Declarative Programming with Constraints Reified constraints

Contents

e Declarative Programming with Constraints

@ Reified constraints

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 214 /323

Declarative Programming with Constraints Reified constraints

Reification — introductory example

@ Consider variables U in 0..9and v in 0..9
@ Try encoding the constraint ex1geq5(U,V): exactly one of uand v is > 5.

@ A possible helper: »x>=5<->b’ (X, B): The boolean (i.e. 0 or 1 valued)
variable B takes the value 1 iff X #>= 5 holds

@ Try implementing this helper constraint using an arithmetic constraint

'x>=5<->b’ (X, B) :- B #= X/5.
@ Using the helper it is easy to implement ex1geq5(U,V):
exlgeq5(U, V) :- ’x>=5<->b’(U, B1l), ’x>=5<->b’(V, B2),
Bl + B2 #= 1.

@ The ’x>=5<->b’ (X, B) helper constraint reflects (or reifies) the truth value
of X #>= 5in the boolean variable B

@ library(clpfd) supports reified constraints in general:

'x>=5<->b’ (X, B) :-
X #>= 5 #<=> B.

This works without any limitation on the domain of x.

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 215/323

Declarative Programming with Constraints Reified constraints

Reification — what is it?

Reification = reflecting the truth value of a constraint into a 0/1-variable
Form: C #<=> B, where C is a constraint and B is a 0/1-variable
Example: (X #>= 5) #<=> B (")
Meaning: C holds if and only if B=1
4 implications:

e If C holds, then B must be 1

o If =C holds, then B must be 0

e If B=1, then C must hold

e If B=0, then —C must hold
Not every constraint can be reified

o Arithmetic formula constraints (#=, #=<, etc.) can be reified
e The X in ConstRange membership constraint can be reified,

e.g. rewrite (*) to a membership constraint: (X in 5..sup) #<=> B
o Global constraints (e.g. all_distinct/1, sum/3) cannot be reified

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 216/323

Declarative Programming with Constraints Reified constraints

Reification — what is it good for?

@ Use the 0/1-variables — that reflect the truth value of reified constraints —
in propositional (logical) constraints

@ Use the 0/1-variables — that reflect the truth value of reified constraints —
in arithmetic constraints

@ Combine multiple constraints with the help of propositional (logical)
operators

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 217 /323

Declarative Programming with Constraints Reified constraints

1. Propositional constraints

@ Propositional connectives allowed by SICStus Prolog CLPFD:

#\ Q
#/\ Q
#\ Q
#\/ Q
#=> Q
#<= P
#<=> Q

‘"o 'v'uuo

negation

op(710,

conjunction | op(720,
exclusive or | op(730,

disjunction
implication
implication

op (740,
op (750,
op (750,

equivalence | op(760,

fy, #\
yix, #/\
yix, #\
yix, #\/
xfy, #=>
yix, #<=
yix, #<=>

).

).
).
).
).
).
).

@ The operand of a propositional constraint can be
e a variable B, whose domain automatically becomes o. .1; or

an integer (o or 1); or

e a reifiable constraint; or
e recursively, a propositional constraint.

@ The propositional constraints are built from variables, integers and
reifiable constraints using the above operators

@ Example: (X#>5) #<=> B1, (Y#>7) #<=> B2, Bl #\/ B2

Declarative Programming with Constraints (Part II)

Semantic and Declarative Technologies

2017 Spring Semester

218/323

Declarative Programming with Constraints Reified constraints

2. Using 0/1-variables in arithmetic constraints

@ 0/1-variables can be used just like any other FD-variable, e.g., in
arithmetic calculations
@ Typical usage: counting the number of times a given constraint holds
@ Example:
% pcount (L, N): list L has N positive elements.
pcount ([X[|Xs], N) :-
(X #> 0) #<=> B,
N1 #= N-B,
pcount (Xs, N1).
pcount([], 0).

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 219/323

Declarative Programming with Constraints Reified constraints

3. Combining constraints by means of propositional operators

@ It is possible to combine multiple constraints with the help of propositional
(logical) operators

o Example:
X#>5) #\/ (Y#>7)

e Handled by transforming it to a set of reifications and arithmetic
constraints:
(X#>5) #<=> B1, (Y#>7) #<=> B2, B1+B2#>0

o Not possible with non-reifiable constraints

o Example: (X#>5) #\/ all_different([X,Y]) will lead to an
error

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 220/323

Declarative Programming with Constraints Reified constraints

Executing reified constraints

@ Posting the constraint C #<=> B immediately implies B in 0..1
@ The execution of C #<=> B requires three daemons:
e When B is instantiated:
e if B=1, post C; if B=0, post -C
o When C is entailed (i.e. the store implies C), setBto 1
e When C is disentailed (i.e. —=C is entailed), set Bto 0

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 221/323

Declarative Programming with Constraints Reified constraints

Entailment levels

Detecting entailment can be done with different levels of precision:

@ A reified membership constraint C detects domain-entailment, i.e. B is set
as soon as C is a consequence of the store

@ A linear arithmetic constraint C is guaranteed to detect bound-entailment,
i.e. Bis set as soon as C is a consequence of the interval closure of the
store

e The interval closure is obtained by removing the ‘holes’ in the
domains
e Example:
o Store: X in {1,3}, Y in {2,4}, Z in {2,4}
e Interval closure: X in {1,2,3}, Y in {2,3,4}, Z in {2,3,4}
o Constraint: (X+Y#\=2) #<=> B
o The store actually implies x+Y#z (odd+even£even), but its
interval closure does not
—> Result will be B in 0..1 instead of B=1

@ At the latest when a constraint becomes ground, its (dis)entailment is
detected

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 222/323

Declarative Programming with Constraints Reified constraints

Conversion from pure Prolog

Scheme for converting pure Prolog conditionals to CLPFD code using
reification:

foo(...) :- NonrecTest. foo(...) :- NonrecTest#.
foo(...) :- foo(...) :-
(Cond -> Then Cond# #<=> B,
5 Else B #=> Thent#,
), #\ B #=> Else#,
foo(...). fool(...).

Cond, Then, Else and NonrecTest
@ should contain solely arithmetic tests and operations

@ are transformed to their constraint counterparts (mostly by simply
inserting #-S): Cond#, Then#, Else# and NonrecTest#

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 223 /323

Declarative Programming with Constraints Reified constraints

Conversion from pure Prolog — example

% pcount(L, N): L has N positive elements.

pcount_pure(L,N) :- pcount_clpfd(L,N) :-
pcount_purel(L,0,N). pcount_clpfdi(L,0,N).
pcount_purel ([],N,N). pcount_clpfd1([],N,N).
pcount_purel ([X|Xs],NO,N) :- pcount_clpfd1([X|Xs],NO,N) :-
(X>0 -> N1 is NO+1 X#>0 #<=> B,
; N1=NO B #=> N1#=NO+1,
), #\ B #=> N1#=No,
pcount_purel (Xs,N1,N). pcount_clpfdl(Xs,N1,N).

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 224 /323

Declarative Programming with Constraints Disjunctions in CLPFD

Contents

e Declarative Programming with Constraints

@ Disjunctions in CLPFD

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 263 /323

Handling disjunctions

@ Example: intervals [x, x + 5) and [y, y + 5) are disjoint:
(x+5<y)v(y+5<x)
@ Reification-based solution
| 7- domain([X,Y], 0, 6), X+5 #=< Y #\/ Y+5 #=< X.
= X in 0..6, Y in 0..6
@ Speculative solution

| ?- domain([X,Y], 0, 6), (X+5 #=<Y ; Y+5 #=< X).
= X in 0..1, Y in 5..6 7 ;
= X in 5..6, Y in 0..1 ? ; no

@ Solution (hack?) with a clever use of arithmetics:

| ?- domain([X,Y], 0, 6),
scalar_product([1,-1], [X,Y],#=,D, [consistency(domain)]),
abs(D) #>= 5.

= X in (0..1)\/(5..6), Y in (0..1)\/(5..6) ?

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 264 /323

Declarative Programming with Constraints Disjunctions in CLPFD

Constructive disjunction (CD)

@ Assume a disjunction C; V...V C,
@ Let D(X, S) = the domain of X in store S
@ The idea of constructive disjunction:
e For each /, let S; be the store obtained by adding C;to S
e Proceed with store Sy, the union of S;, i.e. for all X,
D(X, Su) = U,‘D()(7 S,)
@ Algorithmically:
e For each i:
e post C;
e save the new domains of the variables
e undo C;

o Narrow the domain of each variable to the union of its saved domains

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 265/323

Declarative Programming with Constraints Disjunctions in CLPFD

Manipulating the domains — reflection predicates

@ The representation of a constraint variable contains
e the size of the domain
o the lower bound of the domain
o the upper bound of the domain
o the domain as an FD-set (internal representation format)
@ The above pieces of information can be obtained (in constant time) using
o fd_size(X, Size): Size is the size (number of elements) of the
domain of x (integer or sup).
o fd_min(X, Min): Min is the lower bound of x’s domain;
Min can be an integer or the atom inf
e fd_max(X, Max): Max is the upper bound of x’s domain (integer or sup).
o fd_set(X, Set): Set is the domain of x in FD-set format
@ Further reflection predicates

o fd_dom(X, Range): Range iS the domain of X in ConstRange format
e fd_degree(X, D):D is the number of constraints attached to x

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 266 /323

Declarative Programming with Constraints Disjunctions in CLPFD

FD-set vs. ConstRange format

| ?7- X in 1..9, X#\=5, fd_set(X,S), fd_dom(X,R).

= 8 = [[114],[619]1]1, R = (1..4D\/(6..9)

FD-set is an internal format; user code should not make any assumptions
about its representation

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 267 /323

Declarative Programming with Constraints Disjunctions in CLPFD

Manipulating the domains — FD-set operations

Some of the many useful operations:
@ is_fdset(Set): Set is a proper FD-set.
empty_fdset (Set): Set is an empty FD-set.

fdset_parts(Set, Min, Max, Rest): Set consists of an initial interval
Min..Max and a remaining FD-set rRest. Can be used both for splitting and
composing.

fdset_interval(Set, Min, Max): Set represents the interval Min. .Max.

fdset_union(Setl, Set2, Union): The union of Set1 and Set2 iS Union.
fdset_union(Sets, Union): The union of the list of FD-sets Sets is Union.
fdset_instersection/[2,3]: analogous to fdset_union/[2,3]
fdset_complement (Setl, Set2): Set2 is the complement of Set1.

list_to_fdset(List, Set), fdset_to_list(Set, List): conversions
between FD-sets and lists

@ X in_set Set: Similar to X in Range but for FD-sets

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 268 /323

Implementing constructive disjunction

@ Computing the CD of a list of constraints cs wrt. a single variable var:
cdisj(Cs, Var) :-
findall(S, (member(C,Cs),C,fd_set(Var,S)), Doms),
fdset_union(Doms,Set),
Var in_set Set.

@ Usage:

| ?- domain([X,Y],0,6), cdisj([X+5#=<Y,Y+5#=<X], X).
= X in(0..1)\/(5..6), Y in 0..6 ?

@ CD is not a constraint, but a one-off pruning technique.
@ As it interacts with other constraints, may improve on domain consistency:

| 7- domain([X,Y], 0, 20), X+Y #= 20, cdisj([X#=<5,Y#=<5],X).
= X in(0..5)\/(15..20),

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 269 /323

Declarative Programming with Constraints Disjunctions in CLPFD

Shaving — a special case of constructive disjunction

Basic idea: “What if” X = v? (... and hope for failure.) If this fails without
labeling = X # v, otherwise do nothing.
Shaving an integer v off the domain of x is like a constr. disjunction
(X =v)V (X #v)w.rt X (but only the X = v case is checked)
shave_value(V, X) :- \+ X =V, !, X in \{V}.
shave_value(_, _).
Shaving all values in X’s domain {v1,..., vy} is the same as performing
a constructive disjunction for (X = vy) V...V (X = v,) w.rt. X
shave_allO(X) :- fd_set(X, FD), fdset_to_list(FD, L),

shvals(L, X).

shvals([1,).
shvals([V|Vs], X) :- shave_value(V, X), shvals(Vs, X).

A variant using findall:

shave_all(X) :- fd_set(X, FD), fdset_to_list(FD, L),
findall(X, member(X,L), Vs),
list_to_fdset(Vs, FD1), X in_set FD1.

Declarative Programming with Constraints (Part II) Semantic and Declarative Technologies 2017 Spring Semester 270/323

Declarative Programming with Constraints Disjunctions in CLPFD

An example for shaving, from a kakuro puzzle

@ Kakuro puzzle: like a crossword, but with distinct digits 1-9 instead of
letters; sums of digits are given as clues.

% L is a list of N distinct digits 1..9 with sum Sum.
kakuro(N, L, Sum) :-
length(L, N), domain(L, 1, 9), all_distinct(L), sum(L,#=,Sum).

@ Example: a 4 letter “word” [4,B,c,D], the sum is 23, domains:
sample_domains(L) :- L = [A,_,C,D], A in {5,9}, C in {6,8,9}, D=4.
| 7- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L).

= A in {5}\/{9}, B in (1..3)\/(5..8), C in {6}\/(8..9) ?
@ Only B gets pruned:

@ 4 pruned because of al1_distinct
e 9 pruned because of sum

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 271/323

Declarative Programming with Constraints Disjunctions in CLPFD

An example for shaving, from a kakuro puzzle

@ Shaving 9 off ¢ shows the value 9 for ¢ is infeasible:

| 7- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L),
shave_value(9,C). = ..., C in {6}\/{8} 7

@ Shaving off the whole domain of B leaves just three values:

| 7- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L), shave_all(B).
= ..., Bin {2}\/{6}\/{8}, ... ?

@ These two shaving operations happen to achieve domain consistency:

| ?- kakuro(4, L, 23), sample_domains(L), labeling([], L).
= L = [5,6,8,4] ? ; L = [5,8,6,4] ? ; L = [9,2,8,4] ? ; no

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 272 /323

When to perform shaving?

@ Shaving may be applied repeatedly, until a fixpoint (may not pay off)
@ Shaving is normally done during labeling. To reduce its costs, one may
o limit it to variables with small enough domain (e.g. of size 2)
e perform it only after every n'" labeling step (requires global variables)
@ Example:
7 Label the variables in Vars; after every Nth value assignment,
% shave the domain of variable X
labeling_with_shaving(X,N,Vars) :-
bb_put(i,0),
labeling([value(shave_during_labeling(X,N))],Vars).

% Auxiliary predicate, called by labeling in every iteration.
% X and N are given in the call to labeling, V is the next variable
shave_during_labeling(X,N,V,_Rest,_BBO,_BB) :-

labeling([], [V]),

bb_get (i, I),

(I<N -> Il is I+1, bb_put(i,Il1)

; shave_all(X), bb_put(i,0)

).

Declarative Programming with Constraints (Part Il) Semantic and Declarative Technologies 2017 Spring Semester 273/323

