B1), ’x>=5<->b’(V, B2),

B1 + B2 #= 1.

The ’x>=5<->b’(X, B) helper constraint reflects (or reifies) the truth value
of X #>= 5 in the boolean variable B

library(clpfd) supports reified constraints in general:
’x>=5<->b’(X, B) :-

X #>= 5 #<=> B.

This works without any limitation on the domain of X.

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 215 / 323

Declarative Programming with Constraints Reified constraints

Reification – what is it?

Reification = reflecting the truth value of a constraint into a 0/1-variable
Form: C #<=> B, where C is a constraint and B is a 0/1-variable
Example: (X #>= 5) #<=> B (*)
Meaning: C holds if and only if B=1

4 implications:
If C holds, then B must be 1
If ¬C holds, then B must be 0
If B=1, then C must hold
If B=0, then ¬C must hold

Not every constraint can be reified
Arithmetic formula constraints (#=, #=<, etc.) can be reified
The X in ConstRange membership constraint can be reified,
e.g. rewrite (*) to a membership constraint: (X in 5..sup) #<=> B
Global constraints (e.g. all_distinct/1, sum/3) cannot be reified

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 216 / 323

Declarative Programming with Constraints Reified constraints

Reification – what is it good for?

1 Use the 0/1-variables – that reflect the truth value of reified constraints –
in propositional (logical) constraints

2 Use the 0/1-variables – that reflect the truth value of reified constraints –
in arithmetic constraints

3 Combine multiple constraints with the help of propositional (logical)
operators

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 217 / 323

Declarative Programming with Constraints Reified constraints

1. Propositional constraints

Propositional connectives allowed by SICStus Prolog CLPFD:
#\ Q negation op(710, fy, #\).
P #/\ Q conjunction op(720, yfx, #/\).
P #\ Q exclusive or op(730, yfx, #\).
P #\/ Q disjunction op(740, yfx, #\/).
P #=> Q implication op(750, xfy, #=>).
Q #<= P implication op(750, yfx, #<=).
P #<=> Q equivalence op(760, yfx, #<=>).

The operand of a propositional constraint can be
a variable B, whose domain automatically becomes 0..1; or
an integer (0 or 1); or
a reifiable constraint; or
recursively, a propositional constraint.

The propositional constraints are built from variables, integers and
reifiable constraints using the above operators
Example: (X#>5) #<=> B1, (Y#>7) #<=> B2, B1 #\/ B2

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 218 / 323

Declarative Programming with Constraints Reified constraints

2. Using 0/1-variables in arithmetic constraints

0/1-variables can be used just like any other FD-variable, e.g., in
arithmetic calculations
Typical usage: counting the number of times a given constraint holds
Example:
% pcount(L, N): list L has N positive elements.
pcount([X|Xs], N) :-

(X #> 0) #<=> B,
N1 #= N-B,
pcount(Xs, N1).

pcount([], 0).

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 219 / 323

Declarative Programming with Constraints Reified constraints

3. Combining constraints by means of propositional operators

It is possible to combine multiple constraints with the help of propositional
(logical) operators

Example:
(X#>5) #\/ (Y#>7)
Handled by transforming it to a set of reifications and arithmetic
constraints:
(X#>5) #<=> B1, (Y#>7) #<=> B2, B1+B2#>0
Not possible with non-reifiable constraints

Example: (X#>5) #\/ all_different([X,Y]) will lead to an
error

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 220 / 323

Declarative Programming with Constraints Reified constraints

Executing reified constraints

Posting the constraint C #<=> B immediately implies B in 0..1

The execution of C #<=> B requires three daemons:
When B is instantiated:

if B=1, post C; if B=0, post ¬C
When C is entailed (i.e. the store implies C), set B to 1
When C is disentailed (i.e. ¬C is entailed), set B to 0

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 221 / 323

Declarative Programming with Constraints Reified constraints

Entailment levels

Detecting entailment can be done with different levels of precision:
A reified membership constraint C detects domain-entailment, i.e. B is set
as soon as C is a consequence of the store
A linear arithmetic constraint C is guaranteed to detect bound-entailment,
i.e. B is set as soon as C is a consequence of the interval closure of the
store

The interval closure is obtained by removing the ‘holes’ in the
domains
Example:

Store: X in {1,3}, Y in {2,4}, Z in {2,4}
Interval closure: X in {1,2,3}, Y in {2,3,4}, Z in {2,3,4}
Constraint: (X+Y#\=Z) #<=> B
The store actually implies X+Y 6=Z (odd+even6=even), but its
interval closure does not
=⇒ Result will be B in 0..1 instead of B=1

At the latest when a constraint becomes ground, its (dis)entailment is
detected

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 222 / 323

Declarative Programming with Constraints Reified constraints

Conversion from pure Prolog

Scheme for converting pure Prolog conditionals to CLPFD code using
reification:

foo(...) :- NonrecTest.
foo(...) :-

(Cond -> Then
; Else
),
foo(...).

foo(...) :- NonrecTest#.
foo(...) :-

Cond# #<=> B,
B #=> Then#,
#\ B #=> Else#,
foo(...).

Cond, Then, Else and NonrecTest

should contain solely arithmetic tests and operations
are transformed to their constraint counterparts (mostly by simply
inserting #-s): Cond#, Then#, Else# and NonrecTest#

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 223 / 323

Declarative Programming with Constraints Reified constraints

Conversion from pure Prolog – example

% pcount(L, N): L has N positive elements.

pcount_pure(L,N) :-
pcount_pure1(L,0,N).

pcount_pure1([],N,N).
pcount_pure1([X|Xs],N0,N) :-

(X>0 -> N1 is N0+1
; N1=N0
),
pcount_pure1(Xs,N1,N).

pcount_clpfd(L,N) :-
pcount_clpfd1(L,0,N).

pcount_clpfd1([],N,N).
pcount_clpfd1([X|Xs],N0,N) :-

X#>0 #<=> B,
B #=> N1#=N0+1,
#\ B #=> N1#=N0,
pcount_clpfd1(Xs,N1,N).

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 224 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

Contents

2 Declarative Programming with Constraints
Motivation
Constraint Logic Programming (CLP)
CLPFD basics
CLPFD internals
Reified constraints
Combinatorial constraints
Labeling
FDBG
Improving efficiency
Modelling
Disjunctions in CLPFD
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 263 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

Handling disjunctions

Example: intervals [x , x + 5) and [y , y + 5) are disjoint:
(x + 5 ≤ y) ∨ (y + 5 ≤ x)

Reification-based solution
| ?- domain([X,Y], 0, 6), X+5 #=< Y #\/ Y+5 #=< X.

⇒ X in 0..6, Y in 0..6

Speculative solution
| ?- domain([X,Y], 0, 6), (X+5 #=< Y ; Y+5 #=< X).

⇒ X in 0..1, Y in 5..6 ? ;
⇒ X in 5..6, Y in 0..1 ? ; no

Solution (hack?) with a clever use of arithmetics:
| ?- domain([X,Y], 0, 6),

scalar_product([1,-1],[X,Y],#=,D,[consistency(domain)]),
abs(D) #>= 5.

⇒ X in (0..1)\/(5..6), Y in (0..1)\/(5..6) ?

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 264 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

Constructive disjunction (CD)

Assume a disjunction C1 ∨ . . . ∨ Cn

Let D(X ,S) = the domain of X in store S
The idea of constructive disjunction:

For each i , let Si be the store obtained by adding Ci to S
Proceed with store SU , the union of Si , i.e. for all X ,
D(X ,SU) = ∪iD(X ,Si)

Algorithmically:
For each i :

post Ci
save the new domains of the variables
undo Ci

Narrow the domain of each variable to the union of its saved domains

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 265 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

Manipulating the domains – reflection predicates

The representation of a constraint variable contains
the size of the domain
the lower bound of the domain
the upper bound of the domain
the domain as an FD-set (internal representation format)

The above pieces of information can be obtained (in constant time) using
fd_size(X, Size): Size is the size (number of elements) of the
domain of X (integer or sup).
fd_min(X, Min): Min is the lower bound of X’s domain;
Min can be an integer or the atom inf
fd_max(X, Max): Max is the upper bound of X’s domain (integer or sup).
fd_set(X, Set): Set is the domain of X in FD-set format

Further reflection predicates
fd_dom(X, Range): Range is the domain of X in ConstRange format
fd_degree(X, D): D is the number of constraints attached to X

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 266 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

FD-set vs. ConstRange format

| ?- X in 1..9, X#\=5, fd_set(X,S), fd_dom(X,R).

⇒ S = [[1|4],[6|9]], R = (1..4)\/(6..9)

FD-set is an internal format; user code should not make any assumptions
about its representation

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 267 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

Manipulating the domains – FD-set operations

Some of the many useful operations:
is_fdset(Set): Set is a proper FD-set.
empty_fdset(Set): Set is an empty FD-set.
fdset_parts(Set, Min, Max, Rest): Set consists of an initial interval
Min..Max and a remaining FD-set Rest. Can be used both for splitting and
composing.
fdset_interval(Set, Min, Max): Set represents the interval Min..Max.
fdset_union(Set1, Set2, Union): The union of Set1 and Set2 is Union.
fdset_union(Sets, Union): The union of the list of FD-sets Sets is Union.
fdset_instersection/[2,3]: analogous to fdset_union/[2,3]

fdset_complement(Set1, Set2): Set2 is the complement of Set1.
list_to_fdset(List, Set), fdset_to_list(Set, List): conversions
between FD-sets and lists
X in_set Set: Similar to X in Range but for FD-sets

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 268 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

Implementing constructive disjunction

Computing the CD of a list of constraints Cs wrt. a single variable Var:
cdisj(Cs, Var) :-

findall(S, (member(C,Cs),C,fd_set(Var,S)), Doms),
fdset_union(Doms,Set),
Var in_set Set.

Usage:
| ?- domain([X,Y],0,6), cdisj([X+5#=<Y,Y+5#=<X], X).

⇒ X in(0..1)\/(5..6), Y in 0..6 ?

CD is not a constraint, but a one-off pruning technique.
As it interacts with other constraints, may improve on domain consistency:
| ?- domain([X,Y], 0, 20), X+Y #= 20, cdisj([X#=<5,Y#=<5],X).

⇒ X in(0..5)\/(15..20), ...

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 269 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

Shaving – a special case of constructive disjunction

Basic idea: “What if” X = v? (. . . and hope for failure.) If this fails without
labeling =⇒ X 6= v , otherwise do nothing.
Shaving an integer V off the domain of X is like a constr. disjunction
(X = v) ∨ (X 6= v) w.r.t. X (but only the X = v case is checked)
shave_value(V, X) :- \+ X = V, !, X in \{V}.
shave_value(_, _).

Shaving all values in X ’s domain {v1, . . . , vn} is the same as performing
a constructive disjunction for (X = v1) ∨ . . . ∨ (X = vn) w.r.t. X
shave_all0(X) :- fd_set(X, FD), fdset_to_list(FD, L),

shvals(L, X).

shvals([], _).
shvals([V|Vs], X) :- shave_value(V, X), shvals(Vs, X).

A variant using findall:
shave_all(X) :- fd_set(X, FD), fdset_to_list(FD, L),

findall(X, member(X,L), Vs),
list_to_fdset(Vs, FD1), X in_set FD1.

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 270 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

An example for shaving, from a kakuro puzzle

Kakuro puzzle: like a crossword, but with distinct digits 1–9 instead of
letters; sums of digits are given as clues.
% L is a list of N distinct digits 1..9 with sum Sum.
kakuro(N, L, Sum) :-

length(L, N), domain(L, 1, 9), all_distinct(L), sum(L,#=,Sum).

Example: a 4 letter “word” [A,B,C,D], the sum is 23, domains:
sample_domains(L) :- L = [A,_,C,D], A in {5,9}, C in {6,8,9}, D=4.

| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L).
⇒ A in {5}\/{9}, B in (1..3)\/(5..8), C in {6}\/(8..9) ?

Only B gets pruned:
4 pruned because of all_distinct
9 pruned because of sum

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 271 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

An example for shaving, from a kakuro puzzle

Shaving 9 off C shows the value 9 for C is infeasible:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L),

shave_value(9,C). ⇒ ..., C in {6}\/{8} ?

Shaving off the whole domain of B leaves just three values:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L), shave_all(B).

⇒ ..., B in {2}\/{6}\/{8}, ... ?

These two shaving operations happen to achieve domain consistency:
| ?- kakuro(4, L, 23), sample_domains(L), labeling([], L).

⇒ L = [5,6,8,4] ? ; L = [5,8,6,4] ? ; L = [9,2,8,4] ? ; no

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 272 / 323

Declarative Programming with Constraints Disjunctions in CLPFD

When to perform shaving?

Shaving may be applied repeatedly, until a fixpoint (may not pay off)
Shaving is normally done during labeling. To reduce its costs, one may:

limit it to variables with small enough domain (e.g. of size 2)
perform it only after every nth labeling step (requires global variables)

Example:
% Label the variables in Vars; after every Nth value assignment,
% shave the domain of variable X
labeling_with_shaving(X,N,Vars) :-

bb_put(i,0),
labeling([value(shave_during_labeling(X,N))],Vars).

% Auxiliary predicate, called by labeling in every iteration.
% X and N are given in the call to labeling, V is the next variable
shave_during_labeling(X,N,V,_Rest,_BB0,_BB) :-

labeling([],[V]),
bb_get(i,I),
(I<N -> I1 is I+1, bb_put(i,I1)
; shave_all(X), bb_put(i,0)
).

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 273 / 323

