
Proceedings of the

12th Japanese-Hungarian Symposium

on Discrete Mathematics and Its Applications

March 21-24, 2023, Budapest, Hungary

Editors:

Tibor Jordán
Department of Operations Research,
ELTE Eötvös Loránd University
and
ELKH-ELTE Egerváry Research Group
Eötvös Loránd Research Network (ELKH)
tibor.jordan@ttk.elte.hu

Gyula Y. Katona
Department of Computer Science and Information Theory
Budapest University of Technology and Economics
and
ELKH-ELTE Numerical Analysis and Large Networks Research Group
Eötvös Loránd Research Network (ELKH)
katona.gyula@vik.bme.hu

Csaba Király
ELKH-ELTE Egerváry Research Group
Eötvös Loránd Research Network (ELKH)
csaba.kiraly@ttk.elte.hu

Gábor Wiener
Department of Computer Science and Information Theory
Budapest University of Technology and Economics
wiener@cs.bme.hu

© Department of Computer Science and Information Theory,
Budapest University of Technology and Economics

ISBN 978-963-421-903-3

Cover design: Kazuhiko Shiozaki, 1999

Contents

Preface 7

1 K. Bérczi: Dynamic pricing schemes 9

2 T. Fleiner: Division of goods and bads to many players 17

3 H. Hirai: Algebraic combinatorial optimization for noncommutative
rank & determinant 27

4 N. Kakimura, D. Zhu: Matching in bipartite graphs with stochastic
arrivals and departures 37

5 K. Makino: Composition ordering for linear functions 43

6 S. Tanigawa: Rigidity of hypergraphs under algebraic constraints 45

7 N. Fujihara, T. Tokuyama: Sorting columns of a matrix to optimize
nondecreasing subsequences of rows 49

8 K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi: Matroid intersection
with restricted oracles 59

9 P. Ágoston, G. Damásdi, B. Keszegh, D. Pálvölgyi: Orientation of
convex sets 63

10 Y. Amano, A. Igarashi, Y. Kawase, K. Makino, H. Ono: An FPT
algorithm for the envy-free ride allocation with respect to destination
types 73

11 E. Bérczi-Kovács, B. Vass, Á. Barabás, Zs. L. Hajdú, J. Tapol-
cai: Polynomial-time algorithm for the regional SRLG-disjoint paths
problem 83

12 J. Barát, Z. L. Blázsik: Quest for graphs of Frank number 3 93

13 N. A. Borsik, P. Madarasi: Arc-partitioning and vertex-ordering prob-
lems 103

14 K. Buza: Data augmentation does not necessarily beat a smart al-
gorithm 113

15 G. Csáji, T. Király, Y. Yokoi: Approximation algorithms for ma-
troidal and cardinal generalizations of stable matching 119

16 L. Csató: Fairness versus transparency in the UEFA Champions
League: how to choose a random perfect matching in a balanced
bipartite graph 131

17 A. Dumitrescu: Two-sided convexity testing with certificates 141

18 K. Encz, M. Marits, B. Váli, M. Weisz: Results on extremal graph
theoretic questions for q-ary vectors 155

19 Á. Fraknói, B. Vass, E. Bérczi-Kovács, G. Rétvári: Compiling packet
programs to dRMT switches: theory and algorithms 165

3

20 D. Garamvölgyi: Algebraic realizations of pairs of closure operators175

21 P. Gehér: Note on the chromatic number of Minkowski planes: the
regular polygon case 183

22 A. Gujgiczer, G. Simonyi: Widely colorable graphs and their multi-
chromatic numbers 193

23 M. Higashida, S. Tanigawa: Abstract rigidity matroids of uniform
hypergraphs 197

24 Y. Iwamasa: A combinatorial algorithm for computing the entire
sequence of the maximum degree of minors of a generic partitioned
polynomial matrix with 2× 2 submatrices 205

25 S. Iwata, Y. Yokoi: Openly disjoint paths, jump systems, and dis-
crete convexity 209

26 G. Z. Dantas e Moura, T. Jordán, C. Silverman: On generic universal
rigidity on the line 219

27 A. Jung: Radon number of graph families 229

28 V. E. Kaszanitzky: Rigid planar subgraphs in the triangulations of
the double torus 239

29 Gy. O.H. Katona, C. Xiao: Extremal graphs without long paths and
large cliques 245

30 P. Ágoston, G. Damásdi, B. Keszegh, D. Pálvölgyi: Orientation of
good covers 249

31 Gy. Y. Katona, H. Khan: A polynomial-time algorithm to compute
the toughness of graphs with bounded treewidth 259

32 Cs. Király: On the size of highly redundantly rigid graphs 263

33 K. Bérczi, T. Király, S. Omlor: Scheduling under a resource con-
straint: the case of negligible processing times 273

34 E. Csóka, Z. L. Blázsik, Z. Király, D. Lenger: Upper bounds for the
necklace folding problems 283

35 T. Ito, Y. Iwamasa, N. Kakimura, N. Kamiyama, Y. Kobayashi, S.
Maezawa, Y. Nozaki, Y. Okamoto, K. Ozeki: Reconfiguration of
graph orientations with connectivity constraints 293

36 S. Kumabe, Y. Yoshida: Lipschitz Continuous Graph Algorithms 297

37 P. Madarasi: Simultaneous assignments 307

38 Y. Kobayashi, R. Mahara: Finding a PROPavg allocation in polyno-
mial time 317

39 K. Bérczi, B. Mátravölgyi, T. Schwarcz: Weighted exchange distance
of basis pairs 327

4

40 P. Madarasi, L. Matúz: Pebble Game algorithms and their imple-
mentations 339

41 K. Bérczi, L. M. Mendoza-Cadena, K. Varga: Newton-type algo-
rithms for inverse optimization problems I and II: Weighted infinity
norm and span 349

42 R. Mizutani: Supermodular extension of Vizing’s edge-coloring the-
orem 365

43 D. T. Nagy, Z. Nagy, R. Woodroofe: The extensible No-Three-In-
Line problem 369

44 K. Friedl, V. Nemkin: Simulations of quantum walks on regular
graphs 373

45 T. Oki, T. Soma: Algebraic algorithms for fractional linear matroid
parity via non-commutative rank 383

46 D. Král, A. Lamaison, P. P. Pach: Common systems of two equations
over the binary field 393

47 Gy. Pap: New results on synchronized TSP 395

48 Y. Cairo, B. Patkós, Zs. Tuza: Connected Turán number of trees 399

49 E. A. Kovács, D. Pfeifer: On a matrix representation of a sequence
of chordal graphs 405

50 J. Pintér, K. Varga: Color-avoiding connected spanning subgraphs
with minimum number of edges 415

51 E. Csóka, Sz. Mészáros, A. Pongrácz: Generalized solution for the
Herman Protocol Conjecture 425

52 A. Recski: Genericity and maps of matroids 435

53 B. Li, A. Sali: Optimal cutting arrangements in 1D 443

54 K. Bérczi, T. Schwarcz: Partitioning into common independent sets
via relaxing strongly base orderability 447

55 M. Sadli, A. Sebő: Jump-systems of T -paths 459

56 T. Otsuka, A. Shioura: Characterization and algorithm for bivariate
multi-unit assignment valuations 467

57 P. Madarasi, M. Simon: On vertex-coloring {a, b}-edge-weightings of
graphs 477

58 A. Gujgiczer, G. Simonyi, G. Tardos: On the generalized Mycielskian
of complements of odd cycles 485

59 T. Király, D. P. Szabo: Connecting multicut and multiway cut using
the complement of the demand graph 489

60 A. Jüttner, E. Szabó: Submodular flows with minimal spread 497

5

61 S. Bozóki, Zs. Szádoczki: The GRAPH of graphs of optimal subsets
of pairwise comparisons 507

62 Z. Szigeti: Packing mixed hyperarborescences 515

63 K. Teramoto, R. Raymond, E. Wakakuwa, H. Imai: Quantum-relaxation
based optimization algorithms: theoretical extensions 525

64 B. Jahnel, A. Tóbiás: Absence of percolation in graphs based on
stationary point processes with degrees bounded by two 537

65 A. Dumitrescu, Cs. D. Tóth: Geodesic diameter in polygons with
holes 543

66 Cs. Biró, J. Lehel, G. Tóth: Helly-type theorems for hypergraphs 549

67 T. Kálmán, L. Tóthmérész: Degrees of interior polynomials and
parking function enumerators 559

68 B. Vass: Faster algorithm for enumerating maximal sets of close line
segments 569

69 A. Recski, Á. Vékássy: The importance of being series-parallel 579

70 J. Goedgebeur, J. Renders, G. Wiener, C. T. Zamfirescu: Fault-
tolerance of leaf-guaranteed graphs 585

71 H. Yamaji: On the number of maximal cliques in two-dimensional
random geometric graphs: Euclidean and hyperbolic 593

72 G. Csáji, T. Király, Y. Yokoi: Solving the Maximum Popular Match-
ing Problem with Matroid Constraints 603

6

Preface

The present volume consists of the papers and extended abstracts of the talks presented at the 12th
Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (Budapest, March 21-24,
2023). Based on a long history of cooperation among Japanese and Hungarian scientists in the area of
discrete mathematics, the first joint symposium was announced 25 years ago to be held in Kyoto (March
17-19, 1999). The subsequent symposia in the series took place in Budapest (April 20-23, 2001), Tokyo
(January 21-24, 2003), Budapest (June 3-6, 2005), Sendai (April 3-5, 2007), Budapest (May 16-19, 2009),
Kyoto (May 31 - June 3, 2011), Veszprém (June 4-7, 2013), Fukuoka (June 2-5, 2015), Budapest (May
22-25, 2017), and Tokyo (May 27-30, 2019).
The 12th Symposium was jointly organized by the Department of Operations Research, ELTE Eötvös
Loránd University, Budapest and by the Department of Computer Science and Information Theory,
Budapest University of Technology and Economics.

Advisory Board

András Frank (Department of Operations Research, ELTE Eötvös Loránd University)
Satoru Fujishige (Research Institute for Mathematical Sciences, Kyoto University)
Satoru Iwata (Department of Mathematical Informatics, University of Tokyo)
Tibor Jordán (Department of Operations Research, ELTE Eötvös Loránd University)
Naoki Katoh (Graduate School of Information Science, University of Hyogo)
Gyula Y. Katona (Department of Computer Science and Information Theory, Budapest University of
Technology and Economics)
Tamás Király (Department of Operations Research, ELTE Eötvös Loránd University)
Kazuo Murota (The Institute of Statistical Mathematics, and Faculty of Economics and Business Ad-
ministration, Tokyo Metropolitan University)
András Recski (Department of Computer Science and Information Theory, Budapest University of Tech-
nology and Economics)
Takeshi Tokuyama (Department of Computer Science, Kwansei Gakuen University)

Invited speakers

Kristóf Bérczi (Department of Operations Research, ELTE Eötvös Loránd University)
Tamás Fleiner (Department of Computer Science and Information Theory, Budapest University of Tech-
nology and Economics)
Hiroshi Hirai (Department of Mathematical Informatics, The University of Tokyo)
Naonori Kakimura (Department of Mathematics, Keio University)
Kazuhisa Makino (Research Institute for Mathematical Sciences, Kyoto University)
Shin-ichi Tanigawa (Department of Mathematical Informatics, University of Tokyo)
Takeshi Tokuyama (Department of Computer Science, Kwansei Gakuin University)
Yutaro Yamaguchi (Department of Information and Physical Sciences, Osaka University)

Organizing Committee

Kristóf Bérczi (Department of Operations Research, ELTE Eötvös Loránd University)
Tibor Jordán (Department of Operations Research, ELTE Eötvös Loránd University)
Gyula Y. Katona (Department of Computer Science and Information Theory, Budapest University of
Technology and Economics)
Csaba Király (ELKH-ELTE Egerváry Research Group, Eötvös Loránd Research Network (ELKH))
Gábor Wiener (Department of Computer Science and Information Theory, Budapest University of Tech-
nology and Economics)

7

The conference was supported by the National Research, Development and Innovation Fund of the Min-
istry of Innovation and Technology, the Aquincum Institute of Technology (AIT), the Doctoral School of
Mathematics, ELTE Eötvös Loránd University, and the Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics.

The organizers wish to thank all the contributors for submitting papers, and all their colleagues, graduate
students and sponsors for their assistance and support.

Budapest, March 7, 2023.

8

Dynamic pricing schemes

Kristóf Bérczi1

MTA-ELTE Matroid Optimization
Research Group

ELKH-ELTE Egerváry Research Group
Department of Operations Research

Eötvös Loránt University
Budapest, Hungary

kristof.berczi@ttk.elte.hu

Abstract:

A combinatorial market consists of a set of indivisible items and a set of agents, where each
agent has a valuation function that specifies for each subset of items its value for the given
agent. From an optimization point of view, the goal is usually to determine a pair of pricing
and allocation of the items that provides an efficient distribution of the resources, i.e., maxi-
mizes the social welfare, or is as profitable as possible for the seller, i.e., maximizes the revenue.
Dynamic pricing schemes were introduced as an alternative to posted-price mechanisms. In
contrast to static models, the dynamic setting allows to update the prices between agent-
arrivals based on the remaining sets of items and agents, and so it is capable of maximizing
social welfare without the need for a central coordinator.

In this talk, we overview recent results on the existence of optimal dynamic prices, with
particular emphasis on the case of matroid rank valuations. For the case of two agents with
matroid rank valuations, we give polynomial-time algorithms that always find such prices
when one of the matroids is a partition matroid or both matroids are strongly base orderable,
thus partially answering a question raised by Dütting and Végh. For multi-demand valuations,
we propose an approach that is based on computing an optimal dual solution of the maximum
social welfare problem with distinguished structural properties. By relying on an optimal dual
solution, we show the existence of optimal dynamic prices in unit-demand markets, multi-
demand markets up to three agents, and bi-demand valuations with an arbitrary number of
agents. Finally, we study the existence of optimal dynamic prices under fairness constraints
in unit-demand markets. We propose four possible notions of envy-freeness depending on the
time period over which agents compare themselves to others: the entire time horizon, only
the past, only the future, or only the present.

Keywords: Algorithms, Dynamic pricing scheme, Envy-free allocations, Revenue maximiza-
tion, Social welfare maximization

1 Introduction

A combinatorial market consists of a set of indivisible goods and a set of agents, where each agent has a
valuation function that represents the agent’s preferences over the subsets of items. From an optimization
point of view, the goal is to find an allocation of the items to agents in such a way that the total sum

1The talk is based on joint works with Naonori Kakimura and Yusuke Kobayashi [3], Erika Bérczi-Kovács and Evelin
Szögi [1], and Laura Codazzi, Julian Golak and Alexander Grigoriev [2]. The work was supported by the Lendület Pro-
gramme of the Hungarian Academy of Sciences – grant number LP2021-1/2021 and by the Hungarian National Research,
Development and Innovation Office – NKFIH, grant numbers FK128673 and TKP2020-NKA-06.

9

of the agents’ values is maximized – this sum is called the social welfare. An optimal allocation can be
found efficiently in various settings [5, 8, 12, 14], but the problem becomes significantly more difficult if
one would like to realize the optimal social welfare through simple mechanisms.

A great amount of work concentrated on finding optimal pricing schemes. Given a price for each item,
we define the utility of an agent for a bundle of items to be the value of the bundle with respect to the
agent’s valuation, minus the total price of the items in the bundle. A pair of pricing and allocation is called
a Walrasian equilibrium if the market clears (that is, all the items are assigned to agents) and everyone
receives a bundle that maximizes her utility. Given any Walrasian equilibrium, the corresponding price
vector is referred to as Walrasian pricing, and the definition implies that the corresponding allocation
maximizes social welfare.

Although Walrasian equilibria have distinguished properties, Cohen-Addad et al. [6] observed that
Walrasian prices are not powerful enough to control the market on their own. The reason is that ties
among different bundles must be broken in a coordinated fashion that is consistent with maximizing
social welfare. Furthermore, this problem cannot be resolved by finding Walrasian prices where ties do
not occur as [10] showed that minimal Walrasian prices necessarily induce ties.

Dynamic pricing schemes were introduced as an alternative to posted-price mechanisms that are
capable of maximizing social welfare even without a central tie-breaking coordinator. In this model, the
agents arrive in a sequential order, and each agent selects a bundle of the remaining items that maximizes
her utility. The agents’ preferences are known in advance, and the seller is allowed to update the prices
between agent arrivals based upon the remaining set of items, but without knowing the identity of the
next agent. The main open problem in [6] asked whether any market with gross substitutes valuations
has a dynamic pricing scheme that achieves optimal social welfare.

2 Preliminaries

A combinatorial market consists of a set S of indivisible items and a set A of agents. Throughout the
talk, we denote by m := |S| and n := |A| the numbers of items and agents, respectively. An allocation X
assigns each agent a a subset Xa of items so that each item is assigned to at most one agent.

In a unit-demand market, each agent a ∈ A has a valuation va : S → R+ over individual items and
she desires only a single good, that is, we consider allocations X with |Xa| ≤ 1 for a ∈ A – in such cases
we denote the item obtained by agent a by xa. We always assume that the agents’ valuations are known
in advance. Furthermore, we assume that va(∅) = 0 for all agents a ∈ A. Given prices p(s) for each item
s ∈ S, the utility of agent a for item s is ua(s) := va(s)− p(s). Then the social welfare corresponding to
the allocation is

∑
a∈A va(xa), while the revenue of the seller is

∑
a∈A p(xa).

In a static pricing scheme, the seller sets the price p(s) of each item s ∈ S in advance. Two fundamental
problems in combinatorial markets are to find a pair of pricing vector p : S → R+ and allocation X such
that the social welfare or the revenue is maximized. In contrast, in a dynamic pricing scheme the
agents arrive one after the other, and the seller can update the prices between their arrivals based on
the remaining sets of items and agents. The order in which agents arrive is represented by a bijection
σ : A→ [n]. The sets of agents, items and prices available before the arrival of the tth agent are denoted
by At, St and pt, respectively. The utility of agent a for item s at time step t is then defined as
ua,t(s) := va(s) − pt(s). The next agent always chooses an item that maximizes her utility. After the
last agent has left, the pricing scheme terminates and results in pricing vectors p = (p1, . . . , pn) and an
allocation X = (x1, . . . , xn), where pt is the price vector available at the arrival of the tth agent and xt is
the item allocated to her. Note that xt might be an empty set if the utility of the agent is non-positive for
each item in St. We call a dynamic pricing scheme optimal if the final allocation maximizes the objective,
that is, the social welfare or the revenue, irrespective of the order in which the agents arrived.

10

3 Matroid rank valuations

The result of this section appeared in [3]. As a starting step towards understanding the general case, we
consider the existence of a static pricing scheme for a two-agent market with matroid rank valuations,
because a matroid rank function is a fundamental example of gross substitutes valuations. Here, a matroid
with a ground set S and a base family B is denoted by M = (S,B) and we denote p(X) :=

∑
s∈X p(s)

for p : S → R and X ⊆ S. In particular, we concentrate on the following conjecture.

Conjecture 1 Let M1 = (S,B1) and M2 = (S,B2) be matroids with rank functions r1 and r2, respec-
tively. Then, there exists a function p : S → R (called a price vector) satisfying the following conditions.

1. For B1 ∈ arg maxX⊆S(r1(X) − p(X)) and B2 ∈ arg maxY⊆S\B1
(r2(Y) − p(Y)), we have r1(B1) +

r2(B2) = max{r1(X) + r2(Y) | X,Y ⊆ S, X ∩ Y = ∅}.

2. For B2 ∈ arg maxY⊆S(r2(Y) − p(Y)) and B1 ∈ arg maxX⊆S\B2
(r1(X) − p(X)), we have r1(B1) +

r2(B2) = max{r1(X) + r2(Y) | X,Y ⊆ S, X ∩ Y = ∅}.

This conjecture can be interpreted as follows. There are two agents and each agent i ∈ {1, 2} has
a matroid rank valuation function ri. If agent i comes to a shop first, then she chooses an arbitrary
bundle Bi that maximizes her utility ri − p, and the second agent chooses a best bundle in S \ Bi. The
requirements mean that any choice of Bi results in an allocation maximizing the social welfare. Thus,
whoever comes first, we can achieve the optimal social welfare.

It turns out that Conjecture 1 can be reduced to the following.

Conjecture 2 Let M1 = (S,B1) and M2 = (S,B2) be matroids with a common ground set S such that
there exist disjoint bases B1 ∈ B1 and B2 ∈ B2 with B1∪B2 = S. Then, there exists a function p : S → R
(called a price vector) satisfying the following conditions.

1. For B1 ∈ arg minX∈B1
p(X), we have S \B1 ∈ B2.

2. For B2 ∈ arg minX∈B2
p(X), we have S \B2 ∈ B1.

In the conjecture, there are two agents and each agent i ∈ {1, 2} wants to buy a set of items that
forms a basis in Bi. If agent i comes to a shop first, then she chooses a cheapest set Bi in Bi with an
arbitrary tie-breaking rule. The requirements mean that, regardless of the choice of Bi, the remaining
set S \Bi is a desired set for the other agent.

Conjecture 2 was first suggested by Dütting and Végh [7] in a form where the price vector p is ought
to have all different values, that is, p(s1) ̸= p(s2) for s1 ̸= s2, which implies that Bi ∈ arg minX∈Bi

p(X)
is unique for i = 1, 2. However, this difference is not essential, because we can apply a perturbation to p
without affecting the requirements in Conjecture 2.

While Conjecture 2 remains open in general, we give polynomial-time algorithms for two important
special cases: when one of the matroids is a partition matorid, and when both matroids are strongly base
orderable.

Theorem 3 If M1 is a partition matroid and M2 is an arbitrary matroid, then Conjectures 1 and 2 hold,
and a price vector p satisfying the conditions can be computed in polynomial time.

Theorem 4 If both M1 and M2 are strongly base orderable, then Conjectures 1 and 2 hold. Furthermore,
a price vector p satisfying the conditions can be computed in polynomial time if, for any pair of bases,
the bijection between them can be computed in polynomial time.

We further show the equivalence between Conjecture 2 and its weighted counterpart as below.

Conjecture 5 For i ∈ {1, 2}, let Mi = (S,Bi) be a matroid and wi : S → R be a weight function.
Assume that there exist disjoint bases B1 ∈ B1 and B2 ∈ B2 with B1 ∪ B2 = S. Then, there exists a
function p : S → R satisfying the following conditions.

11

1. For B1 ∈ arg maxX∈B1
(w1(X) − p(X)), we have that B1 is a maximizer of w1(X) + w2(S \ X)

subject to X ∈ B1 and S \X ∈ B2.

2. For B2 ∈ arg maxX∈B2
(w2(X) − p(X)), we have that B2 is a maximizer of w1(S \ X) + w2(X)

subject to S \X ∈ B1 and X ∈ B2.

Clearly, Conjecture 2 is a special case of Conjecture 5; this follows easily by setting w1 ≡ w2 ≡ 0.
Somewhat surprisingly, the reverse implication also holds for arbitrary matroids.

Theorem 6 If Conjecture 2 is true, then Conjecture 5 is also true.

Based on Theorem 6 and the properties of partition and strongly base orderable matroids, we have
the following corollaries.

Corollary 7 If M1 is a partition matroid and M2 is an arbitrary matroid, then Conjecture 5 holds, and
a price vector p satisfying the conditions can be computed in polynomial time.

Corollary 8 If both M1 and M2 are strongly base orderable, then Conjecture 5 holds. Furthermore, a
price vector p satisfying the conditions can be computed in polynomial time if, for any pair of bases, the
bijection between them can be computed in polynomial time.

Finally, we prove that Theorem 6 can be generalized to gross substitutes valuations, i.e., M♮-concave
functions.

4 Unit- and bi-demand markets

The result of this section appeared in [1]. In multi-demand markets, each agent t has a positive integer
bound b(t) on the number of desired items, and the value of a set is the sum of the values of the b(t) most
valued items in the set. In particular, if we set each b(t) to one or two then we get the unit-demand or
bi-demand cases, respectively.

For multi-demand markets, the problem of finding an allocation that maximizes social welfare is equiv-
alent to a maximum weight b-matching problem in a bipartite graph with vertex classes corresponding
to the agents and items, respectively. The high level idea of our approach is to consider the dual of this
problem, and to define an appropriate price vector based on an optimal dual solution with distinguished
structural properties.

Based on the primal-dual interpretation of the problem, first we give a simpler proof of a result of
Cohen-Addad et al. [6] on unit-demand valuations.

Theorem 9 (Cohen-Addad et al.) Every unit-demand market admits an optimal dynamic pricing
that can be computed in polynomial time.

When the total demand of the agents exceeds the number of available items, ensuring the optimality
of the final allocation becomes more intricate. Therefore, we consider instances satisfying the following
property:

each agent t ∈ T receives exactly b(t) items in every optimal allocation. (OPT)

While this is a restrictive assumption, it is a reasonable condition that holds for a wide range of applica-
tions, and also appeared in [4] and recently in [13]. For example, if the total number of items is not less
than the total demand of the agents and the value of each item is strictly positive for each agent, then it
is not difficult to check that (OPT) is satisfied.

The problem becomes significantly more difficult for larger demands. Berger et al. [4] observed that
bundles that are given to an agent in different optimal allocations satisfy strong structural properties. For
markets up to three multi-demand agents, they grouped the items into at most eight equivalence classes
based on which agent could get them in an optimal solution, and then analyzed the item-equivalence

12

graph for obtaining an optimal dynamic pricing. We show that, when assumption (OPT) is satisfied,
these properties follow from the primal-dual interpretation of the problem, and give a new proof of their
result for such instances.

Theorem 10 (Berger et al.) Every multi-demand market with property (OPT) and at most three
agents admits an optimal dynamic pricing scheme, and such prices can be computed in polynomial time.

Finally, we give an algorithm for determining optimal dynamic prices in bi-demand markets with an
arbitrary number of agents, that is, when the demand b(t) is two for each agent t.1 Besides structural
observations on the dual solution, the proof relies on uncrossing sets that are problematic in terms of
resolving ties.

Theorem 11 Every bi-demand market with property (OPT) admits an optimal dynamic pricing scheme,
and such prices can be computed in polynomial time.

5 Dynamic pricing under fairness constraints

The result of this section appeared in [2]. The original motivation behind dynamic pricing schemes was to
shift the tie-breaking process from the central coordinator to the customers, as in reality customers choose
bundles of items without caring about social optimum. As we have seen in the previous sections, the
dynamic setting is indeed capable of maximizing social welfare without the need for a central coordinator.
On the other hand, this approach has an implication on the fairness of the final allocation that is usually
not emphasized. The model assumes that the customers’ sole objective is to pick a bundle of items
maximizing their utility with respect to the prices available at their arrival, and they are not concerned
with prices at earlier and/or later times. This means that envy-freeness is ensured only locally, and
the final allocation together with the prices at which the items were bought do not necessarily form an
envy-free solution over all time horizon.

The model we consider here differs from earlier ones mainly in that we are seeking for optimal pricing
schemes under fairness constraints. In the static setting, a pair of pricing p and allocation x is envy-free
if xa ∈ arg max{ua(s) | s ∈ S} holds for each agent a ∈ A. The dynamic setting naturally suggests
variants in which envy-freeness is defined over a subset of time steps. Let Ta ⊆ [n] be a subset of time
steps for each agent a ∈ A. Then price vectors p = (p1, . . . , pn) and allocation X = (x1, . . . , xn) form
an envy-free allocation if xa ∈ arg max{ua,t(s) | t ∈ Ta, s ∈ St} for each agent a ∈ A. We propose four
possible notions of envy-freeness of different strength depending on the time period over which agents
compare themselves to others:

(F1) Strong envy-freeness. Agents consider prices for the whole time horizon, that is, Ta = {1, . . . , n}
for a ∈ A.

(F2) Ex-post envy-freeness. Agents consider prices available after and at their arrival, that is, Ta =
{σ(a), . . . , n} for a ∈ A.

(F3) Ex-ante envy-freeness. Agents consider prices available before and at their arrival, that is, Ta =
{1, . . . , σ(a)} for a ∈ A.

(F4) Weak envy-freeness. Agents consider prices at their arrival, that is, Ta = {σ(a)} for a ∈ A.

Using this terminology, optimal dynamic pricing schemes discussed in [1,3,4,6,13] provide weakly envy-
free solutions. It is worth mentioning that, though at first sight they might seem to be symmetric, the
ex-post and ex-ante cases turns out to behave quite differently.

We distinguish further variants of the model depending on whether ties between items are broken by
the seller or the agents:

1Recently, Pashkovich and Xie [13] showed that the result of Berger et al. [4] can be generalized from three to four
agents. They further extended the results of the current paper on bi-demand valuations to the case when each agent is
ready to buy up to three items.

13

(C1) Seller-chooses. If there are several items maximizing the utility of the current agent, then the seller
decides which one to allocate to her.

(C2) Agent-chooses. If there are several items maximizing the utility of the current agent, then she
decides which one to take.

In terms of finding an optimal pricing, problem (C1) is easier. Indeed, given an optimal pricing for (C2),
the seller can always decide to allocate the item that was chosen by the agent.

Previous works generally assumed that agents arrive in an unspecified order. Besides this, we consider
two further variants based on the control and information of the arrival process:

(O1) Unspecified. The agents arrive in a fixed order that the seller has no information on.

(O2) Predetermined. The agents arrive in a fixed order that the seller knows in advance.

(O3) Alterable. The order of the agents is determined by the seller.

As for the objective function, we either consider the social welfare W (X) =
∑

a∈A va(xa) or the
revenue of all sold items R(p,X) =

∑
a∈A pσ(a)(xa).

These variants and our results are summarized in Table 1. The results are split horizontally by the
type of envy-freeness considered, while the columns are indexed by the type of the ordering of the agents.
Algorithmic results hold irrespective of how agents break ties, while hardness results hold even if ties are
broken by the seller. It is worth noting that the O(log(n))-approximation algorithm of Guruswami et
al. [9] extends to all of variants of envy-free pricing where the objective is to maximize the revenue.

Table 1: Complexity landscape of social welfare and revenue maximization under fairness constraints
in unit-demand markets. Algorithmic results (green cells) hold even in the agent-chooses setting, while
hardness results (red cells) hold already for the seller-chooses case. In each row, complexities of cells with
light shade are implied by cells with darker shade.

Welfare maximization Revenue maximization

Ties Unspecified Predetermined Alterable Unspecified Predetermined Alterable

S
tr
o
n
g Agents

Seller

Not exists

P
[11,15]

Not exists

P

Not exists

P

Not exists

APX-hard

Not exists

APX-hard

Not exists

APX-hard

E
x
-p

o
st

P P P APX-hard APX-hard P

E
x
-a
n
te

P P P APX-hard APX-hard P

W
e
a
k

P
[6, Thm. 3.1] P P Open P P

References

[1] K. Bérczi, E. R. Bérczi-Kovács, and E. Szögi. A dual approach for dynamic pricing in multi-demand
markets. arXiv preprint arXiv:2107.05131, 2021.

[2] K. Bérczi, L. Codazzi, J. Golak, and A. Grigoriev. Envy-free dynamic pricing schemes. arXiv
preprint arXiv:2301.01529, 2023.

[3] K. Bérczi, N. Kakimura, and Y. Kobayashi. Market pricing for matroid rank valuations. SIAM
Journal on Discrete Mathematics, 35(4):2662–2678, 2021.

14

[4] B. Berger, A. Eden, and M. Feldman. On the power and limits of dynamic pricing in combinatorial
markets. In International Conference on Web and Internet Economics, pages 206–219. Springer,
2020.

[5] E. H. Clarke. Multipart pricing of public goods. Public choice, pages 17–33, 1971.

[6] V. Cohen-Addad, A. Eden, M. Feldman, and A. Fiat. The invisible hand of dynamic market pricing.
In Proceedings of the 2016 ACM Conference on Economics and Computation, pages 383–400, 2016.

[7] P. Dütting and L. A. Végh. Private Communication, 2017.

[8] T. Groves. Incentives in teams. Econometrica: Journal of the Econometric Society, pages 617–631,
1973.

[9] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On profit-
maximizing envy-free pricing. In SODA, volume 5, pages 1164–1173, 2005.

[10] J. Hsu, J. Morgenstern, R. Rogers, A. Roth, and R. Vohra. Do prices coordinate markets? In
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pages 440–453,
2016.

[11] A. S. Kelso Jr and V. P. Crawford. Job matching, coalition formation, and gross substitutes.
Econometrica: Journal of the Econometric Society, pages 1483–1504, 1982.

[12] N. Nisan and I. Segal. The communication requirements of efficient allocations and supporting prices.
Journal of Economic Theory, 129(1):192–224, 2006.

[13] K. Pashkovich and X. Xie. A two-step approach to optimal dynamic pricing in multi-demand
combinatorial markets. arXiv preprint arXiv:2201.12869, 2022.

[14] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance,
16(1):8–37, 1961.

[15] L. Walras and E. d. P. Pure. Lausanne: L. Corbaz & Cie, 1874.

15

16

Division of goods and bads to many players

Tamás Fleiner1

Department of Computer Science and
Information Theory

Budapest University of
Technology and Economics
Magyar Tudósok körútja 2,

H-1117 Budapest, Hungary and
Institute of Economics,

Centre for Economic and Regional Studies,
Tóth Kálmán u. 4, H-1097 Budapest, Hungary

fleiner.tamas@vik.bme.hu

Abstract: The goal of this work is to recall some well-known facts about the fair division
problem and cake-cutting protocols, to exhibit certain not so well-known results on propor-
tional division with unequal shares and to formulate some open research problems.

Fair division, unequal shares, Robertson-Webb model, division protocol

1 Introduction

In cake cutting problems, the cake symbolizes a heterogeneous and divisible resource that shall be dis-
tributed among n players. Each player has her own measure function, which determines the value of
any part of the cake for her. The aim of proportional cake cutting is to allocate each player a piece
that is worth at least as much as her proportional share, evaluated with her measure function [26]. The
measure functions are not known to the protocol. Instead of a cake, we may need to distribute chores.
The difference from the cake is that it represents negative utility for the players, hence a player is better
off if she gets less of it. Consequently, in a proportional chore division no player gets more of the chore
than her proportional share.

The efficiency of a fair division protocol can be measured by the number of queries. In the standard
Robertson-Webb model [22], two kinds of queries are allowed. The first one is the cut query, in which
a player is asked to mark the cake at a distance from a given starting point so that the piece between
these two is worth a given value to her. The second one is the eval query, in which a player is asked to
evaluate a given piece according to her measure function.

If shares are meant to be equal for all players, then the proportional share is defined as 1
n of the

whole cake. In the unequal shares version of the problem (also called cake cutting with entitlements),
proportional share is defined as a player-specific demand, summing up to the value of the cake over all
players.

The aim of this paper is to determine the query complexity of proportional cake cutting and chore
division in the case of unequal shares. Robertson and Webb write in their seminal book [22] “Nothing
approaching general theory of optimal number of cuts for unequal shares division has been given to date.

1Research was supported by OTKA grant K128611. The research reported in this work and carried out at the Budapest
University of Technology and Economics was supported by the “TKP2020, National Challenges Program” of the National
Research Development and Innovation Office (BME NC TKP2020 and OTKA124171) and by the Higher Education Excel-
lence Program of the Ministry of Human Capacities in the frame of the Artificial Intelligence research area of the Budapest
University of Technology and Economics (BME FIKP-MI/SC).

17

This problem may prove to be very difficult.” Instead of the number of physical cuts, we now settle the
issue for the number of queries, which is the standard measure of efficiency for cake cutting protocols.

We provide formal definitions in Section 2. In Section 3 we focus on our protocol for the problem
[10]. The idea is that we recursively render the players in two batches so that these batches can simulate
two players who aim to cut the cake into two approximately equal halves. Our protocol requires only
2 (n− 1) · ⌈log2D⌉ queries. Other known protocols reach D · ⌈log2D⌉ and n(n−1) · ⌈log2D⌉ queries, thus
ours is the fastest procedure that derives a proportional division for the n-player cake cutting problem
with unequal shares.

We complement our positive result by showing a lower bound of Ω (n · logD) on the query complexity
of the proportional cake cutting problems in Section 4. Our proof generalizes, but does not rely on the
lower bound proof given by Edmonds and Pruhs in [12] for the problem of proportional division with
equal shares. In Section 5, we turn to irrational demands and present our protocol for the proportional
cake cutting problem by reducing it to the same problem with integer demands only. We conclude in
Section 6 with two open research problems.

2 Preliminaries

We begin with formally defining our input. Our setting includes a set of players of cardinality n, denoted
by {P1, P2, . . . , Pn}, and a heterogeneous and divisible good, which we refer to as the cake and project
to the unit interval [0, 1]. Each player Pi has a non-negative, absolutely continuous measure function
µi that is defined on Lebesgue-measurable sets. We remark that absolute continuity implies that every
zero-measure set has value 0 according to µi as well. In particular, µi((a, b)) = µi([a, b]) for any interval
[a, b] ⊆ [0, 1]. Besides measure functions, each player Pi has a demand di ∈ Z+, representing that Pi is

entitled to receive di/
n∑

j=1

dj ∈]0, 1[share of the whole cake. The value of the whole cake is identical for

all players, in particular it is the sum of all demands:

∀1 ≤ i ≤ n µi([0, 1]) = D =

n∑

j=1

dj .

We remark that an equivalent formulation is also used sometimes, where the demands are rational numbers
that sum up to 1, the value of the full cake. Such an input can be transformed into the above form simply
by multiplying all demands by the least common denominator of all demands. As opposed to this, if
demands are allowed to be irrational numbers, then no ratio-preserving transformation might be able to
transform them to integers. That is why the case of irrational demands is treated separately.

The cake [0, 1] will be partitioned into subintervals in the form [x, y), 0 ≤ x ≤ y ≤ 1. A finite union
of such subintervals forms a piece Xi allocated to player Pi. We would like to stress that a piece is not
necessarily connected.

Definition 1 A set {Xi}1≤i≤n of pieces is a division of the cake [0, 1] if
⋃

1≤i≤n

Xi = [0, 1] and Xi∩Xj = ∅

for all i ̸= j. We call division {Xi}1≤i≤n proportional if µi(Xi) ≥ di for all 1 ≤ i ≤ n. If we work with
chore then proportionality of a division means that µi(Xi) ≤ di holds for all 1 ≤ i ≤ n.

In words, proportionality means that each player receives a piece with which her demand is satisfied.
We do not consider Pareto optimality or alternative fairness notions such as envy-freeness in this paper.

We now turn to defining the measure of efficiency of a cake cutting protocol. We assume that
1 ≤ i ≤ n, x, y ∈ [0, 1], and 0 ≤ α ≤ 1. Oddly enough, the Robertson-Webb query model was not
formalized explicitly by Robertson and Webb first, but by Woeginger and Sgall [28], who attribute it to
the earlier two. In their query model, a protocol can ask agents the following two types of queries.

� Cut query (Pi, α) returns the leftmost point x so that µi([0, x]) = α. In this operation x becomes
a so-called cut point.

18

� Eval query (Pi, x) returns µi([0, x]). Here x must be a cut point.

Notice that this definition implies that choosing sides, sorting marks or calculating any other parameter
than the value of a piece are not counted as queries and thus they do not influence the efficiency of a
protocol. Our protocols do not abuse the model by performing a large number of such operations. We
also remark that the “leftmost point” criterion in the cut query can be omitted if the measure µi is not
only absolutely continuous with respect to the Lebesgue measure, but it is equivalent to it—meaning
that the Lebesgue measure is also absolutely continuous with respect to µi.

Definition 2 The number of queries in a protocol is the number of eval and cut queries until termination.
We denote the number of queries for a n-player protocol with total demand D by T (n,D).

The query definition of Woeginger and Sgall is the strictest of the type Robertson-Webb. We now
outline three options to extend the notion of a query, all of which have been used in earlier papers [12,
13, 22, 28] and are also referred to as Robertson-Webb queries.

1. The query definition of Edmonds and Pruhs. There is a slightly different and stronger
formalization of the core idea, given by Edmonds and Pruhs [12] and also used by Procaccia [20, 21].
The crucial difference is that they allow both cut and eval queries to start from an arbitrary point
in the cake.

� Cut query (Pi, x, α) returns the leftmost point y so that µi([x, y]) = α or an error message if
no such y exists.

� Eval query (Pi, x, y) returns µi([x, y]).

These queries can be simulated as trivial concatenations of the queries defined by Woeginger and
Sgall. To pin down the starting point x of a cut query (Pi, x, α) we introduce the cut point x with
the help of a dummy player’s Lebesgue-measure, ask Pi to evaluate the piece [0, x] and then we cut
query with value α′ = α+µi([0, x]). Similarly, to generate an eval query (Pi, x, y) one only needs to
artificially generate the two cut points x and y and then ask two eval queries of the Woeginger-Sgall
model, (Pi, x) and (Pi, y). We remark that such a concatenation of Woeginger-Sgall queries reveals
more information than the single query in the model of Edmonds and Pruhs.

2. Proportional cut query. The term proportional cut query stands for n-player Cut queries of the
sort “Pi cuts the piece [x, y] in ratio a : b”, where a, b are integers. As Woeginger and Sgall also
note it, two eval queries and one cut query with ratio α = a

a+b · µi([x, y]) are sufficient to execute
such an operation if x, y are cut points, otherwise five queries suffice. Notice that the eval queries
are only used by Pi when she calculates α, and their output does not need to be revealed to any
other player or even to the protocol.

3. Reindexing. When working with recursive protocols it is especially useful to be able to reindex a
piece [x, y] so that it represents the interval [0, 1] for Pi. Any further cut and eval query on [x, y]
can also be substituted by at most five queries on the whole cake. Similarly as above, there is no
need to reveal the result of the necessary eval queries addressed to a player.

These workarounds ensure that protocols require asymptotically the same number of queries in both
model formulations, even if reindexing and proportional queries are allowed. We opted for utilizing
all three extensions of the Woeginger-Sgall query model in our upper bound proofs, because the least
restrictive model allows the clearest proofs.

19

2.1 Related work

Equal shares Possibly the most famous cake cutting protocol belongs to the class of Divide and Conquer
algorithms. Cut and Choose is a 2-player equal-shares protocol that guarantees proportional shares. It
already appeared in the Old Testament, where Abraham divided Canaan to two equally valuable parts
and his nephew Lot chose for himself the one he valued more. The first n-player variant of this protocol
is attributed to Banach and Knaster in [26] and it requires O

(
n2
)

cut and eval queries. Other methods
include the continuous (but discretizable) Dubins-Spanier protocol [11] and the Even-Paz protocol [13].
The latter authors show that their method requires O (n log n) queries at most. The complexity of
proportional cake cutting has been studied in a setting where a circle instead of an interval represents
the cake [3, 5], and also for higher dimensional cakes, where cuts are tailored to fit the shape of the
cake [4, 15, 16, 24].

Unequal shares The problem of proportional cake cutting with unequal shares is first mentioned
by [26]. Motivated by dividing a leftover cake, Robertson and Webb define the problem formally and
offer a range of solutions for two players [22]. More precisely, they list cloning players, using Ramsey
partitions [19] and most importantly, the Cut Near-Halves protocol [22]. The last method computes a
fair solution for 2 players with integer demands d1 and d2 in 2⌈log2(d1 + d2)⌉ queries. Robertson and
Webb also show how any 2-player protocol can be generalized to n players in a recursive manner. The
number of physical cuts Cut Near-Halves makes for two players can be beaten for certain demands, as
Robertson and Webb also note in [22]. For some demands, Carney [7] and Lohr [17] design such protocols
utilizing number-theoretic approaches. Proportional allocation with unequal shares is also discussed in
the context of indivisible items instead of a cake [1, 14].

Irrational demands The case of irrational demands in the unequal shares case is interesting from
the theoretical point of view, but beyond this, solving it might be necessary, because other protocols
might generate instances with irrational demands. For example, in the maximum-efficient envy-free
allocation problem with two players and piecewise linear measure functions, any optimal solution must
be specified using irrational numbers, as shown in [8]. Barbanel in [2] studies the case of cutting the cake
in an irrational ratio between n players and presents a protocol that constructs a proportional division.
Shishido and Zeng in [25] solve the same problem with the objective of minimizing the number of resulting
pieces. Their protocol is simpler than that of Barbanel [2].

Lower bounds The drive towards establishing lower bounds on the complexity of cake cutting
protocols is coeval with the cake cutting literature itself [26]. For proportional cake cutting with equal
shares, Even and Paz conjectured that their protocol is the best possible [13], while Robertson and
Webb explicitly write that “they would place their money against finding a substantial improvement on
the n log2 n bound”. After approximately 20 years of no breakthrough in the topic, Magdon-Ismail et al.
showed in [18] that any protocol must make Ω(n log n) comparisons—but this was no bound on the number
of queries. Essentially simultaneously, Woeginger and Sgall came up with the lower bound Ω(n log n) on
the number of queries for the case where contiguous pieces are allocated to each player [28]. Not much
later, this condition was dropped by Edmonds and Pruhs [12] who completed the query complexity
analysis of proportional cake cutting with equal shares by presenting a lower bound of Ω(n log n). Brams
et al. [6] study the minimum number of physical cuts in the case of unequal shares and proved that n− 1
cuts might not suffice—in other words, they show that there in some instances, no proportional allocation
exists with contiguous pieces. Crew et al. in [9] and Segal-Halevi in [23] improve this lower bound and
shows that at least 2n − 2 cuts may be necessary, and 3n − 4 cuts are always sufficient. However, no
lower bound on the number of queries has been known in the case of unequal shares.

3 A protocol for many players with unequal shares

In this section, we present a simple and elegant protocol for cake cutting that beats all three above
mentioned protocols (cloning, Ramsey partitions, Cut Near-Halves) in query number. Our main idea is
that we recursively render the players in two batches so that these batches can simulate two players who
aim to cut the cake into two approximately equal halves. For now we work with the standard cake and

20

query model defined in Section 2. In what follows, cutting near-halves means to cut in ratio ⌊D2 ⌋ : ⌈D2 ⌉.
To ease the notation we assume that the players are indexed so that when they mark the near-half

of the cake, the marks appear in an increasing order from 1 to n. In the subsequent rounds, we reindex
the players to keep this property intact. Based on these marks, we choose “the middle player” Pj , this
being the player whose demand reaches the near-half of the cake when summing up the demands in the
order of marks from left to right. This player cuts the cake and each player is ordered to the piece her
own mark falls to. The middle player Pj is cloned if necessary so that she can play on both pieces. The
protocol is then repeated on both generated subinstances, with adjusted demands. In the subproblem,
the players’ demands are according to the ratios listed in the pseudocode. The base case of the recursion
is a subproblem with one player only, in which case she is allocated the piece.

Proportional division with unequal integer shares

Each player marks the near-half of the cake X.
Sort the players according to their marks.
Calculate the smallest index j such that ⌊D2 ⌋ ≤

∑j
i=1 di =: m.

Cut the cake in two along Pj ’s mark.
Define two instances of the same problem and solve them recursively.

1. Players P1, P2, . . . , Pj share piece X1 on the left. Demands are set to
d1, d2 . . . , dj−1, dj −m + ⌊D2 ⌋, while measure functions are set to µi · ⌊D2 ⌋/µi(X1),
for all 1 ≤ i ≤ j.

2. Players Pj , Pj+1, . . . , Pn share piece X2 = X \X1 on the right. Demands are set to
m− ⌊D2 ⌋, dj+1, dj+2, . . . , dn, while measure functions are set to µi · ⌈D2 ⌉/µi(X2), for
all j ≤ i ≤ n.

Example 3 We present our protocol on an example with n = 3. Every step of the protocol is depicted
in Figure 1. Let d1 = 1, d2 = 3, d3 = 1.

Row 1: Since D = 5 is odd, all players mark the near-half of the cake in ratio 2:3. The cake is then cut at
P2’s mark, since d1 < ⌊D2 ⌋, but d1 + d2 ≥ ⌊D2 ⌋.

Row 2: The first subinstance will consist of players P1 and P2, both with demand 1, whereas the second
subinstance will have the second copy of player P2 alongside P3 with demands 2 and 1, respectively.
In the first instance, both players mark half of the cake and the one who marked it closer to 0 will
receive the leftmost piece, while the other player is allocated the remaining piece. The players in
the second instance mark the cake in ratio 1 : 2. Suppose that the player demanding more marks it
closer to 0. The leftmost piece is then allocated to her.

Row 3: The two players in the second subinstance play further: they share the remaining piece in ratio 1 : 1.
The player with the mark on the left will be allocated the piece on the left, while the other players
takes the remainder of the piece.

Row 4: The whole cake is divided proportionally.

These rounds require 3 + 2 + 2 + 2 = 9 proportional cut queries and no eval query.

Theorem 4 Our “Protocol for proportional division with unequal integer shares” terminates with a pro-
portional division.

We can estimate the number of queries our protocol needs.

21

0 1P3P2P1

2:3

1 1 12

0 10 1P1 P2 P2 P3

1:21:1

1 1

P1 P2 P2 0 1P2P3

1:1

P1 P2 P2 P3 P2

Figure 1: The steps performed by our protocol on Example 3. The colored thick intervals are the pieces
already allocated to the player in their label. The ratio players cut the current cake can be seen in the
framed labels.

Theorem 5 For any 2 ≤ n and n < D, the number of queries in our n-player protocol on a cake of total
value D is T (n,D) ≤ 2(n− 1) · ⌈log2D⌉.

Remark 6 The “Protocol for proportional division with unequal shares” can be modified to solve the cor-
responding chore division problem as follows. In the recursive step, players P1, P2, . . . , Pj share piece X2

rather than X1 with demands d1, d2, . . . , dj−1,m−⌊D2 ⌋ while piece X1 is shared by players Pj , Pj+1, . . . , Pn

with demands dj −m+ ⌊D2 ⌋, dj+1, . . . , dn.

4 Lower bounds

In this section, we propose an adversary strategy to guarantee that for certain integer demands, any
protocol for proportional division requires Ω(n logD) queries. This is roughly the same number of queries
that our ”Proportional division with unequal integer shares” protocol uses. We shall restrict ourselves
to the two basic queries described by Woeginger and Sgall in [28], that is to Cut query (Pi, α) and Eval
query (Pi, x). As other queries we mentioned and used earlier can be simulated by a constant number of
these two queries, our result remains valid for the wider set of queries, as well.

Our main tool is a nonstandard representation of query-based protocols by two-dimensional segment-
vectors. Assume that player Pi has already answered a certain number of queries along some protocol.
If the result of Eval query (Pi, xj) is αj then this information can be stored as a pair (xj , αj) such that
µi([0, xj]) = αj . Similarly, if Cut query (Pi, αk) results in xk then this means that µi([0, xk]) = αk, and
pair (xk, αk) stores all the information that this query provides. So all the information that a number of
queries reveal can be regarded as a set of (xj , αj) pairs and we may assume x1 < x2 < Cutpoints
x1, x2, . . . decompose the [0, 1] interval into segments I1, I2, . . . of the cake where Ij = [xj , xj+1[. (For the
last segment, we need an artificial cutpoint that belongs to pair (1, µi([0, 1]).) For each such segment Ij ,
we construct vector vj = (|Ij |, µi(Ij)) = (xj+1 − xj , αj+1 − αj). Let’s check how these vectors change
after a query!

In case of Eval query (Pi, x), there is a j such that xj ≤ x ≤ xj+1. Hence segment Ij is cut into two
new segments [xj , x[and [x, xj+1[. This corresponds to replacing vector vj by vectors v′j and v′′j in the
segment-vector representation such that vj = v′j + v′j .

Assume now that Cut query (Pi, α) returns x. Again, there is a j such that α1 + α2 + . . . + αj ≤
α ≤ α1 + α2 + . . .+ αj+1. Consequently, after this particular cut query, segment Ij is cut into two new
segments [xj , x[and [x, xj+1[. Again, this corresponds to replacing vector vj by vectors v′j and v′′j in
the segment-vector representation such that vj = v′j + v′′j .

22

These observations show that the segment-vector representation of consecutive queries can be viewed
as follows. We start from vector (1, µi([0, 1])). At each query, we pick one vector (xj , αj) of the rep-
resentation and specify a number 0 < x < xj or a number 0 < α < αj . Depending on which one we
specified, player Pi returns a number 0 ≤ α ≤ αj or a number 0 < x < xj . Then vector (xj , αj) in the
representation is replaced by vectors (x, α) and (xj − x, αj − α).

We need one more observation before describing the promised adversary strategy. Assume that a
query-based protocol outputs a proportional division for the cake cutting problem and player Pi receives
piece Xi. Then

∑{µi(Ij) : λ(Ij \Xi) = 0} ≥ di where segments I1, I2, . . . are determined by the queries
to Pi. That is, we cannot guarantee more value to Pi than the total value of those segments that are
assigned exclusively to Pi (with a possible exception of a null set). The reason for this is that if a positive
measure subset Z of some segment Ij is disjoint from Xi then µi(Xi∩Ij) might be 0. A similar argument
shows that in case of proportional chore division,

∑{µi(Ij) : λ(Ij ∩Xi) > 0} ≤ di must hold.

Theorem 7 Assume that µ1([0, 1]) = µ2([0, 1]) = . . . = µn([0, 1]) = 1, D ≥ n2, players P0, P1, . . . , Pn

have demands d0 = D, d1 = d2 = . . . = dn = 1 and P0’s valuation is the Lebesgue-measure: µ0 = λ.
Then any query-based protocol for the proportional cake cutting problem must use Ω(n log2D) queries.

Proof: We describe an adversary strategy that guarantees that if some player P1, P2, . . . , Pn does not
answer at least Ω(log2D) queries then there is no chance to find a proportional division. Along the
protocol, each player Pi for 1 ≤ i ≤ n updates the segment-vector representation of her queries and
answers any query such that for any k ≥ 0, after k queries the following property holds for any segment-
vector (x, α) of the representation.

α ≤ 1

(D + n) · log2D
or x ≥ 2−k (1)

The reader can easily convince herself that players P1, P2, . . . , Pn can answer any query such that
property (1) remains true. Assume that after answering k queries, Pi receives pieceXi. By the observation
before Theorem 7, µi(Xi) is the sum of the value µi(Ij) of certain segments Ij created after the queries.
If αj ≤ 1

(D+n)·log2 D holds for the all the representing vectors (xj , αj) of these Ij ’s then we need at least

log2D segments in order to have µi(Xi) ≥ 1
D+n . This means that Pi had to answer at least log2D queries.

Otherwise, Xi contains some segment Ij (with a possible exception of a null set) such that xj ≥ 2−k and
hence

2−k ≤ λ(Ij) ≤ λ(Xi) ≤ 1− λ(X0) ≤ n

D + n

as P0 must receive a piece X0 of size λ(X0) ≥ D
D+n . This follows that player Pi had to answer at least

k ≥ log2(D + n)− log2 n ≥ log2D − log2

√
D =

1

2
log2D

queries, and the theorem follows. □
The chore division version of the above problem seems to be tougher. At least it is not quite clear

how the adversary strategy can be modified on order to prove the same lower bound on the number of
queries. For two players with demands 1 and D, it is relatively easy to show a Ω(logD) lower bound
but it is not clear if this can be improved in the multiplayer case. Note that Takács claims a Ω(n logD)
lower bound for the proportional chore division problem with many players and unequal shares in her
BSc dissertation [27].

5 Irrational demands

Contrary to everyday experience where irrational demands may lead to infinite disputes, here we present
protocols that find a proportional division after a finite number of queries for both the multiplayer cake

23

cutting and the chore division problems with unequal and possibly irrational demands. Note that even
for two players, there is no upper bound on the number of queries used by our protocols.

Assume that demands d1 ≤ d2 ≤ . . . ≤ dn of players P1, P2, . . . , Pn are nonnegative reals. We
consider a relaxation of the cake-cutting problem: instead of equalities, we require only inequalities
D =

∑n
i=1 di ≤ µi([0, 1]) for each 1 ≤ i ≤ n. That is, the total demand may be strictly less than

the value of the cake, hence it might be possible that
∑n

i=1 di/µi([0, 1]) < 1 holds for the total share.
Definiton 1 is still valid for this relaxation: in a proportional division, every player Pi must receive a piece
Xi of [0, 1] such that µi(Xi) ≥ di. For chore division, the relaxed condition is D ≥ µi([0, 1]) and Definiton
1 is unchanged. The protocol below outputs a proportional division for the cake-cutting problem.

Proportional division with unequal real shares

1. If µi([0, 1]) > D for some i then we pick new demands d′i for each player Pi such that
di ≤ d′i and d′i/µi([0, 1]) ∈ Q and

∑n
i=1 d

′
i/µi([0, 1]) = 1. Multiply each d′i with the

common denominator N and apply the ”Proportional division with unequal integer
shares” protocol with the hence calculated demands d∗i = N · d′i.

2. If µi([0, 1]) = D ∀i then each player i marks point Cut query (Pi, d1) on [0, 1].

(a) If the leftmost mark x belongs P1 then P1 leaves with piece X1 = [0, x[and
(after reindexing) P2, . . . , Pn recursively share part X2 = [x, 1] with unchanged
demands.

(b) If the mark at x belongs to Pi and not to P1 then Pi recevives X1 =
[0, x[and P1, P2, . . . , Pn recursively share part X2 = [x, 1] with demands
d1, d2, . . . , di−1, di − d1, di+1, . . . dn.

We prove that the above protocol outputs a proportional division after finitely many queries. In Case
1, we have

∑n
i=1 di/µi([0, 1]) <

∑n
i=1 di/D =

∑n
i=1 di/

∑n
i=1 di = 1, hence it is possible to pick demands

d′i with the required properties. The output of the called protocoll is a proportional division for demands
d∗i . Hence it is also proportional for demands d′i, and “even more proportional” for the original demands.
Clearly, case 1 requires a finite number of queries.

Observe that in the instance created in Case 2(a) the number of players is decreased by one and
µi(X2) = D− d1 for all i, hence the new task is also a proper instance of the original unrelaxed problem.
This shows the correctness of Case 2(a). In case 2(b), no player objects that Pi gets X1 for the price
that her demand is decreased by d1. Moreover, as µ1(X2) ≥ d − d1, the new instance for the recursive
call will be in Case 1.

It is rather straightforward to modify above protocol to output a proportional chore division. Namely,
the condition for Case 1 is µi([0, 1]) < D for some player Pi and we decrease rather than increase the
demands in this case. In Case 2, x should be the rightmost mark.

6 Open problems

Here we list two interesting problems that we cannot solve.

1. Is there an irrational number 0 < α < 1 and a positive integer K such that there exists a protocol
that solves the proportional cake cutting problem for two players with demands α and 1− α with
no more than K queries?

2. Is there a positive constant c such that our protocol “Proportional division with unequal integer
shares” uses at most c times as many queries as any other protocol that finds a proportional division
for the cake cutting problem with unequal integer shares?

24

Acknowledgment

The author thanks Ágnes Cseh for sharing her thoughts on the proportional chore division problem.

References

[1] Moshe Babaioff, Noam Nisan, and Inbal Talgam-Cohen. Competitive equilibrium with indivisible
goods and generic budgets. arXiv preprint arXiv:1703.08150, 2017.

[2] Julius B Barbanel. Game-theoretic algorithms for fair and strongly fair cake division with entitle-
ments. In Colloquium Mathematicae, volume 69:1, pages 59–73, 1996.

[3] Julius B Barbanel, Steven J Brams, and Walter Stromquist. Cutting a pie is not a piece of cake.
The American Mathematical Monthly, 116(6):496–514, 2009.

[4] Anatole Beck. Constructing a fair border. The American Mathematical Monthly, 94(2):157–162,
1987.

[5] Steven J Brams, Michael A Jones, and Christian Klamler. Proportional pie-cutting. International
Journal of Game Theory, 36(3):353–367, 2008.

[6] Steven J Brams, Michael A Jones, and Christian Klamler. Divide-and-conquer: A proportional,
minimal-envy cake-cutting algorithm. SIAM Review, 53(2):291–307, 2011.

[7] Edward Carney. A new algorithm for the cake-cutting problem of unequal shares for rational ratios:
the divisor reduction method. Scientific Terrapin, 3(2):15–22, 2012.

[8] Yuga J Cohler, John K Lai, David C Parkes, and Ariel D Procaccia. Optimal envy-free cake cutting.
In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pages 626–631. AAAI
Press, 2011.

[9] Logan Crew, Bhargav Narayanan, and Sophie Spirkl. Disproportionate division. arXiv preprint
arXiv:1909.07141, 2019.

[10] Ágnes Cseh and Tamás Fleiner. The complexity of cake cutting with unequal shares. ACM Trans-
actions on Algorithms (TALG), 16(3):1–21, 2020.

[11] Lester E Dubins and Edwin H Spanier. How to cut a cake fairly. The American Mathematical
Monthly, 68(1):1–17, 1961.

[12] Jeff Edmonds and Kirk Pruhs. Cake cutting really is not a piece of cake. ACM Transactions on
Algorithms (TALG), 7(4):51, 2011.

[13] Shimon Even and Azaria Paz. A note on cake cutting. Discrete Applied Mathematics, 7(3):285–296,
1984.

[14] Alireza Farhadi, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Sebastien Lahaie, David Pen-
nock, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. Fair allocation of indivisible goods to
asymmetric agents. Journal of Artificial Intelligence Research, 64:1–20, 2019.

[15] Theodore P Hill. Determining a fair border. The American Mathematical Monthly, 90(7):438–442,
1983.

[16] Karthik Iyer and Michael N Huhns. A procedure for the allocation of two-dimensional resources in a
multiagent system. International Journal of Cooperative Information Systems, 18(03n04):381–422,
2009.

25

[17] Andrew Lohr. Tight lower bounds for unequal division. arXiv preprint arXiv:1206.1553, 2012.

[18] Malik Magdon-Ismail, Costas Busch, and Mukkai S Krishnamoorthy. Cake-cutting is not a piece
of cake. In 20th Annual Symposium on Theoretical Aspects of Computer Science, pages 596–607.
Springer Berlin, Heidelberg, 2003.

[19] Kevin McAvaney, Jack Robertson, and William Webb. Ramsey partitions of integers and pair
divisions. Combinatorica, 12(2):193–201, 1992.

[20] Ariel D Procaccia. Cake cutting: not just child’s play. Communications of the ACM, 56(7):78–87,
2013.

[21] Ariel D. Procaccia. Cake cutting algorithms. In Handbook of Computational Social Choice, chapter
13. Cambridge University Press, 2015.

[22] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. Natick: AK Peters,
1998.

[23] Erel Segal-Halevi. Cake-cutting with different entitlements: How many cuts are needed? Journal of
Mathematical Analysis and Applications, 480(1):123382, 2019.

[24] Erel Segal-Halevi, Shmuel Nitzan, Avinatan Hassidim, and Yonatan Aumann. Fair and square:
Cake-cutting in two dimensions. Journal of Mathematical Economics, 70:1–28, 2017.

[25] Harunor Shishido and Dao-Zhi Zeng. Mark-choose-cut algorithms for fair and strongly fair division.
Group Decision and Negotiation, 8(2):125–137, 1999.

[26] Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

[27] Lili Takács. Igazságos tortaosztási feladat és változatai Unpublished manuscript, 2023.

[28] Gerhard J Woeginger and Jǐŕı Sgall. On the complexity of cake cutting. Discrete Optimization,
4(2):213–220, 2007.

26

Algebraic combinatorial optimization
for noncommutative rank & determinant

Hiroshi Hirai1

Department of Mathematical Informatics,
Graduate School of Information Science and

Technology,
The University of Tokyo,
Tokyo, 113-8656, Japan.

hirai@mist.i.u-tokyo.ac.jp

Abstract: Edmonds’ problem asks to compute the rank of a linear combination of matrices
with variable coefficients:

A =

m∑

k=1

Akxk.

This problem originates from an algebraic formulation of bipartite matching, and has numer-
ous applications in various areas of mathematical science. A deterministic polynomial time
algorithm for Edmonds’ problem is not known, and is one of important open problems in
theoretical computer science.

Ivanyos, Qiao, and Subrahmanyam introduced a noncommutative formulation of Edmonds’
problem, where variables xk are assumed noncommutative. In this setting, it was shown
that the resulting rank (nonncommutative rank; nc-rank) can be computed in deterministic
polynomial time. The nc-rank theory is closely linked to combinatorial optimization, and
may be viewed as an “algebraization” of it. The present article explains some results on such
aspects of the nc-rank and its generalization.

Keywords: Edmonds’ problem, noncommutative rank (nc-rank), degree of deter-
minants, fractional matroid matching

1 Introduction

Edmonds’ problem [9] asks to compute the rank of a linear combination of matrices with variable coeffi-
cients (a linear symbolic matrix):

A =
m∑

k=1

Akxk, (1.1)

where Ak are n×n matrices over a field K, xk are variables, and the rank of A is considered in the ratio-
nal function field K(x1, x2, . . . , xk). This problem originates from an algebraic formulation of bipartite
matching, and has numerous applications in various areas of mathematical science; see [35]. Although
a randomized polynomial time algorithm was shown by Lovász [34], a deterministic polynomial time
algorithm for Edmonds’ problem is not known, and is one of important open problems in theoretical
computer science.

Ivanyos, Qiao, and Subrahmanyam [27] introduced a noncommutative formulation of Edmonds’ prob-
lem, which regards xk as noncommutative variables and regards A as a matrix over noncommutative

1Research is supported by JSPS KAKENHI Grant Number 21K19759 and JST PRESTO Grant Number JPMJPR192A,
Japan.

27

polynomial ring K〈x1, x2, . . . , xm〉. The rank of A over the free skew field K(〈x1, x2, . . . , xm〉) [1, 6] is
called the noncommutative rank (nc-rank) of A, denoted by nc-rankA. Surprisingly, nc-rankA admits a
deterministic polynomial time computation:

Theorem 1.1 ([16, 20, 28]) nc-rankA of a matrix A in (1.1) can be computed in polynomial time.

These polynomial time algorithms are all related to cutting edge technologies of optimization, and have
being stimulating subsequent researches. For K = Q, Garg, Gurvits, Oliveira, and Wigderson [16]
showed that Gurvits’ operator scaling [19] can compute the nc-rank in polynomial time. It turns out
that this solves a geodesically-convex optimization problem on a Hadamard manifold; see [3] for further
developments. Ivanyos, Qiao, and Subrahmanyam [27, 28] developed a polynomial time algorithm for the
nc-rank on an arbitrary field K. Their algorithm (the Wong sequence algorithm) is viewed as an algebraic
generalization of the classical augmenting-path algorithm for bipartite matching. The algorithm by
Hamada and Hirai [20] is a combination of submodular function minimization on a modular lattice and
geodesically-convex optimization on a (non-manifold) Hadamard space.

As expected from the origin of Edmonds’ problem and the ideas of the last two algorithms, the nc-
rank theory is closely linked to combinatorial optimization, and may be viewed as an “algebraization” of
it. The present article explains some results on such aspects of the nc-rank and its generalization. The
contents of this article is based on [21, 22] and the forthcoming paper [24].

2 Noncommutative rank

The starting point is the formula of nc-rank by Fortin and Reutenauer [10].

Theorem 2.1 ([10]) Let A be a matrix in (1.1). Then nc-rankA is equal to the optimal value of the
following problem:

(FR) Min. 2n− r − s
s.t. SAT has an r × s zero submatrix,

S, T ∈ GLn(K).

The problem (FR) is also written as the following vector subspaces optimization (called the Maximum
Vanishing Subspace Problem in [20])

(MVSP) Min. 2n− dimU − dimV

s.t. Ak(U, V) = {0} (k ∈ [m]),

U, V ⊆ Kn : vector subspaces,

where Ak is regarded as a bilinear form Ak(x, y) := x>Aky. It should be noted that this problem already
appeared in [35]. MVSP can be viewed as submodular function minimization on the modular lattice of
vector subspaces; see [20].

By rankA = rankSAT ≤ 2n− r − s, nc-rank is an upper bound of rank:

rankA ≤ nc-rankA.

Theorem 2.2 ([13, 20, 27, 28]) An optimal solution S, T in FR can be obtained in polynomial time.

For K = Q, the algorithm by Garg et al. [16] can compute the optimal value of FR but cannot obtain an
optimal solution (S, T). Recently, Franks, Soma, and Goemans [13] modified this algorithm to obtain an
optimal solution (S, T). The algorithm by Hamada and Hirai [20] obtains optimal (S, T) even for small
finite fields but does not guarantee a polynomial bit-complexity of (S, T) when K = Q.

Here we outline the idea of the Wong sequence algorithm by Ivanyos, Qiao, and Subrahmanyam [27,
28]. Let A =

∑
k Akxk be a matrix in (1.1). A substitution of A is a matrix Ã over K obtained from A

28

by substituting value zk ∈ K to variable xk for each k, that is, Ã =
∑
k Akzk. The Wong sequence [26]

relative to (A, Ã) is a sequence W0,W1, . . . , of vector subspaces in Kn defined by

W0 := {0}, Wi :=

m∑

k=1

AkÃ
−1Wi−1 (i = 1, 2, . . .), (2.1)

where Ak is regarded as Kn → Kn.

Lemma 2.3 ([26]) (1) W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wj = Wj+1 = · · · =: W∞ for some j.

(2) If W∞ ⊆ ImÃ, then rank Ã = rankA = nc-rankA, and (W⊥∞, Ã
−1W∞) is an optimal solution of

MVSP.

Here (·)⊥ denotes the orthogonal complement. According to this sufficient condition of optimality, the
Wong sequence algorithm computes the Wong sequence of a substitution Ã and its limit W∞. If W∞ ⊆
ImÃ, then we obtain an optimal solution of MVSP. Otherwise, the algorithm updates substitution Ã to
increase rank Ã, or replace A by the blow-up A{d} so that nc-rankA = 1

d nc-rankA{d} (or enlarge ground

field K). For a positive integer d, the d-th blow-up A{d} of A is a linear symbolic matrix defined by

A{d} :=

m∑

k=1

Ak ⊗Xk, (2.2)

where ⊗ denotes the Kronecker product and Xk = (xk,ij) is a d × d matrix of variable entries xk,ij .
We consider the (ordinary) rank of A{d} over the rational function field K({xk,ij}k∈[m],i,j∈[d]). The key
properties of the blow-up are:

Theorem 2.4 ([27]) (1) nc-rankA = maxd=1,2,...
1
d rankA{d}.

(2) 1
d rankA{d} is an integer (Regularity Lemma).

It is known [7] that the maximum in (1) is attained for any d ≥ n− 1.
In the following, we summarize connections of nc-rank to combinatorial optimization.

Bipartite matching. Let G = (U t V,E) be a bipartite graph with two color classes U, V and edge
set E. Suppose (for simplicity) that U = V = [n]. Define a linear symbolic matrix A (Edmonds’ matrix)
by

A :=
∑

ij∈E
eie
>
j xij , (2.3)

where ei denotes the i-th unit vector in Kn. As is well-known, rankA is equal to the maximum number of
a matching of G. It is also equal to nc-rankA. Indeed, matrices S, T in FR can be taken as permutation
matrices (vector subspaces U, V in MVSP can be taken as coordinate subspaces). Then nc-rankA is
equal to the maximum of 2n−|S| over all stable sets S in G. By Kőnig-Egerváry Theorem, this quantity
equals the maximum number of a matching. This means rankA = nc-rankA. In addition, the Wong
sequence algorithm (with 0, 1 substitution) can realize the classical augmenting path algorithm.

Linear matroid intersection. Let M1 and M2 be two linearly representable matroids represented by
vectors a1, a2, . . . , am and b1, b2, . . . , bm in Kn, respectively. Define a linear symbolic matrix A by

A :=
m∑

k=1

akb
>
k xk. (2.4)

Then rankA is equal to the maximum number of a common independent set of the matroids M1 and
M2. The feasibility condition of MVSP is: U⊥ 3 ak or V ⊥ 3 bk for k ∈ [m]. (U⊥, V ⊥) can be chosen
as (span{ak}k∈I , span{bk}k∈[m]\I) for I ⊆ [m], and the objective value is r1(I) + r2([m] \ I), where ri
is the rank function of Mi. Namely, nc-rankA equals minI⊆[m] r1(I) + r2([m] \ I). By the matroid
intersection theorem, it equals rankA. Thus, the rank and nc-rank are the same. Further, the Wong
sequence algorithm (with 0, 1 substitution) can realize the matroid intersection algorithm by Edmonds.

29

Mixed matrix and partitioned matrix. A mixed matrix [33] is the sum Q+ T of a matrix Q over
K and Edmonds’ matrix T for a bipartite graph G, which is also viewed as a linear symbolic matrix
A = Qx0 +

∑
ij∈E Eijxij . By Murota’s formula [33], its rank is equal to the quantity of MVSP. Thus the

rank and nc-rank are the same.
A (generic) partitioned matrix in [25] is a linear symbolic matrix of form:

A =

A11x11 A12x12 · · · A1nx1n
A21x21 A22x22 · · · A2nx2n

...
...

. . .
...

An1xn1 An2xn2 · · · Annxnn

 , (2.5)

where Aij is a matrix (of suitable size) over K for i, j ∈ [n].
Iwata and Murota [31] studied the rank of a generic partitioned matrix such that each submatrix Aij

is 2× 2. They proved a formula of the rank. It turned out that this equals the quantity of MVSP. Hence,
the rank and nc-rank are the same. Iwamasa and Hirai [23] showed that the rank equals the maximum
of certain algebraically-constraint 2-matchings (A-matching) in a bipartite graph associated with A, and
sharpened the Wong sequence algorithm to develop a combinatorial polynomial time augmenting path
algorithm to compute a maximum A-matching.

Nonbipartite matching and linear matroid matching. A representative example such that rank
and nc-rank differ is the Tutte matrix of a nonbipartite graph G = ([n], E). The Tutte matrix of G is a
linear symbolic matrix

A =
∑

ij∈E
(eie

>
j − eje>i)xij . (2.6)

The maximum matching number of G equals (1/2) rankA. The rank of the Tutte matrix of K3 is 2,
whereas the nc-rank is 3. So the rank and nc-rank differ. Interestingly, the nc-rank still has a natural
interpretation: It equals twice the fractional matching number of G. This fact was recently revealed
by Oki and Soma [37]. They further revealed that this relation is generalized to matroid matching and
fractional matroid matching. See Section 3.2.3 for more details. These facts indicate that the nc-rank
may be viewed as a “relaxation” of the rank.

3 Degree of Dieudonné determinants

As seen the above examples, the (nc-)rank computation corresponds to cardinality maximization. It is
natural to consider an algebraic correspondent of weighed maximization. In fact, this is computation of
the degree of determinants. To see this, consider the minimum-weight perfect bipartite matching problem
for a bipartite graph G = ([n] t [n], E) with edge-weight c : E → Z. Define matrix A[c] by

A[c] :=
∑

ij∈E
eie
>
j xijt

c(ij), (3.1)

where t is a new variable commuting with each xij . Then the (maximum) degree deg detA[c] of degA[c]
with respect to t is equal to the maximum weight of a perfect matching in G. For a matrix A of linear
matroid intersection (2.4), if A[c] is defined similarly, then deg detA[c] is equal to the maximum weight
of a common base of M1 and M2 with rank n.

3.1 Linear symbolic rational matrices

Motivated by this observation, Hirai [21] formulated a noncommutative version of the deg-det computa-
tion. Consider a general class of linear symbolic rational matrices:

B = B1x1 +B2x2 + · · ·+Bmxm, (3.2)

30

where xk are variables as above, and Bk = Bk(t) are n×n matrices over rational function field K(t) with
indeterminate t. Then deg detB is considered in rational function field K(x1, x2, . . . , xm, t).

The noncommutative formulation is as follows: see [21, 22, 36] for details. The matrix B is regarded
as the rational function skew field F(t) = {p/q | p ∈ F[t], q ∈ F[t] \ {0}}, where F := K(〈x1, . . . , xm〉)
is the skew free field, F[t] is the skew polynomial ring over F, and the degree of an element in F(t) is
defined similarly. Any (nonsingular) matrix B over F(t) is written as B = LDPU (called the Bruhat
normal form), where L and U are lower-triangular and upper-triangular, respectively, matrices with unit
diagonals, P is a permutation matrix, and D is a diagonal matrix. The Dieudonné determinant DetB of
B is defined as the product of the sign of P and all diagonals of D modulo the commutator subgroup of the
multiplicative group F(t) \ {0} [8]. We let DetB := 0 if B is singular. Since DP is uniquely determined,
DetB is well-defined. Although DetB is no longer an element of F(t), its degree deg DetB ∈ Z ∪ {−∞}
is well-defined (as the degree of any commutator is zero).

In addition to deg det and deg Det, we consider the maximum degrees of subdeterminants of the two
types: For ` ∈ [n], define

δ`(B) := max{deg detB[I, J] | I, J ⊆ [n] : |I| = |J | = `}, (3.3)

∆`(B) := max{deg DetB[I, J] | I, J ⊆ [n] : |I| = |J | = `}, (3.4)

where B[I, J] denote the submatrix of B having row set I and column set J .

3.1.1 Duality theorem

As an extension of the formula of nc-rank (Theorem 2.1), Hirai [21] established the following formula of
deg Det:

Theorem 3.1 ([21]) Let B = B(t) be a matrix in (3.2). Then deg DetB is equal to the optimal value
of the following problem (Maximum Vanishing subModule Problem):

(MVMP) Min. −deg detP − deg detQ

s.t. deg(PBkQ)ij ≤ 0 (i, j ∈ [n], k ∈ [m]),

P,Q ∈ GLn(K(t)).

This problem can be viewed as an L-convex function minimization on the lattice of certain submodules
in K(t)n [21]. It should be noted that the quantity of MVMP already appeared in [32] as an upper bound
of deg det. In particular,

deg detB ≤ deg DetB.

Any matrix B = B(t) over K(t) is written as a formal power series as B = B(d)td +B(d−1)td−1 + · · · ,
where B(`) is a matrix over K (` = d, d−1, . . .) and d ≥ maxij degBij . The feasibility condition of MVMP
is rephrased as: PBQ is written as PBQ = (PBQ)(0) +(PBQ)(−1)t−1 + · · · . The linear symbolic matrix
of the leading term (PBQ)(0) =

∑
k(PBkQ)(0)xk plays particularly important roles.

Lemma 3.2 ([21]) Let (P,Q) be a feasible solution for MVMP.

(1) (P,Q) is optimal if and only if nc-rank(PBQ)(0) = n.

(2) If rank(PBQ)(0) = n, then deg detB = deg DetB = −deg detP − deg detQ.

3.1.2 Deg-Det algorithm

We here explain the Deg-Det algorithm [21] to solve MVMP. This algorithm uses an algorithm of
solving FR as a subroutine, and is viewed as a simplified version of Murota’s combinatorial relaxation
algorithm [32] developed for deg det; see also [33, Section 7.1].

We assume that the position of a zero submatrix in FR is upper right. For s ∈ [n] := {1, 2, . . . , n},
let 1s :=

∑s
i=1 ei ∈ Zn. For integer vector α ∈ Zn, let (tα) denote the diagonal matrix with diagonals

tα1 , tα2 , . . . , tαn in order.

31

Algorithm: Deg-Det

Input: B =
∑m
k=1Bkxk, and a feasible solution P,Q for MVMP.

Output: deg DetB.

1: Solve the problem FR for (PBQ)(0) and obtain optimal matrices S, T .

2: If the optimal value 2n− r − s of FR is equal to n, then output −deg detP − deg detQ. Otherwise,
letting (P,Q)← ((t1r)SP,QT (t−1n−s)), go to step 1.

The algorithm works as follows: The matrix SPAQT after step 1 has a negative degree in each entry
of its upper right r × s submatrix. Multiplying t for the first r rows and t−1 for the first n− s columns
yields no entry of positive degree. Thus, the next solution (P,Q) := ((t1r)SP,QT (t−1n−s)) is feasible,
and decreases the objective value by r + s− n(> 0). If the algorithm terminates, then (P,Q) is optimal
by Lemma 3.2 (1). If the algorithm does not terminate, then deg DetB = −∞.

In step 2, we can replace (1r,1n−s) by (α1r, α1n−s) for the maximum possible integer α > 0 so that
the next solution is feasible. In the bipartite instance (3.1), the Deg-Det algorithm with this update can
simulate the classical Hungarian method. Also, for matroid intersection instance, Furue and Hirai [14]
showed that the Deg-Det algorithm can derive Frank’s weighted splitting algorithm [11] with a new
matrix implementation. In the both cases, the leading matrix (PBQ)(0) in step 2 can keep the rank-1
property, and Lemma 3.2 (2) shows deg det = deg Det. The same approach proves deg det = deg Det for
2× 2-partitioned matrices [22].

Consider computation of maximum subdeterminants ∆`(B). It is known that (I, J) 7→ deg detB[I, J]
is a valuated bimatroid; see [33]. The same holds for deg DetB[I, J].

Theorem 3.3 ([21]) (I, J) 7→ deg DetB[I, J] is a valuated bimatroid.

Therefore, by the incremental greedy algorithm [33, 5.2.5], the whole ∆`(B) can be computed by a
polynomial number of calls of computation of deg DetB[I, J].

3.2 Linear symbolic monomial matrices

We restrict ourselves to a special class of linear symbolic rational matrices. For a matrix A =
∑m
k=1Akxk

in (1.1) and c ∈ Zm, define a linear symbolic rational matrix A[c] by

A[c] :=
m∑

k=1

Akxkt
ck . (3.5)

As seen above, this class of linear symbolic matrices captures weighted maximization of several combina-
torial optimization problems. The Deg-Det algorithm is applicable for A[c] but is a pseudo polynomial
in c. By regarding c as a cost vector, Hirai and Ikeda [22] incorporated cost scaling with the Deg-Det
algorithm, and obtained a polynomial time algorithm for deg DetA[c]:

Theorem 3.4 ([22]) Let A be a matrix in (1.1) and let c ∈ Zm.

(1) Suppose that arithmetic operations over K are performed in constant time. Then deg DetA[c] can
be computed in time polynomial of n,m, logC, where C := maxk |ck|.

(2) Suppose that K = Q and that each Ak consists of integer entries whose absolute values are at most
D > 0. Then deg DetA[c] can be computed in time polynomial of n,m, logC, logD.

They also utilized the Frank-Tardos method [12] to remove logC from the complexity. The second result
(2) is based on a polyhedral interpretation of deg Det (Section 3.2.2) and the modulo-p reduction method
by Iwata and Kobayashi [30] devised for the weighted linear matroid matching problem. Specifically,
deg DetA[c] is equal to the maximum of deg Det(A mod p)[c] for a polynomial number of primes p,
where the bit-length of p is also polynomially bounded and A mod p is a linear symbolic matrix over
finite field GF (p).

32

3.2.1 Duality theorem

The forthcoming paper [24] sharpens Theorem 3.1 for ∆`(A[c]) as follows:

Theorem 3.5 ([24]) Let A =
∑m
k=1Akxk be a matrix in (1.1) and let c ∈ Zm. Then ∆`(A[c]) is equal

to the optimal value of the following problem:

Min. −
n∑

i=n−`+1

αi −
n∑

j=n−`+1

βj

s.t. αi + βj ≤ −ck (i, j ∈ [n], k ∈ [m] : Ak(Ui, Vj) 6= {0}),
α1 ≥ α2 ≥ · · · ≥ αn, β1 ≥ β2 ≥ · · · ≥ βn,
U1 ⊂ U2 ⊂ · · · ⊂ Un, V1 ⊂ V2 ⊂ · · · ⊂ Vn,
α, β ∈ Zn, Ui, Vj ⊆ Kn : vector subspaces for i, j ∈ [n].

This problem is also written as

Min.
n∑

i=1

pi +
n∑

j=1

qj + `γ

s.t. pi + qj + γ ≥ ck (i, j ∈ [n], k ∈ [m] : Ak(ui, vj) 6= {0}),
{u1, u2, . . . , un}, {v1, v2, . . . , vn} : bases of Kn,
p, q ∈ Zn+, γ ∈ Z.

Observe that this is LP-dual of the weighted bipartite matching problem if the bases are fixed, and
provides a good characterization for ∆`(A[c]) if the bit-length of the bases is bounded.

For the case of a 2 × 2-partitioned matrix A, Iwamasa [29] developed a primal-dual combinatorial
polynomial time algorithm to compute δ`(A[c]) = ∆`(A[c]), and provided an algorithmic proof of the
above duality.

3.2.2 Polyhedral interpretation

Here we explain a polyhedral interpretation of deg Det. Before that, we first consider deg det. For a
multivariate polynomial p(x1, x2, . . . , xm) =

∑
u1,u2,...,um

au1u2...um
xu1
1 xu2

2 · · ·xum
m , let vec p ⊆ Zm denote

the set of all integer vectors u = (u1, u2, . . . , um) with au1u2...um
6= 0. Let P`(A) ⊆ Rm be the polytope

defined by

P`(A) := Conv
⋃
{vec detA[I, J] | I, J ⊆ [n] : |I| = |J | = `}. (3.6)

The maximum degrees of subdeterminants of A[c] are given by linear optimizations over P`(A):

Lemma 3.6 δ`(A[c]) = max{c>u | u ∈ P`(A)}.
Hirai and Ikeda [22] revealed an analogous interpretation for deg DetA[c] (and thus for ∆`(A[c])).

Recall the d-th blow up A{d} of A, and consider its ordinary determinant detA{d} that is a polynomial
of variables xk,ij for k ∈ [m], i, j ∈ [n]. The exponent vector vec detA{d} is an md2-dimensional integer
vector z = (zk,ij)k∈[m],i,j∈[d]. For such vector z = (zk,ij)k∈[m],i,j∈[d], define an m-dimensional vector
projd(z) ∈ Qm by

projd(z)k :=
1

d

∑

i,j∈[d]
zk,ij (k ∈ [m]). (3.7)

Define Q`(A) ⊆ Rm by

Q`(A) := Conv
⋃
{projd vec detA[I, J]{d} | I, J ⊆ [n] : |I| = |J | = `, d = 1, 2, . . .}. (3.8)

An analogue of Theorem 2.4 and Lemma 3.6 is the following.

33

Theorem 3.7 ([24, 22]) (1) ∆`(A[c]) = max{c>u | u ∈ Q`(A)}.

(2) Q`(A) is an integral polytope belonging to {u ∈ Rm | 1>u = `}.

(3) An integral vector u maximizing c>u over Q`(A) is obtained in polynomial time.

The meaning of polynomiality in (3) is the same as in Theorem 3.4. In particular, Q`(A) is an integral
relaxation of P`(A). For a matrix A of linear matroid intersection, Q`(A) and P`(A) are equal, and the
vertices of Q`(A) = P`(A) are incidence vectors of common independent sets of cardinality `. The same
holds for 2× 2-partitioned matrices A, in which the vertices of Qn(A) is the incidence vectors of perfect
A-matchings [22].

3.2.3 Fractional linear matroid matching and rank-2 Brascamp-Lieb polytope

Let H = {H1, H2, . . . ,Hm} be a collection of 2-dimensional subspaces in Kn. A fractional matroid
matching for H (Vande Vate [38]) is a nonnegative vector y ∈ Rm+ satisfying

m∑

k=1

yk dimHk ∩X ≤ dimX (X ⊆ Kn : vector subspace).

In addition, if 2
∑m
k=1 yk = n, then it is called perfect. The fractional matroid matching polytope FMP (H)

for H is the polytope consisting of all fractional matroid matchings. Suppose that Hk = span{ak, bk} for
ak, bk ∈ Kn, k ∈ [m]. Define linear symbolic matrix A by

A :=
m∑

k=1

(akb
>
k − bka>k)xk. (3.9)

It is known [35] that rankA is equal to twice the maximum number of a matroid matching (a subset
I ⊆ [m] with dim

∑
k∈I Hk = 2|I|). Oki and Soma [37] showed that nc-rankA is equal to twice the

maximum size of a fractional matroid matching.

Theorem 3.8 ([37]) nc-rankA = 2 max{1>y | y ∈ FMP (H)}.

They also showed that the second blow-up A{2} attains the nc-rank, and developed a fast randomized
algorithm for solving the fractional matching matroid problem.

We extend the above relation to a weighted version.

Theorem 3.9 ([24]) ∆`(A[c]) = 2 max{c>y | y ∈ FMP (H), 21>y = `}.

Thus, the above framework for deg Det is applicable to the weighted fractional matching problem. This re-
lation can be shown by interpreting the problem in (3.5) as LP-dual of linear optimization over FMP (H).
Particularly, Qn(A) is equal to twice the polytope PFMP (H) of perfect fractional matroid matchings.

Franks, Soma, and Goemans [13] revealed an interesting connection between PFMP (H) and the
Brascamp-Lieb inequality. It is known [2] that the finiteness of the constant of Brascamp-Lieb inequal-
ity can be decided by solving the membership problem of a certain polytope, called the Brascamp-Lieb
polytope (BL-polytope). The computational complexity of the BL-polytope has attracted attention in
theoretical computer science [15]. Franks, Soma, and Goemans [13] showed that when the BL-inequality
is associated with rank-2 matrices B1, B2, . . . , Bm, the corresponding BL-polytope (rank-2 BL-polytope)
coincides with PFMP (H) for 2-dimensional spaces spanned by Bk. By general principle of optimization
and separation [18], a polynomial time algorithm for linear optimization over PFMP (H) (strong opti-
mization oracle) implies polynomial complexity of the strong separation, particularly, the membership
of PFMP (H). Gijswijt and Pap [17] reduced the weighted fractional matroid matching problem to a
polynomial number of unweighted problems for which a polynomial time algorithm is given by Chang,
Llewellyn, and Vande Vate [4, 5]. However, this reduction is not enough, since it can cause bit-explosion

34

for K = Q, the setting of the BL-inequality, as pointed out by [13]. They showed via modified operator
scaling that the membership of PFMP (H) is in NP ∩ coNP for K = Q.

Theorem 3.7 (3) and Theorem 3.9 imply polynomial-time solvability of linear optimization over
PFMP (H), even for K = Q. Thus:

Theorem 3.10 ([24]) The strong separation problem in the rank-2 BL-polytope is in P.

References

[1] S. A. Amitsur: Rational identities and applications to algebra and geometry. Journal of Algebra 3 (1966),
304–359.

[2] J. Bennett, A. Carbery, M. Christ, and T. Tao: The Brascamp-Lieb inequalities: Finiteness, structure and
extremals. Geometric and Functional Analysis 17(2008), 1343–1415.

[3] P. Bürgisser, C. Franks, A. Garg, R. Oliveira, M. Walter, and A. Wigderson: Towards a theory of non-
commutative optimization: geodesic first and second order methods for moment maps and polytopes.
preprint, 2019. (the conference version in FOCS 2019)

[4] S. Chang, D. C. Llewellyn, and J. H. Vande Vate: Matching 2-lattice polyhedra: finding a maximum vector.
Discrete Mathematics 237 (2001), 29–61.

[5] S. Chang, D. C. Llewellyn, and J. H. Vande Vate: Two-lattice polyhedra: duality and extreme points.
Discrete Mathematics 237 (2001), 63–95.

[6] P. M. Cohn: Skew Fields: Theory of General Division Rings. Cambridge University Press, Cambridge, 1995.

[7] H. Derksen and V. Makam: Polynomial degree bounds for matrix semi-invariants. Advances in Mathematics
310 (2017) 44–63.

[8] J. Dieudonné: Les déterminants sur un corps non commutatif. Bulletin de la Société Mathématique de France
71 (1943) 27–45.

[9] J. Edmonds: Systems of distinct representatives and linear algebra. Journal of Research of the National
Bureau of Standards 71B (1967) 241–245.

[10] M. Fortin and C. Reutenauer: Commutative/non-commutative rank of linear matrices and subspaces of
matrices of low rank. Séminaire Lotharingien de Combinatoire 52 (2004), B52f.

[11] A. Frank: A weighted matroid intersection algorithm. Journal of Algorithms 2 (1981), 328–336.

[12] A. Frank and É. Tardos: An application of simultaneous Diophantine approximation in combinatorial opti-
mization. Combinatorica 7 (1987), 49–65.

[13] C. Franks, T. Soma, and M. Goemans: Shrunk subspaces via operator Sinkhorn iteration. preprint, 2022
(the conference version in SODA 2023).

[14] H. Furue and H. Hirai: On a weighted linear matroid intersection algorithm by deg-det computation. Japan
Journal of Industrial and Applied Mathematics 37 (2020), 677–696.

[15] A. Garg, L. Gurvits, R. Oliveira, and A. Wigderson: Algorithmic and optimization aspects of Brascamp–Lieb
inequalities, via operator scaling. Geometric and Functional Analysis 28 (2018), 100–145. (the conference
version in STOC 2017)

[16] A. Garg, L. Gurvits, R. Oliveira, and A. Wigderson: Operator scaling: theory and applications. Foundations
of Computational Mathematics 20 (2020), 223–290. (the conference version in FOCS 2016)

[17] D. Gijswijt and G. Pap: An algorithm for weighted fractional matroid matching. Journal of Combinatorial
Theory, Series B 103 (2013), 509–520.

35

[18] M. Grötchel, L. Lovász, and A. Schrijver: Geometric Algorithms and Combinatorial Optimization. Springer-
Verlag, Berlin, 1993.

[19] L. Gurvits: Classical complexity and quantum entanglement. Journal of Computer and System Sciences 69
(2004), 448–484.

[20] M. Hamada and H. Hirai: Computing the nc-rank via discrete convex optimization on CAT(0) spaces. SIAM
Journal on Applied Geometry and Algebra 5 (2021), 455–478. (the conference version in JH 2017)

[21] H. Hirai: Computing the degree of determinants via discrete convex optimization on Euclidean buildings.
SIAM Journal on Applied Geometry and Algebra 3 (2019), 523–557.

[22] H. Hirai and M. Ikeda: A cost-scaling algorithm for computing the degree of determinants. Computational
Complexity 31 (2022) Article number: 10.

[23] H. Hirai and Y. Iwamasa: A combinatorial algorithm for computing the rank of a generic partitioned matrix
with 2×2 submatrices. Mathematical Programming, Series A 195 (2022), 1–37. (the conference version in
IPCO 2020)

[24] H. Hirai, Y. Iwamasa, T. Oki, and T. Soma: An improved analysis on deg-Det computation of symbolic
matrices and its applications. in preparation.

[25] H. Ito, S. Iwata, and K. Murota: Block-triangularizations of partitioned matrices under similar-
ity/equivalence transformations. SIAM Journal on Matrix Analysis and Applications 15 (1994), 1226–1255.

[26] G. Ivanyos, M. Karpinski, Y. Qiao, and M. Santha: Generalized Wong sequences and their applications to
Edmonds’ problems. Journal of Computer and System Sciences 81 (2015) 1373–1386.

[27] G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam: Non-commutative Edmonds’ problem and matrix semi-
invariants. Computational Complexity 26 (2017), 717–763.

[28] G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam: Constructive noncommutative rank computation in de-
terministic polynomial time over fields of arbitrary characteristics. Computational Complexity 27 (2018),
561–593. (the conference version in ITCS 2017)

[29] Y. Iwamasa: A combinatorial algorithm for computing the entire sequence of the maximum degree of minors
of a generic partitioned polynomial matrix with 2 × 2 submatrices. preprint, (2021) (the conference version
in IPCO 2021).

[30] S. Iwata and Y. Kobayashi: A weighted linear matroid parity algorithm. SIAM Journal on Computing 51
(2022), 238–280. (the conference version in STOC 2017).

[31] S. Iwata and K. Murota: A minimax theorem and a Dulmage-Mendelsohn type decomposition for a class of
generic partitioned matrices. SIAM Journal on Matrix Analysis and Applications 16 (1995), 719–734.

[32] K. Murota: Computing the degree of determinants via combinatorial relaxation. SIAM Journal on Computing
24 (1995), 765–796.

[33] K. Murota: Matrices and Matroids for Systems Analysis. Springer-Verlag, Berlin, 2000.

[34] L. Lovász: On determinants, matchings, and random algorithms. In:Fundamentals of Computation Theory
FCT’79 Proceedings of Algebraic, Arithmetic. and Categorical Methods in Computation Theory (L. Budach,
et.), Akademie-Verlag, Berlin (1979) 565–574.

[35] L. Lovász: Singular spaces of matrices and their application in combinatorics. Boletim da Sociedade Brasileira
de Matemática 20 (1989), 87–99.

[36] T. Oki: Computing valuations of the Dieudonné determinants. Journal of Symbolic Computation 116 (2023),
284–323.

[37] T. Oki and T. Soma: Algebraic algorithms for fractional linear matroid parity via non-commutative rank,
preprint, (2022). (the conference version in SODA 2023)

[38] J. H. Vande Vate: Fractional matroid matchings. Journal of Combinatorial Theory, Series B 55 (1992),
133–145.

36

Matching in Bipartite Graphs
with Stochastic Arrivals and Departures1

Naonori Kakimura

Department of Mathematics
Keio University
Yokohama, Japan

kakimura@math.keio.ac.jp

Donghao Zhu

Technical University of Munich,
Munich, Germany

donghao.zhu@in.tum.de

Abstract: In this paper, we study a matching market model on a bipartite network where
agents on each side arrive and depart stochastically by a Poisson process. For such a dynamic
model, we design a mechanism that decides not only which agents to match, but also when to
match them, to minimize the expected number of unmatched agents. The main contribution
of this paper is to achieve theoretical bounds on the performance of local mechanisms with
different timing properties. We show that an algorithm that waits to thicken the market, called
the Patient algorithm, is exponentially better than the Greedy algorithm, i.e., an algorithm
that matches agents greedily. This means that waiting has substantial benefits on maximizing
a matching over a bipartite network. We remark that the Patient algorithm requires the
planner to identify agents who are about to leave the market, and, under the requirement,
the Patient algorithm is shown to be an optimal algorithm. We also show that, without
the requirement, the Greedy algorithm is almost optimal. In addition, we consider the 1-
sided algorithms where only an agent on one side can attempt to match. This models a
practical matching market such as a freight exchange market and a labor market where only
agents on one side can make a decision. For this setting, we prove that the Greedy and Patient
algorithms admit the same performance, that is, waiting to thicken the market is not valuable.
This conclusion is in contrast to the case where agents on both sides can make a decision and
the non-bipartite case by [Akbarpour et al., Journal of Political Economy, 2020].

Keywords: Bipartite matching, Markov chain, Random graph, Online algorithm.

1 Introduction

Matching markets arise in many applications such as marriage and dating market [10], paired kidney
exchange [2], and ride-hailing system [3, 13]. In a matching market, which can be modeled as a network
with agents (vertices) and edges, a social planner designs a mechanism that finds an acceptable matching
on the network. In a dynamic matching market, agents are allowed to arrive and depart over time.
A market is then changed dynamically over time, in which a social planner designs a mechanism that
chooses how to match agents.

A dynamic matching market has been studied extensively in theory [9, 11, 2] and practice [5, 6].
Recently, Akbarpour et al. [2] introduced a seminal matching market model with arrivals and departures.
In their model, agents arrive at and depart from the market according to the Poisson process. The planner
observes the network and chooses a matching, aiming to minimize the number of unmatched agents. One
of the key feature in their model is that the planner must decide not only which agents to match, but
also when to match them. Akbarpour et al. [2] showed that the choice of when to match agents has
large effects on performance. Specifically, they introduced two simple mechanisms with different timing

1The full version of this paper is available at [8]. Research is supported by 21H03397, 20H05795, and 22H05001.

37

properties, Greedy and Patient. They provided theoretical guarantees for these mechanisms, that suggests
waiting has substantial benefits on maximizing a matching over the network.

This paper focuses on a bipartite matching market where the network is a bipartite graph. Agents
in the market are divided into two separated groups, and a matching is formed between the two groups.
A bipartite matching market is one of the most popular matching markets in practice; a labor market
matches a worker to a task, and a ride-hailing market matches a taxi to a passenger [4, 12].

We propose a bipartite matching market model with arrivals and departures as a variant of Akbarpour
et al.’s (non-bipartite) matching model. We aim at designing local algorithms in the sense that they look
only at the neighbors of an agent which attempts to match, rather than at the global network structure.
Local algorithms can be viewed as a mechanism that each agent individually decides to find a partner.
In a bipartite matching market, agents in two separated groups have different roles, and agents on one
side often have no right to make a decision. For example, in a freight exchange market between shippers
and carriers, some platforms such as Wtransnet only allow carriers to choose shipments. For another,
in a competitive labor market, only workers submit job applications to companies, and companies make
final decisions. Thus, it is natural to consider the situation when agents on only one side have a right
to make a decision. Such a setting is called a 1-sided market [1]. We also consider the situation when
agents on both sides can make a decision, called a 2-sided market, that also appears in practice such as
a marriage and dating market and a freight exchange market like Cargopedia.

2 Our Contributions

In this work, we evaluate the performance of simple local mechanisms on a bipartite matching market
to measure the impact of waiting time in the 1-sided/2-sided markets. Our main contributions are
summarized as follows:

• We introduce a formal framework of 1-sided/2-sided bipartite market model with arrivals and de-
partures. We propose algorithms with different timing properties, Greedy and Patient algorithms,
for the 1-sided and 2-sided markets, respectively. We present almost optimal bounds on the perfor-
mance of these algorithms. Our results show that waiting to thicken the market is highly valuable
for the 2-sided market, while it is not true for the 1-sided market.

• We provide lower bounds on the performance of any matching algorithms. We show that, if the
planner does not know the information when an agent departs, any algorithm suffers a loss expo-
nentially larger than that of an omniscient algorithm where the information is available.

Let us describe our results in more detail.

Model In our model, agents in two classes arrive at Poisson rates λa and λb, respectively, and a pair
of two agents in different classes are compatible with probability p. Each agent departs at a Poisson
rate, normalized to 1. The planner chooses a matching on the current network, and matched agents leave
the market. The planner aims to minimize the proportion of the expected unmatched agents (called the
loss). This setting is a variant of a matching market model by Akbarpour et al. [2], where each agent
arrives at Poisson rate λ and edges are formed between any pair of agents with probability p.

In this paper, we consider two simple mechanisms, Greedy and Patient, for a bipartite matching
market. The Greedy algorithm attempts to match an agent upon her arrival, while the Patient algorithm
attempts to match only an urgent agent, that is, an agent at departure. Note that both these algorithms
are local, in the sense that an agent individually makes a decision when she arrives in the Greedy
algorithm, and when she departs in the Patient algorithm. In the 2-sided market, every agent attempts
to match to some agent according to Greedy or Patient algorithms, while, in the 1-sided market, agents
in one side do it and agents in the other side stay in the market without making a decision (inactive).
Note that the Patient algorithm requires the planner to know which agents will perish imminently if not
matched. The information is referred to as the departure information.

38

Table 1: Summary of the loss when T, λ, λa, λb → ∞. We denote d = λp and di = λip for i ∈ {a, b},
which are all constants.

(a) Lower bounds of the loss, and upper bounds of the loss when λa = λb

Setting Loss
Lower bound Upper bound (da = db)

non-bipartite
Greedy [2] 1

2d+1
log(2)

d

Patient [2] e−d

d+1
e−d/2

2

2-sided
Greedy max

{
∆, 1

2da+db+1

}
(cf. [7]) 2 log(da+3)

da

Patient 1
2

(
e−da

da+1 + e−db

db+1

)
e−O(da)

1-sided
Greedy max

{
∆, 1

1+2da+db

}
2 log(da+3)

da
Patient max

{
∆, log db

da+db

}

(b) Upper bounds when λa ̸= λb. In the 2-sided market, we assume λa ≥ λb, and in the 1-sided market, we assume that
agents with rate λa are inactive.

Setting Loss
Total λa-side: La λb-side: Lb

2-sided
(da ≥ db)

Greedy ∆ + 2 log(db+3)
da+db da−db

da
+ log(db+3)

da

log(db+3)
db

Patient ∆ + log(db+3)
da+db

+ e
−max

{
da−db,

da
1+db

}
e
−max

{
da−db,

da
1+db

}

1-sided
(da ≥ db)

Greedy

∆ + 2 log(db+3)
da+db

|da−db|
da

+ log(db+3)
da

log(db+3)
dbPatient

1-sided
(da < db)

Greedy log(db+3)
da

|da−db|
db

+ log(db+3)
dbPatient

Theoretical Guarantee Our main contributions are to derive theoretical bounds on the Greedy and
Patient algorithms in the 2-sided and 1-sided markets, respectively. The obtained guarantees are sum-

marized as in Tables 1(a) and 1(b). We here denote di = λip for i ∈ {a, b} and ∆ = |da−db|
da+db

. We remark

that lower bounds for the 2-sided market model were also derived by Jiang [7].
Let us first consider the balanced case, that is, when λa = λb, implying that da = db and ∆ = 0

in Table 1(a). Table 1(a) shows that the loss of the 2-sided Greedy algorithm is Θ
(

1
da

)
, ignoring a

logarithmic factor in da, while the 2-sided Patient algorithm has the loss e−Θ(da). Thus waiting to match
agents allows us to achieve exponentially small loss, which is a similar consequence to the non-bipartite
matching market [2]. In contrast, the 1-sided market leads to a different conclusion. In fact, both of the

Greedy and Patient algorithms have the same loss, which is Θ
(

1
da

)
, ignoring a logarithmic factor in da.

This means that waiting to match agents is not valuable in the 1-sided market, and other information
such as the graph structure is necessary to achieve smaller loss.

The situation changes when da ̸= db. For better understanding, we evaluate the proportion of un-
matched agents on both sides separately, which are the losses La and Lb of λa-side and λb-side, respec-
tively, in Table 1(b). Note that the total loss is equal to da

da+db
La + db

da+db
Lb. We see from Table 1(b)

that the larger side, i.e., the side with max{da, db}, has a constant loss of |da−db|
max{da,db} in every market.

This factor is unavoidable since a bipartite graph is unbalanced. Our results say that, except for the

unavoidable loss, we suffer only the loss of O
(

1
max{da,db}

)
on the large side in every market.

In the 2-sided market when da ̸= db, the smaller side of the Patient algorithm has exponentially
smaller loss than that of the Greedy algorithm. This again indicates that waiting to thicken the market
in the 2-sided market is beneficial. In contrast, both of 1-sided Greedy and Patient algorithms have the
same loss as the 2-sided Greedy algorithms.

39

We remark that, in the 1-sided Greedy algorithm, agents on one side do not attempt to match. Hence,
it has less opportunity to make a partner compared to the 2-sided Greedy algorithm, which implies that
the 1-sided Greedy algorithm seems to have larger loss. However, our results show that their losses have
the same order. On the other hand, in the 1-sided Patient algorithm, since an active agent delays her
decision, she is allowed to have more neighbors. Hence the 1-sided Patient algorithm intuitively has
smaller loss than the 1-sided Greedy algorithm. However, our results show that their losses have the
same order. In fact, Table 1(a) shows that the loss of the 1-sided Patient algorithm is strictly worse than
the 2-sided one when da = db.

Another contribution of this paper is to evaluate the loss of optimal algorithms. We show that any
algorithm suffers a loss of at least 1/(2da+db+1) if it does not know the departure information. In other
words, no matter how long each agent waits, the loss must be at least 1/(2da + db +1). Thus the Greedy
algorithm is almost optimal, up to a logarithmic factor in da. In contrast, if we know the departure

information, we prove that the loss of any algorithm is at least 1
2

(
e−da

da+1 + e−db

db+1

)
. Thus, since the loss of

the Patient algorithm is e−O(da) when da = db, waiting to match agents suffices to achieve optimal loss.

Technical Highlights The key observation for bounding the loss is that the number of agents in the
market determines the loss of matching algorithms. This is observed in a non-bipartite market [2] as well.
In our bipartite markets, in particular, the loss on one side is determined by the number of agents on the
other side; an agent is likely to be matched if there are many agents on the other side, and the number
of agents on the same side does not matter.

In the 2-sided market, since the Greedy algorithm attempts to match agents as soon as possible, the
number of available agents on both sides is reduced rapidly when da and db grow (the market is thin).
Since the market has no edges under the Greedy algorithm, all urgent agents perish, which are counted as
the loss. On the other hand, the Patient algorithm attempts to match only urgent agents, which implies
that the number of agents on both sides will remain large even when da and db increase (the market is
thick). This allows the planner to find a pair to an urgent agent, which reduces the loss. We remark
that, in the case when da > db, since the number of agents on the λb-side is small compared to the one
on the λa-side, agents on the λa-side is hard to find a partner even if the market is thick, which worsens
the loss of the larger side.

A similar observation can be applied to the 1-sided market. As observed in the 2-sided market,
the market size of active agents (i.e., agents who can make a decision) will be thin under the Greedy
algorithm, while it will be thick under the Patient algorithm. However, as we will see, the number of
inactive agents decreases rapidly under both algorithms when da and db grow. This causes large loss for
both the algorithms.

The above observation can be formalized with Markov chain. That is, the dynamics of our proposed
algorithms can be modeled as continuous-time Markov chains determined by a pair of market sizes on
both sides. We first show that the loss of the proposed algorithms can be expressed as the pool sizes
in the stationary distribution of the Markov chain. Moreover, we prove that, for each of the proposed
algorithms, the pool sizes in the stationary distribution highly concentrate around some values, which
allows us to upper-bound the loss of the algorithms.

The most challenging part is to find the concentration of the pool sizes in the steady state. The
primary technical tool is the balance equations of Markov chains. The balance equation describes the
probability flux in and out of a given set of states. For a non-bipartite matching model [2], a Markov
chain is of a simple form on the set of non-negative integers, and hence we can naturally apply the balance
equations. On the other hand, our Markov chain is defined on 2-dimensional space, i.e., each state is a
pair of market sizes. This requires us to choose a set of states for the balance equations more carefully.
In fact, we need to adopt different strategies for each of the proposed algorithms.

40

References

[1] Atila Abdulkadiroglu and Tayfun Sönmez. Matching markets: Theory and practice. Advances in
Economics and Econometrics, 1:3–47, 2013.

[2] Mohammad Akbarpour, Shengwu Li, and Shayan Oveis Gharan. Thickness and information in
dynamic matching markets. Journal of Political Economy, 128(3):783–815, 2020.

[3] John Dickerson, Karthik Sankararaman, Aravind Srinivasan, and Pan Xu. Allocation problems in
ride-sharing platforms: Online matching with offline reusable resources. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[4] Laura Doval. A theory of stability in dynamic matching markets. Technical report, Technical report,
mimeo, 2014.

[5] Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In
Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, pages 333–344,
2016.

[6] Monika Henzinger, Shahbaz Khan, Richard Paul, and Christian Schulz. Dynamic matching algo-
rithms in practice. In 28th Annual European Symposium on Algorithms (ESA 2020), volume 173,
page 58. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

[7] Weiwei Jiang. Bipartite matching model with dynamic arrivals and departures. International Journal
of Modeling, Simulation, and Scientific Computing, 9(04):1850031, 2018.

[8] Naonori Kakimura and Donghao Zhu. Dynamic bipartite matching market with arrivals and depar-
tures. CoRR, abs/2110.10824, 2021.

[9] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pages 352–358, 1990.

[10] Morimitsu Kurino. Credibility, efficiency, and stability: A theory of dynamic matching markets. The
Japanese Economic Review, 71(1):135–165, 2020.

[11] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical Com-
puter Science, 8(4):265–368, 2013.

[12] Luoyi Sun, Ruud H Teunter, Guowei Hua, and Tian Wu. Taxi-hailing platforms: Inform or assign
drivers? Transportation Research Part B: Methodological, 142:197–212, 2020.

[13] Hai Wang and Hai Yang. Ridesourcing systems: A framework and review. Transportation Research
Part B: Methodological, 129:122–155, 2019.

41

42

Composition Ordering for Linear Functions

Kazuhisa Makino1

Research Institute for Mathematical Sciences,
Kyoto University,

Kyoto, 606-8502, Japan
makino@kurims.kyoto-u.ac.jp

Abstract: We outline the composition ordering problem of linear functions, i.e., given n linear
functions f1, . . . , fn : R → R and a constant c ∈ R, we construct a permutation σ : [n] → [n]
that minimizes fσ(n) ◦ fσ(n−1) ◦ · · · ◦ fσ(1)(c), where [n] = {1, . . . , n}. We discuss structual
properties of optimal solutions for the problem as well as the current status of the complexity
issue. We also consider the multiplication ordering of n matrices.

Keywords: Function composition, Matrix multiplication, Time-dependent scheduling, Flow
shop Scheduling

Composition ordering for linear functions

The composition ordering problem of linear functions is given n linear functions f1, . . . , fn : R → R and a
constant c ∈ R, to construct a permutation σ : [n] → [n] that minimizes (or maximizes) fσ(n) ◦ fσ(n−1) ◦
· · · ◦ fσ(1)(c), where [n] = {1, . . . , n}.

For example, if the input consists of f1(x) = − 1
2x + 3

2 , f2(x) = x − 3, f3(x) = 3x − 1, and c = 0,
then the permutation σ such that σ(1) = 1, σ(2) = 2 and σ(3) = 3 minimizes the objective value, while
σ′ such that σ′(1) = 2, σ′(2) = 3 and σ′(3) = 1 maximizes it. In fact, f3 ◦ f2 ◦ f1(0) = f3(f2(f1(0))) =
f3(f2(

3
2)) = f3(− 3

2) = − 11
2 is the optimal value of the minimization problem. Similarly, f1◦f3◦f2(0) = 13

2
is the optimal value of the maximization problem. The composition ordering problem is natural and
fundamental in many fields such as artificial intelligence, computer science, and operations research. It
is also known that the single machinetime-dependent scheduling can be formulated as the composition
ordering problem [3]. The problem is formulated as follows [1, 2]. Let Ji (i ∈ [n]) denote a job with
a ready time ri ∈ R, a deadline di ∈ R, and a processing time pi : R → R, where ri ≤ di is assumed.
Different from the classical setting, the processing time pi is not a constant, but depends on the starting
time of job Ji. The model has been studied to deal with learning and deteriorating effects, Here each pi
is assumed to satisfy pi(t) ≤ s+ pi(t+ s) for all t and s ≥ 0, since we should be able to finish processing
job Ji earlier if it starts earlier. Among time-dependent settings, we consider the single machine setting
to minimize the makespan, where the input is the start time t0 (= 0) and a set of Ji (i ∈ [n]) above. The
makespan denotes the time when all the jobs have finished processing, and we assume that the machine
can handle only one job at a time and preemption is not allowed.

We present an overview of the problem, which is based on [3] and a joint work with S. Kubo (Tottori
University of Environmental Studies) and S. Sakamoto (Kyoto University). Especially, we provides several
structual properties of optimal solutions for the problem, and show that it is computed in polynomial time
if all functions are non-negative, and fixed-parameter tractable with respect to the number of negative
functions. We also consider the generalization of the problem to the multiplication ordering of matrices.

1This work was partially supported by the joint project of Kyoto University and Toyota Motor Corporation, titled
“Advanced Mathematical Science for Mobility Society”and JSPS KAKENHI Grant Numbers JP19K22841, JP20H00609,
and JP20H05967.

43

References

[1] T.C.E. Cheng, Q. Ding, B.M.T. Lin, A concise survey of scheduling with time- dependent
processing times, EJOR 152 (2004) 1-13.

[2] S. Gawiejnowicz, ATime-Dependent Scheduling, Springer 2008.

[3] Y. Kawase, K. Makino, and K. Seimi, Optimal composition ordering problems for piecewise
linear functions, Algorithmica 80 (2018) 2134-2159.

44

Rigidity of Hypergraphs under Algebraic Constraints

Shin-ichi Tanigawa1

Department of Mathematical Informatics
University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
tanigawa@mist.i.u-tokyo.ac.jp

Abstract: In this talk I will introduce a new rigidity notion for hypergraphs under algebraic
constraints. This captures ordinary Euclidean rigidity, volume-constraint rigidity, the identi-
fiability of partially-filled symmetric or skew-symmetric tensors, and more. I will explain new
challenges emerged in the analysis of this new rigidity model.

This talk is based on a joint work with James Cruickshank, Fatemeh Mohammadi, and An-
thony Nixon.

Keywords: graph rigidity, matroids, hypergraphs, tensors

1 Introduction

Suppose there are n points p1, p2, . . . , pn in Rd whose positions are unknown, and suppose that one can
get relations among those points though a measuring device. The question we want to address is the
identifiability of the points from measurements.

In this work we formulate this problem as follows. Let g be a polynomial map, which is a measurement
function representing a measurement device, and suppose that the value of g is determined for each tuple
of k points in Rd. Assuming that g is a symmetric k-form over Rd, the set of observations an observer
can get is represented by a k-uniform hypergraph G. Namely the observe can get g(pi1 , . . . , pik) for all
{i1, . . . , ik} ∈ E(G). Then the identifiability problem asks if the polynomial system

g(xi1 , . . . , xik) = g(pi1 , . . . , pik) ({i1, . . . , ik} ∈ E(G))

in variables x1, x2, . . . , xn ∈ Rd has a unique solution (up to certain symmetry). This formulation is
based on graph rigidity theory, which addresses the case when g is the Euclidean distance between two
points.

Since the idea of graph rigidity is so natural, various variants of the graph rigidity problem has been
already introduced. Typical such examples are rigidity in different metric spaces such as spherical space
or Lp-space and rigidity with respect to other geometric constraints. It is possible to consider further
general algebraic systems, but we might loose the combinatorial perspective, which is the core of rigidity
theory. In this talk, we see that the new rigidity model of hypergraphs is general enough to capture the
identifiability problem in several applications and it also gives new mathematical challenges.

2 Rigidity of Hypergraphs: Formal Definition

Let
{
X
k

}
be the set of multisets of k elements of a finite set X and

(
X
k

)
be the subset of

{
X
k

}
consisting of

sets having no repeated elements. Throughout the paper, a k-uniform hypergraph G is defined as a pair
G = (V,E) of a finite set and E ⊆

{
V
k

}
, and G is said to be simple if E ⊆

(
V
k

)
.

1Research is supported by JST PRESTO Grant Number JPMJPR2126 and JSPS KAKENHI Grant Number 18K11155.

45

Let F be either R or C. Extending the central object from rigidity, a pair (G, p) of a hypergraph G
and p : V → Fd is called a d-dimensional hyper-framework or a hyper-framework in Fd.

Suppose we are given a k-uniform hyper-framework (G, p) and g : (Fd)k → F be a k-form over Fd.
For each hyperedge e = {v1, . . . , vk} ∈ E, define fe : (Fd)V → F by fe(p) = g(p(v1), . . . , p(vk)). The
tuple fg,G := (fe : e ∈ E) is regarded as a polynomial map fg,G : (Fd)V → FE , which is called the
g-measurement map of G.

Note that, in order to make fe (and hence fg,G) well-defined, g must be either symmetric or anti-
symmetric k-form (i.e., symmetric or anti-symmetric with respect to the ordering of points), and if g is
anti-symmetric we always suppose that v1, . . . , vk are aligned in increasing order in fe(p) = g(p(v1), . . . , p(vk)),
assuming a (fixed) total order on the vertex set of G.

In most practical applications, there is a nontrivial group action that does not change the value of a
g-measurement map, and the rigidity has to be defined by taking care of the degree of freedom caused
by such actions. Let Γ be a subgroup of the general affine group Aff(d,F), which consists of pairs (A, t)
of A ∈ GL(d,F) and t ∈ Fd. The action of Γ to (Fd)V is defined by (γ · p)(v) = Ap(v) + t for any
γ = (A, t) ∈ Γ and p ∈ (Fd)V . We say that γ = (A, t) stabilizes g : (Fd)k → F if g(γ · q) = g(q) for any
q ∈ (Fd)k. The set of pairs (A, t) that stabilize g forms a subgroup of Aff(d,F), called the stabilizer of g.

Suppose that Γ is the stabilizer of g. Then Γ is also the stabilizer of f . We say that (G, p) is globally
g-rigid if for any q ∈ f−1

g,G(fg,G(p)) there is γ ∈ Γ such that q = γ · p. We say that (G, p) is locally g-rigid

if there is an open neighbour N of p in (Fd)V such that for any q ∈ f−1
g,G(fg,G(p))∩N there is γ ∈ Γ such

that q = γ · p.

3 Examples

We give a list of primary examples.

Ordinary Euclidean rigidity. A fundamental example is the case when G is 2-uniform (i.e., a graph)

and g(x, y) =
∑d

i=1(xi − yi)
2 for x, y ∈ Rd. Then the Euclidean group E(d) is the stabilizer of g, and its

Lie algebra is the set of pairs (S, t) of skew-symmetric matrices S and t ∈ Rd. In this case, g-rigidity is
nothing but the standard rigidity of frameworks.

Rigidity in pseudo-Euclidean space. A closely related example comes from changing the underlying
metric of the space to a pseudo-Euclidean metric such as in Minkowski space. In this context G is 2-
uniform (i.e., a graph) and g(x, y) =

∑d1

i=1(xi − yi)
2 −∑d

i=d1+1(xi − yi)
2 for x, y ∈ Rd and d1 ≤ d.

Lp-norm rigidity. An alternative generalization is to allow the distance function to be replaced by

distance under another norm. Specifically G is 2-uniform (i.e., a graph) and g(x, y) =
∑d

i=1 |xi − yi|p for
x, y ∈ Rd and 1 < p < ∞.

Volume-constrained rigidity. Given a d-dimensional pure simplicial complex realized in Rd, the
notion of volume-constrained rigidity concerns whether there is a motion of vertices keeping the (signed)
volume of each (d−1)-simplex. A d-dimensional pure simplicial complex can be identified with a (d+1)-
uniform hyper-framework (G, p) with a simple hypergraph G. Hence, the volume-constrained rigidity can
be captured as the g-rigidity of a simple (d + 1)-uniform hyper-framework (G, p) with g : (Rd)d+1 → R
defined by

g(p1, p2, . . . , pd+1) = det

(
p1 p2 . . . pd+1

1 1 . . . 1

)
.

46

Positive semidefinite symmetric matrix completion. Let T be a positive semidefinite symmetric
matrix of size n over R. If the rank of T is r, then the spectral decomposition implies that

T =
r∑

i=1

x⊤
i xi (1)

for some vectors x1, x2, . . . , xr ∈ Rn. Let P be an r × n-matrix obtained by aligning xi as the i-th row
vector, and define p : [n] → Rr such that p(i) is the i-th column of P . Then p(i) · p(j) is equal to the
(i, j)-th entry tij of T .

In the positive semidefinite symmetric matrix completion problem, we are given a partially-filled
positive semidefinite symmetric matrix T and asked to recover the positive semidefinite symmetric matrix
by filling missing entries. If we use a graph G = ([n], E) (which may contain self-loops) to denote a set
of indices e = (i, j) of given entries te of T , then the problem is to find p : [n] → Rr satisfying

p(i) · p(j) = te (e = {i, j} ∈ E). (2)

We are, in particular, interested in the uniqueness of the completions rather than finding a completion.
In the unique completion problem, we are given a solution p : [n] → Rr of (2) and are asked if it is the
unique solution of (2). This is a property of a framework (G, p) and is captured by the g-rigidity.

Specifically, consider a 2-uniform hypergraph (i.e., a graph) G and g(x, y) =
∑d

i=1 xiyi for x, y ∈ Rd.
Then the orthogonal group O(d) is the stabilizer of g, and the global g-rigidity decides if (2) has the
unique solution up to the action of O(d), or equivalently a completion is unique.

Symmetric tensor completions. The idea in the last paragraph can be extended to tensors as follows.
For a vector space V over C, let V ⊗k be the k-fold tensor product of V . We fix a basis of V , and

assume that each T ∈ V ⊗k is represented by a k-dimensional array of numbers in C. A tensor T ∈ V ⊗k

is said to be symmetric if for any permutation σ on [k] we have Ti1,i2,...,ik = Tσ(i1),σ(i2),...,σ(ik). The set

of symmetric tensors in V ⊗k is denoted by Sk(V). It is known that any symmetric tensor can be written
as

T =
r∑

i=1

x⊗k
i :=

r∑

i=1

xi ⊗ xi ⊗ · · · ⊗ xi (3)

for some vectors x1, x2, . . . , xr ∈ V .
For T ∈ Sk(V), the smallest possible r for which we can write T in the form of (3) is called the

symmetric rank of T . The subset of Sk(V) consisting of tensors with symmetric rank at most r is
denoted by Sk

r (V). When V = Cn, each element in Sk(V) is called a symmetric tensor of order k of size
n (over C).

Once we introduce a notion of rank, the corresponding low-rank completion problem can be defined
automatically. In the symmetric tensor completion problem, given a partially-filled tensor of order k and
size n, we are asked to fill the remaining entries to obtain a symmetric tensor of symmetric rank at most
r. Recall that

{
X
k

}
denotes the set of multisets of k elements of a finite set X. Due to the symmetry

condition, each entry of a symmetric tensor can be indexed by an element in
{
X
k

}
. Hence, we can use

a subset E of
{
[n]
k

}
to represent the known entries in the symmetric tensor completion problem. In this

manner, we encode the underlying combinatorics of each instance of the completion problem using a
k-uniform hypergraph ([n], E), and the symmetric tensor completion problem can be reformulated as a
hypergraph embedding problem as follows: Given a k-uniform hypergraph G = ([n], E) and ae ∈ C for
e ∈ E, find p : [n] → Cr such that

1 ·
⊙

v∈e

p(v) = ae for e ∈ E, (4)

where 1 denotes the all-one vector and
⊙

denotes the Hadamard product of vectors, that is the
component-wise product.

47

The corresponding unique completion problem can be captured by g-rigidity for g : (Cr)k → C defined
by

g(p1, . . . , pk) = 1 ·
⊙

i∈{1,...,k}
pi.

The stabilizer Γg is the set of diagonal matrices over C whose diagonal entries are k-th roots of unity.

48

Sorting columns of a matrix to optimize
nondecreasing subsequences of rows

Naoki Fujihara, Takeshi Tokuyama1

Department of Computer Science,
Kwansei Gakuen University, Japan

tokuyama@kwansei.ac.jp

Abstract: Given a set of n vectors with d dimensions, we consider a d× n matrix arranging
them as column vectors. The matrix depends on the order of the column vectors, and we con-
sider the problems of finding the optimal permutation of column vectors to maximize/minimize
an objective function. Our objective function is defined by using non-decreasing subsequences
of row vectors of the matrix. A non-negative utility is given to each element of the matrix.
First, we consider the the first-fit nondecreasing subsequence of each row, and find the per-
mutations of the columns such that the total utility of elements in the first-fit non-decreasing
subsequences of rows is maximized and minimized. We investigate the complexity of the
problems, and give polynomial time algorithms if d is a constant. We also consider several
other models to formulate the column-vector arrangement problem and their solutions.

1 Introduction

1.1 Column arrangement problems of matrices

Arranging a data set in a suitable order is a common operation in computer science[4, 6, 8, 10]. If the data
set has a total order (e.g., a set of real numbers), it is natural to arrange the set in either non-decreasing
or non-increasing order. The operation is the sorting. However, it is nontrivial to define a suitable order
for a general data set, and often difficult to compute even if it is defined. For example, Hamiltonian path
problem is to find an ordered list of all the vertices of a graph so that each adjacent vertices in the list
are connected by an edge of the graph.

In particular, it is an important problem to arrange a set of d-dimensional vectors (say, real vectors) in
a suitable way, which is called multi-dimensional sorting. There is no universal way of multi-dimensional
sorting, and it depends on applications to organize the data (e.g., data structures for multi-dimensional
searching [11]). In this paper, we give a model of multi-dimensional sorting as arranging column vectors
of a matrix using non-decreasing subsequences in its rows.

Given a sequence a = (a1, a2, . . . , an) of elements in a totally ordered set (say, integers or real num-
bers), its first-fit non-decreasing subsequence is the subsequence obtained by reading the sequence from
left (i.e., in the increasing order of the index) and selecting ai if and only if it is not less than any elements
read before. For example, if a = (3, 1, 3, 5, 2, 4, 6), its first-fit non-decreasing subsequence is (3, 3, 5, 6).
In other words, it is the maximal non-decreasing sequence starting from a1 generated by the greedy al-
gorithm appending the next possible element to extend subsequence. We consider a nonnegative-valued
function ϕ called utility function on the elements of a, and the utility Φ(a) of a is defined as the sum of
utility function values of entries of the first-fit non-decreasing subsequence of a. In the above example,
Φ(a) = ϕ(3) + ϕ(3) + ϕ(5) + ϕ(6).

Consider a d×n matrix A of elements so that a total order is given for entries of each row. Its utility
Φ(A) is the sum of the utilities of all rows of A. We apply a permutation σ of columns to obtain a matrix
σA to optimize the utility. We consider the Utility Maximizing Column Arrangement (MaxCA) and
Utility Minimizing Column Arrangement (MinCA) problems to find the permutations σ maximizing
and minimizing Φ(σA), respectively.

1Supported by MEXT JSPS KAKENHI Grant-in-Aid for Scientific Research(B) 20H04143.

49

1.2 Motivations

Sorting and maximum element finding:
If d = 1, A is a sequence a. For any positive-valued utility function, the utility is maximized if and

only if the sequence σa is a non-decreasing sequence. Thus, MaxCA for d = 1 is equivalent to the
sorting problem, and hence solved in O(n log n) time. The utility is minimized if and only if the sequence
σa satisfies that its first entry is the maximum element. Thus, MinCA for d = 1 is equivalent to the
maximum element finding, and hence solved in O(n) time. Therefore, the column arrangement problems
can be considered as generalizations of sorting and maximum element finding to a set of points in d-
dimensional space if the entries of A are real numbers. Especially, if ϕ ≡ 1, MaxCA is to maximize the
sum of lengths of the first-fit non-decreasing sequences in the rows.

Witch and brave in fantasy lands:
MaxCA was inspired by a task that occurred in the plot of a crafting game that the first author

(a master course graduate student who sought for a job in a farm developing video games) proposed.
Imagine that a witch prepares a magic potion. She blends several materials: herbs, spices, magic carrot,
dried frog, etc. The order to add the materials in the pot is important: If x is added wrongly before
y that should be added earlier than x, the utility of y disappears. Now, consider a more complicated
situation that each material contains constituents in two or more categories (say, hypnotic-factor and
aphrodisiac-factor categories), and the order is given for each category separately. The orderings may be
incompatible: For example, imagine that the magic carrot should be added earlier than the dried frog to
activate its utility of hypnotic factor, but it should be added later to activate the utility of aphrodisiac
factor of the dried frog. Then, what is the best order to add materials to maximize the total utility?
This question is formulated as MaxCA.

We may also consider the problems as variations of the prize-collecting traveling salesman problem [2]
as shown in the following story. In Japanese role-playing video games, such as Dragon Quest (named
Dragon Warrior in US) and Final Fantasy, the main character (the brave) travels and grows to a legendary
hero through experience. The brave visits shops to buy equipment items in d categories, e.g. wears
(including armors), tools, accessories, and weapons. The set of items sold depends on the shops. We
assume that items in a category are totally ordered by the levels of their power. For example, a knife
is a weak weapon, and the bronze sword is better, but the magic sword is far better. The brave can
simultaneously mount at most one item of each category. So, the brave is eager to buy if a shop sells a
better item than he/she has. The brave cannot foresee the future, so his/her action is greedy.

The order to visit shops is usually guided by the scenario of games. However, one may wonder what
is the best order to visit shops. If there are n shops, it makes a d × n matrix A such that each column
corresponds to the set of items in a shop. One candidate objective is the total amount of money to
spend. Then, a seemingly good (although not always the best) strategy is to buy the best equipment
items as early as possible to avoid spending money for less-valuable ones. The problem can be formulated
as MinCA, where ϕ(x) is the price of x. However, in the role-playing games, the brave needs to fight
against monsters to earn money to buy expensive goods, and it is required to be armed with some
inexpensive equipment in early stages. Thus, in order to proceed the game efficiently, generally it is
better to buy many equipment items gradually from weaker to stronger. Therefore, the problem is
formulated as MaxCA where ϕ(x) corresponds to the profit given by buying the equipment x. MaxCA
can give the maximum profit ordering for the owner of shops, too.

1.3 Related previous results

Although the authors do not know previous works on exactly the same problem, there are works on
related problems. As shown in Section 4.1, MinCA for a binary matrix is equivalent to the min-sum
set covering problem (MSSC) proposed by Feige-Lovász-Tetali [7]. The min-sum set covering problem
is known to be NP-hard. On the positive side, a greedy algorithm to give a 4 approximation solution is
known, and the approximation factor is almost tight.

50

The problem of arranging data to optimize a given objective function is called linear ordering (or
arrangement) problem in the literature. A famous example is the linear arrangement problem of graphs[6,
8], where a bijection f from the vertex set V of a graph G = (V,E) to {1, 2, . . . , n} minimizing (or
maximizing) the summation

∑
(u,v)∈E |f(u)−f(v)| is computed. A unified framework including both the

min-sum set covering problem and the linear arrangement problem on graphs was given by Iwata et al.[9]
named Minimum Linear Ordering Problem (MLOP) in which the objective function is summation of
the values of submodular/supermodular functions defined by using prefixes (or suffixes) of the sequence.
The problem is NP-hard in general, and approximation algorithms were studied. MaxCA for the binary
case can be converted to a MLOP for a monotone submodular function.

1.4 Results

The results of this paper include the following:
1. If d is a constant, MaxCA and MinCA are computable in O(nd+1) time.
2. Both MinCA and MinCA are NP-hard if d is a parameter of the time complexity even if the matrix
A is binary.
3. Variations using the maximum non-decreasing subsequences (instead of the first-fit non-decreasing
subsequence) are proposed.
4. Variations using cumulative utility functions as the objective functions are considered, for which
approximation algorithms are given.

2 The MaxCA and MinCA Problems

2.1 The problem formulation

A totally ordered set X is a set with an ordering < such that for any x 6= y ∈ X either x < y or y > x
holds. Therefore, for a finite set S of elements in X, its maximum element max{x ∈ S} with respect to
< always exists. The set Z≥0 of nonnegative integers is a typical example, and readers can imagine the
totally ordered sets in the following arguments are Z≥0 to get intuition.

Given a sequence a = (a1, a2, . . . , an) of elements in a totally ordered set, its i-th prefix-maximum is
defined by Max(a,≤ i) = maxj≤i aj .

An entry ai of a is called a prefix-max element if ai = Max(a,≤ i). In other words, ai is not smaller
than any of a1, a2, . . . , ai−1. Let M(a) be the subsequence consisting of all prefix-max elements of a.
In other words, it is the maximal non-decreasing sequence starting from a1 generated by the greedy
algorithm, which we call the first-fit algorithm, appending the first possible element to extend the non-
decreasing subsequence. Thus, we call M(a) the first-fit maximal non-decreasing subsequence of a.

We consider a nonnegative-valued function ϕ called utility on the set of entries of a, and let Φ(a) =∑
ai∈M(a) ϕ(ai).
Consider a d × n matrix A so that total ordering is given for elements of each row. We assume a

utility function ϕ is defined on the set of elements of A. Let A(i) be the i-th row vector of A. We call
Φ(A) =

∑
1≤i≤d Φ(A(i)) the utility of A.

Let Sn be the set of all permutations of {1, 2, . . . , n}. Given σ ∈ Sn, σA is the matrix obtained
by permuting the column indices of A by σ; that is, the (i, j) entry of σA is ai,σ(j). We consider the
following two problems:

1. MaxCA : Find σ ∈ Sn maximizing
∑

1≤i≤d Φ(σA(i)).

2. MinCA : Find σ ∈ Sn minimizing
∑

1≤i≤d Φ(σA(i)).

Example 1 Consider a 2 × 6 matrix A =

(
1 2 3 4 5 6
6 2 3 5 4 1

)
. For the uniform utility function

ϕ(x) = 1 for all x, we can observe that Φ(A) = 6 + 1 = 7. Here, the entries written in red boldface show

51

the first-fit non-decreasing subsequence of each row.

If σ = (2, 3, 4, 5, 1, 6), σA =

(
2 3 4 5 1 6
2 3 5 4 6 1

)
and Φ(σA) = 5 + 4 = 9. On the other hand, for

τ = (1, 6, 2, 3, 4, 5), τA =

(
1 6 2 3 4 5
6 1 2 3 5 4

)
and Φ(τA) = 2 + 1 = 3.

If we replace the utility function by the identity function ϕ(x) = x, then Φ(A) = 21 + 6 = 28, Φ(σA) =
20 + 16 = 36, and Φ(τA) = 7 + 6 = 13.

In this example, for both utility functions, σ and τ are solutions of MaxCA and MinCA, respectively.
However, the solutions depend on ϕ in general.

2.2 Difference between non-decreasing and increasing subsequences

We consider non-decreasing subsequences. If each row of the matrix is multiplicity-free (i.e., no same
element occurs more than once), ‘non-decreasing’ and ‘increasing’ are the same. However, the difference
matters in general.

In order to demonstrate the difference, let us consider the special case of MinCA where the utility
function is uniform, that is, ϕ(x) = 1 for any x. In other words, we consider the maximum length greedy
non decreasing subsequence of each row, and minimize the total length of them.

For simplicity, we assume d ≤ n. Since MinCA is a generalization of the maximum-element-finding
problem, we may naturally consider the following greedy algorithm:

MMF (Move Maximum elements to the Front):
do while there is a remaining row;

1. Pick a suitable row and find the column containing the maximum element in the row;
2. Append the column to the output sequence of the column vectors;
3. Remove the row and the column;

end while;
4. Append remaining n− d columns to the output sequence in any order;

We can observe that the total utility of the MMF algorithm is at most d(d + 1)/2. On the other
hand, if we consider the d×(d+1) matrix A that has elementary vectors ei (i = 1, 2, . . . d) and the vector
v = 1

2 (1, 1, . . . 1)> as its column vector, the algorithm indeed has the total utility d(d+1)/2 for any order
of selection of the row in step 1, while the optimal solution has v as the first column and attains the total
utility 2d. So, the approximation ratio of MMF is at least (d+ 1)/4, which is depressing.

However, if we consider the increasing sequences instead of non-decreasing sequences, we can improve
the approximation ratio by slightly modifying the algorithm so that the step 1 selects the row randomly.
Then, the expectation of the total utility is bounded by d ln d+o(d ln d). Since the total utility is at least
d, the randomized MMF algorithm attains a ln d+o(ln d) approximation ratio. Accordingly, the difficulty
of the problem may depend on existence of duplicate elements in the non-decreasing subsequences.

3 Algorithms for low dimensional cases

3.1 Graph representation of column arrangements

If d is a constant, we can design dynamic programming algorithms for each of maximization and mini-
mization problems, which we explain as maximum and minimum weight path problems on a graph. For
convenience’ sake, we assume that totally ordered set for each row has an element that is smaller than
every entry of the row, and it is denoted by a shared symbol ∗.

For two d-dimensional vectors u and v, we say u ≥ v if ui ≥ vi for i = 1, 2, . . . d. We say u > v if
u ≥ v and u 6= v. Given two d-dimensional vectors u and v, their max-join u ⊕ v is their entry-wise
maximum. That is, the i-th entry of u⊕ v is max{ui, vi}. By definition, u⊕ v ≥ u and u⊕ v ≥ v.

52

Given a submatrix B consisting of column vectors of A, its signature Λ(B) is a d-dimensional vector
whose i-th entry is the maximum element of the i-th row of B. In other words, Λ(B) is the max-join of
all column vectors of B. We artificially define s = Λ(∅) = (∗, ∗, . . . , ∗) for the empty submatrix ∅.

Let Vi be the set of elements of the i-th row of A, and let V ′ = V1 × V2×, . . . ,×Vd be their direct
product. We define V = V ′ ∪ {s}. Clearly, any signature Λ(B) is in V , and hence there are at most
nd + 1 different signatures.

We define a weighted directed graph G(A) = (V,E) as follows: For each column vector c and each
vector v ∈ V , we define a directed edge e ∈ E from v to v ⊕ c if v ⊕ c 6= v. Suppose that an edge e
is from v towards v′. By definition, v′ > v. If v′i > vi for an i ∈ {1, 2, . . . , d}, we say v′i is a renewed
entry with respect to e. We define the weight w(e) by the summation of the utilities of renewed entries
with respect to e. Since each edge is corresponding to a column vector, a path in G(A) corresponds to a
sequence of column vectors of A.

Example 2 Let A =

(
1 2 3 4 5 6
6 2 3 5 4 1

)
and ϕ(x) = x. If v = (3, 5)> (x> is the transpose of x)

and c = (5, 4)>, there is an edge e from v to v ⊕ c = (5, 5)>. The renewed entry is 5 shown in green.
Thus, the weight is ϕ(5) = 5.

Example 3 The permutation σ = (2, 3, 4, 5, 1, 6) gives σA =

(
2 3 4 5 1 6
2 3 5 4 6 1

)
. It corresponds

to the path s = (∗, ∗)>,v1 = s ⊕ (2, 2)> = (2,2)>,v2 = v1 ⊕ (3, 3)> = (3,3)>,v3 = v2 ⊕ (4, 5)> =
(4,5)>,v4 = v3 ⊕ (5, 4)> = (5, 5)>,v5 = v4 ⊕ (1, 6)> = (5,6)>,v6 = v5 ⊕ (6, 1)> = (6, 6)> = Λ(A).
The sequence of weights of edges along the path is 4, 6, 9, 5, 6, 6, and the total weight is 36, which equals
Φ(σA) (See Example 1).

Lemma 1 G(A) is a directed acyclic graph with O(nd) vertices and O(nd+1) edges, and the sequence of
edges in a directed pass from s to a vertex v corresponds to a sequence of columns of A without repetition.

Accordingly, v ∈ V that is reachable from s in G(A) is a signature of some matrix consisting of a set
of columns of A.

3.2 Algorithms for the multiplicity-free case

First, we consider the multiplicity-free case, where each element of Vi appears in the i-th row only once.

Theorem 1 For the multiplicity-free case, the utilities of the optimal solution for MaxCA (resp. MinCA)
equals the weight of the maximum (resp. minimum) weight path from s to t = Λ(A) of G(A). Conse-
quently, MaxCA and MinCA can be solved in O(nd+1) time, respectively.

Proof: Lemma 1 implies that a path corresponds to a sequence of columns, and it is routine to examine
that the weight of a path equals the utility of the corresponding column sequence. We can compute
the maximum weight path and minimum weight path in a directed acyclic graph in linear time in the
number of edges by first topologically sort the vertices and then proceed a dynamic programming in
the topological order.Hence, the time complexity is O(nd+1). The permutation σ is obtained from the
sequences of columns corresponding to the paths. The length of the obtained path may be shorter than
n, and we append the rest of indices in an arbitrary manner to obtain σ. �

3.3 Algorithms for matrices with repeated entries

If there are repeated entries in a row of the matrix, we need careful treatment to solve MaxCA. The
following example explains the difficulty.

53

Example 4 Suppose that c = (3, 1, 1) is a column of A, and a vertex v = (3, a, b) = Λ(B) (a > 1, b > 1)
corresponds to a submatrix B of A that does not contain the column c. If we append c at the end of B,
we add the utility ϕ(3), since the first entry 3 of c is appended to the maximal non-decreasing sequence
in the first row. However, v⊕ c = v, and hence there is no corresponding edge in our graph G(A). If we
add that edge, it makes a loop edge from v to v. This destroys acyclicity and ruins the algorithm.

Thus, instead of adding edges to create loops, we modify the weight of edges to apply a deferred
evaluation strategy.

Suppose that an element xi appears in the i-th row of A multiple times. For any vertex v, v(i) is the
d − 1 dimensional vector obtained by removing the i-th entries of v. Then, the multiplicity m(xi; v(i))
of xi bounded by v(i) is the number of columns c of A such that ci = xi and v(i) ≥ c(i).

Now, consider an edge e of G(A) from (xi,u(i)) to (yi,v(i)) such that yi > xi. Then, we add
(m(xi,v(i))− 1)ϕ(xi) to the weight w(e) for each such index i. We denote w̃(e) for the modified weight.

We artificially define a new vertex t′ and an edge f from t = Λ(A) to t′ with the weight w̃(f) =∑d
i=1(m(ti)− 1)ϕ(ti), where ti is the i-th entry of t (and hence the largest entry of the i-th row of A),

and m(ti) is the number of occurrence of ti in the i-th row of A.
We denote G̃(A) for the obtained weighted directed acyclic graph.

Theorem 2 The utility of the optimal solution for the utility maximization problem equals the weight of
the maximum weight path from s to t′ of G̃(A).

Proof: Consider the sequence C : c1, c2, . . . , ck of columns giving the optimal arrangement maximizing
the utility. A column ci is called pause if Λ(Ci−1) = Λ(Ci), where Ci is the matrix consisting of columns
c1, c2, . . . , ci. We consider the corresponding path p on G̃(A) to the column sequence C ignoring all
pause columns. Suppose that the element x of the i-th row of A appears for the first time (in the i-th
row of columns) in c`, and for the last time in cr in the sequence C. Let v = cr+1, and let C(x,v) be the
set of all columns c such that c have x as the i-th entry and c(i) ≤ v(i). Note that |C(x,v)| = m(x,v(i)).
Then, if there is any column in C(x,v) that is not used in the prefix of C up to cr, it should be moved
just before v, so that ϕ(x) is added to the utility. Therefore, in the optimal sequence, ϕ(x) is counted
exactly m(x,v(i)) times. In the path p, ϕ(x) is counted once when x first appears, and m(x,v(i)) − 1
times when a larger elements than x first appears on the i-th row. Thus, the weight of the maximum
weight path on G̃(A) equals the maximum utility. �

Corollary 1 MaxCA can be solved in O(nd+1) time.

For solving MinCA for a general A allowing multiplicities, we use the same graph G(A) as the
multiplicity-free case, and modify the weights as follows:

If e is an edge from v = (v1, v2, . . . , vd) to v′ = v⊕ c corresponding to a column c = (c1, c2, . . . , cd), a
index i is called non-dominated if ci ≥ vi. Also, i is called non-terminal if ci is not the maximum element
in the i-th row of A. The weight w′(e) is defined by the sum of utilities ϕ(ci) for all non-dominated and
non-terminal indices i. We have the following theorem.

Theorem 3 The shortest path from s to t = Λ(A) with respect to the weight function w′ in G(A) gives
the solution of MinCA, and it is computed in O(nd+1) time.

4 Binary cases and the hardness of MinCA and MaxCA

We show that both MinCA and MaxCA are NP-hard even if A is a binary matrix.

54

4.1 Binary MinCA and min-sum set covering

Let us consider a special case where the matrix A is binary, that is, each entry of A is either 0 or 1. The
total ordering is given by 0 < 1. We assume there is no all-zero nor all-one row. We define the utility
function ϕ by ϕ(0) = 1 and ϕ(1) = a for any fixed nonnegative number a. We denote MinCA and
MaxCA for a binary A and the above ϕ by BiMinCA(A, a) and BiMaxCA(A, a), respectively. We
show the min-sum set covering problem(MSSC) defined as follows can be formulated as BiMinCA(A, a).

Consider a hypergraphH = (X,F), where X = {1, 2, . . . , n} is the vertex set and F = {F1, F2, . . . , Fd}
is a family of subsets (called hyperedges) of X satisfying that

⋃d
i=1 Fi = X. Let σ ∈ Sn be a permutation,

and we arrange the elements of X in a list σ(1), σ(2), . . . , σ(n). The index ισ(k) of a hyperedge Fk is the
first j such that σ(j) ∈ Fk. MSSCis the problem to find the permutation σ minimizing

∑
1≤k≤d ισ(k).

In other words, MSSCminimizes the average cover time of hyperedges, while the ordinary minimum
set covering problem minimizes the cover time of the latest hyperedge.

The MSSCis NP-hard . Moreover, its special version named the min-sum vertex covering (MSVC)
for which the hypergraph is a graph is known to be NP-hard. Feige et al.[7] showed that MSSCis NP-
hard to approximate within (4 − ε) approximation ratio. On the other hand, a greedy algorithm that
selects the vertex contained in the largest number of uncovered edges gives a 4-approximation solution.

Given an instance H of min-sum set covering, we consider its incidence matrix AH such that its
(i, j) entry AH(i, j) is 1 if and only if j ∈ Fi. We consider BiMinCA(AH, a). Given a permutation σ,
σAH(k, ισ(k)) is the first 1 entry in the k-th row, and hence the row starts with ισ(k) − 1 zero entries.
Hence, Φ(σAH(k)) = (ισ(k)−1)ϕ(0) + |Fj |ϕ(1) = (ισ(k)−1) +a|Fj |, since the first ισ(k)−1 zero entries
and all the 1 entries contributes to the Φ value.

We denote N1(B) for the number of 1 entries of a matrix B. By definition, N1(AH) =
∑

1≤i≤d |Fk|.
Therefore, Φ(σAH) =

∑
1≤k≤d ισ(k)− d+ aN1(AH). Since the second and third terms are irrelevant to

the choice of σ, the optimal solution minimizing Φ(σAH) gives the optimal permutation for the min-sum
covering problem.

Theorem 4 BiMinCA(A, a) is NP-hard. Moreover, it is NP-hard to obtain a (4 − ε)-approximation
solution of BiMinCA(A, a) for any ε > 0 if a ≤ d

N1(A) . On the other hand, if a ≥ d
N1(A) , the greedy

algorithm attains a 4-approximation solution. In particular, BiMinCA(A, 0) is not (4−ε)-approximable,
while BiMinCA(A, 1) is 4-approximable.

4.2 Utility maximization on binary matrices

Let us consider BiMaxCA(A, 0). As we have seen, Φ(σA) = −n+
∑

1≤k≤d ισ(k). Since n is independent
of the choice of σ, the optimal solution of BiMaxCA(A, 0) maximize

∑
1≤k≤d ισ(k), which we name the

maximum-sum set covering problem (MaxSSC). This is the maximization version of the min-sum set
covering problem which consider maximizing the average cover time of hyperedges. Especially, if the
hypergraph is a graph, we call it the maximum-sum vertex covering problem (MaxSVC).

Theorem 5 MaxSVC is NP-hard. Accordingly, both MaxSSC and BiMaxCA(A, 0) are NP-hard.

Proof: We reduce MSVC for a graph G to MaxSVC for its complement Ḡ. For the complete graph
on the vertex set of G, the objective function (the utility value) does not depend on the choice of the
permutation σ, and let Y be its value. Let A(G) and A(Ḡ) are incidence matrices for G and Ḡ, then
Φ(σA(G)) + Φ(σA(Ḡ)) = Y . Thus, the permutation σ maximizing Φ(σA(Ḡ)) minimizes Φ(σA(G)). �

5 Maximizing sum of lengths of maximum subsequences

So far, we have considered the first-fit non-decreasing subsequence in each row of the matrix. However
it is not always the maximum utility subsequence of the row. Given a sequence a, its maximum utility
subsequence can be computed by dynamic programming easily. For the special case, if ϕ ≡ 1, the

55

problem is called the longest non-decreasing subsequence problem, and it is solved by using patience
sorting in O(n log n) time[3].

We consider the following problems:
MaxUNDS: Given a matrix A and a utility function ϕ, find a permutation σ such that the sum of
utilities of the maximum utility non-decreasing subsequences of rows of σA is maximized.
MaxLNDS: Given a matrix A, find a permutation σ such that the sum of lengths of longest non-
decreasing subsequences of rows of σA is maximized.

Example 5 Let A =

(
1 2 3 4 5 6
6 2 3 5 4 1

)
. Then the red numbers form the longest non-decreasing

subsequences of rows with the total length 9, and the identity permutation gives a solution of MaxLNDS.

If we consider the utility function ϕ(x) = x, then σA =

(
2 3 4 5 6 1
2 3 5 4 1 6

)
has a total utility 36,

and this σ is a solution of MaxUNDS.

MaxUNDS for a binary matrix and ϕ(0) = 1 and ϕ(1) > n becomes an equivalent problem to the
max-sum set covering problem, and hence it is NP-hard for a general d. Unfortunately, we do not know
whether it is polynomial-time soluble even if d = 2.

For MaxLNDS, We have the following theorem:

Theorem 6 (1) MaxLNDS for a general matrix A can be solved in O(n log n) time for d = 2.
(2) MaxLNDS for a multiplicity-free matrix A can be solved in O(n4) time for d = 3.

For d = 2, the solution is depressingly simple. We consider the lexicographic ordering of columns so
that (a, b)> > (c, d)> if either a > c or a = c and b > d. Then, we sort the columns non-decreasingly
according to the ordering to obtain the optimal solution of MaxLNDS. It takes O(n/logn) time.

Indeed, suppose P is a longest nondecreasing subsequence of the first column of an optimal solution,
and L(P) is its length. We select an optimal solution that also maximizes L(P) among the set of all
optimal solutions. We assume L(P) < n and give a contradiction. We insert any column outside P so
that we have a column arrangement with a nondecreasing subsequence Q of length L(P) + 1 in the first
row. This insertion may decrease the length of the longest nondecreasing subsequence of the second row
at most 1, and hence this is also an optimal solution. This contradicts to the assumption. Hence, we
have the first statement. We omit the proof for the case d = 3 in this version.

5.1 Minimizing the monotonicity

We may consider the problem of minimizing the sum of lengths of the longest increasing sequences of
rows in a matrix. However, a more natural problem is to find a column permutation to minimize the
total lengths of the longest monotone subsequences in rows of A, where a monotone subsequence is either
increasing or decreasing subsequence. Here, we assume that the matrix A is multiplicity-free.

Let us give a formal description. Given a multiplicity free sequence a = (a1, a2, . . . , an), let I(a)
(resp. D(a)) be the length of the maximum increasing (resp. decreasing) subsequence of a. We define
the monotonicity of a by µ(a) = max{I(a), D(a)}. For considering the monotonicity, we can assume
without loss of generality that a is a permutation of {1, 2, . . . , n}.

Given a multiplicity-free d × n matrix A, its monotonicity is µ(A) =
∑d
i=1 µ(Ai), where Ai is the

i-th row vector of A. The min-sum monotonicity problem is to find a permutation σ ∈ Sn of columns
minimizing µ(σ(A)).

Example 6 Let A =

(
1 2 3 4 5 6
6 2 3 5 4 1

)
with µ(A) = 10. σA =

(
5 6 3 1 4 2
4 1 3 6 5 2

)
attains

µ(σA) = 6, and it is the minimum.

56

One important fact is that µ(a) ≥ d√ne by Erdős-Szekeres theorem [5]. More precisely, there is
a one-to-one correspondence called Robinson-Schensted-Knuth correspondence [10] between the set of
permutations and the set of pairs of Young tableaux of the same shapes (called Young diagram) , and
µ(a) is the maximum of the width and height of the corresponding Young diagram, which is at least
d√ne. There is an efficient algorithm to find the permutation corresponding to a given pair of Young
tableaux. Moreover, we can easily count the number of permutations such that µ(a) = dne.

Therefore, µ(σ(A)) ≥ dd√ne. On the other hand, if we consider a random permutation σ, the
standard probabilistic argument gives the following:

Theorem 7 If σ is randomly chosen, the expected length of the longest increasing subsequence of a row
of A is bounded by (1 + ε)e

√
n for any positive constant ε if n is sufficiently large. Here, e is the base of

the natural logarithm.

Proof: Since σ is random, each row of A is a random permutation. Let us consider a subsequence of
length K ≥ dce√ne for c > 1 + ε/2, then the probability that the sequence is an increasing sequence is
1
K! . The number of length K subsequence in a row is nCK , and hence there are nCK such subsequences

in the row. Thus, the expected number Z of length K increasing subsequences in a row is Z = nCK

K! =
n!

(n−K)!(K!)2 ≤ nK

(K!)2 . By using Stirling’s formula, K! ≥
√

2πKKKe−K , and hence Z ≤ (2πK)−1(ne
2

K2)K ≤
(2eπ
√
n)−1c−2ce

√
n. This is smaller than 1√

n
if 2eπ < c2ce

√
n, which we can assume to be true if n is

sufficiently large. Thus, with a probability 1 − 1√
n

, there is no increasing subsequence longer than K

in the row. We can similarly show that with a probablity 1
1√

n22e
√

n there is no increasing subsequence
longer than 2K in the row. Thus, the expected length of the longest increasing subsequence is bounded
by K + 2K√

n
+ n√

n22e
√

n . If n is sufficiently large, it is bounded by (1 + ε)e
√
n. �

Since e = 2.718 . . . < 2.72, we have the following:

Corollary 2 The random sampling algorithm attains the approximation ratio 2.72 for the min-sum
monotonicity problem if n is sufficiently large.

6 Cumulative utility optimization

We would like to seek for possibility of designing an approximate algorithm for the column arrangement
problem. However, it looks difficult to design a good approximation algorithm for MaxCA, and hence
we consider another problem in which we consider a cumulative utility as the objective function.

In this subsection, we assume the utility function ϕ is monotone, that is, ϕ(x) ≥ ϕ(y) if x > y. We
define the cumulative utility Ψ(a) =

∑n
i=1 ϕ(Max(a,≤ i)) of a sequence a. In other words, Ψ(a) is the

area (above the x-axis) below the non-decreasing function defined by y = maxi≤x ϕ(ai) in the range

1 ≤ x ≤ n + 1. We define Ψ(A) =
∑d
i=1 Ψ(A(i)), which we call the cumulative utility of the d × n

matrix A. We can observe that Ψ(σa) is the area below the non-decreasing step function (and above
the horizon) defined by the greedy non-decreasing subsequence of σa, and it is minimized if σa itself is
a non-decreasing sequence. Thus, the minimization of Ψ(σa) is equivalent to the sorting, and we first
consider the minimization problem that finds σ minimizing Ψ(σA) for a given matrix A.

Example 7 Consider the identity utility function ϕ(x) = x. Let A =

(
1 20 2 3 4 5

20 1 2 3 5 4

)
. The

matrix Max(Ai,≤ j) (i = 1, 2; 1 ≤ j ≤ 6) shoowing the step functions is

(
1 20 20 20 20 20
20 20 20 20 20 20

)
,

and Φ(σA) = 101 + 120 = 221. On the other hand, consider σA =

(
2 3 4 5 1 20
2 3 5 4 20 1

)
.

The matrix showing the step functions is

(
2 3 4 5 5 20
2 3 5 5 20 20

)
, and Ψ(A) = 39 + 55 = 94.

57

For a set S of column vector, consider the matrix M(S) consisting of them, and consider its signature

Λ(M(S)) = v = (v1, v2, . . . , vd). Let us define a function f(S) =
∑d
i=1 ϕ(vi). Then, we can observe that

f is a monotone submodular function.
Now, we can observe that Ψ(σA) =

∑n
i=1 f(Si), where Si is the set of the first i column vectors

of σA, and its minimization is MLOP of the monotone submodular function f . Therefore, applying a
result of Iwata et al. [9], we have the following.

Theorem 8 There exists a polynomial time 2-approximation algorithm for finding the permutation min-
imizing the cumulative utility.

For the maximization problem, consider the following algorithm.

Algorithm GREEDY: Repeat 1 and 2 until there is no remaining row;
1. Select and remove the column with the maximum utility entry;
2. Remove all rows whose maximum utility entries were in the removed column;

The permutation is given by the order of selection of columns. If we select less than n columns, we
append remaining columns in an arbitrary fashion.

Theorem 9 The approximation ratio of GREEDY for maximizing the cumulative utility is 2n
2n−d+1 if

n ≥ d and 2d
n+1 if n < d. Here, the ratio is measured as OPT/GRE, where OPT is the optimal utility

value and GRE is the utility value obtained by GREEDY.

7 Concluding remarks

This paper is an initial work (as far as the authors know) on the column arrangement problem of a
matrix considering non-decreasing subsequences in its rows. Several different models are considered and
theoretical studies are given. By the nature of an initial study, several problems are left open. For
example, we do not know whether MaxUNDShas a polynomial time algorithm even for d = 2.

References

[1] Y. Azar, L. Gamzu, X. Yin, Multiple Intents Re-ranking, 41st STOC:669-678, 2009.

[2] E. Balas, The Prize Collecting Traveling Salesman Problem and Its Applications, Chapter 14 of The Traveling
Salesman Problem and Its Variations (G. Gutin, A.P. Punnen, ed.), 663-695, Springer Verlag, 2007.

[3] S. Bespamyatnikh, M. Segal, Enumerating longest increasing subsequences and patience sorting, Information
Processing Letters 76: 7-11, 2000.

[4] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 3rd edition, MIT Press, 2009.

[5] P. Erdős, G. Szekeres, A combinatorial problem in geometry, Compositio Mathematica,2: 463—470, 1935.

[6] S. Even, Y. Shiloah, NP-Completeness of Several Arrangement Problems, Technical Report, Technion 1975.

[7] U. Feige, L. Lovász, P. Tetali, Approximating Min Sum Set Cover, Algorithmica,40: 219-234, 2004.

[8] M.R. Garey, D. S. Johnson, L. Stockmeyer, Some Simplified NP -Complete Graph Problems, Theoretical
Computer Science 1: 237-267, 1976.

[9] S. Iwata, P. Tetali, P. Tripathi, Approximating Minimum Linear Ordering Problems, Proc. RANDOM 2012
:206-217, 2012.

[10] D. Knuth, The Art of Computer Programming Vol.3, Sorting and Searching, 2nd edition, Addion-Wesley,
1998.

[11] K. Mehlhorn, Multi-dimensional Searching and Computational Geometry (Data Structures and Algorithms
3), ETACS Monographs on Theoretical Computer Science, Vol.3, Springer Verlag, 1984.

58

Matroid Intersection with Restricted Oracles

Kristóf Bérczi1

MTA-ELTE Matroid Optimization Res. Group
ELKH-ELTE Egerváry Research Group

Eötvös Loránd University
Budapest, Hungary

kristof.berczi@ttk.elte.hu

Tamás Király1

ELKH-ELTE Egerváry Research Group
Eötvös Loránd University

Budapest, Hungary
tamas.kiraly@ttk.elte.hu

Yutaro Yamaguchi2

Osaka University
Osaka, Japan

yutaro.yamaguchi@ist.osaka-u.ac.jp

Yu Yokoi3

National Institute of Informatics
Tokyo, Japan

yokoi@nii.ac.jp

Abstract: Matroid intersection is one of the most powerful frameworks of matroid theory that
generalizes various problems in combinatorial optimization. Edmonds’ fundamental theorem
provides a min-max characterization for the unweighted setting, while Frank’s weight-splitting
theorem provides one for the weighted case. Several efficient algorithms were developed for
these problems, all relying on the usage of one of the conventional oracles for both matroids;
e.g., we can ask for the rank of a subset in each matroid, or whether a subset is independent
or not in each matroid. In this study, we consider the tractability of the matroid intersection
problem under restricted oracles answering only the sum/minimum/maximum of the ranks of
a subset in two matroids or whether a subset is independent in both matroids or not.

Keywords: Matroid intersection, Tractability, Rank sum oracle, Minimum rank
oracle, Maximum rank oracle, Common independence oracle

1 Introduction

A cornerstone of matroid theory is the efficient solvability of the matroid intersection problem introduced
by Edmonds [5]. Efficient algorithms for weighted matroid intersection were developed subsequently by
Edmonds [6], by Lawler [11, 12], and by Iri and Tomizawa [8]. The min-max duality theorem of Edmonds
[5] for the unweighted matroid intersection problem was generalized by Frank [7] to the weighted case.

In order to design matroid algorithms and to analyze their complexity, it should be clarified how
matroids are given. As the number of bases can be exponential in the size of the ground set, defining a
matroid in an explicit form is inefficient. Rather than giving a matroid as an explicit input, it is usually
assumed that one of the standard oracles is available, and the complexity of the algorithm is measured
by the number of oracle calls and other elementary steps.

All previous studies on matroid intersection basically assume the availability of one of the standard
oracles for both matroids; e.g., we can ask for the rank of a subset in each matroid, or whether a subset

1Research is supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021 and by the Hungarian National Research, Development and Innovation Office – NKFIH, grant numbers FK128673
and TKP2020-NKA-06.

2Research is supported by JSPS KAKENHI Grant Numbers 20K19743 and 20H00605, and by Overseas Research Program
in Graduate School of Information Science and Technology, Osaka University.

3Research is supported by JST PRESTO Grant Number JPMJPR212B.

59

CI

CI+Max

Min+Max / Min+Sum / Sum+Max

Max

MinSum

Figure 1: Hierarchy of oracles, where directed arcs representing polynomial reducibility, i.e., A → B
means that A can be emulated by calling B polynomially many times. Grey boxes indicate oracles for
which the tractability of weighted matroid intersection is settled.

is independent or not in each matroid. In this study, we ask if this assumption is really necessary for the
tractability of matroid intersection.

One motivation comes from polymatroid matching, a framework introduced by Lawler [13] as a com-
mon generalization of matroid intersection and nonbipartite matching. In [15], Edmonds’ theorem was
deduced from polymatroid matching using a sophisticated argument. The main point is that when the
matroid intersection problem is formulated as polymatroid matching, only the rank sum function of the
two matroids is used rather than the two rank functions separately. Although the polymatroid matching
problem cannot be solved in polynomial time in general [14, 9], the hardness was shown through special
instances that seem to be far from matroid intersection. This suggests that matroid intersection might
still be tractable when only the sum of the rank functions is available.

From the polyhedral viewpoint, the matroid intersection polytope (the convex hull of common inde-
pendent sets) is determined by the minimum rank function [5]. It is known that the standard description
of the polytope using the two rank functions separately enjoys nice properties such as total dual inte-
grality and the tractability of the separation problem, but they may no longer be true if we describe it
only by the minimum rank function. In an unpublished manuscript, Bárász [1] gave a polynomial-time
algorithm for unweighted matroid intersection under the minimum rank oracle model, and it turns out
challenging to extend the result to weighted matroid intersection.

2 Results

Our goal is to settle the tractability of the weighted matroid intersection problem under restricted oracles.
In particular, we will focus on four different oracles: rank sum, minimum rank, maximum rank, and
common independence oracles. The relation of the computational powers of combinations of these oracles
is summarized as Figure 1.

The difficulty of giving an efficient algorithm is that the usual augmenting path approach cannot be
applied directly, since the exchangeability graphs are not determined by restricted oracles. Still, using
the rank sum oracle, we are able to give a strongly polynomial-time algorithm for the weighted matroid
intersection problem by emulating the Bellman–Ford algorithm without explicitly knowing the underlying
graph.

Theorem 1 There exists a strongly polynomial-time algorithm for the weighted matroid intersection
problem in the rank sum oracle model.

The maximum rank oracle does not carry too much information on its own, as it cannot test the
feasibility. However, when combined with the common independence oracle, they are strong enough to
mimic our algorithm for the rank sum case.

Theorem 2 There exists a strongly polynomial-time algorithm for the weighted matroid intersection
problem when both the common independence and maximum rank oracles are available.

60

For the common independence oracle, we have two tractable special cases as follows.

Theorem 3 There exists a strongly polynomial-time algorithm for the unweighted matroid intersection
problem in the common independence oracle model when one of the matroids is a partition matroid with
all-one upper bound on the partition classes.

Theorem 4 There exists a strongly polynomial-time algorithm for the weighted matroid intersection
problem in the common independence oracle model when one of the matroids is an elementary split
matroid1.

For the proofs, see [4].

3 Open problems

The following two big questions still remain, and are being tackled [2].

Question 5 Is there a strongly polynomial-time algorithm for the weighted matroid intersection problem
in the minimum rank model? Or can we show the hardness?

Question 6 Is there a strongly polynomial-time algorithm for the unweighted/weighted matroid intersec-
tion problem in the common independence oracle model? Or can we show the hardness?

Acknowledgment

We are grateful to Yuni Iwamasa and Taihei Oki for initial discussions on the problem at HJ2019.

References

[1] M. Bárász. Matroid intersection for the min-rank oracle. Technical Report QP-2006-03, Egerváry
Research Group, Budapest, 2006. http://www.cs.elte.hu/egres/.

[2] M. Bárász, K. Bérczi, T. Király, Y. Yamaguchi, and Y. Yokoi. Matroid intersection under minimum
rank oracle. In preparation.

[3] K. Bérczi, T. Király, T. Schwarcz, Y. Yamaguchi, and Y. Yokoi. Hypergraph characterization of
split matroids. Journal of Combinatorial Theory, Series A, 194:105697, 2023.

[4] K. Bérczi, T. Király, Y. Yamaguchi, and Y. Yokoi. Matroid intersection under restricted oracles.
SIAM Journal on Discrete Mathematics, to appaer. (arXiv:2209.14516).

[5] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures
and Their Applications, pages 69–87. Gorden and Breach, 1970. (Also in Combinatorial Optimization
— Eureka, You Shrink!, pages 11–26, Springer, 2003.).

[6] J. Edmonds. Matroid intersection. Annals of Discrete Mathematics, 4:39–49, 1979.

[7] A. Frank. A weighted matroid intersection algorithm. Journal of Algorithms, 2(4):328–336, 1981.

[8] M. Iri and N. Tomizawa. An algorithm for finding an optimal “independent assignment”. Journal
of the Operations Research Society of Japan, 19(1):32–57, 1976.

1Recently, Joswig and Schröter [10] introduced the notion of split matroids, a class with distinguished structural prop-
erties that generalizes paving matroids. Bérczi, Király, Schwarcz, Yamaguchi and Yokoi [3] showed that every split matroid
can be obtained as the direct sum of a so-called elementary split matroid and uniform matroids, and provided a hypergraph
characterization of elementary split matroids.

61

[9] P. M. Jensen and B. Korte. Complexity of matroid property algorithms. SIAM Journal on Com-
puting, 11(1):184–190, 1982.

[10] M. Joswig and B. Schröter. Matroids from hypersimplex splits. Journal of Combinatorial Theory,
Series A, 151:254–284, 2017.

[11] E. L. Lawler. Optimal matroid intersections. In Combinatorial Structures and Their Applications,
pages 233–234. Gorden and Breach, 1970.

[12] E. L. Lawler. Matroid intersection algorithms. Mathematical Programming, 9(1):31–56, 1975.

[13] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston,
1976.

[14] L. Lovász. The matroid matching problem. In Algebraic Methods in Graph Theory II, pages 495–517.
North-Holland, 1981.

[15] L. Lovász and M. D. Plummer. Matching Theory. American Mathematical Society, 2009.

62

Orientation of convex sets

Péter Ágoston1

ELTE Eötvös Loránd University,
Budapest, Hungary

agostonp@cs.elte.hu

Gábor Damásdi2

ELTE Eötvös Loránd University,
Budapest, Hungary

damasdigabor@caesar.elte.hu

Balázs Keszegh134

Alfréd Rényi Institute of Mathematics and
ELTE Eötvös Loránd University,

Budapest, Hungary
keszegh@renyi.hu

Dömötör Pálvölgyi13

ELTE Eötvös Loránd University,
Budapest, Hungary
domotorp@gmail.com

Abstract: We introduce a novel definition of orientation on the triples of a family of pairwise
intersecting planar convex sets and study its properties. In particular, we compare it to other
systems of orientations on triples that satisfy a so-called interiority condition: ⟲(ABD) = ⟲
(BCD) = ⟲(CAD) = 1 imply ⟲(ABC) = 1 for any A,B,C,D. We call such an orientation a
P3O (partial 3-order), a natural generalization of a poset, that has several interesting special
cases. For example, the order type of a planar point set (that can have collinear triples) is a
P3O; we denote a P3O realizable by points as p-P3O.

If we do not allow ⟲(ABC) = 0, we obtain a T3O (total 3-order). Contrary to linear orders,
a T3O can have a rich structure. A T3O realizable by points, a p-T3O, is the order type of a
point set in general position. Despite these similarities to order types, P3O and T3O that can
arise from the orientation of pairwise intersecting convex sets, denoted by C-P3O and C-T3O,
turn out to be quite different from order types: there is no containment relation among the
family of all C-P3O’s and the family of all p-P3O’s, or among the families of C-T3O’s and
p-T3O’s.

A longer version of the paper can be found at arXiv:2206.01721.

Keywords: convex sets, order types, Helly-type theorems, set systems

1 Introduction
A family is intersecting if any two members of the family intersect, and it is 3-intersection-free if no

three members of the family have a common intersection. Such families of planar convex sets were studied
by Jobson et al. [14] (see also Lehel and Tóth [16] and related recent results in extremal combinatorics

1This research has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, financed under the ELTE TKP 2021-NKTA-62 funding
scheme.

2Supported by the ÚNKP-21-3 New National Excellence Program of the Ministry for Innovation and Technology from
the source of the National Research, Development and Innovation fund.

3Supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-21-5
and ÚNKP-22-5 New National Excellence Program of the Ministry for Innovation and Technology from the source of the
National Research, Development and Innovation Fund.

4Supported by the National Research, Development and Innovation Office – NKFIH under the grant K 132696 and FK
132060.

63

[17]). They showed that if three compact convex planar sets, A, B, C, form an intersecting and 3-
intersection-free family, then R2 \ (A ∪ B ∪ C) has exactly one bounded component, called the hollow
of ABC, which we will denote by (ABC) (see Figure 1). They have also shown that the convex hull
of this hollow is a triangle with sides a, b, c, such that (apart from its endpoints) side a is contained in
A \ (B ∪C), side b in B \ (A∪C), and side c in C \ (A∪B). We may refer to the vertices of this triangle
as the vertices of the hollow, but note that since the hollow is open, its vertices are not a part of it, only
of its closure.

From now on whenever we refer to a convex set, it is always assumed to be compact.
The following lemma is a straightforward consequence of Lemma 1 in [14].

a b

c

A B

C

a c

b

A C

B

Figure 1: Three convex sets, A, B, C, with negative
orientation on the left, and with positive orientation
on the right, and their hollow, (ABC).

a

b

c

d

Figure 2: The following triples have positive orien-
tation: abc, abd, adc, bdc.

Lemma 1 (Jobson-Kézdy-Lehel-Pervenecki-Tóth [14]). Three pairwise intersecting compact convex sets,
A,B,C, that do not have a common point, enclose a hollow (ABC), and the following four properties
hold.

(a) (ABC) is a simply connected region.

(b) The boundary of (ABC) has exactly one arc from each of the boundaries of A, B and C.

(c) The closure of the convex hull of (ABC) is a triangle with sides a, b, c such that (apart from its
endpoints) side a is contained in A \ (B ∪ C), side b in B \ (A ∪ C), and side c in C \ (A ∪B)

(d) For any x ∈ B ∩ C, y ∈ A ∩ C and z ∈ A ∩ B the orientation of the xyz triangle is the same and
agrees with the orientation of abc.

Define the orientation of ABC, denoted ⟲(ABC), as the orientation of the triangle with sides a, b, c:
if the sides along the boundary of the triangle follow each other in a counterclockwise direction as abc,
then we define the orientation of ABC as positive, otherwise as negative. We also define the orientation of
three convex sets with a common intersection as zero. This way we can assign an orientation to any three
members of an intersecting family of convex sets in the plane. To simplify notation, we assign a sign from
{±1, 0} to each ordered triple according to their orientation and write ⟲(ABC) = +1, ⟲(ABC) = −1,
⟲(ABC) = 0, respectively, for positive, negative, zero orientations.1 From the definitions, it follows that
⟲(ABC) = ⟲(CAB) = ⟲(BCA) = − ⟲(ACB) = − ⟲(BAC) = − ⟲(CBA).

In general, we call {±1, 0} sign assignments to all triples of some base set satisfying the previous
equalities partial orientations, and if the zero value is not allowed, total orientations. An orientation
is called a 3-order if it satisfies an extra property, called interiority condition, discussed in Section 2.
Different 3-orders of interest are compared in Figure 6.

Remark 2. Our definition only allows us to define an orientation for pairwise intersecting triples of
convex sets. This is unlike the situation in the case of the (quite different) definition of orientation from

1It might seem counterintuitive that the intersecting case is assigned 0 but this is the natural choice in some cases; see
also [19, Section 4].

64

[4, 5, 6] by Bisztriczky and Fejes Tóth (later also investigated in [7, 8, 13, 18, 20, 21, 22]) which primarily
focused on Erdős–Szekeres type theorems.2 In these papers the condition on the family of convex sets is
that they are pairwise disjoint, or in later papers that they are non-crossing. Such a family is in convex
position if no set is covered b the convex hull of the rest. In this case the orientation of ABC is determined
by any points a ∈ A, b ∈ B, c ∈ C chosen from the boundary of conv(A∪B ∪C). This definition appeared
explicitly in [13] and is implicitly in earlier works—we will refer to it as the Bisztriczky–Fejes Tóth
type orientation. Note that if A,B,C are in addition also intersecting but 3-intersection-free, then the
Bisztriczky–Fejes Tóth type definition gives the same orientation as the one used in this paper. But such
families can contain at most four connected sets, as K5 is non-planar.

If for some sets A1, . . . , An we have ⟲(AiAjAk) = δ for any i < j < k for some δ ∈ {±1, 0}, then
we will abbreviate this as ⟲(A1 . . . An) = δ. With this notation, Helly’s theorem says that if for some
n ≥ 3 planar convex sets A1, . . . , An we have ⟲(A1 . . . An) = 0, then ∩ni=1Ai ̸= ∅. We will also apply this
shorthand notation for orientations of points, so for example ⟲(abcd) = +1 means that the points a, b, c, d
are the vertices of a convex quadrangle, in this counterclockwise order. With this notation, Lemma 1(d)
states ⟲(xyz) = ⟲(ABC). Lemma 1(d) also implies the following.

Corollary 3. If the convex sets A,B,C do not have a point in common, and the convex sets A′ ⊂ A,B′ ⊂
B,C ′ ⊂ C are pairwise intersecting, then ⟲(A′B′C ′) = ⟲(ABC).

If a family of convex sets in the plane is intersecting and 3-intersection-free, we call it holey. For
example, any collection of lines in general position is holey, and the orientation of any triple is determined
by their slopes (see Figure 2). This orientation for lines is not to be confused with the much studied
arrangement types of lines which were shown by Goodman and Pollack [10] to be the duals of order types
of points, an order type meaning an orientation system belonging to a set of points in the plane, where
all triples get the orientation based on whether they are in a counterclockwise or a clockwise order on
their triangle. However, they also made the following simple observation about the orientations of triples
of lines, which is relevant for us.

Claim 4 (Goodman-Pollack [11]). If a holey family consists of lines ℓ1, . . . , ℓn, ordered according to their
slopes in clockwise circular order, then the orientation of their triples is the same as the orientation of
the triangles of n points p1, . . . , pn in convex position, ordered in counterclockwise order.

Our main motivation to study holey families is that it can be the first step to improve our under-
standing of the intersection structure of planar convex sets, which can potentially lead to improved weak
ε-nets [2] and (p, q)-theorems [3]. The question is, what abstract properties of the underlying geometric
3-hypergraphs are useful to derive interesting results.

In the following, we will call an orientation that can be derived from a holey family of planar convex
sets a C-T3O (Convex 3-orders) and its superfamily where the sets are only required to be pairwise
intersecting a C-P3O (Convex Partial 3-orders). Also, we call an order type belonging to points in the
plane in general position a p-T3O or a simple order type, while an order type belonging to points in a
plane in arbitrary position (allowing more than two points to be collinear) a p-P3O or a partial order
type. The relationship between C-T3O’s and C-P3O’s is similar to the relationship between p-T3O’s and
p-P3O’s. In Knuth [15] these are referred to as partial signings that can be completed to form order types.

The rest of this paper is organized as follows. In Section 2 we show that C-P3O’s satisfy a natural
interiority condition, and compare them with other well-studied orientations. In Section 3 we examine
which p-T3O’s (order types) are realizable as a C-T3O, and we find that up to five elements, the single
condition that the configuration satisfies the interiority condition, is sufficient; this means that there exist
C-T3O’s that are not p-T3O’s. We prove the strengthening that there is a p-T3O that is not a C-T3O
in a companion paper [1], which primarily studies orientations of good covers, a generalization of the
orientation studied here. Finally, in Section 4 we sketch some of our related results omitted from the
paper and pose some open problems.

2For intersecting families, an Erdős–Szekeres type theorem with our definition of orientation follows directly from Ram-
sey’s theorem.

65

2 Interiority
We say that a (partial) orientation satisfies the interiority condition if ⟲(ABD) = ⟲(BCD) = ⟲

(CAD) = 1 imply ⟲ (ABC) = 1 for any A,B,C,D. If ⟲ (ABD) = ⟲ (BCD) = ⟲ (CAD) = 1 or
⟲(ABD) = ⟲(BCD) = ⟲(CAD) = −1 for some A,B,C,D, then we will write D ∈ conv(ABC). (Note
that the order of A,B,C is irrelevant in this notation.) This, however, can be quite misleading, as this
notion of convexity does not have many natural properties, as we will see later.

Lemma 5 (Interiority Lemma). Any intersecting family of convex sets satisfies the interiority condition.

Proof. SupposeA,B,C,O is an intersecting family of convex sets and ⟲(ABO) = ⟲(BCO) = ⟲(CAO) = 1.
Then we need to show that ⟲(ABC) = 1.

For a contradiction, suppose first ⟲(ABC) = 0. Fix some w ∈ A ∩ B ∩ C, and take any a ∈ A ∩ O,
b ∈ B ∩O and c ∈ C ∩O and check the orientations of the triples of w, a, b, c using Lemma 1(d). We get
⟲(abw) = ⟲(bcw) = ⟲(caw) = 1. It follows that w ∈ conv(a, b, c) ⊂ O, contradicting that ⟲(ABO) = 1.

Now suppose ⟲(ABC) = −1. Take any a ∈ A ∩O, b ∈ B ∩O, c ∈ C ∩O, z ∈ A ∩B, x ∈ B ∩ C and
y ∈ A∩C. We can assume that these six points are in general position, otherwise we could slightly perturb
them, along with the convex sets containing them, if necessary, without introducing a triple intersection.
The conditions and Lemma 1(d) imply that ⟲(abz) = ⟲(bcx) = ⟲(cay) = −1 and ⟲(xyz) = −1. Also, as
there is no triple intersection, we know that x, y, z /∈ conv(abc), b, c, x /∈ conv(ayz), a, c, y /∈ conv(bxz),
a, b, z /∈ conv(cxy). We will deal with two cases, depending on the orientation of abc. The lines ab, bc, ca
divide the plane into seven regions: a bounded triangle conv(abc), three unbounded cones, which we
denote by Va, Vb, Vc, respectively, indexed by their apexes, and three unbounded regions sharing a side
each with the triangle conv(abc), which we denote by Uab, Ubc, Uac, respectively, indexed by the adjacent
side of the triangle.

VaVb

Vc

Uab

UacUbc

b a

c

z

x

y

Figure 3: Case 1 of the proof of Lemma 5. Beware that in the figure ⟲(xyz) = 1 while in the proof
⟲(xyz) = −1 but we could find no better way to depict contradicting assumptions.

Case 1: ⟲(abc) = 1 (see Figure 3).
The orientation conditions and x, y, z /∈ conv(abc) imply that x ∈ Vb ∪ Ubc ∪ Vc, y ∈ Vc ∪ Uac ∪ Va,
z ∈ Va ∪ Uab ∪ Vb.
Since ⟲(xyz) = −1, two of x, y, z must fall in the same cone Vi. Without loss of generality, assume that
x, y ∈ Vc. As c /∈ conv(ayz), and a is to the right of the directed line yc, z must either lie to the right of
line yc or to the left of the line ac. Since z lies to right of the line ab, if it lies to the left of ac then it is

66

B A

C

O

B A

C

O

Figure 4: Regular and irregular containment O ∈ conv(ABC).

in Va. Hence z must lie to the right of yc. Similarly z must lie to the left of xc. But this implies z ∈ Uab

and ⟲(xyz) = 1, a contradiction.
Case 2: ⟲(abc) = −1.

The orientation conditions and x, y, z /∈ conv(abc) imply that x ∈ Uab ∪ Va ∪ Uac, y ∈ Ubc ∪ Vb ∪ Uab,
z ∈ Uac ∪ Vc ∪ Ubc.
If any of x, y, z fall in a cone Vi, e.g., x falls in Va then y, z ∈ Ua,c and we can finish with a similar
argument as in the previous case.
Otherwise, say that a has an opposite point, if y ∈ Ubc or z ∈ Ubc and, similarly, b has an opposite point,
if x ∈ Uac or y ∈ Uac and c has an opposite point, if x ∈ Uab or y ∈ Uab. If a does not have an opposite
point, then y ∈ Uab and z ∈ Uac, which implies that both b and c have an opposite point. Therefore,
at least two of a, b, c have an opposite point, say, b and c. But then the segments connecting b and c
to their opposite points intersect inside conv(abc), which gives a triple intersection, contradicting our
assumptions.

Regular and irregular containment

In Figure 4 we can see two different ways O ∈ conv(ABC) can happen. We will see that the one
on the right complicates many scenarios, so we will often handle the two cases separately. We say that
the containment O ∈ conv(ABC) is regular if each of O ∩ ∂ (ABC) ∩ A, O ∩ ∂ (ABC) ∩ B and
O ∩ ∂ (ABC) ∩ C is a connected set, and we say that the containment O ∈ conv(ABC) is irregular
if one of them has more than one connectivity component. If O ∈ conv(ABC) is regular, then each of
O ∩ (ABC) ∩ ∂A, O ∩ (ABC) ∩ ∂B and O ∩ (ABC) ∩ ∂C is a connected curve.

But "doubly irregular containments" are impossible:

Claim 6. For convex sets A, B, C and O, it is impossible that O ∈ conv(ABC) and the containment is
irregular with respect to both A and B.

We omit the proof due to the space restrictions.

Relation to other notions of orientation

Knuth [15] studied orientations that satisfy the interiority condition under the name interior triple
system, according to Knuth “for want of a better name.” We want a better name, so we will refer to such
an orientation as a T3O (total 3-order), while if zero-orientations are also allowed, then we call such an
orientation a P3O (partial 3-order). We believe that these names are better as they reflect the similarity
to posets, which would be called a P2O (partial 2-order) in our language. A poset can be considered
a mapping from the ordered pairs of its base sets to {±1, 0} requiring antisymmetry and transitivity.
Similarly, a P3O does the same for ordered triples, but in our case requiring the interiority condition.

Lemma 5 implies that the orientation of the triples of any holey family is a T3O. To the best of our
knowledge, T3O’s have not been studied anywhere except [15, Chapter 3], where the main result is that
there are 2Ω(n3) different T3O’s over n elements.

67

If we add another property, called transitivity (the definition of which we omit here), then we get a
much better studied notion, known as CC systems [15] (see also pseudoline arrangements [12, Chapter 5]
and acyclic rank 3 oriented matroids [12, Chapter 6]). The transitivity property, however, is not satisfied
by holey convex families. In fact, not even the following weaker condition, that we define below.

Knuth [15, Chapter 2, (2.4)] defines the interior transitivity condition as follows: If D ∈ conv(ABC)
and E ∈ conv(ABD), then E ∈ conv(ABC). The interior transitivity condition is satisfied by the earlier
mentioned CC systems, but it is strictly weaker than them. Indeed, Knuth proved that the number of
3-orders on n sets is 2Ω(n2 logn), while the number of CC systems is 2Θ(n2), and the number of CC systems
that are representable by planar point sets, known as stretchable arrangements/order types, is 2Θ(n logn).
There are holey families that do not satisfy the interior transitivity condition, see Figure 5.

D

A

B

C

E

Figure 5: A family of convex sets not satisfying the interior transitivity: D ∈ conv(ABC) and E ∈
conv(ABD) but E /∈ conv(ABC).

However, the following weaker statement is true.

Claim 7. If A,B,C,D and E are convex sets forming a holey family such that D ∈ conv(ABC) and
E ∈ conv(ABD), then D ∩ E ⊂ (ABC).

For the proof we need the following simple observation which follows from checking how a regular or
irregular containment can look like; see Figure 4.

Claim 8. Suppose A,B,C and O are elements of a holey family.
Then O ∈ conv(ABC) if and only if (ABO), (BCO), (CAO) ⊂ (ABC) ∪A ∪B ∪ C.

Proof of Claim 7. Since D∩E intersects ∂ (ABD) which is contained in (ABC)∪A∪B∪C by Claim
8, and D∩E cannot intersect A∪B∪C as there are no triple intersections, we get that D∩E ⊂ (ABC),
as required.

3 Small cases
Here we examine which T3O’s on few elements are realizable with a holey family of convex sets,

similarly as was done in [9] for allowable sequences and order types. In case of 4 elements, it follows from
Lemma 5 that all system definitions coincide:

Claim 9. On four elements, there are two p-T3O’s, two T3O’s and two C-T3O’s.

In case of 5 elements, a p-T3O is determined by the size of the convex hull of the realizing point set,
which gives three options, but by enumeration, there are six combinatorially different T3O’s. We could
realize all of them with convex sets (see Figures 7 and 8) which implies:

3For the Bisztriczky-Fejes Tóth type definition of order types of convex sets, any point order type is by definition
realizable by convex sets, while in the other direction a configuration of convex sets whose order type is not realizable by
points was given in [21] answering a question of Hubard and Montejano.

68

T3O (3-orders)

C-T3O(convex 3-orders)

interior transitivity

CC systems,
pseudoline
arrangements,
rank 3 oriented
matroids

order types

C-P3O (convex partial
3-orders)

P3O (partial 3-orders)
interior triple
systems

partial order
types

Figure 6: A diagram illustrating the relationship of some related notions. A P3O is any partial orientation
of triples satisfying the interiority condition. A T3O is a P3O such that no triple is zero-oriented. A C-T3O
(resp. C-P3O) is a T3O (resp. P3O) that is realizable with planar convex sets. Theorem ?? shows that
a p-P3O might not be a C-P3O, while that a p-T3O might not be a C-T3O is proved in our companion
paper [1], which also includes several further subclasses of P3O and T3O.3

Claim 10. Any one of the six T3O’s on five elements is a C-T3O, i.e., it is representable by a holey
family of convex sets.

In case of 6 elements, it can be checked by enumeration that in total there are 253 combinatorially
different T3O’s on 6 elements, which is much more than 16, the number of p-T3O’s realizable with 6
points.

We have managed to realize 14 out of the 16 p-T3O’s as C-T3O’s, while we conjecture that the other
two cannot be realized. The list of these realizations can be found in Figure 9.

The 11th point set was more difficult to realize than the others, since (as we proved it, but the proof
is omitted due to space restrictions) it does not have a realization where A, B and C contain all of D, E
and F regularly.

4 Closing remarks
We had to omit some results from this version of the paper due to space restrictions.
We have shown a four-element holey family that is non-extendible, meaning that it is not part of any

larger holey family (Figure 10). The result is rather simple, but it shows an important difference between
point configurations and holey families, as a planar point set in general position always can be extended
to another one.

We proved that the order type in Figure 11 is not a C-P3O.

69

A B

C

D

E

D

E

A
B

C

A B

CD

E

B

E
A

D

C

A B

C

D E AB

C

DE

Figure 7: Three T3O’s on five elements can be realized as a p-T3O and as a C-T3O.

AB

C

D E

A

B

C

E
D

A

B

C

E

D

Figure 8: Three T3O’s on five elements can be realized as a C-T3O but not as a p-T3O.

A B

C

D

Figure 10: A holey family consisting of four disks
that cannot be extended.

A1 A4

A2 A3

D

Figure 11: A p-P3O that is not a C-P3O.

We also examined a restricted case of the problem in which we take C-P3O’s satisfying the (4,3)-
property (all 4 sets contain an intersecting 3-tuple). We can prove that if we only use Lemma 5, two other
observations about C-P3O’s and the (4,3)-property, we still can find a hypergraph on n vertices, whose
maximal clique size is O(

√
n). If the contrary would be true, it could help us creating new theorems about

the intersections of convex sets.
In our next paper [1] (also submitted to this conference), we proved that not all p-T3O’s are C-T3O’s.
Our definition of orientation can be generalized to intersecting pseudo-disk arrangements and to d+ 1

convex sets in Rd. We leave these for future research, like the following questions left open in this paper.

Problem 11. Are all C-P3O’s and/or C-T3O’s extendable by adding one more element?

Problem 12. Are all 6-point order types C-T3O’s, or the two that we could not realize in Fig. 9 are not?

Problem 13. What further properties of C-P3O’s are needed to obtain efficient (p, q) theorems?

Acknowledgments.
We would like to thank Nóra Frankl and Márton Naszódi for discussions during the project.

70

A B

C

DE

F

A B

C

D

E

F

A B

C

D

E F

A B

C

D

E

F

F
E

D

C

B
A E

F
D

C

B
A A

E

F

D

C
B

Not a C-T3O?

A B

CD

F

E

A B

CD

FE

A B

CD

F

E

A B

CD

F

E

A

F

D
E

C
B

Not a C-T3O?

A

F

D
E

C
B

A

F
D

E

C

B

A B

CD

F

E

A B

CD

F E

A B

C

D F
E

A B

C

E

FD

A

F

D

E

C

B

A

ED

C

F

B

A

E

F

BC

D
A

BC

D

E

F

D

E

A B

C

F

F

D

A B

C

E
D E

A B

C

F

F

D

A B

C

E

A

BC

D

E

F

A

BC

D

E

F

A

BC

D

E

F

A

BC

F

E

D

Figure 9: C-T3O’s representing 6-point order types.
71

References
[1] P. Ágoston, G. Damásdi, B. Keszegh, and D. Pálvölgyi. Orientation of good covers. Preprint, https:

//arxiv.org/abs/2206.01723.

[2] N. Alon, I. Bárány, Z. Füredi, and D. J. Kleitman. Point selections and weak ε-nets for convex hulls.
Combinatorics, Probability and Computing, 1(3):189–200, 1992.

[3] N. Alon and D. J. Kleitman. Piercing convex sets and the Hadwiger-Debrunner (p, q)-problem.
Advances in Mathematics, 96(1):103–112, 1992.

[4] T. Bisztriczky and G. Fejes Tóth. A generalization of the Erdős-Szekeres convex n-gon theorem.
Journal für die Reine und Angewandte Mathematik, 395:167–170, 1989.

[5] T. Bisztriczky and G. Fejes Tóth. Nine convex sets determine a pentagon with convex sets as vertices.
Geometriae Dedicata, 31(1):89–104, 1989.

[6] T. Bisztriczky and G. Fejes Tóth. Convexly independent sets. Combinatorica, 10(2):195–202, 1990.

[7] M. G. Dobbins, A. Holmsen, and A. Hubard. The Erdős-Szekeres problem for non-crossing convex
sets. Mathematika, 60(2):463–484, 2014.

[8] M. G. Dobbins, A. Holmsen, and A. Hubard. Regular systems of paths and families of convex sets
in convex position. Transactions of the American Mathematical Society, 368(5):3271–3303, 2016.

[9] J. E. Goodman and R. Pollack. On the combinatorial classification of nondegenerate configurations
in the plane. Journal of Combinatorial Theory. Series A, 29:220–235, 1980.

[10] J. E. Goodman and R. Pollack. A theorem of ordered duality. Geometriae Dedicata, 12:63–74, 1982.

[11] J. E. Goodman and R. Pollack. Semispaces of configurations, cell complexes of arrangements. Journal
of Combinatorial Theory. Series A, 37:259–293, 1984.

[12] Handbook of Discrete and Computational Geometry (edited by J. E. Goodman, J. O’Rourke and
Cs. D. Tóth), Third Edition, CRC Press LLC, Boca Raton, FL 2017.

[13] A. Hubard, L. Montejano, E. Mora, and A. Suk. Order types of convex bodies. Order, 28(1):121–130,
2011.

[14] A. S. Jobson, A. E. Kézdy, J. Lehel, T. J. Pervenecki, and G. Tóth. Petruska’s question on planar
convex sets. Discrete Mathematics, 343(9):1–13, 2020.

[15] D. E. Knuth. Axioms and hulls. Springer-Verlag, Lecture Notes in Computer Science, 1992.

[16] J. Lehel and G. Tóth. On the hollow enclosed by convex sets. Geombinatorics, 30(3):113–122, 2021.

[17] D. Nagy and B. Patkós. Triangles in intersecting families. Preprint, https://arxiv.org/abs/2201.
02452 2022.

[18] J. Pach and G. Tóth. A generalisation of the Erdős-Szekeres theorem to disjoint convex sets. Discrete
& Computational Geometry, 19(3):437–445, 1998.

[19] J. Pach and G. Tardos. Forbidden paths and cycles in ordered graphs and matrices. Israel Journal
of Mathematics, 155:359–380, 2006.

[20] J. Pach and G. Tóth. Erdős-Szekeres-type theorems for segments and noncrossing convex sets.
Geometriae Dedicata, 81(1-3):1–12, 2000.

[21] J. Pach and G. Tóth. Families of convex sets not representable by points. Indian Statistical Institute
Platinum Jubilee Commemorative Volume–Architecture and Algorithms, 43–53, 2009.

[22] A. Suk. On order types of systems of segments in the plane. Order, 27(1):63–68, 2010.

72

An FPT algorithm for the envy-free ride allocation
with respect to destination types

YUKI AMANO

Kyoto University, Japan
ukiamano@kurims.kyoto-u.ac.jp

AYUMI IGARASHI

University of Tokyo, Japan
igarashi@mist.i.u-tokyo.ac.jp

YASUSHI KAWASE

University of Tokyo, Japan
kawase@mist.i.u-tokyo.ac.jp

KAZUHISA MAKINO

Kyoto University, Japan
makino@kurims.kyoto-u.ac.jp

HIROTAKA ONO

Nagoya University, Japan
ono@nagoya-u.jp

Abstract: The model called a fair ride allocation on a line is proposed by Amano et al. as an extension
of the airport problem to the so-called assignment setting, i.e., for multiple facilities and agents, each
agent chooses a facility to use and shares the cost with the other agents. Such a situation can often be
seen in sharing economy, such as sharing fees for office desks among workers, and taxi fare among
customers of possibly different destinations on a line. In this study, we consider envy-freeness as
the criteria of fairness and design an FPT algorithm for the envy-free ride allocation with respect to
destination types in the model.

Keywords: Envy-freeness, Airport games, Cooperative games, Shapley value

1 Introduction
Imagine a group of university students, each of whom would like to take a taxi to her/his destination. For example,
Alice wants to go directly back home, while Bob prefers to go downtown to meet with friends. Each student may
ride a taxi alone or share a ride and split into multiple groups to benefit from sharing the cost. It is then natural to
ask two problems: how to form coalitions and fairly divide the fee.

In order to handle such a situation, the model called a fair ride allocation on a line is proposed by Amano
et al. [2] as an extension of the airport problem. The airport problem is a classical fair division problem introduced
by Littlechild and Owen [15] in which it is decided how to distribute the cost of a facility among agents when
the greatest demand of the agents determines the cost. The model of Amano et al. [2] is an extension of the
airport problem to the so-called assignment setting, i.e., for multiple facilities and agents, each agent chooses a
facility to use and shares the cost with the other agents. Here, the facilities are taxis, the agents’ demands are their
destinations, and the costs are the fare of taxis. In the model, there are n agents A and k taxis, and each agent rides
a taxi at the same initial location of the point 0. Each agent a ∈ A has destination xa ∈ R>0, which is called the
destination type of agent a. Each taxi i has a quota qi representing its capacity. We consider allocating all agents to
taxis subject to the quota constraints of all taxis. The agents assigned to each taxi i, denoted by Ti ⊆ A, is charged
a cost according to the furthest destination maxa∈Ti

xa, and each agent pays one’s share of the cost. The Shapley
value is used as the payment rule, where the rule’s definition can be found in Section 2. Note that the model with
one taxi without quota constraint is identical to the airport problem. Since the model is a natural generalization of

73

the airport problem, it can be applied in various situations such as sharing office rooms, traveling along a highway,
and boat traveling on a river; see details in Thomson [23].

In this paper, we consider envy-freeness [12], which requires that no agent prefers to replace another agent, as
the fairness of allocation. We show that an envy-free allocation for the model can be computed in FPT time with
respect to the number of destination types. More precisely, when the number p of destination types is small, we
enumerate all possible ‘shapes’ of envy-free allocations by utilizing the monotonicity and the split property, and
then compute an envy-free feasible allocation in O(ppn4) time by exploring semi-lattice structure of size vectors
consistent with a given shape. Note that the result has already been mentioned by Amano et al. [2]. In this paper,
we present an algorithm for finding such an allocation and give a rough proof of the validity of the algorithm.
Efficient algorithms are known for finding a feasible envy-free allocation when the number of taxis or the capacity
of each taxi is small Amano et al. [2], where they are based on three structural properties of envy-free allocations:
monotonicity, split property, and locality. On the negative side, they showed that it is NP-hard to decide if there
exists an allocation under two relaxed envy-free concepts [2]. The first one relaxes the envy-free requirement
by imposing the necessary conditions in Split Lemma (split conditions). It is NP-complete to decide whether
there exists a feasible allocation that satisfies the split conditions. The second one generalizes the notion of envy-
freeness by looking into envies among particular ordered pairs. For a subset S ⊆ A2 of the agents’ ordered pairs,
an allocation is called envy-free in S if agent a never envies agent b for any (a, b) ∈ S. Given a subset S ⊆ A2, it
is also NP-complete to decide whether there exists a feasible allocation that is envy-free in S.

Related work
The problem of fairly dividing the cost among multiple agents has been long studied in the context of coopera-
tive games with transferable utilities; we refer the reader to the book of Chalkiadakis et al. [9] for an overview.
Following the seminal work of Shapley [22], several researchers have investigated the axiomatic property of the
Shapley value as well as its applications to real-life problems. Littlechild and Owen [15] analyzed the property
of the Shapley value when the cost of each subset of agents is given by the maximum cost associated with the
agents in that subset. Chun and Park [10] analyzed the extension of the airport problem under capacity constraints
wherein the number of facilities is unlimited and the capacity of each facility is the same. They showed that a
capacity-adjusted version of the sequential equal contributions rule coincides with the Shapley value of a cooper-
ative game whose characteristic value is defined as the minimum cost of serving all the members of a coalition.
Note that the payment rule in Chun and Park [10] is different from our setting: they consider a global payment rule
that divides the total cost among all agents, while in our setting, the cost of each facility is divided locally among
the agents assigned to the same facility. CHUN et al. [11] further studied the strategic process in which agents
divide the cost of the resource, showing that the division by the Shapley value is indeed a unique subgame perfect
Nash equilibrium under a natural three-stage protocol.

Our work is similar in spirit to the complexity study of congestion games [16, 19]. In fact, without capacity
constraints, it is not difficult to see that the fair ride-sharing problem can be formulated as a congestion game.
The fairness notions, including envy-freeness in particular, have been well-explored in the fair division literature.
Although much of the focus is on resource allocation among individuals, several recent papers study the fair
division problem among groups [14, 21]. Our work is different from theirs in that agents’ utilities depend not only
on allocated resources, but also on the group structure.

In the context of hedonic coalition formation games, e.g., Aziz and Savani [4], Barrot and Yokoo [6], Bodlaen-
der et al. [7], Bogomolnaia and Jackson [8], there exists a rich body of literature studying fairness and stability. In
hedonic games, agents have preferences over coalitions to which they belong, and the goal is to find a partition of
agents into disjoint coalitions. While the standard model of hedonic games is too general to accommodate positive
results (see Peters and Elkind [18]), much of the literature considers subclasses of hedonic games where desirable
outcomes can be achieved. For example, Barrot and Yokoo [6] studied the compatibility between fairness and sta-
bility requirements, showing that top responsive games always admit an envy-free, individually stable, and Pareto
optimal partition.

Finally, our work is related to the growing literature on the ride-sharing problem [1, 3, 5, 11, 13, 17, 20, 24].
Santi et al. [20] empirically showed a large portion of taxi trips in New York City could be shared while keeping
prolonged passenger travel time low. Motivated by an application to the ride-sharing platform, Ashlagi et al. [3]

74

considered the problem of matching passengers for sharing rides in an online fashion. However, they did not study
the fairness perspective of the resulting matching.

2 Model
The model called a fair ride allocation on a line is proposed by Amano et al. [2] as an extension of the airport
problem to the so-called assignment setting. For a positive integer s ∈ Z>0, we write [s] = {1, 2, . . . , s}. For a set
T and an element a, we may write T + a = T ∪ {a} and T − a = T \ {a}. In our setting, there are a finite set of
agents, denoted byA = [n], and a finite set of k taxis. The nonempty subsets of agents are referred to as coalitions.
Each agent a ∈ A is endowed with a destination xa ∈ R>0, which is called the destination type (or shortly type)
of agent a. We assume that the agents ride a taxi at the same initial location of the point 0, and they are sorted in
nondecreasing order of their destinations, i.e., x1 ≤ x2 ≤ · · · ≤ xn. Each taxi i ∈ [k] has a quota qi representing
its capacity, where q1 ≥ q2 ≥ · · · ≥ qk (> 0) is assumed. An allocation T = (T1, . . . , Tℓ) is an ordered partition
of A, and is called feasible if ℓ ≤ k and |Ti| ≤ qi for all i ∈ [ℓ]. Given a monotone nondecreasing function
f : R>0 → R>0, the cost charged to agents in Ti is the value of f in the furthest destination maxa∈Ti

f(xa) if
|Ti| ≤ qi, and ∞ otherwise. The cost has to be divided among the agents in Ti. Without loss of generality, we
assume that the cost charged to Ti is simply the distance of the furthest destination if |Ti| ≤ qi, i.e., f is the identity
function. In other words, we may regard that xa is the cost itself instead of the distance.

We consider a scenario where agents divide the cost using the well-known Shapley value [22], which, in our
setting, coincides with the sequential contributions rule as in the airport problem [15]. Formally, for each subset T
of agents and s ∈ R>0, we denote by nT (s) the number of agents a in T whose destinations xa is at least s, i.e.,
nT (s) :=

∣∣{a ∈ T | xa ≥ s}
∣∣. For each coalition T ⊆ A and positive real x ∈ R>0, we define

φ(T, x) =

∫ x

0

dr

nT (r)
,

where we define φ(T, x) =∞ if nT (x) = 0. Equivalently, for a subset T of s agents whose destinations are given
by xi1 ≤ xi2 ≤ . . . ≤ xis , the valueφ(T, xij) is given by xi1/s+(xi2−xi1)/(s−1)+. . .+(xij−xij−1)/(s−j+1).
See Example 1 for an illustration of the sequential contributions rule.

Throughout, we use a succinct notation to specify examples. An instance will be denoted as a single arrow
where the black circles on each arrow will denote the set of agents who drop off at the same destination. An
allocation T is written as a set of arrows where the arrows correspond to coalitions T ∈ T , and the black circles
on the arrow T denote the set of destinations of the agents in T .

Example 1 Consider a taxi that forms a coalition T in Fig. 1, i.e., agents a, b, c, and d take one taxi together
from a starting point to points 12, 24, 36, and 40 on a line, respectively. The total cost is 40, which corresponds
to the drop-off point of d. According to the payment rule, agents a, b, c, and d pay 3, 7, 13, and 17, respectively.
In fact, from the starting point to the drop-off point of a, To see this, observe that all the agents are in the taxi
from the starting point to the drop-off point of a, so they equally divide the cost of 12, which means that a should
pay φ(T, xa) = 12/4 = 3. Between the dropping points of a and b, three agents are in the taxi, so they equally
divide the cost of 24 − 12 = 12, resulting in the cost of 4 for each of the three agents. Thus, φ(T, xb) =
12/4 + 12/3 = 3 + 4 = 7. By repeating similar arguments, we have φ(T, xc) = 7 + (36 − 24)/2 = 13, and
φ(T, xd) = 13 + (40− 36) = 17.

T
a

12

b

24

c

36

d

40

Figure 1: The coalition in Example 1

75

For an allocation T and a coalition Ti ∈ T , the cost of agent a ∈ Ti is defined as ΦT (a) := φi(Ti, xa) where

φi(Ti, x) =

{
φ(Ti, x) if |Ti| ≤ qi,
∞ if |Ti| > qi.

It is not difficult to verify that the sum of the payments in Ti is equal to the cost of taxi i. Namely, if |Ti| ≤ qi,
we have

∑
b∈Ti

φi(Ti, xb) = maxa∈Ti
xa. On the other hand, if |Ti| > qi, all agents in Ti pay ∞ whose sum

is equal to ∞ (i.e., the cost of taxi i). It is already shown that the payment rule for each taxi coincides with the
Shapley value [2].

3 Envy-free allocations
In this section, we consider envy-free feasible allocations for a fair ride allocation on a line. Note that there is
a simple example with no envy-free feasible allocation as following Example 2. We thus study the problem of
deciding the existence of an envy-free feasible allocation and finding one if it exists. We show that the problem is
FPT with respect to the number of destination types.1 This restriction is relevant to consider a setting where the
number of destinations is small; for instance, a workshop organizer may offer a few excursion opportunities to the
participants of the workshop.

We first give the formal definition of envy-free allocation and then describe three basic properties of envy-free
allocations that will play important roles in designing of the algorithm in this paper.

Envy-freeness requires that no agent prefers another agent. Formally, for an allocation T , agent a ∈ Ti envies
b ∈ Tj if a can be made better off by replacing herself by b, i.e., i ̸= j and φj(Tj − b + a, xa) < φi(Ti, xa). A
feasible allocation T is envy-free (EF) if no agent envies another agent. Without capacity constraints, i.e., q1 ≥ n,
envy-freeness can be trivially achieved by allocating all agents to a single coalition T1. Also, when the number
of taxis is at least the number of agents, i.e., k ≥ n, an allocation that partitions the agents into the singletons is
envy-free.

Example 2 Consider an instance where n = 4, k = 2, q1 = q2 = 2, x1 = 2, and x2 = x3 = x4 = 4. We show
that no feasible allocation is envy-free. To see this, let T = (T1, T2) be a feasible allocation. By feasibility, the
capacity of each taxi must be full, i.e., |T1| = |T2| = 2. Suppose without loss of generality that T1 = {1, 2} and
T2 = {3, 4} in Fig. 2. Then agent 2 envies the agents of the same type. Indeed, she needs to pay the cost of 3 at the
current coalition while she would only pay 2 if she were replaced by 3 (or 4). Hence this instance has no envy-free
feasible allocation.

T1

T2

1

2

2

4

3,4

4

Figure 2: An instance with no envy-free feasible allocation

The first property is monotonicity of the size of coalitions in terms of the first drop-off point, which is formalized
as follows.

Lemma 3 (Monotonicity lemma [2]) For an envy-free feasible allocation T and non-empty coalitions T, T ′ ∈ T ,
we have the following implications:

min
a∈T

xa < min
a′∈T ′

xa′ implies |T | ≥ |T ′|, (1)

min
a∈T

xa = min
a′∈T ′

xa′ implies |T | = |T ′|. (2)

1A problem is said to be fixed parameter tractable (FPT) with respect to a parameter p if each instance I of this problem can be solved in
time f(p) · poly(|I|).

76

We next describe the split property of envy-free feasible allocations. For a coalition T and a real s, we use
notations T<s, T=s, and T>s to denote the set of agents with type smaller than s, equal to s, and larger than s,
respectively. We say that agents of type x are split in an allocation T if T contains two distinct T and T ′ with
T=x, T

′
=x ̸= ∅. The next lemma states that the agents of type x can be split in an envy-free feasible allocation only

if they are the first passengers to drop off in their coalitions, and such coalitions are of the same size; further, if
two taxis have an equal number of agents of split type, then no other agent rides these taxis.

An implication of the lemma is critical: we do not have to consider how to split the agents of non-first drop-off
points to realize envy-free feasible allocations.

Lemma 4 (Split lemma [2]) If agents of type x are split in an envy-free feasible allocation T , i.e., T=x, T
′
=x ̸= ∅

for some distinct T, T ′ ∈ T , then we have the following three statements:

(i) The agents of type x are the first passengers to drop off in both T and T ′, i.e., T<x = T ′
<x = ∅,

(ii) Both T and T ′ are of the same size, i.e., |T | = |T ′|, and

(iii) If |T=x| = |T ′
=x|, then T = T=x and T ′ = T ′

=x.

The last property of envy-free allocations is locality, i.e., every agent a is allocated to a taxi T with minimum
cost φ(T, xa).

Lemma 5 (Locality lemma [2]) For any envy-free allocation T , coalition T ∈ T , and agent a ∈ T , we have

φ(T, xa) ≤ φ(T ′, xa)

for all T ′ ∈ T . Furthermore, the strict inequality holds if xa is larger than the first drop-off point mina′∈T ′ xa′ of
T ′.

4 FPT algorithm
In this section, we show that an envy-free feasible allocation can be computed in FPT time with respect to the
number of destination types.

Recall that due to the split property, once we know the first drop-off points of each coalition, no agent of the
other types will be split in an envy-free allocation. Thus, we can represent the ‘shapes’ of an envy-free allocation
by a directed graphG where the first drop-off points can be considered as roots, followed by the agents of the other
types. The main idea of our algorithm is to (1) enumerate all such G and (2) decide whether there is a size vector
λ of each coalition that results in an envy-free outcome that is consistent with G. Although a naive approach to
enumerate all possible size vectors gives rise to an O(ppnp) algorithm where p is the number of destination types,
we show that a more sophisticated approach results in an O(ppn4) algorithm by utilizing structural properties of
G and λ. In particular, we show that G and λ define a unique envy-free allocation (up to isomorphism), G is a
star-forest, and λ forms semi-lattice.

Now, let V = {xa | a ∈ A} be the set of destination types, and let p = |V |. For an allocation T =
(T1, . . . , Tk), we define its allocation (di)graph GT = (V,E) by

E =
⋃

T∈T

{
(y, z) ∈ V 2

∣∣∣∣
y, z ∈ {xa | a ∈ T}, y < z,
̸ ∃a ∈ T : y < xa < z

}
.

Namely, the allocation graph GT contains a directed edge (y, z) if and only if an agent of type y drops off just
after an agent of type z in some coalition T ∈ T . By definition, GT is acyclic because every edge is oriented from
a smaller type to a larger type, i.e., (y, z) ∈ E implies y < z. We assume that all graphs discussed in this section
satisfy the condition.

A graph is called a star-tree if it is a rooted (out-)tree such that all vertices except the root have out-degree at
most 1, and a star-forest if each connected component is a star-tree. Then (i) in Split lemma implies that GT is a
star-forest. See the allocation graph for an envy-free feasible allocation is depicted in Fig. 3.

77

r1

r11, . . . , r71

a1
1, . . . , a5

1

b11, b21 b12, b22

c11 c12

r2

r12, . . . , r72 d11 d12 d13

r3

r13, . . . , r103

r4

r14, r24, r34

e11, e21, e31

f1
1 f1

2

Figure 3: An example of the allocation graph for an envy-free feasible allocation T = (T1, T2, . . . , T9) where
T1 = {r11, a11, a21, a31, a41, a51}, T2 = {r21, r31, b11, b21, b12, b22}, T3 = {r41, r51, r61, r71, c11, c12}, T4 = {r12, r22, d11, d12, d13},
T5 = {r32, r42, r52, r62, r72}, T6 = {r13, r23, r33, r43, r53}, T7 = {r63, r73, r83, r93, r103 }, T8 = {r14, e11, e21, e31}, T9 =
{r24, r34, f11 , f12 }. There are seven agents of type r1 (r11, . . . , r

7
1), seven agents of type r2 (r12, . . . , r

7
2), ten agents of

type r3 (r13, . . . , r
10
3), and three agents of type r4 (r14, r

2
4, r

3
4).

Now, we explore the relationship between T and GT , implied by the Split lemma. Formally, let C =
{C1, . . . , Ct} be the family of the vertex sets of connected components in GT . Let rj be the root of Cj , i.e.,
rj = minx∈Cj x, and let dj be out-degree of rj . We assume that the components are arranged in ascending
order of the root, i.e., r1 < · · · < rt. Let Tj be the family of coalitions T ∈ T in which all members have
types in Cj . We write T∈C to denote T∈C = {a ∈ T | xa ∈ C} for a coalition T and a set of types C; then
Tj = {T ∈ T | T = T∈Cj

}. By definition of GT , {T1, . . . , Tt} is a partition of T .
By star-tree property of Cj , vertices Cj \ {rj} forms dj paths in GT . Let Cℓ

j (ℓ = 1, . . . , dj) be the vertex sets
of such paths. Then by Split lemma, we have the following three conditions:

each T ∈ Tj satisfies either ∅ ≠ T ⊆ A=rj or A∈Cℓ
j
⊊ T ⊆ A∈Cℓ

j
∪A=rj for some ℓ, (3)

|T | = |T ′| holds for any T, T ′ ∈ Tj , and (4)
|A∈Cℓ

j
| ≠ |A∈Ch

j
| for any distinct ℓ, h ∈ [dj]. (5)

By (3), some agents of type rj form a coalition T or some agents of type rj together with the agents of
types in Cℓ

j form a coalition. It follows from (4) that each coalition in Tj has the same size λj . Let us call
λT = (λT1 , . . . , λ

T
t) the size vector of T . In summary, we have the following result as stated in Lemma 6, where

isomorphism ≃ of two allocations T = (T1, . . . , Tα) and T ′ = (T ′
1, . . . , T

′
β) is defined as follows: for two

coalitions T and T ′, we write T ≃ T ′ to mean that T and T ′ contains the same number of agents for each type,
i.e., |T=y| = |T ′

=y| for all y ∈ V ; for two allocations T and T ′, we write T ≃ T ′ if |T | = |T ′| and there exists a
permutation σ : [α]→ [α] such that Ti ≃ T ′

σ(i) for all i ∈ [α].

Lemma 6 Suppose that an allocation T satisfies the conditions in Lemma 4. Then G = GT and λ = λT satisfy
the following conditions:

G is a star-forest with (5) for any j in [t], and (6)
for any j in [t], λj is a divisor of |A∈Cj | such that max

ℓ∈[dj]
|A∈Cℓ

j
| < λj ≤ |A∈Cj |/dj . (7)

Conversely, if G and λ satisfy the conditions above, then there exists a unique allocation T (up to isomorphism)
satisfying GT = G, λT = λ, and the conditions in Lemma 4.

PROOF: Suppose that an allocation T satisfies the conditions in Lemma 4. It is not difficult to see that (6) follows
from the discussion above and (5), and (7) follows from (3) and (4). Conversely, if G and λ satisfy (6) and (7),
then we can construct a unique allocation T up to isomorphism that satisfies (3), (4), and (5). Thus T satisfies the
conditions in Lemma 4. □

Notably, a unique allocation T in the converse statement can be computed in polynomial time if G and λ are
given. Thus, a naive approach to find an envy-free feasible allocation is to enumerate all possibleG and λ, and then

78

check if they provide a envy-free feasible allocation. Note that the number of star-forests is at most pp, because the
in-degree of every node is at most one. However, we may have nΩ(p) many candidates of λ, even if a star-forest G
is fixed in advance. To mitigate this difficulty, we show that for a given star-forest G, the size vectors λ such that G
and λ provide envy-free feasible allocations form a semi-lattice. More precisely, for a star-forest G, let ΛG denote
the set of size vectors λ such that G and λ provide envy-free feasible allocations. Then we have the following
structural property of ΛG

Lemma 7 For any star-forest G, ΛG is an upper semi-lattice with respect to the componentwise max operation ∨,
i.e., λ, λ′ ∈ ΛG implies λ ∨ λ′ ∈ ΛG

We here remark that ΛG may be empty. Based on this semi-lattice structure, we construct a polynomial time
algorithm to compute an envy-free feasible allocation consistent with a given star-forest G. Specifically, for a
given star-forest G, our algorithm computes the maximum vector in ΛG or concludes that ΛG = ∅, where the
maximum vector exists due to the semi-lattice property of ΛG. The lemma below ensures that it is possible in
polynomial time. Since there exists at most pp many star-forests, this implies an FPT algorithm (with respect to p)
for computing an envy-free feasible allocation.

Lemma 8 For a star-forest G, let Λ =
∏

j∈[t] Λj be a non-empty set such that Λ ⊇ ΛG. If the maximum vector
λ = (max Λj)j∈[t] does not belong to ΛG, then an index ℓ ∈ [t] with (Λℓ −max Λℓ)×

∏
j∈[t]−ℓ Λj ⊇ ΛG can be

computed in polynomial time.

Note that an index ℓ in the lemma must exist again by the semi-lattice property of ΛG. Let Λ =
∏

j∈[t] Λj

denote a set of candidate size vectors. By Lemma 6, we have ΛG ⊆
∏

j∈[t]

[
|A∈Cj |

]
. Our algorithm initializes

Λ by Λ =
∏

j∈[t]

[
|A∈Cj

|
]
, and iteratively checks if Λ = ∅ or the maximum vector in Λ provides an envy-free

allocation; If not, it updates Λ by utilizing indices ℓ in Lemma 8, where the formal description of the algorithm
can be found in Algorithm 1.

Below, we show the following lemma, which is stronger than both Lemmas 7 and 8.

Lemma 9 Let G be a star-forest, and let Λ =
∏

j∈[t] Λj be a non-empty set in Zt
>0. If the maximum vector

λ = (max Λj)j∈[t] does not belong to ΛG, then there exists an index ℓ ∈ [t] such that
(

(Λℓ −max Λℓ)×
∏

j∈[t]−ℓ

Λj

)
∩ ΛG = Λ ∩ ΛG. (8)

In addition, such an index ℓ can be computed in polynomial time.

We note that Lemma 9 implies the semi-lattice property of ΛG. To see this, suppose that ΛG is not a semi-
lattice, i.e., there exists two size vectors λ, λ′ ∈ ΛG such that λ ∨ λ′ ̸∈ ΛG. Then we define Λ by Λi = [(λ ∨ λ′)i]
for i ∈ [t]. By definition, λ, λ′ ∈ Λ and λ ∨ λ′ is the maximum vector in Λ such that λ ∨ λ′ ̸∈ ΛG. However, no
index ℓ satisfies (8), since the right-hand side of (8) contains both λ, λ′, while the left-hand side of (8) contains at
most one of them. Furthermore, if a set Λ in Lemma 9 is chosen in such a way that Λ ⊇ ΛG, we obtain Lemma 8.

In order to show Lemma 9, let us consider the feasibility and monotonicity of allocations in addition to split
property.

Lemma 10 An allocation T is feasible and satisfies the conditions in Lemmas 3 and 4. Then λ = λT satisfy the
following conditions.

λ1 ≥ λ2 ≥ · · · ≥ λt (9)∑
j∈[t] |A∈Cj |/λj ≤ k, and (10)

λj ≤ qη(j) for all j ∈ [t]. (11)

where η(j) =
∑

r≤j |A∈Cr
|/λr. Conversely, if G and λ satisfy (6), (7), (9), (10), and (11), then there exists a

unique feasible allocation T (up to isomorphism) satisfying GT = G, λT = λ, and the conditions in Lemmas 3
and 4.

79

PROOF: Suppose that T is a feasible allocation satisfying the conditions in Lemmas 3 and 4. By our assumption
r1 < . . . rt, (1) implies (9). Note that the feasibility of T is equivalent to two conditions (i) |T | ≤ k and
(ii) capacity condition (i.e., |Ti| ≤ qi). Since Tj uses |A∈Cj

|/λj many taxis, (i) is equivalent to (10). By (9)
and the assumption q1 ≥ . . . qk, in order to check capacity condition, it is enough to consider an allocation
T = (T1, . . . , Tα) in such a way that T1 is assigned to the first η(1) taxis, T2 is assigned to next η(2)− η(1) taxis,
and so on. More precisely, we have

Tj = {Tη(j−1)+1, . . . , Tη(j)} for all j ∈ [t],

where η(0) is defined by 0. Thus the capacity condition implies (11). Conversely, if G and λ satisfy (6) and (7),
then then by Lemma 3, there exists a unique allocation T (up to isomorphism) satisfying GT = G, λT = λ, and
the conditions in Lemma 4. Moreover, since (9), (10), and (11) hold for λ, T is feasible and the conditions in
Lemma 3 are satisfied. □

Now, we prove Lemma 9.

Proof of Lemma 9: Let us separately consider the cases in which G and λ = (max Λj)j∈[t] violate (6), (7), (9),
(10), (11), and envy-freeness of the allocation provided by them.

• If (6) or (10) is violated, then by Lemmas 6 and 10, we have ΛG = ∅. This implies that any index ℓ satisfies
(8). Thus it is polynomially computable.

• If (7) is violated for an index j, then ℓ = j satisfies (8). Thus it is polynomially computable.

• If (9) is violated for an index j, i.e., λj−1 < λj , then ℓ = j satisfies (8). Thus it is polynomially computable.

• If (11) is violated for an index j, i.e., λj > qη(j), then we claim that ℓ = j satisfies (8), which completes
the proof of this case, since such an ℓ can be computed in polynomial time. Let λ′ be a size vector in Λ
such that λ′ℓ = λℓ, and let η′(h) =

∑
r≤h |A∈Cr |/λ′r for h ∈ [t]. Since λ′ ≤ λ and λ′ℓ = λℓ, we have

λ′ℓ = λℓ > η(ℓ) ≥ η′(ℓ), which implies the claim.

• Suppose that G and λ fulfill all the conditions above, i.e., G and λ provide a feasible allocation T that
satisfies the conditions in Lemmas 3 and 4. Let further assume that a ∈ T (∈ Th) envies a′ ∈ T ′ (∈ Tj)
for some j, h ∈ [t]. If j = h, then it is clear that ℓ = j (= h) satisfies (8). On the other hand, if j ̸= h,
Let λ′ be a size vector in Λ such that λ′ℓ = λℓ and satisfies (7), (9), (10), and (11). Then a still envies a′ in
the allocation provided by G and λ′. Thus ℓ = j again satisfies (8). Since envy-freeness can be checked in
polynomial time, this completes the proof. □

Theorem 11 We can check the existence of an envy-free feasible allocation, and find one if it exists in FPT with
respect to the number p of types of agents.

PROOF: We show that Algorithm 1 can check the existence of an envy-free feasible allocation and find one if it
exists in FPT time. The correctness follows from Lemmas 6, 10, and 8. To analyze the running time, observe
that the number of iterations of the while loop is at most n because

∑
j∈[t] |Λj | = n at the beginning of the loop

and it is decremented by at least one in each iteration. The running time of each iteration of the while loop is
O(n3) because we can check the existence of envy in O(n3) time. Thus, the total running time of the algorithm is
O(pp · n4), which is FPT with respect to p. □

Acknowledgement
This work was partially supported by the joint project of Kyoto University and Toyota Motor Corporation, ti-
tled “Advanced Mathematical Science for Mobility Society,” JST PRESTO Grant Numbers JPMJPR2122 and
JPMJPR20C1, and JSPS KAKENHI Grant Numbers JP19K22841, JP20H00609, JP20H05967, and JP22H00513.

80

Algorithm 1: FPT w.r.t. the number of destination types

1 foreach star-forest G do
2 Let Λ =

∏
j∈[t]

[
|A∈Cj

|
]
;

3 while Λ ̸= ∅ do
4 Let λ = (max Λj)j∈[t];
5 if (6) or (10) is violated then
6 Set Λ← ∅;
7 else if (7), (9), or (11) is violated for an index j then
8 Set Λj ← Λj −max Λj ;

9 else if an allocation T provided by G and λ is not envy-free, i.e., an agent in some coalition in Tj is
envied then

10 Set Λj ← Λj −max Λj ;

11 else
12 return an allocation T provided by G and λ;

13 return “No envy-free feasible allocation”;

References
[1] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. On-demand

high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of
Sciences, 114(3):462–467, 2017.

[2] Yuki Amano, Ayumi Igarashi, Yasushi Kawase, Kazuhisa Makino, and Hirotaka Ono. Fair ride allocation
on a line. In Panagiotis Kanellopoulos, Maria Kyropoulou, and Alexandros Voudouris, editors, Algorithmic
Game Theory, pages 421–435, Cham, 2022. Springer International Publishing.

[3] Itai Ashlagi, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet, Amin Saberi, and Chris Sholley. Edge
weighted online windowed matching. In Proceedings of the 2019 ACM Conference on Economics and Com-
putation, EC ’19, page 729–742, New York, NY, USA, 2019. Association for Computing Machinery.

[4] H. Aziz and R. Savani. Hedonic games. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A.D. Procaccia,
editors, Handbook of Computational Social Choice, chapter 15. Cambridge University Press, 2016.

[5] Siddhartha Banerjee, Yash Kanoria, and Pengyu Qian. State dependent control of closed queueing networks.
In Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’18, pages 2–4, New York, NY, USA, 2018. Association for Computing Machinery.

[6] Nathanaël Barrot and Makoto Yokoo. Stable and envy-free partitions in hedonic games. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence, IJCAI’19, page 67–73. AAAI Press, 2019.

[7] Hans L. Bodlaender, Tesshu Hanaka, Lars Jaffke, Hirotaka Ono, Yota Otachi, and Tom C. van der Zanden.
Hedonic seat arrangement problems. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’20, page 1777–1779, Richland, SC, 2020. International Founda-
tion for Autonomous Agents and Multiagent Systems.

[8] Anna Bogomolnaia and Matthew O. Jackson. The stability of hedonic coalition structures. Games and
Economic Behavior, 38(2):201–230, 2002.

[9] Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational aspects of cooperative game
theory. Synthesis Lectures on Artificial Intelligence and Machine Learning, 5(6):1–168, 2011.

81

[10] Youngsub Chun and Boram Park. The airport problem with capacity constraints. Review of Economic Design,
20(3):237–253, 2016.

[11] YOUNGSUB CHUN, CHENG-CHENG HU, and CHUN-HSIEN YEH. A strategic implementation of the
shapley value for the nested cost-sharing problem. Journal of Public Economic Theory, 19(1):219–233, 2017.

[12] Duncan K. Foley. Resource allocation and the public sector. Yale Economic Essays, 7:45–98, 1967.

[13] Jonathan Goldman and Ariel D. Procaccia. Spliddit: Unleashing fair division algorithms. SIGecom Exchange,
13(2):41–46, 2015.

[14] Maria Kyropoulou, Warut Suksompong, and Alexandros A. Voudouris. Almost envy-freeness in group re-
source allocation. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJ-
CAI’19, page 400–406. AAAI Press, 2019.

[15] S. C. Littlechild and G. Owen. A simple expression for the shapley value in a special case. Management
Science, 20(3):370–372, 1973.

[16] Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic Behavior, 14(1):124–143,
1996.

[17] Marco Pavone, Stephen L Smith, Emilio Frazzoli, and Daniela Rus. Robotic load balancing for mobility-on-
demand systems. The International Journal of Robotics Research, 31(7):839–854, 2012.

[18] Dominik Peters and Edith Elkind. Simple causes of complexity in hedonic games. In Proceedings of the 24th
International Conference on Artificial Intelligence, IJCAI’15, page 617–623. AAAI Press, 2015.

[19] Robert W. Rosenthal. A class of games possessing pure-strategy nash equilibria. International Journal of
Game Theory, 2(1):65–67, 1973.

[20] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H. Strogatz, and Carlo Ratti. Quan-
tifying the benefits of vehicle pooling with shareability networks. Proceedings of the National Academy of
Sciences, 111(37):13290–13294, 2014.

[21] Erel Segal-Halevi and Shmuel Nitzan. Fair cake-cutting among families. Social Choice and Welfare, 53(4):
709–740, 2019.

[22] L. S. Shapley. A value for n-person games. In Harold William Kuhn and Albert William Tucker, editors,
Contributions to the Theory of Games II, pages 307–317. Princeton University Press, Princeton, 1953.

[23] William Thomson. Cost allocation and airport problems. RCER Working Papers 537, University of Rochester
- Center for Economic Research (RCER), 2007.

[24] Rick Zhang and Marco Pavone. Control of robotic mobility-on-demand systems: A queueing-theoretical
perspective. The International Journal of Robotics Research, 35(1–3):186–203, 2016.

82

Polynomial-Time Algorithm for
the Regional SRLG-disjoint Paths Problem

Balázs Vass 1

Department of Telecommunication and Media
Informatics

University of Technology and Economics (BME)
Budapest, Hungary

balazs.vass@tmit.bme.hu

Erika Bérczi-Kovács 2

Alfréd Rényi Institute of Mathematics and
ELKH-ELTE Egerváry Research Group on

Combinatorial Optimization
Budapest, Hungary

erika.berczi-kovacs@ttk.elte.hu

Ábel Barabás

Department of Operations Research
Eötvös Loránd University

Budapest, Hungary
barabasabel@gmail.com

Zsombor László Hajdú 1

Department of Telecommunication and Media
Informatics

University of Technology and Economics (BME)
Budapest, Hungary
hajdu@tmit.bme.hu

János Tapolcai 1

Department of Telecommunication and Media
Informatics

University of Technology and Economics (BME)
Budapest, Hungary

tapolcai@tmit.bme.hu

Abstract: The current best practice in survivable routing is to compute link or node disjoint
paths in the network topology graph. It can protect single-point failures; however, several
failure events may cause the interruption of multiple network elements. The set of network
elements subject to potential failure events is called Shared Risk Link Group (SRLG), identified
during network planning. Unfortunately, for any given list of SRLGs, finding two paths that
can survive a single SRLG failure is NP-Complete. In this paper, we provide a polynomial-time
SRLG-disjoint routing algorithm for planar network topologies and a large set of SRLGs.
Namely, we focus on regional failures, where the failed network elements must not be far from
each other. We use a flexible definition of regional failure, where the only restrictions are that
i) the topology is a planar graph, ii) each SRLG forms a set of connected edges in the dual of
the planar graph, and iii) for each node v, the links incident to v are part of an SRLG. The
proposed algorithm is based on a max-min theorem.

Keywords: planar graphs, disjoint paths, regional failures

1 Introduction
Disjoint path computation is the essence of any strategy for networks to survive failures. The current best
practice is to utilize network flow algorithms, such as Suurballe’s algorithm [14], to efficiently compute

1Balázs Vass, Zsombor László Hajdú, and János Tapolcai are also with MTA-BME Future Internet Research Group and
ELKH-BME Information Systems Research Group. {,hajdu,tapolcai}@tmit.bme.hu.

2Also with Department of Operations Research, Eötvös Loránd University (ELTE), Budapest, Hungary.

83

link or node disjoint paths in the network topology graph. However, several papers studied [11, 3, 4] that
the networks have severe outages when almost every equipment in a vast physical region gets down as a
result of a disaster, such as earthquakes, hurricanes, tsunamis, tornadoes, etc. These types of failures are
called regional failures, which are simultaneous failures of nodes/links located in specific geographic areas.
The set of network links subject to potential failure events is called Shared Risk Link Group (SRLG),
identified during network planning [2].

Unfortunately, for a given list of SRLGs and topology graph, finding two paths that can survive a
single SRLG failure is NP-Complete in general [5]. The proof is a reduction from 3SAT where each
SRLG corresponds to a clause in the formula. Roughly speaking, a very artificial topology graph and
SRLG settings are needed to show the high computational complexity of the problem, and many believe
SRLG-disjoint routing is a well-solvable problem in practice. For example, Kobayashi-Otsuki provided
[6] a routing algorithm for circular disk failures of fixed radius in a planar graph topology where the
links are straight lines. Circular disk failures of the fixed radius are the most well studied regional failure
model, see [11, 15]. Naturally arises the question: Is there another set of regional SRLGs for which
the SRLG-disjoint routing problem is solvable in polynomial time? Can we define a simple and general
property of the regional SRLGs to have efficient routing algorithms? The paper provides a positive and
surprisingly simple answer as follows.

This study assumes the network topology is a planar graph. In backbone optical networks, it is rare
that cables cross each other without having an optical cross-connect at the intersection. Planarity is an
natural assumption to have a polynomial-time algorithm for an otherwise NP-hard problem.

Apart from that, we adopt a very general model, here we may consider the network is somehow
embedded on the Earth’s surface, the links are curved lines between the endpoints, and an SRLG is
resulting from a connected disaster area. We assume the list of SRLGs is defined in the service level
agreement (SLA) [13] at network planning. The list of SRLGs typically involves physically close network
nodes and parallel links, might be computed by any regional failure model [17], or based on historical
data of natural disasters, such as earthquakes [18], tornadoes, tsunamis, electromagnetic pulse (EMP)
attacks, etc [9] .

Furthermore, the proposed routing algorithms do not even require knowing the geometry of the
network, such as node coordinates and route of the cables. It is necessary because the router’s routing
engine cannot have such geographic information. The exact location of the network equipment is sensitive
information for military and economic reasons, which will never be widely distributed on the internet.
Note that, often, the network operators do not have any information about the route of the links or the
physical coordinates of the intermediate routing nodes because the links are hired as a service from an
independent company [1], called the Physical Infrastructure Provider. After all, information on the routes
of the links is not part of any network protocol so far. So the key idea of our approach is that knowing
the dual of the planar topology graph is sufficient for the routing computations, and also we will define
only combinatorial properties that the SRLGs must meet.

Fig. 1a shows such an example input: a planar topology graph with its dual graph. The nodes of
the dual graph are the faces, and there are edges between the adjacent faces. Thus, each link e of the
topology graph has a corresponding dual-edge, whose endpoints are the dual vertices corresponding to the
faces on either side of e. Therefore, an SRLG as a set of links can be mapped to a set of dual-edges.

To mitigate the above problem, we assume the routing engine knows the dual graph of the planar
network topology with the mapping between the links and dual-edges. The only assumption we have for
SRLGs, that the corresponding dual-edges are connected. Note that it is a very loose restriction and
covers all SRLGs that correspond to a connected disaster area. Here the disaster area is the geographic
(connected) region in which the network elements are subject to fail simultaneously. A regional failure
disconnects a link if it contains at least one (possibly end node) point of that link. For example the
SRLGs S1 and S2 shown on Fig. 1b correspond to the dual-edges colored red and blue on Fig. 1a that
are connected in the dual graph.

We provide a broad definition of ‘regional SRLG,’ where the regional SRLG-disjoint routing can be
efficiently solved. For this, we define a pure combinatorial routing problem input, which contains a planar
network topology and the corresponding dual graph. We show that this input is sufficient for efficient

84

1

2 3

5
s

7

8
9 10

6
11

21

22

12 14

13

t

1920

23
24

17

16

15
S1

S2

(a) The US network topology graph (G) with its dual (G∗).
The dual nodes are drawn with small green, and the outer
region is the red dual node, split on the illustration into
multiple nodes. The dual-edges are drawn with dotted
lines and intersect the corresponding network links. The
duals of two SRLGs, S1 and S2, are highlighted.

1

2 3

5
s

7

8
9 10

6
11

21

22

12 14

13

t

1920

23
24

17

16

15

S1

S2

(b) The regional SRLGs (Sregion) are hand drawn with
brush, and colored with the same color of the path
traversed by, otherwise orange. The full list of SRLGs
also include every single link or node failures as well.
Two SRLG-disjoint paths between the source (s) and
the target (t) node are drawn with red and blue links.

Input: a planar graph G = (V, E), for every node the cyclic order of incident links in a planar drawing, two
distinct nodes s, t ∈ V , and a set S ⊆ 2|E| of dual-connected SRLGs with SV ⊆ S.
Maximum Regional SRLG-disjoint Paths Problem (MRSDP): Find: maximum cardinality set of pairwise
S-disjoint s-t paths.

Figure 1: Illustration of the problem. Dual-edges corresponding to a regional SRLG are connected in the
dual graph, for example, SRLG S1 on (b) is mapped to blue dual-edges on (a). Note that SRLGs S1 and
S2 forms an s-t cut, thus, there can be at most two SRLG-disjoint s-t paths.

routing computations, and no other information on the geometry of the physical topology is needed. We
have a very flexible definition of regional failure, where we assume the SRLGs mapped to the dual-edges of
the planar graph are connected. We provide an efficient polynomial-time SRLG-disjoint routing algorithm
for the regional SRLG model defined above and planar network topology.

The paper is organized as follows. In Subsec. 1.1 we summarize previous theoretical work on the topic.
Sec. 2 provides the problem formulation, the main results and a simple upper bound on the number of
SRLG-disjoint paths. Sec. 3 describes the proposed algorithm.

For an extended version of this paper see [16].

1.1 Theoretical preludes
Papers [8] and [7] provided polynomial algorithms and min-max theorems to find a maximal number of
interiorly d-hop disjoint paths (i.e., no walk of length d is connecting any pair of these paths) in planar
graphs, for d = 1, and d ≥ 1, respectively. The condition of interiorly d-hop disjointness can be rephrased
as interiorly SRLG-disjointness for a special class of primal-connected SRLGs.

Based on the former, and motivated by [10], [6] and [12] designed a tight min-max theorem and faster
polynomial algorithms for finding a maximal number of circular disk-disjoint paths in geometric graphs
without link crossings. The disk-disjointness can be rephrased as SRLG-disjointness for a special class of
dual-connected SRLGs.

2 Problem formulation and main result
Let G = (V, E) be a planar network topology graph with a node set V , a link set E, and two distinct
nodes s, t ∈ V . We do not know any geometric embedding of G, instead we only know the order of incident
links at every node in the embedding. Note that from this information the dual graph G∗ = (V ∗, E∗)

85

s t

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

(a) The network topology and the SRLGs
(Sregion) are drawn with brush of unique
color.

(b) The dual graph with a closed dual walk C such that l(C) = 5,
w(C) = 3, and hence l(C)/w(C) < 2.

Figure 2: A graph, where the MIN-CUT = 3, but there is no two SRLG-disjoint paths between s and t,
meaning MAX-FLOW = MIN-CUT − 2.

can be easily calculated. When it does not confuse, we identify the faces of G with their dual nodes in
G∗ = (V ∗, E∗). In other words G∗ = (V ∗, E∗) is composed of a face set V ∗ and a dual-edge set E∗, see
Fig. 1a. In what follows, a link is sometimes called an edge.

Let Sregion ⊆ 2|E| be a set of link sets representing a set of regional SRLGs. We assume the set of
SRLGs also contains all the single node failures, which ensures the obtained SRLG-disjoint paths to be
node-disjoint. Let Ev denote the set of links in G incident to a node v and let SV represent the set of
SRLGs modeling the node failures, i.e.,

SV = {Ev|v ∈ V \ {s, t}} .

Let S denote the set of all SRLGs: S = Sregion ∪ SV . Let ρ denote the maximum size of a regional SRLG:
ρ := max{|S|

∣∣S ∈ S}, and let µ denote the maximum number of SRLGs that contain the same edge:
µ = max{|T | : T ⊂ S, | ∩S∈T S| > 0}. We say that two paths are (S-)disjoint or SRLG disjoint if there
is no SRLG S ∈ S intersecting both of them1. We may omit S from the notation when the SRLG set is
clear from the context.

Formally, for a link set X ⊆ E, let X∗ be the set of duals of links of X. For an SRLG S ∈ S, let
V ∗(S∗) := {f ∈ V ∗|there is a dual-edge {f, f ′} ∈ S∗ for some f ′}. We denote by d the maximal diameter
of the dual of an SRLG: d := max { diam(S∗)|S ∈ Sregion}, where diam(S∗) = maxf,f ′∈V ∗(S∗) min{ edge
lengths of f -f ′ paths in S∗}. We call a set of links S ⊆ E dual connected, if the edge-induced subgraph
of S∗ is connected in G∗. For example, each Ev ∈ SV is clearly dual connected. We demand S to fulfill
the following property:

Property 1 Each set S ∈ S is dual connected.

Recall we have a second property:

Property 2 All node failures are listed apart from s and t (SV ⊆ S).

Our main goal in this paper is to find the maximum number of S-disjoint s-t paths in planar graphs and
SRLG sets with Properties 1, 2, which we call Maximum Regional SRLG-disjoint Paths Problem
(MRSDP). See Figure 1 for the exact problem definition. Let MAX-FLOW denote the optimal value of
the problem. First, we give a trivial upper bound on MAX-FLOW using the analogy of max-flow min-cut

1In the related literature, ‘disjointness’ is sometimes called ‘separatedness’.

86

theorems for network flows. A set of SRLGs from S that disconnect s from t is called an SRLG cut in
this paper, see SRLG S1 and S2 on Fig. 1b as an illustration. It is easy to see that the size of an SRLG
cut is an upper bound for MAX-FLOW, because two disjoint paths cannot traverse any of these SRLGs
simultaneously by definition. Let MIN-CUT denote the minimum size of an SRLG cut. Fig. 2a shows an
example graph where the MAX-FLOW = 1, while MIN-CUT = 3. The gap between the MAX-FLOW
and MIN-CUT is at most 2 (for a proof see [16]).
Theorem 1 For any instance of the MRSDP problem and its corresponding MAX-FLOW and MIN-CUT
values we have

MAX-FLOW ≤ MIN-CUT ≤ MAX-FLOW + 2.

Although MIN-CUT does not give a sharp upper bound for MAX-FLOW, a min-max characterization
can be given, which is one of the main results of this paper. In order to state this sharp upper bound, we
need a more complex structure than a cut. Here we intuitively present the necessary notions, which are
precisely defined in Sec. 2.1. A walk is a finite sequence of edges which joins a sequence of vertices. For a
closed walk C in the dual graph G∗, the length l(C) is the minimum number of times one has to ”switch
SRLG” to go around C, while the winding number w(C) of C is the number of times that C separates s
and t. Our main result is the following.
Theorem 2 For any instance of the MRSDP problem, we can find a maximum number of k = MAX-FLOW
SRLG disjoint paths in O

(
n2µ (log k + ρ log d)

)
time, and we determine closed dual walk C in G∗, for

which
⌊

l(C)
w(C)

⌋
= k. For MAX-FLOW ≥ 2 we also have

MAX-FLOW = min
{ ⌊

l(C)
w(C)

⌋ ∣∣C closed dual walk, w(C) ≥ 1
}

.

2.1 Upper Bounds on the Number of Maximum Regional SRLG-disjoint
Paths

In this section, we will provide another upper bound for MAX-FLOW by generalizing the approach of [6].
This upper bound will turn out to be tight (cf. Thm. 2). Let C be a closed walk in G∗. We define the
winding number w(C) of C as the number of times that C separates s and t. More precisely, let us fix an s-
t path P in G, and consider the edges of P being oriented towards t. Let us consider a one-way orientation of
the dual-edges of dual walk C. Let w1(C) = {#ed ∈ C|ed crosses an ep ∈ P from left to right}. Similarly,
w2(C) := {#ed ∈ C|ed crosses an ep ∈ P from right to left}. Lastly, we define w(C) := |w1(C) − w2(C)|.
E.g., the (colored) dual walk on Fig. 2b separates s and t three times. Note that if C is a closed walk,
then w(C) is indifferent to the choice of P and orientation of C.

Now we define l(C) for a closed dual walk C. Let C = {C1, ..., Ck} be a partition of the dual-edges
such that each Ci consists of consecutive edges of C, and there exists an SRLG Si ∈ S such that S∗

i

contains Ci. Let l(C) be the minimal number for which there exists such a partition. For example, to
cover the dual walk on Fig. 2b we need at least 5 SRLGs. We note that l(C) ≤ |V ∗| will hold for the
closed dual walks constructed in our proofs.

By using these notations, we can give an upper bound for MAX-FLOW as follows.
Lemma 3 Consider an instance of the MRSDP problem. If MAX-FLOW ≥ 2, then

MAX-FLOW ≤ min
{ ⌊

l(C)
w(C)

⌋ ∣∣C closed dual walk, w(C) ≥ 1
}

. (1)

Proof: Suppose we have s-t paths P1, . . . , Pk≥2 that are pairwise disjoint and let C = {C1, ..., Cl(C)} be
a closed dual-walk such that each subwalk Cj is contained by the dual of an SRLG Sj ∈ S. We show that
each Pi has to intersect at least w(C) subwalks Cj . Observe that each Cj adds at most 1 to the value of
w(C): w(Cj) := |w1(Cj) − w2(Cj)| ≤ 1, since paths Pi are vertex disjoint (by Property 2). Two disjoint
paths cannot cross C at the same Cj , so we have l(C) ≥ k · w(C). 2

87

s tP1 P2

u

vS

P

Figure 3: Clockwise part {su, P2t} of SRLG S= {su, sP1, P2t} with respect to path P= s, P1, P2, t

3 Polynomial Time Algorithm to Find a Maximum
Number of Regional SRLG-Disjoint Paths

In this section we show that Lemma 3 can be extended into exact min-max theorem for MAX-FLOW,
and Eq. (1) holds with equality. If MAX-FLOW = 1, we give a closed dual walk C with l(C)/w(C) < 2.
Our proof generalizes ideas in [6], which shows a geometric min-max theorem for the special case of the
MRSDP problem, where the disaster regions are circular disks.

The algorithm has two main parts: the base case (see extended version in [16]) and the inductive part
(3.1). The inductive part decides whether there exist k S-disjoint paths, assuming that k − 1 such paths
are given as starting paths.

When searching for k = 2 S-disjoint paths P1 and P2, for algorithmic reasons, the starting path needs
to be ’clockwise far enough’ from itself. We use the term clockwise S-disjointness to capture the intuition
precisely (see definition below). The goal of the base case is to decide whether there exists a path that is
clockwise S-disjoint from itself.

First we introduce the notion of crossings. We say two s-t paths P1 and P2 are crossing if, after
contracting their common edges, there is a subpath P ′ contained by both paths such that the links
entering/leaving P ′ in P1 and P2 are alternating according to their incidence to P1 and P2. We note that
with this definition, two non-crossing paths may have common edges, intuitively, the only restriction for
them is not to change their clockwise order along the way from s to t.

Now we turn to the definition of clockwise S-disjointness. For an s-t path P in G and a directed
dual path Q∗ in G∗ we say that Q∗ is clockwise to P if it does not cross P from right to left, that is,
w2(C∗) = 0. For an s-t path P and an intersecting SRLG S we define Sclw(P) the clockwise part of S
with respect to P as the subset of those links in S \ (S ∩ P) for which the corresponding dual edge is
reachable from (S ∩ P)∗ on a path clockwise to P . (see Fig. 3).

For two s-t paths P1 and P2 without crossings, an ordered pair (P1, P2) is clockwise (S-)disjoint if
for any SRLG S in S intersecting P1, Sclw(P1) does not intersect P2. Obviously, paths P1 and P2 are
disjoint exactly if both pairs (P1, P2) and (P2, P1) are clockwise disjoint.

3.1 Induction step
In what follows we show the equality in (1) for MAX-FLOW ≥ 2. First, we assume that for some
k ≥ 2 we have k − 1 pairwise disjoint s-t paths P1, . . . Pk−1 (when k = 2 we assume that P1 is clockwise
disjoint from itself). We will give an algorithm for finding either k pairwise disjoint s-t paths or a closed
dual walk C with ⌊l(C)/w(C)⌋ = k − 1 (see Algorithm 1). Then applying the algorithm repeatedly for
k = 2, . . . , MAX-FLOW, we get an inductive proof of the equality in Lemma 3. (How to find a starting
path P1 that is clockwise disjoint from itself is described in [16].)

We may assume that the first edges of P1, . . . , Pk−1 occur in this clockwise order at s. We continue
this series of paths by generating new s-t paths Pk, Pk+1, At each step, a new path Pl is generated
and if Pl−k+1, . . . , Pl are pairwise disjoint, we stop. Otherwise we generate a new path again. If we do
not find k pairwise disjoint paths after |V ∗| + 1 path generations, then the algorithm stops and we can

88

Algorithm 1: Search for one more SRLG-disjoint path
Input: MRSDP problem input, P1, . . . , Pk−1 pairwise disjoint s-t paths if k ≥ 3 or an s-t path P1 that is

clockwise disjoint from itself if k = 2.
Output: k pairwise disjoint s-t paths or a closed dual walk C in G∗ with

⌊
l(C)
w(C)

⌋
= k − 1

1 P0 := Pk−1
2 for l = k, . . . , k + |V ∗| do
3 Pl := Pnearest(Pl−1, Pl−k) (see Alg. 2)
4 if Pl, Pl−k+1 are S-disjoint then
5 return Pl−k+1, . . . , Pl−1, Pl

6 return a closed dual walk C in G∗ with
⌊

l(C)
w(C)

⌋
= k − 1

determine a closed dual walk C with ⌊l(C)/w(C)⌋ = k − 1 (see Claim 5). Our algorithm is described in
Algorithm 1.

When generating a new path Pl we use previous paths Pl−1 and Pl−k. Intuitively, Pl is the path
clockwise ’nearest’ to Pl−k among those that are clockwise-disjoint from Pl−1.

Now we give the precise definition of ’nearness’ by describing an ordering of the paths. The clockwise
order of the links incident to a node v gives a cyclic ordering of those links. For a fixed link e incident to
v this cyclic ordering induces a complete ordering <v,e of the links incident to v: for links e1, e2 incident
to v we say that e1 <v,e e2 if e1 is earlier than e2 in the clockwise order starting from e. Given an s-t
path P , these orderings induce an ordering <P on the set of s-t paths the following way. Let P1 and P2
be s-t paths and let v denote the first node where they enter on the same link (say e) but continue on
different links, say e1 and e2 (if v = s, let e be the first link of P). We say that P1 <P P2 if e1 <v,e e2.

Now we are ready to give a precise definition of Pl: it is an s-t path that is clockwise disjoint from
Pl−1, does not cross Pl−k and within these constraints minimum with respect to <Pl−k

(see Algorithm 2).

3.2 Computing the next nearest clockwise SRLG-disjoint path
In Algorithm 2 we have two non crossing paths Q1, Q2 as input such that Q1 is clockwise disjoint from
itself. We determine a path P that is clockwise-disjoint to Q1, does not cross Q2 and within these
constraints minimum for <Q2 . Note that by calling the algorithm with Q1 = Pl−1 and Q2 = Pl−k we get
the required path Pl in Algorithm 1.

Algorithm 2 uses DFS on a proper auxiliary graph G′ and explores the nodes in clockwise order to find
the optimal path. In order to avoid path P to cross Q2, we modify G. We duplicate path Q2 by ’cutting’
it into two along its route, creating a left and a right copy of Q2: instead of each internal node v on Q2
we add two nodes vleft and vright to G, and for each internal link uv ∈ Q2 we add two links uleftvleft and
urightvright. For a link uv incident to a node v ∈ Q2 but not on Q2 we create the link vleftu if uv is on the
left side of Q2 and we create vrightu if the link is on the right side of Q2. Similarly we add two copies of
links of the form vu with v on Q2 but u not on Q2. The first and last links (say sv and ut) have two
copies: svleft, svright and uleftt, urightt, respectively. Let GQ2 denote the resulting graph. Note that GQ2

is also planar, and there is a bijection between the s-t paths of G not crossing Q2 and the s-t paths of
GQ2 (apart from Q2, which has two copies in GQ2).

Clockwise separation to Q1 can be guaranteed by deleting the clockwise part of all SRLG-s intersecting
Q1 (see line 3). If a link e to be deleted is in Q2, we delete both the left and right copies of the link (see
Fig. 4). The resulting graph is G′. Then an optimal path with respect to <Q2 can be easily determined
by a DFS if we fix the order of node exploration according to the clockwise order of the links. Since Q1
does not cross Q2 and is clockwise disjoint from itself, Q1 is in G′. Hence t is reachable from s in G′ and
the DFS finds an s-t path indeed.

Now we show by induction that the last k − 1 paths in the series behave similarly to the input paths.

89

s t

uleft

uright

vleft

vright

wleft

wright

Q1,1

P2 P3

Q2

P

Q1

Figure 4: s-t path P that is minimum with respect to <Q2 , clockwise-disjoint to Q1 and does not cross
Q2. (Usually, we call Alg. 2 with P = Pl, Q1 = Pl−1 and Q2 = Pl−k)

Algorithm 2: Nearest clockwise SRLG-disjoint path
Input: Planar graph G(V, E), SRLG set S, non crossing s-t paths Q1, Q2, such that (Q1, Q1) is clockwise

disjoint
Output: An s-t path P that is clockwise-disjoint to Q1, does not cross Q2, and is minimum with respect

to <Q2
1 G′ := GQ2
2 for (v1, v2) ∈ E(Q1) do
3 for S ∈ S : (v1, v2) ∈ S do

E′ := E′ \ Sclw(Q1)

4 DFS-TREE:= DFS tree on E′ rooted at s, exploring nodes in clockwise order (see <v,e).
Starting link of DFS: sqright, where sq ∈ Q2.

5 return the s-t path in DFS-TREE

Claim 4 1. Paths Pl−k+2, . . . , Pl are pairwise S-disjoint and in this clockwise order at s if k ≥ 3.

2. Path Pl is clockwise disjoint from itself if k = 2.

Proof: First, we prove part a). It is enough to show that the paths are in this clockwise order at s
and that Pl and Pl−k+2 are S-disjoint. Since by induction Pl−1 and Pl−k+1 are S-disjoint, they are also
clockwise S-disjoint and Pl−k+1 does not cross Pl−k. We know that Pl is minimum with respect to <Pl−k

among such paths, hence Pl ≤Pl−k
Pl−k+1, which shows the clockwise order of the paths. All we have to

show is that Pl is clockwise S-disjoint to Pl−k+2. Assume indirectly that there is an SRLG S such that
there is a dual path Q∗ ⊆ Sclw(Pl) connecting dual edges e∗, f∗ such that e ∈ Pl, f ∈ Pl−k+2. Since path
Pl−k+1 is between Pl and Pl−k+2 in the clockwise order, this dual path would have a dual edge h∗ such
that h ∈ Pl−k+1 contradicting that Pl−k+1 and Pl−k+2 are clockwise S-disjoint.

Now we similarly prove the second part of the claim. Assume indirectly that Pl is not clockwise disjoint
and there are (not necessarily different) dual edges e∗, f∗ such that there is a dual path connecting e∗ to
f∗ in S∗

clw(Pl). Then this dual path would have a dual edge h∗ where h ∈ Pl−1, contradicting that Pl−1
and Pl are clockwise disjoint. 2

If we find pairwise disjoint paths Pl−k+1, . . . , Pl−1, Pl in line 5 of Algorithm 1, then we are done. In
what follows, we give a procedure for finding a closed dual walk C with l(C)/w(C) < k (line 6) when such
paths do not appear while l = k, k + 1, . . . , k + |V ∗|. Let N := k + |V ∗|.

Claim 5 For i = N, . . . , k, we can compute links ei ∈ E, faces fi ∈ V ∗, SRLGs Si ∈ S, and paths
Ci ⊆ S∗

i such that

• ei is part of Pi \ Pi−k,

90

ei

e′
i

ei−1

s t

fi

fi−1

Pi

Pi−1

CiSi

Figure 5: Illustration for Claim 5

• fi is the face left to ei (as we walk on Pi from s to t)

• Ci is a dual path connecting fi−1 to fi starting with e∗
i−1 and then going in S∗

i clw(Pi−1) .

□

For i = N, . . . , k, let ei, fi, Si, and Ci be as described in Claim 5. By pigeonhole principle, fi = fj for
some k ≤ i ≤ j ≤ N . Let C be the closed dual walk yielding from the concatenation of Ci+1, . . . , Cj . We
will show that C satisfies l(C)/w(C) < k, which is equivalent to u := ⌊(j−i)/k⌋ < w(C), because l(C) = j − i.
If u = 0, then the inequality is trivial. Otherwise, ej is strictly to the right of Pj−k (by Claim 5).

By line 3 of Alg. 1, Pj−(l+1)k is to the left of Pj−lk for all l = 1, . . . , u. Based on this, we can see that
Cj−(l+1)k+1 · . . . · Cj−lk makes at least one turn clockwise. Concentrating now on path PN , we can see
that we have an extra right-to-left crossing of the path at the last edge of Ci+1, that hitherto was not
considered, which means w(Ci · . . . · Cj) = w(C) ≥ u + 1.

By the above procedure, we can find a closed dual walk C with l(C)/w(C) < k in line 6 of Algorithm 1.
Since the input of the Algorithm was a number of k−1 SRLG-disjoint paths, we also have k−1 ≤ l(C)/w(C),
thus ⌊l(C)/w(C)⌋ = k − 1.

Acknowledgement
The authors would like to express their sincere gratitude to Yusuke Kobayashi for his support in the early
stage of this research.

This research was partially supported by the National Research, Development and Innovation Fund of
Hungary (grant No. 124171, 128062, 134604, 135606, and FK 132524), and also supported by the János
Bolyai Research Scholarship of the Hungarian Academy of Science.. The research reported in this paper
was supported by the BME Artificial Intelligence TKP2020 IE grant of NKFIH Hungary (BME IE-MI-SC
TKP2020). Research supported in part by National Research, Development and Innovation Office - Grant
No. NKFI-115288. Supported by the ÚNKP-22-4-II-BME-248 New National Excellence Program of the
Ministry for Culture and Innovation from the source of the National Research, Development and Innovation
Fund. Application Domain Specific Highly Reliable IT Solutions” project has been implemented with the
support provided from the National Research, Development and Innovation Fund of Hungary, financed
under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme)
funding scheme.

91

References
[1] Shaping Europe’s digital future, Actors in the broadband value chain. European Commission, https:

//ec.europa.eu/digital-single-market/en/actors-broadband-value-chain. Accessed: 2019.

[2] O. Crochat, J.-Y. Le Boudec, and O. Gerstel. Protection interoperability for WDM optical networks.
IEEE/ACM Trans. Netw., 8(3):384–395, 2000.

[3] O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo. Elastic optical networking: A new dawn for the optical
layer? IEEE Commun. Mag., 50(2):s12–s20, 2012.

[4] M. F. Habib, M. Tornatore, M. De Leenheer, F. Dikbiyik, and B. Mukherjee. Design of disaster-resilient
optical datacenter networks. J. Lightw. Technol., 30(16):2563–2573, 2012.

[5] J.-Q. Hu. Diverse routing in optical mesh networks. IEEE Trans. Communications, 51:489–494, 2003.

[6] Y. Kobayashi and K. Otsuki. Max-flow min-cut theorem and faster algorithms in a circular disk
failure model. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, pages
1635–1643, April 2014.

[7] C. MacDiarmid, B. Reed, and L. Schrijver. Non-interfering dipaths in planar digraphs. Jan. 1991.

[8] C. Mcdiarmid, B. Reed, A. Schrijver, and B. Shepherd. Induced circuits in planar graphs. Journal of
Combinatorial Theory, Series B, 60(2):169 – 176, 1994.

[9] Y. Nemoto and K. Hamaguchi. Resilient ICT research based on lessons learned from the Great East
Japan Earthquake. IEEE Commun. Mag., 52(3):38–43, 2014.

[10] S. Neumayer, A. Efrat, and E. Modiano. Geographic max-flow and min-cut under a circular disk
failure model. Computer Networks, 77:117–127, 2015.

[11] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano. Assessing the vulnerability of the fiber
infrastructure to disasters. IEEE/ACM Trans. Netw., 19(6):1610–1623, 2011.

[12] K. Otsuki, Y. Kobayashi, and K. Murota. Improved max-flow min-cut algorithms in a circular
disk failure model with application to a road network. European Journal of Operational Research,
248(2):396–403, 2016.

[13] L. Shen, X. Yang, and B. Ramamurthy. Shared risk link group (SRLG)-diverse path provisioning
under hybrid service level agreements in wavelength-routed optical mesh networks. IEEE/ACM
Transactions on networking, 13(4):918–931, 2005.

[14] J. W. Suurballe. Disjoint paths in a network. Networks, 4:125–145, 1974.

[15] J. Tapolcai, L. Rónyai, B. Vass, and L. Gyimóthi. List of shared risk link groups representing regional
failures with limited size. In IEEE INFOCOM, Atlanta, USA, May 2017.

[16] B. Vass, E. Bérczi-Kovács, A. Barabás, Z. L. Hajdú, and J. Tapolcai. Polynomial-time algorithm for
the regional SRLG-disjoint paths problem. In Proc. IEEE INFOCOM, London, United Kingdom,
May 2022.

[17] B. Vass, J. Tapolcai, and E. Bérczi-Kovács. Enumerating maximal shared risk link groups of circular
disk failures hitting k nodes. IEEE Transactions on Networking, 2021.

[18] B. Vass, J. Tapolcai, Z. Heszberger, J. B́ıró, D. Hay, F. A. Kuipers, J. Oostenbrink, A. Valentini,
and L. Rónyai. Probabilistic shared risk link groups modelling correlated resource failures caused by
disasters. IEEE Journal on Selected Areas in Communications (JSAC) - issue on Latest Advances in
Optical Networks for 5G Communications and Beyond, 2021.

92

Quest for graphs of Frank number 3

János Barát1

Alfréd Rényi Institute of Mathematics
University of Pannonia, Department of

Mathematics
8200 Veszprém, Egyetem utca 10., Hungary

barat@renyi.hu

Zoltán L. Blázsik2

Alfréd Rényi Institute of Mathematics
MTA–ELTE Geometric and Algebraic

Combinatorics Research Group
University of Szeged

1053, Budapest, Reáltanoda u. 13-15., Hungary
blazsik@renyi.hu

Abstract: In an orientation O of the graph G, the edge e is deletable if and only if O − e
is strongly connected. For a 3-edge-connected graph G, Hörsch and Szigeti defined the Frank
number as the minimum k for which G admits k orientations such that every edge e of G is
deletable in at least one of the k orientations. They conjectured the Frank number is at most
3 for every 3-edge-connected graph G. They proved the Petersen graph has Frank number
3, but this was the only example with this property. We show an infinite class of graphs
having Frank number 3. Hörsch and Szigeti showed every 3-edge-colorable 3-edge-connected
graph has Frank number at most 3. It is tempting to consider non-3-edge-colorable graphs as
candidates for having Frank number greater than 2. Snarks are sometimes a good source of
finding critical examples or counterexamples. One might suspect various snarks should have
Frank number 3. However, we prove several candidate infinite classes of snarks have Frank
number 2. As well as the generalized Petersen Graphs GP (2s+1, s). We formulate numerous
conjectures inspired by our experience. The full version of this paper can be found in [3].

Keywords: Frank number, strong orientation, 3-edge-connected graphs, snarks

1 Introduction

The graphs in this extended abstract are finite and without loops or multiple edges. We recommend the
book by Bondy and Murty [1] for the concepts and notations used here.

A graph G is defined by its vertex set V and edge set E. An orientation of G is a directed graph
D = (V,A) such that each edge uv ∈ E is replaced by exactly one of the arcs (u, v) or (v, u).

A circuit is a directed cycle. A graph is cubic if every vertex has degree 3. A chord of a cycle or
circuit v1, . . . , vk is an edge connecting two non-consecutive vertices. A graph is 3-edge-connected if and
only if the removal of any two edges leaves a connected graph.

A directed graph is strongly connected if and only if selecting an ordered pair (x, y) of vertices, there
is a directed (x, y)-path. An orientation of G is k-arc-connected if and only if the removal of any k − 1
arcs leaves a strongly connected directed graph.

Theorem 1 (Robbins) A graph has a strongly connected orientation if and only if it is 2-edge-connected.

The following theorem is a fundamental result in the theory of directed graphs [4].

1Research supported by ERC Advanced Grant ”GeoScape” and the National Research, Development and Innovation
Office, grant K-131529.

2The author was supported by the ÚNKP-22-4-SZTE-480 New National Excellence Program of the Ministry for Culture
and Innovation from the source of the National Research, Development and Innovation Fund. The research was supported
by the Hungarian National Research, Development and Innovation Office, OTKA grant no. SNN 132625.

93

Theorem 2 (Nash-Williams) A graph has a k-arc-connected orientation if and only if it is 2k-edge-
connected.

This opens the question for orientations of 3-edge-connected graphs. This was the motivation for
Hörsch and Szigeti [2] for the following concepts. In an orientation O of G the edge e is deletable if and
only if O − e is strongly connected. For a 3-edge-connected graph G, Hörsch and Szigeti defined the
Frank number F (G) as the minimum k for which G admits k orientations such that every edge e of G is
deletable in at least one of the k orientations. Hörsch and Szigeti [2] showed that any 3-edge-connected
graph G satisfies F (G) ≤ 7 improving on an earlier result.

They also showed any 3-edge-colorable G has Frank number at most 3, and the Petersen graph has
Frank number 3. These results made us think probably some other non-3-edge-colorable graphs might
have Frank number larger than 2. Snarks are 4-edge-chromatic cubic graphs and usually their girth is
at least 5. The Petersen graph is the smallest snark. The next smallest are the Blanuša snarks. We will
show that Blanuša snarks have Frank number 2. We also studied an infinite snark family. We will show
that each Flower snark has Frank number 2.

Some crucial properties of the Petersen graph can be generalized to the so called Generalized Petersen
graphs GP (2s+1, s). One might hope to find a graph among those, which has Frank number 3. However,
we will prove that F (GP (2s+ 1, s)) = 2 for s ≥ 3.

These results lead to the question whether there are any graphs with Frank number greater than 2
besides the Petersen graph. As our main result, we construct infinitely many graphs with Frank number 3.
We show an operation, which preserves the Frank number and the edge-connectivity of 3-edge-connected
graphs, and produces a cubic graph from a cubic graph. A graph H is a truncation of a cubic graph G
if a vertex v of G is replaced by a triangle v1, v2, v3 such that each neighbour of v is adjacent to one of
v1, v2, v3 so that H remains cubic. Truncation was probably first used in connection with Hamiltonian
cycles of polyhedra. In the next section, we introduce the local cubic modification, which generalizes
truncation to vertices of larger degree.

Theorem 3 There are infinitely many cubic graphs G such that F (G) = 3. They can be constructed
from the Petersen graph by successive truncations.

For instance, the first truncation of the Petersen graph is the Tietze graph. We will prove exhaustively
that indeed the Petersen graph is the only cubic 3-edge-connected graph on at most 10 vertices having
Frank number 3. Inspired by the proofs of Hörsch and Szigeti, we can show the following.

Theorem 4 Let G denote a 3-edge-connected graph such that F (G) ≥ 3. Then there exists a cubic
triangle-free graph H∗ such that F (H∗) ≥ F (G) ≥ 3.

2 Preliminaries

If O is an orientation of G, then let −O be the orientation, which we get by reversing every arc in O.

Fact 5 The set of deletable edges is the same for O and −O.

We routinely have to check if an edge is deletable. The following observation shows one way to do
that.

Proposition 6 Let G be an arbitrary 2-edge-connected graph, and e = uv ∈ E(G). Suppose that O is a
strongly connected orientation of G such that the arc corresponding to e goes from u to v. The orientation
O − e, which we get by deleting the arc (u, v) from O, is strongly connected if and only if there exists a
directed path in O − e from u to v.

Proof: If there is no (u, v)-path in O − e, then O − e is not strongly connected by definition.

94

If there is a (u, v)-path P in O− e, then in any (x, y)-path of O, which uses the arc (u, v), we replace
(u, v) by P . Since O was strongly connected, we now find an (x, y)-walk in O − e for any pair x and y.
Therefore O − e is strongly connected. □

Let us remark that Proposition 6 is true even if the edge e is contained in an edge cut C of size 2. In
this case, O − e cannot admit a strongly connected orientation and we can deduce this by showing that
there are no directed paths from u to v. Suppose to the contrary O − e contains a directed path from u
to v. Consequently, C must be a directed cut contradicting that O is a strongly connected orientation.

Fact 7 Suppose G is a graph and its strongly connected orientations O1, O2, . . . , Ok show F (G) = k. By
the strong connectivity, there is no sink or source of degree 3 in Oi, for any i ∈ {1, 2, . . . , k}.

In a directed graph, a vertex x of total degree 3 is red, if there are precisely two arcs leaving x,
similarly green, if there are precisely two arcs entering x. The following observation gives a necessary but
not sufficient condition on the deletability of an arc in a cubic graph.

Fact 8 If G is a cubic graph and O is a strongly connected orientation of G, then an arc e = (u, v) can
be deletable only if u is red and v is green.

By Proposition 6, the deletability of the arc (u, v) is equivalent to the existence of a directed path
from u to v in O − e. Therefore u must have outdegree exactly 2, and v must have indegree exactly 2.
However, the example in Figure 1 shows that these degree conditions are insufficient. If there exists an
edge cut containing e such that every arc except e are going in the same direction, then after deleting e,
this edge cut becomes a directed cut, hence no directed (u, v)-path exist anymore regardless of the in-
and outdegree of u and v.

Figure 1: The arc e = (u, v) is not deletable despite the fact that u is red, and v is green

We use the following observation repeatedly. If O is a strongly connected orientation of a 2-edge-
connected graph and C is a circuit of O, then every chord of C is deletable regardless of its orientation.
Thus if O contains a Hamiltonian circuit C, then every arc of O − C is deletable.

2.1 Three elementary classes

We briefly state our results on three elementary classes of graphs without the proofs. For the detailed
proofs, see [3].

For a positive integer n ≥ 3, the wheel Wn consists of a hub vertex v0 and n other vertices forming
a cycle such that v0 is adjacent to all other vertices forming the spoke edges. Notice that W3 is the
complete graph on 4 vertices.

Lemma 9 For every positive integer n ≥ 3, the wheel Wn has Frank number 2.

For an even integer n ≥ 4, let the Möbius ladder Mn be defined as follows. Let v1, . . . , vn be a cycle
and we connect each opposite pair, these are edges of form vivi+n/2.

Lemma 10 For every positive even integer n ≥ 4, the graph Mn has Frank number 2.

Lemma 11 For every k, the prism Pk = Ck ×K2 has Frank number 2, where k ≥ 3.

95

3 Main result

Hörsch and Szigeti [2] introduced the notion of cubic extensions of a graph with minimum degree at least
3 in Subsection 2.3. It is a global modification, which replaces every vertex v of degree at least 4 with a
cycle of size deg(v), leave the vertices of degree 3 intact, and substitute every edge with an edge between
the corresponding objects in such a way that this not necessarily unique graph is cubic.

In contrast to that, we use the following local operation on a graph G of minimum degree at least
3. For d ≥ 3, let v be a vertex of degree d, and let the neighbours of v be x1, . . . , xd. We remove v and
replace each edge vxi by an edge vjxi and add a cycle Cv on v1, . . . vd (see Figure 2) so that each of
the new vertices has exactly one neighbour from x1, x2, . . . , xd. The resulting graph Gv is a local cubic
modification of G at v. Let us remark that Gv is not necessarily unique, it depends on the chosen perfect
matching between {x1, x2, . . . , xd} and {v1, v2, . . . , vd}. Note that for d = 3 the truncation is a special
local cubic modification.

Figure 2: A local cubic modification at v

Let us emphasize that at this point it may happen that after performing a local cubic modification
the edge-connectivity decreases (see Figure 3).

Figure 3: The edge-connectivity may decrease by performing a local cubic modification at v

It is not trivial, but for every 3-edge-connected graph we can show that there exists a local cubic
modification, which remains 3-edge-connected. Therefore in the sequel, we assume the local cubic modi-
fication Gv of the 3-edge-connected graph G at vertex v is always 3-edge-connected. However, it is true
that every cubic extension of a graph can be realized as a series of local cubic modifications, and in the
other direction if we perform a series of local cubic modifications of a graph at all vertices of degree at
least 4, then we get a cubic extension. Consequently, the previous observation means that one can find
a 3-edge-connected cubic extension of a 3-edge-connected graph even if there are cut vertices.

The following general observation plays a key role in the next proofs when applied to local cubic
modification.

Fact 12 Let Gv be the local cubic modification of G at v, and an orientation Ov is given such that there
exists a directed (y, z)-path P yz

v in Ov for {y, z} ⊈ {v1, v2, . . . , vd}. Now a directed (y, z)-path also exists
for the inherited orientation O of G for the corresponding (y, z) pair.

96

Now we are ready to show that a local cubic modification cannot decrease the Frank number. More-
over, if the vertex v has degree 3, then it cannot increase either. Hence in that case, the Frank number
remains the same.

Lemma 13 Let G be a 3-edge-connected graph. If Gv is a local cubic modification of G at v, then
F (Gv) ≥ F (G).

Proof: Suppose to the contrary that F (Gv) = k < F (G) witnessed by the strongly connected orienta-
tions Ov

1 , . . . , O
v
k. Let O1, . . . , Ok be the orientations of G, which coincide with Ov

1 , . . . , O
v
k on identical

edges. Also let the direction of vjxi be copied to vxi in each orientation. Since each Ov
j was strongly

connected, for any pair of vertices y, z there exists a directed path between them in both directions. By
Fact 12, we can deduce that Oj also has the same property hence it is strongly connected.

We claim each edge e = yz of G is deletable in at least one orientation. Let Ov
j be the orientation

of Gv, where e with the appropriate orientation (say (y, z)) was deletable. We know that Ov
j is strongly

connected and contains a directed (y, z)-path P v
yz in Ov

j − {e}. Consequently, similarly to the proof of
Fact 12, Oj − {e} contains a directed (y, z)-path since in P v

yz we can contract the part between the first
and last appearance of some vi for an appropriate i. Therefore e is deletable in Oj by Proposition 6. □

Corollary 14 Let G be a 3-edge-connected graph. There exists a cubic extension H of G, which is
3-edge-connected and F (H) ≥ F (G).

By Lemma 13, we can create an infinite family G of cubic graphs with F (G) ≥ 3 for any G ∈ G starting
from the Petersen graph in the following way. Hörsch and Szigeti [2] showed the Petersen graph has Frank
number 3. Pick an arbitrary vertex v of the Petersen graph, and consider the local cubic modification
Gv of G at v. Since the Petersen graph is cubic and 3-edge-connected and Gv is 3-edge-connected as
well, hence by Lemma 13, we get F (Gv) ≥ F (G). After iterating this local cubic modification procedure
with an arbitrary vertex of the always cubic current graph, the Frank number never decreases. Thus we
created an infinite family of 3-edge-connected graphs with Frank number at least 3.

In Theorem 3, we claimed the existence of an infinite family of cubic graphs with Frank number equal
to 3. So far we have seen that the Frank number cannot decrease performing a local cubic modification at
an arbitrary vertex v. In the next Lemma, we show that the Frank number cannot increase if deg(v) = 3.

Lemma 15 Let G be a 3-edge-connected graph and v a vertex of degree 3. If Gv is a local cubic modifi-
cation of G at v, then F (Gv) ≤ F (G).

Proof: Suppose the orientations O = {O1, O2, . . . , Ok} are the witnesses of F (G) = k. We create k
orientations Ov = {Ov

1 , O
v
2 , . . . , O

v
k} of Gv to prove F (Gv) ≤ k. Let us focus on the truncated part of

Gv, we just copy the orientations from the corresponding Oi outside of the modified part.
Since every Oi is a strong orientation, the 3-edge-cut formed by edges {av, bv, cv} cannot be a directed

cut. By Fact 5, we might assume that in every orientation Oi, exactly two edges leave v. For convenience,
instead of referring to a, b, c as the concrete neighbours of v, let us permute their roles. We may assume
that a denotes the tail of the unique arc entering v. In Figure 4, we introduce the four orientations we
use later in this proof. Note that the first two orientations become the same if we interchange the roles
of b and c, and so do the last two orientations. Hence there are essentially two types of extensions which
we use on the truncated part of Gv.

Firstly, observe that no matter which extensions we use from Figure 4, the orientation Ov
i we get is

also strongly connected. Indeed, we can enter the triangle va, vb, vc only from a and we can leave in both
directions through b or c, hence every directed path of Oi can be extended even if it goes through v in
G. Moreover, there exists a directed path between any pair of new vertices in Ov

i .
An arc of Oi not incident to v is deletable if and only if the same arc is deletable in Ov

i . By Proposition
6, it is enough to show a directed path between its endpoints in the modified graph as well. As we discussed
in the previous paragraph, this can be done and it does not depend on the choice of the orientation of

97

Figure 4: The four orientations we use on the new arcs (essentially two different types)

the triangle at the truncated vertex v as long as we use the four orientations above. Therefore for every
edge not incident to v, there exists an orientation Ov

i of Gv so that the corresponding arc is deletable in
Ov

i .
Choose a smallest subset S = {Oj1 , Oj2 , . . . , Ojℓ} of O such that all of the edges incident to v is

deletable in at least one of the orientations in S. Here 1 < ℓ ≤ 3 holds.
If |S| = 2, then in at least one of these orientations both arcs leaving v are deletable and in the other

orientation the third edge incident to v is not just outgoing but also deletable. In Figure 5, we show
how the orientations {Ov

j1
, Ov

j2
} look like at the truncated vertex v (remember that the role of b and c

are interchangeable). Notice that the blue color and also the X marks (for the black and white versions)
indicate which arcs are deletable.

Figure 5: The orientations {Ov
j1
, Ov

j2
}, if |S| = 2

Indeed, the arcs of type (vx, x) are deletable in Ov
ji

if and only if (v, x) was deletable in Oji . The arcs
inside the triangle of type (vx, vy) are deletable either trivially or because of the fact that Oji is strongly
connected.

If |S| = 3, then for each of the edges incident to v there is a unique orientation of S so that the corre-
sponding arc is deletable. Using any of the last two orientations in Figure 4 results in three orientations
for which every arc of the triangle is also deletable in at least one of them. Indeed, the arc opposite to

98

the deletable one which leaves v is always deletable by Proposition 6 since there is a directed path within
the triangle.

Naturally, we can use any of the orientations described in Figure 4 in any of those orientations of O
which haven’t been touched yet. Hence we proved that F (Gv) ≤ F (G). □

Corollary 16 Lemma 13 and Lemma 15 together implies that if a 3-edge-connected graph G contains
at least one vertex of degree 3, then by successively performing a local cubic modification at vertices of
degree 3 we get a family of graphs with the same Frank number as G. Notice that in each step, the newly
introduced vertices have degree 3.

Thus if we start with the Petersen graph, we can build a family of graphs with Frank number exactly
3 concluding the proof of Theorem 3. However, if a graph H contains a triangle T , then we can contract
the vertices of T into a new vertex vT (or in other words identify these vertices) such that vT is adjacent
to the other neighbours of the three vertices of T , thus the resulting graph H/T is simple (since H was
cubic) and cubic.

What can we say about the relation between the Frank number of H and H/T?
Since H is a local cubic modification of H/T at vT , we get F (H) ≥ F (H/T) by Lemma 13. On the

other hand, Lemma 15 yields that F (H/T) ≥ F (H) since vT is a vertex of degree 3 in H/T . Hence
F (H) = F (H/T). Consequently, we can contract triangles starting from H until the resulting graph H∗

is either triangle-free or H∗ ≃ K4 while the Frank number remains the same. We know that F (K4) = 2,
and F (H∗) ≥ 2 if H∗ is a 3-edge-connected cubic triangle-free graph.

Proof:(Proof of Theorem 4) By Corollary 14, we can consider the cubic extension H of G for which
F (H) ≥ F (G). Then after successively contracting triangles the resulting graph H∗ is either triangle-free
or it is K4 while F (H∗) = F (H). Since F (G) ≥ 3 thus H∗ = K4 is a contradiction, hence we get a
3-edge-connected cubic triangle-free graph H∗ such that F (H∗) ≥ F (G) ≥ 3. □

This result may help the computer aided search for other 3-edge-connected graphs with higher Frank
number.

4 Snarks

Snarks are bridgeless cubic graphs with chromatic index 4. The Petersen graph is the smallest such
graph. Hörsch and Szigeti [2] proved each 3-edge-connected, 3-edge-colorable graph has Frank number
at most 3, and the Petersen graph has Frank number 3. Therefore, we expected to find other examples
with Frank number 3 among snarks.

In this section, we investigate the second smallest snarks that are the Blanuša snarks and an infinite
family of snarks, the so-called flower snarks. For every odd n ≥ 3 let Jn denote the flower snark on
4n vertices. One can construct this graph starting with n copies of stars on 4 vertices with centers
v1, v2, . . . , vn and outer vertices denoted by {ai, bi, ci} for 1 ≤ i ≤ n. Then add an n-cycle on the vertices
(a1, a2, . . . , an), and a 2n-cycle on (b1, b2, . . . , bn, c1, c2, . . . , cn).

It turns out that the Frank number of each of these snarks is 2. The proofs for the two types of snarks
are very similar, and we handle them together.

Theorem 17 Both Blanuša snarks, and every flower snark has Frank number 2.

Proof: Since these snarks are not 4-edge-connected, therefore they do not admit a 2-arc-connected
orientation by Theorem 2. Hence their Frank number must be greater than 1. On the other hand, we
show two strongly connected orientations {O1, O2} of these snarks in Figures 6, 7, 8 that verify that their
Frank number is at most 2, which concludes the proof.

99

Figure 6: The first Blanuša snark has Frank number 2

Figure 7: The second Blanuša snark has Frank number 2

The first thing is to check that these orientations are indeed strongly connected. To see this, observe
in each orientation, each vertex is covered by a circuit. For any two vertices there is a chain of intersecting
circuits covering these vertices, hence there is a directed path between them in both directions.

To prove that an arc (u, v) is deletable, it is enough to find a directed path from u to v after the
deletion of (u, v) by Proposition 6.

In Figures 6, 7, 8 the blue arcs (also marked by X) indicates the deletable arcs of the corresponding
orientations. Some hints are included in Figure 8 which can be generalized for an arbitrary flower snark
Jn. However, for the two Blanuša snarks, there is no general rule (other than using the still intact
circuits) for deciding whether an arc is deletable or not, one should manually check them. But finding
the appropriate directed path after the deletion is usually straightforward due to the small degrees of the
vertices. □

5 Generalized Petersen graphs

We investigated the most natural generalized Petersen graphs in the hope of finding another example of
a 3-edge-connected graph with Frank number at least 3. As it turned out, the generalized Petersen graph

100

Figure 8: F (Jn) = 2, for any odd n

G(2s+ 1, s) admits two appropriate orientations, consequently its Frank number is 2.

Theorem 18 If GP (2s+1, s) denotes the generalized Petersen graph for s ≥ 3, then F (GP (2s+1, s)) =
2.

Instead of the detailed proof, we just illustrate the two orientations in Figure 9, 10 for small values.

Discussion

We pose the following conjectures, each of which is relaxing the strong conjecture that every 3-edge-
connected graph has Frank number at most 3.

Conjecture 19 For every cubic 3-edge-connected graph G, there exists a strongly connected orientation
D of G such that for every vertex v, there exists an arc av incident to v such that D − av is strongly
connected.

101

Figure 9: F (G(2s+ 1, s)) = 2 for s ≥ 3, s even (illustrated for s = 8)

Figure 10: F (G(2s+ 1, s)) = 2 for s ≥ 3, s odd (illustrated for s = 5)

Conjecture 20 For every cubic 3-edge-connected graph G, there exists a strongly connected orientation
D of G such that for at least half of the arcs D − a is strongly connected.

Conjecture 21 If a 3-edge-connected cubic graph G admits a Hamiltonian cycle, then G has Frank
number 2.

References

[1] J.A. Bondy, U.S.R. Murty. Graph Theory, Springer-Verlag, London, XII+663 pages, (2008).

[2] F. Hörsch, Z. Szigeti. Connectivity of orientations of 3-edge-connected graphs. European J.
Combin. 94 (2021).

[3] J. Barát, Z. L. Blázsik Quest for graphs of Frank number 3. arXiv version
https://arxiv.org/abs/2209.08804 (2022).

[4] C.St.J.A. Nash–Williams. On orientations, connectivity, and odd vertex pairings in finite graphs.
Canad. J. Math., 12:555–567, (1960).

102

Arc-partitioning and vertex-ordering problems

Nóra Anna Borsik

Department of Operations Research, ELTE
Eötvös Loránd University, Pázmány Péter

sétány 1/C, 1117 Budapest, Hungary.
borsiknora@student.elte.hu

Péter Madarasi

Department of Operations Research, ELTE
Eötvös Loránd University, and the ELKH-ELTE

Egerváry Research Group on Combinatorial
Optimization, Eötvös Loránd Research Network

(ELKH), Pázmány Péter sétány 1/C, 1117
Budapest, Hungary.

madarasip@staff.elte.hu

Abstract: The fundamental question of this paper is deciding whether all directed cycles of
a digraph can be covered with certain types of subgraphs, that is, whether a feedback arc set
with certain properties exists. For example, deciding whether an in-branching feedback arc
set exists will be shown to be polynomial-time solvable. However, partitioning into a matching
and an acyclic subgraph turns out to be NP-hard.

Generalizing the case of in-branchings, we introduce the (f, g)-FAS problem, in which our
goal is to decide whether an order of the vertices exists such that the left (weighted) out-
degree of each vertex v is at least f(v) and at most g(v), where f and g are lower and
upper bound functions on the vertices. We show that this problem is NP-complete, but it
is polynomial-time solvable if either only lower or upper bounds are given on the vertices,
which — as a special case — solves the problem of partitioning into an in-branching and an
acyclic subgraph. The algorithm is described for a much more general version of the problem
in which arbitrary non-decreasing set-functions play the role of the left out-degrees. Some
natural modifications of the upper-bounded case also turn out to be NP-hard, for example,
if for a single vertex both lower and upper bounds are given. The (f, g)-FAS problem with
bounds f(v) = 1 and g(v) = δ(v) − 1 for each vertex v except the first and the last ones,
is equivalent to the so-called s-t numbering problem, which is known to be polynomial-time
solvable. However, the (f, g)-FAS problem becomes NP-complete basically with any stricter
bounds, that is, for any parameters a ≥ 1 and b ≥ 2 with bounds f(v) = a and g(v) = δ(v)−b
for each vertex v except the first and the last ones.

Keywords: Arc partitioning, Vertex ordering, Feedback arc set, Graph decompo-
sition, Rank aggregation, NP-completeness

1 Introduction

The fundamental question of this paper is deciding whether all directed cycles of a digraph can be covered
with certain types of subgraphs, that is, whether a feedback arc set with certain properties exists. We
are going to show that partitioning into an in-branching and an acyclic subgraph is polynomial-time
solvable, where an in-branching is a directed forest in which every weakly connected component C is
directed towards a specified root vertex r ∈ C. However, partitioning into a matching and an acyclic
subgraph is NP-complete.

1This research has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, financed under the ELTE TKP 2021-NKTA-62 funding
scheme. The research was supported by the Ministry of Innovation and Technology NRDI Office within the framework of
the Artificial Intelligence National Laboratory Program.

103

First, we introduce the (f, g;
∑
w)-FAS problem, which generalizes the problem of partitioning a

digraph into an in-branching and an acyclic subgraph. In addition, the (f, g)-FAS problem can be used
to solve some rank aggregation problems, as we will see at the end of this section.

Problem 1 Let us given a loop-free digraph D = (V,A) with a weight function w : A→ R+ on the arcs,
and lower and upper bound functions f : V → R+ and g : V → R+ on the vertices. Our goal is to decide
whether there exists an order of the vertices such that

f(v) ≤ ~δ
w

(v) ≤ g(v)

holds for every vertex v ∈ D, where ~δ
w

(v) denotes the left weighted out-degree of v according to the
order. We call this problem the (f, g;

∑
w)-FAS problem, where FAS stands for feedback arc set. In the

unweighted case, the problem is referred to as the (f, g)-FAS problem.

Let us define a more general ordering problem, which will be shown to be polynomial-time solvable
when only upper bounds are present.

Problem 2 Let us given a ground set V and, for each element v ∈ V , a set-function hv : 2V−v → R which
is non-decreasing (that is, hv(A) ≤ hv(B) holds for all subsets A ⊆ B ⊆ V − v). Suppose these functions
can be evaluated efficiently. Furthermore, we are given lower and upper bound functions f : V → R and
g : V → R. Our goal is to decide whether there exists an order σ of V such that

f(v) ≤ hv(~σ(v)) ≤ g(v)

holds for each element v ∈ V , where ~σ(v) denotes the set of the elements preceding v according to the order
σ. We call this problem the (f, g;h)-ordering problem, while the feasible orders are called (f, g;h)-orders.

Observe that the (f, g;
∑
w)-FAS problem is a special case of the (f, g;h)-ordering problem. To show

this, let V be the vertex set of the digraph, and for each vertex v and subset V ′ ⊆ V − v, let

hv(V
′) =

∑

e∈δ(v,V ′)

w(e),

where δ(v, V ′) denotes the set of the outgoing arcs from v to V ′. By definition, the solutions to the
(f, g;

∑
w)-FAS problem are exactly the (f, g;h)-orders.

Arc-partitioning and vertex-ordering problems Arc-partition problems have been studied exten-
sively in the literature [2, 3, 4, 5]. For example, partitioning into a directed cycle and an acyclic subgraph,
or a directed cycle factor and an acyclic subgraph are NP-complete problems [2]. It is known that de-
ciding whether a digraph contains an arc-disjoint r-in-arborescence and r-out-arborescence for a given
root r is NP-complete, where an r-in-arborescence is an in-branching with only one root vertex r and an
r-out-arborescence is a reversed r-in-arborescence. In other words, partitioning into a subgraph contain-
ing an r-in-arborescence and a subgraph containing an r-out-arborescence is NP-complete [1]. However,
the problem is solvable for two arc-disjoint r-out-arborescences, or for k arc-disjoint r-out-arborescences
in general [8]. The well-known feedback arc set problem is about finding the fewest possible arcs whose
removal makes the graph acyclic, which is equivalent to finding an order of the vertices minimizing the
number of the left-going arcs. The problem is known to be NP-hard [10]. Besides the arc-partition
problems, we investigate a new vertex-ordering problem, the (f, g;

∑
w)-FAS problem. One of its special

cases, the so-called s-t numbering problem is about finding an order of the vertices such that each vertex
has at least one outgoing arc to the left and at least one to the right. The s-t numbering problem is
polynomial-time solvable [7], however, the more general betweenness problem is NP-hard [11].

104

Rank aggregation problems Consider a competition, where different judges give complete rankings
of the candidates and our goal is to find a common ranking which is a “fair” consensus between the
judges. In the Kemény rank aggregation problem, the distance of two rankings is defined as the number
of those pairs of candidates whose order is reversed in the two rankings. The goal is to find a common
ranking minimizing the sum of the distances from the judges’ rankings. In another rank aggregation
problem, we want to find a ranking which is close to the farthest ranking, so we want to minimize the
maximum distance. It is known that both problems are NP-hard [6].

Consider a similar problem, where we define the distance from the viewpoint of the candidates instead
of the judges: For a candidate v, let d(v) denote the number of the candidates whom v precedes by the
majority of the judges, but not in the common ranking. This is a natural measure how unfair the common
ranking seems to the candidate v. Our goal is to find a common ranking minimizing the largest distance
d(v) over all candidates.

To reduce the problem to the (f, g)-FAS problem, define a penalty graph in which the vertices corre-
spond to the candidates, and there is an arc from u to v if the majority of the judges rank u before v. If
we order the vertices of this graph by an arbitrary ranking, then the left out-degree of v, i.e. the number
of arcs from v to the preceding vertices, is equal to the distance d(v) from this ranking. This means that
the problem can be rephrased as ordering the vertices of a directed graph such that the maximum left
out-degree is minimized. This problem is solvable by finding the smallest positive integer c for which the
(f, g)-FAS problem has a feasible solution for f ≡ −∞ and g ≡ c.

Our work Section 2.1 solves the (f, g;h)-ordering problem in the case when only upper bounds are
given. However, the problem becomes NP-complete after some natural modifications, such as when the
set-functions are not required to be non-decreasing, or there is a single item with both lower and upper
bounds. Section 2.2.1 considers the (f, g)-FAS problem with special bound functions. The problem with
bounds f(v) = 1, g(v) = δ(v) − 1 on each vertex v except the given first and last vertices s and t, is
equivalent to the s-t numbering problem, which is known to be polynomial-time solvable [7]. We are
going to show, however, that the problem is NP-complete basically with any stricter bounds, that is, for
any parameters a ≥ 1 and b ≥ 2 with bounds f(v) = a and g(v) = δ(v) − b for each vertex v except s
and t. By a simple modification of the proof, the problem is also shown NP-complete when f ≡ g. In
Section 3, we consider arc-partition problems. First, we prove that partitioning into an in-branching and
an acyclic subgraph can be solved in polynomial time, moreover, it is also solvable if some vertices are
required to be roots in the in-branching. However, the complexity of partitioning into an in-arborescence
and an acyclic subgraph remains open. We show that both problems become NP-hard if our goal is
to find a minimum-cost in-branching or a minimum-cost in-arborescence whose complement is acyclic.
Finally, we give a construction which proves that partitioning into a matching and an acyclic subgraph
is NP-complete.

2 Ordering problems

In Section 2.2, the (f, g;
∑
w)-FAS problem and the (f, g;h)-ordering problem will be shown NP-hard

in general. The next section, however, proves that even the latter problem can be solved in polynomial
time provided that f ≡ −∞ and the function hv can be evaluated efficiently for all v ∈ V .

2.1 Only upper bounds

By the (−∞, g;h)-ordering problem, we mean the case when only upper bounds are given, that is,
f ≡ −∞. This section gives a polynomial-time algorithm for solving this problem. Later, this algorithm
and the following theorems will be used to partition a digraph into an in-branching and an acyclic
subgraph — or prove that no such partition exists.

105

Algorithm 1 (−∞, g;h)-ordering

1: V ′ := V ; n := |V |
2: Let σ1, . . . , σn denote the order we are searching for
3: for i = n, . . . , 1 do
4: V ∗ := {v ∈ V ′ : hv(V

′ − v) ≤ g(v)}
5: if V ∗ 6= ∅ then
6: Choose σi ∈ V ∗ arbitrarily
7: V ′ := V ′ − σi
8: else
9: output No solution exists

10: exit
11: end if
12: end for
13: output σ1, . . . , σn

Algorithm 1 fixes the items from right to left. The set of the not-fixed items is denoted by V ′. In
line 4, the algorithm filters those elements from V ′ for which hv(V

′) ≤ g(v). If at least one such element
exists, then one of them is selected, placed at the last free position and deleted from V ′. If no such
item is found, then the algorithm concludes that no solution exists. Next, we show the correctness of
Algorithm 1.

Theorem 3 Algorithm 1 solves the (−∞, g;h)-ordering problem.

Proof: Clearly, the fixed items do not violate the upper bounds as hv(V
′−v) ≤ g(v) holds whenever an

item v is fixed. Hence, if such an item can be selected in every iteration of the for loop, then the algorithm
finds a feasible (−∞, g;h)-order. Otherwise, no such item exists and V ′ is nonempty. Let σ be an arbitrary
order of V , and let v be the first item in V ′ according to this order. Then ~σ(v) ≥ hv(V

′ − v) > g(v)
holds, since hv(V

′ − v) > g(v) for all v ∈ V ′. Therefore, v violates the upper bound g(v), and σ is not
feasible. Hence, no order of V is feasible. �

From the correctness of the algorithm we get the following characterization for the existence of a
feasible order:

Theorem 4 Let us given a ground set V and a non-decreasing set-function hv for each item v ∈ V .
There exists a (−∞, g;h)-order of V if and only if there is no subset V ′ ⊆ V in which hv(V

′ − v) > g(v)
holds for each element v ∈ V ′.

As we have already seen, the (f, g;
∑
w)-FAS problem is a special case of the (f, g;h)-ordering problem,

hence one gets a characterization for the solvability of the former as a corollary.

Theorem 5 Let us given a digraph D = (V,A) with a weight function w on its arcs. There exists a
solution to the (−∞, g;

∑
w)-FAS problem if and only if there is no induced subgraph D′ = (V ′, A′) in

which δw(v, V ′) > g(v) holds for each vertex v ∈ V ′, where δw(v, V ′) denotes the weighted out-degree of
v restricted to the subgraph D′.

Note that the (f,∞;h)-ordering problem (in which only lower bounds are given) can be solved with
a similar algorithm. The main difference is that it fixes the items from left to right. Furthermore, it is
not hard to prove that the (f, g;h)-ordering problem remains solvable if there are both lower and upper
bounds, but on each vertex either only lower or only upper bound is given.

106

2.2 Complexity

In this section, the complexities of the (f, g;
∑
w)-FAS and the (f, g;h)-ordering problems are investi-

gated. In the previous section, we showed that both problems can be solved if only upper bounds are
present. It is natural to ask whether a similar algorithm exists for more general cases or related problems.
We are going to prove that the most natural modifications to the problem make it NP-hard, for example,
when we have only upper bounds except for one vertex for which both lower and upper bounds are given.

Theorem 6 The (f, g)-FAS problem is NP-complete if only upper bounds are given for all vertices except
for a single vertex v for which f(v) = g(v).

Proof: The (f, g)-FAS problem is clearly in NP. The proof is by reduction from the independent set
problem [10]. Let us given a graph G = (V,E) for which we want to solve the independent set problem.
Construct the digraph D = (VD, A) as follows: Let the vertex set of D consist of the vertices and the
edges of G, and add a further vertex s. For each edge e = uv ∈ E, let D contain an arc from e ∈ VD to
u ∈ VD and an arc from e ∈ VD to v ∈ VD. Moreover, for each vertex v ∈ V , let D contain an arc from s
to v ∈ VD. Figure 1 illustrates the construction of D.

v1 . . . u v . . . vn

s e1 . . . uv . . . em

Figure 1: The graph constructed during the reduction from the independent set problem.

In the bottom row of Figure 1, let D contain n parallel arcs from s to e1 and two parallel arcs from
every other vertex ei to the succeeding vertex ei+1, where e1, . . . , em are the vertices corresponding to
the edges of G. Let f(s) = g(s) = k and f(v) = −∞, g(v) = 1 for each vertex v ∈ VD \ {s}. We prove
that the (f, g)-FAS problem is solvable for D if and only if G has an independent set of size k.

If G has an independent set of size k, then consider the following order of the vertices of D: First, list
the vertices of the independent set in arbitrary order, then the vertices in the bottom row of Figure 1 in
the order s, e1, . . . , em, and put the remaining vertices in arbitrary order to the end. The resulting order
is clearly a feasible solution to the (f, g)-FAS problem defined on D.

Conversely, if there exists a feasible order σ for the (f, g)-FAS problem, then the vertices in the bottom
row of Figure 1 must be in the given order, because of the parallel arcs between them. So s precedes all
vertices e ∈ VD corresponding to the edges of G. The vertex s has bounds f(s) = g(s) = k, therefore
there must be exactly k vertices before s according to σ. These vertices of D correspond to vertices of
G, and they must be independent in G, because the upper bound g(e) = 1 for any edge e ∈ E ∩ VD
ensures that only one of its endpoints may precede e. This implies that the first k vertices in σ form an
independent set in G, which completes the proof of the theorem. �

In another natural modification, the non-negativity of the arc-weights is not required. The hardness
of this problem can be shown similarly to the previous proof.

Theorem 7 The (−∞, g;
∑
w)-FAS problem is NP-complete if negative arc-weights are allowed.

Corollary 8 The (−∞, g;h)-ordering problem is NP-complete if the set-functions hv are not required to
be non-decreasing.

107

2.2.1 Special bounds

Another interesting question is the complexity of the (f, g)-FAS problem with special bound functions.
For example, when the lower and the upper bounds are equal on each vertex, in other words, there is a
strict prescription for the left out-degrees of the vertices. The other extreme case is when there is a large
difference between the lower and the upper bounds on each vertex. Let us given a first vertex denoted
by s and a last vertex denoted by t with bounds f(s) = g(s) = 0 and f(t) = g(t) = δ(t), and on each
vertex v 6= {s, t}, let the bounds be f(v) = a and g(v) = δ(v)− b for some given non-negative integers a
and b. This problem is equivalent to ordering the vertices such that each vertex has at least a outgoing
arcs to the preceding vertices and at least b outgoing arcs to the succeeding vertices, except for s and t.
If the parameters are a = b = 1, then the problem is the so-called s-t numbering problem for directed
graphs, which is known to be polynomial-time solvable [7]. In what follows, we prove that the problem
is NP-complete with the slightly modified bounds when the parameters are a = 1 and b = 2, then we
extend this result for the case a ≥ 1, b ≥ 2.

Theorem 9 The (f, g)-FAS problem is NP-complete with bounds f(v) = 1, g(v) = δ(v) − 2 for each
vertex v except the first and the last ones. The problem is NP-complete, even if all out-degrees are at
most 3.

Proof: The proof is by reduction from the NP-complete 3-XSAT-3 problem [12]. Let us given a
conjunctive normal form (CNF) formula in which each clause contains exactly 3 literals and each variable
is contained in exactly 3 clauses. In the 3-XSAT-3 problem, the goal is to decide whether the formula
can be satisfied such that exactly one literal is true in each clause. Let x1, . . . , xn denote the variables
and let c1, . . . , cn denote the clauses. We construct an instance of the (f, g)-FAS problem as follows:

t

x1 x2 x3x1 x2 x3

v1 v2 v3 c1 c2 c3 v′1 v′2 v′3

p1 p2 p3 p4 p5 p6 p7 p8

s1 s2 s3 t1 t2 t3

Figure 2: The graph constructed in the proof of Theorem 9 for the CNF formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

Let D contain the vertices xi and xi for each literal (see the top row of vertices in Figure 2), two
vertices vi and v′i for each variable xi, and a vertex cj corresponding to the jth clause for j ∈ {1, . . . , n}.
Each vertex cj has 3 outgoing arcs to the vertices xi or xi corresponding to the literals contained in cj . For
each i ∈ {1 . . . , n}, both vertices vi and v′i have two outgoing arcs to the vertices xi and xi. Let D contain
two other vertices denoted by si and ti for j ∈ {1, . . . , n}, and from each vertex xi and xi add an arc to
si and two parallel arcs to ti. Consider the vertices s1, . . . , sn, v1, . . . , vn, c1, . . . , cn, v

′
1, . . . , v

′
n, t1, . . . , tn

in this order, see Figure 2. Let D contain an arc from the vertices vi and v′i to the succeeding vertex,
and from each vertex si and ti two parallel outgoing arcs to the succeeding and one outgoing arc to the
preceding vertex. Moreover, let D contain an additional vertex between every two adjacent vertices of the

108

sequence v1, . . . , vn, c1, . . . , cn, v
′
1, . . . , v

′
n, and let p1, . . . , p3n−1 denote these newly added vertices. For

each k ∈ {1, . . . , 3n−1}, let pk have two parallel outgoing arcs to the succeeding vertex and one outgoing
arc to the preceding vertex. Let the bounds be f(s1) = g(s1) = 0 and f(tn) = g(tn) = 1, and for each
vertex v 6= {s1, tn}, f(v) = 1 and g(v) = δ(v)− 2. We show that for a given CNF formula the 3-XSAT-3
problem is satisfiable if and only if the (f, g)-FAS problem defined on D is solvable.

If the instance of the 3-XSAT-3 problem is satisfiable, then consider the following order of the vertices
of D: First, list the vertices s1, . . . , sn, v1, . . . , vn, c1, . . . , cn, v

′
1, . . . , v

′
n, t1, . . . , tn in this order, and put

each additional vertex pk between its two neighbors, see Figure 2. Then put the vertices of the true
literals right after the vertex sn and the vertices of the false literals right before the vertex t1. By the
construction, it is easy to see that the resulting order is a feasible solution to the (f, g)-FAS problem.

Conversely, let the order σ be a feasible solution to the (f, g)-FAS problem. Notice that the additional
vertices p1, . . . , p3n−1 ensure that the vertices v1, . . . , vn, c1, . . . , cn, v

′
1, . . . , v

′
n appear in this order. Fur-

thermore, the vertices s1, . . . , sn must precede this sequence and the vertices t1, . . . , tn must succeed this
sequence, because of their outgoing parallel arcs. Therefore, the vertices s1, . . . , sn, v1, . . . , vn, c1, . . . , cn,
v′1, . . . , v

′
n, t1, . . . , tn must appear in this order. The vertices vi and v′i corresponding to the variable xi

have exactly 3 outgoing arcs, and one of these arcs is going to the right. Therefore, for both vi and v′i, one
of the remaining two arcs going to xi and to xi must point to the left and the other one to the right by the
bounds f and g. This means that, for each variable, one of the vertices xi and xi precedes the vertex vi
and the other one succeeds the vertex v′i. Because of the fixed order of the vertices v1, . . . , vn, c1, . . . , cn,
v′1, . . . , v

′
n, this implies that, for each variable, one of the two literals xi and xi must be placed before

c1, . . . , cn and the other one after them. Set the variable xi to true if the literal xi precedes the vertices
c1, . . . , cn, and to false otherwise, hence exactly the literals preceding the vertices c1, . . . , cn are true. This
is a solution to the instance of the 3-XSAT-3 problem, because each vertex cj has 3 outgoing arcs to the
vertices corresponding to the literals in cj , and exactly one of these precedes the vertex cj by the bounds
f and g — and hence it also precedes c1, . . . , cn. Therefore, exactly one literal is true in each clause. �

For the digraph D, the (f, g)-FAS problem defined in the proof is solvable if and only if the (f, g)-FAS
problem with bounds f(s1) = g(s1) = 0 and f(v) = g(v) = 1 for each vertex v 6= s is solvable. Therefore,
the proof also shows that the case when f ≡ g is NP-complete.

Corollary 10 The (f, g)-FAS problem with f ≡ g is NP-complete. The problem is NP-complete even
when the f ≡ g bound is 0 on one vertex, and 1 on all other vertices.

Moreover, the problem is NP-complete for all parameters a ≥ 1 and b ≥ 2, so essentially in every case
with stricter bounds than in the s-t numbering problem. This follows by a reduction from the a = 1 and
b = 2 case by adding a− 1 new arcs from v to s and b− 2 new arcs from v to t for each vertex v 6= {s, t}.
Corollary 11 For all parameters a ≥ 1 and b ≥ 2, the (f, g)-FAS problem with bounds f(v) = a,
g(v) = δ(v)− b on each vertex, except the first and the last ones, is NP-complete.

3 Special arc-partition problems

This section considers arc-partition problems in which the goal is to decide whether a digraph can be
partitioned into a subgraph with special properties and an acyclic subgraph. For example, partitioning
into an in-branching and an acyclic subgraph can be solved in polynomial time by using the algorithm
from Section 2.1 for the (−∞, g)-FAS problem with upper bound g ≡ 1. Similar arc-partition problems
are discussed in [2]. They proved that it is NP-complete to decide whether a digraph can be partitioned
into a directed cycle and an acyclic subgraph, or into a directed cycle factor and an acyclic subgraph.

3.1 In-branching and acyclic subgraph

Theorem 12 A digraph D = (V,A) can be partitioned into an in-branching B ⊆ A and an acyclic
subgraph if and only if there exists no induced subgraph D′ = (V ′, A′) of D in which the out-degree of
each vertex v ∈ V ′ is at least 2.

109

Proof: The arc-partition problem is equivalent to the (−∞, g;
∑
w)-FAS problem with upper bound

g ≡ 1, so the characterization follows from Theorem 5. �
Furthermore, a similar characterization holds for the case when some vertices are required to be roots

in the in-branching.

Theorem 13 Given a digraph D = (V,A) and a subset X ⊆ V of the vertices, it can be decided in
polynomial time whether the digraph can be partitioned into an acyclic subgraph and an in-branching
B ⊆ A in which the vertices in X are roots. Such a partition exists if and only if there exists no induced
subgraph D′ = (V ′, A′) of D in which the out-degree of each vertex v ∈ X is at least one and the out-degree
of each vertex v ∈ V ′ \X is at least 2.

It is important to note that the in-branching may contain roots other than the vertices inX. Therefore,
this theorem is not applicable to partition a digraph into an in-arborescence and an acyclic subgraph. The
complexity of this problem remains open. However, partitioning into an in-arborescence and a spanning
acyclic subgraph is known to be NP-hard [2]. Next, we show that partitioning to an acyclic subgraph
and a minimum-size in-branching or a minimum-cost in-arborescence are NP-hard problems.

Theorem 14 It is NP-hard to find a minimum-size in-branching in a digraph whose complement is
acyclic.

Proof: The proof is by reduction from the vertex cover problem [10]. Let G = (V,E) be the graph for
which we want to find a minimum vertex cover. Construct the digraph D = (V ∪ V ′, A) as follows. Let
V ′ be a copy of V , and let v′ ∈ V ′ denote the copy of v ∈ V . Add an arc vv′ for each vertex v ∈ V to D.
Moreover, let D contain two arcs u′v and v′u for each edge uv ∈ E, where u′ ∈ V ′ is the copy of u ∈ V .
We show that G has a vertex cover of size at most k if and only if D contains an in-branching of size at
most k whose complement is acyclic.

If G has a vertex cover {v1, . . . , v`} ⊆ V with ` ≤ k, then the arcs v1v
′
1, . . . , v`v

′
` ∈ A form an

in-branching that covers all directed cycles in D.
Conversely, there exists an in-branching of size at most k that covers all directed cycles in D. Notice,

that if a directed cycle contains the arc u′v, then it also contains the arc uu′, because it is the only arc
entering u′. Therefore, we can replace each arc u′v from V ′ to V in the in-branching with uu′, and the
arcs v1v

′
1, . . . , v`v

′
` obtained this way cover all directed cycles in D. This arc set must contain uu′ or vv′

for each edge uv ∈ E, because D contains a directed cycle uu′vv′ for each edge uv ∈ E. Therefore, the
vertices v1, . . . , v` ∈ V form a vertex cover in G with size at most k. �

The NP-hardness of partitioning into a minimum-cost in-arborescence and acyclic subgraph follows
by a reduction from partitioning into a minimum-size in-branching and acyclic subgraph. The main idea
is that we add a new vertex s to the graph with an outgoing arc to all other vertices. Let the cost function
be 0 on these new arcs, and 1 on the rest of the arcs. This graph contains an appropriate in-arborescence
of cost at most k if and only if the original graph contains an appropriate in-branching of cost at most
k. Hence we get the following.

Theorem 15 Let us given a digraph D = (V,A) with a 0-1 cost function on the arc-set. It is NP-hard
to find a minimum-cost in-arborescence whose complement is acyclic.

3.2 Matching and acyclic subgraph

It is a similar problem to decide whether a digraph can be partitioned into a matching and an acyclic
subgraph. Motivated by the solvability of partitioning into an in-branching and an acyclic subgraph, it
is natural to ask whether the problem is solvable in the case of matchings. In what follows, we show that
this problem is NP-complete.

Theorem 16 It is NP-complete to decide whether a digraph can be partitioned into a matching and an
acyclic subgraph.

110

Proof: Sketch of the proof. The problem is clearly in NP. We only describe the construction of the
reduction from the NAE-3-SAT problem [12]. In the NAE-3-SAT problem the goal is to decide whether
a CNF formula in which each clause contains exactly 3 literals can be satisfied such that each clause
has at least one false literal in it. For a given CNF formula, construct the digraph D as follows: For
each clause cj , let D contain a gadget on 9 vertices, denoted by ujk, c

j
k and cjk for k = 1, 2, 3. The vertex

cjk corresponds to the kth literal of the clause cj , and the vertex cjk corresponds to its negation. The

gadget contains a directed cycle cj1u
j
1c
j
2u
j
2c
j
3u
j
3 and a directed cycle cj1u

j
3c
j
3u
j
2c
j
2u
j
1. Figure 3 illustrates the

construction for the clause cj . Moreover, for each variable xi, let D contain a gadget on the vertices vi`
for ` = 1, . . . , 5 with an arc vi1v

i
2 and an arc vi2v

i
1, and a directed cycle vi2v

i
3v
i
4v
i
5. The gadgets belonging

to the clauses and to the literals are connected to each other as follows:
If the kth literal of the clause cj is xi, then extend the gadget belonging to xi with two vertices

denoted by yjk and zjk and connect the vertices cjk and cjk from the gadget belonging to cj with a path

vi5c
j
kz
j
kv
i
4y
j
kc
j
kv
i
3. Similarly, if the kth literal of the clause cj is xi, then extend the gadget belonging to xi

with two vertices denoted by yjk and zjk and connect the vertices cjk and cjk from the gadget belonging to

cj with a path vi5c
j
kz
j
kv
i
4y
j
kc
j
kv
i
3. Figure 4 illustrates the gadget belonging to the variable xi, and its two

possible extensions with respect to clause cj containing xi.

cj1

uj1

cj2

uj2

cj3

uj3

cj1cj2

cj3

Figure 3: The gadget belonging to the clause cj .

vi1

vi2

vi3 vi4 vi5

cjk yjk zjk cjk cjk yjk zjk cjk

Figure 4: The gadget belonging to the variable xi and its extensions if the kth literal in the clause cj is
xi or if the kth literal in the clause cj is xi. The gadget has an extension for each clause containing the

literals xi or xi. The vertices with labels cjk and cjk are identical to those with the same label in Figure 3.

It can be proved that the NAE-3-SAT problem is solvable if and only if the digraph D constructed
above can be partitioned into a matching and an acyclic subgraph. The variable xi is true in this solution
if and only if the matching contains the arc vi3v

i
4 in the gadget belonging to the variable xi. �

By a simple modification of this construction, one gets that the problem is also NP-complete when
the matching is required to be perfect.

111

4 Open questions

The most interesting open question is the complexity of partitioning into an in-arborescence and an
acyclic subgraph. We proved in Section 2 that the similar problem of partitioning into an in-branching
and an acyclic subgraph is polynomial-time solvable.

It is proved in [2] that decomposing into a directed cycle factor and an acyclic subgraph is NP-
complete, however, the complexity remains open if the directed cycles are only required to be disjoint
but they not necessarily cover all vertices. There are a few other open problems mentioned in [2], for
example, covering all odd directed cycles with a perfect matching, or partitioning into a perfect matching
and a subgraph containing an in-arborescence.

Finally, we mention two natural generalizations of the (−∞, g;h)-ordering problem. Motivated by
the position-based scheduling problem [9], let us given a cost for each item-place pair, and search for a
minimum-cost (−∞, g;h)-order. Another natural generalization is if, instead of a linear order, we want
to find a two dimensional arrangement. In this case, the items preceding v can be defined as the items
placed left-down from v.

References

[1] J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and related path problems.
Journal of Combinatorial Theory, Series B, 51(1):1–23, 1991.

[2] J. Bang-Jensen, S. Bessy, D. Gonçalves, and L. Picasarri-Arrieta. Complexity of some arc-partition
problems for digraphs. Theoretical Computer Science, 928:167–182, 2022.

[3] J. Bang-Jensen and C. J. Casselgren. Restricted cycle factors and arc-decompositions of digraphs.
Discrete Applied Mathematics, 193:80–93, 2015.

[4] J. Bang-Jensen, G. Gutin, and A. Yeo. Arc-disjoint strong spanning subdigraphs of semicomplete
compositions. Journal of Graph Theory, 95(2):267–289, 2020.

[5] J. C. Bermond and V. Faber. Decomposition of the complete directed graph into k-circuits. Journal
of Combinatorial Theory, Series B, 21(2):146–155, 1976.

[6] T. Biedl, F. J. Brandenburg, and X. Deng. On the complexity of crossings in permutations. Discrete
Mathematics, 309(7):1813–1823, 2009.

[7] J. Cheriyan and J. H. Reif. Directed s-t numberings, rubber bands, and testing digraph k-vertex
connectivity. Combinatorica, 14(4):435–451, 1994.

[8] J. Edmonds. Edge-disjoint branchings. Combinatorial algorithms, pages 91–96, 1973.

[9] M. Horváth and T. Kis. Polyhedral results for position-based scheduling of chains on a single
machine. Annals of Operations Research, 284(1):283–322, 2020.

[10] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations,
pages 85–103. Springer, 1972.

[11] J. Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–114, 1979.

[12] S. Porschen, T. Schmidt, E. Speckenmeyer, and A. Wotzlaw. XSAT and NAE-SAT of linear CNF
classes. Discrete Applied Mathematics, 167:1–14, 2014.

112

Data Augmentation Does Not Necessarily
Beat a Smart Algorithm

Krisztian Buza1

Institute Jozef Stefan
Artificial Intelligence Laboratory

Jamova 39, 1000 Ljubljana, Slovenia

BioIntelligence Group
Department of Mathematics-Informatics

Sapientia Hungarian University of Transylvania
Targu Mures, Romania

buza@biointelligence.hu

Abstract: According to the “widely acknowledged truth”, more training data beats algo-
rithmic improvements in machine learning tasks. We challenge this “widely acknowledged
truth” in context of data augmentation of images and recognition tasks related to images.
Our observations show that real training data may be much more valuable than augmented
(i.e., artificially generated) data and – most importantly – the advantage of a sophisticated
algorithm relative to a simple algorithm may not be easily compensated by data augmentation.

Keywords: dynamic programming, data augmentation, machine learning, dy-
namic image warping

1 Introduction

State-of-the art solutions of various recognition tasks, ranging from handwriting recognition and signature
verification over biometric user identification (e.g. based on the dynamic of typing) to speech recognition
and image analysis tasks, are based on machine learning. Especially deep neural networks became
extraordinarily popular in the last decade. Spectacular results include the detection of skin cancer [1] and
retinal disease [2], “mastering the game of Go” [3], as well as recognition tasks relevant for the automotive
industry [4]. Nevertheless, training deep neural networks requires a very large set of training data which
is usually expensive and difficult to collect, if not impossible. For example, in case of rare diseases it may
not be possible to obtain data from millions of patients. In case of biometric authentication systems, when
a new user signs up to the system, the user may be asked to provide her biometric (such as handwriting
or typing dynamics) a few times, but not thousands or millions of times.

In order to alleviate the aforementioned issues related to the collection of very large datasets, one of the
most popular techniques is to generate new instances from existing instances by the (minor) modification
or combination of existing instances. For example, in case of image recognition tasks, images may be
shifted, elongated, resized or rotated by a few degrees, see also Fig. 2.

While data augmentation is further justified by observations showing that the prediction accuracy of
machine learning techniques improves with increasing amount of training data, the actual data augmen-
tation techniques may be somewhat ad hoc and understudied from the point of view of theory.

1This work was supported by the European Union through enRichMyData EU HE project under grant agreement
No 101070284.

113

Furthermore, if sufficient training data is provided, simple algorithms have been shown to work sur-
prisingly well in many domains1, see e.g. nearest neighbor algorithms in time series classification [5],
modified linear regression in case of drug-target interaction prediction [6] or simple classifiers in case of
IT ticket text classification [7]. Moreover, Schnoebelen points out that “the widely acknowledged truth
is that throwing more training data into the mix beats work on algorithms.”2

In this paper, we will examine to which extent this “widely acknowledged truth” applies to data
augmentation, one of the most prominent techniques used to improve the performance of deep neural
networks. In particular, we consider an an elastic distance measure, dynamic image warping (DIW) which
is a recent extension of dynamic time warping (DTW) for images. We compare DIW to simple distance
measures, such as Euclidean and Manhattan distance. In our experiment on images of handwritten
digits, DIW outperforms Euclidean and Manhattan distance even in case of data augmentation which
indicates that the advantage of the more sophisticated algorithm may not be easily compensated by data
augmentation.

The reminder of the paper is organized as follows: Section 2 presents dynamic image warping, while
Section 3 describes our empirical observations as well as the lessons we learned from our experiments.

2 Dynamic Image Warping

Dynamic Time Warping (DTW) is an elastic distance measure for time series [8]. While comparing two
time series, DTW allows for shifts and elongations. This way, DTW takes into account that, in real-
world data, the same pattern is not likely to be repeated in the exactly same way. DTW is based on the
paradigm of dynamic programming. When implementing DTW calculations, the entries of a matrix are
filled according to a recursive rule. For more details on DTW, we refer to [9].

Dynamic Image Warping (DIW) is a recent extension of dynamic time warping (DTW) for images [10].
A digital image is a matrix of intensity values. For simplicity, we only consider grayscale images in this
paper, thus, each pixel corresponds to a single intensity value. However, we note that the generalisation
for color (RGB) images is straightforward. As a first step of DIW, we consider the intensity matrix of
the image as a sequence of rows (or columns, respectively).

In order to compare two images, DIW compares two sequences of sequences. We note that in case of
time series, DTW compares two sequences of numbers which is the major difference between DIW and
DTW.

When calculating DIW, in principle, we follow the same steps as in case of DTW. The only difference
between DIW and DTW is the following: while at some steps of DTW, the difference of two numbers have
to be calculated, at the corresponding step in DIW, we have to calculate the distance of two sequences.
In order to calculate the distance of those two sequences, we use DTW. In other words: DIW is nothing
else but DTW for a sequence of sequences using DTW as inner distance.

We note that the role of columns and rows is interchangeable in case of images, therefore, when
implementing our experiments, we actually calculate two DIW distances: in case of the first one, each
image is considered as a sequence of rows, whereas in case of the second distance, each image is considered
as a sequence of columns.

Considering an image with N × N pixels, DIW has a complexity of O(N4). For this reason, we
implemented DIW in Cython [11] in order to combine the efficiency of C with rapid prototyping allowed
by Python. For more details see:

https://github.com/kr7/diw/blob/main/DIW.ipynb

1See also https://anand.typepad.com/datawocky/2008/04/data-versus-alg.html for a related discussion.
2https://www.datasciencecentral.com/more-data-beats-better-algorithms-by-tyler-schnoebelen/

114

Figure 1: Classification Accuracy as Function of the Number of Training Instances

3 Experiments

Next, we present our empirical observations. In the first experiment, the classification accuracy as function
of the number of training instances is studied, whereas in the second experiment, we examine the effect
of data augmentation.

3.1 Classification Accuracy as Function of the Number of Training Instances

We performed experiments in the context of the recognition of handwritten digits. This is a classification
task with 10 classes, where each of the classes corresponds to one of the digits ’0’, ’1’, ’2’, . . . , ’9’, see
also the left column of Fig. 2 for examples of images from our dataset. In our experiment, we aimed to
recognize the handwritten digit using a 1-nearest neighbor classifier using either (i) DIW, or (ii) Euclidean
distance or (iii) Manhattan distance to determine the nearest neighbor.

Fig. 1 shows the classification accuracy as function of the number of training instances. For example,
in the case when five instances are used from each class, the training data contained five images showing a
’0’, another five images showing a ’1’, etc., thus the total size of the training data was 5×10 = 50. As one
can see, the classification accuracy increases with increasing size of training data. While DIW outperforms
the two other distance measures in case of few instances, the difference between the performance of the
three approaches gradually decreases. When using 20 × 10 = 200 training instances, the classification
accuracy of more than 80% is reached.

This experiment can be reproduced by running the Google colab notebook available at

https://github.com/kr7/diw/blob/main/DIW.ipynb ,

we refer to this code for further details (such as the URL of the dataset, training and test splits).

3.2 Data Augmentation

As Fig. 1 shows, in the previous experiment, compared with the case of using a single training instance per
class, we observed substantial improvement in terms of classification accuracy when using more training

115

Figure 2: Data augmentation techniques used in our experiment.

116

Figure 3: Classification Accuracy as Function of the Number of Training Instances

data. Next, we examine if the same improvement can be achieved using simple data augmentation
techniques.

Fig. 2 shows the data augmentation techniques used in our experiment. The leftmost column shows
the original image, while subsequent columns show the image after (i) deleting a randomly selected row,
(ii) deleting a randomly selected column, (iii) duplication of a randomly selected row and (iv) duplication
of a randomly selected column.

In this experiment, we only consider a single training instance per class. For each training instance,
we create t augmented instances using the aforementioned augmentation techniques. These t augmented
instances are added to the training set and the performance of the 1-nearest neighbor classifier is measured
on the test set.

Fig. 3 shows the accuracy of the classifier as function of t in cases when (i) DIW, (ii) Euclidean
distance and (iii) Manhattan distance was used to determine the nearest neighbor. This experiment can
be reproduced by running the Google colab notebook available at

https://github.com/kr7/diw/blob/main/DIW-augmentation.ipynb .

Please see this code for further details.
Based on Fig. 3, we can make the following observations:

1. Data augmentation does not necessarily improve the performance. Is seems that data augmen-
tation may introduce noise, although the accuracy has an increasing trend in case Euclidean and
Manhattan distances.

2. More importantly, even in case of augmented data, the more sophisticated DIW algorithm beats
simple distance measures which indicates that the advantage of the more sophisticated algorithm
may not be easily compensated by data augmentation.

3. Last, but not least we have to note that, using data augmentation, we were not able to achieve an
accuracy that is comparable with the case of using real observations as training data in Section 3.1.

An inherent limitation of our work is that we performed experiments only on a relatively small dataset
from the domain of handwriting recognition which may be considered simple compared to industrial

117

domains, such as self-driving vehicles. While we clearly admit this limitation, we note that our setting
aimed to simulate more complex domains: imagine, for example a 1 MP color (RGB) image. This image
corresponds to a point in a 3 million dimensional vector space. As high-dimensional data spaces tend to be
increasingly sparse, our setting, in which we only considered a single training instance when augmenting
the data, aims to simulate such a sparsity.

References

[1] A. Esteva, et al., Dermatologist-level classification of skin cancer with deep neural networks,
nature 542.7639 (2017)

[2] J. De Fauw, et al., Clinically applicable deep learning for diagnosis and referral in retinal disease,
Nature medicine 24.9 (2018)

[3] D. Silver, et al., Mastering the game of Go with deep neural networks and tree search, nature
529.7587 (2016)

[4] A. Luckow, et al., Deep learning in the automotive industry: Applications and tools, IEEE
International Conference on Big Data (2016)

[5] X. Xi, et al., Fast time series classification using numerosity reduction, Proceedings of the 23rd
international conference on Machine learning (2006)

[6] K. Buza, L. Peška, J. Koller, Modified linear regression predicts drug-target interactions
accurately, PloS one 15.4 (2020)

[7] A. Revina, K. Buza, V. G. Meister, IT ticket classification: the simpler, the better, IEEE
Access 8 (2020)

[8] H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spoken word recognition
IEEE transactions on acoustics, speech, and signal processing 26.1 (1978)

[9] K. Buza, Time series classification and its applications Proceedings of the 8th International Con-
ference on Web Intelligence, Mining and Semantics (2018)

[10] K. Buza, M. Antal, An Extension of Dynamic Time Warping for Images: Dynamic Image
Warping, 14th Joint Conference on Mathematics and Computer Science (2022)

[11] S. Behnel, et al, Cython: The best of both worlds, Computing in Science & Engineering 13.2
(2010)

118

Approximation Algorithms for Matroidal and
Cardinal Generalizations of Stable Matching∗

Gergely Csáji1

Department of Operations Research
Eötvös Loránd University

Budapest, Pázmány Péter promenade 1/A, Hungary
csaji.gergely@student.elte.hu

Tamás Király2

ELKH-ELTE Egerváry Research Group
Eötvös Loránd University

Budapest, Pázmány Péter promenade 1/A, Hungary
tamas.kiraly@ttk.elte.hu

Yu Yokoi3

Principles of Informatics Research Division
National Institute of Informatics

Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
yokoi@nii.ac.jp

Abstract: The Stable Marriage problem (SM), solved by the famous deferred acceptance algorithm
of Gale and Shapley (GS), has many natural generalizations. If we allow ties in preferences, then
the problem of finding a maximum solution becomes NP-hard, and the best known approximation
ratio is 1.5 (McDermid ICALP 2009, Paluch WAOA 2011, Z. Király MATCH-UP 2012), achievable
by running GS on a cleverly constructed modified instance. Another elegant generalization of SM is
the matroid kernel problem introduced by Fleiner (IPCO 2001), which is solvable in polynomial time
using an abstract matroidal version of GS. Our main result is a simple 1.5-approximation algorithm
for the matroid kernel problem with ties. We also show that the algorithm works for several other
versions of stability defined for cardinal preferences, by appropriately modifying the instance on which
GS is executed. The latter results are new even for the stable marriage setting.

Keywords: stable matching, matroid kernel, approximation, deferred acceptance

1 Introduction

The deferred acceptance algorithm of Gale and Shapley [8] is a quintessential example of a simple combi-
natorial algorithm that has wide-ranging applications, in such diverse areas as healtchcare labor markets,
kidney exchange planning, project allocations, and school choice mechanisms. The original stable mar-
riage problem solved by the Gale–Shapley algorithm has been generalized in many directions, and the
mathematical research in the area is still thriving, 60 years after the original paper.

The aim of the present paper is to bring together two directions in which the problem has been
extended. One is the design of approximation algorithms for finding a maximum stable matching when
ties are allowed in the preference lists. The other is the generalization of the stable matching problem
to matroid intersection, in particular, the matroid kernel problem introduced and solved by Fleiner [6]
using an abstract version of the Gale–Shapley algorithm.

∗A preliminary version of this paper will appear in the proceedings of the sixth SIAM Symposium on Simplicity of
Algorithms (SOSA), 2023. The authors would like to thank Tamás Fleiner, Zsuzsanna Jankó, and Ildikó Schlotter for
fruitful discussions.

1Research was supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021, by the Hungarian National Research, Development and Innovation Office – NKFIH, grant number K143858.

2Research was supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021, by the Hungarian National Research, Development and Innovation Office – NKFIH, grant numbers TKP2020-NKA-
06 and K143858.

3Research was supported by the JST PRESTO Grant Number JPMJPR212B.

119

We show that the best known approximation ratio of 1.5 for the stable marriage problem with ties [16]
can also be achieved for the matroid kernel problem with ties. Furthermore, we can go beyond ordinal
preferences with ties, and achieve the same approximation ratio for problems with cardinal preferences
and various near-stability requirements. In all of these cases, our algorithms are simple variants of
the Gale–Shapley algorithm applied to carefully constructed modified instances of the problem. The key
observation that enables the extension of the proof to matroid kernels is an exchange property for ordered
matroids that may be of independent interest.

1.1 Basic definitions

Stable marriage with ties.

A weak order on a ground set S is an ordering of S that may contain ties; in other words, it is a partial
order where being incomparable is a transitive relation. We use ≿ to denote a weak order; if several weak
orders are given, we use indices to distinguish them. The notation x ∼ y means that x is tied with y.

In the stable marriage problem with ties and incomplete lists (SMTI), we are given a bipartite graph
G = (U,W ;E), and a weak order ≿v on δG(v) for every vertex v ∈ U ∪W , where δG(v) denotes the set
of edges incident to v in G. Given a matching N in G, an edge e = uw ∈ E \N is a blocking edge for N
if the following two conditions hold:

• δG(u) ∩N = ∅ or e ≻u N(u),

• δG(w) ∩N = ∅ or e ≻w N(w),

where N(u) denotes the edge of N incident to u if it exists. The matching N is stable if no edge blocks it.
The Max-SMTI problem is to find a stable matching of maximum size. The problem is NP-hard [10],
and the best known polynomial-time approximation algorithm has an approximation ratio of 1.5 [16].
It is also known that no approximation ratio better than 4/3 is achievable assuming the Unique Games
Conjecture [21].

If no ties are allowed in the preference orders, then we obtain the standard stable marriage problem,
where all stable matchings have the same size, and the Gale–Shapley algorithm finds one efficiently.

Matroid kernels.

A natural way to generalize the stable marriage problem and the Max-SMTI problem is to allow agents
to have multiple partners, but have some restrictions on the possible sets of partners. There are several
models in this vein: the hospitals-residents problem, the college admissions problem with common quotas,
classified stable matchings etc. (see subsection 1.3 for more details).

From a theoretical point of view, a particularly elegant generalization is the matroid kernel problem
defined by Fleiner [6]. We assume familiarity with the fundamental notions of matroid theory (indepen-
dence, bases, fundamental circuits). We use the notation and terminology of [20, Chapter 39] for matroids,
unless otherwise stated. A weakly ordered matroid is a triple (S, I,≿) where S is the set of elements,
I is the family of independent sets of the matroid, and ≿ is a weak order on S. Let M1 = (S, I1,≿1)
and M2 = (S, I2,≿2) be weakly ordered matroids on the same ground set S. A common independent set
X ∈ I1 ∩ I2 is an (M1,M2)-kernel if for every y ∈ S \ X there exists i ∈ {1, 2} such that X + y /∈ Ii
and x ≿i y for every x ∈ X for which X − x + y ∈ Ii. If there is an element y ∈ S \X for which this
does not hold, then we say that y blocks X. The Max-Kernel problem is to find an (M1,M2)-kernel of
maximum size.

If M1 and M2 are partition matroids, then the Max-Kernel problem is equivalent to Max-SMTI.
Indeed, we can construct a bipartite graph by considering the partition classes of the two matroids as
vertices, and the elements of S as edges, whose two endpoints are the vertices corresponding to the two
partition classes containing that element. There is a one-to-one correspondence between stable matchings
of this bipartite graph and (M1,M2)-kernels.

120

Fleiner [6, 7] considered the matroid kernel problem without ties, i.e., ≿1 and ≿2 are linear orders.
He showed that matroid kernels always exist and have the same size (in fact, they have the same span
in both matroids). He also gave a matroidal version of the Gale–Shapley algorithm that finds a matroid
kernel efficiently. In case of weak orders, kernels may have different sizes, and it is NP-hard to find a
largest one, since this problem is a generalization of Max-SMTI.

Cardinal preferences and near-stability.

One way to define a weak order on a ground set S is to assign a preference value p(x) to each x ∈ S, with
larger value being better. Without loss of generality, we will assume that each p(x) is nonnegative, and
we also define p(∅) = 0. Such cardinal preferences also allow the definition of various versions of near-
stability. Intuitively, the blocking of a solution may require some quantifiable effort from the blocking
agents, so we may say that an element does not block unless the improvement is at least some fixed
positive ∆.

We define near-stability in the context of matroid kernels; the definitions carry over naturally to the
special case of stable marriage (for the latter, similar definitions appeared in the literature under various
names [1, 4, 19]). For i ∈ {1, 2}, let Mi = (S, Ii) be matroids, and for each element x ∈ S let pi(x) ≥ 0
be its value in the matroid Mi. The values pi define a weak order ≿i on S by x ≿i y ⇔ pi(x) ≥ pi(y).
As mentioned above, we assume that p1(∅) = p2(∅) = 0.

Let ∆ > 0. Given a common independent set X, an element y ∈ S \X is said to be ∆-min-blocking
for X if there exist x1 ∈ X ∪ {∅} and x2 ∈ X ∪ {∅} such that

• xi = ∅ if X + y ∈ Ii, otherwise X − xi + y ∈ Ii, for i ∈ {1, 2},

• min{ p1(y)− p1(x1), p2(y)− p2(x2) } ≥ ∆.

Informally, an element ∆-min-blocks X if we can achieve an improvement of ∆ in both matroids, by
adding it to X or by exchanging it with an element of X. The set X is ∆-min-stable if there is no ∆-min-
blocking element. If all pi values are positive and ∆ is small enough, then ∆-min-stability is equivalent
to being an (M1,M2)-kernel. Note also that in the stable marriage setting, it would make sense to have a
different threshold (i.e., a different ∆ value) for each agent. However, by rescaling the preference values
appropriately, we can assume that all these thresholds are the same.

We will also consider two other versions of near-stability, for which 1.5-approximation can be achieved
using a slightly more complicated construction. These are presented in Section 4.

1.2 Our contribution

The key tool for generalizing the 1.5-approximation to matroid kernels is a result on the existence of a
perfect matching of certain types of exchangeable pairs in a matroid. This is presented as Theorem 3 in
Section 2.

Using Theorem 3, we show in Section 3 that there is a 1.5-approximation algorithm for Max-Kernel,
which consists of three steps: (1) constructing an instance of the matroid kernel problem without ties on
the ground set obtained by replacing each element by 3 parallel elements, (2) running Fleiner’s algorithm
on the new instance, and (3) projecting the solution to the original ground set. Furthermore, given
cardinal preferences and a threshold ∆, we show that the same algorithm can be used to find a 1.5-
approximation for the maximum size ∆-min-stable common independent set. The running time of the
algorithm is quadratic in |S|, and linear in case of partition matroids (which corresponds to the many-
to-many stable matching problem with parallel edges allowed).

Finally, in Section 4, we show that the same general framework can be used to obtain efficient
1.5-approximation algorithms for two other natural near-stability notions: ∆-sum-stability and ∆-max-
stability. These notions and their motivation are described in detail in Section 4.

121

1.3 Related work

The stable marriage problem with ties and incomplete lists was first studied by Iwama et al. [10], who
showed the NP-hardness of Max-SMTI. Since then, various algorithms have been proposed to improve
the approximation ratio [11, 12, 13], and the current best ratio is 1.5 by a polynomial-time algorithm of
McDermid [16], where the same ratio is attained by linear-time algorithms of Paluch [17, 18] and Király
[14, 15]. The 1.5-approximability extends to the many-to-one matching setting [15] and the student-
project allocation problem with ties [5].

The stable marriage problem also has generalizations in which constraints are imposed on the possible
sets of edges. Biró et al. [3] studied the college admissions problem with common quotas. Yokoi [22]
considered a many-to-many matching model with ties and laminar constraints and presented a 1.5-
approximation algorithm for the generalized Max-SMTI. Its approximation analysis depends on the
base orderability of laminar matroids and cannot extend to the general matroid setting.

Cardinal preferences in the context of stable matchings have been studied for several reasons. Pini et
al. [19] analyzed manipulations consisting of falsely reporting preference values. Among other stability
notions, they introduced α-stability, which is equivalent to our definition of ∆-min-stability. Anshelevich
et al. [1] considered approximate stability from the point of view of social welfare. They defined various
utility models, and α-stability with respect to these models. They gave price-of-anarchy bounds that
depend on the value of α. Chen et al. [4] defined local d-near-stability and global d-near-stability based
on swaps in the preference orders.

2 Existence of perfect matching of exchange edges in matroids

In this secion, we present our key tool, a result on exchange properties of matroids. Let M = (S, I)
be a matroid, where S is the ground set and I is the family of independent sets. Recall that a base
is a maximum size independent set, while a circuit is an inclusionwise minimal dependent set. The
fundamental circuit of an element x ∈ S \ B for a base B, denoted by CB(x), is the unique circuit in
B + x. By a slight abuse of notation, we will also use CI(x) for an independent set I and an element
x ∈ S \ I to denote the unique circuit in I + x if it exists. Any pair of circuits satisfies the following
property.

Proposition 1 (Strong circuit axiom) If C,C ′ are circuits, x ∈ C \ C ′, and y ∈ C ∩ C ′, then there
is a circuit C∗ ⊆ C ∪ C ′ such that x ∈ C∗ and y /∈ C∗.

If we have a strict linear order ≻ given on S, then the triple M = (S, I,≻) is called an ordered
matroid. A nice property of ordered matroids is that for any weight vector w ∈ RS which satisfies
wx > wy ⇔ x ≻ y, the unique maximum weight base is the same. We call this base A the optimal base
of (S, I,≻); it is characterized by the property that the worst element of CA(x) is x for any x ∈ S \ A.
A similar statement about arbitrary circuits can be easily seen using the strong circuit axiom as follows.

Lemma 2 Let A be the optimal base of an ordered matroid (S, I,≻), and let C be a circuit. Then, the
worst element of C is in S \A.

Proof: Suppose for contradiction that there are circuits with worst element being in A, and choose such
a circuit C with |C \A| being the smallest possible. Clearly, C \A ̸= ∅, since A is a base. Let x ∈ C \A,
and let C ′ be the fundamental circuit of x for A. By the optimality of A, every element y ∈ C ′ − x
satisfies y ≻ x.

Let z be the worst element of C. Then z ≺ x, so z /∈ C ′. By the strong circuit axiom, there is a
circuit C ′′ ⊆ C ∪ C ′ such that z ∈ C ′′ and x /∈ C ′′. This is a contradiction, because C ′′ also satisfies the
property, and |C ′′ \A| < |C \A|. □

We are now ready to prove the theorem that will be our main tool in proving the approximation
bounds for our algorithms. As far as we know, this result on exchanges has not been observed previously
in the literature. A block matroid is a matroid whose ground set can be partitioned into two bases.

122

Theorem 3 Let M = (S, I,≻) be an ordered block matroid of rank r, with the property that the comple-
ment of the optimal base A is also a base, denoted by B. Then, there is a perfect matching aibi (i ∈ [r])
between A and B such that ai ≻ bi and bi ∈ CB(ai) for every i ∈ [r].

Proof: Let G = (A,B;E) be the bipartite graph formed by the pairs a ∈ A, b ∈ B such that a ≻ b
and b ∈ CB(a). Suppose for contradiction that there exists a set X ⊆ A such that |X| > |ΓG(X)|, where
ΓG(X) = {b ∈ B : ∃a ∈ X, ab ∈ E}. Let Y := ΓG(X).

Notice that if C is a circuit such that C ∩ A ⊆ X, then the worst element of C is in Y . Indeed, by
Lemma 2, the worst element of C is in B, and this element b must be in the fundamental circuit CB(a) for
some a ∈ C ∩A ⊆ X, because otherwise we could obtain a circuit in B by repeatedly removing elements
in A using the strong circuit axiom, which would contradict the independence of B. Hence, ab ∈ E, and
therefore b ∈ Y .

For each x ∈ X, let Cx be a circuit such that Cx ∩ A ⊆ X, x is the worst element in Cx ∩ A, and,
subject to this, the worst element of Cx ∩ B is best possible (note that Cx always exists because CB(x)
satisfies the first two properties). Let y(x) ∈ Y denote the worst element of Cx ∩ B. Since |X| > |Y |,
there are elements x ∈ X and x′ ∈ X such that x ≺ x′ and y(x) = y(x′) =: y. Notice that x /∈ Cx′

because the worst element of Cx′ ∩A is x′. By applying the strong circuit axiom for Cx and Cx′ , we can
obtain a circuit C with the following properties:

• C ⊆ Cx ∪ Cx′ − y, so C ∩A ⊆ X, and the worst element of C ∩B is better than y

• x ∈ C, so the worst element C ∩A is x.

These properties contradict the choice of the circuit Cx, since C would have been a better choice. This
contradiction implies that X cannot exist, so there is a perfect matching in G by Hall’s theorem. □

3 Matroid kernel algorithm for weakly ordered matroids

In this section, we give a simple 1.5-approximation algorithm for Max-Kernel. A similar algorithm was
presented by Yokoi [22] for a generalization of Max-SMTI that included laminar constraints. Her proof
relied crucially on the property that the matroids induced by the laminar constraints are base orderable.
In contrast, our proof works for arbitrary weakly ordered matroids.

To show the flexibility and usefulness of the algorithm, we prove the approximation ratio for the
more general problem of finding a maximum size ∆-min-stabe common independent set, as defined in
subsection 1.1. Note that if all pi values are positive and ∆ is small enough, then ∆-min-stability is
equivalent to being an (M1,M2)-kernel.

3.1 Description of the algorithm

Let M1 = (S, I1) and M2 = (S, I2) be matroids on the same ground set S. We use C1
I (u) and C2

I (u)
to denote fundamental circuits in M1 and M2, respectively. Let ∆ > 0 be a positive threshold, and let
pi(v) ≥ 0 (v ∈ S, i ∈ {1, 2}) be the cardinal preferences for the two matroids. In the following, we describe
the 1.5-approximation algorithm for finding the maximum size ∆-min-stable common independent set.
Essentially, the algorithm creates a new instance by replacing each element by 3 parallel elements, and
defines strict linear orders on the extended ground set based on the preferences on the original ground
set. For the obtained ordered matroids M∗

1 and M∗
2 , an (M∗

1 ,M
∗
2)-kernel A∗ can be found in O(|S|2)

time by Fleiner’s algorithm. The set A returned by the algorithm is the projection of A∗ to the original
ground set S.

To complete the description of the algorithm, we have to define the strict linear orders. Let the
extended ground set be S∗ := ∪u∈S{xu, yu, zu}. We define the ordered matroid M∗

i = (S∗, I∗i ,≻∗
i) as

follows. The elements xu, yu, zu are parallel in M∗
i , that is,

I∗i = { I∗ ⊆ S∗ : π(I∗) ∈ I, |I∗ ∩ {xu, yu, zu}| ≤ 1 ∀u ∈ S },

123

where π(I∗) = {u ∈ S : I∗ ∩ {xu, yu, zu} ̸= ∅ }. To define the linear orders ≻∗
1 and ≻∗

2, we first define
cardinal preferences on the extended ground set as follows.

• p∗1(zu) = p1(u), p∗1(yu) = p1(u) +K, p∗1(xu) = p1(u) +K + ∆,

• p∗2(xu) = p2(u), p∗2(yu) = p2(u) +K, p∗2(zu) = p2(u) +K + ∆,

where K is a number larger than any pi(u) (u ∈ S, i ∈ {1, 2}). The linear orders ≻∗
1 and ≻∗

2 on S∗ are
obtained by considering the preference orders given by p∗1 and p∗2, and breaking the ties so that yu ≻∗

1 xv
if p∗1(yu) = p∗1(xv) and yu ≻∗

2 zv if p∗2(yu) = p∗2(zv) for any u, v ∈ S. This completes the construction of
the ordered matroids M∗

1 and M∗
2 .

Lemma 4 The output of our algorithm is a ∆-min-stable common independent set of M1 and M2.

Proof: Let A = π(A∗) be the output of the algorithm, where A∗ is the (M∗
1 ,M

∗
2)-kernel given by

Fleiner’s algorithm. It is clear from the definition that A ∈ I1 ∩ I2. Suppose for contradiction that
there exists u ∈ S \ A that ∆-min-blocks A; we claim that yu blocks A∗. Indeed, if A + u ∈ Ii, then
A∗ + yu ∈ I∗i , and if pi(u) ≥ pi(v) + ∆ for some v ∈ Ci

A(u), then v∗ := {xv, yv, zv}∩A∗ satisfies yu ≻∗
i v

∗

and belongs to the fundamental circuit of yu for A∗ in M∗
i . □

3.2 Proof of 1.5-approximation

Theorem 5 The approximation ratio of the above algorithm is at most 1.5.

Proof: Let A = π(A∗) be the output of the algorithm, where A∗ is an (M∗
1 ,M

∗
2)-kernel, and let B be a

largest ∆-min-stable common independent set of M1 and M2. Suppose for contradiction that |B| > 1.5|A|.
Let Bi be a subset of B \ A such that A ∪ Bi ∈ Ii and |A ∪ Bi| = |B| for each i ∈ {1, 2}. The sets B1

and B2 are disjoint because A∗ is an inclusionwise maximal common independent set of M∗
1 and M∗

2 .
In the following, we say that an element u ∈ A is of type x (respectively y, z) if {xu, yu, zu} ∩ A∗ = xu
(respectively yu, zu).

Lemma 6 Let i ∈ {1, 2}. There is a matching Ni of size |B3−i| between A \ B and B3−i such that the
following hold for every uv ∈ Ni, where u ∈ A and v ∈ B:

1. u is of type x or y if i = 1, and of type y or z if i = 2

2. pi(u) ≥ pi(v), and in particular pi(u) ≥ pi(v) + ∆ if u is of type y

3. either v ∈ Ci
B(u) or B + u ∈ Ii.

Proof: Let M ′ = (S′, I ′) be the matroid obtained from Mi by deleting S \ (A ∪ B), contracting
(A∩B)∪Bi, and truncating to the size of A\B. That is, S′ = (A\B)∪ (B \ (A∪Bi)) and I ′ = { I ⊆ S′ :
I ⊆ A∪B, I ∪ (A∩B)∪Bi ∈ Ii, |I| ≤ |A \B| }. In M ′, the sets A′ := A \B and B′ := B \ (A∪Bi) are
bases that are complements of each other. We define a strict preference order ≻′ on S′ in the following
way. The elements of B \ (A∪Bi ∪B3−i) are worst (in arbitrary order). On the remaining elements, i.e.,
on the elements of (A \B)∪B3−i, we define the preferences based on the strict preferences ≻∗

i on S∗. To
do this, we assign an element u∗ ∈ S∗ to each u ∈ (A \B) ∪B3−i as follows. Let u∗ = {xu, yu, zu} ∩ A∗

if u ∈ A \ B, let u∗ = xu if i = 1 and u ∈ B2, and let u∗ = zu if i = 2 and u ∈ B1. We then let u ≻′ v
if and only if u∗ ≻∗

i v
∗. In the ordered matroid M ′ = (S′, I ′,≻′), A′ is an optimal base. Indeed, v is the

worst element of CA′(v) for every v ∈ B′. It is clear for the elements in B′ \B3−i by the definition of ≻′.
As for each v ∈ B3−i, since A∗ + v∗ ∈ I∗3−i holds and A∗ is an (M∗

1 ,M
∗
2)-kernel, v∗ must be the worst

element of its fundamental circuit for A∗. By Theorem 3, there is a perfect matching N ′ between A′ and
B′ such that u ≻′ v and v ∈ C ′

B′(u) for every uv ∈ N ′, where u ∈ A′ and v ∈ B′.

124

Let Ni be the subset of N ′ induced by A ∪B3−i. Then |Ni| = |B3−i|, and the first two properties of
the lemma are satisfied for every uv ∈ Ni, because u ≻′ v. We now show that for every uv ∈ Ni, either
v ∈ Ci

B(u) or B + u ∈ Ii. Since v ∈ C ′
B′(u), v is in the fundamental circuit of u for B′ in the matroid

obtained by truncating Mi to the size of A \ B. This means that it is either in the fundamental circuit
also in Mi, or B + u is independent in Mi, as required. □

We are now ready to prove the theorem by getting a contradiction. Since |B| > 1.5|A| implies
|Ni| = |B3−i| > |A \ B|/2 (i ∈ {1, 2}), there is an element u ∈ A \ B that is covered by both N1 and
N2. Let uv1 ∈ N1, uv2 ∈ N2. Since the first two properties hold for i ∈ {1, 2}, u must be of type y, and
pi(u) ≥ pi(vi) + ∆ for i ∈ {1, 2}. But this means that u is a ∆-min-blocking element for B because of
the third property, a contradiction. □

4 Extensions to other variants of ∆-stability

As a motivation, let us consider the special case of partition matroids, which corresponds to a two-sided
matching problem with cardinal preferences. The motivation for ∆-min-stability is that blocking may
require some effort from the agents, so we say that a pair does not block unless they both achieve a value
increase of ∆. However, there are other natural requirements that we can associate to a given positive
threshold ∆. In some applications, blocking can be viewed as a combined effort of a pair, so we may
require that the sum of their increase in value should be at least ∆. In other applications, an extra effort
may be required by the agent who initiates the blocking, so we might say that a pair does not block
unless one of them achieves a value increase of ∆.

In this section, we introduce the precise definitions for the above-mentioned variants, called ∆-sum-
stability and ∆-max-stability. For each of these stability concepts, finding a largest solution is NP-hard
as it is a generalization of Max-SMTI. We show that, by a suitable modification of the construction of
the extended ground set and the ordered matroids M∗

1 and M∗
2 , we obtain 1.5-approximation algorithms

for these variants of ∆-stability, too.

4.1 ∆-sum-stability

Recall that we are given two matroids M1 = (S, I1) and M2 = (S, I2), as well as preferences defined by
nonnegative values pi(v) for v ∈ S, i ∈ {1, 2}. Let ∆ be a positive threshold.

Definition 7 Let X be a common independent set of M1 and M2. An element u ∈ S \ X is ∆-sum-
blocking for X if the following hold:

• either X + u ∈ I1 or there is an element v1 ∈ X such that p1(u) > p1(v1) and v1 ∈ C1
X(u),

• either X + u ∈ I2 or there is an element v2 ∈ X such that p2(u) > p2(v2) and v2 ∈ C2
X(u),

• p1(u)− p1(v1) + p2(u)− p2(v2) ≥ ∆, where we take vi = ∅ if X + u ∈ Ii.

A common independent set X is ∆-sum-stable if there is no ∆-sum-blocking element for X.

Our aim is to give an efficient 1.5-approximation algorithm for the problem of finding the largest
∆-sum-stable common independent set. As in the case of ∆-min-stability, we create an instance of the
matroid kernel problem by adding parallel elements, and by defining strict linear orders on the extended
ground set based on the preferences. However, the number of parallel elements will depend on the possible
differences in the preference values.

Let 0 < d1 < d2 < · · · < dk < ∆ be the set of numbers strictly between 0 and ∆ that can be obtained
in the form p1(u)− p1(v), p2(u)− p2(v), ∆− p1(u) + p1(v), or ∆− p2(u) + p2(v) for some u, v ∈ S ∪ {∅}.
Furthermore, let d0 = 0. Clearly, k ≤ O(|S|2). It is also easy to observe that dk−ℓ+1 = ∆ − dℓ for
1 ≤ ℓ ≤ k by the symmetry over ∆ in the definition.

125

For each element u ∈ S, we make k + 2 parallel copies of u. Their set is denoted by X∗
u :=

{x0(u), x1(u), . . . , xk+1(u)}. Let S∗ := ∪u∈SX
∗
u, and let the resulting two matroids on S∗ be M∗

1 and
M∗

2 . The families of independent sets are given by

I∗i = { I∗ ⊆ S∗ : π(I∗) ∈ I, |I∗ ∩X∗
u| ≤ 1 ∀u ∈ S },

where π(I∗) = {u ∈ S : I∗ ∩X∗
u ̸= ∅ }.

Next, we define the linear orders ≻∗
1 and ≻∗

2. We first define cardinal preferences on the extended
ground set as follows.

• p∗1(xk+1(u)) = p1(u), p∗1(xℓ(u)) = p1(u) +K + ∆− dℓ for 0 ≤ ℓ ≤ k,

• p∗2(x0(u)) = p2(u), p∗2(xℓ(u)) = p2(u) +K + ∆− dk−ℓ+1 for 1 ≤ ℓ ≤ k + 1,

where K is a number larger than any pi(u) (u ∈ S, i ∈ {1, 2}). The linear orders ≻∗
1 and ≻∗

2 on S∗ are
obtained by considering the preference orders given by p∗1 and p∗2, and breaking the ties according to the
following rule:

• If p∗1(xj(u)) = p∗1(xℓ(v)) and j < ℓ, then xj(u) ≺∗
1 xℓ(v),

• If p∗2(xj(u)) = p∗2(xℓ(v)) and j < ℓ, then xj(u) ≻∗
2 xℓ(v).

This completes the construction of the ordered matroids M∗
1 and M∗

2 .

Theorem 8 Let A∗ be an (M∗
1 ,M

∗
2)-kernel, and let A = π(A∗). Then A is a ∆-sum-stable common

independent set of M1 and M2.

Proof: It is clear from the definition that A is a common independent set. Suppose there is a ∆-sum-
blocking element u ∈ S. If either A+u ∈ I1 or A+u ∈ I2, then xk+1(u) or x0(u) blocks A∗ respectively,
a contradiction. Otherwise let v1, v2 be as in Definition 7. Let v∗i = A∗ ∩X∗

vi (i = 1, 2).
As u is ∆-sum blocking, we have p1(u) − p1(v1) > 0, p2(u) − p2(v2) > 0, and p1(u) − p1(v1) +

p2(u) − p2(v2) ≥ ∆. If p1(u) − p1(v1) ≥ ∆, then we claim that xk(u) blocks A∗. Indeed, on one
hand, p1(u) − dk > p1(u) − ∆ ≥ p1(v1) = p1(v1) − d0, so xk(u) ≻∗

1 x0(v1) ⪰∗
1 v

∗
1 . On the other hand,

p2(u)− p2(v2) > 0 implies p2(u)− d1 ≥ p2(v2), so xk(u) ≻∗
2 xk+1(v2) ⪰∗

2 v
∗
2 .

A similar argument shows that if p2(u) − p2(v2) ≥ ∆, then x1(u) blocks A∗. Now consider the case
when both are smaller than ∆. We have p1(u) − p1(v1) = dj , p2(u) − p2(v2) = dℓ for some 0 < j, ℓ ≤ k
such that dj + dℓ ≥ ∆.

We claim that xj(u) blocks A∗. First, p1(u) − dj = p1(v1) = p1(v1) − d0, so xj(u) ≻∗
1 x0(v1) ⪰∗

1 v
∗
1 .

Second, p2(u)−dk−j+1 = p2(u)+dj−∆ ≥ p2(u)−dℓ = p2(v2) = p2(v2)−d0, so xj(u) ≻∗
2 xk+1(v1) ⪰∗

2 v
∗
2 .

Since A∗ − v∗i + xj(u) ∈ I∗i for i = 1, 2, this means that xj(u) blocks A∗, a contradiction. □

Theorem 9 Let A∗ be an (M∗
1 ,M

∗
2)-kernel, let A = π(A∗), and let B be a maximum size ∆-sum-stable

common independent set for M1 and M2. Then |B| ≤ 1.5|A|.

Proof: Suppose for contradiction that |B| > 1.5|A|. We use a similar construction as in the proof of
Theorem 5. Let Bi be a subset of B \A such that A∪Bi ∈ Ii and |A∪Bi| = |B| for i ∈ {1, 2}. The sets
B1 and B2 are disjoint because A∗ is an inclusionwise maximal common independent set of M∗

1 and M∗
2 .

The following lemma is analogous to Lemma 6. For u ∈ A, let u∗ := A∗ ∩X∗
u.

Lemma 10 Let i ∈ {1, 2}. There is a matching Ni of size |B3−i| between A \B and B3−i such that the
following hold for every uv ∈ Ni, where u ∈ A and v ∈ B:

1. u∗ = xj(u) for some j ≤ k if i = 1, and for some j ≥ 1 if i = 2,

2. pi(u) ≥ pi(v) + dj if i = 1, and pi(u) ≥ pi(v) + dk−j+1 if i = 2,

126

3. either v ∈ Ci
B(u) or B + u ∈ Ii.

Proof: Let M ′ = (S′, I ′) be the same matroid as in the proof of Lemma 6, and let A′ := A \ B,
B′ := B \ (A ∪ Bi). We define a strict preference order ≻′ on S′ in the following way. The elements of
B \ (A ∪ Bi ∪ B3−i) are worst (in arbitrary order). On the remaining elements, i.e., on the elements of
(A \ B) ∪ B3−i, we define the preferences based on the strict preferences ≻∗

i on S∗. Let v∗ = x0(v) if
i = 1 and v ∈ B2, and let v∗ = xk+1(v) if i = 2 and v ∈ B1. Let u ≻′ v if and only if u∗ ≻∗

i v
∗. As in the

proof of Lemma 6, A′ is an optimal base in the ordered matroid M ′ = (S′, I ′,≻′). By Theorem 3, there
is a perfect matching N ′ between A′ and B′ such that u ≻′ v and v ∈ C ′

B′(u) for every uv ∈ N ′, where
u ∈ A′ and v ∈ B′.

Let Ni be the subset of N ′ induced by A ∪ B3−i. Consider uv ∈ Ni, u ∈ A′, v ∈ B3−i. The first
property in the lemma holds because xk+1(u) ≺∗

1 x0(v) and x0(u) ≺∗
2 xk+1(v) by the definitions of ≻∗

1

and ≻∗
2. To see the second property in the case i = 1, observe that u ≻′ v implies xj(u) ≻∗

1 x0(v), thus
p1(u)− dj ≥ p1(v). Similarly, in the case i = 2, u ≻′ v implies xj(u) ≻∗

2 xk+1(v), thus p1(u)− dk−j+1 ≥
p1(v).

The third property follows similarly to the proof of Lemma 6. □ Since |B| > 1.5|A|, there is

an element u ∈ A \ B that is covered by both N1 and N2. Let v1, v2 be u’s partners in N1 and N2

respectively. By the first property of the lemma, u∗ = xj(u) for some j ∈ {1, . . . , k}. By the second
property, p1(u) ≥ p1(v1) + dj and p2(u) ≥ p2(v2) + dk−j+1.

Using that dj > 0, dk−j+1 > 0, dj + dk−j+1 = ∆, and the fact that vi ∈ Ci
B(u) or B + u ∈ Ii for

i = 1, 2, we get that the element u is ∆-sum-blocking for B, a contradiction. □

4.2 ∆-max-stability

The proofs in this section are very similar to those for ∆-sum-stability, so we skip some details that are
identical. Let ∆ be a positive threshold.

Definition 11 Let X be a common independent set of M1 and M2. An element u ∈ S \ X is ∆-max-
blocking for X if the following hold:

• either X + u ∈ I1 or there is an element v1 ∈ X such that p1(u) > p1(v1) and v1 ∈ C1
X(u),

• either X + u ∈ I2 or there is an element v2 ∈ X such that p2(u) > p2(v2) and v2 ∈ C2
X(u),

• max{p1(u)− p1(v1), p2(u)− p2(v2)} ≥ ∆, where we take vi = ∅ if X + u ∈ Ii.

A common independent set X is ∆-max-stable if there is no ∆-max-blocking element for X.

In order to get a 1.5-approximation, we create a matroid kernel instance by taking four parallel
elements of each element u ∈ S, denoted by X∗

u := {x0(u), x1(u), x2(u), x3(u)}. Let S∗ = ∪u∈SX
∗
u. As in

the previous section, the families of independent sets are given by

I∗i = { I∗ ⊆ S∗ : π(I∗) ∈ I, |I∗ ∩X∗
u| ≤ 1 ∀u ∈ S },

where π(I∗) = {u ∈ S : I∗ ∩X∗
u ̸= ∅ }. We introduce the following cardinal preferences on S∗:

• p∗1(x3(u)) = p1(u), p∗1(x2(u)) = p1(u) +K, p∗1(x1(u)) = p∗1(x0(u)) = p1(u) +K + ∆,

• p∗2(x0(u)) = p2(u), p∗2(x1(u)) = p2(u) +K, p∗2(x2(u)) = p∗2(x3(u)) = p2(u) +K + ∆,

where K is larger than any pi(u) (u ∈ S, i ∈ {1, 2}). The linear orders ≻∗
1 and ≻∗

2 on S∗ are obtained
by considering the preference orders given by p∗1 and p∗2, and breaking the ties according to the following
rule:

• If p∗1(xj(u)) = p∗1(xℓ(v)) and j < ℓ, then xj(u) ≺∗
1 xℓ(v), except for x0(u) ≻∗

1 x1(v)

127

• If p∗2(xj(u)) = p∗2(xℓ(v)) and j < ℓ, then xj(u) ≻∗
2 xℓ(v), except for x2(u) ≺∗

2 x3(v)

This completes the construction of the ordered matroids M∗
1 and M∗

2 .

Theorem 12 Let A∗ be an (M∗
1 ,M

∗
2)-kernel, and let A = π(A∗). Then A is a ∆-max-stable common

independent set of M1 and M2.

Proof: It is clear from the definition that A is a common independent set. Suppose there is a ∆-max-
blocking element u ∈ S. If either A+ u ∈ I1 or A+ u ∈ I2, then x3(u) or x0(u) blocks A∗ respectively.
Otherwise let v1, v2 be as in Definition 11. Let v∗i = A∗ ∩X∗

vi (i = 1, 2).
As u is ∆-max-blocking, we have p1(u)−p1(v1) > 0, p2(u)−p2(v2) > 0, and max{p1(u)−p1(v1), p2(u)−

p2(v2)} ≥ ∆. By symmetry, we may assume that p1(u)− p1(v1) ≥ ∆.
We claim that x2(u) blocks A∗. First, p1(u) ≥ p1(v1) + ∆, so p∗1(x2(u)) ≥ p∗1(v∗1), and equality

may hold only when v∗1 ∈ {x0(v1), x1(v1)}. By the tie-breaking rule, we have x2(u) ≻∗
1 v∗1 . Second,

p2(u) > p2(v2), so p∗2(x2(u)) > p∗2(v∗2), which means that x2(u) ≻∗
2 v

∗
2 .

Since A∗ − v∗i + x2(u) ∈ I∗i for i = 1, 2, this means that x2(u) blocks A∗, a contradiction. □

Theorem 13 Let A∗ be an (M∗
1 ,M

∗
2)-kernel, let A = π(A∗), and let B be a maximum size ∆-max-stable

common independent set for M1 and M2. Then |B| ≤ 1.5|A|.

Proof: Suppose for contradiction that |B| > 1.5|A|. Let Bi be a subset of B \A such that A ∪Bi ∈ Ii
and |A∪Bi| = |B| for i ∈ {1, 2}. The sets B1 and B2 are disjoint because A∗ is an inclusionwise maximal
common independent set of M∗

1 and M∗
2 . For u ∈ A, we use the notation u∗ := A∗ ∩X∗

u.

Lemma 14 Let i ∈ {1, 2}. There is a matching Ni of size |B3−i| between A \B and B3−i such that the
following hold for every uv ∈ Ni, where u ∈ A and v ∈ B:

1. u∗ = xj(u) for some j ≤ 2 if i = 1, and for some j ≥ 1 if i = 2,

2. pi(u) > pi(v) if either i = j = 1 or i = j = 2,

3. pi(u) ≥ pi(v) + ∆ if either i = 1 and j = 2, or i = 2 and j = 1,

4. either v ∈ Ci
B(u) or B + u ∈ Ii.

Proof: Let M ′ = (S′, I ′) be the same matroid as in the proof of Lemma 6, and let A′ := A \ B,
B′ := B \ (A ∪ Bi). We define a strict preference order ≻′ on S′ in the following way. The elements of
B \ (A ∪ Bi ∪ B3−i) are worst (in arbitrary order). On the remaining elements, i.e., on the elements of
(A \ B) ∪ B3−i, we define the preferences based on the strict preferences ≻∗

i on S∗. Let v∗ = x0(v) if
i = 1 and v ∈ B2, and let v∗ = x3(v) if i = 2 and v ∈ B1. Let u ≻′ v if and only if u∗ ≻∗

i v
∗. With

these preferences, A′ is an optimal base in the ordered matroid M ′ = (S′, I ′,≻′). By Theorem 3, there
is a perfect matching N ′ between A′ and B′ such that u ≻′ v and v ∈ C ′

B′(u) for every uv ∈ N ′, where
u ∈ A′ and v ∈ B′.

Let Ni be the subset of N ′ induced by A ∪ B3−i. Consider uv ∈ Ni, u ∈ A′, v ∈ B3−i. The first
property in the lemma holds because x3(u) ≺∗

1 x0(v) and x0(u) ≺∗
2 x3(v). To see the second and third

properties in the case i = 1, observe that u ≻′ v implies xj(u) ≻∗
1 x0(v). By the tiebreaking rule, this

implies p1(u) > p1(v) if j = 1, and p1(u) ≥ p1(v) + ∆ if j = 2. Similarly, in the case i = 2, we get
p2(u) > p2(v) if j = 2, and p2(u) ≥ p2(v) + ∆ if j = 1. The fourth property follows similarly to the
proof of Lemma 6. □ Since |B| > 1.5|A|, there is an element u ∈ A \ B that is covered by both

N1 and N2. Let v1, v2 be u’s partners in N1 and N2 respectively. By the first property of the lemma,
u∗ = xj(u) for some j ∈ {1, 2}. If j = 1, then the second and third properties imply that p1(u) > p1(v1)
and p2(u) ≥ p2(v2) + ∆. If j = 2, then we get p1(u) ≥ p1(v1) + ∆ and p2(u) > p2(v2).

By the fourth property of Lemma 14, we obtain that the element u is ∆-sum-blocking for B, a
contradiction. □

128

References

[1] Elliot Anshelevich, Sanmay Das, and Yonatan Naamad. Anarchy, stability, and utopia: creating
better matchings. Autonomous Agents and Multi-Agent Systems, 26(1):120–140, 2013.

[2] Haris Aziz, Péter Biró, and Makoto Yokoo. Matching market design with constraints. In Proc. of
36th AAAI Conference on Artificial Intelligence (AAAI 2022), volume 36, pages 12308–12316, 2022.

[3] Péter Biró, Tamás Fleiner, Robert W Irving, and David F Manlove. The college admissions problem
with lower and common quotas. Theoretical Computer Science, 411(34):3136–3153, 2010.

[4] Jiehua Chen, Piotr Skowron, and Manuel Sorge. Matchings under preferences: Strength of stability
and tradeoffs. ACM Transactions on Economics and Computation, 9(4):1–55, 2021.

[5] Frances Cooper and David Manlove. A 3/2-approximation algorithm for the student-project allo-
cation problem. In Proc. 17th International Symposium on Experimental Algorithms (SEA 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[6] Tamás Fleiner. A matroid generalization of the stable matching polytope. In Proc. 8th International
Conference on Integer Programming and Combinatorial Optimization, pages 105–114. Springer, 2001.

[7] Tamás Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics of
Operations research, 28(1):103–126, 2003.

[8] David Gale and Lloyd S Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

[9] Chien-Chung Huang. Classified stable matching. In Proc. twenty-first annual ACM-SIAM symposium
on Discrete Algorithms (SODA 2010), pages 1235–1253. SIAM, 2010.

[10] Kazuo Iwama, David Manlove, Shuichi Miyazaki, and Yasufumi Morita. Stable marriage with in-
complete lists and ties. In Proc. 26th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 1999), pages 443–452. Springer, 1999.

[11] Kazuo Iwama, Shuichi Miyazaki, and Naoya Yamauchi. A 1.875-approximation algorithm for the
stable marriage problem. In Proc. Eighteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA 2007), pages 288–297. SIAM, Philadelphia, 2007.

[12] Kazuo Iwama, Shuichi Miyazaki, and Naoya Yamauchi. A (2 − c 1√
n

)-approximation algorithm for

the stable marriage problem. Algorithmica, 51(3):342–356, 2008.

[13] Zoltán Király. Better and simpler approximation algorithms for the stable marriage problem. Algo-
rithmica, 60(1):3–20, 2011.

[14] Zoltán Király. Linear time local approximation algorithm for maximum stable marriage. In Proc.
Second International Workshop on Matching Under Preferences (MATCH-UP 2012), page 99, 2012.

[15] Zoltán Király. Linear time local approximation algorithm for maximum stable marriage. Algorithms,
6(3):471–484, 2013.

[16] Eric McDermid. A 3/2-approximation algorithm for general stable marriage. In Proc. 36th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2009), pages 689–700.
Springer, 2009.

[17] Katarzyna Paluch. Faster and simpler approximation of stable matchings. In Proc. 9th International
Workshop on Approximation and Online Algorithms (WAOA 2011), pages 176–187, 2011.

129

[18] Katarzyna Paluch. Faster and simpler approximation of stable matchings. Algorithms, 7(2):189–202,
2014.

[19] Maria Silvia Pini, Francesca Rossi, K Brent Venable, and Toby Walsh. Stability, optimality and
manipulation in matching problems with weighted preferences. Algorithms, 6(4):782–804, 2013.

[20] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24. Springer,
2003.

[21] Hiroki Yanagisawa. Approximation algorithms for stable marriage problems. PhD thesis, Kyoto
University, Graduate School of Informatics, 2007.

[22] Yu Yokoi. An approximation algorithm for maximum stable matching with ties and constraints.
In Proc. 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

130

Fairness versus transparency in the UEFA
Champions League: how to choose a random perfect

matching in a balanced bipartite graph

László Csató

Research Group of Operations Research and Decision Systems
Laboratory on Engineering and Management Intelligence
Institute for Computer Science and Control (SZTAKI)

Department of Operations Research and Actuarial Sciences
Institute of Operations and Decision Sciences

Corvinus University of Budapest (BCE)

Budapest, Hungary

laszlo.csato@sztaki.hu

Abstract: The organiser of the UEFA Champions League, one of the most prestigious foot-
ball tournaments around the world, faces a non-trivial mathematical and statistical problem
each autumn: how to choose a random perfect matching in a balanced bipartite graph. Fur-
thermore, since the set of edges depends on the national associations of the teams qualified
for the Round of 16, the graph is almost guaranteed to change in every season. For the sake
of credibility and transparency, the draw consists of some discrete uniform choices from two
urns whose compositions are dynamically updated with computer assistance. Even though
the adopted mechanism is unevenly distributed over all valid assignments, it resembles the
fairest possible lottery according to a recent result. We challenge this finding by analysing the
effect of reversing the order of the urns and show that the modification would have reduced
the level of unfairness by 15-20% in certain seasons and the improvement can be close to 30%.

Keywords: constrained assignment; draw mechanism; fairness; tournament de-
sign; UEFA Champions League

1 Introduction

Finding a random perfect matching in a balanced bipartite graph, where the two subsets of nodes have
the same cardinality, seems to be a purely mathematical problem. However, the Union of European
Football Associations (UEFA) faces this challenge in the UEFA Champions League Round of 16 draw
each autumn. In particular, the eight group winners and the eight runners-up that qualified for the
knockout stage need to be divided into eight mutually disjoint pairs subject to the following restrictions:

� Bipartite constraint : a group winner is not allowed to play against a runner-up;

� Group constraint : teams from the same group cannot be paired;

� Association constraint : teams from the same country cannot be matched.

The first restriction, the bipartite constraint, reduces the number of valid assignments to 8! = 40320
since every result of the draw can be represented by a permutation of the eight groups. The second
restriction, the group constraint, means that only a derangement (a permutation without a fixed point, in
other words, a permutation where no element appears in its original position) is allowed, which decreases

131

the number of valid assignments to 14833 [17]. Finally, the impact of the association constraint depends
on the identity of the teams, thus, no simple combinatorial formula exists to determine the number of
possible results of the draw. For instance, there have been 4781 feasible assignments in the 2020/21
season [13] but only 3876 in the 2022/2023 season [14].

In order to ensure ex-ante fairness, all valid assignments should occur with the same probability. It
can be easily achieved by listing all feasible outcomes and drawing one of them randomly. However,
UEFA does not use this procedure because of at least two reasons. First, it would be boring to watch,
which is important as the draw ceremony is streamed live over the internet and broadcast by several
national media companies [1]. Second, it would be impossible to detect fraud and prevent conspiracy
theories: checking credibility is a crucial aspect since the ex-post result will certainly favour some teams
at the expense of others.

Therefore, UEFA has adopted an easy to follow randomisation mechanism: the names of the teams
are physically placed in two urns and the composition of the urns is dynamically updated with computer
assistance to ensure that all constraints will be satisfied. The draw consists of discrete uniform choices
from the urns that can be observed. Even though the computer-assisted algorithm is essentially a black
box and carries out non-trivial calculations, all computations are deterministic and can be verified during
or after the draw with basic mathematical knowledge. For instance, a mistake was detected in the draw
of the 2021/22 season, and the whole process was repeated three hours later [12].

Naturally, there is no “free lunch” and the randomisation procedure chosen by UEFA is unfair, i.e.,
the feasible outcomes are not equally likely [16, 17]. However, utilising the main result of [2], [1] verify
that the design of the UEFA Champions League Round of 16 draw is near-optimal: it is close to a
constrained-best solution as it resembles the fairest possible lottery over the constrained assignments.

We challenge or, at least, refine this important finding of [1] by analysing the effect of reversing the
order of the urns. It is shown that a straightforward modification of the draw procedure would have
reduced the level of unfairness by 15-20% in certain seasons and has the potential to improve by almost
30%.

Our results are unexpected to some degree because, even though the impact of the draw order has been
recognised [1, Proposition 2], it has been called marginal in [17, Footnote 19] and has been commented
as slight for the 2017/18 [9], 2019/20 [11], and 2022/23 seasons [14]. Consequently, the current study
offers a novel example of how operations research and applied mathematics can contribute to the design
of sports tournaments [22, 3].

The paper is organised as follows. Section 2 describes the rules of the UEFA Champions League
Round of 16 draw. The research problem and the methodology are introduced in Section 3, while
the main contributions are presented in Section 4. Section 5 summarises our findings and raises open
questions.

2 The UEFA Champions League Round of 16 draw

The UEFA Champions League is one of the most prestigious football tournaments around the world.
It is contested by the leading European clubs that can qualify primarily based on the results of their
domestic leagues in the previous season. Since the 1997/98 season, multiple entrants are allowed from
certain countries; now the strongest leagues can provide up to five teams as has happened for Germany
in 2022/23.

The Champions League is organised in the same format since the 2003/04 season: a group stage
played in eight home-away round-robin groups, from which the top two teams qualify for the knockout
stage starting from the Round of 16. The knockout phase consists of two-legged clashes, each team plays
one game home and one away, except for the final, which is played in a predetermined neutral field. In the
Round of 16 draw, three restrictions (the bipartite, the group, and the association constraint) apply as
detailed in Section 1. On 17 July 2014, the UEFA emergency panel decided that Ukrainian and Russian
clubs could not be drawn against each other “until further notice” due to political reasons. This rule
has been effective only in the 2015/16 season, and can be treated similar to the association constraint by

132

Table 1: Teams playing in the 2012/13 UEFA Champions League Round of 16

Group
Runner-up Group winner

Club Country Club Country

A Porto Portugal Paris Saint-Germain France
B Arsenal England Schalke 04 Germany
C Milan Italy Málaga Spain
D Real Madrid Spain Borussia Dortmund Germany
E Shakhtar Donetsk Ukraine Juventus Italy
F Valencia Spain Bayern München Germany
G Celtic Glasgow Scotland Barcelona Spain
H Galatasaray Turkey Manchester United England

considering Russia and Ukraine as the same country. There are no draw restrictions in later rounds of
the knockout stage, each team can meet all the others.

The Round of 16 draw is equivalent to selecting a perfect matching in a balanced bipartite graph with
2× 8 nodes. UEFA uses the following mechanism for this purpose:

� Eight balls containing the names of the eight runners-up are placed in a bowl;

� A ball is drawn from the bowl, and the team drawn plays at home in match 1;

� The computer shows which group winners are eligible to play as the visiting team in match 1;

� Balls representing these teams are placed in another bowl;

� A ball is drawn from the second bowl to complete the pairing for match 1;

� The above procedure is repeated for the remaining matches.

The computer may indicate that only one group winner is allowed to play as the visiting team, in which
case there is no need to draw the sole ball.

The mechanism is more complicated than it seems at first glance because the computer should check
not only whether draw conditions apply for the runner-up chosen, but also whether draw conditions are
anticipated to apply for the runner(s)-up still to be drawn. Let us see the following illustration.

Example 1 [17] The teams qualifying for the 2012/13 UEFA Champions League Round of 16 are shown
in Table 1. The draw happened as follows:

1. The runner-up Galatasaray was drawn first. Its eligible opponents were all teams except for Manch-
ester United due to the group constraint. Out of the seven group winners, Schalke 04 was drawn.

2. The runner-up Celtic Glasgow was drawn second. Its possible opponents were all teams except
for Schalke 04 (already drawn), and Barcelona (group constraint). Out of the six group winners,
Juventus was drawn.

3. The runner-up Arsenal was drawn third. Its admissible opponents were all teams except for Schalke
04, Juventus (already drawn), and Manchester United (association constraint). Note that the group
constraint was ineffective. Out of the five group winners, Bayern München was drawn.

4. The runner-up Shakhtar Donetsk was drawn fourth. Its eligible opponents were all teams except
for Schalke 04, Juventus, and Bayern München (already drawn). Out of the five remaining group
winners, Borussia Dortmund was drawn.

5. The runner-up Milan was drawn fifth. The computer indicated that it should be paired with Barcelona,
thus, no draw was carried out.

133

Does this indicate a flaw? Naturally not. At this point, four group winners remained to be drawn: Paris
Saint-Germain, Málaga, Barcelona, Manchester United. Málaga was prohibited by the group constraint.
If Milan would have played against the French or English team, then three pairings would have been
left with four Spanish clubs (Real Madrid, Valencia, Málaga, Barcelona), and the association constraint
certainly would have been violated.

However, two (Real Madrid, Valencia) out of the three remaining runners-up could have faced ei-
ther Paris Saint-Germain or Manchester United, therefore, the draw was still not finished and remained
interesting for the spectators.

In the following, the procedure above will be called the standard UEFA mechanism.
The randomisation procedure of the UEFA always leads to a valid matching if there is an assignment

satisfying all constraints. The existence can be proved by Hall’s marriage theorem analogously to [16], but
now the maximal number of teams in the Round of 16 is five for at most two countries. [15, Chapter 3.6]
mentions this result as an application of mathematics in everyday life.

The same algorithm is used in other UEFA club tournaments such as the UEFA Europa League and
the UEFA Europa Conference League [5]. Furthermore, it is applied to divide teams into groups with
more than two teams in several competitions for national teams: the FIBA Basketball World Cup [6],
the UEFA Nations League [20], the UEFA Euro qualifying [21], and the European Qualifiers to the FIFA
World Cup [19]. Last but not least, after a reform inspired by the criticism of [8], the FIFA World Cup
draw is also carried out by this randomisation procedure since 2018 [10, 4].

3 Research question and methodology

The UEFA mechanism is known to be not evenly distributed, it is distinct from a uniform draw over all
admissible matchings [1, 7, 16, 17]. Even though the distortions seem to be small with respect to the
differences of pairwise match probabilities, it is quite frequent that a certain club i plays against club j
with a higher probability than against club k according to a uniform draw, but a match between i and k
has a higher chance to occur than a match between i and j according to the UEFA mechanism [17]. In
addition, even the small probability differences may change the expected revenue of some teams by more
than 10 thousand euros due to the substantial amount of prize money [17].

Hence, the outcome needs to be as close to the fair uniform draw as possible. However, all oddities
discussed above would still be present if at every point during the procedure, a random choice would be
made whether to match a winner to a runner-up or vice versa [17, Footnote 19]. Furthermore, [1] examine
all possible counterfactual lotteries over the feasible assignments to conclude that the design of the draw
mechanism is near-optimal. Nonetheless, it is worth analysing whether the reversed UEFA mechanism,
where the group winners are drawn first instead of the runners-up, is able to yield a fairer outcome.

Let us see the implied probabilities of a match between two clubs in the 2012/13 UEFA Champions
League Round of 16 draw.

Example 2 Consider the three draw procedures (uniform choice among all valid assignments, standard
UEFA mechanism, reversed UEFA mechanism) in Example 1 with the teams listed in Table 1.

Table 2 presents the ideal probabilities according to a perfect draw. The association constraint is
effective for six pairs: Arsenal and Manchester United (winner of Group H), Milan and Juventus (winner
of Group E), Real Madrid and Málaga (winner of Group C), Real Madrid and Barcelona, Valencia and
Málaga, Valencia and Barcelona. There are 5463 valid matchings; among them, Porto plays against
Schalke 04 (winner of Group B) in 636 cases, against Málaga (winner of Group C) in 1036 cases, and so
on. Note that the probability of Porto vs Borussia Dortmund (winner of Group D) and Porto vs Bayern
München (winner of Group F) coincide (676/5463 ≈ 12.37%) because these two German group winners
are symmetric as the runners-up in their groups are Spanish teams. On the other hand, the probabilities
for Schalke 04 are different since the runner-up in its group is the English club Arsenal. Analogously,
the matches Porto vs Manchester United and Arsenal vs Paris Saint-Germain (winner of Group A) have
the same probability of 731/5463 ≈ 13.05% as Porto and Paris-Saint Germain both come from Group

134

Table 2: Ideal probabilities for each pairing in the 2012/13 season

Runner-up
Group of the group winner

A B C D E F G H

Porto 0 11.64% 18.96% 12.37% 13.34% 12.37% 18.25% 13.05%
Arsenal 13.05% 0 22.22% 14.17% 15.14% 14.17% 21.25% 0
Milan 14.48% 14.68% 0 15.54% 0 15.54% 23.19% 16.57%
Real Madrid 18.40% 18.78% 0 0 21.76% 19.55% 0 21.51%
Shakhtar Donetsk 11.68% 11.83% 19.31% 12.61% 0 12.61% 18.71% 13.25%
Valencia 18.40% 18.78% 0 19.55% 21.76% 0 0 21.51%
Celtic Glasgow 12.36% 12.52% 20.14% 13.20% 14.48% 13.20% 0 14.11%
Galatasaray 11.64% 11.77% 19.37% 12.56% 13.51% 12.56% 18.60% 0

Table 3: Probabilities for each pairing in the 2012/13 season, UEFA mechanism

Runner-up
Group of the group winner

A B C D E F G H

Porto 0 11.68% 18.86% 12.21% 13.44% 12.21% 18.30% 13.30%
Arsenal 13.39% 0 21.69% 14.19% 15.54% 14.20% 20.98% 0
Milan 14.37% 14.61% 0 15.48% 0 15.48% 23.47% 16.59%
Real Madrid 18.33% 18.71% 0 0 21.58% 20.16% 0 21.23%
Shakhtar Donetsk 11.70% 11.90% 19.38% 12.43% 0 12.40% 18.63% 13.55%
Valencia 18.33% 18.69% 0 20.12% 21.59% 0 0 21.26%
Celtic Glasgow 12.18% 12.38% 20.87% 13.15% 14.21% 13.14% 0 14.07%
Galatasaray 11.69% 12.03% 19.19% 12.42% 13.64% 12.41% 18.62% 0

Table 4: Probabilities for each pairing in the 2012/13 season, reversed UEFA mechanism

Runner-up
Group of the group winner

A B C D E F G H

Porto 0 11.70% 18.85% 12.16% 13.49% 12.16% 18.27% 13.37%
Arsenal 13.29% 0 21.92% 14.10% 15.52% 14.09% 21.08% 0
Milan 14.37% 14.59% 0 15.48% 0 15.48% 23.47% 16.61%
Real Madrid 18.37% 18.69% 0 0 21.47% 20.38% 0 21.09%
Shakhtar Donetsk 11.72% 11.91% 19.37% 12.40% 0 12.38% 18.61% 13.62%
Valencia 18.35% 18.70% 0 20.36% 21.48% 0 0 21.11%
Celtic Glasgow 12.20% 12.39% 20.64% 13.13% 14.31% 13.12% 0 14.20%
Galatasaray 11.71% 12.02% 19.23% 12.37% 13.72% 12.39% 18.57% 0

A without an association constraint, while Arsenal and Manchester United are both English clubs such
that the other team from their groups (Schalke 04 and Galatasaray, respectively) is without an association
constraint and there are no more English teams. These numbers have already appeared in [16, Tabelle 2]
and [17, Table 4].

Table 3 shows the probabilities according to the standard UEFA mechanism, approximated by 10 million
simulated draws. This technique has been used by [1], too, as can be seen from [1, Table 1]. The greatest
bias occurs for the pair Celtic Glasgow vs Málaga, which exceeds 0.73 percentage points. These numbers
have already appeared in [16, Tabelle 3] and [17, Table 5] (the small differences are due to the inaccuracy
of our simulations).

Finally, Table 4 contains the (simulated) probabilities according to the reversed UEFA mechanism. The
greatest bias occurs for the pair Real Madrid vs Bayern München (winner of Group F), which exceeds

135

0.8 percentage points. These numbers have not appeared before in the literature, although the reversed
randomisation procedure has already been presented for the 2017/18 [9], 2019/20 [11], and 2022/23
seasons [14], based on one million simulation runs.

The fairness of the standard and reversed UEFA mechanisms will be evaluated by taking the average
of their biases for all pairs. Let pij be the ideal probability that clubs i and j are matched under the
evenly distributed uniform draw, and pMij be the probability of this event if mechanism M is used to
obtain a feasible assignment. We define two fairness measures for mechanism M as follows:

F1(M) = 1000×
∑

i,j

∣∣pij − pMij
∣∣

∑
i,j #{pij > 0} , (1)

F2(M) = 10000×
∑

i,j

(
pij − pMij

)2
∑

i,j #{pij > 0} , (2)

where
∑

i,j #{pij > 0} is the number of team pairs with a positive probability. Its maximum is 56 if the
association constraint is not effective, but this has never happened in the UEFA Champions League since
2003: the denominator varies between 43 (2019/20) and 53 (in five seasons). The multipliers of thousand
and ten thousand in formulas (1) and (2), respectively, are normalising factors.

F1 is called the average absolute distortion and F2 is called the average squared distortion. Obviously,
the latter is more strongly influenced by greater differences for certain team pairs.

[1] use a more complicated quantification of fairness, which measures the average absolute difference
in the match likelihoods across all valid pairwise comparisons. However, their distortion metric equals
zero only if there are no constraints in the draw, and increases with the number of restricted team pairs.
On the other hand, both F1(M) and F2(M) are zero for the ideal evenly distributed uniform draw among
all feasible matchings.

4 Results

Figure 1 reveals how our measures of fairness distortion depend on the number of restricted pairs due to
the association constraint, which was six in Example 2. The bias of the UEFA procedure is somewhat
greater if there are more effective constraints, but the relationship is rather weak. The standard and
the reversed versions are not fundamentally different with respect to fairness, which is expected because
they differ only in a small detail that is not expected to have a substantial effect as mentioned in [17,
Footnote 19].

Nonetheless, the difference between the fairness of the standard and reversed UEFA mechanisms is
non-negligible in some seasons according to Figure 2. For example, UEFA has had luck with its choice
in the 2017/18 season, although the distortion has been among the highest this year. Contrarily, the
reversed procedure would have been better in the next season of 2018/19. Overall, the unfairness of the
two versions seems to be increasing in recent years.

That is partially caused by the higher number of exclusions as can be seen in Table 5. The table also
uncovers that the standard (reversed) procedure has been the better option in 12 (8) seasons. The choice
essentially does not depend on the measure of fairness, the bias of the two versions almost coincides in
the two seasons (2016/17, 2020/21) when the order of metrics F1 and F2 differs. Selecting the fairer
mechanism instead of the other would have reduced the distortion by more than 8% in the last 20 years.

Finally, note that the standard or the reversed UEFA randomisation procedure would be more
favourable than its pair with the same chance from a purely mathematical point of view: the reversed
version will be better if the sets of group-winners and runners-up are exchanged. Consequently, the
reversed UEFA mechanism has the potential to improve fairness by more than 28% based on the 2017/18
season. However, this nice symmetry does not hold in the real-world if the clubs from some national
associations are more likely to be group winners than runners-up or vice versa.

136

0 2 4 6 8 10 12 14
0

2

4

6

8

10

Number of association exclusions

A
v
er
a
g
e
fa
ir
n
es
s
d
is
to
rt
io
n

Distortions of the standard UEFA mechanism

0 2 4 6 8 10 12 14
0

2

4

6

8

10

Number of association exclusions

A
v
er
a
g
e
fa
ir
n
es
s
d
is
to
rt
io
n

Distortions of the reversed UEFA mechanism

Absolute distortion F1 Squared distortion F2

Figure 1:
The fairness of the standard and reversed UEFA mechanisms by the number of associaion exclusions

5 Conclusions

The paper has analysed a randomisation procedure used in a sports competition with high monetary
stakes and substantial public interest. In particular, the UEFA Champions League Round of 16 draw is
essentially equivalent to finding a random perfect matching in a balanced bipartite graph. In order to
ensure credibility and transparency, the draw is implemented by a specific mechanism instead of choosing
randomly an assignment that satisfies all criteria. Although the unfairness of the draw mechanism has
been uncovered years ago [16, 17], the randomisation procedure adopted by the UEFA is near-optimal
according to a recent paper published in a leading journal of management science [1]. This result has
been refined by showing how reversing the arbitrarily chosen draw order can significantly reduce the level
of unfairness.

There remains much scope for future research. First, the reasonfor the difference between the stan-
dard and the reversed UEFA mechanisms is unknown. Second, in contrast to [1], we think tournament
organisers should continue the search for a fairer randomisation since the previous proposals [7, 17, 18]
have different weaknesses.

References

[1] M. Boczoń and A. J. Wilson, Goals, constraints, and transparently fair assignments: A field
study of randomization design in the UEFA Champions League, Management Science, in press, DOI:
10.1287/mnsc.2022.4528 (2022)

[2] E. Budish, Y.-K. Che, F. Kojima, and P. Milgrom, Designing random allocation mechanisms:
Theory and applications, American Economic Review 103(2):585–623 (2013)

[3] L. Csató, Tournament Design: How Operations Research Can Improve Sports Rules, Palgrave
Pivots in Sports Economics, Palgrave Macmillan, Cham, Switzerland (2021)

137

a Average absolute distortion F1 of the randomisation mechanisms

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

0.5

1

1.5

2

2.5

3

3.5

Season

A
v
er
a
g
e
a
b
so
lu
te

d
is
to
rt
io
n
F
1

b Average squared distortion F2 of the randomisation mechanisms

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
0

2

4

6

8

10

Season

A
v
er
a
g
e
sq
u
a
re
d
d
is
to
rt
io
n
F
2

Standard UEFA mechanism Reversed UEFA mechanism

Figure 2: The comparison of fairness for the standard and reversed UEFA mechanisms by seasons
Note: The UEFA Champions League seasons are denoted by their first year since the Round of 16 draw
is held in autumn.

138

Table 5: The relative performance of the standard and reversed UEFA mechanisms

Season
Number of valid Number of Fairness measure F1 Fairness measure F2

assignments exclusions Preferred Reduction Preferred Reduction

2003/04 8476 3 Reversed 4.84% Reversed 4.95%
2004/05 5427 6 Standard 0.36% Standard 0.42%
2005/06 9200 3 Standard 1.35% Standard 3.58%
2006/07 6655 5 Standard 5.92% Standard 5.83%
2007/08 5271 6 Standard 6.11% Standard 9.67%
2008/09 2988 10 Reversed 4.89% Reversed 3.85%
2009/10 9094 3 Standard 2.62% Standard 4.64%
2010/11 6304 5 Standard 10.41% Standard 14.40%
2011/12 9147 3 Reversed 20.77% Reversed 17.01%
2012/13 5463 6 Standard 8.92% Standard 8.26%
2013/14 3497 8 Reversed 5.60% Reversed 5.57%
2014/15 4516 7 Reversed 15.23% Reversed 16.37%
2015/16 9147 3 Standard 6.73% Standard 5.93%
2016/17 3501 9 Standard 1.52% Reversed 1.08%
2017/18 4238 7 Standard 28.01% Standard 29.46%
2018/19 3694 9 Reversed 13.87% Reversed 15.41%
2019/20 2002 13 Reversed 1.92% Reversed 1.64%
2020/21 3305 9 Reversed 1.75% Standard 2.42%
2021/22 4781 7 Standard 15.29% Standard 18.76%
2022/23 3876 8 Standard 5.11% Standard 5.87%

Average 5529.1 6.50 S: 12; R: 8 8.06% S: 12; R: 8 8.76%

[4] L. Csató, Group draw with unknown qualified teams: A lesson from 2022 FIFA World Cup,
International Journal of Sports Science & Coaching, in press, DOI: 10.1177/17479541221108799 (2022)

[5] L. Csató, A note on the UEFA Champions League Round of 16 draw, Manuscript, DOI:
10.48550/arXiv.2210.15555 (2022)

[6] FIBA, Procedure for FIBA Basketball World Cup 2019 Draw, https://www.fiba.basketball/

basketballworldcup/2019/news/procedure-for-fiba-basketball-world-cup-2019-draw (2019)

[7] J. Guyon, Rethinking the FIFA World CupTM final draw, Manuscript, DOI: 10.2139/ssrn.2424376
(2014)

[8] J. Guyon, Rethinking the FIFA World CupTM final draw, Journal of Quantitative Analysis in
Sports, 11(3):169–182 (2015)

[9] J. Guyon, Ligue des champions : pourquoi le PSG a presque une chance sur trois
de rencontrer Chelsea, Le Monde, 10 December, https://www.lemonde.fr/ligue-des-

champions/article/2017/12/10/ligue-des-champions-pourquoi-le-psg-a-une-chance-sur-

trois-de-rencontrer-chelsea_5227638_1616944.html (2017)

[10] J. Guyon, Pourquoi la Coupe du monde est plus équitable cette année. The Con-
versation, 13 June, https://theconversation.com/pourquoi-la-coupe-du-monde-est-plus-

equitable-cette-annee-97948 (2018)

[11] J. Guyon, Champions League last-16 draw probabilities: Why Chelsea are more likely
to get Barcelona – and what fates await Liverpool, Man City and Tottenham, Four-
FourTwo, 12 December, https://www.fourfourtwo.com/features/champions-league-last-16-

draw-probabilities-liverpool-chelsea-tottenham-man-city-real-madrid-barcelona (2019)

139

[12] J. Guyon, Ligue des champions : fallait-il annuler complètement le résultat du premier tirage
?, Le Monde, 14 December, https://www.lemonde.fr/sport/article/2021/12/14/ligue-des-

champions-fallait-il-annuler-completement-le-resultat-du-premier-tirage_6106012_

3242.html (2021)

[13] J. Guyon, Ligue des champions : le Real Madrid et Chelsea, adversaires les plus probables du PSG
et de Lille, Le Monde, 10 December, https://www.lemonde.fr/sport/article/2021/12/10/ligue-
des-champions-real-madrid-et-chelsea-adversaires-les-plus-probables-du-psg-et-de-

lille_6105478_3242.html (2021)

[14] J. Guyon, Ligue des champions : le Bayern Munich, adversaire le plus probable du PSG en huitièmes
de finale. Le Monde, 7 November, https://www.lemonde.fr/sport/article/2022/11/07/ligue-
des-champions-le-bayern-munich-adversaire-le-plus-probable-du-psg-en-huitiemes-de-

finale_6148779_3242.html (2022)

[15] J. Haigh, Mathematics in Everyday Life, Springer Nature, Cham, Switzerland, second edition
(2019)

[16] H. Kiesl, Match me if you can. Mathematische Gedanken zur Champions-League-
Achtelfinalauslosung, Mitteilungen der Deutschen Mathematiker-Vereinigung, 21(2):84–88 (2013)

[17] S. Klößner and M. Becker, Odd odds: The UEFA Champions League Round of 16 draw.
Journal of Quantitative Analysis in Sports, 9(3):249–270 (2013)

[18] G. O. Roberts and J. S. Rosenthal, Football group draw probabilities and corrections,
Manuscript, DOI: 10.48550/arXiv.2205.06578 (2023)

[19] UEFA, FIFA World Cup 2022 qualifying draw procedure, https://www.uefa.com/

MultimediaFiles/Download/competitions/WorldCup/02/64/22/19/2642219_DOWNLOAD.pdf

(2020)

[20] UEFA, UEFA Nations League 2022/23 – league phase draw procedure, https:

//editorial.uefa.com/resources/026f-13c241515097-67a9c87ed1b2-1000/unl_2022-

23_league_phase_draw_procedure_en.pdf (2021)

[21] UEFA (2022). UEFA EURO 2024 Qualifying Draw Procedure, https://editorial.uefa.com/

resources/0279-1627b29793e1-ffbe5a3c77a1-1000/08.01.00_euro_2024_qualifying_draw_

procedure_en_20220920115210.pdf (2022)

[22] M. Wright, OR analysis of sporting rules – A survey. European Journal of Operational Research,
232(1):1–8 (2014)

140

Two-sided Convexity Testing with Certificates

Adrian Dumitrescu

Algoresearch L.L.C.,
Milwaukee, WI 53217, USA

ad.dumitrescu@algoresearch.org

Abstract: We revisit the problem of property testing for convex position for point sets
in Rd. Our results draw from previous ideas of Czumaj, Sohler, and Ziegler (ESA 2000).
First, the algorithm is redesigned and its analysis is revised for correctness. Second, its
functionality is expanded by (i) exhibiting both negative and positive certificates along with
the convexity determination, and (ii) significantly extending the input range for moderate and
higher dimensions.

The behavior of the randomized tester is as follows: (i) if P is in convex position, it accepts;
(ii) if P is far from convex position, with probability at least 2/3, it rejects and outputs a
(d + 2)-point witness of non-convexity as a negative certificate; (iiii) if P is close to convex
position, with probability at least 2/3, it accepts and outputs an approximation of the largest
subset in convex position. The algorithm examines a sublinear number of points and runs in
subquadratic time for every dimension d (and is faster in low dimensions).

Keywords: property testing, convex position, approximation algorithm, random-
ized algorithm

1 Introduction

A set of points in the d-dimensional space Rd is said to be: (i) in general position if any at most d + 1
points are affinely independent ; and (ii) in convex position if none of the points lies in the convex hull
of the other points. It is known that every set of n points in general position in the plane contains
(1 − o(1)) log n points in convex position, and this bound is tight up to lower-order terms [10, 24]. For
d ≥ 3, by the Erdős–Szekeres theorem, every set of n points in general position in Rd contains Ω(log n)
points in convex position (it suffices to find points whose projections onto a generic plane are in convex
position). On the other hand, for every fixed d ≥ 2, Károlyi and Valtr [15] and Valtr [25] constructed
n-element sets in general position in Rd in which no more than O(logd−1 n) points are in convex position.
A recent result of Pohoata and Zakharov [21] shows that 2o(n) points in Rd, d ≥ 3, already contain n
points in convex position.

Given a point set in general position in Rd, the problem of computing a maximum-size subset in
convex position can be solved in polynomial time for d = 2 by the dynamic programming algorithm of
Chvátal and Klincsek [4]; their algorithm runs in O(n3) time. In contrast, the general problem in Rd was
shown to be NP-complete for every d ≥ 3 by Giannopoulos, Knauer, and Werner [12], and moreover, no
approximation algorithm is known.

Throughout this paper we assume (in a standard fashion) that our input set is a point set in Rd in
general position. The complexity of computing the convex hull of n points in Rd is summarized in the
following result of Chazelle; see also [1, 23]. Let P be a set of n points in Rd, where d is considered
constant.

Theorem 1 (Chazelle [3]) Given P , the convex hull of P can be computed in O(n log n + n⌊d/2⌋) time
using O(n⌊d/2⌋) space, which is asymptotically worst-case optimal.

141

It is known that the number of faces, f , of the output polytope is Θ(n⌊d/2⌋) in the worst case [19] (a
huge number). On the other hand, a result of Chan shows that the set of extreme points of a set of n
points in Rd can be computed in subquadratic time and essentially faster when their number h is small.

Theorem 2 (Chan [2]) Given P , the h extreme points of P can be computed in time

T (n, h) = O
(
n logO(1) h+ (nh)

⌊d/2⌋
⌊d/2⌋+1 logO(1) n

)
. (1)

Taking n = h in the above expression yields a time that suffices for testing whether a set of n points
is in convex position. From the other direction, it is conjectured that the problem of testing whether a
set P is in convex position is asymptotically as hard as the problem of computing all extreme points of
P [5].

Corollary 3 (Chan [2]) Given P , determining whether P is in convex position can be done in time

T (n, n) = O
(
n

2⌊d/2⌋
⌊d/2⌋+1 logO(1) n

)
.

In property testing one is concerned with the design of faster algorithms for approximate decision
making [13]. In this scenario, instead of determining whether an input has a specific property, one
determines if the input is far or perhaps close from satisfying that property. Such approximate decisions,
usually involving random sampling or shortcuts in the computation, may be valuable in settings in which
an exact decision is infeasible or just more expensive. For example, one may be interested in determining,
given an input point set, how far it stands from being in convex position without needing to spend all
resources that would be required for computing the convex hull of the respective set. Such a tool is
obviously useful in the general area of testing properties of geometric objects and visual images for
distinguishing a convex shape among other shapes.

The goal of property testing is to develop efficient property testers. Ideally, such a tester makes a
sublinear number of queries of the input set (i.e., it does not look at all the input). However, this does
not mean — even for the ideal case — that the tester runs in time that is sublinear in the size of the
input; in fact, it often doesn’t. Moreover, if the tester is also required to return a possibly large subset
of the input set (depending on the outcome) as a certificate, then its time requirements may be further
increased.

Here we focus on the testing of convex position. As in the context of randomized algorithms, approxi-
mately deciding means returning the correct answer with some confidence, specifically with probability at
least 2/3 (as described below), see, e.g., [18]; however, the 2/3 threshold is not set in stone. For instance,
in regard to the previous point on running time, it is worth noting that already for the plane (d = 2),
testing for convex position by the algorithm in [5] takes O(n2/3ε−1/3 log (n/ε)), which is Θ(n log n) if
ε = Θ(1/n); running times in higher dimensions are even higher.

Testing algorithms may use samples of different sizes. Some intuition is as follows. Suppose that the
input is far from convex position; the algorithm is likely to reject on large samples (the larger the sample,
the easier it will be to find that out), and is likely to accept on small samples (the smaller the sample,
the easier the algorithm will be fooled). On the other hand, if the input is close to convex position, the
smaller the sample, the easier it will be for the algorithm to accept.

A key distinction with regard to the action (accept or reject) is that closeness must fit the goal, i.e.,
far and close need to be quantified appropriately. As it turns out, rejecting an input that is far from
convex position is relatively insensitive to the distance from convex position. However, when accepting
an input that is close to convex position, the input must be really close.

1.1 Preliminaries

Definitions and notations. Let 0 < ε < 1/2. A set P of n points is ε-far from convex position if
there is no set X ⊂ P of size at most εn such that P \X is in convex position. Otherwise, i.e., if there
is a set X ⊂ P of size at most εn such that P \X is in convex position, P is ε-close to convex position.
See Fig. 1.

142

Figure 1: A 12-point set that is 1/4-close to convex position (left), and a 9-point set that is 2/9-close to
convex position (right). Both sets are 1/5-far from convex position.

Here we use the convention that the approximation ratio of an algorithm is < 1 for a maximization
problem and > 1 for a minimization problem (as in [26].) Unless specified otherwise, all logarithms are
in base 2. For a set W ⊂ Rd, its interior is denoted by W̊ .

Nonconvexity certificates. By the well-known Carathéodory Theorem; see, e.g., [17, p. 6], if X is
finite point set in Rd, every non-extreme point of X can be expressed as a convex combination of at most
d+1 points in X. This means that every point set that is not in convex position contains d+2 points that
are not in convex position. We will further assume that Chan’s algorithm for testing of convex position
outputs such a tuple when the input is not in convex position.

The convex position tester of Czumaj, Sohler, and Ziegler. The convex position tester of
Czumaj et al. [5] draws a random sample of the input set and makes a decision based on the convexity of
this sample. The algorithm is set up to work in Rd, for any dimension d. The tester accepts every point
set in convex position, and rejects every point set that is ε-far from convex position with probability at
least 2/3. If the input is not in convex position and is not ε-far from convex position, the outcome of
the algorithm can go either way (i.e., there is no specified action for the situation in-between). Most of
the technical justification is unpublished; for the present time, it can be found online [6]. The authors
present two testers for convex position: Convex-A and Convex-B, see [5, p. 161].

Its query complexity, i.e., the number of points requested from an oracle to perform the testing, is
O(nd/(d+1)ε−1/(d+1)), which is shown by the authors to be optimal [6]. The corresponding running time,
however, strongly depends on the dimension. For instance, it is O(n2/3ε−1/3 log (n/ε)) for d = 2 and
O(n3/4ε−1/4 log (n/ε)) for d = 3; and subquadratic in any dimension d.

Unfortunately, the convex position tester of Czumaj et al. [5] suffers from both structural and per-
formance issues as explained below. One issue is an unreasonable dependence of the tester Convex-A

of the input parameter ε; another is an incorrect setting of the sample size of the tester Convex-B; a
third concerns a technical lemma that needs correction. Here we fix these problems and obtain the first
functional tester. Moreover, its functionality is expanded by including positive certificates. Our paper is
self-contained with all needed proofs included.

(i) The sample size used by tester Convex-A is

s = 36 · n d
d+1 ε−

1
d+1 .

Since s ≤ n is a prerequisite for using the tester, this imposes the restriction 36d+1 ≤ εn; equivalently,
ε ≥ 36d+1/n. Since ε < 1, this implies n > 36d+1. This requirement makes the tester impractical even
for moderate values of d. For instance, if d = 20, tester Convex-A can only test sets with n > 4.8 · 1032

points. Similarly, if d = 50, tester Convex-A can only test sets with n > 2.3 · 1079 points, which is
approximately the number of atoms in the observable universe. Arguably, such applications, if any, are
rare. As such, the tester isn’t functional in the range d ≥ 50. In contrast, our Algorithm Convex- in
Subsection 2.1 is only subject to the very modest restriction ε ≥ (d + 1)/n. Similarly, our Algorithm
Convex+ in Subsection 2.2 is subject to very modest restrictions.

143

(ii) Another issue is in regard to the correctness of the tester Convex-B in view of the sample size
s = 4/ε used by the tester. Suppose that d = 4 and the input is an n-element point set that is ε-far from
convex position for a constant ε, say ε = 1/4, but not for a larger ε. By the optimality of the testing
sample s mentioned above, it is required that s = Ω(n4/5ε−1/5). For s = 4/ε, this implies ε = O(1/n),
which does not hold for large n. The tester Convex-B is therefore incorrect (its output is incorrect most
of the time for the input described above and many others).

(iii) A third issue is the correctness of Lemma 3.4 in [6], discussed in Section A. Our Lemma 6 is
proposed as a replacement.

Our results. We revisit the problem of property testing for convex position for point sets in Rd. Our
results draw from previous design and ideas of Czumaj, Sohler, and Ziegler (ESA 2000). First, the
algorithm is redesigned and its analysis is revised for correctness. Second, its functionality is expanded
by (i) exhibiting both negative and positive certificates along with the convexity determination, and
(ii) significantly extending the input range for moderate and higher dimensions. The tester is implemented
by two procedures: Convex- and Convex+.

The behavior of Algorithm Convex- can be summarized as follows. Let 0 < ε < 1 be an input
parameter.

1. If P is in convex position, the algorithm accepts P .

2. If P is ε-far from convex position, with probability at least 2/3 the algorithm rejects P and outputs
a (d+ 2)-point witness of non-convexity (as a negative certificate).

The behavior of Algorithm Convex+ can be summarized as follows. Let 0 < ε < 1 be an input
parameter, and 0 < δ ≤ 1/2 be an adjustable parameter. Here we work with δ = 0.1.

1. If P is in convex position, the algorithm accepts P .

2. If P is ε-close to convex position for some ε > 0 that satisfies n−1 ≤ ε ≤ nδ−1, with probability
at least 2/3 the algorithm accepts P and outputs a 1/(6nδ)-approximation of the largest subset in
convex position (as a positive certificate).

Related work. A seminal article in the area of property testing is due to Ergün et al. [11]. Besides
testing for convex position, testing for other geometric properties has been considered in [5]: pairwise
disjointness of a set of generic bodies, disjointness of two polytopes, and Euclidean minimum spanning
tree verification. A continuation of the work in [5] appears in [7]. A more recent article on property
testing for point sets in the plane is due to Han et al. [14]. A recent monograph dedicated to the general
subject of property testing is [13]. The topic of property testing, including testing for convex position, is
also addressed in a recent book by Eppstein [9].

2 An enhanced functionality tester for convex position

The tester is implemented by two procedures: Algorithm Convex- (in Subsection 2.1) and Algorithm
Convex+ (in Subsection 2.2). The two procedures may be run independently of each other. The goal of
Algorithm Convex- is rejecting point sets that are far from convex position; whereas that of Algorithm
Convex+ is accepting point sets that are close to convex position. Each algorithm exhibits a suitable
certificate along with its probabilistic determination. While the decision is randomized, the certificates
produced are indisputable, i.e., a negative certificate is always a (d + 2)-point set that is not in convex
position, and a positive certificate output by Algorithm Convex+ is always a 1/(6nδ)-approximation of
the largest subset in convex position.

Common tools. A randomized algorithm for generating a random s-set for a given s, 1 ≤ s ≤ n, in
O(s log s) time (and O(s) expected time) from [20, Ch. 4], can be used to implement random sample
selection. Alternatively, a linear-time algorithm for the same task from [22, Sec 5.2] can also be used.

144

2.1 Negative testing: Algorithm Convex-

Several constraints among the input parameters need to be respected usually for technical reasons. In
particular, it is assumed that (note that these constraints are very mild):

• n ≥ 210, this is needed in the proof of Lemma 6.

• n ≥ 32(d+ 1), this ensures that ℓ ≤ n/32 when using Lemma 6.

• ε ≥ 10(d+1)
n , this ensures that k ≥ 10 in Step 1; compare this to the constraint ε ≥ 36d+1/n in

tester Convex-A that restricts its use to low dimensions.

• ε ≤ d−1
2d , this ensures (1−ε)

d+1 ≥ 1
2d in the analysis.

Algorithm Convex-

Step 1: Let k = ⌊ εn
d+1⌋, ℓ = d + 1, s0 = ℓ + n−ℓ

(2k)1/ℓ
, and s = ⌈s0⌉. Repeat Step 2 and Step 3 in

succession up to 22 times.

Step 2: Randomly select a subset S ⊂ P of size s, with all s-subsets being equally likely.

Step 3: Test S for convex position using Chan’s algorithm. If S is not in convex position, outputs a
(d+ 2)-point witness of non-convexity and reject P . Otherwise go to Step 2 for the next repetition.

Step 4: If all 22 samples were determined to be in convex position, accept P .

Time analysis. It is easily verified that the setting for s in Step 1 yields

s = Θ
(
n

d
d+1 ε−

1
d+1

)
.

This is in accordance with the choice of the sample size for Algorithm Convex-A in [5]. As such, the
runtime of Algorithm Convex- is

T (s, s) = O
(
T
(
n

d
d+1 ε−

1
d+1 , n

d
d+1 ε−

1
d+1

))

= O
(
n

d
d+1 ·

2⌊d/2⌋
⌊d/2⌋+1 · ε− 1

d+1 ·
2⌊d/2⌋

⌊d/2⌋+1 · logO(1) (n/ε)
)
.

Since ε = Ω(1/n), the above expression becomes

T (s, s) = O (T (n, n)) = O
(
n

2⌊d/2⌋
⌊d/2⌋+1 logO(1) n

)
= o(n2), for every n and ε.

This can be also seen directly: since s ≤ n, T (s, s) ≤ T (n, n) = o(n2).

Rejecting the input with probability ≥ 2/3. Assume that P is ε-far from convex position. We
show that with probability at least 2/3, Algorithm Convex- rejects the input in step 3 and outputs a
suitable (d + 2)-point witness. We first recall the following lemmas (analogous to Lemma 3.1 and 3.2
from [6]), slightly rewritten here for convenience.

Lemma 4 (An earlier version in [6]). Let P ⊂ Rd be a set of n points that is not in convex position
and p ∈ P be an interior point. Then there exist points p1, . . . , pd ∈ P and U ⊂ P \ {p1, . . . , pd, p} with
|U | ≥ n−1

d+1 such that {p1, . . . , pd, p} ∪ {q} is not in convex position for every q ∈ U ; more precisely, p is
an interior point in the simplex ∆(p1, . . . , pd, q) for every q ∈ U .

Proof: Since p ∈ P is an interior point, by Caratheodory’s Theorem [17, p. 6] and by the general
position assumption, there exists a set W ⊂ P of size d+ 1 such that p ∈ W̊ . See Fig. 2.

Denote by Wi, i = 1, . . . , d + 1, the d subsets of W of size d. We show that one of the subsets
Wi of W satisfies the requirement in the lemma. We may assume without loss of generality that p =

145

p

Figure 2: P is a set of 9 points in the plane. The cone determined by the two red points contains 4 ≥ 8/3
points in P .

(0, . . . , 0). We partition Rd into d+ 1 cones as follows. Let W−
i , i = 1, . . . , d+ 1, denote the set of points

{(−x1, . . . ,−xd) : (x1, . . . , xd) ∈ Wi}. The conic combination of the point vectors in the set W−
i defines

a cone Ci, i = 1, . . . , d + 1. The union of these cones cover Rd. Thus there is a cone Cj , 1 ≤ j ≤ d + 1,

that contains at least n−1
d+1 points in P . Observe that for every q ∈ P ∩ Cj we have p ∈ ˚(Wj ∪ {q}).

Consequently, one can set {p1, . . . , pd} = Wj to conclude the proof. 2

The following lemma applies to point sets that are far from convex position. The sets Wi and Ui

constructed in the lemma are fixed before the samplings and are only used in the algorithm analysis.

Lemma 5 (An earlier version in [6]). Let P ⊂ Rd be a set of n points that is ε-far from convex position
and let k = ⌊ εn

d+1⌋. Then there exist sets Wi, Ui ⊂ P for 1 ≤ i ≤ k, such that the following conditions are
satisfied:

(i) |Wi| = d+ 1 for 1 ≤ i ≤ k,
(ii) Wi ∩Wj = ∅ for all 1 ≤ i < j ≤ k,

(iii) Wi ∩ Ui = ∅ for 1 ≤ i ≤ k,
(iv) Wi ∪ {q} is not in convex position for every q ∈ Ui, and

(v) |Ui| ≥ n
d+1 − k for 1 ≤ i ≤ k. In particular, |Ui| ≥ (1−ε)n

d+1 .

Proof: We construct point sets P1, P2, . . . , Pk iteratively. We initially set P1 := P and then iteratively
find Wi ⊂ Pi and set Pi+1 := Pi \Wi for i = 1, . . . , k. By construction the sets Wi are pairwise disjoint,
as required. Assuming that |Wi| = d+ 1 for 1 ≤ i ≤ k, implies that

|Pi| = n− (d+ 1)(i− 1) ≥ n− (d+ 1)(k − 1) > n− (d+ 1)
εn

d+ 1
= (1− ε)n.

By the assumption in the lemma, Pi cannot be in convex position. By Lemma 4 there exist p1, . . . , pd, p ∈
Pi and Ui ⊂ Pi \ {p1, . . . , pd, p} with

|Ui| ≥
|Pi| − 1

d+ 1
≥ n− (d+ 1)(i− 1)− 1

d+ 1
≥ n− (d+ 1)(k − 1)− 1

d+ 1

>
n

d+ 1
− k =

n

d+ 1
− εn

d+ 1
=

(1− ε)n
d+ 1

,

such that p is an interior point in the simplex ∆p1, . . . , pd, q for every q ∈ Ui. Let Wi := {p1, . . . , pd, p}
and observe that Wi ∩ Ui = ∅. Note that all properties in the lemma have been verified. 2

We also need another lemma suggested by Czumaj et al. [6]. Here we include a proof that follows the
ideas of the original proof, however, it is revised for correctness and for a slightly restricted range of the
parameters that suffices for our purposes. More details can be found in Section A.

146

Lemma 6 (An earlier version in [6]). Let Ω be a set of size n and W1,W2, . . . ,Wk ⊂ Ω be k pairwise
disjoint subsets of Ω of size ℓ, where k ≥ 10 and 3 ≤ ℓ ≤ n/32. Let s be a positive integer such that
ℓ+ n−ℓ

(2k)1/ℓ
≤ s ≤ n and S ⊂ Ω be a subset of Ω of size s chosen uniformly at random. Then

Prob(∃i ≤ k : (Wi ⊂ S)) ≥ 1

4
.

Proof: Observe that kℓ ≤ n, hence k ≤ n/ℓ. Let s0 be the real number defined as follows:

s0 = ℓ+
n− ℓ

(2k)1/ℓ
, or k

(
s0 − ℓ
n− ℓ

)ℓ

=
1

2
, (2)

and note that ℓ < s0 < n. Indeed, the lower bound is clear and the upper bound s0 < n is equivalent to
(2k)1/ℓ > 1 which is obvious. We first prove that

s0 ≥ 3ℓ log k. (3)

It suffices to show that n− ℓ ≥ 3ℓ(2k)1/ℓ log k, or, since ℓ ≤ n/32, that 3ℓ(2k)1/ℓ log k ≤ 31n
32 . We have

3ℓ(2k)1/ℓ log k ≤ 3ℓ

(
2n

ℓ

)1/ℓ

log

(
2n

ℓ

)
≤ 31n

32
.

Indeed, a standard verification shows that the function

f(x) = 3x

(
2n

x

)1/x

log

(
2n

x

)
, x ∈

[
3,
n

32

]
,

where n ≥ 210, attains it maximum at x = n/32, thus

f(x) ≤ f
(n

32

)
= 3 · n

32
·
(

2n

n/32

)32/n

log

(
2n

n/32

)

=
3n

32
· 6432/n · log 64 ≤ 18n

32
· 5

4
≤ 31n

32
.

This concludes the proof of (3) and we next focus on the inequality in the lemma.

Since the probability in question increases as the sample size s grows, it suffices to prove the inequality
for s = ⌈s0⌉. Observe that ℓ + 1 ≤ s ≤ n. By the Boole-Bonferoni inequality—see, e.g., [16, Ch. 2], we
have

Prob(∃i ≤ k : (Wi ⊂ S)) ≥
k∑

i=1

Prob(Wi ⊂ S)−
∑

1≤i<j≤k

Prob((Wi ∪Wj) ⊂ S). (4)

It is easily verified that

Prob(Wi ⊂ S) =

(
n−ℓ
s−ℓ

)
(
n
s

) =
(n− ℓ)!

(s− ℓ)!(n− s)! ·
s!(n− s)!

n!

=
(n− ℓ)!s!
n!(s− ℓ)! =

ℓ−1∏

r=0

s− r
n− r , and

Prob((Wi ∪Wj) ⊂ S) =

(
n−2ℓ
s−2ℓ

)
(
n
s

) =

2ℓ−1∏

r=0

s− r
n− r

=

ℓ−1∏

r=0

s− r
n− r ·

ℓ−1∏

r=0

(s− ℓ)− r
(n− ℓ)− r , for 1 ≤ i < j ≤ k.

147

Substituting these into Inequality (4) and finally using (2) yields

Prob(∃i ≤ k : (Wi ⊂ S)) ≥ k ·
ℓ−1∏

r=0

s− r
n− r −

(
k

2

)
·
ℓ−1∏

r=0

s− r
n− r ·

ℓ−1∏

r=0

(s− ℓ)− r
(n− ℓ)− r

= k ·
ℓ−1∏

r=0

s− r
n− r

(
1− k − 1

2
·
ℓ−1∏

r=0

(s− ℓ)− r
(n− ℓ)− r

)

≥ k ·
ℓ−1∏

r=0

s− ℓ
n− ℓ ·

(
1− k

2
·
ℓ−1∏

r=0

s− ℓ
n− ℓ

)

= k ·
(
s− ℓ
n− ℓ

)ℓ

·
(

1− k

2
·
(
s− ℓ
n− ℓ

)ℓ
)
.

Let

F1 = k ·
(
s− ℓ
n− ℓ

)ℓ

and F2 = 1− k

2
·
(
s− ℓ
n− ℓ

)ℓ

.

It suffices to show that F1 ≥ 1
2 and F2 ≥ 1

2 . For the first inequality, we have

F1 = k ·
(
s− ℓ
n− ℓ

)ℓ

≥ k ·
(
s0 − ℓ
n− ℓ

)ℓ

=
1

2
. (5)

For the second, recall that 0 ≤ s− s0 < 1 and s0 ≥ 6ℓ ≥ 3ℓ by (3). Applying the standard inequality
1 + x ≤ ex for 0 ≤ x ≤ 1/2 yields:

(
s− ℓ
s0 − ℓ

)ℓ

=

(
1 +

s− s0
s0 − ℓ

)ℓ

≤
(

1 +
1

2ℓ

)ℓ

≤ exp(0.5) ≤ 2. (6)

Using (6) and (2) once again yields

F2 = 1− k

2
·
(
s− ℓ
n− ℓ

)ℓ

= 1−
(
s− ℓ
s0 − ℓ

)ℓ

· k
2
·
(
s0 − ℓ
n− ℓ

)ℓ

≥ 1− 2 · k
2
·
(
s0 − ℓ
n− ℓ

)ℓ

= 1− k ·
(
s0 − ℓ
n− ℓ

)ℓ

=
1

2
. (7)

Consequently, we have

Prob(∃i ≤ k : (Wi ⊂ S)) ≥ F1 · F2 ≥
1

2
· 1

2
=

1

4
,

as required. 2

Let k = ⌊ εn
d+1⌋, ℓ = d + 1, and recall that Algorithm Convex- sets s = ⌈s0⌉, where s0 is given by

Equation (2).
We next prove that the algorithm finds the sample S not convex with probability ≥ 1/20 in each of

the 22 repetitions in Step 2 and Step 3. Consider one execution of Step 2 and Step 3. For a fixed i ≤ k,

let Fi be the event that S ∩ Ui = ∅. By Lemma 5, we have |Ui| ≥ (1−ε)n
d+1 ≥ n

2d . Observe that

(
1− 1

2d

)d+1

≤ 2

3
, for d ≥ 2.

148

By (3) we have s ≥ s0 ≥ 3ℓ log k, thus (recall also that k ≥ 10, which us used in the last inequality of the
chain below)

Prob(Fi) = Prob(S ∩ Ui = ∅) =

(
n−|Ui|

s

)
(
n
s

)

=
(n− |Ui|)(n− |Ui| − 1) · · · (n− |Ui| − s+ 1)

n(n− 1) · · · (n− s+ 1)
≤
(

1− |Ui|
n

)s

≤
(

1− 1

2d

)s

≤
(

1− 1

2d

)3ℓ log k

≤
(

2

3

)3 log k

≤ 1

5k
, for i ∈ [k] and d ≥ 2.

Let E1 be the event that S ∩ Ui ̸= ∅ for every i ≤ k. By the union bound, we deduce that

Prob(E1) ≤ k · Prob(F1) ≤ 1

5
.

Let E2 be the event that there exists i ≤ k such that Wi ⊂ S. We next verify that the inequality
ℓ+ n−ℓ

(2k)1/ℓ
≤ s ≤ n specified in Lemma 6 holds. Indeed,

s = ⌈s0⌉ ≥ s0 = ℓ+
n− ℓ

(2k)1/ℓ
,

and s0 < n as shown in the proof of Lemma 6, whence s = ⌈s0⌉ ≤ n. Hence by Lemma 6 we have

Prob(E2) = Prob(∃i ≤ k : (Wi ⊂ S)) ≥ 1

4
.

Putting these bounds together yields

Prob(E1 ∩ E2) = 1− Prob(E1 ∪ E2) ≥ 1− Prob(E1)− Prob(E2)

≥ 1− 1

5
− (1− Prob(E2)) = Prob(E2)− 1

5

≥ 1

4
− 1

5
=

1

20
.

Let E be the event that Algorithm Convex- finds the sample not convex in at least one of the 22
executions of Step 2 and Step 3. The 22 repetitions are independent events, thus

Prob(E) ≥ 1−
(

1− 1

20

)22

≥ 2

3
.

Thus with probability at least 2/3, Algorithm Convex- rejects the input, as required.

2.2 Positive testing: Algorithm Convex+

Assume for technical reasons that n is sufficiently large (n ≥ 1500). Let 0 < δ ≤ 1/2 be an adjustable
parameter. Here we work with δ = 0.1. Assume that P is ε-close to convex position for some ε > 0,
where n−1 ≤ ε ≤ nδ−1; note, this means that P can be made convex by removing at most εn ≤ nδ points.

Algorithm Convex+

Step 1: Randomly select a subset S ⊂ P of size s = ⌈1/(6ε)⌉, with all s-subsets being equally likely.

Step 2: Test S for convex position using Chan’s algorithm. If S is not in convex position, outputs
a (d + 2)-point witness of non-convexity and reject P . Otherwise output S as a subset in convex
position and accept P .

149

Time analysis. The setting s = ⌈1/(6ε)⌉ in Step 1 yields that the runtime of Algorithm Convex+ is

T (s, s) = O (T (1/ε, 1/ε)) = O
(
ε−

2⌊d/2⌋
⌊d/2⌋+1 logO(1) 1/ε

)
.

Since ε = Ω(1/n),

T (s, s) = O (T (n, n)) = O
(
n

2⌊d/2⌋
⌊d/2⌋+1 logO(1) n

)
= o(n2), for every n and ε.

Accepting the input with probability ≥ 2/3. We next show that with probability at least 2/3,
Algorithm Convex+ accepts P and outputs a subset of size ⌈1/(6ε)⌉ of P in convex position. By the
assumption we can write P = C ∪ D, where C is in convex position and |D| ≤ εn =: t. Recall that
s = ⌈1/(6ε)⌉. Note that

st =

⌈
1

6ε

⌉
· εn ≤ 1

6ε
· εn+ εn =

n

6
+ εn ≤ 100n

595
for n ≥ 1500.

Indeed, n ≥ 1500 =⇒ n0.9 ≥ 721 =⇒ ε ≤ 1/n0.9 ≤ 1/721, for which the above inequality holds. In
particular, we have t ≤ st ≤ 100n/595. We show that

Prob(S ∩D = ∅) = Prob(S ⊆ C) ≥ 2

3
.

Applying the standard inequality 1− x ≥ e−2x for 0 ≤ x ≤ 1/2 yields:

Prob(S ⊆ C) =

(|C|
s

)
(
n
s

) ≥
(
n−t
s

)
(
n
s

) =
(n− s)(n− s− 1) · · · (n− s− t+ 1)

n(n− 1) · · · (n− t+ 1)

=
t−1∏

i=0

(
1− s

n− i

)
≥
(

1− s

n− t+ 1

)t

≥ exp

(−2st

n− t+ 1

)

≥ exp

(−200

495

)
≥ 2

3
,

as required. Hence with probability at least 2/3, S is determined to be in convex position and output by
the algorithm, as required. Let OPT denote the size of the largest convex subset of P . Since OPT ≤ n
and εn ≤ nδ, the approximation ratio of Algorithm Convex+ is

s

OPT
≥ s

n
=

⌈
1

6ε

⌉
1

n
≥ 1

6εn
≥ 1

6nδ
.

In particular, the ratio is at least 1/24 for all n ≤ 106.

3 Concluding remarks

Summary. We presented and analyzed a convexity-testing algorithm implemented by two procedures
based on random sampling that has the following enhanced functionality:

1. For point sets that are ε-far from convex position, with probability ≥ 2/3 the algorithm outputs a
(d+ 2)-point witness of non-convexity as a negative certificate.

2. For point sets that are ε-close to convex position, with probability ≥ 2/3 the algorithm outputs a
1/(6nδ)-approximation of a maximum-size convex subset (δ = 0.1). [Comment: The current fastest
algorithm for computing the largest subset in convex position takes O(n3) time for d = 2, see [4, 8].
In contrast, the problem of computing a largest subset of points in convex position is NP-complete
for d ≥ 3 [12], and moreover, no approximation algorithm is known.]

3. The input range for the tester is significantly extended — for moderate and higher dimensions —
compared to the previous version in [5].

150

References

[1] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars, Computational
Geometry, 3rd edition, Springer, Heidelberg, 2008.

[2] Timothy M. Chan, Output-sensitive results on convex hulls, extreme points, and related problems,
Discrete & Computational Geometry 16(4) (1996), 369–387.

[3] Bernard Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete & Com-
putational Geometry 10 (1993), 377–409.

[4] Vašek Chvátal and Gheza T. Klincsek, Finding largest convex subsets, Congressus Numeran-
tium, 29 (1980), 453–460.

[5] Artur Czumaj, Christian Sohler, and Martin Ziegler, Property testing in computational
geometry (extended abstract), in Proc. 8th Annual European Symposium on Algorithms (ESA 2000),
Springer, Heidelberg, vol. 1879 of LNCS, pp. 155–166. https://doi.org/10.1007/3-540-45253-2_
15.

[6] Artur Czumaj, Christian Sohler, and Martin Ziegler, Testing convex position, https://
www.researchgate.net/publication/228727099_Testing_Convex_Position. Online manuscript
(16 pages), accessed in April 2022.

[7] Artur Czumaj and Christian Sohler, Property testing with geometric queries, in Proc. 9th
Annual European Symposium on Algorithms (ESA 2001), Springer, Heidelberg, vol. 2161 of LNCS,
pp. 266–277. https://doi.org/10.1007/3-540-44676-1_22.

[8] Herbert Edelsbrunner and Leonidas J. Guibas, Topologically sweeping an arrangement, Jour-
nal of Computer and System Sciences 38(1) (1989), 165–194.

[9] David Eppstein, Forbidden Configurations in Discrete Geometry, Cambridge University Press,
2018.

[10] Paul Erdős and György Szekeres, A combinatorial problem in geometry, Compositio Mathe-
matica 2 (1935), 463–470.

[11] Funda Ergün, Sampath Kannan, Ravi S. Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan, Spot-checkers, Journal of Computer and System Sciences 60(3) (2000), 717–751.

[12] Panos Giannopoulos, Christian Knauer, and Daniel Werner, On the computational com-
plexity of Erdős-Szekeres and related problems in R3, Proc. 21st European Symposium on Algorithms,
vol. 8125 of LNCS (2013), pp. 541–552.

[13] Oded Goldreich, Introduction to Property Testing, Cambridge University Press, 2017.

[14] Jie Han, Yoshiharu Kohayakawa, Marcelo T. Sales, and Henrique Stagni, Property
testing for point sets on the plane, Proc. of Latin American Symposium on Theoretical Informatics
(LATIN 2018), Springer, vol. 10807 of LNCS, pp. 584–596.

[15] Gyula Károlyi and Pavel Valtr, Configurations in d-space without large subsets in convex
position, Discrete & Computational Geometry 30(2) (2003), 277–286.

[16] Lásló Lovász, Combinatorial Problems and Exercises, 2nd edition, Elsevier, Amsterdam, 1993.

[17] Jiř́ı Matoušek, Lectures on Discrete Geometry, Springer, New York, 2002.

[18] Michael Mitzenmacher and Eli Upfal, Probability and Computing: Randomized Algorithms
and Probabilistic Analysis, 2nd edition, Cambridge University Press, 2017.

151

[19] Peter McMullen, The maximal number of faces of a convex polytope. Mathematika 17 (1970),
179–184.

[20] Albert Nijenhuis and Herbert S. Wilf, Combinatorial Algorithms, 2nd edition, Academic Press,
New York, 1978.

[21] Cosmin Pohoata and Dmitrii Zakharov, Convex polytopes from fewer points, manuscript, Au-
gust 2022. Preprint available at arXiv.org/abs/2208.04878.

[22] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo, Combinatorial Algorithms: The-
ory and Practice, Prentice-Hall, New Jersey, 1977.

[23] Raimund Seidel, Convex hull computations, Chap. 26 in Handbook of Discrete and Computational
Geometry (Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, eds.), 3rd edition, CRC Press,
Boca Raton, 2017, pp.1057–1092.

[24] Andrew Suk, On the Erdős-Szekeres convex polygon problem, Journal of the American Mathe-
matical Society 30 (2017), 1047–1053.

[25] Pavel Valtr, Convex independent sets and 7-holes in restricted planar point sets, Discrete &
Computational Geometry 7(2) (1992), 135–152.

[26] David P. Williamson and David B. Shmoys, The Design of Approximation Algorithms, Cam-
bridge University Press, 2011.

152

A Remarks on Lemma 3.4 in [6]

The following lemma is suggested in [6]. Here we argue why the lemma cannot be used as is.

Lemma 7 [6]. Let Ω be an arbitrary set set of n elements. Let k and ℓ be arbitrary integers (possibly
dependent on n) and let s be an arbitrary integer such that s ≥ 2n/(2k)1/ℓ. Let W1,W2, . . . ,Wk be
arbitrary disjoint subsets of Ω each of size ℓ. LetW be a subset of Ω of size s which is chosen independently
and uniformly at random. Then

Prob(∃j ∈ [k] : (Wj ⊆W)) ≥ 1

4
.

We make two points:

(i) The first point is minor: taking s as the smallest integer satisfying s ≥ 2n/(2k)1/ℓ, namely
s = ⌈2n/(2k)1/ℓ⌉ may result in an integer larger than n and thereby be infeasible. For example, the
setting n = 256, k = 8, ℓ = 8, yields s = ⌈2n/(2k)1/ℓ⌉ = 363 > 256.

(ii) The second point requires attention. Reading through the first few lines of the proof suggests that
one could take

s = ℓ+
n− ℓ

(2k)1/ℓ
, or k

(
s− ℓ
n− ℓ

)ℓ

=
1

2
. (8)

However, this value may be not an integer, and thereby be again infeasible. Suppose that one takes
instead the ceiling in the expression of s:

s = ℓ+

⌈
n− ℓ

(2k)1/ℓ

⌉
. (9)

For the above setting in (i), this yields s = 8 +
⌈

248
(16)1/8

⌉
= 8 + 176 = 184. Then the two factors that

appear in the calculation of the lower bound on the probability in question are

F1 = k ·
(
s− ℓ
n− ℓ

)ℓ

= 8 ·
(

176

248

)8

= 0.5147 . . . ,

F2 = 1− k ·
(
s− ℓ
n− ℓ

)ℓ

= 1− 8 ·
(

176

248

)8

= 0.4852 . . .

It is now clear that F1 · F2 <
1
4 . (Taking the floor does not work either.) The above example is not

an exception, and this occurs whenever the value of s in (8) is not an integer, which happens most of the
time.

153

154

Results on extremal graph theoretic questions for
q-ary vectors

Koppány Encz1

Eötvös Loránd University
Budapest, Hungary

enczkoppany@gmail.com

Márton Marits2

Budapest University of Technology and
Economics
Hungary

marits.marton@gmail.com

Benedek Váli3

University of Cambridge
UK

benedekvali@gmail.com

Máté Weisz4

University of Cambridge
UK

weisz.mate.barnabas@gmail.com

Abstract: A q-graph with e edges and n vertices is defined as an e×n matrix with entries from
{0, . . . , q}, such that each row of the matrix (called a q-edge) contains exactly two nonzero
entries. If H is a q-graph, then H is said to contain an s-copy of the ordinary graph F , if a
set S of q-edges can be selected from H such that their intersection graph is isomorphic to
F , and for any vertex v of S and any two incident edges e, f ∈ S the sum of the entries of e
and f is at least s. The extremal number ex(n, F, q, s) is defined as the maximal number of
edges in an n-vertex q-graph such that it does not contain contain an s-copy of the forbidden
graph F .

In the present paper, we reduce the problem of finding ex(n, F, q, q+ 1) for even q to the case
q = 2, and determine the asymptotics of ex(n,C2k+1, q, q + 1).

Keywords: q-ary vectors, extremal graph theory, Turán number

1 Introduction

In his early papers ([6] and [7]), Pál Turán established the foundations of the broad area in mathematics
called extremal graph theory. The key concept of the topic, denoted by ex(n, F), is defined as the
maximum number of edges an n-vertex graph may have without containing F as a subgraph. The
asymptotics of ex(n, F) have been determined by Erdős, Stone and Simonovits in [2] and [1] for any
non-bipartite F . Since then, several related problems for bipartite graphs have been resolved (for an
exhaustive collection of relevant results, see [3]), but many questions still remain open.

Patkós, Tuza and Vizer, in pursuit of a generalization for Turán-problems, have introduced the notion
of q-graphs in their recent paper [5]. They defined a q-graph Q by its incidence matrix, an n× e matrix,
where e = |E(Q)| is the number of edges, n = |V (Q)| is the number of vertices, and each column contains
exactly two elements from {1, . . . , q}, every other element of the matrix being zero. Every column of the
incidence matrix is assumed to be distinct. This is a generalization of the incidence matrices of ordinary
graphs G, which is exactly the case q = 1 with their definitions.

1Research is supported by Hungarian REU 2022
2Research is supported by Hungarian REU 2022
3Research is supported by Hungarian REU 2022
4Research is supported by Hungarian REU 2022

155

For each q-edge e ∈ E(Q), the support of e is the two vertices (i.e. row indices) in its column with
non-zero values. The support of e is denoted as Se. Using this notation, the formal definition of q-graphs
can be given in the following way:

Definition 1 (Patkós, Tuza, Vizer) Q(n, r) = {x ∈ {0, 1, . . . , q}n : |Sx| = r}. A q-graph H on n
vertices is H ⊆ Q(n, 2). The vertex set of H is

⋃
x∈H Sx. A q-edge of H is x ∈ H. For 1 ≤ i ≤ n, xi

will denote the i-th coordinate of the vector x.

It is easy to see that q-graphs indeed contain ordinary graphs as the q = 1 special case.
For the purpose of generalising the extremal number ex(n, F) to the case of q-graphs, the authors of

[5] first determined when a q-graph Q contains an ordinary graph F . Two q-edges e, f ∈ Q are said to
s-intersect at the vertex v, if v ∈ Se, v ∈ Sf and the sum of the entries of the incidence matrix at (e, v)
and (f, v) is at least s. The q-graph Q is thus said to contain an s-copy of the ordinary graph F , if there
is a set of q-edges in Q which is isomorphic to F , and each pair of incident edges s-intersect. Formally,

Definition 2 (Patkós, Tuza, Vizer) Let F = (v(F), E(F)) be an ordinary graph without isolated ver-
tices, and H ⊆ Q(n, 2) be a q-graph on n vertices. Then H is an s-copy of F if (

⋃
x∈H Sx, {Sx : x ∈ H})

is isomorphic 1 to F , and there exists an isomorphism ι : F → (
⋃

x∈H Sx, {Sx : x ∈ H}) such that for
every uv,wv ∈ E(F), u ̸= w, it holds that the q-edges x, x′ in H with Sx = {ι(u), ι(v)}, Sx′ = {ι(w), ι(v)}
satisfy the condition xι(v) + x′ι(v) ≥ s.

If F contains isolated vertices, then H ⊆ Q(n, 2) is said to be an s-copy of F if n ≥ |V (F)| and H is
an s-copy of F [U], where U is the set of non-isolated vertices in F .

Now we are ready to define the Turán number for q-graphs:

Definition 3 (Patkós, Tuza, Vizer) For a graph F and integers n, q, s ≥ 1,

ex(n, F, q, s) = max{|H| : H ⊆ Q(n, 2), H does not contain an s-copy of F}.

Furthermore,

EX(n, F, q, s) = {H : H ⊆ Q(n, 2), H does not contain an s-copy of F, |H| = ex(n, F, q, s)}.

Again, we emphasize that this definition includes the extremal number for ordinary graphs: substi-
tuting q = 1, s = 2 in the above formula yields ex(n, F).

Very much like in [5], we only addressed the case s = q+ 1, for which we introduce a special notation:

Notation 4 (Patkós, Tuza, Vizer) ex(n, F, q, q + 1) = ex(n, F, q), EX(n, F, q, q + 1) = EX(n, F, q)

The reason behind this is that most of the other cases are redundant, or can be retraced to s = q+ 1.
Take, for instance, an ordinary graph F without vertices of degree one, and s = q+2. Then, in a q-graph
in EX(n, F, q, q + 2), we may include every q-edge where at least one of the labels is 1, as these edges
cannot be present in a q+2-copy of G, since 1+xv ≤ 1+ q < q+2 for every q-edge x. Therefore, we only
need to pay attention to the remaining q-edges with labels from {2, 3, . . . , q}, which (after identifying
i ∈ {2, . . . , q} with i− 1 ∈ {1, . . . , q− 1}) is equivalent to having a q− 1-graph H ′ without a q-copy of F ;
thus reducing the problem to finding ex(n, F, q − 1, q) = ex(n, F, q − 1).

The following definition includes some useful notations that will be used in the upcoming sections.

Definition 5 (Patkós, Tuza, Vizer) For H ∈ Q(n, 2), and (a, b) ∈ [q]2, let
−→
Ha,b be the directed graph

on [n] with edges (i, j) for which the q-edge x with Sx = {i, j}, xi = a, xj = b appears in H. For

a, b, c, d ∈ [q], let
−→
H (a,b),(c,d) =

−→
Ha,b ∩

−→
H c,d. Finally, let Ha,b and H(a,b),(c,d) the graphs obtained by first

removing orientations, and then the multiple edges from
−→
Ha,b and

−→
H (a,b),(c,d), respectively.

1We call an ι : F → (V,E) an isomorphism if ι : V (F) → V is a bijection that induces ι : E(F) → E such that
ι(e) = {ι(v) : v ∈ e}∀e ∈ E(F)

156

A fundamental part of the proofs rely on a partition of the q-edges with respect to the size of their
two labels. Intuitively, one may wish to separately study the ”large” q-edges and the others, as it turns
out to be easier to handle them that way. The next definition formalizes the notion of these ”large” edges
of a q-graph.

Definition 6 (Patkós, Tuza, Vizer) For a q-graph H ⊆ Q(n, 2), let

HL = {x ∈ H : Sx = {i, j}, xi, xj ≥
q + 1

2
}.

The authors of [5] have established numerous results, with a main focus on the q = 2 case. They have
given an upper bound of ex(n, F, q) when F is a tree, and showed that in the q = 2 case, a well-known
construction in extremal graph theory yields the optimal value. Moreover, as a first step towards the
general case F = C2k+1, they computed ex(n,C3, 2).

Here we list a selection of their theorems, which will be used or generalized in the upcoming sections.

Proposition 7 (Patkós, Tuza, Vizer) For any n ∈ N and graph F , we have

ex(n, F, q) ≥ q2 · ex(n, F).

This first result establishes a trivial lower bound for the Turán number, which hardly ever turns out
to be sharp. The case of C3 is a counterexample, where we use this trivial bound to strengthen the
following theorem of Patkós et al..

Theorem 8 (Patkós, Tuza, Vizer) For n ≥ 2,

ex(n,C3, 2) = 4 · ex(n,C3) = 4

⌊
n2

4

⌋
.

Theorem 9 (Patkós, Tuza, Vizer) Suppose T is a tree of radius r.

(1) If the diameter of T is 2r, then ex(n, T, 2) = (1 + o(1)) ·
((

n
2

)
+ tn,r

)
.

(2) If the diameter of T is 2r − 1, then ex(n, T, 2) = (1 + o(1)) ·
((

n
2

)
+ t′n,r −

(⌊ n
2r−1 ⌋
2

))
.

Here, tn,r denotes the number of edges in the r-partite Turán graph 2 on n vertices, and t′n,r is the
number of edges in the complete r-partite graph on n vertices, where one class has size ⌊ n

2r−1⌋, and the
other class sizes differ by at most one.

Theorem 10 (Patkós, Tuza, Vizer) For integers 1 ≤ r ≤ s ≤ t with t ≥ 2, we have that:

(1) If r = 1 or s ≤ 2, then ex(n,Kr,s,t, 2) = (3 + o(1)) ·
(
n
2

)
.

(1) If r = 2 or s ≥ 3, then ex(n,Kr,s,t, 2) =
(
13
4 + o(1)

)
·
(
n
2

)
.

(1) If r ≥ 3, then ex(n,Kr,s,t, 2) =
(
7
2 + o(1)

)
·
(
n
2

)
.

Theorem 11 (Patkós, Tuza, Vizer) Suppose F is a bipartite pseudo-forest 3, and at least one of its
connected components contains a cycle. Then

ex(n, F, q) =

(⌊
q2

2

⌋
+ o(1)

)(
n

2

)
.

2The Turán graph Tn,r is a complete r-partite graph on n vertices with ⌊n
r
⌋ and ⌈n

r
⌉ class sizes.

3A pseudo-forest is a graph for which every connected component is comprised of either a tree, or a tree plus an edge.

157

Our main contribution to the topic simply states that for every graph F and even q, it suffices to
examine the q = 2 case. This has a long-reaching impact, as combining it with the results of Patkós et
al. significantly narrows down the unknown values of ex(n, F, q), at least when q is even.

Theorem 12 For every even q and ordinary graph F , ex(n, F, q) = q2

4 · ex(n, F, 2).

The proof is comprised of a somewhat technical part where we explain how Lemma 23 provides
an optimal q-graph with a special structure; and a part where we exploit that structure to connect the
general setup to the q = 2 case.

The upcoming statements make use of Theorem 12, and transcribe the above listed theorems in
[5] from q = 2 to even values of q.

Theorem 13 Suppose T is a tree of radius r, and q is even.

(1) If the diameter of T is 2r, then ex(n, T, q) =
(

q2

4 + o(1)
)
·
((

n
2

)
+ tn,r

)
.

(2) If the diameter of T is 2r − 1, then ex(n, T, q) =
(

q2

4 + o(1)
)
·
((

n
2

)
+ t′n,r −

(⌊ n
2r−1 ⌋
2

))
.

Proposition 14 For integers 1 ≤ r ≤ s ≤ t with t ≥ 2, and an even q, we have that:

(1) If r = 1 or s ≤ 2, then ex(n,Kr,s,t, q) =
(

3q2

4 + o(1)
)
·
(
n
2

)
.

(1) If r = 2 or s ≥ 3, then ex(n,Kr,s,t, q) =
(

13q2

16 + o(1)
)
·
(
n
2

)
.

(1) If r ≥ 3, then ex(n,Kr,s,t, q) =
(

7q2

8 + o(1)
)
·
(
n
2

)
.

The proof of Theorem 12 strongly relies on the parity of q, so in the general case, when q is not
necessarily even, the same reasoning will not suffice. For now, we must settle for an upper bound when
q is odd:

Proposition 15 ex(n, F, q) ≤ q2

4 · ex(n, F, 2), ∀q ∈ N

By itself, Proposition 15 does not carry a huge significance, as it only provides an upper bound for
ex(n, F, q), but in some special cases it coincides with the trivial lower bound q2 · ex(n, F), hence giving
the exact value of ex(n, F, q); as is the case with C3. We present a generalization of Theorem 8.

Proposition 16 ex(n,C3, q) = q2 · ⌊n2

4 ⌋, ∀q ∈ N.

The statement easily follows from the combination of two previous propositions: On one hand, we know

from Proposition 7 that ex(n,C3, q) ≥ q2 · ex(n,C3) = q2⌊n2

4 ⌋; and on the other hand, ex(n,C3, q) ≤
q2

4 · ex(n,C3, 2) = q2 · ⌊n2

4 ⌋ comes from Proposition 15.

As suggested by Patkós, Tuza and Vizer in [5], the next step in our research was to determine
ex(n,C2k+1, 2) at least asymptotically.

Proposition 17 ex(n,C2k+1, 2) =
(
⌊ 222 ⌋+ o(1)

)
·
(
n
2

)
= n2 + o(n2).

The core of the proof stems from the same idea as in Proposition 15; namely, to use the already
established results for 2(2k + 1) (or in this case, 2(2k − 1)).

Now that we have the asymptotic value of ex(n,C2k+1, 2), we can assert the conjecture of Patkós et
al. that ex(n,C2k+1, q) is asymptotically q2 · ex(n,C2k+1).

158

Proposition 18 For every q ≥ 2, ex(n,C2k+1, q) = n2

4 · q2 + o(n2).

Proof: The proof is the same as for C3; we only need to compare the upper bound provided by
Proposition 15 with the trivial lower bound in Proposition 7. It follows that

q2 ·
⌊
n2

4

⌋
= q2 · ex(n,C2k+1) ≤ ex(n,C2k+1, q) ≤

q2

4
· (n2 + o(n2)) = q2 · n

2

4
+ o(n2).

□
Finally, let us combine Proposition 15 with the monotonicity of ex(n, F, q) in q:

Proposition 19 For every graph F and q ≥ 2,

(q − 1)2

4
· ex(n, F, 2) ≤ ex(n, F, q) ≤ q2

4
· ex(n, F, 2)

Proof: The second inequality is simply Proposition 15. If q is even, then ex(n, F, q) equals to the

right hand side, and if q is odd, then q− 1 is even, so Proposition 12 is applicable: (q−1)2

4 · ex(n, F, 2) =
ex(n, F, q − 1) ≤ ex(n, F, q). □

This limits ex(n, F, q) to an interval of size 2q−1
4 ·ex(n, F, 2). When q is odd, we feel that this boundary

can be improved both ways, as the proof does not take into account the specific attributes of the q-graph.
An equality in either side would entail that an optimal construction for q− 1 or 2q is simultaneously the
best one can achieve for q. We suspect this is not the case, and there is some room for improvement.

2 Proofs

Our first observation establishes a monotonic property of ex(n, F, q).

Proposition 20 For m ≤ n,
ex(n, F, q)

n(n− 1)
≤ ex(m,F, q)

m(m− 1)
.

Proof: Let H ∈ EX(n, F, q) and count the number of pairs (V ′, e) where V ′ ⊂ V (H) is of size m,
e ∈ E(H) and e has support in V ′. Note that each edge in H gets counted

(
n−2
m−2

)
times and for any V ′

there are at most ex(m,F, q) many q-edges in H with support in V ′. The statement follows. □ Since

⌊n2

4 ⌋ ∼
n(n−1)

4 , we obtain the following corollary.

Corollary 21 For any graph F and q ≥ 1 the limit lim
n→∞

ex(n,F,q)
⌊n2/4⌋ exists.

The key feature of our paper is the reduction of the case when q is even to the q = 2 case. From here,

a simple reasoning (using the aforementioned reduction) gives that q2

4 · ex(n, F, 2) is always an upper
bound for arbitrary values of q. Although we expect that this upper bound is far from being sharp in a
general setup, it comes in handy for F = C3, as we will see in the proof for Proposition 16.

The fundamental part of our proof is establishing a connection between the problem of determining
ex(n, F, q) and a problem for ordinary graphs which is closely related to the fractional vertex covering
problem. In fact, the traditional way to show that there always exists a half-integral minimal vertex cover
can be applied to our case with little to no change. However, we present another approach to prove the
next statement.

Lemma 22 Let G be an ordinary graph. Then there is a function y taking values in {0, ⌊ q2⌋, ⌈
q
2⌉, q}

maximizing
∑

u∈V (G)

x(u) on the set L(G) =
{
x : V (G)→ {0} ∪ [q] | x(u) + x(v) ≤ q ∀uv ∈ E(G)

}
.

159

Proof: At first we assume that there is a set of independent vertices A ⊂ V (G) so that |A| > |N(A)|.
We may pick a minimal such A, that is, |B| ≤ |N(B)| ∀B ⊊ A. By assumption A is nonempty. Let
B = A\{v} for some arbitrary v ∈ A. Then |A|−1 = |B| ≤ |N(B)| ≤ |N(A)| < |A| so N(B) = N(A). By
Hall’s theorem there is a matching M ⊂ E(G) from B to N(A). For x ∈ L(G) we get

∑
u∈A∪N(A) x(u) =

x(v) +
∑

u∈B∪N(B) x(u) ≤ q + |B| · q = q|A|, since x(u) + x(v) ≤ q for uv ∈M . Since A is minimal, the

bipartite graph induced by G on A⊔N(A) is connected. So equality holds above if and only if x|A ≡ q and
x|N(A) ≡ 0. Since there are no edges from A to V (G) \ (A ∪N(A)), any maximal x ∈ L(G) is the union
of (A×{q})∪ (N(A)× {0}) and some maximal x′ ∈ L(G′) where G′ = G \ (A∪N(A)). By repeating the
argument if G′ has an independent A′ ⊂ V (G′) with |A′| > |N(A′)|, any maximal x ∈ L(G) is the union
of (V1×{q})∪(V2×{0}) and some maximal x′ ∈ L(G1), where V1 and V2 are the disjoint subsets of V (G)
that we obtain by the argument, G1 = G \ (V1 ∪ V2) and |H| ≤ |N(H)| for all independent H ⊂ V (G1).
Observe that S = {u ∈ V (G1) | x(u) > ⌊ q2⌋} is an independent set of vertices in G1 for x ∈ L(G1). By
Hall’s theorem there is a matching from S to some T ⊂ N(S) in G1, so we calculate

∑

u∈V (G1)

x(u) ≤
∑

u∈S∪T

x(u) +
∑

u/∈S∪T

x(u) ≤ q|S|+
⌊q

2

⌋(
|V (G1)| − 2|S|

)
.

Note that this maximum is achieved by x′ ≡ q
2 if q is even, and

x′(u) =

{
⌈ q2⌉ if u ∈ S
⌊ q2⌋ if u ̸∈ S,

and this x′ is in L(G1). So there is a maximal x′ ∈ L(G1) taking values in
{

0, ⌊ q2⌋, ⌈
q
2⌉, q

}
. The

statement follows. □

We now generalize Lemma 22 to hypergraphs. There are many ways to do this, the one we discuss
here is the case that is useful for us in the setting of q-graphs.

Lemma 23 Let H = (V,H) be a hypergraph, and let x : V → {0} ∪ [q] a function on the vertices of H
such that it satisfies the following condition: ∀h ∈ H ∃u, v ∈ V (h) : x(u) + x(v) ≤ q. Then an x that
maximizes the expression 1 · x can be chosen to have values from the set {0, ⌊ q2⌋, ⌈

q
2⌉, q}.

Proof: Construct an ordinary graph G on the vertex set V (H) as follows: choose a pair of vertices {u, v}
from each hyperedge h ∈ H (this pair will guarantee the sum condition of x for h), and add the edge (u, v)
to G. By applying Lemma 22, we can set xG = arg min{1 · x : x(u) + x(v) ≤ q, ∀uv ∈ E(G)} to have
values from {0, ⌊ q2⌋, ⌈

q
2⌉, q}. It is easy to see that if we take the solution x for which 1 ·x = minG{1 ·xG}

over every possible choice of G, we get an optimal solution for the original problem for H. □
The main result of this paper, Theorem 12, simply states that for every graph F and even q, it

suffices to examine the case q = 2. Armed with the previous lemma, we are ready to prove the theorem.

Proof:[Proof of Theorem 12]
For the sake of simplicity, let us use a temporary notation for q-edges. Let (u, v, a, b) ∈ Q(n, 2) be the

q-edge x where Sx = {u, v} and xu = a, xv = b.
Consider a H ⊆ Q(n, 2) without a (q + 1)-copy of F with ex(n, F, q) q-edges. Let v be an arbitrary

vertex of H. For another vertex u ̸= v and i ∈ [q], let m(u, i) = maxr∈[q]{(u, v, i, r) ∈ H}. We intend
to alter the q-edges adjacent to v in a way that every m(u, i) will become m′(u, i) ∈ {0, q2 , q}; and in
the meantime, the total number of q-edges does not decrease. For that purpose, let x(u,i) be a variable
reflecting the current value of m(u, i). The condition that H is (q + 1)-F -free implies restrictions for
certain variables: if the set of q-edges

L = {(uk, v, rk, x(uk,rk))|uk ∈ SH , rk ∈ [q], k = 1, 2, . . .}

160

could be part of a potential (q + 1)-copy of F , then at least one of the following inequalities must hold:
{x(ui,ri)+x(uj ,rj) ≤ q, (ui, v, ri, x(ui,ri)), (uj , v, rj , x(uj ,rj)) ∈ L, i ̸= j}. Let S denote the union of variable
sets {x(u1,r1), x(u2,r2), . . .} for which we have a restriction in the above form.

In the following part of the proof, we construct a hypergraph H, in which one can encode the
properties of the q-edges with common endpoint v. Let V (H) = {wu,i|u ∈ NH(v), i ∈ [q]}, and
E(H) = {(wu1,r1 , wu2,r2 , . . . , wuj ,rj) : {x(u1,r1), . . . , x(uk,rk)} ∈ S}. The hypergraph H and the func-
tion x satisfy the conditions of Lemma 23; so, bearing in mind that now ⌊ q2⌋ = ⌈ q2⌉ = q

2 , we can change
the entries of x to 0, q2 and q. In the meantime, we can alter the q-edges adjacent to v according to the
change in x so that maxr∈[q]{(u, v, i, r) ∈ H} becomes m′(u, i) ∈ {0, q2 , q} for every u ∈ NH(v) and i ∈ [q].
Meanwhile, the number of q-edges attached to v does not decrease:

∑

u∈NH(v)

∑

i∈[q]

m(u, i) = 1 · x ≤ max
x

1 · x =
∑

u∈NH(v)

∑

i∈[q]

m′(u, i).

By iterating the above modification for every vertex v in [n], we end up with a q-graph H ′ that has
the following property:

∀(u, v, a, b) ∈ H ′ : max
r∈[q]
{(u, v, r, b) ∈ H ′} ∈

{
0,
q

2
, q
}
,max
r∈[q]
{(u, v, a, r) ∈ H ′} ∈

{
0,
q

2
, q
}
.

Indeed, suppose that we have already processed the q-edges adjacent to v, meaning that for the current
q-graph H, it holds that for every u ∈ NH(v) and a ∈ [q] : maxr∈[q]{(u, v, a, r)} ∈ {0, q2 , q}. When we
arrive at processing the node u, we may replace the label a of a q-edge (u, v, a, b), but the label b at node
v remains the same. This implies that maxr∈[q]{(u, v, a, r)} ∈ {0, q2 , q} remains true for every u ∈ NH(v)
and a ∈ [q].

Note that the modified H ′ is still optimal, so if a q-edge (u, v, a, b) is in H ′, then so is every other
(u, v, a′, b′) with a′ ≤ a, b′ ≤ b. With this remark, the special structure of H ′ can be rephrased in the
following way: for every support {u, v}, consider the following partition of potential q-edges:

• Es,s = {(u, v, a, b) : 1 ≤ a ≤ q
2 , 1 ≤ b ≤

q
2}, |Es,s| = q2

4

• Eb,s = {(u, v, a, b) : q
2 < a ≤ q, 1 ≤ b ≤ q

2}, |Eb,s| = q2

4

• Es,b = {(u, v, a, b) : 1 ≤ a ≤ q
2 ,

q
2 < b ≤ q}, |Es,b| = q2

4

• Eb,b = {(u, v, a, b) : q
2 < a ≤ q, q2 < b ≤ q}, |Eb,b| = q2

4 .

We may observe that if there is a q-edge (u, v, a, b) from Es,s in H ′, then Es,s ⊆ H ′ must hold; and a
similar statement is true for Es,b, Eb,s and Eb,b. For each support pair {u, v}, let us identify these four
q-edge sets with the (u, v, 1, 1), (u, v, 2, 1), (u, v, 1, 2) and (u, v, 2, 2) 2-edges of a 2-graph H ′′, and denote
the number of these 2-edges in H ′′ by es,s, eb,s, es,b, eb,b respectively. Then

ex(n, F, q) = |H ′| = |Es,s| · es,s + |Es,b| · es,b + |Eb,s| · eb,s + |Eb,b| · eb,b =
q2

4
· |H ′′|.

H ′′ cannot contain a 3-copy of F , because H ′ did not contain a (q+1)-copy of F , so |H ′′| ≤ ex(n, F, 2),
and

ex(n, F, q) ≤ q2

4
· ex(n, F, 2).

For the other direction, consider a 2-graph H ∈ EX(n, F, 2). One only needs to reverse the above
construction: substituting the edges (u, v, 1, 1), (u, v, 1, 2), (u, v, 2, 1), (u, v, 2, 2) in H with the edge sets

Es,s, Es,b, Eb,s, Eb,b respectively gives a q-graph H ′ with |H ′| = q2

4 · |H| = q2

4 · ex(n, F, 2). H ′ does not

contain a (q + 1)-copy of F , so ex(n, F, q) ≥ |H ′| = q2

4 · ex(n, F, 2).
□

161

For odd values of q, there is no easy way to interpret a mapping of {0, ⌊ q2⌋, ⌈
q
2⌉, q} to the values {0, 1, 2}

the same way as in the previous reasoning. The thorough examination of the q-edges {
(
⌈ q2⌉, a

)
: a ∈ [q]}

and {
(
⌊ q2⌋, a

)
: a ∈ [q]} might provide better answers than Proposition 15, as the proof consists of a

simple reduction from q to 2q, and does not use the underlying structure of the q-graph.

Proof:[Proof of Proposition 15] Consider a q-graph H ∈ EX(n, F, q) and define H ′ as

H ′ = {(u, v, 2a, 2b), (u, v, 2a− 1, 2b), (u, v, 2a, 2b− 1), (u, v, 2a− 1, 2b− 1) : (u, v, a, b) ∈ H} .

In the obtained 2q-graph H ′, a (2q + 1)-copy of F does not appear: the largest value of s for which an
s-copy of F is present in H is at most q, so the largest value of s for which an s-copy of F is present in
H ′ is at most 2q. Hence, by Theorem 12,

|H ′| = 4 · |H| = 4 · ex(n, F, q) ≤ ex(n, F, 2q) = q2 · ex(n, F, 2).

□

For the final part of this section, we prove Proposition 17. Again, let (u, v, a, b) denote the q-

edge x with Sx = {u, v} and xu = a, xv = b. Let us recall from Definition 5 that
−→
Ha,b = {(u, v) ∈

[n]2 : (u, v, a, b) ∈ H} with an edge (u, v) directed from u to v, Ha,b = {(u, v) ∈ [n]2 : (u, v, a, b) ∈
H or (v, u, a, b) ∈ H}, and H(a,b),(c,d) is

−→
Ha,b ∩

−→
H c,d without orientations and multiple edges. We will

use a result of Zhou and Li, namely, Theorem 1.8. from [4], and Lemma 3.1. from [5].

Theorem 24 (Li, Zhou) Let k, n ∈ N∗, n = qk + r, 0 ≤ r < k, and let
−−−→
Ck+1 be the directed cycle on

k + 1 vertices. Then

ex(n,
−−−→
Ck+1) =

1

2
n2 +

k − 2

2
n− r(k − r)

2
.

Lemma 25 (Patkós, Tuza, Vizer) Let G be a bipartite graph such that all its components are unicyclic
or trees. Suppose H ⊆ Q(n, 2) does not contain any (q + 1)-copy of graph G. Then for any (a, b) ∈ [q]2,
the graph H(a,b),(q+1−a,q+1−b) has o(n2) edges.

Proof:[Proof of Proposition 17] Let H be an optimal 2-graph without a 3-copy of C2k+1. To bound the

number of 2-edges in
−→
H 1,2, we rely on Theorem 24. It implies that

|−→H 1,2| =
1

2
n2 +

2k − 1

2
n+O(1) =

1

2
n2 + o(n2).

Now we turn to examine H1,1 ∪H2,2, where an edge is included twice if it is both in H1,1 and H2,2.
We prove by induction on n that |H1,1∪H2,2| = 1

2n
2 + o(n2). Suppose for contradiction that H1,1∪H2,2

has more edges. Then substituting q = 2, a = b = 1 into Lemma 25 gives a 3-copy of a C4k−2; otherwise
|H1,1 ∩ H2,2| = o(n2) would hold, and since the optimal property of H entails H1,1 ∩ H2,2 = H2,2,
|H1,1 ∪H2,2| = |H1,1|+ |H2,2| = |H1,1|+ |H1,1 ∩H2,2| ≤

(
n
2

)
+ o(n2) would stand. Consequently, a 3-copy

of C4k−2 is indeed present in H1,1 ∪H2,2.
Let us denote the support of this 3-copy by S4k−2, and the vertices in S4k−2 by v1, v2, . . . , v4k−2. As

the pair of 2-edges attached to v1 in the cycle 3-intersect, at least one of them must have labels (2, 2).
The same stands for the 2-edges attached to v2k. Using the symmetry of C4k−2, this can happen in one of
two ways: either (v1, v2, 2, 2) and (v2k, v2k−1, 2, 2) are in H, or (v1, v2, 2, 2) and (v2k, v2k+1, 2, 2). Consider
an arbitrary vertex v in SH \ S4k−2. If the 2-edges (v1, v2, 2, 2) and (v2k, v2k−1, 2, 2) are in H, then we
need to omit at least one 2-edge from both
{(v, v1, 2, 2), (v, v2k, 1, 1)} and {(v, v1, 1, 1), (v, v2k, 2, 2)}, or else a 3-copy of C2k+1 would be formed by
vv1v2 . . . v2kv. Otherwise, the 2-edges (v1, v2, 2, 2) and (v2k, v2k+1, 2, 2) are in the 3-copy of C4k−2. Then
H can only contain at most one q-edge from both of the pairs {(v, v1, 2, 2), (v, v2k, 1, 1)} (or else a 3-copy
of C2k+1 would be formed by vv2kv2k+1 . . . v4k−2v) and {(v, v1, 1, 1), (v, v2k, 2, 2)} (or else a 3-copy of

162

C2k+1 would be formed by vv1v2 . . . v2kv). In both cases, we may conclude that out of the 4 possible
2-edges in H1,1 ∪H2,2 between v and {v2k, v1}, at most 2 may be included in H.

The same reasoning can be repeated for vi and vi+2k−1(mod 4k−2) instead of v1 and v2k. By summing
it up for {vi, vi+2k−1(mod 4k−2) : i = 1, 2, . . . , 2k− 1}, and for every v ∈ SH −S4k−2, we gain that at most
half of the potential 2-edges between S4k−2 and SH − S4k−2 can be present in H1,1 ∪ H2,2. Applying
the induction hypothesis shows that 1

2 |SH − S4k−2|2 + o(n2) 2-edges can be spanned by SH − S4k−2 in
SH1,1 ∪ SH2,2 . The number of 2-edges spanned by H in S4k−2 can be bounded by a constant which is
independent from n. Consequently, the total number of 2-edges in H1,1 ∪H2,2 amounts to

2 · |S4k−2| · |SH − S4k−2|+
1

2
|SH − S4k−2|2 + o(n2) =

=
1

2
|SH ∪ S4k−2|2 + o(n2) =

1

2
n2 + o(n2),

which concludes our inductive proof. Finally, |H| = |H(1,1) ∪H(2,2)|+ |
−→
H 1,2| = n2 + o(n2).

□

3 Concluding remarks and questions

We conclude this paper by highlighting some questions that can be articulated in relation to q-graphs.
As a consequence of our results, one may immediately transfer every statement for q = 2 to every even q.
Moreover, an upper and a lower bound is established for the general case as well. However, we need to
emphasize that these constraints may not provide a precise value of the Turán number for every graph F ,
as we suspect is the case for trees. Consequently, the exact (or asymptotic) value of ex(n, F, q) remains
unknown for odd values of q. A potential next step could be to improve our trivial bounds, or prove that
one of the bounds coincides with ex(n, F, q).

On a general note, let us highlight that our main achievement was the reduction of even q values.
Apart from providing an asymptotical answer for ex(n,C2k+1, 2), we did not contribute to solving any
other questions imposed by Patkós, Tuza and Vizer. Their conjectures and questions remain open, the
seemingly most attainable among them being the case of forests.

Finally, let us introduce some alternative definitions that may lead to other interesting topics in
relation to q-graphs and Turán numbers. Our way of defining a q-graph allows q-edges with pairs of labels,
where the labels can arbitrarily be chosen from the set {1, 2, . . . , q}. Applying additional constraints when
selecting them is a natural first thought while looking for inspiration to come up with new ideas. The
q-edges x with Sx = {u, v}, xu +xv = q+1 played an important role in some proofs, and in the definition
of the universal q-tree (see [5]). One might opt to define a q-graph as a collection of q-edges whose labels
sum up to q+ 1. Another viable option could be to only allow edges where the two labels are equal, i. e.
x ∈ Q(n, 2), Sx = {u, v}, xu = xv.

Additionally, the inclusion of a (q+ 1)-copy of a graph H in a q-graph can be approached differently.
We required that among the q-edges adjacent to a node v, each pair x, y should (q + 1)-intersect, i. e.
xv + yv ≥ q + 1 must be true. An alternative version of this inequality is the following: if x1, x2, . . . , xk

are all the q−edges with endpoint v, then
k∑

i=1

(xk)v ≥ q + 1.

We hope that these alternative definitions can successfully be exploited to gain new results and discover
interesting topics in the future.

References

[1] Erdős, P., Simonovits, M., A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966),
51-57.

163

[2] Erdős, P., Stone, A.H., On the structure of linear graphs, Bulletin of the American Mathematical
Society 52 (1946), 1087-1091.

[3] Füredi, Z., Simonovits, M., The history of degenerate (bipartite) extremal graph problems,
Bolyai Soc. Math. Stud. 25 (2013), 169-224

[4] Li, B., Zhou, W., The Turán problems of directed paths and cycles in digraphs, (2021),
arXiv:2102.10529v1 [math.CO].

[5] Patkós, B., Tuza, Zs., Vizer, M., Extremal graph theoretical questions for q-ary vectors,
Unpublished manuscript 4 (2022)

[6] Turán, P., On an extremal problem in graph theory, Matematikai és Fizikai Lapok (in Hungarian)
48 (1941), 436-452.

[7] Turán, P. On the theory of graphs, Colloq. Math. 3 (1954), 19-30.

4For a short abstract, see https://conferences.matheo.si/event/37/attachments/164/345/mgtc2022 list of abstracts.pdf

164

Compiling Packet Programs to dRMT Switches:
Theory and Algorithms

Balázs Vass

Budapest University of Technology and
Economics and ELKH-BME Information Systems

Research Group
vb[at]tmit.bme.hu

Ádám Fraknói

ELTE Eötvös Loránd University
fraknoiadam[at]student.elte.hu

Erika Bérczi-Kovács

Alfréd Rényi Institute of Mathematics, ELTE
Eötvös Loránd University, ELKH-ELTE Egerváry
Research Group on Combinatorial Optimization

erika.berczi-kovacs[at]ttk.elte.hu

Gábor Rétvári

Budapest University of Technology and
Economics and Ericsson Research

retvari[at]tmit.bme.hu

Abstract: This paper considers scheduling-related problems with periodic conditions. The
problem is motivated by challenges in P4 program embedding tasks. P4 is a programming
language for network devices that decribes how data plane devices such as switches or routers
process packets. A critical step in P4 compilation is finding an efficient mapping of the
high-level P4 source code constructs to the physical resources exposed by the underlying
hardware, while meeting data and control flow dependencies in the program. In this paper, we
take a new look at the algorithmic aspects of this problem, with the motivation to understand
the fundamental theoretical limits and obtain better P4 pipeline embeddings in the dRMT
(disaggregated Match-Action Table) switch architecture. We report mixed results. We find that
optimizing P4 program embedding for maximizing throughput is computationally intractable
even when some architectural constraints are relaxed, and there is no hope for a tractable
approximation with arbitrary precision unless P=NP. At the same time, we find that the
maximal throughput embedding is approximable in polynomial time with a small constant
bound. Our evaluations show that the proposed algorithm outperforms the heuristics of prior
work both in terms of throughput and compilation speed. [3]

Keywords: reconfigurable switches, algorithmic complexity, approximation algo-
rithms

1 Introduction

P4 is a programming language for network devices which decribes how data plane devices such as switches
process packets. dRMT is a programmable switch architecture, designed to handle program execution
effectively [2]. At the moment, there are many open algorithmic questions related to P4 program embedding
over the dRMT architecture. This is becoming increasingly troubling, since P4 compilation times can
easily grow beyond practical. We initiate the study of the algorithmic landscape of the disaggregated
P4 pipeline embedding problem (DPEP), where the aim is to find a valid P4 program embedding that
maximizes the throughput, or equivalently, minimizes P . To the best of our knowledge, ours is the first
principled approach to this end.

We build a sequence of increasingly complex models to characterize the resource requirement for
embedding P4 programs into the dRMT pipeline. For each model, we analyze the computational

165

complexity of the particular incarnation of the P4 pipeline embedding problem, and, using classical
results in combinatorial optimization, we derive the corresponding inapproximability (bad news) and
approximability (good news) bounds.

Our evaluations show that one of our P4 embedding algorithms, Alg. 1, achieves at least 85% of the
theoretically optimal throughput on all P4 programs studied in [2], significantly improving on the heuristic
rnd sieve of [2] that achieves only 73% of the theoretical optimum.

2 Models and results

In all of our models, the P4 program is modeled by an Operation Dependency Graph (ODG, [2]) D = (V,E),
V = Va ∪ Vm, where D is a directed acyclic graph and disjoint set of vertices Va and Vm represent the
match and action nodes, respectively, and arc set E encodes the inter-dependency between the vertices.
If the tail of an arc e = (u, v) is a match or action node, then the execution of v can start at least
∆M or ∆A cycles after the start of execution of u, respectively. Moreover, in each CPU cycle, each
processor can initiate up to M parallel table searches, and can modify up to A action fields in parallel.
Parameters ∆M , ∆A, M and A are positive integers. For example, the setting on Fig. 1 can be described
by ∆M = ∆A = M = 1, and an arbitrary A ≥ 2.

Also, in line with [2], we restrict our study to cyclic dRMT schedules, where a single packet processing
plan is repeated on all packets processed by all processors (cf. [2, Sec. 3.2.]). To give an intuition behind
our positive (approximability) results, we anticipate that, based on [2, Theorem 3.5], the dRMT scheduling
problem can be simplified to the problem of scheduling a single packet on a single processor. This single
packet scheduling has to fulfill a requirement of P -periodicity : the set of nodes assigned to clock cycles t,
t+ P , t+ 2P , . . . must meet the ∆M , ∆A, M , A (and later on the width and inter-packet concurrency)
requirements together, for all t ∈ {1, . . . , P}.

2.1 BASIC: A simplified model

In the BASIC model, there are no additional constraints to those described above. Every table has a unit
width. It is clear that the minimal value of P is at least the maximum of ⌈|Vm|/M⌉ and ⌈|Va|/A⌉. As it turns
out, the maximum of these two values is reachable with a simple greedy algorithm in O(|V |log|V |+ |E|)
time (see Theorem 2).

2.2 IPC1: Inter-packet concurrency

On top of the constraints of BASIC, in the IPC1 model, we assume that each processor may start a
match for at most a fixed number (Inter-Packet Concurrency, IPC) of different packets and likewise start
actions for up to IPC different packets. The set of packets that start matches and the set of packets
that start actions need not be equal. Below we assume IPC=1. It turns out that in the presence of
the IPC constraint, the problem becomes not only NP-hard, but there is also no polynomial time
approximation scheme for P (unless P=NP). The NP-hardness and inapproximability can be attained
from a well-known NP-hard scheduling problem. On the bright side, in this setting, there exists a
3-approximation algorithm.

Results for this model. DPEP under the IPC1 model is NP-hard. Bad news: the optimal number
of cores to achieve line rate cannot be approximated better than 4/3 unless P=NP. Good news: the
optimum can be 3-approximated in polynomial time (see Theorems 3 and 12).

2.3 WIDTH: Variable table widths

Next, on top of BASIC we will also allow each match and action node to be of arbitrary width, measured
by a positive integer W : V → N+. We represent this in our WIDTH model by letting each processor to
initiate up to M parallel table searches in each cycle. It turns out that introducing variable table widths
on top of the BASIC model also makes the DPEP NP-hard but constant-factor approximable:

166

A0

M1 A1

M2 A2

(a)

proc.

cycle
0 1 2 3 4 5 6

0 A0 M1 M2 A1&A2

1 A0 M1 M2 A1&A2

0 A0 M1 M2 A1&A2

1 A0 M1 M2 A1&A2

(b)

Figure 1: The graph representation of a toy program (a), where Ai and Mi stand for action and match
nodes/operations. Supposing a processor can initiate ≤ 1 match per clock cycle, (b) encodes an optimal embedding
of the program, where P = 2.

Results for this model. DPEP under the WIDTH model is NP-hard. Bad news: the optimal number
of cores to achieve line rate cannot be approximated better than 3/2 unless P=NP. Good news: the
optimum can be 3/2-approximated in polynomial time (see Theorems 4 and 5).

2.4 WIDTH-IPC1: Full-blown dRMT model

Our next model, WIDTH-IPC1, is equivalent to the one studied in [2]. Here, we simultaneously require
IPC= 1 and allow arbitrary table widths. As expected, combining additional constraints does not
make the problem easier: the minimal P for which an embedding exists cannot be approximated better
than 3/2 (unless P=NP, see Theorem 4). As a promising positive result, though, we show that in
WIDTH-IPC1 the optimum can be 4-approximated in polynomial time; see Alg. 1 (see Theorem 9). The
algorithm is based on the observation that the optimal period for a scheduling solution (see Definition 1)
is independent of values ∆M and ∆A, because it depends only on the number of clock cycles with at
least one match/action node (see Lemma 8). Our algorithm greedily finds a solution with ∆M = ∆A = 1
(a pre-scheduling, see Definition 6) such that clock cycles are filled with match/action nodes at least half
full when possible, resulting a 4-approximation.

Results for this model. DPEP under the WIDTH-IPC1 model is NP-hard. Bad news: the optimal
number of cores to achieve line rate cannot be approximated better than 3/2 unless P=NP. Good news:
the optimum can be 4-approximated in polynomial time (see Theorems 4 and 9)

2.5 WIDTH-IPC2: Loose IPC constraints

The original paper [2] also considers the case when IPC is 2, possibly allowing more compact program
embeddings. Intuitively speaking, increasing IPC from 1 to 2 may allow at most twice as efficient
embeddings. Thus, the the greedy algorithm of model WIDTH-IPC1 will give an 8-approximation in the
WIDTH-IPC2 model.

Results for this model. DPEP under the WIDTH-IPC2 model is NP-hard. Bad news: the optimal
number of cores to achieve line rate cannot be approximated better than 3/2 unless P=NP. Good news:
the optimum can be 8-approximated in polynomial time (see Theorems 4 and 13).

For IPC= 2 the ILP solvers of [2] can compute efficient program embeddings relatively easily. Thus,
we will not study this model further here.

167

3 Main result

3.1 Formal problem statement

Suppose that one of the DPEP model inputs is given with directed acyclic graph D = (V,E) and input
parameters ∆M,∆A,M,A, IPC ∈ {1, 2,∞} and W : V → N. For brevity we will use the latency function
l : V → {∆M,∆A}, where l(v) = ∆M or ∆A if v is a match/action node, respectively.

Definition 1. A scheduling of the nodes is a function S : V → N+ such that for every arc (vi, vj) ∈ E
we have S(vj)− S(vi) ≥ l(vi).

For a scheduling S and period P ∈ N+, let SP denote the set of schedulings Si such that Si(v) =
S(v) + iP (for i ∈ N). We say that a scheduling S is feasible with period P if

1. ∀t ∈ N+ :
∑

Si∈SP

∑
vm∈Vm

Si(vm)=t
W (vm) ≤M

2. ∀t ∈ N+ :
∑

Si∈SP

∑
va∈Va

Si(va)=t
W (va) ≤ A

3. ∀t ∈ N+ : #
{
Si ∈ SP

∣∣∃vm ∈ Vm : Si(vm) = t
}
≤ IPC

4. ∀t ∈ N+ : #
{
Si ∈ SP

∣∣∃va ∈ Va : Si(va) = t
}
≤ IPC.

In a DPEP instance, the goal is to find the minimum P such that there exists a scheduling S which is
feasible with period P . The decision version of DPEP is to decide for a given value k if there exists a
feasible P -periodic scheduling with P ≤ k.

Model
name:

BASIC IPC1 WIDTH WIDTH-IPC1 WIDTH-IPC2

New feature
on top of the
basic
constraints

(basic model) Max. 1 packet
per processor per
cycle (IPC= 1)

arbitrary table
widths

arbitrary table
widths +

IPC= 1

arbitrary table
widths +
IPC= 2 (≤2

pkt./proc./cycle)

Complexity P NP-hard NP-hard NP-hard NP-hard

Bad news: In-
approximable
better than
. . . (,unless
P=NP)

OPT 4/3·OPT 3/2·OPT 3/2·OPT 3/2·OPT

Good news:
Constant OPT 3·OPT 3/2·OPT 4·OPT 8·OPT

approximable
in. . .

Table 1: Overview of the main results. Bad news: the Disaggregated Pipeline Embedding Problem (PEP)
is NP-hard even with relaxing some constraints. Good news: the DPEP is polynomially solvable under
the BASIC model, and is constant approximable in polynomial time even when considering the model
tackled by [2].

3.2 Complexity

Theorem 2. For model BASIC P = max
(⌈

|Vm|
M

⌉
,
⌈
|Va|
A

⌉)
is the optimal period, and a feasible P -periodic

scheduling can be found in polynomial time, in O
(
|E|+ |V |+ P logP

)
.

168

Proof: It is clear that
⌈
|Vm|
M

⌉
and

⌈
|Va|
A

⌉
are lower bounds for P . To prove the other direction,

let v1, v2, . . . , vn be an arbitrary topological order of the nodes (i.e. i < j if vivj ∈ E). We will
construct a scheduling S of the nodes in this order in the following way. S(v1) := 1. For j > 1, let
δj := max{S(vi) + l(vi) | vivj ∈ E} if vj has at least one entering arc, otherwise δj := S(vj−1). If vj ∈ Vm,
let S(vj) := min{k ≥ δj | #{i : i < j, vi ∈ Vm, S(vi) ≡ k mod P} ≤ M}. Similarly, if vj ∈ Va, let
S(vj) := min{k ≥ δj | #{i : i < j, vi ∈ Va, S(vi) ≡ k mod P} ≤ A}. Note that by the choice of P , the set
to be minimized is never empty. The total number of steps for calculating all δi values is O(|E|). In order
to determine a minimum value for an S(vj) let us store for every residue class k the next class n(k) which
is not full. When a residue class k becomes full we need to union classes pointing to k and n(k). There
are at most P union steps and they can be done in a total running time of O

(
P logP

)
. Thus S(vi) can

be determined in O(1) time, giving a total running time of O
(
|E|+ |V |+ P logP

)
= O

(
|E|+ |V | log |V |

)
.

□

Theorem 3. The decision versions of models IPC1 is NPC. Furthermore, the optimal period cannot be
approximated better than a ratio of 4/3 unless P=NP.

The proof reduces P |prec, pj = 1|Cmax scheduling problems to IPC1 problem instances.

Theorem 4. The decision versions of models WIDTH, WIDTH-IPC1 and WIDTH-IPC2 are NPC, and
their optimal period cannot be approximated better than a ratio of 3/2 unless P=NP.

The proof relies on reducing 2-PARTITION problems to WIDTH, WIDTH-IPC1 and WIDTH-IPC2
instances.

3.3 Approximation algorithms

First we give a 3/2-approximation for model WIDTH by reducing it to bin packing.

Theorem 5. For model WIDTH, a scheduling having a period at most 3/2 times the optimal can be
calculated in O(|V |+ |E|) time.

Proof: First, we ignore the precedence constraints and consider two bin-backing problems with node
widths as object weights and A,M as bin capacities. Using the linear-time 3/2-approximation algorithm
of [1], we separately sort the match and action nodes in a number of M ′ and A′ bins, respectively. Thus,
a scheduling with a period P = max{M ′, A′} would be a 3/2-approximation on the optimal period. Now
we show that such a scheduling exists. Let Bi

m and Bi
a denote the ith bin of match and action nodes,

respectively. For each i ∈ {1, . . . , P}, we assign Bi
m and Bi

a to residue class i. Now, we take into count the
precedence constraints again. Then, we take an arbitrary topological order of the nodes v1, . . . , vn. For
each j ∈ {1, . . . , n}, we schedule vj (being part of a batch Bi

v) to the smallest positive integer clock cycle
S(vj) that is ≡ i mod P , and is greater or equal with S(v) + l(v), for each node v directly preceding vj
in the ODG (that is, (v, vj) ∈ E). Note that if vj does not have any in-arc, it is scheduled to clock cycle i.
The proof follows. □

Now we describe approximation algorithms for models IPC1, WIDTH-IPC1, and WIDTH-IPC2. The
key idea is to find a proper partial order of the nodes that can be expanded into a scheduling.

Definition 6. A function PS : V → N+ is a pre-scheduling, if

1. PS(vm) ̸= PS(va) for every vm ∈ Vm, va ∈ Va,

2. PS(vj)− PS(vi) ≥ 1 for every arc (vi, vj) ∈ E,

3. if PS−1(k) = ∅ for a k ∈ N+, then PS(v) < k for every v ∈ V .

4. ∀t ∈ N+ :
∑

vm∈Vm

PS(vm)=t
W (vm) ≤M,

169

5. ∀t ∈ N+ :
∑

va∈Va

PS(va)=t
W (va) ≤ A.

Let L(PS) denote the length of the pre-scheduling, so the largest clock cycle that has an embedded node:

L(PS) = max{i|PS−1(i) ̸= ∅}.

Let A denote the number of clock cycles with at least one embedded action node. Formally, A := #{i ∈
N+|PS−1(i) ∩ Va ̸= ∅}. We define M similarly with match nodes.

A scheduling S is an expansion of a pre-scheduling PS if there exists a strictly monotone function
f : N+ → N+ such that S(v) = f(PS(v)).

Claim 7. Every pre-scheduling has an expansion.

Proof: We determine values f(1), . . . , f(L(PS)) in this order. Let f(1) = 1. For 1 < i ≤ L(PS), if there
is no arc entering nodes in PS−1(i), then f(i) := f(i− 1) + 1. Else let f(i) := max{f(PS(v)) + l(v)|vw ∈
E,PS(w) = i}. □

Lemma 8. Let PS be a pre-scheduling and let IPC = 1. For P := max (A,M) there exists an expansion
of PS that is feasible with period P . Moreover, P is the smallest among such periods.

Proof: It is easy to see that values A and M are lower bounds for the period of an expansion because
the resulting scheduling has the same number of match/action clock cycles.

Now we show that PS has a feasible P -periodic expansion.
We have seen in Claim 7 that PS has an expansion. We use a similar approach to get a feasible

P -periodic scheduling. In addition, we will make sure that there are no two clock cycles with the same
type of nodes embedded into the same residue class modulo P , which will guarantee constraints (1)-(4) of
a feasible scheduling.

Let f(1) = 1 and for 1 < i ≤ L(PS) we do the followings. If there exists an arc entering a node in
PS−1(i) then δ := max{f(PS(v)) + l(v)|vw ∈ E,PS(w) = i}, otherwise δ := f(i− 1) + 1.

f(i) := min{k ≥ δ | ∄j < i : f(j) ≡ k mod P and PS−1(i), PS−1(j) have the same type } (1)

Note that the set we are minimizing for f(i) is not empty since P ≥ M and P ≥ A, and former clock
cycles of the same type cannot cover all residue classes modulo P . □

Theorem 9. There is a 4-approximation algorithm for model WIDTH-IPC1.

Proof: Based on Lemma 8, our goal is to find a pre-scheduling PS where we minimize max(A,M). Our
algorithm uses a greedy approach and embeds at least half full clock cycles as long as it is possible (see
Algorithm 1).

The algorithm maintains the subset V ′ of nodes that need to be embedded. At the beginning, let
V ′ := V . Let m/a denote the current list of match/action nodes of zero indegree in the subgraph spanned
by V ′, sorted in a descending order according to their width. At one phase of the algorithm, we embed
some nodes from m and a to one or two clock cycles and then move to the next clock cycle and the next
phase, when m and a are updated again. Let i denote the current first empty clock cycle.

Let wm and wa denote the sum of widths of nodes in m and a, respectively. In one phase, we do the
following:

If wm < M/2 and wa < A/2, we embed all nodes in m to clock cycle i and all nodes in a to clock
cycle i+ 1. We move on to the next clock cycle: i := i+ 2.

If wm ≥M/2 and wa < A/2, we greedily embed only nodes in m in clock cycle i as long as possible,
and move to the next clock cycle: i = i+ 1.

Similarly, if wm < M/2 and wa ≥ A/2, we greedily embed nodes in a in clock cycle i as long as
possible, and then move on to the next phase and the next clock cycle.

170

Algorithm 1: WIDTH-IPC1 Our Greedy

Input: ODG D = (V,E); W : V → N+;M,A

Output: PS : V → N+

begin
1 i := 1; V ′ := V
2 while V ′ ̸= ∅ do
3 a := list of action nodes with 0 indegrees, descending order of width
4 m :=list of match nodes with 0 indegrees, descending order of width
5 wa := sum of widths in a
6 wm := sum of widths in m
7 current usage := 0

8 if wm ≥ 1/2M and wa ≥ 1/2A then
9 Go to line 12 or 19

10 if wa ≥ 1/2A and wm < 1/2M then
11 Go to line 19

12 while m[0]+current usage ≤ M do
13 current usage += m[0]
14 PS[m[0]] := i
15 V ′ := V ′ \ {m[0]}
16 m := m−m[0]

17 i := i+1

18 if wm ≥ 1/2M then
continue

19 while a[0]+current usage ≤ A do
20 current usage += a[0]
21 PS[a[0]] := i
22 V ′ := V ′ \ {a[0]}
23 a := a− a[0]

24 i := i+ 1

25 return PS

Finally, if both wm ≥M/2 and wa ≥ A/2, we can choose m or a arbitrarily and embed nodes again
greedily as before into clock cycle i.

Now we prove 4-approximation. We partition the clock cycles into four groups: let HFm/HFa denote
those clock cycles that are at least half full with match/action nodes, respectively, and similarly, let NHFm/
NHFa denote the list of those that are not half full. Note that |NHFm| = |NHFa| and NHFm[j] =
NHFa[j]− 1. We can assume that M ≥ A. From Lemma 8, we get that the constructed pre-scheduling
can be expanded into feasible scheduling with period M . Let Po denote the optimal period for the problem.
We know that Po ≥

∑
v∈Vm

W (v)/M . Since
∑

v∈Vm
W (v)/M ≥ ∑v∈PS−1(HFm)W (v)/M ≥ |HFm|/2

and we get |HFm| ≤ 2Po.

Claim 10. For every node v embedded in NHFm[i] or NHFa[i] (i ≥ 2) there is a path from a node
embedded in NHFm[i− 1] or NHFa[i− 1] to v.

Proof: Let us consider the phase when m = NHFm[i− 1] and a = NHFa[i− 1]. Observe that every
node in the current V ′ is reachable from nodes embedded in NHFm[i− 1] or NHFa[i− 1]. □

Claim 11. There is a path of length of at least |NHFm| in D.

Proof: Applying Claim 10 backwards starting from an arbitrary node v|NHFm| embedded inNHFm[|NHFm|]
orNHFa[|NHFm|] we get a path from a node v|NHFm|−1 embedded inNHFm[|NHFm|−1] orNHFa[|NHFm|−
1], and so on. By concatenating these paths, we get a path P which is required in the claim. □ Note

that for any path Q we have that |V (Q) ∩ Vm| ≤ Po and |V (Q) ∩ Va| ≤ Po so |V (Q)| ≤ 2Po. Hence
|NHFm| ≤ |V (P)| ≤ 2Po and so |M | = |HFm|+ |NHFm| ≤ 4Po, which proves the theorem. The running
time of the algorithm is O(|V | log |V |+ |E|).

171

□

Theorem 12. Model IPC1 can be 3−approximated in polynomial time.

Proof:[Sketch of proof] We can simplify the previous algorithm in Theorem 9 the following way: we do
not need to sort the elements in lists m and a because all have unit width. Moreover, we apply limits M
and A for embeddings instead of M/2 and A/2, and embed nodes to get full clock cycles (with either
match or action nodes only). Let Fm and Fa denote the set of full clock cycles. We can derive a sharper
bound |Fm| ≤ Po, which gives a 3-approximation. □

Finally, we can derive an approximation algorithm for the WIDTH-IPC2 model from the one given
for the WIDTH-IPC1 .

Theorem 13. Model WIDTH-IPC2 can be 8−approximated in polynomial time.

Proof: Let P opt
1 and P opt

2 denote the optimal periods for WIDTH-IPC1 and WIDTH-IPC2, respectively
for a pair of models with the same input parameters (except IPC). Since a feasible P -periodic one
for WIDTH-IPC2 can be transformed into a feasible 2P -periodic scheduling for WIDTH-IPC1, so
P opt
1 ≤ 2P opt

2 . Let P ∗ denote the period of the scheduling given by the 4−approximation algorithm for
WIDTH-IPC1 (Theorem 9). Then P ∗ ≤ 4P opt

1 ≤ 8P opt
2 . □

4 Simulation results

In this section, we present our simulation studies on P4 embeddings for the dRMT architecture over the
WIDTH-IPC1 model. Our goal is to maximize throughput while keeping latency under control. Running
times were measured on a commodity laptop, with 64 GB RAM and 24 threads, at 2.40GHz. The code
used in the evaluation is available on GitHub (https://github.com/fraknoiadam/drmt).
Maximizing the throughput. The throughput of a dRMT switch is inversely proportional to the
number of processors P needed to achieve line rate [2]. Table 2 summarizes the lowest P values computed
by different algorithms. In summary, Alg. 1 uses at most 19% more processors than the best ILP solution,
compared to the at most > 36% extra processors used by the heuristic rnd sieve of [2]. Recall, Alg. 1
is a provably constant approximation on the optimal P. In addition, the running time of Alg. 1 on the
”Egress”, ”Ingress”, and ”Combined” instances obtained from switch.p4 [2] was 7 ms, 24 ms, and 41
ms, respectively, which is beyond an order of magnitude improvement over rnd sieve [2]. The average
running time (to achieve their best results) of Alg. 1 and rnd sieve on these graphs were 0.007, 0.28, 10.5
and 0.3, 1.5, 2.7 [sec], respectively. Out of 1000 runs, Alg. 1 reached the theoretically optimal P values
1000, 85, and 4 times, exploiting the fact that, in Alg. 1 there are multiple steps where random choices
are made (e.g., at lines 3 and 4).

Algorithm

Graph Egress
|V | = 104

|E| = 291

Ingress
|V | = 224

|E| = 930

Combined
|V | = 328

|E| = 1221

rnd sieve
i.e., [2]-greedy

13 21 30

Our greedy 13 19 23

[2] ILP 11 17 21

ILP lower bound 7 15 21

Table 2: Best P values computed by different algorithms

172

Egress Ingress Combined
0

50

100

150

200

157

113
100100 100 100

85 89 9185 81 73

%
o
f
th

e
b
es
t
IL

P
re
su

lt Upper bound ILP Our greedy rnd sieve

Figure 2: Throughput provided by different heuristics as precentage of the best ILP solution

Fig. 2 visualizes the throughput provided by our greedy algorithm, and rnd sieve [2] as the percentage
of the best throughput provided by the optimal ILPs. For the Egress, Ingress, and Combined instances,
Alg. 1 achieves 85%, 89%, and 91%, while rnd sieve yields 85%, 81%, and 73%, respectively. In other
words, our algorithm performs at least as well as the rnd sieve. Moreover, in these cases, with the size
of the input graph growing, Alg. 1 got closer to the best throughput computed by the ILP formulation,
while the relative performance of rnd sieve degraded.

Egress Ingress Combined

P 11 12 13 17 18 19 21 22 23

optimal TP 217 208 206 245 246 244 243 244 243

time [sec] 1203 76 107 106 59 23 118 25 109

Table 3: P vs T: higher throughput does not mean higher latency.

Running times and latency. For each of the three program instances, Table 3 shows the optimal
latency (T = TP) in the case of the three lowest P values that could be computed by the ILPs of the
paper. We can see that, while approaching the best P obtained by the ILP, the optimal latency remained
more or less steady in the case of Ingress and Combined, and, for Egress, it grew only by less than 5%
also. Running times for achieving the optimal T values did not grow radically either on the example cases,
except for Egress. We can conclude that, contrary to the intuition, a higher throughput (i.e., a lower P)
has no significant impact on the lowest latency (T) achievable.

References

[1] Rudolf Berghammer and Florian Reuter. A linear approximation algorithm for bin packing with
absolute approximation factor 32. Science of Computer Programming, 48(1):67–80, 2003.

[2] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik, Alon Berger, Gal
Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy, et al. dRMT: Disaggregated
Programmable Switching. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 1–14, 2017.

[3] Balázs Vass, Ádám Fraknói, Erika Bérczi-Kovács, and Gábor Rétvári. Compiling packet programs to
drmt switches: Theory and algorithms. In Proceedings of the 5th International Workshop on P4 in
Europe, EuroP4 ’22, page 26–32, New York, NY, USA, 2022. Association for Computing Machinery.

173

174

Algebraic realizations of pairs of closure operators

Dániel Garamvölgyi

Department of Operations Research
Eötvös Loránd University

daniel.garamvolgyi@ttk.elte.hu

Abstract: Given a field extension K ⊆ L and a finite set of elements E ⊆ L, there are
at least two natural ways to define a closure operator on E: for a subset X ⊆ E we can
either take the subset of elements in E that are algebraically dependent on X over K, or
the subset of elements that are generated by X over K. It is well-known that the former of
these defines a matroid; matroids defined in this way are said to be algebraic over K. On
the other hand, the combinatorial structure of the latter type of closure operator seems to
be largely unexplored, despite the fact that in some applications (e.g., rigidity theory and
low-rank matrix completion) both closure operators encode relevant information.

In this note we initiate the systematic investigation of the following question: which pairs
of closure operators (cl, scl) correspond to a pair of closure operators defined in the above
manner? We give natural necessary conditions and consider in detail the cases scl = idE and
scl = cl.

Keywords: algebraic matroid, closure operator, rigidity theory

1 Closure operators and algebraic matroids

Throughout this note we assume basic familiarity with matroid theory and field theory. For detailed
introductions, see [7] and [5], respectively.

We shall be concerned with closure operators arising in the study of algebraic matroids. Let E be
a set and cl : P(E) → P(E) a function on the subsets of E. We say that cl is a closure operator if it
satisfies the following for every pair of subsets X,Y ⊆ E:

i) (Monotone) X ⊆ cl(X),

ii) (Inflationary) X ⊆ Y ⇒ cl(X) ⊆ cl(Y),

iii) (Idempotent) cl(cl(X)) = cl(X).

We say that two closure operators cl and cl′ defined on sets E and E′, respectively, are isomorphic
if there is a bijection f : E → E′ of the ground sets such that for every subset X ⊆ E we have
cl(f(X)) = f(cl′(X)). In other words, isomorphic closure operators are “the same up to a relabeling of
their ground sets.” In this case we say that f is an isomorphism between cl and cl′.

Let cl be a closure operator on a finite set E. We say that cl is a matroid closure operator if it satisfies
the following for every pair of elements x, y ∈ E and subset X ⊆ E:

iv) (Mac Lane-Steinitz exchange property) If x, y /∈ cl(X) and y ∈ cl(X + x), then x ∈ cl(X + y).

A matroid closure operator induces a matroid on E in which the independent sets are those subsets
X ⊆ E that satisfy x /∈ cl(X − x) for every x ∈ X. Two matroid closure operators are isomorphic
precisely if the matroids induced in this way are isomorphic.

175

Algebraic matroids encode the combinatorial structure of algebraic dependence over some field. Let
K be a field and K ⊆ L a field extension. For a subset X ⊆ L, let K(X) denote the subfield of L
generated by the elements in K ∪X. Given a finite subset E ⊆ L, we define a closure operator clEK by
letting

clEK(X) = {x ∈ E : x is algebraic over K(X)}
for each X ⊆ E. It is well-known that clEK is a matroid closure operator, see, e.g., [7, Section 6.7]. We say
that the matroid induced by clEK is the algebraic matroid associated to E over K. We say that a matroid
M is algebraic over a field K if there is some field extension K ⊆ L and a finite subset E ⊆ L such that
the matroid associated to E over K is isomorphic to M.

Example 1 Let KV = (V,E) be the complete graph on vertex set V and let d ≥ 1 be an integer. The
d-dimensional generic rigidity matroid of KV is the algebraic matroid over R associated to the polynomials

fuv =
d∑

i=1

(xiu − xiv)2, ∀uv ∈ E,

where xiv, i ∈ {1 . . . , d}, v ∈ V are independent transcendentals over R. It is well-known that changing
the base field from R to C in this definition gives the same matroid.

If the base field K is algebraically closed, then algebraic matroids can also be viewed in geometric
terms, which we outline next. Let us consider the vector space KE whose axes are labeled by elements of
E. A set Z ⊆ KE is a variety if it is the set of simultaneous zeros of some polynomials in |E| variables.
A variety is irreducible if it cannot be written as the union of two varieties properly contained in it.
Given an irreducible variety Z ⊆ KE and a subset X ⊆ E of the ground set, let ZX ⊆ KX denote the
projection of Z onto the axes corresponding to X. For each pair of subsets X ⊆ X ′ ⊆ E, we can define
the projection πX′,X : ZX′ → ZX . With this notation in place, we may define a matroid closure operator
on E associated to Z by setting

cl(X) = {x ∈ E : π−1
X+x,X(z) is finite for almost all z ∈ ZX}

That is, for almost all1 points z ∈ ZX , there are only finitely many points z′ ∈ ZX+x that project to
z. By basic results of algebraic geometry, this defines a matroid closure operator, and the matroids
obtained in this way are precisely the algebraic matroids over K (keeping in mind the assumption that
K is algebraically closed). For a detailed exposition of this correspondence, see [8].

Example 2 Let us return to the generic d-dimensional rigidity matroid of the complete graph KV =
(V,E). For a pair of points p, q ∈ Cd with p = (p1, . . . , pd) and q = (q1, . . . , qd), let us define their

complex squared distance to be
∑d

i=1(pi− qi)2 ∈ C. Let Z ⊆ CE be the set of vectors that can be obtained
as the vector of pairwise squared distances of some configuration pv ∈ Cd, v ∈ V . It is known that Z is
an irreducible variety, and the associated matroid is precisely the d-dimensional generic rigidity matroid
on KV . Geometrically, an edge u′v′ ∈ E is in the closure of a set of edges X ⊆ E if for almost all
vectors (ℓuv)uv∈X ∈ ZX there are only a finite number of possible values ℓu′v′ ∈ C such that there is a
configuration pv ∈ Cd, v ∈ V in which the squared distance of pu and pv is ℓuv for each uv ∈ X ∪ {u′v′}.
Example 3 (Following [6]) Let Z ⊆ Cn×n be the set of matrices of rank at most r. It is well-known
that Z is an irreducible variety. The matroid associated to Z on E = {1, . . . , n}2 is called the rank-r
determinantal matroid. An element (i′, j′) ∈ E is in the closure of a set X ⊆ E in this matroid if for
almost all collections (αij)(i,j)∈X ∈ ZX , there are only a finite number of possible values αi′j′ ∈ C for
which there is a matrix M ∈ Cn×n of rank at most r such that Mij = αij for each (i, j) ∈ X ∪ {(i′, j′)}.

As we shall see in the next section, there is another closure operator associated to finitely generated
field extensions (or irreducible varieties) that can be defined naturally both from the algebraic and the
geometric viewpoints.

1By “almost all”, we mean that the points in ZX not having this property are contained in a variety that does not
contain all of ZX .

176

2 The strong closure operator and its basic properties

Given a field extension K ⊆ L and a finite subset E ⊆ L, we can define another closure operator by
letting

sclEK(X) = {x ∈ E : x ∈ K(X)}
for each X ⊆ E. We call this the strong closure operator associated to E over K. It is easy to verify
that sclEK is indeed a closure operator. However, in contrast with clEK , sclEK may not be a matroid closure
operator, as the following simple example shows.

Example 4 Let x be transcendental over C and let E = {x, x2}. We have sclEC ({x}) = {x, x2} while
sclEC ({x2}) = {x2}. This shows that sclEC does not satisfy the Mac Lane-Steinitz exchange property for
x, x2 and ∅.

Over an algebraically closed field K, the strong closure can also be defined in the geometric setting
outlined in the previous section. Using the same notation, the strong closure on a set E associated to an
irreducible variety Z ⊆ KE can be defined by

scl(X) = {x ∈ E : |π−1
X+x,X(z)| = 1 for almost all z ∈ ZX}

That is, for almost all points z ∈ ZX , there is a unique point z′ ∈ ZX+x that projects to z.

Example 5 In the case of the d-dimensional generic rigidity matroid on KV = (V,E), an edge u′v′ is
in the strong closure of X ⊆ E if for almost all values (ℓuv)uv∈X ∈ ZX , the squared distance of pu′ and
pv′ is the same in each configuration pv ∈ Cd, v ∈ V in which the squared distance of pu and pv is ℓuv for
each uv ∈ X. Algebraically, this means that the “edge length polynomial” fu′v′ (as defined in Example 1)
is contained in the field C({fuv, uv ∈ X}). In the rigidity theory literature this is referred to as “{u′, v′}
being globally linked in Cd in the graph G = (V,X)”, see [3].

Example 6 In the case of the rank-r determinantal matroid, (i′, j′) is in the strong closure of X ⊆
{1, . . . , n}2 if for almost all collections (αij)(i,j)∈X ∈ ZX , the value at the i′j′-th position is the same in
each matrix M ∈ Cn×n of rank at most r that satisfies Mij = αij for all (i, j) ∈ X. The same notion
appears in [6] under the name “unique closure”.

Our aim in this note is to gain some understanding of the combinatorial properties of sclEK , and in
particular of the relationship between clEK and sclEK . To make this more precise, we introduce the following
notion. Let E′ be a finite set and let (cl, scl) be a pair of closure operators on E′. Let K be a field. We
say that the pair (cl, scl) is algebraically realizable over K if there is some field extension K ⊆ L, a finite
subset E ⊆ L and a bijection f : E′ → E such that f is both an isomorphism between clEK and cl, and
an isomorphism between sclEK and scl. In this case, we say that E algebraically realizes the pair (cl, scl)
over K.

Clearly, for (cl, scl) to be algebraically realizable over any field, cl needs to be a matroid closure
operator. It is also immediate that we must have

scl(X) ⊆ cl(X) ∀X ⊆ E. (*)

The following lemma gives another necessary condition for the existence of an algebraic realization.

Lemma 7 Let cl and scl be closure operators on a finite set E such that (cl, scl) is algebraically realizable
over a field K. Then the following holds for every x, y ∈ E and X ⊆ E:

(“mixed exchange property”) if x /∈ scl(X), y /∈ cl(X) and x ∈ scl(X + y), then y ∈ cl(X + x). (**)

Proof: By passing to an algebraic realization we may assume that E ⊆ L for some field extension
K ⊆ L and that cl = clEK and scl = sclEK . Note that y /∈ cl(X) says that y is transcendental over K(X),

177

so K(X + y) is isomorphic to the field of fractions of the polynomial ring K(X)[t]. Since x ∈ scl(X + y),

there are polynomials f, g ∈ K(X)[t] such that x = f(y)
g(y) . Furthermore, since x /∈ scl(X), at least one of

f and g is nonconstant. It follows that the polynomial f(t) − xg(t) is nonconstant and has y as one of
its zeros. This shows that y is algebraic over K(X + x), which is equivalent to y ∈ cl(X + x). □

Note that if scl = idE , then (**) is satisfied trivially, while if scl = cl, then (**) is precisely the Mac
Lane-Steinitz exchange property for cl. It is unclear whether there are any other necessary conditions
for the existence of an algebraic realization besides (*) and (**). We go out on a limb and make the
following conjecture.

Conjecture 8 Let M = (E′, I) be a loopless matroid that is algebraic over the field K. Let clM be the
closure operator ofM and let scl be a closure operator on E′. If the pair (clM, scl) satisfies (*) and (**),
then (clM, scl) is algebraically realizable over K.

If we allow loops in the matroid, then Conjecture 8 is false, as shown by the following example.

Example 9 Consider the matroidM = (E′, I) consisting of a single loop, and let clM denote its closure
operator. An algebraic realization E ofM over C consists of a single element x that is algebraic over C.
Since C is algebraically closed, we must have x ∈ C. It follows that sclEC (∅) = E holds in any algebraic
realization. This shows that the pair (clM, idE′) is not realizable over C, even though it satisfies the
conditions of Conjecture 8.

In the rest of this note we examine some special cases of Conjecture 8. More precisely, we shall look at
the “edge cases” scl = idE and scl = clM.

3 The edge cases

We first consider the case when scl = idE . Our main result is that in this case Conjecture 8 has an
affirmative answer (see Theorem 13 below). Our proof is based on the following notion. Let K ⊆ L
be fields and let E ⊆ L be a finite subset. Let L denote the algebraic closure of L. We say that a set
E′ = {fx, x ∈ E} ⊆ L−K is a local modification of E if fx is algebraic over K(x) for each x ∈ E.

Lemma 10 Let K ⊆ L be a field extension and E ⊆ L a finite subset. If E′ = {fx, x ∈ E} is a local

modification of E, then clE
′

K is isomorphic to clEK .

Proof: This follows from the observation that in the algebraic matroid induced by E∪E′ (as a multiset)
over K, x and fx are parallel elements for each x ∈ X. □

The idea of the proof of Theorem 13 below is that given an algebraic representation E, we can replace
each x ∈ E with one of its px-th roots for some sufficiently large prime px. This is a local modification,
and it can be shown that if we choose the primes px, x ∈ E appropriately, the resulting set E′ will be
an algebraic realization of (clEK , idE). We shall describe this construction in somewhat more generality.
First, we need the following result on radical extensions.

Lemma 11 [2, Theorem 3.1] Let K be a field, x ∈ K a nonzero element and p a prime number. The
polynomial tp − x ∈ K[t] is irreducible over K if and only if it has no roots in K.

Given a field extension K ⊆ L, we use [L : K] to denote the degree of the field extension, i.e., the
dimension of L over K as a vector space. Recall that if K ⊆ L ⊆ L′ and [L′ : K] <∞, then the product
formula [L′ : K] = [L : K] · [L′ : L] holds. In particular, this implies that if [L : K] is finite and x ∈ L,
then [K(x) : K] divides [L : K].

178

Lemma 12 Let K ⊆ L be fields, E ⊆ L a finite subset and y ∈ E. Suppose that y is transcendental over
K. Consider the following closure operator on E:

scl′(X) =

{
sclEK(X)− y y /∈ X,
sclEK(X) y ∈ X.

Then the pair (clKE , scl′) is realizable over K.

Proof: We may assume L = K(E). Let B ⊆ E be a transcendence basis of L over K with y ∈ B. Each
element of E − B is algebraic over K(B), so K(B) ⊆ L is a finitely generated algebraic extension, and
in particular n = [L : K(B)] is finite. Let L denote the algebraic closure of L and let p > n be a prime.
Finally, let fy be an arbitrary p-th root of y in L.

We claim that E′ = X − y+ fy realizes (clEK , scl′) over K. Clearly, E′ is a local modification of E, so

clEK and clE
′

K are isomorphic by Lemma 10. We shall show that sclEK is isomorphic to scl′. First observe
that the polynomial tp − y ∈ L[t] has no roots in L. Indeed, it has no roots in the purely transcendental
extension K(B) of K, so by Lemma 11 it is irreducible over K(B). It follows that if α ∈ L is a root, then
we have [K(B)(α) : K(B)] = p > n = [L : K(B)]. This implies that α /∈ L, as desired. Using Lemma 11
again we get that tp − y is irreducible over L, so [L(fy) : L] = p. In particular, fy /∈ L.

First consider a subset X ⊆ E with y /∈ X. Since K(X) ⊆ L we have fy /∈ K(X), so sclE
′

K (X) =

sclEK(X) − y, as required. Now consider a subset X ⊆ E with y ∈ X, and let X ′ = X − y + fy. Since

fpy = y, we have K(X ′) = K(X)(fy), which implies sclEK(X)− y+ fy ⊆ sclE
′

K (X ′). Moreover, since tp− y
has no roots in L, it is irreducible over K(X) by Lemma 11, so we have [K(X ′) : K(X)] = p. Suppose
for a contradiction that there is some x ∈ E with x ∈ K(X ′)−K(X). Then [K(X + x) : K(X)] divides
[K(X ′) : K(X)] = p, but since p is a prime this can only happen if [K(X + x) : K(X)] = p and thus
K(X ′) = K(X + x). In particular this would mean that fy ∈ K(X + x), contradicting fy /∈ L. This

shows that sclEK(X)− y + fy = sclE
′

K (X ′), as desired. □

Theorem 13 Let K ⊆ L be fields and let E ⊆ L be a finite subset. Suppose that every element of E is
transcendental over K, so that the matroid induced by clEK is loopless. Then (clEK , idE) is algebraically
realizable over K.

Proof: This follows from Lemma 12 by applying it iteratively to each y ∈ E. □
Next, we consider the algebraic realizability of (clM, clM), where clM is a matroid closure operator.

We shall use the following special case of the so-called Jacobian criterion for algebraic independence.

Theorem 14 (Special case of [1, Theorem 8]) Let K be a field and let f1, . . . , fm ∈ K[x1, . . . , xk] be
polynomials of degree 1. The transcendence degree of {f1, . . . , fm} over K is equal to the rank of A =
(aij)ij ∈ Km×k, where aij is the coefficient of xj in fi.

Theorem 15 LetM = (E, I) be a matroid and let clM denote its closure operator. Let K be a field. If
M is linear over K, then the pair (clM, clM) is algebraically realizable over K.

Proof: Suppose that M is on n elements and let A ∈ Kn×m be a matrix whose columns give a
representation of M over K. Consider the polynomials f1, . . . , fn ∈ K[x1, . . . , xm] defined by

fi(x1, . . . , xm) =
m∑

j=1

aijxj .

It follows from Theorem 14 that the algebraic matroid associated to E′ = {f1, . . . , fm} over K is the
same as the linear matroid defined by the columns of A, which is M. If fj is algebraically dependent on

179

fi, i ∈ I, then there are scalars αi, i ∈ I such that fj =
∑

i∈I αifi and thus fj ∈ K({fi, i ∈ I}). This

shows that clE
′

K = sclE
′

K , as desired. □
Combining Theorem 15 with the well-known result that over a field of characteristic zero every alge-

braic matroid is linear, we obtain the following special case of Conjecture 8.

Corollary 16 LetM = (E, I) be a matroid and let clM denote its closure operator. Let K be a field of
characteristic zero. IfM is algebraic over K, then the pair (clM, clM) is algebraically realizable over K.

It is unclear whether (clM, clM) can have an algebraic realization over K if M is not linear over
K. Towards this question, we have the following technical characterization of the cases when clEK = sclEK
holds. We say that a multivariate polynomial is multilinear if it has degree one in each variable appearing
in it. Let K ⊆ L be a field extension, E ⊆ L a finite subset and B = {b1, . . . , br} ⊆ E. We say that E
is multilinear with respect to B (over K) if B is algebraically independent over K and for each element

x ∈ E −B there are multilinear polynomials f, g ∈ K[t1, . . . , tr] such that x = f(b1,...,br)
g(b1,...,br)

.

Theorem 17 [4, Theorem 8.38] Let K be a field and t a transcendental element over K. If K(x) = K(t)
for some x ∈ K(t), then x has the form

x =
at+ b

ct+ d
,

where a, b, c, d ∈ K, at+ b and ct+ d are relatively prime in K[t], and a ̸= 0 or c ̸= 0 holds.

Theorem 18 Let K be a field and K ⊆ L a field extension, and let E ⊆ L be a finite subset. Then
clEK = sclEK holds if and only if E is multilinear with respect to B for every basis B ⊆ E of the matroid
induced by clEK .

Proof: Let us write cl for clEK and scl for sclEK , and let M denote the matroid induced by cl. First,
suppose that cl = scl. Let B = {b1, . . . , br} ⊆ E be a basis and x ∈ E − B an element of M not
in this basis. Let C denote the fundamental circuit of x with respect to B in M. Now we have x ∈
cl(C − x) = scl(C − x), so that x ∈ K(C − x). This means that there are relatively prime polynomials

f, g ∈ K[t1, . . . , tr] in which only the variables corresponding to C−x appear and such that x = f(b1,...,br)
g(b1,...,br)

.

We need to show that f and g are multilinear. Let ti be a variable appearing in f or g; without loss of
generality, we may suppose that i = r. Let K ′ denote K(t1, . . . , tr−1). Note that x ∈ K ′(tr), and since
tr ∈ cl(C − tr) = scl(C − tr) we also have tr ∈ K ′(x). Thus we have K ′(x) = K ′(tr), and it follows by
Theorem 17 that x = atr+b

ctr+d , where a, b, c, d ∈ K ′ and atr + b and ctr + d are relatively prime in K ′[tr].
Now we have f · (ctr + d) = g · (atr + b), which can only happen if f = w(atr + b) and g = z(ctr + d) for
some elements w, z ∈ K ′.2 This shows that the degree of tr is at most one in each of f and g. Since tr
was chosen arbitrarily, this shows that f and g are multilinear, as desired.

Now let us suppose that E is multilinear with respect to B for every basis B ⊆ E ofM. We first note
that cl = scl if and only if for every circuit C of M and every x ∈ C we have x ∈ scl(C − x). Indeed, let
X ⊆ E be an arbitrary subset. Then x ∈ cl(X)−X if and only if there is a circuit C with x ∈ C ⊆ X+x.
Since we have scl(C − x) ⊆ scl(X), it is enough to show that x belongs to the former set. Thus let us
consider a circuit C and an element x ∈ C, and let B = {b1, . . . , br} be a basis containing the independent
set C − x. Now x ∈ E −B, so by assumption there are multilinear polynomials f, g ∈ K[t1, . . . , tr] such

that x = f(b1,...,br)
g(b1,...,br)

. We may assume that f and g are relatively prime. Let I denote the set of indices

i such that ti appears in f or g. It is enough to show that {bi : i ∈ I} ⊆ C − x, since this implies that
x ∈ K(C−x), so x ∈ scl(C−x). Note that if ti appears in f or g, then we have x /∈ cl(B−bi) ⊇ scl(B−bi).
It follows from the mixed exchange property (Lemma 7) that bi ∈ cl(B + x− bi), and since bi ∈ B, this
holds if and only if bi ∈ C − x, as desired. □

2Here we used the fact that by Gauss’ Lemma, f and g are also relatively prime in K′[tr].

180

Example 19 Let K be a field and x, y two indeterminates over K. Consider the set E = {x, y, x+y, xy}.
Clearly, E is multilinear with respect to {x, y}. The matroid induced by clEK is the uniform matroid U2,4.
Letting t = x+ y, we see that E = {x, t− x, t, xt− x2}. This shows that E is not multilinear with respect
to the basis B = {x, x+ y}. By Theorem 18 this implies that clEK ̸= sclEK , and indeed we have

E = clEK({x+ y, xy} ≠ sclEK({x+ y, xy}) = {x+ y, xy}.

References

[1] M. Beecken, J. Mittmann, N. Saxena, Algebraic independence and blackbox identity testing,
Information and Computation, 222 (2013)

[2] K. Conrad, Simple radical extensions, online lecture note,
https://kconrad.math.uconn.edu/blurbs/galoistheory/simpleradical.pdf

[3] B. Jackson, J.C. Owen, Equivalent realisations of a rigid graph, Discrete Applied Mathematics,
256 (2019)

[4] N. Jacobson, Basic algebra II (2nd ed.), W.H. Freeman, New York (1985)

[5] S. Lang, Undergraduate algebra (3rd ed.), Springer, New York (2005)

[6] F. Király, L. Theran, R. Tomioka, The Algebraic Combinatorial Approach for Low-Rank
Matrix Completion, Journal of Machine Learning Research, 16 (2015)

[7] J.G. Oxley, Matroid Theory (2nd ed.), Oxford University Press, Oxford, New York (2011)

[8] Z. Rosen, J. Sidman, L. Theran, Algebraic Matroids in Action, The American Mathematical
Monthly, 127 (2020)

181

182

Note on the chromatic number of Minkowski planes:
the regular polygon case

Panna Gehér

Department of Operations Research
Eötvös Loránd University

Budapest, Hungary
geherpanni@student.elte.hu

Abstract: The famous Hadwiger–Nelson problem asks for the minimum number of colors
needed to color the points of the Euclidean plane so that no two points unit distance apart
are assigned the same color. In this note we consider a variant of the problem in Minkowski
metric planes, where the unit circle is a regular polygon of even and at most 22 vertices.
We present a simple lattice–sublattice coloring scheme that uses 6 colors, proving that the
chromatic number of the Minkowski planes above are at most 6. This result is new for regular
polygons having more than 8 vertices.

Keywords: Hadwiger–Nelson problem, Colorings of normed planes, Chromatic
number, Asymmetric Ramsey-type problems

1 Introduction

In 1950, Nelson raised the following question: What is the minimum number of colors that are needed to
color the Euclidean plane so that no two points of the same color determine unit distance? We refer to
such a coloring with k color classes as a proper k-coloring. Thus Nelson’s question asks for the smallest
k value such that the plane can be properly k-colored. This value is known as the chromatic number of
the Euclidean plane, and is denoted by χ(R2). Immediately after the question was raised the following
easy-to-get bounds were established:

4 ≤ χ(R2) ≤ 7.

The lower bound is due to Moser [6] who constructed a unit-distance graph (that is a graph whose
edges connect vertices unit distance apart) with chromatic number 4. The upper bound is due to Isbell
who considered a tilting of the plane by translates of a regular hexagon with diameter slightly less than
one and defined a periodic proper 7-coloring.

Despite the numerous attempts to improve these bounds, only little progress was made for more that
60 years – for a historical survey on the problem see [8]. However, in 2018 de Grey [4] constructed a
5-chromatic unit-distance graph, proving that the chromatic number of the plane is at least 5. Shortly
afterwards Exoo and Ismailescu [3] independently published another proof.
The problem has regained a lot of attention since the breakthrough and a Polymath project was launched
with the main goal of creating a human-verifiable proof of the new result. Although the proofs are still
relying on computers, quite some progress has been made: while the distance graph published by de Grey
had a total of 1581 vertices, the current known smallest example consists only 509 [7]. As a consequence
of the breakthrough many variations of the problem have gained more attention in the last couple of
years. One interesting research area is generalizing the question to Minkowski planes: Let C be a two-
dimensional centrally symmetric bounded convex domain centered at the origin and let (R2, C) denote
the Minkowski plane where C determines the unit circle; the C-norm of an x ∈ R2 point is the value:

∥x∥C := min
{
λ ∈ R+|x ∈ λC

}
.

183

The C-distance of two points x and y is defined by ∥x− y∥C . Naturally, the chromatic number of the
Minkowski planes – denoted by χ(R2, C) – is the minimum number of colors needed to color the points
of R2 such that no monochromatic point pair determines a unit C-distance. The main result concerning
the chromatic number of Minkowski planes is due to Chilakamarri [1]: by extending the arguments of
Moser and the construction of Isbell he proved that the bounds

4 ≤ χ(R2, C) ≤ 7

hold for all centrally symmetric bounded convex domain C. An interesting special case of the above
problem is when the unit circle is a regular polygon of even number of vertices. Or more generally we can
consider any affine image of a regular polygon since the problem itself is affine invariant. The study of the
chromatic number of such normed planes was also initiated by Chilakamarri who considered the cases of
regular polygons with few vertices. He gave a tile-based proper 4-coloring for the parallelogram and the
symmetric hexagon’s case, proving that the answer here is exactly 4. He also gave a proper 6-coloring in
case C is a centrally symmetric octagon: he considered a packing of C/2, that is a packing of circles of ra-
dius half. He showed that the translates of C/2 can be colored using 4 colors and two more colors can take
care of the remaining squares (for details see Figure 1). It is worth noting that we have to be careful with
choosing the colors of boundary points of the octagons as no antipodal point pair can have the same color.

Figure 1: Chilakamarri’s proper 6-coloring of the Minkowski plane equipped with the regular octagon metric

Chilakamarri asked whether or not the chromatic number of a plane equipped with the norm defined
by the regular octagon or any centrally symmetric octagon is exactly 4. No progress was made until
very recently when Exoo, Fisher and Ismailescu [2] answered his question negatively: they constructed
5-chromatic unit-distance graphs in the cases of regular polygons with 8, 10, and 12 vertices. Together
with the Euclidean case these are the only known examples of a normed plane with chromatic number at
least 5. Table 1. summarizes the mentioned results:

Unit circle C χ(R2, C)

Parallelogram, centrally symmetric hexagon (see [1])

Regular octagon (see [2] and [1])

Regular decagon, regular dodecagon (see [2] and [1])

Euclidean circle (see [4], [3] and [1])

Arbitrary symmetric convex domain (see [1])

4

5 or 6

5, 6 or 7

5, 6 or 7

4, 5, 6 or 7

Table 1: Possible values of the chromatic numbers of Minkowski planes

184

2 Main result

In this note we extend Chilakamarri’s result for regular octagons to regular polygons with at most 22
vertices by giving a simple lattice–sublattice coloring scheme that uses only 6 colors. It also slightly
strengthens the result of Chilakamarri as our colorings are regular: We call a proper k-coloring of R2

with color classes S1, S2 . . .Sk regular, if there exist vectors v1 . . . , vk such that Si = S1+vi for i = 1 . . . k,
that is the color classes are translates of each other. Now we state our main theorem:

Theorem 1. Let C be a regular polygon with an even number of vertices. In case C has at most 22
vertices then there exists a regular proper 6-coloring of the Minkowski plane equipped with the C-metric
such that no points unit C-distance apart are identically colored. Hence, if C is a regular 2k-gons, where
k ≤ 11, then:

χ(R2, C) ≤ 6.

2.1 The coloring scheme

Let C be a regular octagon first and define a symmetric convex hexagon H inscribed in C/2 as follows:
Choose two opposite sides of C/2 and form a hexagon using their four endpoints and two additional
boundary points of C/2. The choice of the additional points can be made in various ways, here we simply
chose the ones that halve the boundary line of C/2 connecting the chosen sides. Denote the vertices of
H by Ai (i = 1 . . . 6) in a clockwise order as shown in Figure 2.

Figure 2: The centrally symmetric hexagons inscribed in C/2 in the case of the regular decagon

To avoid unit C-distance in H, remove the boundary points lying between the points A1 and A4,
including A4 but not A1. In this way no antipodal point pair is monochromatic. For simplicity call the
resulting half-open hexagon still H. Now consider a tiling of the plane by translates of H and assign
colors 1 through 6 periodically as shown in Figure 3. We can assume that the centers of the hexagons
form a lattice, that we denote by L.

Figure 3: A tiling of the plane with translates of hexagon H defines a periodic 6-coloring

185

Note that the main difference between this coloring scheme and Chilakamarri’s general 7-coloring is
that here we can take advantage of C not being strictly convex: in the direction perpendicular to the
sides shared with C/2 the monochromatic hexagons can be placed such that they are separated by only
one differently colored hexagon.

Now we justify that our coloring is proper: as mentioned earlier unit C-distance is not realized within
the hexagons. All is left is to check that two hexagons of the same color are too far from each other to
determine a point pair unit C-distance apart. As the color classes are congruent, it is enough to verify
the statement for one specific color class, say the class of red points. We can also assume that one of the
red hexagons has the origin as its center, thus the set of centers of red hexagons form a sublattice L′. By
the symmetry of C it is enough to show that polygons L′ + C/2 ⊕H form a packing, where ⊕ denotes
the Minkowski sum of the two polygons, that is:

C/2⊕H = {c+ h | c ∈ C/2, h ∈ H}.

Straightforward calculations finish the proof: Without loss of generality we can assume that C has
circumradius one. Let v1 and v2 denote the basis vectors of the lattice L′ where we can assume that v1
is perpendicular to the sides shared with C/2. Then for any vector λ ∈ L′, polygons λ + C/2 ⊕H and
λ± v1 +C/2⊕H are trivially disjoint. From definition H +C/2 ⊆ C so H +C/2 also has circumradius
at most one. Hence it is enough to check that with the exception of 0 and ±v1 any lattice vector has
Euclidean length at least two. This obviously holds (see Figure 4), thus the coloring is indeed proper.

Figure 4: For a vector v of L′ \ {±v1, 0} the Euclidean unit circle B2 is disjoint from all translates B2 + v

Now consider regular polygons with greater number of vertices. We show that almost the same
coloring scheme works for all the remaining cases: Two sides of H can always be two opposite sides of
C/2, we only have to be careful with the choice of the remaining two vertices. For the case of a regular
10- and 12-gons choosing the halving points on the boundary line of C/2 still works, we can simply define
hexagon H as shown in Figure 5.

186

Figure 5: The centrally symmetric hexagons inscribed in C/2 chosen in the case of the regular 10- and 12-gon

However, in the remaining cases we had to flatten the hexagons in order to get a proper coloring. In
the case of regular 14-, 16- and 18-gons some other vertices of C/2 were chosen. But in the final two
cases only non-vertex points seemed to be working: for n = 20 bisectors of some other sides were chosen,
and for n = 22 we divided one of the sides in the ratio 0.68 : 0.32. For details see Figure 6.

Figure 6: The symmetric hexagon H inscribed in C/2 chosen for the regular 14-, 16-, 18-, 20- and 22-gon

2.2 The regular dodecagon’s case

Now we present the details of the proof in the case of the regular dodecagon. Consider the regular
dodecagon centered at the origin with circumradius 2, whose vertices are:

(
± 1,±

√
3
)
,
(
±
√

3,±1
)
,
(
± 2, 0

)
,
(
0,±2

)
.

Let H be the symmetric hexagon inscribed in C/2 as defined in Section 2.1: take two opposite sides
of C/2, for example the sides parallel to vector (2 −

√
3, 1) and choose the two additional points such

that they halve parts of the boundary line of C/2 between the chosen sides. Denote these six vertices by
Ai (i = 1 . . . 6) in a clockwise order as shown in Figure 7.

187

Figure 7: H hexagon inscribed in C/2

As before, let H be the half-open hexagon defined by the points Ai that does not contain the line seg-
ment connecting the points A1 and A4 and the point A1 itself. Therefore the hexagonal tiling of the plane

with hexagon H is the packing by Voronoi regions of the lattice L spanned by vectors
(

1−2·
√
3

4 , 4+
√
3

4

)

and
(

2+
√
3

2 ,− 1
2

)
. The basis vectors of the sublattice L′ corresponding to the single color class containing

the hexagon centered at the origin are:

• v1 =
(
3−6·

√
3

4 , 12+3·
√
3

4

)
,

• v2 =
(
2 +
√

3,−1
)
.

As mentioned in Section 2.1 what we need to show is that polygons L′ + C/2⊕H form a packing.
The vertices of C/2⊕H are:

B1 =

(
1

4
,

6 +
√

3

4

)
, B2 =

(
3

4
,

2 + 3 ·
√

3

4

)
, B3 =

(
1 + 2 ·

√
3

4
,

4 +
√

3

4

)
, B4 =

(
2 +
√

3

2
,

1

2

)
,

B5 =
(

2, 0
)
, B6 =

(
√

3,−1

)
, B7 =

(
1 +
√

3

2
,−1 +

√
3

2

)
, B8 =

(
1

4
,−2 + 3 ·

√
3

4

)
etc.

The coordinates of the remaining vertices can be obtained by symmetry.

As the coloring is regular, it is enough to pick hexagon H centered at the origin and show that
H ⊕ 1/2C is disjoint from λ′ +H ⊕ 1/2C for all λ′ ̸≡ 0 in L′.

By definition H ⊕ C/2 has circumradius 2. Inside the circle of radius 2 centered at the origin there
are 4 lattice points of L′ besides the origin and by symmetry we only have to check 2 of them and the
corresponding hexagons, namely:

188

• H1 := H + v2 and

• H2 := H + v1 + v2.

H and H1 are separated by exactly one differently colored hexagon which is enough as v2 is perpen-
dicular to the common sides of H and C/2. All is left is to give a line that separates H from H2. For
example consider the line l defined by equation:

y = −2 +
√

3

3
x+

5 + 2 ·
√

3

3
.

Figure 8: Line l separates H ⊕ C/2 and H2 ⊕ C/2

It is straightforward to check that l goes through two parallel sides of H ⊕C/2 and H2⊕C/2 (which
are on the opposite sides of their centers) and the remaining vertex points of H ⊕ C/2 are below line l,
while all of the remaining vertex points of H2 ⊕C/2 are above it (see Figure 8). Therefore H ⊕C/2 and
H2 ⊕ C/2 are disjoint, thus the coloring is proper.

We remark that in the presented example one can define hexagon H in many different ways as the
coloring scheme is quite flexible in this case. However, as the number of vertices increases, the range of
possible choices narrows down quickly. For example in the case of the regular 22-gon we have to be really
carefull with the definition of hexagon H: as Figure 9 shows, our coloring is almost rigid.

189

Figure 9: In the 6-coloring of the Minkowski plane equipped with the regular 22-gon metric
monochromatic hexagons get dangerously close together

3 An application: an asymmetric Ramsey-type problem

Another direction for generalizing the Hadwiger–Nelson problem is to replace the pair of points at unit
distance by another finite point configuration. Moreover we can look for different configurations in each
color class. In the rest of the paper we are interested in the following question: for a given (R2, C)
Minkowski plane and a given point configuration K ⊆ R2 is it true that in any red-blue coloring of R2

there are either two red points C-distance one apart or there is a blue translate of configuration K? Let
k(C) denote the largest value k such that the answer is ‘yes’ for all configuration K of at most k points.
This problem was first considered in [9, 5] by Szlam and Johnson who showed the chromatic number of
(R2, C) provides a lower bound on the value of k(C). For the sake of completeness, we include their short
proof as well.

Lemma 2 (Szlam and Johnson [5]). Let (R2, C) be a Minkowski plane and assume that there exists a
k-point configuration K and a red-blue coloring of R2 such that the red color class avoids unit C-distance
and the blue color class avoids all translates of K. Then R2 can be properly k-colored that is none of the
k color classes contains unit C-distance. Hence k(C) + 1 ≥ χ(R2).

Proof: Assume that we are given a configuration K = {a1, . . . ak} and a red-blue coloring of R2 with
the desired properties. Then, for each x ∈ R2 there is at least one index i such that x + ai is red. Now
let us color the point x with color number i: as there are no red points unit C-distance apart, this indeed
defines a proper k-coloring. □

Szlam also a gave a partial converse to Lemma 2 that considers only regular colorings:

Lemma 3 (Szlam [9]). Assume that (R2, C) can be properly k-colored by a regular coloring, with color
classes Si = S1 + vi (for i = 1 . . . k). Then there exists a red-blue coloring of R2 and a k-point configu-
ration, namely K = {v1, v2, . . . vk} such that the red color class avoids unit C-distance and the blue color
class avoids all translates of K.

As the 6-colorings described in Theorem 1 are a regular, we immediately get the following corollary:

190

Corollary 4. Let (R2, C) be a Minkowski plane whose unit circle is a regular polygon with an even
number of vertices. In case C has at most 22 vertices then there exists a red-blue coloring of the plane
and a configuration K of 6 points such that there is no red point pair unit C-distance apart, and the blue
color class avoids all translates of K.

We finish the paper with a small remark on Szlam’s results: We noticed that although the proof of
Lemma 3 is short and straightforward, it can be a bit misleading. To see its inconvenience notice how the
proper coloring defined in Lemma 2 is not regular: color classes are generated by covering the plane with
translates of the unit distance avoiding red set. Call a coloring with such structure subregular. More
precisely we call a proper k-coloring with color classes S1 . . . Sk subregular if there exist vectors v1 . . .
vk such that Si is a subset of S1 + vi. We show that Lemma 3 can be extended to subregular colorings
in a very natural way:

Theorem 5. Let (R2, C) be a given Minkowski plane. Assume that R2 can properly be k-colored by a
subregular coloring defined by a C-unit distance avoiding set S1 and vectors v1, v2 . . . vk. Then there
exists a red-blue coloring of R2 and a k-point configuration, namely K = {−v1,−v2, · · · − vk} such that
the red color class avoids unit C-distance and the blue color class avoids all translates of K.

Proof: Let the points of S1 be colored red, and color all the remaining points blue. As promised, let us
consider the configuration K = {−v1,−v2, . . . ,−vk}. We wish to show that for an arbitrary vector m
color class S1 contains at least one point of K + m. Without loss of generality we can assume v1 ≡ 0.
Hence if m ∈ S1 there is nothing to prove. Assume that m /∈ S1. In this case there exists an index i such
that m ∈ S1 + vi which leads to −vi +m ∈ S1. □

Finally, we note that analogous results considering higher dimensional Minkowski spaces can be
achieved. Let kn(C) denote the largest k value such that in any red-blue coloring of the Minkowski
space determined by C ⊆ Rn there are either two red points unit C-distance apart or there is a blue
translate of any configuration with at most k points. An easy observation is that both Lemma 2 and
Theorem 5 can be extended to Minkowski spaces and it follows that for all n and C ⊆ Rn the value kn(C)
is exactly the smallest number k such that there exists a subregular k-coloring of (Rn, C).

References

[1] K. B. Chilakamarri, Unit-distance graphs in Minkowski metric spaces, Geometriae Dedicata
345-356 (1991)

[2] G. Exoo, D. Fisher, D. Ismailescu, The chromatic number of the Minkowski plane – the regular
polygon case, arXiv preprint arXiv:2108.12861 (2021)

[3] G. Exoo, D. Ismailescu, The chromatic number of the plane is at least 5: A new proof, Discrete
& Computational Geometry 64(1), 216-226 (2020)

[4] A. de Grey, The Chromatic Number of the Plane Is at least 5, arXiv preprint arXiv:1804.02385
(2018)

[5] P. D. Johnson, A. D. Szlam, A New Connection Between Two Kinds of Euclidean Coloring,
Geombinatorics 10(4), 172-178 (2001)

[6] L. Moser, W. Moser, Solution to problem 10, Can. Math. Bull. 4. 187–189 (1961)

[7] J. Parts, Graph minimization, focusing on the example of 5-chromatic unitdistance graphs in the
plane, arXiv preprint arXiv:2010.12665 (2020)

[8] A. Soifer, The mathematical coloring book New York: Springer (2008)

[9] A. D. Szlam , Monochromatic translates of configurations in the plane, Journal of Combinatorial
Theory, Series A 93(1), 173-176. (2001)

191

192

Widely colorable graphs
and their multichromatic numbers

Anna Gujgiczer1

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

and
MTA-BME Lendület Arithmetic Combinatorics

Research Group, ELKH, Budapest, Hungary
gujgicza@cs.bme.hu

Gábor Simonyi2

Alfréd Rényi Institute of Mathematics,
Budapest, Hungary

and
Department of Computer Science and

Information Theory
Budapest University of Technology and

Economics
simonyi@renyi.hu

Abstract: Answering a question of Claude Tardif we show that if a graph admits a so-called
s-wide coloring using t colors then its s-fold chromatic number is at most t + 2(s − 1). The
talk is based on the paper [2].

Keywords: homomorphism, Kneser graphs, multichromatic number, wide color-
ing

1 Introduction

For every pair of positive integers n, k satisfying n ≥ 2k the Kneser graph KG(n, k) is defined in the
following way. Its vertices are the

(
n
k

)
k-element subsets of [n] = {1, . . . n} and its edges are formed by

pairs of disjoint subsets. The study of multichromatic numbers goes back to Stahl [8] whose conjecture
about the multichromatic numbers of Kneser graphs (that can also be expressed by the existence and
non-existence of graph homomorphisms between different Kneser graphs) is still wide open, see the book
[5] for further information. In short we can say that the k-fold chromatic number χk(G) of a graph G is
the smallest n for which using n colors in total we can assign k distinct colors to each vertex of G in a
way that no color appears on adjacent vertices. It is easy to see that this is equivalent to say that n is
the smallest positive integer for which G admits a homomorphism to the Kneser graph KG(n, k).

Wide colorings provide another graph coloring concept that turned out to be relevant in several contexts.
For every s ≥ 1 an s-wide coloring of a graph G is a coloring of its vertices in such a way that no walk of
length 2s− 1 can start and end in the same color class. In particular, a 1-wide coloring is just a proper
coloring, a 2-wide coloring is a proper coloring with the additional property that the (first) neighborhood
of any color class is also an independent set. In general, an s-wide coloring is a proper coloring where
the first, second, . . . , (s − 1)th neighborhood of any color class is also an independent set. It is obvious
that if a graph G admits an s-wide coloring then its odd girth (the length of its shortest odd cycle) go(G)
should be at least 2s + 1. On the other hand, if go(G) ≥ 2s + 1 then a coloring assigning a different
color to every vertex is certainly s-wide. The concept becomes more interesting if we do not need to
use more colors for an s-wide coloring than for any proper coloring. In fact, it was a question of Harvey
and Murty whether there exist t-chromatic graphs that admit a t-coloring which is 2-wide. This was
answered affirmatively by Gyárfás, Jensen and Stiebitz in [3]. 3-wide colorings turned out to be relevant

1Research is partially supported by the National Research, Development and Innovation Office (NKFIH) grant K–120706
of NKFIH Hungary.

2Research is partially supported by the National Research, Development and Innovation Office (NKFIH) grants K–
120706, K–132696 and SNN-135643 of NKFIH Hungary.

193

in connection to investigations of the local chromatic number, see [7]. More recently, s-wide colorability
was also used in the context of finding counterexamples to Hedetniemi’s conjecture with small chromatic
number, cf. [12, 9, 13, 10].

In the talk, which is based on the paper [2], a result about the multichromatic numbers of s-wide-colorable
graphs will be presented that answers a question asked by Claude Tardif in [9].

2 The graphs W (s, t) and their multichromatic numbers

It can be shown that a graph G admits an s-wide coloring with t colors if and only if there exists a
homomorphism from G into a certain universal graph we denote by W (s, t). These graphs came up in
different forms in the papers [3, 1, 7, 4, 12]. One of their possible definitions is as follows.

Definition 1

V (W (s, t)) = {(x1 . . . xt) : ∀i xi ∈ {0, 1, . . . , s},∃!i xi = 0, ∃j xj = 1},

E(W (s, t)) = {{(x1 . . . xt), (y1 . . . yt)} : ∀i |xi − yi| = 1 or xi = yi = s}.

Using the topological method introduced by Lovász in his celebrated work [6] on Kneser graphs it is
shown in the above mentioned papers that χ1(W (s, t)) = χ(W (s, t)) = t for all meaningful values of the
parameters s and t.

The motivation for our work came from Tardif [9] who observed that χ2(W (s, t)) = t+ 2 when s = 2 and
in general

χk(W (s, t)) ≥ t+ 2(k − 1)

holds for every k. He asked whether we will have strict inequality for k = s = 3. Our main result answers
this in the negative, in fact, we proved the following more general theorem.

Theorem 2 ([2]) If k ≤ s, then
χk(W (s, t)) = t+ 2(k − 1).

Nevertheless, asymptotically Tardif’s guess was correct as one can also prove (as he also noted [11]) that
the following holds.

Proposition 3 For all pairs of positive integers t ≥ 3 and s ≥ 1 there exists some threshold k0 =
k0(s, t) > s for which

χk(W (s, t)) > t+ 2(k − 1)

whenever k ≥ k0.

It would be interesting to know whether the smallest possible k0 in Proposition 3 is s+ 1, as our result
may suggest, or larger.

Finally, we remark that since a graph G admits an s-wide coloring with t colors if and only if there
exists a homomorphism from G to W (s, t), and a graph F has χk(F) ≤ n if and only if it admits a
homomorphism to the Kneser graph KG(n, k), Theorem 2 implies that if G is a graph that admits an
s-wide coloring with t colors, then

χk(G) ≤ t+ 2(k − 1)

whenever k ≤ s.

194

References

[1] Stephan Baum, Michael Stiebitz, Coloring of graphs without short odd paths between vertices
of the same color class, unpublished manuscript, 2005.

[2] Anna Gujgiczer, Gábor Simonyi, On multichromatic numbers of widely colorable graphs, J.
Graph Theory 100 (2022), 346-361.

[3] András Gyárfás, Tommy Jensen, Michael Stiebitz, On graphs with strongly independent
color-classes, J. Graph Theory 46 (2004), 1–14.

[4] Hossein Hajiabolhassan, On colorings of graph powers, Discrete Math. 309 (2009), 4299–4305.

[5] Pavol Hell, Jaroslav Nešetřil, Graphs and Homomorphisms, Oxford University Press, New
York, 2004.

[6] László Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory, Ser.
A 25 (1978), 319–324.

[7] Gábor Simonyi and Gábor Tardos, Local chromatic number, Ky Fan’s theorem, and circular
colorings, Combinatorica 26 (2006), 587–626.

[8] Saul Stahl, n-Tuple colorings and associated graphs, J. Combin. Theory, Ser. B 20 (1976),
185–203.

[9] Claude Tardif, The chromatic number of the product of 14-chromatic graphs can be 13, Combi-
natorica 42 (2022), 301–308.

[10] Claude Tardif, The chromatic number of the product of 5-chromatic graphs can be 4, manuscript,
available at https://www.researchgate.net/publication/365650263 THE CHROMATIC NUMBER

OF THE PRODUCT OF 5-CHROMATIC GRAPHS CAN BE 4 , 2022.

[11] Claude Tardif, private communication, 2020.

[12] Marcin Wrochna, On inverse powers of graphs and topological implications of Hedetniemi’s
conjecture, J. Combin. Theory, Ser. B 139 (2019), 267–295.

[13] Marcin Wrochna, Smaller counterexamples to Hedetniemi’s conjecture, arXiv:2012.13558
[math.CO], 2020.

195

196

Abstract Rigidity Matroids of Uniform Hypergraphs

Mizuki Higashida

Department of Mathematical Informatics
University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
higashida-mizuki405@g.ecc.u-tokyo.ac.jp

Shin-ichi Tanigawa1

Department of Mathematical Informatics
University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
tanigawa@mist.i.u-tokyo.ac.jp

Abstract: J. Graver introduced abstract rigidity matroids of graphs by axiomizing the gluing
property of graph rigidity. In this paper we extend Graver’s idea to uniform hypergraphs. We
show that the class of abstract rigidity matroids of hypergraphs captures the combinatorics
behind generalized stresses of simplicial complexes and cofactors of multivariate splines.

Keywords: rigidity matroid, graph rigidity, splines, hypergraphs, generalized
stresses

1 Introduction

The central open problem in graph rigidity theory is to prove a combinatorial characterization of graphs
that are generically rigid in d-space. This problem is equivalently formulated as giving a combinatorial
rank formula of the d-dimensional generic rigidity matroid. To gain a better understanding of this hard
question, J. Graver [6] proposed a matroidal approach which analyzes a new class of matroids defined
by axiomizing representative properties of rigid graphs. Specifically, Graver focused on the following
well-known gluing property of rigid graphs:

• The union of two rigid graphs G1 and G2 is rigid if they share at least d vertices.

• The union of two graphs G1 and G2 is not rigid if they share at most d− 1 vertices. Moreover, the
internal degree of freedom of each Gi does not change in the union.

In terms of rigidity matroids, these two gluing properties can be written as

(R1) If E1, E2 ⊆ K(V) with clM(E1) = K(V (E1)), clM(E2) = K(V (E2)), and |V (E1) ∩ V (E2)| ≥ d,
then clM(E1 ∪ E2) = K(V (E1 ∪ E2)), and

(R2) If E1, E2 ⊆ K(V) with |V (E1) ∩ V (E2)| ≤ d− 1, then clM(E1 ∪ E2) ⊆ K(V (E1)) ∪K(V (E2)),

where clM denotes the closure operator of the underlying matroid M, K(V) denotes the edge set of the
complete graph of a finite set V , and V (E) denotes the set of vertices spanned by E for each E ⊆ K(V).
Since (R1) and (R2) are written without a reference to graph rigidity (written only in terms of the
underlying graph and matroid), Graver considered (R1) and (R2) as a new axiom for defining a class of
matroids. Formally, a matroidM on the edge set of a complete graph is said to be an abstract d-rigidity
matroid if (R1) and (R2) hold in M.

The d-dimensional generic rigidity matroid (of a complete graph) is a primary example of abstract d-
rigidity matroids. Later Whiteley [16] found a new substantial example of abstract rigidity matroids from
approximation theory. This matroid, known as the cofactor matroid, characterizes the space of cofactors
in the spline spaces over polyhedral domains. A recent result by Clinch, Jackson, and Tanigawa [3, 4]

1Research is supported by JST PRESTO Grant Number JPMJPR2126 and JSPS KAKENHI Grant Number 18K11155.

197

Figure 1: A 4-valent extension of a graph.

reveals a significance of Graver’s approach by exhibiting a solution to the cofactor counterpart of the
3-dimensional rigidity problem.

In order to understand and extend Stanley’s g-theorem [12] for a characterization of the f -vectors of
simplicial polyhedrons, C. Lee [8, 9] introduced the concept of generalized stresses. This is an extension
of self-stresses in graph rigidity to simplicial complexes, and has been extensively studied in the context
of polyhedral combinatorics, see, e.g. [1, 11] for recent papers. A graph rigidity view of generalized
stresses has been developed by Tay, White, and Whiteley [13, 14, 16], where the skeletal rigidity and the
underlying skeletal rigidity matroids of simplicial complexes were defined.

The corresponding theory for spline cofactors is also known. This was implicit in the homologi-
cal approach of Billera [2] for the analysis of multivariate splines over simplicial complexes, and later
Whiteley [16] made this connection explicit by introducing the cofactor matroids of simplicial complexes.

In view of these parallel theories of skeletal rigidity and splines in simplicial complexes, it is a natural
research direction to extend Graver’s idea of abstract rigidity to hypergraphs. Whiteley [16] however
pointed out that giving a proper extension of abstract rigidity is challenging because there is no natural
extension of (R1)(R2) in the skeletal rigidity matroid. The main contribution of this work is to give the
right notion of abstract rigidity of uniform hypergraphs. The key ingredient in our result is Nguyen’s
characterization of abstract rigidity matroids that gives several different ways to define abstract rigidity
matroids [10]. We show that all the properties in Nguyen’s characterization, except the gluing property,
can be extended to hypergraphs, and thus abstract rigidity matroids can be defined based on any one of
those equivalent properties. We further show that the skeletal rigidity matroid and the cofactor matroid
are indeed included in the class of abstract rigidity matroids. We then look at the hypergraph extension
of the maximality conjecture of abstract rigidity matroids, and observe an interesting difference between
hypergraphs and ordinary graphs.

2 Abstract Rigidity Matroids

Our goal in this section is to define abstract rigidity matroids by extending Nguyen’s result. One property
used in Nguyen’s characterization is the extension property defined by a graph operation. For a graph
G, a d-valent extension is an operation that creates a new graph from G by adding a new vertex with d
distinct new edges incident to the new vertex. See Figure 1.

Graver, Servatius, and Servatius [7] initiated an investigation of alternative definitions of abstract
rigidity matroids. Bulding on their result, Nguyen [10] gave the following list.

Theorem 1 (Nguyen [10]) Let n, d be positive integers with n ≥ d+2 andM be a matroid on the edge
set of the complete graph with n vertices. Consider the following four properties:

(P1) the rank ofM is dn−
(
d+1
2

)
;

(P2) the edge set of each subgraph isomorphic to Kd+2 is a circuit;

(P3) the edge set of each subgraph isomorphic to K1,n−1 minus d− 1 edges is a cocircuit;

(P4) each d-valent extension preserves the independence of the edge sets of graphs.

198

Figure 2: A 3-valent extension of a 3-uniform hypergraph.

Then

M is an abstract rigidity matroid ⇔ (P1)(P2) ⇔ (P1)(P3) ⇔ (P1)(P4) ⇔ (P2)(P3) ⇔ (P2)(P4).

To state our hypergraph extension, we first need to extend several notations to hypergraphs. For
positive integers n and r, let Kr

n be the r-uniform complete hypergraph on n vertices. The r-uniform star
hypergraph Sr

n is an r-uniform hypergraph consisting of n− (r − 1) hyperedges sharing r − 1 vertices in
common. Note that this is a hypergraph extension of K1,n−1.

There are several possible extensions of d-valent extension operation to hypergraphs, and in this work
we adopt the following definition. For an r-uniform hypergraph G, a set X of r − 1 vertices is said to
be empty if G has no hyperedge that contains X. (We use this terminology even if some vertex in X
is missing in G; in such a case, X is always empty in G.) Then a d-valent extension is an operation
that creates a new hypergraph from G by adding d new distinct r-hyperedges (possibly by adding new
vertices) such that those new hyperedges share (r− 1) vertices that form an empty (r− 1)-set in G. See
Figure 2.

We are now ready to state our main theorem.

Theorem 2 Let n, r, d be positive integers with r ≥ 2, d ≥ r−1 and n ≥ d+2, and letM be a matroid on
the edge set of the r-uniform complete hypergraph with n vertiecs. Consider the following four properties:

(P1) the rank ofM is
(
n
r

)
−
(
n−(d−r+2)

r

)
;

(P2) the edge set of each subgraph isomorphic to Kr
d+2 is a circuit;

(P3) the edge set of each subgraph isomorphic to Sr
n minus d− r + 1 hyperedges is a cocircuit;

(P4) each (d− r + 2)-valent extension preserves the independence of the edge sets of hypergraphs.

Then
(P1)(P2) ⇔ (P1)(P3) ⇔ (P1)(P4) ⇔ (P2)(P3) ⇔ (P2)(P4).

Motivated by Theorem 2 we define a matroid M on the edge set of Kr
n as an abstract d-rigidity

matroid if M satisfies any equivalent pair of the properties listed in Theorem 2.

3 Skeletal Rigidity Matroids

A primary example of abstract rigidity matroids is the skeletal rigidity matroid. Let V be a finite set,
d, r be positive integers with d ≥ r − 1. We use

(
V
r

)
to denote the set of all subsets of size r in V . For a

point-configuration p : V → Rd+1 \ {0}, consider the matrix Rr,d(V, p) of size |
(
V
r

)
| ×
(
d+1
r

)
|
(

V
r−1

)
| such

that each row is indexed by each element of
(
V
r

)
, each consecutive

(
d+1
r

)
columns are indexed by each

element of
(

V
r−1

)
, and the row of ρ = {v1, . . . , vr} ∈

(
V
r

)
with v1 < · · · < vr is given by

[· · · ρ \ {v1} · · · ρ \ {vi} · · · ρ \ {vr} · · ·
0 p(v1) ∨ p(v2) ∨ · · · ∨ p(vr) 0 p(vi) ∨ p(v1) ∨ · · · ∨ p(vr) 0 p(vr) ∨ p(v1) ∨ · · · ∨ p(vr−1) 0

]
,

199

where p1 ∨ · · · ∨ pr denotes the exterior product of points p1, . . . , pr, which is regarded as a
(
d+1
r

)
-

dimensional vector by taking the standard basis. Since the rank of Rr,d(V, p) is invariant over generic
point-configurations p, one can define the skeletal d-rigidity matroid Rn,r,d on the edge set of Kr

n as the
row matroid of Rr,d([n], p) for a generic p.

Example 1. Consider the matrix R3,3([4], p). Each p(v1) ∨ p(v2) ∨ p(v3) for {v1, v2, v3} ∈
(
[4]
3

)
is a 4-

dimensional vector. We have the matrix R3,3([4], p) as follows, where pv = p(v) and blank entries are
zero:

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
{1, 2, 3} p3 ∨ p1 ∨ p2 p2 ∨ p1 ∨ p3 p1 ∨ p2 ∨ p3
{1, 2, 4} p4 ∨ p1 ∨ p2 p2 ∨ p1 ∨ p4 p1 ∨ p2 ∨ p4
{1, 3, 4} p4 ∨ p1 ∨ p3 p3 ∨ p1 ∨ p4 p1 ∨ p3 ∨ p4
{2, 3, 4} p4 ∨ p2 ∨ p3 p3 ∨ p2 ∨ p4 p2 ∨ p3 ∨ p4

Suppose p is generic. The rank of R3,3([4], p) is four, which means R4,3,3 is the free matroid on {1, 2, 3, 4}.
Example 2. When d = r − 1, each p1 ∨ · · · ∨ pr is a scalar, and Rr,r−1(V, p) is row-equivalent to the

boundary operator between
(
V
r

)
and

(
V

r−1

)
in the simplicial chain complex of Kr

|V | (by regarding Kr
|V |

as a (r − 1)-dimensional simplicial complex). Thus Rn,r,r−1 corresponds to the graphic matroid of the
complete r-uniform hypergraph.

Example 3. When r = 2, R2,d(V, p) corresponds to the projected version of the rigidity matrix of bar-joint
frameworks due to Crapo and Whiteley [5], and it is equivalent to the ordinary rigidity matrix. Hence
Rn,2,d coincides with the ordinary generic d-rigidity matroid.

It is a direct consequence of results of Tay, White, and Whiteley [15] that Rn,r,d satisfies (P1) in
Theorem 2. We can check that (P4) holds in Rn,r,d by examining the row independence of Rr,d([n], p).

Proposition 3 Suppose n, r, d are as in Theorem 2. Then Rn,r,d is an abstract d-rigidity matroid.

4 Cofactor Matroids

As the second example of abstract rigidity matroids, we introduce cofactor matroids of hypergraphs. Let
V be a finite set, r be a positive integer, s be a non-negative integer, and p : V → Rr+1 \ {0} be a
point-configuration. We use p(v) = (pv,1 pv,2 . . . pv,r+1)⊤ ∈ Rr+1 to denote the coordinates of p(v).

For each ρ = {v1, . . . , vr} ∈
(
V
r

)
with v1 < · · · < vr, a linear form ℓρ(p) representing the linear

subspace spanned by {p(v1), . . . , p(vr)} is given by

ℓρ(p) =

∣∣∣∣∣∣∣∣∣

pv1,1 pv2,1 . . . pvr,1 x1
pv1,2 pv2,2 . . . pvr,2 x2

...
...

...
...

pv1,r+1 pv2,r+1 . . . pvr,r+1 xr+1

∣∣∣∣∣∣∣∣∣

with indeterminates x1, x2, . . . , xr+1. The cofactor matrix Cr,s(V, p) is defined as a matrix of size |
(
V
r

)
| ×(

s+r
s

)
|
(

V
r−1

)
| such that each row is indexed by each element of

(
V
r

)
, each consecutive

(
s+r
s

)
columns are

indexed by each element of
(

V
r−1

)
, and the row of ρ ∈

(
V
r

)
is given by

[· · · ρ \ {v1} · · · ρ \ {vi} · · · ρ \ {vr} · · ·
0 sign(v1, ρ)[(ℓρ(p))s] 0 sign(vi, ρ)[(ℓρ(p))s] 0 sign(vr, ρ)[(ℓρ(p))s] 0

]
,

where [(ℓρ(p))s] is a
(
s+r
s

)
-dimensional tuple consisting of the coefficients of

(
s+r
s

)
monomials of (ℓρ)s in

x1, x2, . . . , xr+1 and sign(vi, ρ) is either +1 or −1 according to the parity of the order of vi in ρ. (Recall
that the elements of ρ are ordered such that v1 < · · · < vr.)

200

Figure 3: A coning operation on a 3-uniform hypergraph.

For example, when s = 2, (ℓρ(p))2 is a homogeneous polynomial of degree two, which is written as
(ℓρ(p))2 =

∑
1≤i≤j≤r+1 cijxixj . Then [(ℓρ(p))2] = (c1,1, c1,2, . . . , cr+1,r+1).

Since the rank of Cr,s(V, p) is invariant over generic point configurations p, one can define the s-
cofactor matroid Cn,r,s on the edge set of Kr

n as the row matroid of Cr,s([n], p) for a generic p.

Example 4. When s = 0, [ℓρ(p)0] = 1 and hence Cr,0(V, p) is the boundary operator between
(
V
r

)
and(

V
r−1

)
in the simplicial chain complex of Kr

|V |. Thus, as in the case of skeletal (r− 1)-rigidity, Cn,r,0 is the
graphic matroid of the complete r-uniform hypergraph.

Example 5. When s = 1, [ℓρ(p)1] = p(v1) ∨ · · · ∨ p(vr) for every ρ = {v1, . . . , vr}, and hence Cr,1(V, p) =
Rr,r(V, p). So the 1-cofactor matroid Cn,r,1 coincides with the skeletal r-rigidity matroid Rn,r,r.

Unlike skeletal rigidity, there is no substantial research on this matroid since Whiteley introduced it
in [16], and little are known about its basic properties. (This is mainly because in the context of splines
one usually focuses on topologically defined graphs or simplicial complexes such as planar triangulations,
and there are little motivation for looking at dense complexes.) Hence for cofactor matroids we need to
check the conditions for abstract rigidity from scratch.

Our first observation for cofactor matroids is that independence is preserved by extension.

Lemma 4 Let G,H be subgraphs of Kr
n such that H is obtained from G by (s + 1)-valent extension.

Then E(G) is independent in Cn,r,s if and only if E(H) is independent in Cn,r,s.
The proof is a direct adaptation of that of the corresponding statement for ordinary graphs in [16, Lemma
11.3.6].

By Theorem 2, to check the abstract rigidity, it remains to show that Kr
s+r+1 is a circuit. This turns

out to be nontrivial and we check it by showing the coning property first.
Given a r-uniform hypergraph G, its cone G ∗ v0 is defined as the new graph obtained from G by

adding a new vertex v0 and adding a new hyperedge τ ∪ {v0} for every τ ∈
(
V (G)
r−1

)
with τ ⊂ ρ for some

ρ ∈ E(G). See Figure 3.

Theorem 5 Let G and G ∗ v0 be subgraphs of Kr
n such that G ∗ v0 is the cone of G. Then E(G) is

independent in Cn,r,s if and only if E(G ∗ v0) is independent in Cn,r,s+1.

The proof is a careful adaptation of that of the corresponding statement for ordinary graphs in [16,
Theorem 11.3.3]. It should be also noted that Theorem 5 confirms Conjecture (e) in [16, Section 16.5].

Observe that Kr
s+r+1 can be constructed from Kr

r+2 by a sequence of coning operations. Since the
cofactor matroid coincides with the skeletal rigidity matroid if s = 1 (by Example 5), the rank of Kr

r+2

in Cn,r,1 is equal to that in Rn,r,r. Hence, the edge set of Kr
s+r+1 is dependent by Theorem 5. Moreover,

Kr
s+r+1 minus one hyperedge can be constructed from an empty hypergraph by (s+ 1)-valent extensions

(possibly allowing addition of less than s + 1 new hyperedges in each extension). Thus we obtain the
following by Lemma 4.

Lemma 6 The edge set of Kr
s+r+1 is a circuit in Cn,r,s.

Combining, Theorem 2, Lemma 4, and Lemma 6, we obtain our second main result.

Proposition 7 Suppose n, r, s are integers with r ≥ 2, s ≥ 0, and n ≥ s + r + 1. Then Cn,r,s is an
abstract (s+ r − 1)-rigidity matroid.

201

5 Maximality Conjecture

The central question in the context of abstract rigidity is the following conjecture of Graver.

Conjecture 8 (Graver [6]) The generic 3-dimensional rigidity matroid (of ordinary graphs) is the
unique maximal abstract 3-rigidity matroid.

Since Clinch, Jackson, and Tanigawa [3] proved that the 2-cofactor matroid (of ordinary graphs) is the
unique maximal abstract 3-rigidity matroid, the conjecture is equivalent to the following conjecture of
Whiteley.

Conjecture 9 (Whiteley [16]) The generic 3-dimensional rigidity matroid and the 2-cofactor matroid
coincide for ordinary graphs.

The corresponding question for other dimension d has been already answered. When d ≤ 2, the generic
d-dimensional rigidity matroid coincides with the (d− 1)-cofactor matroid (due to the classical Maxwell-
Cremona correspondence) and it is the unique maximal abstract d-rigidity matroid [6]. On the other hand,
when d ≥ 4, the generic d-dimensional rigidity matroid is distinct from the (d− 1)-cofactor matroid [16].
In particular, the rank of the edge set of Kd+2,d+2 becomes strictly smaller in the generic d-dimensional
rigidity matroid.

We now extend this investigation to hypergraphs. For hypergraphs, a natural target would be a
complete partite hypergraph. Let Kr

i1,i2,...,ir
be the complete r-partite r-uniform hypergraph consisting

of disjoint vertex sets V1, . . . , Vr with |Vj | = ij .

Lemma 10 For any n, d, r with n ≥ (d + 2)r, d ≥ r + 1, and r ≥ 2, Kr
d+2,d+2,...,d+2 is dependent in

Rn,r,d

In order to show the difference between the skeletal rigidity matroid and the cofactor matroid, our next
goal is to show the independence of Kr

d+2,d+2,...,d+2 in Cn,r,d−r+1. Currently we have not yet succeeded
in proving this. However, for fixed (small) d, this can be checked by directly computing the rank of the
cofactor matrix by picking a random point configuration p. (Note that this computational experiment
indeed gives a mathematical proof since rank Cr,s(V, p) ≤ rank Cr,s(V, q) for any p : V → Rd+1 \ {0}
and any generic q : V → Rd+1.) The result of the computational experiment shows that the edge set of
Kr

d+2,d+2,...,d+2 is independent in Cn,r,d−r+1 for r ∈ {3, 4, 5} and d = r+1. Hence, by Lemma 10, we have
Rn,r,d ̸= Cn,r,d−r+1 for those r and d. We can use coning operations to construct further examples that
separate Rn,r,d and Cn,r,d−r+1 for all d ≥ r+ 1. Summarizing observations so far, we have the following.

Theorem 11 Let n, d, r be positive integers with n ≥ r(d+2) and d ≥ r−1. Suppose r ∈ {3, 4, 5}. Then
Rn,r,d = Cn,r,d−r+1 if and only if d ∈ {r − 1, r}.

Theorem 11 verifies and modifies1 conjectures of Whiteley [16, Figure 13.1]. In view of our computation
experiment, it is likely that Theorem 11 is true for any r ≥ 3 but we do not know how to prove it. See
Figure 4.

Currently we do not have any example that refutes the following maximality conjecture by Whiteley.

Conjecture 12 (Whiteley [16]) The s-cofactor matroid Cn,r,s is the unique maximal abstract (s+ r−
1)-rigidity matroid on the edge set of Kr

n.

It should be noted that, even if s ≤ 1 and r ≥ 3, the conjecture is open.

References

[1] K. Adiprasito, Combinatorial Lefschetz theorems beyond positivity, arXiv:1812.10454 (2018)

1Whiteley [16, Figure 13.1] conjectured that Rn,r,d = Cn,r,d−1 if d = r + 1, but this is not the case if r ≥ 3.

202

1-rigidity

2-rigidity

3-rigidity

4-rigidity

0-cofactor

1-cofactor

2-cofactor

3-cofactor

(r − 1)-rigidity

r-rigidity

(r + 1)-rigidity

(r + 2)-rigidity

0-cofactor

1-cofactor

2-cofactor

3-cofactor

(r − 1)-rigidity

r-rigidity

(r + 1)-rigidity

(r + 2)-rigidity

0-cofactor

1-cofactor

2-cofactor

3-cofactor

r = 2
(Graphs)

=

=

?
=

̸=

r = 3, 4, 5

=

=

̸=

̸=

r ≥ 6

=

=

?

̸=

?

̸=

Figure 4: The schematic diagram between the skeletal d-rigidity matroids and the s-cofactor matroids of
the complete r-uniform hypergraph.

[2] L. J. Billera, Homology of smooth splines: generic triangulations and a conjecture of Strang,
Transactions of the American Mathematical Society 310 (1988), 325–340.

[3] K. Clinch, B. Jackson, and S. Tanigawa, Abstract 3-rigidity and bivariate C1
2 -splines I: White-

ley’s maximality conjecture, Discrete Analysis 2022:2 (2022), 50 pp.

[4] K. Clinch, B. Jackson, and S. Tanigawa, Abstract 3-rigidity and bivariate C1
2 -splines II:

Combinatorial characterization, Discrete Analysis 2022:3 (2022), 32 pp.

[5] H. Crapo and W. Whiteley, Statics of frameworks and motions of panel structures, a projective
geometric introduction, Structural Topology 6 (1982), 43–82.

[6] J. E. Graver, Rigidity matroids, SIAM Journal on Discrete Mathematics 4 (1991), 355–368.

[7] J. E. Graver, B. Servatius, and H. Servatius, Abstract rigidity in m-space, in: Jerusalem
Combinatorics ’93, American Mathematical Society (1994), 145–151.

[8] C. W. Lee, Generalized stress and motions, in: Polytopes: abstract, convex and computational,
Springer, Dordrecht (1994), 249–271.

[9] C. W. Lee, P.L.-spheres, convex polytopes, and stress, Discrete & Computational Geometry 15
(1996), 389–421.

[10] V-H. Nguyen, On abstract rigidity matroids, SIAM Journal on Discrete Mathematics 24 (2010),
363–369.

[11] I. Novik and H. Zheng, Reconstructing simplicial polytopes from their graphs and affine 2-stresses,
arXiv:2106.09284 (2021)

[12] R. P. Stanley, The number of faces of a simplicial convex polytope, Advances in Mathematics
35 (1980), 236–238.

[13] T-S. Tay, N. White, and W. Whiteley, Skeletal rigidity of simplicial complexes, I, European
Journal of Combinatorics 16 (1995), 381–403.

[14] T-S. Tay, N. White, and W. Whiteley, Skeletal rigidity of simplicial complexes, II, European
Journal of Combinatorics 16 (1995), 503–523.

203

[15] T-S. Tay and W. Whiteley, A homological interpretation of skeletal rigidity, Advances in Applied
Mathematics 25 (2000), 102–151.

[16] W. Whiteley, Some matroids from discrete applied geometry, in: Matroid Theory, American
Mathematical Society (1996), 171–312.

204

A combinatorial algorithm for computing the entire
sequence of the maximum degree of minors of a
generic partitioned polynomial matrix with 2× 2

submatrices1

Yuni Iwamasa

Graduate School of Informatics
Kyoto University

Kyoto 606-8501, Japan
iwamasa@i.kyoto-u.ac.jp

Abstract: In this paper, we consider the problem of computing the entire sequence of the
maximum degree of minors of a block-structured symbolic matrix A = (Aαβxαβt

dαβ), where
Aαβ is a 2 × 2 matrix over a field F, xαβ is an indeterminate, and dαβ is an integer for
α = 1, 2, . . . , µ and β = 1, 2, . . . , ν, and t is an additional indeterminate. The main result is
a combinatorial O(µνmin{µ, ν}2)-time algorithm for the above problem. We also present a
minimax theorem, which can be used as a good characterization (NP ∩ co-NP characteriza-
tion) for the problem.

Keywords: Generic partitioned polynomial matrix, Degree of minor, Weighted
Edmonds’ problem, Weighted non-commutative Edmonds’ problem

1 Introduction

It is well-known that the Hungarian method [7], which is a classical primal-dual algorithm for the maxi-
mum weight bipartite matching problem, can output a bipartite matching of size k having maximum
weight among all matchings with the same size for all possible values of k. This fact has the following
algebraic interpretation: For a bipartite graph G = ({1, 2, . . . ,m}, {1, 2, . . . , n};E) with edge weights dij
for ij ∈ E, the Hungarian method computes the entire sequence of the maximum degree of minors of
A(t) defined by (A(t))ij := xijt

dij if ij ∈ E and zero otherwise, where xij is a variable for each edge
ij and t is another variable. Indeed, the maximum weight of a matching of size k in G is equal to the
maximum degree δk(A(t)) of the minors of order k, i.e.,

δk(A(t)) := sup{deg detB(t) | B(t): k × k submatrix of A(t)},
where the determinant detB(t) of B(t) is regarded as a polynomial in t and δ0(A(t)) := 0. Thus, the
entire sequence

(
δ0(A(t)), δ1(A(t)), . . . , δmin{m,n}(A(t))

)
of the maximum degree of minors equals the

sequence of the maximum weights of a matching of size k for k = 0, 1, . . . ,min{m,n}; the Hungarian
method computes this.

In this paper, we consider the (2× 2)-analog of the above problem, i.e., the problem of computing the
entire sequence of the maximum degree of minors of the following (2× 2)-block-structured matrix:

A(t) =

A11x11t
d11 A12x12t

d12 · · · A1νx1νt
d1ν

A21x21t
d21 A22x22t

d22 · · · A2νx2νt
d2ν

...
...

. . .
...

Aµ1xµ1t
dµ1 Aµ2xµ2t

dµ2 · · · Aµνxµνt
dµν

 . (1)

1A preliminary version of this extended abstract is [5] and its full version is available at [6]. This research is supported
by JSPS KAKENHI Grant Numbers JP17K00029, 20K23323, 20H05795, 22K17854, Japan.

205

Here Aαβ is a 2 × 2 matrix over a field F, xαβ is a variable, and dαβ is an integer for α = 1, 2, . . . , µ
and β = 1, 2, . . . , ν, and t is another variable. Note that that, if we replace each 2× 2 matrix Aαβ with
a 1 × 1 matrix (or a scalor), then the resulting (esstentially) coincides with the matrix obtained from a
bipartite graph described above. A matrix A(t) of the form (1) is called a (2×2)-type generic partitioned
polynomial matrix.

This problem has been studied in the context of weighted Edmonds’ problem and weighted non-
commutative Edmonds’ problem [3]; weighted Edmonds’ problem asks to compute the entire sequence of
the maximum degree of minors of

A(t) = A1(t)x1 +A2(t)x2 + · · ·+A`(t)x`,

where Ak(t) is a polynomial matrix over a field F with an indeterminate t; in weighted noncommutative
Edmonds’ problem, we suppose that the variables xi and xj are noncommutative but t is commutative
for any variable xi. It is known [9, 8, 1] that weighted noncommutative Edmonds’ problem is an algebraic
generalization of weighted bipartite matching and weighted linear matroid intersection, and that weighted
Edmonds’ problem additionally generalizes weighted nonbipartite matching and weighted linear matroid
parity. Although the polynomial-time solvability of weighted (noncommutative) Edmonds’ problem is
not known, Hirai and Ikeda [4] introduce a strongly polynomial-time solvable subclass of weighted non-
commutative Edmonds’ problem, which contains our problem. That is, the strongly polynomial-time
solvability of our problem has already been known. Their polynomial-time algorithm is conceptually
simple, but is slow and not combinatorial.

The main result of the present article is a faster and combinatorial polynomial-time algorithm for our
problem, which can be viewed as an algebraic generalization of the Hungarian method:

Theorem 1 Let A(t) be a (2 × 2)-type generic partitioned polynomial matrix of the form (1). There

exists a combinatorial O(µνmin{µ, ν}2)-time algorithm for computing the entire sequence of the maximum
degree of minors of A(t).

Our algorithm is based on a new duality theorem on the degree of the determinant of a (2× 2)-type
generic partitioned polynomial matrix A(t) established in this study; this duality theorem can be viewed
as an algebraic generalization of Egerváry’s theorem [2] that is a minimax theorem for the weighted
bipartite matching problem.

The algorithm description and all proofs are omitted; see [6] for the full version.

Notations. For a positive integer k, we denote {1, 2, . . . , k} by [k]. Let A(t) be a (2× 2)-type generic
partitioned polynomial matrix of the form (1). The matrix A(t) is regarded as a matrix over the field
F(x, t) of rational functions with variables t and xαβ for α ∈ [µ] and β ∈ [ν]. The symbols α, β, and
γ are used to represent a row-block index in [µ], column-block index in [ν], and row- or column-block
index in [µ] t [ν] of A(t), respectively, where t denotes the direct sum. We often drop “∈ [µ]” from the
notation of “α ∈ [µ]” if it is clear from the context. Each α and β is endowed with the 2-dimensional
F-vector space F2, denoted by Uα and Vβ , respectively. Each submatrix Aαβ is considered as the bilinear
map Uα × Vβ → F defined by Aαβ(u, v) := u>Aαβv for u ∈ Uα and v ∈ Vβ . We denote by kerL(Aαβ)
and kerR(Aαβ) the left and right kernels of Aαβ , respectively. Let us denote by Mα and Mβ the sets of
1-dimensional vector subspaces of Uα and Vβ , respectively.

2 Minimax theorem

This section is devoted to presenting the minimax theorem for our problem. We first introduce a matching
concept named pseudo-matching and a potential concept, which correspond to a primal and dual concept,
respectively. An edge subset M ⊆ E is called a pseudo-matching if it satisfies the following combinatorial
and algebraic conditions (Deg), (Cycle), and (VL):

(Deg) degM (γ) ≤ 2 for each node γ of G.

206

Suppose that M satisfies (Deg). Then each connected component of M forms a path or a cycle. Thus
M is 2-edge-colorable; i.e., there are two edge classes such that any two incident edges are in different
classes. An edge in one color class is called a +-edge, and an edge in the other color class is called a
−-edge.

(Cycle) Each cycle component of M has at least one rank-1 edge.

A valid labeling V = ({U+
α , U

−
α }, {V +

β , V
−
β })α,β is a node-labeling that assigns two distinct 1-dimensional

subspaces to each node, U+
α , U

−
α ∈ Mα with U+

α 6= U−α for α and V +
β , V

−
β ∈ Mβ with V +

β 6= V −β for β,
such that it satisfies, for each edge αβ ∈M ,

Aαβ(U+
α , V

−
β) = Aαβ(U−α , V

+
β) = {0},

(kerL(Aαβ), kerR(Aαβ)) =

{
(U+

α , V
+
β) if αβ is a rank-1 +-edge,

(U−α , V
−
β) if αβ is a rank-1 −-edge.

(VL) M admits a valid labeling.

The size of a matching-pair (M, I) is |M |+ |I|, and its weight w(M, I) is

w(M, I) :=
∑

αβ∈M
dαβ +

∑

αβ∈I
dαβ .

For c ∈ R, a function p :
⋃
γMγ → R is called a c-potential if

• p is nonnegative, i.e., p(Z) ≥ 0 for all Z ∈ ⋃γMγ , and

• p(X) + p(Y) + c ≥ dαβ for all αβ ∈ E, X ∈Mα, and Y ∈Mβ such that Aαβ(X,Y) 6= {0}.

The following is our minimax formula:

Theorem 2 Let k be a nonnegative integer. The following values (i)–(iii) are the same:

(i) δk(A(t)).

(ii) sup{w(M, I) | (M, I): matching-pair of size k}.

(iii) inf{p(V) + kc | V: labeling, c ∈ R, p: c-potential}.

For using the above duality theorem as a good characterization for our problem, we introduce the
concept of compatibility as follows. Let (M, I) be a matching-pair of size k and V a valid labeling for M .
A c-potential p is said to be (M, I,V)-compatible if p satisfies the following conditions (Reg) and (Tight):

(Reg) For each α and β,

p(X) = max{p(U+
α), p(U−α)} (X ∈Mα \ {U+

α , U
−
α }),

p(Y) = max{p(V +
β), p(V −β)} (Y ∈Mβ \ {V +

β , V
−
β }).

(Tight) For each αβ ∈M ,

dαβ =

{
p(U−α) + p(V −β) + c if αβ is a +-edge,

p(U+
α) + p(V +

β) + c if αβ is a −-edge,

and for each αβ ∈ I,

dαβ =

{
p(U+

α) + p(V +
β) + c if αβ is a +-edge,

p(U−α) + p(V −β) + c if αβ is a −-edge.

207

An (M, I,V)-compatible c-potential p is said to be optimal if the equality w(M, I) = p(V) + kc holds,
namely, (M, I) and (p,V) attain the supremum of (ii) and the infimum of (iii) in Theorem 2, respectively.

Theorem 3 Let k be a nonnegative integer. If δk(A(t)) is bounded, then there are a matching-pair (M, I)
of size k, a valid labeling V for M , and an optimal (M, I,V)-compatible c-potential p for some c ∈ R. In
particular, the above p and c can be chosen to be integer-valued.

By Theorem 3, a pair (p,V) of a c-potential p satisfying (Reg) and a valid labeling V satisfying
p(V) + kc < θ can be used as a proof for δk(A(t)) < θ. Furthermore, the condition (Reg) enables us to
check if a given nonnegative function p on

⋃
γMγ is a c-potential in polynomial time. Thus the proof

(p,V) for δk(A(t)) < θ is verifiable in polynomial time, implying the problem of whether δk(A(t)) ≥ θ is
in co-NP.

References

[1] P. M. Camerini, G. Galbiati, and F. Maffioli. Random pseudo-polynomial algorithms for exact matroid
problems. Journal of Algorithms, 13:258–273, 1992.

[2] J. Egerváry. Matrixok kombinatorius tulajdonságairól. Matematikai és Fizikai Lapok, pages 16–28,
1931.

[3] H. Hirai. Computing the degree of determinants via discrete convex optimization on Euclidean build-
ings. SIAM Journal on Applied Algebra and Geometry, 3(3):523–557, 2019.

[4] H. Hirai and M. Ikeda. A cost-scaling algorithm for computing the degree of determinants. Compu-
tational Complexity, 31:Article 10, 2022.

[5] Y. Iwamasa. A combinatorial algorithm for computing the degree of the determinant of a generic
partitioned polynomial matrix with 2 × 2 submatrices. In Proceedings of the 22nd Conference on
Integer Programming and Combinatorial Optimization (IPCO 2021), volume 12707 of LNCS, pages
119–133, 2021.

[6] Y. Iwamasa. A combinatorial algorithm for computing the entire sequence of the maximum degree of
minors of a generic partitioned polynomial matrix with 2× 2 submatrices. arXiv:2104.14841v2, 2021.

[7] H. W. Kuhn. The Hungarian method for assignment problems. Naval Research Logistics Quarterly,
2:83–97, 1955.

[8] L. Lovász. Singular spaces of matrices and their application in combinatorics. Boletim da Sociedade
Brasileira de Matemática, 20(1):87–99, 1989.

[9] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society,
22(2):107–111, 1947.

208

Openly Disjoint Paths, Jump Systems,
and Discrete Convexity

Satoru Iwata1

Department of Mathematical Informatics
University of Tokyo

Tokyo 113-8656, Japan
iwata@mist.i.u-tokyo.ac.jp

Yu Yokoi2

National Institute of Informatics
Tokyo 101-8430, Japan

yokoi@nii.ac.jp

Abstract: Let G be a graph with a specified set T of terminals. In 1978, Mader discovered
a min-max theorem on the number of openly disjoint T -paths. Sadli and Sebő (2000) showed
that the set of integer vectors in ZT that appear as degree sequences of openly disjoint T -paths
forms a jump system. In this paper, we describe an alternative proof of this fact by using a
reduction to matroid matching, which was originally observed by Lovász (1980). In addition,
we show that a function on this jump system determined by the minimum total length of
openly disjoint T -paths enjoys the M-convexity introduced by Murota (2006).

Keywords: Openly disjoint paths, delta-matroid, jump system, M-convex function

1 Introduction

Let G = (V,E) be a graph with a specified set T ⊆ V of terminals. A path in G is called a T -path if
its ends are distinct vertices in T and no internal vertices belong to T . Two T -paths are called openly
disjoint if they do not share any internal vertices. In 1978, Mader [16] showed a characterization of the
maximum number of openly disjoint T -paths. The result contains as its special case Gallai’s min-max
theorem on the maximum number of vertex-disjoint T -paths [10], which is equivalent to the Tutte-Berge
formula on maximum matching [1, 30], and Mader’s min-max theorem [15] on edge-disjoint T -paths,
which extends the theorem of Lovász [12] and Cherkassky [5] on edge-disjoint T -paths in inner Eulerian
graphs.

Lovász [13] then introduced an equivalent variant, called disjoint S-paths, where S is a given partition
of the terminals, to provide an alternative proof via the matroid matching theorem. See also [29] for a
minor correction. Schrijver [24] provided a short alternative proof for Mader’s theorem on disjoint S-paths
based on Gallai’s min-max theorem. Analogously to the Edmonds–Gallai decomposition for maximum
matching, Sebő and Szegő [28] introduced a canonical decomposition that captures all the maximum
disjoint S-paths.

Schrijver [25] described a reduction of the disjoint S-paths problem to the linear matroid parity
problem. Consequently, one can use efficient linear matroid parity algorithms [6, 9, 20, 21] for finding the
maximum number of disjoint S-paths (or openly disjoint T -paths). The current best running time bound
is O(nω), where n is the number of vertices and ω is the exponent of the fast matrix multiplications.
This bound is achieved by the randomized algebraic algorithm of Cheung, Lau, and Leung [6]. The best
deterministic running time bound due to Gabow and Stallmann [9] is O(mnω), where m is the number of
edges. Without using the reduction to linear matroid parity, Chudnovsky, Cunningham, and Geelen [7]
devised a combinatorial algorithm that runs in O(n5) time.

1Also affiliated at ICReDD, Hokkaido University, Sapporo, 001-0021, Japan. Research is supported by Grant-in-Aid for
Scientific Research 20H05965 from JSPS and ERATO JPMJER1903 from JST.

2Research is supported by JST PRESTO Grant Number JPMJPR212B.

209

A natural weighted version of this setting is to find shortest disjoint S-paths of a specified number.
Yamaguchi [32] presented a reduction of this problem to the weighted linear matroid parity problem,
which can be solved in polynomial time [11, 23].

This paper aims at clarifying discrete structures behind efficient solvability of these problems. Already
in 2000, Sadli and Sebő [26] showed that the set of degree sequences of openly disjoint T -paths forms
a jump system. See [27] in this volume for its proof. The concept of jump systems was introduced by
Bouchet and Cunningham [3], as a generalization of delta-matroids of Bouchet [2], which are equivalent
to pseudomatroids of Chandrasekaran and Kabadi [4]. In this paper, we provide an alternative proof of
the result of Sadli and Sebő based on the reduction to linear matroid parity.

Extending the notion of M-convex functions in discrete convex analysis [18], Murota [19] introduced
M-convex functions on jump systems. For an integer vector x, let f(x) be the minimum total length of
the openly disjoint T -paths whose degree sequence coincides with x. We show that this function f is an
M-convex function on the jump system.

2 Jump Systems

For a pair of integer vectors x and y, we denote by [x, y] the unique minimal box that contains both x and
y, i.e., [x, y] := { z | z ∈ ZT ,∀t ∈ T,min{x(t), y(t)} ≤ z(t) ≤ max{x(t), y(t)} }. The distance between x
and y is defined by dist(x, y) :=

∑
t∈T |x(t)−y(t)|. A step from x towards y is an integer vector z ∈ [x, y]

such that dist(x, z) = 1. An integer vector a ∈ ZT is said to be an (x, y)-increment if x+ a is a step from
x towards y.

A jump system, introduced by Bouchet and Cunningham [3], is a set J of integer vectors that satisfies
the following axiom.

(JS) For any x, y ∈ J and an arbitrary step z from x towards y, either z belongs to J or J contains a
step from z towards y.

For a graph G = (V,E) with a terminal set T ⊆ V , an integer vector x ∈ Z+
T is said to be feasible

if there exists a family P of openly disjoint T -paths such that the number of T -paths in P incident to
t ∈ T coincides with x(t) for every t ∈ T . Sadli and Sebő showed that the set of feasible integer vectors
forms a jump system.

Proposition 2.1 (Sadli and Sebő [26, 27]) The set JG of feasible integer vectors for a graph G =
(V,E) with a terminal set T ⊆ V forms a jump system.

Since each T -path contributes two to the sum of the degrees at the terminals,
∑

t∈T x(t) must be even
for any feasible integer vector x ∈ JG. Such a constant parity jump system is known to satisfy a stronger
exchange property.

(JS*) For any x, y ∈ J and an arbitrary (x, y)-increment a, there exists an (x + a, y)-increment b such
that both x+ a+ b and y − a− b belong to J .

A function f : J → R on a constant parity jump system is called an M-convex function if it satisfies
the following property.

(M-JS) For any x, y ∈ J and an arbitrary (x, y)-increment a, there exists an (x+ a, y)-increment b such
that f(x) + f(y) ≥ f(x+ a+ b) + f(y − a− b) holds.

Murota [19] showed that minimization problems on M-convex functions can be solved efficiently by greedy
algorithms, provided that a function evaluation oracle is available.

Let ℓ : E → R+ be a nonnegative function that returns the length of each edge in G. Given a
family P of openly disjoint T -paths in G, we denote by λ(P) the total length of the T -paths in P, i.e.,
λ(P) :=

∑
P∈P

∑
e∈E(P) ℓ(e). For a feasible vector x ∈ JG, let fG(x) denote the minimum value of λ(P)

for a family P of openly disjoint T -paths such that the number of paths in P incident to t ∈ T coincides
with x(t) for every t ∈ T . Then fG is a function on the set JG of feasible vectors. The main contribution
of this paper is to show that fG is an M-convex function on JG.

210

3 Delta-matroids

Delta-matroids are exactly the jump systems consisting of 0-1 vectors. A delta-matroid is a pair (S,F)
of a finite set S and a family F of subsets of S satisfying the following axiom.

(DM) For any X,Y ∈ F and an arbitrary s ∈ X△Y , there exists an element t ∈ X△Y such that
X△{s, t} ∈ F .

In particular, an even delta-matroid is a delta-matroid (S,F) such that |X△Y | are even for all X,Y ∈ F .
Even delta-matroids can be characterized by the following exchange axiom.

(EDM) For any X,Y ∈ F and an arbitrary s ∈ X△Y , there exists an element t ∈ X△Y \{s} such that
X△{s, t} ∈ F .

It is known that even delta-matroids enjoy the following simultaneous exchange property.

(SDM) For any X,Y ∈ F and an arbitrary s ∈ X△Y , there exists an element t ∈ X△Y \ {s} such that
X△{s, t} ∈ F and Y△{s, t} ∈ F .

For a delta-matroid (S,F) and a subset Z ⊆ S, consider the set family FZ defined by FZ :=
{X | X ⊆ S \ Z,X ∪ Z ∈ F }. Then (S \ Z,FZ) forms a delta-matroid, which is called a contraction
of (S,F) by Z. In particular, if (S,F) is an even delta-matroid, its contraction (S,FZ) is also even.

A function ω : F → R is called an valuation of an even delta-matroid (S,F) if it satisfies the following
axiom [8, 31].

(VDM) For any X,Y ∈ F and an arbitrary s ∈ X△Y , there exists an element t ∈ X△Y \ {s} such
that ω(X) + ω(Y) ≤ ω(X△{s, t}) + ω(Y△{s, t}).

A pair of an even delta-matroid and its associated valuation is called a valuated delta-matroid.
A primary example of an even delta-matroid comes from alternating matrices. Let K be an alternating

matrix whose row/column set is indexed by S. For a subset X ⊆ S, we denote by K[X] the principal
submatrix determined by X.

Lemma 3.1 For an alternating matrix K whose row/column set is indexed by S, let F(K) be the family
of subsets X of S such that K[X] are nonsingular. Then (S,F(K)) forms an even delta-matroid.

The Pfaffian of an alternating matrix K is defined by

Pf K :=
∑

π

σπ
∏

{u,v}∈π

Kuv,

where the sum is taken over all partitions π of the row/column set into pairs and σπ takes ±1 in a suitable
manner, see [14]. It is well-known that detK = (Pf K)2 holds.

A primary example of a valuated matroid comes from alternating polynomial matrix.

Lemma 3.2 For an alternating polynomial matrix K(θ) whose row/column set is indexed by S, let F(K)
be the family of subsets that determine nonsingular principal submatrices of K(θ). Then ω : F(K) → Z
defined by ω(X) := deg Pf K(θ)[X] is a valuation of the even delta-matroid (S,F(K)).

4 Disjoint S-paths
To provide an alternative proof of Mader’s theorem, Lovász [13] introduced an equivalent variant. Suppose
that a terminal set S ⊆ V is partitioned into a family S of disjoint subsets S1, . . . , Sh, i.e., S = S1∪· · ·∪Sh

and Si ∩ Sj = ∅ (i ̸= j). A path in G is called an S-path if its ends belong to distinct members of S
and no internal vertices belong to S. Mader’s theorem can be reformulated to characterize the maximum
number of disjoint S-paths.

211

The matroid matching problem is a common generalization of matching and matroid intersection.
Let ρ : 2E → Z be a monotone submodular function that satisfies 0 ≤ ρ(F) ≤ 2|F | for all F ⊆ E. A
subset F ⊆ E is called a matching if ρ(F) = 2|F | holds. The matroid matching problem asks for finding
a matching of maximum cardinality. Lovász [13] observed that finding the maximum number of disjoint
S-paths can be reduced to the matroid matching problem.

Following Schrijver [25, p. 1284], we now describe this reduction. Let E+ and E− be disjoint copies
of E. The copies of e ∈ E are denoted by e+ ∈ E+ and e− ∈ E−. Similarly, each vertex v ∈ V \ S
has two distinct copies v+ and v−. The set of these copies are defined by U+ := { v+ | v ∈ V \ S } and
U− := { v− | v ∈ V \ S }.

Consider a matrix A whose rows and columns are indexed respectively by S ∪ U± and E±, where
U± := U+ ∪U− and E± := E+ ∪E−. For any subsets X ⊆ S ∪U± and Y ⊆ E±, we denote by A[X,Y]
the submatrix of A with row set X and column set Y . For each edge e ∈ E we assign an arbitrary
orientation. The tail and head of e are denoted by ∂+e and ∂−e, respectively. For each t ∈ Sj and e ∈ E
with t = ∂+e, we put Ate+ := 1 and Ate− := j. For each t ∈ Sj and e ∈ E with t = ∂−e, we put
Ate+ := −1 and Ate− := −j. For each e ∈ E and u = ∂+e ∈ V \ S, we put Au+e+ = 1 and Au−e− = 1.
Similarly, for each e ∈ E and v = ∂−e ∈ V \ S, we put Av+e+ = −1 and Av−e− = −1. The other
components of A are all zero.

Let ρ : 2E → Z be a function defined by ρ(F) := rankA[S ∪ U±, F±] for each F ⊆ E, where
F± := { e+, e− | e ∈ F }. Then F is a matching if and only if the subgraph H = (V, F) is a forest with each
connected component containing at most two terminals each of which belongs to different members of S.
Apparently, k disjoint S-paths collectively form such a forest. Adding edges appropriately, one can obtain
a maximal matching with k or more connected components each of which has two terminals. Conversely,
for a maximal matching F , we have |F | = |V | − c1(F) − c2(F), where ci(F) denotes the number of
connected components each of which contains exactly i terminals. This together with |S| = c1(F)+2c2(F)
implies that |F | = |V |−|S|+c2(F) holds. Since the subgraph H = (V, F) includes c2(F) disjoint S-paths,
the maximum number of disjoint S-paths can be obtained from a matching of the maximum cardinality.

In order to clarify a delta-matroid structure related to the disjoint S-paths, we now introduce an
alternating matrix M . For each e ∈ E, let τe denote a transcendental indeterminate, and consider a 2×2
alternating matrix

De :=

[
0 −τe
τe 0

]

whose row/column set is indexed by e+ and e−. Let D be the block-diagonal matrix D whose diagonal
blocks are De for all e ∈ E. Thus the row/column set of D is indexed E±. The alternating matrix M is
defined by

M :=

(
O −A
A⊤ D

)
,

where A⊤ denotes the transpose of A. The row/column set of M is indexed by W := S ∪ U± ∪ E±.
For a family P of disjoint S-paths, we denote by T (P) the set of terminals that appear as ends of

S-paths in P. The following lemma characterizes when M is nonsingular.

Lemma 4.1 The alternating matrix M is nonsingular if and only if there exists a family P of disjoint
S-paths such that T (P) = S.

Proof: Split M into Â and D̂ such that

M = Â+ D̂, Â =

(
O −A
A⊤ O

)
, D̂ =

(
O O
O D

)
.

By [17, Lemma 7.3.20], we have

Pf M =
∑

Z⊆W

±Pf Â[W \ Z] · Pf D̂[Z],

212

where each sign is determined by the choice of Z. Note that Pf D̂[Z] ̸= 0 if and only if there exists a subset

F ⊆ E such that Z = { e+, e− | e ∈ E \ F }. In addition, Pf Â[W \Z] ̸= 0 if and only if A[S∪U±, E± \Z]
is nonsingular. Thus, we have

Pf M =
∑

F

± detA[S ∪ U±, F±] · Pf D[E± \ F±],

where the sum is taken over all matchings F ⊆ E with ρ(F) = |S ∪ U±|. Since each term contains a
distinct set of indeterminates, no cancellation occurs in the summation. Therefore, M is nonsingular if
and only if there exists a matching F with 2|F | = |S ∪ U±| = 2|V | − |S|.

This cardinality condition means that the number of connected components of the forest H = (V, F)
is |S|/2. Since the number of terminals in each component is at most two, this is equivalent to say that
each connected component contains exactly two terminals each of which belongs to different member of
S. Since such a connected component contains a unique S-path, we may conclude that M is nonsingular
if and only if there exists a family P of disjoint S-paths with T (P) = S. □

A terminal subset X ⊆ S is called S-feasible if there exists a family P of disjoint S-paths such that
X = T (P). Let FG denote the family of S-feasible sets. Then we have the following corollary.

Corollary 4.2 For a graph G = (V,E) with a terminal set S ⊆ V partitioned into S, the pair (S,FG)
forms an even delta-matroid.

Proof: It follows from Lemma 4.1 that R ⊆ S is S-feasible if and only if M [R∪U±∪E±] is nonsingular.
By Lemma 3.1, (W,F(M)) forms an even delta-matroid. Then (S,FG) is a contraction of (W,F(M)) by
W \ S. Therefore, (S,FG) is an even delta-matroid. □

Let IG denote the family of all the subsets of S-feasible sets. It has been known that (S, IG) forms a
matroid [25, Theorem 73.5], which is called the Mader matroid. Answering a question posed by Schrijver
[25, p. 1293], Pap [22] showed that each Mader matroid is a gammoid, which implies that each Mader
matroid is linear. Our construction above provides an alternative linear representation. In fact, Y ⊆ S is
a member of IG if and only if the set of column vectors of AD−1A⊤ indexed by Y is linearly independent.

5 Shortest Disjoint S-paths
We now suppose that each edge in G has a nonnegative length ℓ(e). A natural approach to disjoint S-
paths of minimum total length is to utilize weighted linear matroid parity algorithms. More specifically,
consider minimizing the total length λ(P) among all the families P of disjoint S-paths with T (P) = S.

Let A be the matrix constructed above. Recall that a family P of disjoint S-paths with T (P) = S
is contained in a matching F ⊆ E with 2|F | = 2|V | − |S|. One can find such a matching of minimum
total length

∑
e∈F ℓ(e) in polynomial time by the weighted linear matroid parity algorithms [11, 23]. The

obtained edge subset F , however, does not necessarily form a disjoint S-paths. It is certainly a collection
of disjoint trees each of which contains at most two terminals from different members of S. While a
subset F ∗ ⊆ F forms a family of disjoint S-paths, the total length of F ∗ may differ from that of F . One
cannot guarantee that F ∗ attains the minimum total length.

Yamaguchi [32] overcame this difficulty by modifying the original graph, and showed that one can
find a family of k disjoint S-paths of minimum total length in polynomial time. We utilize this idea to
investigate the property of the minimum total length of disjoint S-paths with specified terminals.

Augment the graph G = (V,E) by adding two distinct vertices r and s, a new edge er between them,
and new edges ev connecting s and v for all v ∈ V \ S. The resulting graph G′ = (V ′, E′) has a terminal
set S′ := S ∪ {r, s}, which is partitioned into S ′ := S ∪ {{r}, {s}}. The lengths of the new edges are set
to be zero. Let A′ be the matrix constructed for this setting.

If A′ admits a matching F ′ with 2|F ′| = 2|V ′| − |S′|, the subgraph H ′ = (V ′, F ′) is a forest with each
connected component containing exactly two terminals each of which belongs to different members of S.

213

Then there exists a family P ′ of disjoint S ′-paths with T (P ′) = S′. In particular, r and s must be in the
same connected component in H ′. In addition, if some other component of H ′ contains a vertex v ∈ V \S
that does not belong to the unique S-path in it, one can add the edge ev and remove an appropriate
one to obtain another matching of the same cardinality without increasing the total length. Thus the
minimum total length is achieved by a collection of disjoint S-paths and a tree including s and r. Since
all the edges incident to s has length zero, the tree can be replaced by the star at s spanning the same
vertices, and the optimal value is equal to the total length of the obtained family of disjoint S-paths.

Construct an alternating polynomial matrix

M ′(θ) :=

(
O −A′

A′⊤ D′(θ)

)
,

where D′(θ) is a block-diagonal matrix whose diagonal block corresponding to e ∈ E′ is a 2× 2 matrix

De(θ) :=

[
0 −τeθℓ(e)

τeθ
ℓ(e) 0

]
.

For each S-feasible set R ∈ FG, let ζ(R) denote the minimum value of the total length λ(P) among
families P of disjoint S-paths with T (P) = R. We now evaluate ζ(R) in terms of M ′(θ).

Lemma 5.1 If S is S-feasible, then

ζ(S) =
∑

e∈E

ℓ(e)− deg Pf M ′(θ)

holds. More generally, for any S-feasible set R ⊆ S, we have

ζ(R) =
∑

e∈E

ℓ(e)− deg Pf M ′(θ)[R ∪ U± ∪ E±].

Proof: Suppose that S is S-feasible. By Lemma 4.1, M ′(θ) is nonsingular. As shown in the proof there,
we have

Pf M ′(θ) =
∑

F

±detA′[S′ ∪ U±, F±] · Pf D′(θ)[E± \ F±],

where the sum is taken over all matchings F with 2|F | = 2|V | − |S|. The degree of Pf M ′(θ) is then
determined by the maximum degree of Pf D′(θ)[E± \ F±], which is equal to the sum of the lengths of
e ∈ E \ F . Since ζ(S) equals the minimum total length of a matching F with 2|F | = 2|V | − |S|, we have
deg Pf M ′(θ) = deg Pf D′(θ) =

∑
e∈E ℓ(e)− ζ(S).

Applying the same argument to M ′(θ)[R ∪ U± ∪ E±] for an arbitrary S-feasible set R ⊆ S, we have
deg Pf M ′(θ)[R ∪ U± ∪ E±] = deg Pf D′(θ)[R ∪ U± ∪ E±] =

∑
e∈E ℓ(e)− ζ(S). □

For each S-feasible set R ∈ FG, we put ωG(R) = deg Pf M ′(θ)[R ∪ U± ∪ E±]. Then it follows from
Lemma 3.2 that ωG is a valuation on the even delta-matroid (S,FG). Lemma 5.1 shows that ζ(R) is
given by ζ(R) =

∑
e∈E ℓ(e)− ωG(R), which implies that −ζ is a valuation on (S,FG).

6 Discrete Convexity

We now turn to the setting of openly disjoint T -paths. Let G = (V,E) be a graph with a terminal set
T ⊆ V and a nonnegative edge length function ℓ : E → R+. An integer vector x ∈ ZT is feasible if there
exists a family P of openly disjoint T -paths such that the number of T -paths in P incident to u coincides
with x(u) for every u ∈ T . Recall that fG(x) for a feasible integer vector x is defined to be the minimum
value of λ(P) =

∑
P∈P

∑
e∈E(P) ℓ(e) among such families P of openly disjoint T -paths.

In order to reduce this “openly-disjoint” setting to the “disjoint S-paths” model, we detach all the
terminal vertices, i.e., split each terminal vertex u ∈ T into d(u) vertices of degree one, where d(u)

214

denotes the degree of u. Let Su be the set of new vertices coming from u ∈ T . Put S := {Su}u∈T and

S :=
⋃

u∈T Su. Then openly disjoint T -paths correspond to disjoint S-paths in the resulting graph Ĝ.

Let FĜ be the family of S-feasible sets in Ĝ. For any subset R ⊆ S, we determine zR ∈ ZS by
zR(u) := |R ∩ Su| for each u ∈ T . The set JG of feasible integer vectors for G can be expressed by
JG = { zR | R ∈ FĜ }. Given that (S,FĜ) forms an even delta-matroid by Corollary 4.2, one can easily
show that JG forms a jump system. Thus, Corollary 4.2 provides an alternative proof for Proposition 2.1.
Moreover, we have the following theorem which establishes the discrete convexity of the function fG :
JG → R.

Theorem 6.1 The function fG : JG → R is M-convex on the jump system JG.

Proof: For any x, y ∈ J , there exist X,Y ∈ F such that x = zX and y = zY with fG(x) = ζ(X)
and fG(y) = ζ(Y). For a (zX , zY)-increment a, there exists a terminal s ∈ X△Y with s ∈ Su and
a(u) = ±1. Since −ζ is a valuation on (S,F), there exists another terminal t ∈ X△Y \ {s} such that
ζ(X) + ζ(Y) ≥ ζ(X△{s, t}) + ζ(Y△{s, t}). Let v ∈ T be the terminal with t ∈ Sv, and determine
b ∈ ZT by b(v) = ±1 and b(w) = 0 for w ∈ T \ {v}. More precisely, b(v) = −1 if t ∈ X \ Y and
b(v) = 1 if t ∈ Y \ X. Then b is an (x + a, y)-increment such that x + a + b ∈ J and y − a − b ∈ J .
Moreover, fG(x + a + b) ≤ ζ(X△{s, t}) and fG(y − a − b) ≤ ζ(Y△{s, t}) hold. Therefore, we have
fG(x) + fG(y) ≥ fG(x+ a+ b) + fG(y − a− b). □

The nonnegativity assumption on the edge length function is crucial for Theorem 6.1. The graph
depicted in Figure 1 with α > 0 serves as a counterexample. An integer vector x ∈ ZT defined by
x = (x(t1), x(t2), x(t3), x(t4)) = (1, 1, 0, 0) is feasible and we have fG(x) = −2α. The integer vector
y = (0, 0, 1, 1) is also feasible and we have fG(y) = −2α. Consider an (x, y) increment a with a(t1) = −1
and a(tj) = 0 for j ̸= 1. While there are three possible choices of an (x+a, y)-increment b such that both
x+ a+ b and y − a− b are feasible, all of them satisfy fG(x) + fG(y) < fG(x+ a+ b) + fG(y − a− b).

𝑡𝑡1

−𝛼𝛼−𝛼𝛼

𝑡𝑡2

𝑡𝑡4𝑡𝑡3

Figure 1: A counterexample to the M-convexity when some edges have negative length.

Acknowledgements

The authors are grateful to András Sebő for helpful comments on our manuscript.

215

References

[1] C. Berge: Sur le couplage maximum d’un graphe, Comptes Rendu de l’Académie des Sciences, 247
(1958), pp. 258–259.

[2] A. Bouchet: Greedy algorithm and symmetric matroids, Math. Programming, 38 (1987),
pp. 147?159.

[3] A. Bouchet and W. H. Cunningham: Delta-matroids, jump systems, and bisubmodular polyhe-
dra, SIAM J. Discrete Math., 8 (1995), pp. 17–32.

[4] R. Chandrasekaran and S. N. Kabadi: Pseudomatroids, Discrete Math., 71 (1988), pp. 205–
217.

[5] B. V. Cherkassky: Solution of a problem of multiproduct flows in a network (in Russian), Ékon.
Mat. Metody, 13 (1977), pp. 143–151.

[6] H. Y. Cheung, L. C. Lau, and K. M. Leung: Algebraic algorithms for linear matroid parity
problems, ACM Trans. Algorithms, 10 (2014), 10: 1–26.

[7] M. Chudnovsky, W. H. Cunningham, and J. Geelen: An algorithm for packing non-zero A-
paths in group-labelled graphs, Combinatorica, 28 (2008), pp. 145–161.

[8] A. Dress and W. Wenzel: A greedy-algorithm characterization of valuated ∆-matroids, Appl.
Math. Lett., 4 (1991), pp. 55–58.

[9] H. N. Gabow and M. Stallmann: An augmenting path algorithm for linear matroid parity,
Combinatorica, 6 (1986), pp. 123–150.

[10] T. Gallai: Maximum-Minimum-Sätze und verallgemeinerte Faktoren von Graphen, Acta Math.
Acad. Sci. Hungar., 12 (1961), pp. 131–173.

[11] S. Iwata and Y. Kobayashi: A weighted linear matroid parity algorithm, SIAM J. Comput., 51
(2022), pp. 238–280.

[12] L. Lovász: On some connectivity properties of Eulerian graphs, Acta Math. Acad. Sci. Hungar.,
28 (1976), pp. 129–138.

[13] L. Lovász: Matroid matching and some applications, J. Combin. Theory, B28 (1980), pp. 208–236.

[14] L. Lovász and M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

[15] W. Mader: Über die Maximalzahl kantendisjunkter A-Wege, Archiv. Math., 30 (1978), pp. 325–
336.

[16] W. Mader: Über die Maximalzahl kreuzungsfreier H-Wege, Archiv. Math., 31 (1978), pp. 387–402.

[17] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin, 2000.

[18] K. Murota: Discrete Convex Analysis, SIAM, 2003.

[19] K. Murota: M-convex functions on jump systems: A general framework for minsquare graph factor
problem, SIAM J. Discrete Math., 20 (2006), pp. 213–226.

[20] J. B. Orlin: A fast, simpler algorithm for the matroid parity problem, Proceedings of the 13th Inter-
national Conference on Integer Programming and Combinatorial Optimization, LNCS 5035, Springer-
Verlag, 2008, pp. 240–258.

[21] J. B. Orlin and J. H. Vande Vate: Solving the linear matroid parity problem as a sequence of
matroid intersection problems, Math. Programming, 47 (1990), pp. 81–106.

216

[22] G. Pap: Mader matroids are gammoids, EGRES Technical Report, 2006.

[23] G. Pap: Weighted linear matroid matching, Proceedings of the Eighth Japanese-Hungarian Sym-
posium on Discrete Mathematics and Its Applications, 2013, pp. 411–413.

[24] A. Schrijver: A short proof of Mader’s S-paths theorem, J. Combin. Theory, B82 (2001), pp. 319–
321.

[25] A. Schrijver: Combinatorial Optimization — Polyhedra and Efficiency, Springer-Verlag, 2003.

[26] M. Sadli and A. Sebő: Paths and jumps, manuscript, 2000.

[27] M. Sadli and A. Sebő: Jump-systems of T -paths, Proceedings of the 12th Japanese-Hungarian
Symposium on Discrete Mathematics and Its Applications, 2023.

[28] A. Sebő and L. Szegő: The path-packing structure of graphs, Proceedings of the Tenth Interna-
tional Conference on Integer Programming and Combinatorial Optimization, LNCS 3064, Springer-
Verlag, 2004, pp. 256–270.

[29] S. Tanigawa and Y. Yamaguchi: Packing non-zero A-paths via matroid matching, Discrete Appl.
Math., 214 (2016), pp. 169–178.

[30] W. T. Tutte: The factorization of linear graphs, J. London Math., 22 (1947), pp. 107–111.

[31] W. Wenzel: Pfaffian forms and ∆-matroids, Discrete Math., 115 (1993), pp. 253–266.

[32] Y. Yamaguchi: Shortest disjoint S-paths via weighted linear matroid parity, Proceedings of the
27th International Symposium on Algorithms and Computation, 2016, 63: 1–13.

217

218

On generic universal rigidity on the line

Guilherme Zeus Dantas e Moura

Department of Mathematics and Statistics,
Haverford College, 370 Lancaster Ave,

Haverford, PA 19041, USA.
gdantasemo@haverford.edu

Tibor Jordán1

Department of Operations Research,
ELTE Eötvös Loránd University, and the

ELKH-ELTE Egerváry Research Group on
Combinatorial Optimization, Eötvös Loránd

Research Network (ELKH),
Pázmány Péter sétány 1/C,
1117 Budapest, Hungary.

tibor.jordan@ttk.elte.hu

Corwin Silverman

Department of Mathematics,
Grinnell College, 1115 8th Ave,

Grinnell, IA 50112, USA.
silvermanc79@gmail.com

Abstract: A d-dimensional bar-and-joint framework (G, p) with underlying graph G is called
universally rigid if all realizations of G with the same edge lengths, in all dimensions, are
congruent to (G, p). A graph G is said to be generically universally rigid in Rd if every
d-dimesional generic framework (G, p) is universally rigid.

In this paper we focus on the case d = 1. We give counterexamples to a conjectured
characterization of generically universally rigid graphs from [7]. We also introduce two new
operations that preserve the universal rigidity of generic frameworks, and the property of
being not universally rigid, respectively. One of these operations is used in the analysis of one
of our examples, while the other operation is applied to obtain a lower bound on the size of
generically universally rigid graphs. This bound gives a partial answer to a question from [11].

Keywords: rigid graph, universally rigid graph, generic framework

1 Introduction

A d-dimensional (bar-and-joint) framework is a pair (G, p), where G = (V,E) is a graph and p is a
configuration of the vertices, that is, a map from V to Rd. We consider the framework to be a straight line
realization of G in Rd. Two frameworks (G, p) and (G, q) are equivalent if ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖
holds for all pairs u, v with uv ∈ E, where ‖.‖ denotes the Euclidean norm in Rd. Frameworks (G, p),
(G, q) are congruent if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ holds for all pairs u, v with u, v ∈ V . This is the
same as saying that (G, q) can be obtained from (G, p) by an isometry of Rd.

Let (G, p) be a d-dimensional framework for some d ≥ 1. We say that (G, p) is rigid in Rd if there is
a neighborhood Up in the space of d-dimensional configurations such that if a d-dimensional framework
(G, q) is equivalent to (G, p) and q ∈ Up, then q is congruent to p. The framework (G, p) is called globally
rigid in Rd if every d-dimensional framework (G, q) which is equivalent to (G, p) is congruent to (G, p). We
obtain an even stronger property by extending this condition to equivalent realizations in any dimension:

1Research is supported in part by the Hungarian Scientific Research Fund grant no. K135421.

219

we say that (G, p) is universally rigid if it is a unique realization of G, up to congruence, with the given
edge lengths, in all dimensions Rd′

, d′ ≥ 1.
Deciding whether a given framework is rigid in Rd, for d ≥ 2 (resp. globally rigid in Rd, for d ≥ 1) is

NP-hard [1, 14]. The complexity of the corresponding decision problem for universal rigidity seems to be
open, even for d = 1. These problems become more tractable, however, if we assume that there are no
algebraic dependencies between the coordinates of the points of the framework. A framework (G, p) is
said to be generic if the set containing the coordinates of all its points is algebraically independent over
the rationals. It is well-known that the rigidity (resp. global rigidity) of frameworks in Rd is a generic
property for all d ≥ 1, that is, the (global) rigidity of (G, p) depends only on the graph G and not the
particular realization p, if (G, p) is generic [2, 6, 10]. This property does not hold for universal rigidity,
even if d = 1, which follows by considering different generic realizations of a four-cycle on the line. See
Figure 1.

(a) An universally rigid realization of a
four-cycle in R1.

(b) A not universally rigid realization of
a four-cycle in R1.

(c) A realization of a four-cycle in R2 equivalent, but not congruent, to the realization in Figure 1b.

Figure 1: Realizations of a four-cycle.

A graph G is called generically rigid (resp. generically globally rigid, generically universally rigid)
in Rd if every d-dimensional generic framework (G, p) is rigid (resp. globally rigid, universally rigid).
Generically rigid and globally rigid graphs are well-characterized for d ≤ 2. It remains an open problem
to extend these results to d ≥ 3. The characterization of generically universally rigid graphs is an open
problem for all d ≥ 1. We refer the reader to [12, 15] for more details on the theory of rigid graphs and
frameworks.

In this paper we focus on universally rigid frameworks and generically universally rigid graphs in R1.
We give counterexamples to a conjectured characterization of generically universally rigid graphs from
[7]. We introduce a new operation that preserves the universal rigidity of generic frameworks and use
it to construct infinite families of counterexamples. We also show that the so-called degree-2 extension
operation preserves the property of being not universally rigid, for d = 1. This operation is applied in the
proof of a new lower bound on the size of generically universally rigid graphs. This bound gives a partial
answer to a question from [11].

2 Examples

Let G1 = (V1, E1), G2 = (V2, E2) be two graphs for which V1 ∩ V2, V1 − V2, and V2 − V1 are all nonempty.
Then G = (V1 ∪ V2, E1 ∪ (E2 − E(G2[V1 ∩ V2]))) is called the edge reduced attachment of G1 and G2

along G2. That is, G is obtained by removing the edges of G2 which are spanned by the intersection
of their vertex sets and then taking the union of the two graphs. Ratmanski [13] proved that the edge
reduced attachment operation preserves generic universal rigidity in Rd, provided |V1 ∩ V2| ≥ d+ 1. It
was conjectured, by participants of a workshop in 2011, that for d = 1 every generically universally rigid
graph can be obtained from a set of triangles by this operation, and edge addition.

Conjecture 1. [7] A graph G on at least three vertices is generically universally rigid in R1 if and only
if G can be obtained from a set of triangles by edge reduced attachment and edge addition operations.

We next present two counterexamples to Conjecture 1. The first one, on eight vertices, requires a more
sophisticated argument, including the analysis of a new operation that can be used to build generically

220

universally rigid graphs. This operation can also be used to construct infinite families of counterexamples.
The second one, on sixteen vertices, is fairly easy to verify. We need the following simple lemma on
attachments.

The K4-completion operation adds a new edge uv to a graph for a vertex pair u, v with two adjacent
common neighbours. We say that F ⊆ E is an independent edge cut in a graph G = (V,E) if the edges
in F are pairwise disjoint, and there is a nonempty proper subset X ⊂ V for which the set of edges
connecting X and V −X is G is F .

Lemma 2. Suppose that G = (V,E) is a connected graph that can be obtained by edge reduced attachments
and edge additions from a set of triangles. Then
(i) G contains a triangle,
(ii) the complete graph on V can be obtained from G by K4-completion operations,
(iii) G has no independent edge cuts.

Proof: (i) follows, by induction, from the fact that if G is the edge reduced attachment of G1 and G2

along G2, then G contains G1 as a subgraph. So if G1 contains a triangle, so does G. To prove (ii) we
use induction on the number t of operations used to build up G. For t = 0 we have G = K3, for which
the statement is obvious. Suppose that t ≥ 1 and consider the last operation applied, that resulted in
graph G. The case when the last operation is edge addition is easy to deal with, so suppose that G was
obtained from G1 and G2 by an edge reduced attachment along G2. Then G1 is a subgraph of G. By
induction the complete graph on V (G1) can be obtained from G1 by K4-completions. By performing
these operations on G, we make V (G1) ∩ V (G2) complete, which implies that G2 is a subgraph of the
resulting graph. So, by induction, we can apply K4-completions to make the subgraph of G on V (G2)
complete as well. Since G1 and G2 share at least two vertices, all the missing edges of G can then be
added by further K4-completions. Finally, it is clear that (ii) implies (iii). �

(a) The graph B3. (b) The graph B4. (c) The graph B5.

Figure 2: Graphs B3, B4, and B5.

Let Bn be the graph obtained from two disjoint complete graphs on n vertices by adding n disjoint
edges. See Figure 2. As we shall see in the next section (c.f. Theorem 7), Bn is generically universally
rigid in R1 for n ≥ 4. Since Bn has an independent edge cut, it cannot be obtained by edge reduced
attachments and edge additions from a set of triangles by Lemma 2(iii). Hence B4 (and each graph Bi,
for i ≥ 4) is a counterexample to Conjecture 1.

The other example was motivated by a question in [11], asking whether there is a triangle-free
generically universally rigid graph in R1, and in particular, whether the triangle-free Grötzsch graph is
generically universally rigid in R1. See Figure 3a. We leave the latter question open. Instead we consider
the following supergraph of the Grötzsch graph and use it to give an affirmative answer to the former
question.

Definition 3. The augmented Grötzsch graph is obtained from the Grötzsch graph on vertex set
{w, u0, u1, . . . u4, v0, v1 . . . v4} (labeled as in Figure 3a) by adding the vertices v′i, 0 ≤ i ≤ 4 and edges
v′iui+1, v

′
ivi+1, v

′
iv
′
i+1, for 0 ≤ i ≤ 4, counting indices mod 5. See Figure 3b.

221

u0

v0

u1
v1

u2

v2

u3

v3

u4
v4

(a) The Grötzsch graph.

u0

v0

v′0

u1
v1

v′1

u2

v2

v′2

u3

v3

v′3

u4
v4

v′4

(b) The augmented Grötzsch graph.

Figure 3: The Grötzsch graph and the augmented Grötzsch graph. The central vertex is w.

Thus the augmented Grötzsch graph has sixteen vertices, and it contains the Grötzsch graph as a
subgraph. We shall prove that it is generically universally rigid in R1. We need the following simple
lemma. The degree-2 extension operation adds a new vertex w to a graph G and two new edges wx,wy,
for two distinct vertices of G. This operation can also be performed on a framework (G, p), in which case
it includes the extension of p by p(w).

Lemma 4. Let (G, p) be a universally rigid realization of G in R1. Suppose that (G′, p) can be obtained
from (G, p) by a degree-2 extension that adds the edges wx,wy. If p(x) 6= p(y), then (G′, p) is universally
rigid in R1.

Let C be a cycle on vertex set {x1, x2, . . . , xk} with edge set E(C) = {x1x2, . . . , xk−1xk, xkx1}. Let
(C, p) be a 1-dimensional realization of C. If p(x1) < p(x2) < · · · < p(xk) then (C, p) (or sometimes C
itself) is called a stretched cycle. It is easy to see that stretched cycles are universally rigid in R1.

It is known that the Grötzsch graph is not a “cover graph.” By using our terminology, this fact can be
restated as follows. See [8] for a short combinatorial proof.

Theorem 5. [8] Every injective 1-dimensional realization of the Grötzsch graph has a stretched cycle.

We are ready to deduce that the augmented Grötzsch graph is generically universally rigid. We can
actually show a somewhat stronger property.

Theorem 6. Every injective 1-dimensional realization of the augmented Grötzsch graph is universally
rigid.

Proof: Let G be the augmented Grötzsch graph and let G′ denote its subgraph isomorphic to the
Grötzsch graph, obtained by deleting the vertices v′i, 0 ≤ i ≤ 4. Consider an injective 1-dimensional
realization (G, p). By Theorem 5 there is a stretched cycle C on vertices {x1, x2, . . . , xk} in (G′, p|V (G′)).
Since G′ is triangle-free, we must have k ≥ 4. Let (H, p|V (H)) be a maximal universally rigid subframework
of (G, p) with V (C) ⊆ V (H). Such a framework exists, since the subframework of the stretched cycle C is
universally rigid. We shall prove that H = G.

222

The structure of G′ and the fact that C contains a path on three vertices which is disjoint from w
implies that we must have two vertices in C − w with identical indices or two vertices whose indices differ
by two. Formally, either (1) there exists a pair of vertices ui, vi in C, or (2) there exists a pair of vertices
ui, vi+2 (or ui, ui+2, vi, vi+2, vi, ui+2), for some 0 ≤ i ≤ 4.

Let us consider case (1). By symmetry we may assume that u1, v1 ∈ V (C). Then, since u1, v1 are both
neighbours of v2 and v′2, Lemma 4 implies that v2, v

′
2 ∈ V (H) holds. We can apply a similar argument to

v3, v
′
3, and so on around the cycle, to deduce that H contains all v- and v′-vertices. Finally, the u-vertices

and vertex w can also be added by degree-2 extensions. Thus H = G and the theorem follows.
Next consider case (2). Suppose that, say, u1, v3 ∈ V (C). Then, since u1, v3 are both neighbours of v2

and v′2, Lemma 4 implies that v2, v
′
2 ∈ V (H) holds. The rest of the argument is identical to that of case

(1). This completes the proof. �
Since the augmented Grötzsch graph is triangle-free and, by Theorem 6, generically universally rigid

in R1, it follows from Lemma 2(i) that it is a counterexample to Conjecture 1.
It may be interesting to find graphs with arbitrarily large girth which are generically universally rigid

in R1 (or possibly in higher dimensions).

3 Operations

3.1 Combining graphs along disjoint edges

If G has an independent edge cut J , then the removal of J from G results in two smaller (sub)graphs.
The reversal of this operations can be defined as follows. Let G = (V,E), H = (U,F) be two disjoint
graphs. Let v1, v2, . . . , vk ∈ V and u1, u2, . . . , uk ∈ U be distinct vertices. The join G tH of G and H
is the graph on vertex set V ∪ U with edge set E ∪ F ∪ {viui : i ∈ {1, 2, . . . , k}}. We say that G tH is
obtained from G and H by a join operation along k edges. See Figure 4. For example, Bn is the join of
two complete graphs on n vertices along n edges.

G v1 v2 v3 vk

H u1 u2 u3 uk

· · ·

Figure 4: The graph obtained from G and H by a join operation along k edges.

Theorem 7. Let G and H be generically universally rigid graphs in R1 on at least k vertices and let
G tH be obtained from G and H by a join operation along k edges. If k ≥ 4, then G tH is generically
universally rigid in R1.

Proof: Let G = (V,E), H = (U,F), B = G tH. We may assume that k = 4. Consider a 1-dimensional
generic realization (B, p). Suppose that (B, q) is an equivalent realization in Rd, for some d ≥ 1. We shall
prove that p and q are congruent.

Note that (G, p|V) is a generic 1-dimensional realization of G, and (G, q|V) is an equivalent realization.
Hence, since G is generically universally rigid in R1, it follows that (G, p|V) is congruent to (G, q|V).
Analogously, we also have that (H, p|U) is congruent to (H, q|U). Hence, there exists cG,dG, cH ,dH ∈ Rd,

223

with ‖dG‖ = ‖dH‖ = 1, such that

q(v) = cG + p(v)dG ∀v ∈ V, and (1)

q(u) = cH + p(u)dH ∀u ∈ U. (2)

cG

dG

cH

dH

q(v1) q(v2) q(v3) q(v4)

q(u1)
q(u2) q(u3) q(u4)

Figure 5

Since p and q are equivalent, for each i ∈ {1, 2, 3, 4}, we have

‖q(vi)− q(ui)‖2 = ‖p(vi)− p(ui)‖2. (3)

By changing the square of norms to dot product we obtain that, for each i ∈ {1, 2, 3, 4},
(

(cG + p(vi)dG)− (cH + p(ui)dH)
)
·
(

(cG + p(vi)dG)− (cH + p(ui)dH)
)
− (p(vi)− p(ui))2 = 0. (4)

This gives, by using ‖dG‖ = ‖dH‖ = 1, that for each i ∈ {1, 2, 3, 4},
cG · cG − 2cG · cH + cH · cH +

2(1− dG · dH) p(ui)p(vi) +

2(cH · dH − cG · dH)p(ui) +

2(cG · dG − cH · dG)p(vi) = 0.

(5)

By applying equation (5) for i ∈ {1, 2, 3}, as well as for i = 4, and by subtracting, we obtain that for each
i ∈ {1, 2, 3},

2(1− dG · dH) (p(ui)p(vi)− p(u4)p(v4)) +

2(cH · dH − cG · dH)(p(ui)− p(u4)) +

2(cG · dG − cH · dG)(p(vi)− p(v4)) = 0.

(6)

Let us define f1(i) = p(ui)p(vi)− p(u4)p(v4), f2(i) = p(ui)− p(u4), and f3(i) = p(vi)− p(v4). Then we
have, for each i ∈ {1, 2, 3},

2(1− dG · dH)f1(i) + 2(cH · dH − cG · dH)f2(i) + 2(cG · dG − cH · dG)f3(i) = 0. (7)

By applying equation (7) for i ∈ {1, 2}, as well as for i = 3, and by multiplying the respective equations
by f3(3) and f3(i), and then subtracting, we obtain that for each i ∈ {1, 2},

2(1− dG · dH)(f1(i)f3(3)− f1(3)f3(i)) + 2(cH · dH − cG · dH)(f2(i)f3(3)− f2(3)f3(i)) = 0 (8)

Let us define f4(i) = f1(i)f3(3)− f1(3)f3(i), and f5(i) = f2(i)f3(3)− f2(3)f3(i). Then we have

2(1− dG · dH)f4(1) + 2(cH · dH − cG · dH)f5(1) = 0, (9)

2(1− dG · dH)f4(2) + 2(cH · dH − cG · dH)f5(2) = 0. (10)

224

Let us define f = f4(1)f5(2)− f4(2)f5(1). By multiplying equation (9) by f5(2), equation (10) by f5(1),
and taking the difference, we obtain

2(1− dG · dH)f = 0. (11)

Therefore, f = 0 or dG · dH = 1 must hold. In the former case, f is a non-zero rational polynomial in
eight variables with p(v1), p(v2), p(v3), p(v4), p(u1), p(u2), p(u3), and p(u4) as a root, which contradicts
the genericity of p.

The explicit form of the polynomial is as follows:

f = −p(u1)p(u3)p(v1)p(v2)p(v3) + p(u2)p(u3)p(v1)p(v2)p(v3) + p(u1)p(u4)p(v1)p(v2)p(v3)

−p(u2)p(u4)p(v1)p(v2)p(v3) + p(u1)p(u2)p(v1)p(v3)
2 − p(u2)p(u3)p(v1)p(v3)

2

−p(u1)p(u4)p(v1)p(v3)
2

+ p(u3)p(u4)p(v1)p(v3)
2 − p(u1)p(u2)p(v2)p(v3)

2

+p(u1)p(u3)p(v2)p(v3)
2

+ p(u2)p(u4)p(v2)p(v3)
2 − p(u3)p(u4)p(v2)p(v3)

2

+p(u1)p(u3)p(v1)p(v2)p(v4)− p(u2)p(u3)p(v1)p(v2)p(v4)− p(u1)p(u4)p(v1)p(v2)p(v4)

+p(u2)p(u4)p(v1)p(v2)p(v4)− 2 p(u1)p(u2)p(v1)p(v3)p(v4) + p(u1)p(u3)p(v1)p(v3)p(v4)

+p(u2)p(u3)p(v1)p(v3)p(v4) + p(u1)p(u4)p(v1)p(v3)p(v4) + p(u2)p(u4)p(v1)p(v3)p(v4)

−2 p(u3)p(u4)p(v1)p(v3)p(v4) + 2 p(u1)p(u2)p(v2)p(v3)p(v4)− p(u1)p(u3)p(v2)p(v3)p(v4)

−p(u2)p(u3)p(v2)p(v3)p(v4)− p(u1)p(u4)p(v2)p(v3)p(v4)− p(u2)p(u4)p(v2)p(v3)p(v4)

+2 p(u3)p(u4)p(v2)p(v3)p(v4)− p(u1)p(u3)p(v3)
2
p(v4) + p(u2)p(u3)p(v3)

2
p(v4)

+p(u1)p(u4)p(v3)
2
p(v4)− p(u2)p(u4)p(v3)

2
p(v4) + p(u1)p(u2)p(v1)p(v4)

2

−p(u1)p(u3)p(v1)p(v4)
2 − p(u2)p(u4)p(v1)p(v4)

2
+ p(u3)p(u4)p(v1)p(v4)

2

−p(u1)p(u2)p(v2)p(v4)
2

+ p(u2)p(u3)p(v2)p(v4)
2

+ p(u1)p(u4)p(v2)p(v4)
2

−p(u3)p(u4)p(v2)p(v4)
2

+ p(u1)p(u3)p(v3)p(v4)
2 − p(u2)p(u3)p(v3)p(v4)

2

−p(u1)p(u4)p(v3)p(v4)
2

+ p(u2)p(u4)p(v3)p(v4)
2
.

(12)

In the latter case, dG ·dH = 1 (along with ‖dG‖ = ‖dH‖ = 1) imply that dG = dH . Let d = dG = dH

and t = cH − cG.
Suppose that t 6= 0. By applying an isometry of Rd to (B, q) we may suppose that p|V = q|V . This

implies that (H, p|U) and (H, q|U) are two congruent realizations of H on two parallel lines Lp and Lq,
with the same vertex ordering. Furthermore, Lp is the line that contains (B, p). Then q(ui)− p(ui) are
parallel for 1 ≤ i ≤ 4. Since (B, p) and (B, q) are equivalent, we have ||q(vi)− q(ui)|| = ||p(vi)− p(ui)||
for i = 1, 2. But this gives ||p(v1)− p(u1)|| = ||p(v2)− p(u2)||, contradicting the genericity of p.

Lp

Lq

p(u1)

q(u1)

p(v1) = q(v1)p(u2)

q(u2)

p(v2) = q(v2)

d

d
cG

cH

Figure 6: Diagram for the case dG = dH and cG 6= cH . The green segments are parallel, the red segments
have equal lengths, and the blue segments have equal lengths. It must be the case that the red and blue
lengths are equal.

Hence t = 0, which gives dG = dH and cG = cH . Therefore p is congruent to q, as desired. Thus B is
generically universally rigid in R1. �

225

We can use Theorem 7 and the results of the previous section to construct an infinite family of triangle
free generically universally rigid graphs on the line.

Theorem 7 does not hold for k ≤ 3. For example, the join of two K3 graphs along three edges (the
so-called prism, or Desargue graph) is not generically universally rigid in R1. For a detailed analysis of
this graph see [4].

3.2 Degree-2 extension

Let (G, p) be a framework on the line with G = (V,E). A pair of vertices {u, v}, u, v ∈ V is called
universally linked in (G, p) if ‖q(u) − q(v)‖ = ‖p(u) − p(v)‖ holds for all frameworks (G, q) which are
equivalent to (G, p) (in all dimensions).

We believe that if {u, v} is not universally linked in (H, p), and (G, p) is obtained from (H, p) by a
degree-2 extension, then {u, v} is not universally linked in (G, p). We can prove the following somewhat
weaker statement.

Theorem 8. Suppose that H is not generically universally rigid. Let G be obtained from H by a degree-2
extension. Then G is not generically universally rigid.

Proof: We may assume that |V (H)| ≥ 4, since the statement is easy to verify when H has at most
three vertices. By our assumption H is not generically universally rigid, hence there exists a generic
1-dimensional realization (H, p) and a pair {u, v} of vertices of H which is not universally linked in (H, p).
Thus there exists an equivalent framework (H, q), such that |p(u) − p(v)| 6= |q(u) − q(v)|. Let G be
obtained from H by adding a vertex w and edges wx,wy. Let α = |p(x)− p(y)| and β = |q(x)− q(y)|.
Since p is generic, we have α 6= 0.

Suppose first that we have β ≥ α. Then we can choose a point r on the line (in the complement
of the line segment connecting p(x) and p(y)), for which the set r ∪ {p(z) : z ∈ V (H)} is generic, and
|r − p(x)| + |r − p(y)| ≥ β. Since we also have ||r − p(x)| − |r − p(y)|| = α ≤ β, we can find a point
s (in a plane that contains q(x), q(y), and third point of (H, q)) for which |s − q(x)| = |r − p(x)| and
|s − q(y)| = |r − p(y)| holds. Then by adding w to (H, p) so that p(w) = r, and adding w to (H, q) so
that q(w) = s we obtain a pair of equivalent realizations of G for which (G, p) is generic and {u, v} is not
universally linked in (G, p).

Next suppose that α > β. If β 6= 0 then we can use a similar argument as follows. We choose a point r on
the line (in the interior of the line segment connecting p(x) and p(y)), for which the set r∪{p(z) : z ∈ V (H)}
is generic, and ||r− p(x)| − |r− p(y)|| ≤ β. Since we also have |r− p(x)|+ |r− p(y)| = α > β, we can find
a point s (in a plane that contains q(x), q(y), and third point of (H, q)) for which |s− q(x)| = |r − p(x)|
and |s− q(y)| = |r− p(y)| holds. Then by adding w to (H, p) so that p(w) = r, and adding w to (H, q) so
that q(w) = s we obtain a pair of equivalent realizations of G for which (G, p) is generic and {u, v} is not
universally linked in (G, p).

Finally, we consider the case when β = 0, that is, q(x) and q(y) are coincident. Then we modify
(H, q) by applying a result of Bezdek and Connelly [3], which states that there is a continuous motion
Φ : [0, 1]→ R2d|V | from (H, p) to (H, q) in R2d, where d is the affine dimension of (H, q). Moreover, the
distances between all pairs of vertices change in a monotone way during the motion. If there is a realization
(H, q′) on the trajectory of this motion for which q′(x) 6= q′(y) and |p(u)− p(v)| 6= |q′(u)− q′(v)|, then
the theorem follows by applying the above arguments to (H, q′) in place of (H, q).

If there is no such realization then x and y becomes coincident (at time t ∈ [0, 1], for some 0 < t < 1)
before the distance between u and v begins to change. However, there must be another pair of non-adjacent
vertices {u′, v′} for which the trajectory in [0, t) contains a framework (H, q′) with q′(x) 6= q′(y) and
|p(u′) − p(v′)| 6= |q′(u′) − q′(v′)|. This follows from the fact that the graph Kn − e, obtained from a
complete graph by deleting an edge, is generically universally rigid in R1, for n ≥ 4 (which is easy to
verify). So it is not possible that all but one of the pairwise distances stay the same in, say [0, t

2]. The
theorem then follows by applying the above arguments to (H, q′) in place of (H, q) and {u′, v′} in place of
{u, v}. �

226

Note that Theorem 8 does not hold if we replace degree-2 extension by degree-3 extension: consider
K4 − e and remove a vertex of degree three.

4 A lower bound on the number of edges

The following question was posed in [11].

Question 9. [11, Question 3.6] Let G = (V,E) be generically universally rigid in R1. Does this imply
that |E| ≥ 2|V | − 3?

If we replace universally rigid by globally rigid (resp. rigid), then the best possible lower bound is |V |
(resp. |V | − 1), which is attained by the family of cycles (resp. trees). As an application of Theorem 8 we
show that generically universally rigid graphs need more edges indeed, namely, at least 3

2 |V | (assuming
|V | ≥ 6). This bound is the first step towards an affirmative answer to Question 9. Note that 2|V | − 3
would be best possible, as shown by the graphs K|V |−2,2 + e, obtained from the complete bipartite graph
K|V |−2,2 by adding an edge.

Theorem 10. Let G = (V,E) be a graph with |V | ≥ 6 and |E| < 3
2 |V |. Then G is not generically

universally rigid in R1.

Proof: By induction on |V |. For |V | = 6 it is easy to see that no graph with at most eight edges is
generically universally rigid: suppose H is such a graph. Then H must have a vertex v of degree two.
By Theorem 8 H − v is also generically universally rigid. It also has a vertex w of degree two. Then
H − {v, w} has four vertices, at most four edges, and, again by Theorem 8, is generically universally rigid,
which is impossible.

Consider the inductive step and let |V | ≥ 7. Let us suppose, for a contradiction, that G is generically
universally rigid. The edge count and the fact that generically universally rigid graphs on at least three
vertices have minimum degree at least two implies that G has a vertex v of degree two. By Theorem 8
G− v is generically universally rigid. It implies, by induction, that G− v has at least 3

2 (|V | − 1) edges.
This gives |E| ≥ |E(G− v)|+ 2 ≥ 3

2 (|V | − 1) + 2 ≥ 3
2 |V |, a contradiction. �

5 Concluding remarks

Instead of the genericity assumption on p, we may consider frameworks whose vertices are in general
position, or frameworks for which p is injective, or quasi-injective. (Quasi-injective means that the
endvertices of an edge cannot be coincident.) These properties can also be used to define families of
graphs G by requiring that some (or every) 1-dimensional general position (resp. injective, quasi-injective)
realization of G is universally rigid. The characterization of these families, in most cases, is still open. See
[9, Table 3] for a good overview.

To motivate further research in this direction, we show that the bound in Question 9 above is tight if
we replace generic by quasi-injective.

Theorem 11. Suppose that every quasi-injective realization of G = (V,E) in R1 is universally rigid.
Then |E| ≥ 2|V | − 3.

Proof: Let us assume that |E| ≤ 2|V | − 4. By a result of Chen and Yu [5] this implies that G has an
independent vertex separator, that is, a set S ⊂ V for which G− S is disconnected and G has no edges
with both endvertices in S. We can use this fact to construct a quasi-injective 1-dimensional realization
(G, p) which is not universally rigid (in fact not even globally rigid): we choose a quasi-injective map p so
that all vertices of S are mapped to the same point s on the line. Then an equivalent, non-congruent
realization (G, q) can be obtained by rotating the vertices of some connected component of G− S about s.
�

227

Since every quasi-injective realization of the graphs K|V |−2,2 + e on the line is universally rigid by
Lemma 4, the bound in Theorem 11 is tight.

Acknowledgements

The results of this paper were obtained in the framework of an undergraduate research experience project
of BSM (Budapest Semesters in Mathematics), led by the second author. We thank Owen Cardwell and
Keegan Stump for some useful comments.

References

[1] T.G. Abbott, Generalizations of Kempe’s universality theorem, Master’s thesis, Massachusetts
Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.

[2] L. Asimow and B. Roth, Rigidity of graphs II, J. Math. Anal. Appl. 68 (1979) 171–190.

[3] K. Bezdek and R. Connelly, Pushing disks apart - the Kneser-Poulsen conjecture in the plane, J.
reine angew. Math. 553 (2002), 221-236.

[4] B. Chen, R. Connelly, S.J. Gortler, A. Nixon, and L. Theran, Universal rigidity of ladders
on the line, arXiv:2207.08763, 2022.

[5] G. Chen and X. Yu, A note on fragile graphs, Discrete Mathematics 249 (2002) 41-43.

[6] R. Connelly, Generic global rigidity, Discrete Comput. Geom. 33 (2005), 549–563.

[7] R. Connelly (ed.), Conjectures and questions on global rigidity, Open problems of a mini-workshop
at Cornell University, February 2011.

[8] D.C. Fisher, K. Fraughnaugh, L. Langley, and D.B. West, The number of dependent arcs
in an acyclic orientation, J. Combin. Theory, Ser. B 71 (1997), 73–78.

[9] D. Garamvölgyi, Global rigidity of (quasi-)injective frameworks on the line, Discrete Mathematics
Vol. 345, Issue 2, February 2022.

[10] S. Gortler, A. Healy, and D. Thurston, Characterizing generic global rigidity, Amer. J. Math.
132(4) (2010), 897–939.

[11] T. Jordán and V-H. Nguyen, On universally rigid frameworks on the line, Cont. Disc. Math., vol.
10, no. 2, pp. 10-21, 2015.

[12] T. Jordán and W. Whiteley, Global rigidity, in J.E. Goodman, J. O’Rourke, C.D. Tóth (eds.),
Handbook of Discrete and Computational Geometry, 3rd ed., CRC Press, Boca Raton, 2018.

[13] K. Ratmanski, Universally rigid framework attachments, arXiv:1011.4094, 2010.

[14] J.B. Saxe, Embeddability of weighted graphs in k-space is strongly NP-hard. Technical report,
Computer Science Department, Carnegie Mellon University (1979).

[15] B. Schulze and W. Whiteley, Rigidity and scene analysis, in J.E. Goodman, J. O’Rourke, C.D.
Tóth (eds.), Handbook of Discrete and Computational Geometry, 3rd ed., CRC Press, Boca Raton,
2018.

228

Radon number of graph families

Attila Jung1

Department of Computer Science
Eötvös Loránd University

Budapest, Hungary
jungattila@gmail.com

Abstract: Motivated by Bukh’s counterexample to Eckhoff’s Partition Conjecture, we define
Radon numbers for families of isomorphism classes of graphs and completely characterize
families with Radon number at most four in terms of small forbidden subgraphs.

Keywords: convexity spaces, Radon numbers, Eckhoff’s conjecture, graphs

1 Introduction

Radon’s Lemma [6] states that whenever we have X ⊂ Rd with ∣X ∣ ≥ d + 2, we can partition X into two
disjoint subsets X+ ∪X− = X such that conv(X+) ∩ conv(X−) ≠ ∅, where conv(S) is the convex hull of
S ⊂ Rd. One of its generalizations is Tverberg’s Theorem [7], which can be stated as the following. For
any k ≥ 2 and X ⊂ Rd, if we have ∣X ∣ ≥ (d + 1)(k − 1) + 1, then we can partition X into disjoint subsets
X1 ∪ . . . ∪Xk such that ⋂i conv(Xi) ≠ ∅. Eckhoff’s Partition Conjecture [2, 3] states, that Tverberg’s
Theorem is a purely combinatorial consequence of Radon’s Lemma. For an exact statement, we need
to define abstract convexity spaces and their generalized Radon numbers. For an overview of convexity
spaces and their invariants see the book by van de Vel [8].

Definition 1 Let X be a set and let C be a family of subsets of X. The pair (X,C) is a convexity space,
if

• ∅,X ∈ C,

• If C′ ⊂ C, then ⋂C∈C′ C ∈ C,

• If C1,C2, . . . ∈ C and C1 ⊆ C2 ⊆, then ∪iCi ∈ C.

In this sense Rd and the family of all the convex sets in Rd forms a convexity space. We can define
the convex hull of a subset S ⊆X in a convexity space as

conv(S) = ⋂
S⊂C∈C

C.

Definition 2 The kth generalized Radon number of a convexity space (X,C) is the smallest number rk
such that any subset S ⊆ X with ∣S∣ = rk can be partitioned into k nonempty disjoint subsets S = ⊍ki=1Si

such that
k

⋂
i=1

conv(Si) ≠ ∅.

If no such number exists, let rk =∞.

We will call r = r2 simply the (not generalized) Radon number. Calder [2] and Eckhoff [3] conjectured
the following relationship between the Radon number and the generalized Radon numbers.

1The author was supported by the Rényi Doctoral Fellowship and by the NKFIH grant FK132060.

229

Conjecture 3 (Eckhoff’s Partition Conjecture) For every convexity space, we have

rk ≤ (r − 1)(k − 1) + 1.

It was confirmed by Jamison [4] that the conjecture holds if r2 = 3. In general, the best upper bound

of rk in terms of k and r = r2 is rk ≤ (2k)
log2 r by Jamison [4] and rk ≤ kr

rr
log2 r

by Pálvölgyi [5].
However, after being open for more than thirty years, the conjecture itself was refuted by Bukh [1], as he
constructed convexity spaces with r = 4 and rk ≥ 3k − 1. As the main motivation for the present work,
we will describe his approach in the next section.

The paper is organized as follows. In Section 2 we describe Bukh’s approach as a motivation for
our work and explain how our work is related to it. Apart from the motivation the rest of the paper is
self-contained. In Section 3 we define the Radon number for graph families and give some general results.
In Section 4 we show that graph families with Radon number at most three are trivial and in Section 5,
as our main result, we characterize graph families with Radon number four. In the end, in Section 6, we
describe possible future directions and pose some open questions.

2 Bukh’s construction

The results described in this section are from Bukh’s preprint [1]. First, we need some notation. Inter-
secting convex hulls are described using nerves.

Definition 4 If (X,C) is a convexity space, the B-nerve of a subset S ⊆X is defined as follows.

BC(S) = {A ⊆ 2S ∶ ⋂
A∈A

conv(A) ≠ ∅}.

In words, BC(S) consists of all the collections of subsets of S for which collections the convex hulls of
the subsets intersect. One can easily describe Radon numbers of convexity spaces using B-nerves.

Claim 5 (Bukh [1], Proposition 6) The kth generalized Radon number of a convexity space (X,C) is
rk if and only if for every S ⊆ X with ∣S∣ ≥ rk there exists a collection in BC(S) containing k disjoint
subsets of S.

To show that rk > t for a convexity space it is enough to find an S ⊆X of size t with suitable BC(S).
The idea is that one can first construct a B-nerve of a t-element set that shows rk > t and then find
a suitable underlying convexity space. But to be able to do that, the B-nerve has to satisfy certain
properties.

Lemma 6 (Bukh [1], Lemma 7)] Given a finite S and B ⊆ 22
S

a family of collections of subsets of
S, there exists a convexity space (X,C) with X ⊇ S and B = BC(S) if and only if B satisfies the following
three properties.

1. For all s ∈ S we have {A ⊆ S ∶ s ∈ A} ∈ B.

2. If A′ ⊂ A ∈ B, then A′ ∈ B.

3. If A ∈ B, then {A′ ⊆ S ∶ ∃A ∈ A with A ⊂ A′} ∈ B.

In the proof of Lemma 6, Bukh constructs a concrete convexity space (X,C); we will call it the B-
extension of S with respect to B. To use this extension to refute Eckhoff’s Conjecture, one has to be able
to control the Radon number of the B-extension.

Claim 7 (Bukh [1], Proposition 6) Given a finite S and B ⊆ 22
S

, the B-extension of S with respect
to B has r ≤ t if and only if for all A1, . . . ,At ∈ B there exists a partition I ⊍ J = [t] with

(⋂
i∈I
Ai)⋃

⎛

⎝
⋂
j∈J
Aj

⎞

⎠
∈ B.

230

Bukh’s counterexample to Eckhoff’s Partition Conjecture constructs for each k, a set S with ∣S∣ =
3(k − 1) + 1 and a B which (a) satisfies the three properties described in Lemma 6, (b) has no family
containing k disjoint subsets and (c) whose B-extension has the property described in Claim 7 with t = 4.
One of the advantages of his approach is the asymmetry of point (b) which proves rk > 3(k − 1) + 1 and
point (c) which proves r ≤ 4 using the property described in Claim 7. The main difficulty however lies in
the same place. It arises when one wants to check the property described in Claim 7.

In the rest of the paper, our aim is to investigate this property in a rather simplified setting. We
hope that after understanding simpler cases, one will be able to construct convexity spaces with r = 4
and even larger values of rk. The main simplification is that instead of a family of collections of arbitrary
size subsets of S, we consider only families of collections of subsets of size two in the nerve. In this case,
every collection of subsets is an edge set of a graph. Another simplification is more closely related to the
particular example Bukh gave in his paper. There every permutation of S was an automorphism of B.
As this saves a lot of trouble when doing case analysis, we only consider families of graphs that are closed
under isomorphisms. Furthermore, we want our graph families to be closed under taking subgraphs in
accordance with the second property in Lemma 6, but we drop the requirement of the first property
of Lemma 6. The first property is just the requirement that every star is a member of the family, so
leaving it out makes our approach a bit more general and probably also a bit more natural. As our last
simplification, we do not consider the size of the base set (S) as a parameter to be optimized. We leave
it as a further question to consider because it makes the current work more readable.

3 Radon number of graph families

In the rest of the paper, we will consider graph families which are closed under any isomorphism of
any graphs in the family and also closed under taking subgraphs. Since the considered graph families
are closed under isomorphisms of individual graphs, we have to fix a vertex set as the domain of these
isomorphisms. In this paper, we assume that the underlying vertex set is finite but large enough. For our
purposes, a vertex set consisting of the first 21 positive integers will be sufficient, but most of our results
hold even if the size of the underlying vertex set is just 6. We only consider simple graphs and identify
graphs with their edge sets. We will denote the number of edges in a graph G by ∣G∣. As the vertex sets
of the graphs are labeled, the intersection of any two graphs can be defined as the set of their common
edges. The following is our main notion, an analog of the property of B-nerves in Lemma 6.

Definition 8 We say that a family G of graphs has Radon number at most r, if no matter how we choose
G1, . . . ,Gr ∈ G, there is a partition I ⊍ J = [r] such that

(⋂
i∈I
Gi)⋃

⎛

⎝
⋂
j∈J

Gj

⎞

⎠
∈ G.

We will call (⋂i∈I Gi)⋃ (⋂j∈J Gj) a Radon-major of G1, . . . ,Gr. The smallest number r(G) such that G
has Radon number at most r is the Radon number of the family G.

If we were to follow the problems arising in Bukh’s construction more closely, we would consider graph
families G where r(G) ≤ 4, every star is a member of the family, but there is no graph with three disjoint
edges in the family. We consider instead arbitrary families with bounded Radon numbers to make our
approach more general. But first, we determine the Radon number of the family of stars as an example.
A star is a graph consisting of any number of edges sharing a common endpoint.

Example 9 If G consists of all the stars, then r(G) = 4.

Proof: We will show that r(G) > 3, then that r(G) ≤ 4.
For the proof of r(G) > 3 consider the following three stars: G1 = {{1,2},{1,3}}, G2 = {{1,2},{2,3}}

and G3 = {{1,3},{2,3}}. By symmetry there is essentially one type of partition of {G1,G2,G3}, for

231

example G1 ∪ (G2 ∩ G3), which is a triangle. Since a triangle is not a subgraph of a star, the graphs
G1,G2,G3 show that r(G) > 3.

To show that r(G) ≤ 4, we need to consider four arbitrary stars G1, . . . ,G4. If there are two stars,
say G1 and G2, with the same center, then (G1 ∩G3) ∪ (G2 ∩G4) is also a star with the same center.
Otherwise, the intersection of any three stars is empty, and thus (G1 ∩G2 ∩G3) ∪G4 = G4 provides a
good partition. ◻

Example 10 If G consists of all the n-cliques and their subgraphs, then r(G) = n + 1.

Proof: First, we show that r(G) ≤ n + 1. Let G1, . . . ,Gn be cliques on n vertices and consider the
sequence ∩ji=1V (Gi) for 1 ≤ j ≤ n + 1, where V (Gi) is the vertex set of Gi. If there exists a j with

∩
j
i=1V (Gi) = ∩

j+1
i=1V (Gi), then ∩ji=1Gi ⊂ Gj+1 and thus G = (∩ji=1Gi) ∪ (∩

n+1
i=j+1Gi) ⊂ Gj+1, which implies

G ∈ G. Otherwise we have ∣ ∩ni=1 V (Gi)∣ ≤ 1, and thus (∩ni=1Gi) ∪Gn+1 = Gn+1 ∈ G.
Now we show that r(G) > n. Let G1, . . . ,Gn be cliques on n vertices where the vertex set of Gi is

[n + 1] ∖ {i}. No matter how we partition [n + 1] into two nonempty subsets I ⊍ J = [n + 1], the graph
G = (∩i∈IGi)∪ (∩j∈JGj) has n+ 1 vertices, but none of them is isolated. Thus, G is not a subgraph of an
n-clique. ◻

Our main tool in considering Radon numbers of graph families will be an analog of Helly’s Theorem.
We need two preliminary definitions to state it.

Definition 11 The h-Helly closure Hh(G) of a graph family G consists of all graphs H for which every
at most h–edge subgraph of H is an element of G.

As an example, if G consists of all the stars with at most h edges, then its h-Helly closure consists of
all the stars with an arbitrary number of edges.

Definition 12 We say that a graph family G implies a graph G under the condition r(G) ≤ t if every

graph family G′ ⊇ G with r(G′) ≤ t contains G as well. In notation G
r≤t
Ô⇒ G. We also write G

r≤t
Ô⇒ F

for a graph family F , if G
r≤t
Ô⇒ F for every F ∈ F .

We will use that this kind of implication is a transitive relation if t is fixed. The following is an analog
of Helly’s Theorem for graph families.

Lemma 13 (Helly Property) For every graph family G and every integer h > 0 we have

G
r≤h+1
Ô⇒ Hh(G).

Proof: The proof of Lemma 13 mimics Radon’s proof [6] of Helly’s Theorem. Let G′ be a family
containing G and satisfying r(G′) ≤ h + 1. We will prove H ∈ G′ for every H ∈Hh(G) by induction on the
number of edges in H. If H has h elements, then it is equal to some G ∈ G and hence a member of G′.
For the induction step, assume, that H has more than h edges and that every proper subgraph of H is a
member of G′. Let H1, . . . ,Hh+1 be different subgraphs of H, each containing exactly ∣H ∣ − 1 edges. No
matter how we partition [h + 1] into two nonempty subsets I ⊍ J = [h + 1], we have

(⋂
i∈I
Hi)⋃

⎛

⎝
⋂
j∈J

Hj

⎞

⎠
=H,

showing that G′ must contain H as well. ◻

Definition 14 A graph family G is t-Radon closed, if r(Ht−1(G)) = t.

232

Claim 15 If r(G) ≤ t for a graph family G, and a graph family G′ consists of graphs with at most t − 2
edges, then r(G ∪ G′) ≤ t as well.

Proof: Let G1, . . . ,Gt ∈ G ∪ G
′. If there is any Gi with at most t − 2 edges, then there are two different

I, I ′ ⊂ [t] with ∣I ∣ = ∣I ′∣ = t − 1, i ∈ I ∩ I ′ and ∩j∈IGj = ∩j∈I′Gj by the pigeonhole principle. In particular,
∩j∈IGj ⊂ Gk if {k} = [t] ∖ I. I and J = {k} provides a good partition, because ∩j∈IGj ∪Gk ⊆ Gk.

If there is no Gi among G1, . . . ,Gt with at most t − 2 edges, then G1, . . . ,Gt ∈ G and there exists a
good partition I ⊍ J = [t] with (∩i∈IGi) ∪ (∩j∈JGj) ⊂ G ∈ G. ◻

Corollary 16 Every graph family G with r(G) = t is a union of a family of graphs with at most (t − 2)
edges and a (t − 1)-Helly closure of a family of graphs with exactly t − 1 edges.

We characterize graph families with Radon number at most three as a warm-up.

4 Graph families with Radon number at most 3 are trivial

Claim 17 If r(G) = 2 for a graph family, then either G is the empty family or G contains the empty
graph with no edges or G contains all the graphs.

Proof: If r(G) = 2, then the Radon-major of any G1,G2 is G1 ∪G2, thus G is closed under taking the
union of two graphs in G. Since G is also closed under taking any isomorphic copy of any of its graphs,
if it contains a graph with at least one edge, then it contains all the graphs. ◻

Proposition 18 If r(G) = 3 for a graph family G, then G consists of all the graphs with exactly one edge.

Note that there are only two different non-isomorphic simple graphs with exactly two edges, a path
(denoted from now by the symbol ∧) and a graph consisting of two disjoint edges (denoted by =). We
show that any one of them contains the other in its 2-Helly closure. The proof of Proposition 18 will be
an easy corollary.

Claim 19 {∧}
r≤3
Ô⇒ =.

Proof: First, note that every two-edge subgraph of a triangle is isomorphic to ∧. By Lemma 13 it

follows that {∧}
r≤3
Ô⇒ K3. We will further show, that K3

r≤3
Ô⇒ =. Let Gi be the triangle with vertices

{i}∖{1,2,3,4} and consider G1,G2,G3. By symmetry, there is only one type of partition, whose Radon-
major is isomorphic to G1 ∪ (G2 ∩G3). But it contains two disjoint edges, namely {1,4} from G2 ∩G3

and {2,3} from G1. Since every Radon-major of G1,G2,G3 contains a subgraph isomorphic =, we can

conclude, that {∧}
r≤3
Ô⇒ {K3}

r≤3
Ô⇒ =, finishing the proof of the Claim. ◻

Claim 20 {=}
r≤3
Ô⇒ ∧.

Proof: By Lemma 13 we have {=}
r≤3
Ô⇒ ≡, where ≡ is the graph with three disjoint edges. Let G1 =

{12,45,78}, G2 = {12,56,89} and G3 = {23,45,89} (we denote edges of the form {i, j} simply by ij). No
matter how we partition {G1,G2,G3} into two nonempty subsets, ∧ will be a subgraph of any Radon-
major. ◻

Proof:[of Propositoin 18] The family G which contains all the graphs with exactly one edge has r(G) > 2
by Claim 17 and has r(G) ≤ 3 by Claim 15.

233

On the other hand, the union of Claims 19 and 20 shows that if a graph family contains any graph
with at least two edges, then its 2-Helly closure contains all the graphs. By Lemma 13, G must contain
all the graphs if we have r(G) ≤ 3, but in this case r(G) = 2, finishing the proof of Proposition 18. ◻

In the following pages we will use the scheme of the proof of Claim 19 many times. We started with
some small graphs and find bigger ones in their h-Helly closure. Then we take h + 1 of the bigger ones
and show that there is no Radon major of them without a specific subgraph. If possible, we want the
configuration of the four graphs to be very symmetric to avoid dealing with many cases.

5 Graph families with Radon number 4

We will use the following symbols for the five isomorphism classes of graphs with exactly three edges:
≡,),△,3,⊓. The first denotes a graph with three disjoint edges, the second a star with three edges, the
third a triangle, the fourth a disjoint union of a path with two edges and an edge, and the fifth a path
with three edges.

Theorem 21 If a graph family G with Radon number at most 4 contains any of the four families

{≡},{),3},{),△,⊓},{△,3,⊓},

then it contains all the graphs. If a graph family contains neither of the above listed families, then its
3-Helly closure has Radon number 4, or equivalently, the family is 4-Radon closed.

We will prove the first part of Theorem 21 in Subsection 5.1 and the second part in Subsection 5.2.

5.1 Implications

The proof of the first part of Theorem 21 is broken down into seven small claims.

Claim 22 {≡}
r≤4
Ô⇒ 3.

Proof: There are seven different 2-partitions of {1,2,3,4}, namely 1∣234, 2∣134, 3∣124, 4∣123, 12∣34, 13∣24
and 14∣23. Let I1, J1, . . . , I7, J7 be the subsets of these partitions in the previous order. For example
I1 = {1}, J1 = {2,3,4}, I5 = {1,2} or J7 = {2,3}. Note that a graph consisting of any number of disjoint
edges is part of the 3-Helly closure of {≡}. Now consider seven disjoint copies of ∧, each corresponding

to a different 2-partition of {1,2,3,4}. Name the two edges of ks copy as {e
(k)
i , e

(k)
j } and let G1, . . . ,G4

be such that Gℓ = {e
(k)
i ∶ ℓ ∈ Ik}∪ {e

(k)
j ∶ ℓ ∈ Jk}. No matter what partition I ⊍ J = {1,2,3,4} we take, the

corresponding copy of ∧ will be in (⋂i∈I Gi)⋃ (⋂j∈J Gj). The last observation is that at least one of the
intersections will contain an edge from a different copy of ∧, resulting in a copy of 3 in every Radon-major
of G1, . . . ,G4. ◻

Claim 23 {≡}
r≤4
Ô⇒ △,),⊓.

Proof: Let F be one of the three graphs△,),⊓. Consider seven disjoint copies of F and denote the edges

of the kth one by e
(k)
1 , e

(k)
2 , e

(k)
3 . Now let G1,G2,G3 and G4 be defined as follows. Let I1, . . . , J7 subsets

of different partitions of {1,2,3,4} as in the proof of Claim 22, and let Gℓ = {e
(k)
1 ∶ ℓ ∈ Ik} ∪ {e

(k)
2 ∶ ℓ ∈

Ik}∪{e
(k)
3 ∶ ℓ ∈ Jk}. This way every Gℓ consists of disjoint edges and 2-edge paths and thus {≡}

r≤4
Ô⇒ Gℓ.

The proof ends with the observation, that no matter how we partition {1,2,3,4} into I ⊍ J , one of the
seven copies of F will be a subgraph of (⋂i∈I Gi)⋃ (⋂j∈J Gj). ◻

234

Claim 24 {),△,⊓,3}
r≤4
Ô⇒ ≡ .

Proof: First observe, that {),△,⊓,3}
r≤4
Ô⇒ K5 by the Helly Property (Lemma 13). Now let Gi be

the five-clique on {1, . . . ,6} avoiding vertex i. By symmetry, checking partitions 12∣34 and 1∣234 are
sufficient. In the first case, the edges 12,34,56 are present in (G1 ∩G2) ∪ (G3 ∩G4). In the second case,
edges 16,23,45 are present in G1 ∪ (G2 ∩G3 ∩G4). Thus, {G1,G2,G3,G4} has no Radon-major without
≡ as a subgraph. ◻

Claim 25 {),△,⊓}
r≤4
Ô⇒ 3.

Proof: Now {),△,⊓}
r≤4
Ô⇒ K4 by the Helly Property. Let Gi be a four-clique on {1, . . . ,5} avoiding

vertex i. By symmetry, checking partitions 12∣34 and 1∣234 are sufficient. In the first case {34,45,12} ⊆
(G1 ∩G2) ∪ (G3 ∩G4), in the second case {23,34,15} ⊆ G1 ∪ (G2 ∩G3 ∩G4), showing that there is no
Radon-major of {G1,G2,G3,G4} without 3 as a subgraph. ◻

Claim 26 {),3,⊓}
r≤4
Ô⇒ △.

Proof: Observe that {),3,⊓}
r≤4
Ô⇒ K2,3 by the Helly Property. Let G1, . . . ,G4 be K2,3s on {1, . . . ,5}

with Gi being the complete bipartite graph between {i,5} and {i,5} ∖ {1, . . . ,5}. As before, due to
symmetry, we only need to check partitions 12∣34 and 1∣234. In the first case {12,15,25} ⊆ (G1 ∩G2) ∪

(G3 ∩G4) and in the second case {12,15,25} ⊆ G1 ∪ (G2 ∩G3 ∩G4). ◻

Claim 27 {),3}
r≤4
Ô⇒ ⊓.

Proof: By Lemma 13 we have {),3}
r≤4
Ô⇒ Sl ⊍ Sk, any union of two vertex-disjoint stars. We will

consider four such graph on vertices {0,1, . . . ,8}, all with centers 0 and 8. Define I1, J1, . . . , I7, J7 as in
the proof of Claim 22 and let Gℓ = {{0, k} ∶ ℓ ∈ Ik}∪ {{k,8} ∶ ℓ ∈ Jk} for ℓ ∈ {1,2,3,4}. Now if we take the
kth partition Ik ⊍ Jk = {1,2,3,4}, the graph (⋂i∈Ik Gi)⋃ (⋂j∈Jk

Gj) will contain the edges {0, k},{k,8}
and at least one more edge, resulting in a copy of ⊓ in every Radon-major. ◻

Claim 28 {△,3,⊓}
r≤4
Ô⇒).

Proof: Observe that any cycle with five edges, any graph consisting of two disjoint triangles, and any
path with four edges are part of the 3-Helly closure of {△,3,⊓}. Now consider the following graphs: G1

a five cycle with vertices 1,2,3,4,5, G2 a disjoint union of two triangles with vertices 1,2,3 and 4,5,6,
G3 a path with five vertices 2,3,4,6,5 and G4 another path with five vertices 1,3,4,5,6. As there is
no symmetry in the configuration, we have to check all seven possible partitions of them. We will show
undesirable 3-edge subgraphs in the Radon major in every case. We have {15,45,56} ⊂ G1∪(G2∩G3∩G4)

in the first case, {13,23,34} ⊂ G2∪(G1∩G3∩G4) in the second case, {34,45,46} ⊂ G3∪(G1∩G2∩G4) in
the third, {13,23,34} ⊂ G4∪(G1∩G2∩G3) in the fourth, {13,23,34} ⊂ (G1∩G3)∪(G2∩G4) in the fifth and
{34,45,46} ⊂ (G1 ∩G4)∪ (G2 ∩G3) in the sixth case. In the last case {12,34,56} ⊂ (G1 ∩G2)∪ (G3 ∩G4)

which is a copy of ≡, but we have seen, that {≡}
r≤4
Ô⇒). ◻

Now we are ready to prove the first part of Theorem 21, as it is an easy consequence of the previous
seven claims and Lemma 13.

Proof:[of the first part of Theorem 21] If {≡} ⊆ G, then all the other graphs with exactly three edges are
elements of G by Claims 22 and 23. From here Lemma 13 implies that every graph is part of G.

If {),3} ⊆ G, then we can combine Claims 24, 26 and 27 and the previous paragraph to reach the
same conclusion. For the cases where {),△,⊓} or {△,3,⊓} is a subfamily of G, we can combine Claim 25
or Claim 28 with Claim 24 and the previous paragraph. ◻

235

5.2 Radon-closed families

Let G be an arbitrary graph family. To show that G has Radon number at most 4, we have to exclude
the possibility of the existence of G1, . . . ,G4 ∈ G without a Radon-major in G. The following claims show
some necessary properties of such quadruples of graphs.

Claim 29 If G1, . . . ,G4 ∈ G has no Radon-major in G, then the 3-wise intersections of them must be
nonempty and distinct.

Proof: If a three-wise intersection is empty, for example G1 ∩G2 ∩G3 = ∅, then G4 is a Radon major,
as (G1 ∩G2 ∩G3) ∪G4 = G4.

If two of the three-wise intersections are equal, for example G1 ∩G2 ∩G3 = G2 ∩G3 ∩G4, then G4 is
a Radon-major, as (G1 ∩G2 ∩G3) ∪G4 = (G2 ∩G3 ∩G4) ∪G4 = G4. ◻

Claim 30 If G1, . . . ,G4 are arbitrary graphs, then

4

⋃
i=1
⋂
j≠i
Gj ∈H3({G1, . . . ,G4}).

Proof: If we choose 3 edges from the union of the 3-wise intersections, there will be a Gi among
G1, . . . ,G4, which contains all the 3 edges. ◻

Given four graphs G1, . . . ,G4 and subset I ⊂ {1,2,3,4}, we will say that an edge e ∈ ∪ni=1Gi is I-type,
if e ∈ ⋂i∈I Gi but for every J ⊋ I we have e /∈ ⋂j∈J Gj .

In this sense Claim 29 states that given G1, . . . ,G4 ∈ G with no Radon-major there must be at least
one I-type edge for every I ⊂ [4], ∣I ∣ = 3.

Claim 31 If G1, . . . ,G4 ∈ H = H3(G) has no Radon-major in H, then there is either a {1,2}-type edge
or a {3,4}-type edge in ∪iGi.

Proof: If there is no {1,2}-type edge, then G1∩G2 = (G1∩G2∩G3)∪(G1∩G2∩G4) ∈H by Claim 30. We
must have an edge e in (G3∩G4)∖((G1∩G3∩G4)∪(G2∩G3∩G4)), otherwise (G1∩G2)∪(G3∩G4) ∈H

would be a Radon-major. ◻

Claim 32 If all the graphs in H =H3(G) have at most 4 edges, then r(H) ≤ 4.

Proof: Let G1, . . . ,G4 ∈ H and consider first the 3-wise intersections of them. If G1, . . . ,G4 have no
Radon-major in H, then by Claim 29 every Gi must contain at least 3 edges, one in each distinct 3-wise
intersection where Gi is one of the intersecting graphs.

Now consider the 2-wise intersections. By Claim 31 at least three of them must be of size at least
three. It follows from the pigeon-hole principle that at least one of the Gis have at least five edges. ◻

Corollary 33 The 3-Helly closures of the families {⊓},{3},{△} and {⊓,△} have Radon number 4.

Proof: In all the mentioned families the 3-Helly closure contains only graphs with at most 4 edges. We
will show that by showing that the 3-edge graphs in the families can not be extended with more than
one edge while staying in the 3-Helly closure of the family. This is sufficient since every graph with at
least three edges in the 3-Helly closure contains at least one of the listed 3-edge graphs as a subgraph.

In the case of {⊓}, there is only one way to ad an edge to ⊓ without creating other types of 3-edge
subgraphs and this creates a C4, which is a maximal graph in the 3-Helly closure.

236

In the case of {3}, there is also only one way to extend 3 with an edge and this creates a graph
consisting of two disjoint paths each with two edges. This graph can not be extended without leaving
the 3-Helly closure of {3}.

In the case of {△}, the triangle itself is a maximal graph in the Helly-closure which can not be
extended.

In the case of {⊓,△}, we either start with a ⊓ or with a △, but even if the other 3-edge graph is
allowed, there is no other way to extend these graphs than to extend ⊓ into a C4. ◻

Corollary 34 The 3-Helly closures of the families {)},{),⊓} and {),△} has Radon number 4.

Proof: Let G be any of the families {)},{),⊓} or {),△}. Suppose for contradiction, that G1, . . . ,G4 ∈

H = H3(G) has no Radon-major in H and look at G = ⋃4
i=1⋂j≠iGj . It is a member of H by Claim 30

and we have ∣G∣ ≥ 4 and ∣G ∩Gi∣ ≥ 3 for all i by Claim 29.
In the case of G = {)}, G is a star with at least four edges. G1, . . . ,G4 are also stars and moreover,

they have the same center, since ∣G ∩Gi∣ ≥ 3 for all i. Now even their union is in H, contradicting the
assumption that they have no Radon-major in H.

If G = {),⊓}, then G is either a star or a C4. The first case brings us back to the previous paragraph.
If G = C4, then all the Gis are subgraphs of G with at least 3 edges and their union is exactly G.

If G = {),△}, then G must be a star with at least four edges and the rest of the proof goes as in the
case when G = {)}. ◻

Corollary 35 The 3-Helly closures of the families {3,△} and {3,⊓} has Radon number 4.

Proof: If G = {3,△}, then all the maximal graphs in H = H3(G) are graphs consisting of two disjoint
triangles. Suppose for contradiction that there exists G1, . . . ,G4 ∈ H without a Radon-major in H. We
might assume that all of them are maximal graphs in H. Let Gi = Ti⊍T

′
i a disjoint union of two triangles.

The graphs G1, . . . ,G4 can not all have a common triangle, since in this case they can not have distinct
3-wise intersections, which contradicts Claim 29. If they do not have a common triangle, there are two
of them without a common triangle. Let them be G3 and G4. By Claim 31 G1 and G2 intersect in
at least 3 edges, so they have a common triangle, denote it by T . By Claim 29 there must be edges
e ∈ (G2 ∩ G3 ∩ G4) ∖ T and e′ ∈ (G1 ∩ G3 ∩ G4) ∖ T . The edges e and e′ are disjoint, because G3 and
G4 don’t have a common triangle. We may assume without loss of generality, that e ∈ T3 ∩ T4 and
e′ ∈ T ′3 ∩ T

′
4. But the edges e and e′ are vertex-disjoint from T , so G1 ∩G2 ∩G3 and G1 ∩G2 ∩G4 are

empty, contradicting Claim 29.
The case G = {3,⊓} is even more complicated, because there are three types of maximal graphs

in H = H3(G). These maximal graphs are a cycle with four edges (C4), a cycle with five edges (C5)
and a disjoint union of two paths each with two edges (2P3). Suppose for contradiction that there are
G1 . . . ,G4 ∈ H without a Radon-major in H. We may assume that each of them is isomorphic to one of
C4,C5,2P3 and also that G = ⋃4

i=1⋂j≠iGj isomorphic to an at least 4-edge subgraph of one of C4,C5 and
2P3 by Claim 30. Observe that all the intersections Gi ∩G must be distinct and must have size at least 3
by Claim 29. In all three cases when G is isomorphic to C4, C5, or 2P3 the previous facts will contradict
Claim 31. ◻

Proof:[of the second part of Theorem 21]
If G does not contain any graph with at least three edges, then r(G) ≤ 4 by Claim 15.
If G does contain graphs with at least three edges, r(G) = 4 and G does not have {≡},{),3},{),△,⊓}

or{△,3,⊓} as subfamilies, then its 3-Helly closure equals to the 3-Helly closure of one of the remaining
nonempty subfamilies of the five isomorphism classes of graphs with three edges. These subfamilies are
{⊓},{3},{△},{)},{⊓,△},{),⊓},{),△},{3,△} and {3,⊓}. We have seen in Corollaries 33, 34 and 35
that for all the above-listed families the Radon number r of the 3-Helly closures is 4. ◻

237

6 Open questions

There are a lot of questions one can ask about the Radon number of different (graph) families. We
chose the following two with the hope that investigating them will bring us closer to improving Bukh’s
counterexample to Eckhoff’s Conjecture. First, the collections in B-nerves are not necessarily edge sets
of graphs, but of general set systems. The next step towards this general setting might be to consider 3-
uniform hypergraphs instead of graphs with the straightforward generalization of the definition of Radon
numbers for graph families.

Problem 36 Characterize families of 3-uniform hypergraphs with Radon number at most 4.

One might also try to find analogs of Bukh’s construction with larger Radon numbers. The first step
might be to consider graph families with Radon number 5.

Problem 37 Characterize graph families G with Radon number r(G) = 5.

Acknowledgement

The author would like to thank Dömötör Pálvölgyi for a lot of interesting and encouraging discussions
during the research.

References

[1] B. Bukh, Radon partitions of convexity spaces, arXiv preprint, arXiv:1009.2384 (2010)

[2] J.R. Calder, Some elementary properties of interval convexities, J. Lond. Math. Soc. 3, 422–428
(1971)

[3] J. Eckhoff, Radon’s theorem revisited, Contributions to geometry 164-185. (Siegen, 1978)

[4] R.E. Jamison-Waldner, Partition numbers for trees and ordered sets, Pac. J. Math. 96(1),
115–140 (1981)

[5] D. Pálvölgyi, Radon numbers grow linearly, Discrete and Computational Geometry 68(1), 165-
171. (2022)

[6] J. Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83(1-2),
113–115 (1921)

[7] H. Tverberg, A generalization of Radon’s theorem, J. Lond. Math. Soc. 41, 123-128 (1966)

[8] M.L.J. van de Vel, Theory of Convex Structures, Elsevier (1993)

238

Rigid planar subgraphs in the triangulations of the
double torus

Viktória E. Kaszanitzky1

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

1111 Budapest, Műegyetem rkp. 3., Hungary
and

ELKH-ELTE Egerváry Research Group on
Combinatorial Optimization

1111 Budapest, Pázmány P. s. 1/C, Hungary
kaszanitzky@cs.bme.hu

Abstract: In [9] Nevo and Tarabykin proved that every triangulation of the torus, the
projective plane and the Klein bottle has a spanning planar Laman subgraph. Combining
this with [5], a paper of Király, the result implies, that every triangulation of the above
mentioned surfaces can be realised as an infinitesimally rigid framework with just 26 vertex
locations in the plane.

In this paper we prove the corresponding result for the double torus.

Keywords: combinatorial rigidity, rigid realisations, triangulated surfaces

1 Introduction

1.1 Rigidity in the plane

A d-dimensional framework (G, p) is a graph G = (V,E) together with a map p : V → Rn. The
rigidity matrix R(G, p) of size |E| × d|V | has one row corresponding to each of its edges, and d columns
corresponding to each of its vertices. The row of uv ∈ E has entries p(u)− p(v) in the columns of u and
p(v)− p(u) in the columns of v. The rest of the entries in this row are zeros. An infinitesimal motion of
(G, p) is an assignment m : V → Rd, such that (p(u) − p(v))(m(u) −m(v)) = 0 for every edge uv ∈ E.
Equivalently, if R(G, p)m = 0. An infinitesimal motion m is trivial if m(v) = Sp(v) + t holds for all
v ∈ V , for some d× d skew-symmetric matrix S and some vector t ∈ Rd. (G, p) is infinitesimally rigid in
Rd if all of its infinitesimal motions are trivial.

A d-dimensional framework (G, p) is generic if the d|V | coordinates of its points are algebraically
independent over Q. Graph G is said to be rigid in Rd if every (or equivalently, if some) generic d-
dimensional framework (G, p) is infinitesimally rigid in Rd. G is minimally rigid in Rd, if G is rigid,
but after the deletion of any edge it is no longer rigid. For d = 2 a theorem of Laman characterises the
minimally rigid graphs:

Theorem 1 [6] Graph G = (V,E) is minimally rigid in R2 if and only if |E| = 2|V | − 3 and for every
subgraph G′ = (V ′, E′) with at least two vertices |E′| ≤ 2|V ′| − 3.

1Research is supported by then and by the Hungarian National Research, Development and Innovation Office (NKFIH),
grant number FK128673.

239

1.2 Triangulations of surfaces

A triangulation of a surface is a simple graph G = (V,E) that can be embedded into the surface such that
the edges do not intersect each other and every face is a triangle. A triangulation may be reduced with an
edge contraction, where we take an edge uv and delete the vertex u and we add edges vui for every ui for
which uui ∈ E and vui ̸∈ E. If a triangulation does not have an edge which can be contracted such that
the resulting graph is also a triangulation of the same surface then it is called irreducible. The inverse
operation of the edge contraction is the vertex split, which takes two edges uv, uw in the embedding. It
doubles u, thus creates u1 and u2, connects them with an edge, connects both u1 and u2 with v and w.
The neighbours of u form a cycle which is divided into two paths by v and w. The vertices of one of
these paths are connected with u1 and the vertices on the other path are connected with u2. From the
set of the irreducible triangulations of a surface every triangulation of the same surface can be generated
with a series of vertex splits.

The set of irreducible triangulations is determined for a number of surfaces, see [1], [7], [8], [11], [12].
Using these irreducible triangulations Nevo and Tarabykin proved the following:

Theorem 2 [9] Every triangulation of the projective plane contains a spanning disc. Every triangulation
of the torus contains a spanning cylinder. Every triangulation of the Klein bottle contains either a
cylinder, or a connected sum of two triangulated discs along a triangle.

We shall need some properties of surfaces with higher genus for proving similar results for them.
Let K = v1v2 . . . vk be a cycle of a graph G embedded in a surface S and let C be the curve

corresponding to the cycle in the embedding. We say that K is separating, if S − C is disconnected.
The cycle v1v2 . . . vk is non-contractible, if none of the two components of G−K is planar. We will call
non-contractible separating cycles NSC for short.

Ellingham, Zha, and Jennings proved the following:

Theorem 3 [4] Every triangulation of the double torus has an NSC.

Sulanke proved the same statement for multiple surfaces:

Theorem 4 [11] Every triangulation of the double torus, the Klein bottle, the triple cross surface or the
quadruple cross surface has an NSC.

1.3 Triangulations with few vertex locations in the plane

For a graph G = (V,E) rigid in Rd, what is the smallest cardinality of a set P ⊆ Rd, such that an
infinitesimally rigid framework (G, p) with p : V → P exists? Similarly, the same question can be asked
for a family G of graphs rigid in Rd, namely how small can a set P ⊆ Rd be for which every graph in G
has an infinitesimally rigid realisation where all vertex positions are in P?

It is known, that for d = 1 and the family of connected graphs (which are exactly the rigid graphs in
one dimension) the answer is 2. For d ≥ 2 and the family of every rigid graph no such P exists, see [2].

A result of Fogelsanger [3] says that for every g a triangulation of a surface with genus g is rigid in
three dimensions (and also in two dimensions). It is a result of Király [5] that every triangulation of a
surface with genus g has an infinitesimally rigid framework with O(

√
g) vertex locations. If we take G as

the family of triangulations of surfaces for a fixed genus g we can ask if there is a constant upper bound
for the size of the number of different locations.

For the sphere Király proved that a constant upper bound of 26 exists.

Theorem 5 [5] Let A ⊆ R2 be a generic set with |A| = 26. Then, for every planar graph G = (V,E)
which is rigid in R2, there exists an infinitesimally rigid realization p : V → A of G.

Nevo and Tarabykin shoved that the same upper bound works for the torus, the Klein bottle and the
projective plane by proving that all of their triangulations contain a spanning planar Laman subgraph
and from the work of Király it is known that 26 is an upper bound for planar Laman graphs.

240

2 Preliminaries

We will need the following simple lemmas in the proof of the main result. The following can be easily
proven by building up the graph using planar vertex splits.

Lemma 6 Let G be a planar graph in which the vertex sets of faces with boundaries longer than three
are pairwise disjoint. Then G is rigid.

The next lemma is a well-known statement, see [10] for a reference.

Lemma 7 Let G and H be two rigid graphs. Let v1, . . . , vk ∈ V (G) and u1, . . . , uk ∈ V (H) vertices and
k ≥ 2. The graph we get by identifying ui with vi for every 1 ≤ i ≤ k (thus gluing the two graphs) is
rigid.

We shall also define the triangulated torus with a hole graph. This can be obtained from a triangulated
torus by deleting those vertices of a triangulated disc subgraph that are not on its boundary.

3 Triangulations of the double torus

The proof method of Nevo and Tarabykin is a constructive characterisation. In all of the irreducible
triangulations of the surfaces they investigated they found a spanning planar Laman graph. Then they
proved that the vertex splits that generate the larger triangulations also maintain the existence of these
spanning planar Laman subgraphs. This method however does not seem to be usable for other surfaces
as the number of their irreducible triangulations is too large.

Theorem 8 Let G be a triangulation of the double torus. Then G contains a spanning planar Laman
subgraph.

Proof: Suppose for a contradiction that the statement of the theorem is false. Let G be a triangulation
of the double torus which is a counterexample. Choose G in such a way that |V (G)| is as small as possible
among the counterexamples.

By Theorem 3 there is an NSC K in G. Take an embedding of G into the double torus in such a way
that K is an NSC. If we cut the double torus along the embedding of K we get two tori with one hole
each. Let G1 and G2 be the two subgraphs of G that are spanned by the vertices that lie on these two
tori with hole. The vertices of K are vertices of both G1 and G2. We can extend G1 and G2 into two
triangulations of the torus by adding edges between some pairs of vertices in V (K). Let these graphs be
H1 and H2.

Now we will show that H1 has a spanning subgraph T1 which is a triangulation of the cylinder and
contains every edge in E(K). To see this delete the smallest possible subset of edges F ⊆ E(H1)−E(K)
such that H1 − F = T is planar. We claim that T is a subgraph with the desired properties.

T is clearly spanning and planar and contains every edge in E(K). What we have to show is that T
is a triangulation of the cylinder. It is also easy to see that T does not have a cut-edge. Suppose that e is
a cut-edge in T . In this case we can add back any edge between the two components of T − e, thus U is
not minimal, a contradiction. We can then conclude that the boundary of every face is a cycle. What is
left to see is that there are at most two faces that are not a triangle. Indeed, if there are more than two
larger faces, we can easily get a contradiction using the Euler characteristics of the torus. Then there is
a pair of non-triangle faces such that no edge can run between them. But this contradicts the minimality
of U .

Let J1 = G1 −U be a planar spanning subgraph of G1. J2, a spanning planar subgraph of G2 can be
defined similarly. Now merge J1 and J2 along K, and let this graph be J . It is easy to see that J is also
planar, as K is a boundary of a face in both J1 and J2.

As J is a spanning planar subgraph of G, if J is also rigid, then the proof is complete. Suppose now
that J is not rigid. It is only possible, if at least one of J1 and J2 is not rigid by Lemma 7. Now suppose

241

that J1 is rigid and J2 is not. Then J must also be rigid as T2 is rigid and every edge in E(J2) \ E(T2)
is implied by J1. Thus we conclude that none of J1 and J2 is rigid. By Lemma 6 this is only possible if
the boundaries of the three non-triangle faces are not disjoint. Namely, if there are edges in E(K) that
are not in a triangle face in J .

Let xy ∈ E(K) be such an edge, and let A1 denote the cycle on the boundary of the non-triangle face
for which xy ∈ E(A1). xy is in a triangle in G1 thus the third vertex z of this triangle must be on the
third non-triangle face with boundary B1. Moreover, by the minimality of U every neighbour of x and y
is on B1. Thus xy is not contained in a non-facial triangle in G1. The same is true for xy in G2. Thus
the edge xy is contractible in G.

Let G′ be the graph that we get by contracting xy in G. By the minimality of G G′ is not a
counterexample and so has a spanning planar Laman subgraph. But then performing the vertex split on
G′ which is the reverse of the contraction of xy shows that G also has the desired spanning subgraph.
This contradiction completes the proof. □

Now we can state the main result regarding the rigidity of triangulated double torus graphs. It follows
from Theorems 5 and 8.

Theorem 9 Let G = (V,E) a triangulation of the double torus. Then if A ⊆ R2 is a generic set with
|A| = 26 there is an infinitesimally rigid realization p : V → A of G.

4 Other surfaces, future work

By Theorem 4 it is known that there is an NSC in every triangulation of the Klein bottle, the triple cross
surface or the quadruple cross surface. Moreover, Sulanke also proved the following:

Theorem 10 [11] Every triangulation of the quadruple cross surface has an NSC which separates the
surface into two surfaces each with genus 2. Every triangulation of the quadruple cross surface has an
NSC which separates the surface into two surfaces with genus 1 and 3, respectively.

Theorems 4 and 10 can be starting points to prove the corresponding result for the triple cross surface
or the quadruple cross surface. As these contain an NSC that separates them into two surfaces with holes
with genus at most two, one could try to use the spanning planar Laman subgraphs that exist in them
to show that the original surface also has one such subgraph.

References

[1] D. Barnette, Generating the triangulations of the projective plane, J. Comb. Theory, Ser. B 33
(1982)

[2] Zs. Fekete, T. Jordán, Rigid realizations of graphs on small grids, Comput. Geom. 32 (2005)

[3] A. Fogelsanger, The generic rigidity of minimal cycles, PhD thesis, Cornell University, Ithaca
(1988)

[4] D. L. G. Jennings, Separating cycles in triangulations of the double torus, Ph.D. thesis, Vanderbilt
University (2003)

[5] Cs. Király, Rigid realizations of graphs with few locations in the plane, European J. Combin. 94
(2021)

[6] G. Laman, On graphs and rigidity of plane skeletal structures, J. Engineering Mathematics 4
(1970)

[7] S. Lavrenchenko, Irreducible triangulations of the torus, Journal of Soviet Mathematics 51 (1990)

242

[8] S. Lawrencenko and S. Negami, Irreducible triangulations of the klein bottle, J. Comb. Theory,
Ser. B 70 (1997)

[9] E. Nevo, S. Tarabykin, Vertex spanning planar Laman graphs in triangulated surfaces,
arXiv:2205.00558 (2022)

[10] M. Sitharam, A. St. John, J. Sidman (Eds.), Handbook of Geometric Constraint Systems
Principles, Chapman and Hall/CRC (2017)

[11] T. Sulanke, Irreducible triangulations of low genus surfaces, arXiv:math/0606690 (2006)

[12] T. Sulanke, Note on the irreducible triangulations of the klein bottle, J. Comb. Theory, Ser. B
96 (2006)

243

244

Extremal graphs without
long paths and large cliques

Gyula O.H. Katona

MTA Rényi Institute, Budapest, Hungary
ohkatona@renyi.hu

Chuanqi Xiao

Central European University, Budapest,
Hungary

chuanqixm@gmail.com

Abstract: Let F be a family of graphs. A graph is called F-free if it does not contain any
member of F as a subgraph. The Turán number of F is the maximum number of edges
in an n-vertex F-free graph and is denoted by ex

(
n,F

)
. The same maximum under the

additional condition that the graphs are connected is exconn

(
n,F

)
. Let Pk be the path on k

vertices, Km be the clique on m vertices. We determine ex(n, {Pk,Km}) if k > 2m − 1 and
exconn(n, {Pk,Km}) if k > m for sufficiently large n.

Extremal graph, Turán type theorem

1 Introduction

In the present paper, all graphs considered are undirected, finite and contain neither loops nor multiple
edges. Let G be such a graph, the vertex and edge sets of G are denoted by V (G) and E(G), the numbers
of vertices and edges in G by v(G) and e(G), respectively. We denote the degree of a vertex v in G
by dG(v), the neighborhood of the vertex set V in G by NG(V). Let U1, U2 be vertex sets, denote by
eG(U1, U2) the number of edges between U1 and U2 in G. We write d(v) instead of dG(v), N(V) instead
of NG(V) and e(U1, U2) instead of eG(U1, U2) if the underlying graph G is unambiguous. Denote by In
the independent set on n vertices, by G[B] the subgraph of G induced by the vertex set B and by G the
edge complement of the graph G. A component of an undirected graph is an induced subgraph in which
any two vertices are connected to each other by paths, and which is connected to no additional vertices
in the rest of the graph. A vertex v in a graph G is called a cut vertex if deleting v from G increases the
number of components of G.

Let F be a family of graphs. A graph is called F-free if it does not contain any member of F as a
subgraph. The Turán number of F is the maximum number of edges in an n-vertex F-free graph and is
denoted by ex

(
n,F

)
. Denote by EX(n,F) the set of F-free graphs on n vertices with ex(n,F) edges and

call a graph in EX(n,F) an extremal graph for F . Let Pk be the path on k vertices, Km be the clique
on m vertices.

Vertices u and v are connected if there exists a path from u to v. Two disjoint vertex sets U and
W are completely joined in G if uw ∈ E(G) for all u ∈ U and w ∈ W . Denote by G1

⊗
G2 the graph

obtained from G1 ∪G2, the vertex disjoint union of graphs G1 and G2, and completely join V (G1) and
V (G2). The Turán graph T (n, p) is a complete multipartite graph formed by partitioning a set of n
vertices into p subsets, with sizes as equal as possible, and connecting two vertices by an edge if and only
if they belong to different subsets. Denote its size by t(n, p).

In 1941, Turán [5] determined the Turán number for p-clique.

Theorem 1 (Turán[5]) The number of edges in an n-vertex Kp-free (p ≥ 3) graph is at most t(n, p−1).
Furthermore, T (n, p− 1) is the unique extremal graph.

In 1959, Erdős and Gallai [2] determined the Turán number for Pk.

245

Theorem 2 (Erdős and Gallai[2]) Let G be an n-vertex graph with more than (k−2)n
2 edges, k ≥ 2.

Then G contains a copy of Pk.

Faudree and Schelp[3] and independently Kopylov [4] improved this result determining ex(n, Pk) for every
n > k > 0 as well as the corresponding extremal graphs.

Theorem 3 (Faudree and Schelp[3] and independently Kopylov [4]) Let n ≡ r (mod k − 1),
0 ≤ r ≤ k − 1, k ≥ 2. Then

ex(n, Pk) =
1

2
(k − 2)n− 1

2
r(k − 1− r).

Faudree and Schelp also described the extremal graphs which are either
(a) vertex disjoint union of m (n = m(k − 1) + r) complete graphs Kk−1 and a Kr or
(b) k is even and r = k

2 or k
2 − 1 then another extremal graph can be obtained by taking a vertex

disjoint union if t copies of Kk−1 (0 ≤ t ≤ m) and a copy of K k
2−1

⊗
Kn−(t+ 1

2)(k−1)+ 1
2
.

Kopylov[4] considered the extremal problem for Pk taken over all connected graphs. He determined
the extremal values, 30 years later Balister, Győri, Lehel and Schelp found all the extremal graphs, too.

Theorem 4 (Balister, Győri, Lehel and Schelp[1]) Let G be a connected graph on n vertices con-
taining no path on k vertices, n > k ≥ 4. Then e(G) is bounded above by the maximum of

(
k−2
2

)
+

(n− k + 2) and
(d k2 e

2

)
+ bk−22 c(n− dk2 c). If equality occurs then G is either

(
Kk−3 ∪Kn−k+2

)⊗
K1 or

(
Kk−2b k2 c+1 ∪Kn−d k2 e

)⊗
Kb k2 c−1.

2 Main result

Now let us turn to the problem of the present paper: try to determine ex(n, {Pk,Km}). If k ≤ m then
this is simply ex(n, Pk), therefore we can suppose k > m for the rest of the paper.
Construction 1: Suppose bk2 c − 1 ≤ n. G1 = T (bk2 c − 1,m− 2)

⊗
Kn−b k2 c+1.

The number of the edges in this graph is

fn(m, k) =

(⌊
k

2

⌋
− 1

)(
n−

⌊
k

2

⌋
+ 1

)
+ t

(⌊
k

2

⌋
− 1,m− 2

)
.

Construction 2: Suppose k − 1|n, let G2 = n
k−1T (k − 1,m − 1) denote the graph obtained by taking

n
k−1 vertex-disjoint copies of T (k − 1,m− 1).

Clearly, the graphs T (
⌊
k
2

⌋
− 1,m− 2)

⊗
Kn−b k

2 c+1 and n
k−1T (k − 1,m− 1) are {Km, Pk}-free.

We believe that for large n (number of vertices) one of these constructions maximize the number of
edges under the assumption that the graph contains neither a Km nor a Pk. More precisely we guess
that either Construction 1 gives the largest number of edges or the maximum is between n

k−1 t(k− 1,m−
1)− c(k,m) and n

k−1 t(k − 1,m− 1) where c(k,m) does not depend on n.
But we are able to prove only the following two theorems.

Theorem 5 Let G be a connected n-vertex {Km, Pk}-free graph m < k. For sufficiently large n (> N(k)),

exconn(n, {Km, Pk}) =

(⌊
k

2

⌋
− 1

)
n+ t

(⌊
k

2

⌋
− 1,m− 2

)
−
(⌊

k

2

⌋
− 1

)2

,

that is, Construction 1 is an extremal graph.

Theorem 6 Let G be an n-vertex {Km, Pk}-free graph, 2m− 1 < k. For sufficiently large n (> N ′(k)),

ex(n, {Km, Pk}) =

(⌊
k

2

⌋
− 1

)
n+ t

(⌊
k

2

⌋
− 1,m− 2

)
−
(⌊

k

2

⌋
− 1

)2

,

that is, Construction 1 is an extremal graph.

246

References

[1] P. N. Balister, E. Győri, J. Lehel and R. H. Schelp, Connected graphs without long paths,
Discrete Math. 308 (2008), 4487–4494.

[2] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci.
Hungar. 10 (1959), 337-356.

[3] R. J. Faudree and R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory.
Ser. B 19 (1975), 150–160.

[4] G. N. Kopylov, Maximal paths and cycles in a graph, Dokl. Akad. Nauk SSSR 234(1) (1977) 19
– 21. (English translation: Soviet Math. Dokl. 18(3) (1977), 593–596).

[5] P. Turán, On an extremal problem in graph theory (in Hungarian), Mat. és Fiz. Lapok 48 (1941),
436–452.

247

248

Orientation of good covers

Péter Ágoston1

ELTE Eötvös Loránd University,
Budapest, Hungary

agostonp95@gmail.com

Gábor Damásdi2

ELTE Eötvös Loránd University,
Budapest, Hungary

gabor.damasdi@gmail.com

Balázs Keszegh134

Alfréd Rényi Institute of Mathematics and
ELTE Eötvös Loránd University,

Budapest, Hungary
keszegh@renyi.hu

Dömötör Pálvölgyi13

ELTE Eötvös Loránd University,
Budapest, Hungary

domotor.palvolgyi@ttk.elte.hu

Abstract: We study systems of orientations on triples that satisfy the following so-called
interiority condition: ⟲(ABD) = ⟲(BCD) = ⟲(CAD) = 1 implies ⟲(ABC) = 1 for any
A,B,C,D. We call such an orientation a P3O (partial 3-order), a natural generalization of a
poset, that has several interesting special cases. For example, the order type of a planar point
set (that can have collinear triples) is a P3O; we denote a P3O realizable by points as p-P3O.

If we do not allow ⟲(ABC) = 0, we obtain a T3O (total 3-order). Contrary to linear orders,
a T3O can have a rich structure. A T3O realizable by points, a p-T3O, is the order type of
a point set in general position.

In [1] we defined a 3-order on pairwise intersecting convex sets; such a P3O is called a C-P3O.
In this paper we extend this 3-order to pairwise intersecting good covers; such a P3O is called
a GC-P3O. If we do not allow ⟲(ABC) = 0, we obtain a C-T3O and a GC-T3O, respectively.

The main result of this paper is that there is a p-T3O that is not a GC-T3O, implying also
that it is not a C-T3O—this latter problem was left open in our earlier paper. Our proof
involves several combinatorial and geometric observations that can be of independent interest.
Along the way, we define several further special families of GC-T3O’s.

Keywords: convex set, good cover, orientation

1This research has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, financed under the ELTE TKP 2021-NKTA-62 funding
scheme.

2Supported by the ÚNKP-21-3 New National Excellence Program of the Ministry for Innovation and Technology from
the source of the National Research, Development and Innovation fund.

3Supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-21-5
and ÚNKP-22-5 New National Excellence Program of the Ministry for Innovation and Technology from the source of the
National Research, Development and Innovation Fund.

4Supported by the National Research, Development and Innovation Office – NKFIH under the grant K 132696 and FK
132060.

249

D

1

11

1

B

A
C

D

(a) (b)

C

A B

1

1

11

Figure 1: The interiority condition is true for points (a) and also for pairwise intersecting convex sets (b);
here ⟲(ABD) = ⟲(BCD) = ⟲(CAD) = ⟲(ABC), or equivalently, we can write D ∈ conv(ABC).

1 Introduction

Given some base set, a mapping ⟲ from its ordered triples to {±1, 0} is a partial orientation if

⟲(ABC) = ⟲(CAB) = ⟲(BCA) = − ⟲(ACB) = − ⟲(BAC) = − ⟲(CBA) for every A,B,C.

If ⟲ never takes zero, then ⟲ is a total orientation. An orientation satisfies the interiority condition if

⟲(ABD) = ⟲(BCD) = ⟲(CAD) = 1 implies ⟲(ABC) = 1 for every A,B,C,D.

If ⟲(ABD) = ⟲(BCD) = ⟲(CAD) = 1 or ⟲(ABD) = ⟲(BCD) = ⟲(CAD) = −1 for some
A,B,C,D, then we write D ∈ conv(ABC). See Figure 1(a). (In the definition of conv(ABC) the order
of A,B,C is not relevant.)

A total orientation that satisfies the interiority condition is a T3O (total 3-order), and a partial
orientation is a P3O (partial 3-order). The notion T3O was introduced by Knuth [5] under the name
interior triple system, according to Knuth “for want of a better name.” He noted that taking the
orientations (in the well-known geometric sense) of all triples of a planar point set in general position we
get a T3O, while if we allow collinearity, we get a P3O. The equivalence classes of point sets giving the
same P3O are called the order types [3], a notion having a broad literature. We say that a T3O (resp.
P3O) that has a realization by a planar set of points in this way is a p-T3O (resp. p-P3O). We denote
the family of all P3O’s by P3O and, similarly, for its subfamilies, we use the calligraphic T 3O, p-P3O,
p-T 3O, respectively.

Note that the definition of a P3O is similar to the definition of partially ordered sets, therefore our
choice for its name. Indeed, a poset is a mapping from the ordered pairs of its base sets to {±1, 0}
requiring antisymmetry and transitivity. Similarly, a P3O does the same for ordered triples, but in our
case requiring the interiority condition.

In a companion paper [1], motivated by a lemma of Jobson et al. [4] (see also Lehel and Tóth [6]),
we have defined an orientation on intersecting planar convex sets, as follows. If A ∩ B ∩ C ̸= ∅, then
⟲ (ABC) = 0. Otherwise, by [4], R2 \ (A ∪ B ∪ C) has one bounded component, and its boundary
has exactly one arc from each of the boundaries of A, B and C. We defined ⟲(ABC) = 1 if in cyclic
counterclockwise order these arcs belong to A,B,C, and proved that ⟲ satisfies the interiority condition,
i.e., it is a 3-order1. Denote the subfamily of T 3O and P3O that have a realization by pairwise intersecting
planar convex sets by C-T 3O and C-P3O, respectively. In particular, if no three sets from a pairwise

1There is also a quite different definition of orientation of triples when the convex sets are pairwise disjoint, for its short
discussion and further references see the respective remark in [1].

250

B

A C

D

EB ∩ C ∩ E A ∩B ∩ E

A

B C

E

D

Figure 2: A p-P3O, realized on the left by the four vertices of a square (A,B,C,D) and their center (E),
that was shown in [1] not to be a C-P3O, but because of the above realization on the right by a good
cover it is a GC-P3O.

intersecting convex family have a common point (called a holey family in [1]), the orientation ⟲ gives a
C-T3O on them. In this paper, we extend the orientation ⟲ to good covers, and denote the respective
families by GC-T 3O and GC-P3O. A family of sets is a good cover if the intersection of any subfamily
is contractible or empty [7].

As convex sets are always good covers, C-P3O ⊂ GC-P3O ⊂ P3O. Both inequalities are strict:
GC-P3O ≠ P3O follows from Theorem 1, while C-P3O ≠ GC-P3O because with good covers a certain
five-point configuration can be realized whose p-P3O was shown not be a C-P3O in [1]; see Figure 2.

We have shown in [1] that C-T 3O ⊊ p-T 3O, i.e. that C-T 3O is a proper subfamily of p-T 3O
(implying also C-P3O ⊊ p-P3O), and p-P3O ⊊ C-P3O. In this paper we establish the strengthening
p-T 3O ⊊ C-T 3O, i.e., that there is a 3-order that is realizable by points in general position, but not by
pairwise intersecting convex sets. This follows from the following more general result.

Theorem 1 p-T 3O ⊊ GC-T 3O.

Our proof will first establish that the 3-order of some point set is not realizable by some special
subfamily of good covers, and then gradually increase the complexity of this subfamily, while also making
our point set larger, until we establish the theorem.

In the next Section 2 we define an orientation ⟲ on good covers, and show that in a GC-T3O
realization we can assume that the sets are pairwise once intersecting topological trees, which also helps
proving that ⟲ satisfies the interiority condition, thus a 3-order. The rest of the proof is omitted due to
space constraints and can be found in [2].

2 Good covers and topological trees

Let us repeat our main definition: a family of sets is a good cover if the intersection of any subfamily is
contractible or empty [7]. For example, any family of convex sets is a good cover. Another example is
any family of sets that pairwise intersect in at most one point, which can either be a crossing point or a
tangency.2

Given three pairwise intersecting sets, A, B, C, define ⟲(A,B,C) as follows. If A ∩B ∩ C ̸= ∅, then
⟲(A,B,C) = 0. Otherwise, if there is a Jordan curve γ such that γ is the concatenation of three curves,
γA, γB , γC , such that γA ⊂ A, γB ⊂ B and γC ⊂ C, then if γA, γB , γC follow each other around γ in
counterclockwise order, define ⟲(A,B,C) = 1, while if γA, γB , γC follow each other around γ in clockwise
order, define ⟲(A,B,C) = −1.3 We will show that for good covers with pairwise intersecting sets the

2Given two sets that intersect once in some neighborhood, their intersection point is called a tangency, or touching point,
if it can be eliminated by a small perturbation of the sets.

3Note that for convex sets this definition coincides with the one from [1].

251

B

A C

D

A

B

C

D

(a) (b)

Figure 3: Two good covers that consist of pairwise intersecting topological trees. The four sets depicted in
each figure are such that no point is contained in three sets, so their orientation is a GC-T3O, and no three
sets satisfy the premise of the interiority condition: ⟲(ABC) = ⟲(BCD) = ⟲(CDA) = ⟲(DAB).
Note that during the closed walk A∩B–B∩C–C∩D–D∩A–A∩B in (a) we wind around once, while in (b)
we wind around twice.

above orientation ⟲ is well-defined (see Claim 2) and satisfies the interiority condition (see Corollary
8), thus it is a 3-order. For an example that satisfies the premise of the interiority condition, see Figure
1(b), while no three of the four sets in Figures 3(a) and (b) satisfy the premise.

First we fix some notations. We make no distinction between an element and the set representing it.
The restriction of the orientation ⟲ to some elements X = {X1, . . . , Xn} from a family (point sets, good
covers, etc.), is denoted by ⟲(X1, . . . , Xn) or simply ⟲(X). For brevity, when talking about orientations,
we may even refer to ⟲(X) simply as X if it leads to no confusion.

Claim 2 The orientation ⟲ is well-defined.

This simple topological claim is probably already known, its proof can be found also in the full version
of the paper.

We define a special subfamily of good covers, where each set is a topological tree.
A topological tree is an injective embedding of a (graph theoretic) tree, that has no degree two vertices,

into the plane, such that vertices are mapped to points, and edges are mapped to simple curves. The
images of the degree one vertices are called leaves, while the images of the vertices with degree at least
three are called branching points.

A family of topological trees forms a good cover if every pair of trees intersect at most once. (This is
not an if and only if condition, but it will be more convenient for us to work only with such families.) For
two trees A and B we denote their intersection point by A∩B, i.e., A ∩ B = {A∩B}.4 For three trees,
A, B and C, we have ⟲(A,B,C) = 0 if and only if their pairwise intersection points coincide.

We need to introduce some notation. See Figure 4 for illustration of the next definition.

Definition 3 Suppose that X is a topological tree and the point pi is in X for each 1 ≤ i ≤ k.
Define X[p1- . . . -pk] to be the minimal connected subset of X which contains pi for every i. In

particular, X[p1-p2] is the path connecting p1 and p2 in X. Note that X[p1- . . . -pk] = ∪i,jX[pi-pj].
Define X[p1, . . . , pk] to be the minimal connected subset X ′ of X which contains pi for every i, and

for which every connected component of X \X ′ has pi on its boundary for some i.
Define X[p1|p2] to be the set of those points p ∈ X for which X[p-p2] contains p1.
If A1, . . . Ak are topological trees that intersect X once and pi = X∩Ai, then for brevity we can replace

pi in the above notations with Ai. For example, X[A1-A2] = X[p1-A2] = X[p1-p2].

4The difference is that there is less space around the new math operator. The similarity can lead to no confusion, as
these two operators denote practically the same thing.

252

p1

p2

X[p1|p2]

X[p1, p2]

X[p1-p2]

Figure 4: Parts of the topological tree X.

A
C

A

B

C

D

B

A

B

C

D E

(a) (b) (c)

Figure 5: (ABC) and the hairs.

Now we are ready to prove our main structural tool.

Proposition 4 Assume that in a planar family:

§1 Every set is a topological tree.

§2 Every pair of sets intersects in exactly one point.5

Then the following hold:

§3 The union of any three sets, A,B,C, without a common point, contains exactly one cycle, i.e., a
Jordan curve. The interior of this cycle is called the hollow and is denoted by (ABC).6 The boundary
of (ABC) consists of parts of A,A∩B,B,B∩C,C,C∩A, in this order, if ⟲ (ABC) = 1. From the
boundary of (ABC), there can be subtrees of A,B,C going inwards and outwards, these we call hairs.
Hairs might have branchings on them but they are disjoint from each other. See Figure 5(a).

§4 Any four sets satisfy the interiority condition, thus ⟲ is a 3-order.
Further, if D ∈ conv(ABC), then

(ABD)∪̇ (BCD)∪̇ (ACD)∪̇D[A-B-C] ∪ {at most one-one hairpart of A,B and C}

gives a partition of (ABC) ∪ {A∩D,B∩D,C∩D}. In particular, D[A,B,C] ⊂ (ABC), apart from
its endpoints, {A∩D,B∩D,C∩D}.

§5 If D,E ∈ conv(ABC) and the orientation on A,B,C,D,E is realizable by five points in general
position, then D∩E ∈ (ABC).

By §3 and §4, the orientation ⟲ defined for good covers gives a P3O for any family satisfying the
conditions §1 and §2. We call a P3O that is realizable this way a Tr-P3O. If in addition no three trees
have a common intersection, then it is also called a Tr-T3O representation.

5Two trees are allowed to have multiple branches from their intersection point.
6Note that for convex sets this definition coincides with the one from [1].

253

Remark 5 Note that because of the hairs several intuitive statements are false. For example, it is possible
that D[A,B,C] ⊂ (ABC) but D /∈ conv(ABC). See Figure 5(b). Also, if in §5 we only assume that
D,E ∈ conv(ABC), then it is possible that D∩E /∈ (ABC). See Figure 5(c).

Proof:[Proof of §3.] As A is a tree, there is exactly one path in A between A∩B and A∩C, and this
cannot intersect B or C. Similarly, there is one path in B between A∩B and B∩C, and there is one path
in C between A∩C and B∩C. The union of these three paths gives the required Jordan curve. □

Proof:[Proof of §4.]
Assume that ⟲(ABC) = ⟲(ABD) = ⟲(BCD) = ⟲(CAD) = 1. To show that the interiority

condition holds we need to prove that ⟲(ABC) = 1. First, we assume ⟲(ABC) ̸= 0, i.e., A∩B∩C = ∅.
Consider D′ = D[A-B-C]. Either D′ is a path, or a Y-shaped star.
In the former case, we can assume without loss of generality that B∩D ∈ D[A-C] = D′, i.e., B∩D lies

between A∩D and C∩D on D. From ⟲(CAD) = 1, we know on which side of D′ the hollow (ACD)
lies. See Figure 6(a).

Note that (ABD) ⊂ (ACD) would imply ⟲(ABD) = ⟲(ACD) ̸= ⟲(CAD), contradicting our
assumptions. Similarly, (BCD) ̸⊂ (ACD).

This implies that none of the paths B[D-A] and B[D-C] can start from B∩D towards the interior of
(ACD), as otherwise they would need to intersect ∂ (ACD), either in A or in C, which would give
(ABD) ⊂ (ACD) or (BCD) ⊂ (ACD), respectively, contradicting our previous observation. See

Figure 6(a). As both paths start from B∩D towards the exterior of (ACD), we can pretend that D′ is
a (degenerate) Y-shape such that its leaves in the counterclockwise order are A∩D,B∩D,C∩D.

The same argument rules out the possibility that D′ is a Y-shape such that its leaves in the counter-
clockwise order are A∩D,C∩D,B∩D.

Therefore, we can conclude that D′ needs to be a (possibly degenerate) Y-shape such that its leaves
in the counterclockwise order are A∩D,B∩D,C∩D. Denote the branching point of D′ by Dy (where
Dy = B∩D if D′ is degenerate). See Figure 6(b).

Denote the branching point of A[B-C-D] by Ay, or if A[B-C-D] is a path, then let Ay stand for
whichever of A∩B,A∩C and A∩D lies in the middle of the path. In other words, Ay is the point up to
which A[D-B] and A[D-C] follow the same route starting from A∩D. In particular, A[D-Ay] does not
contain A∩B or A∩C in its interior. We similarly define By and Cy.

Now, walk along ∂ (ABD), ∂ (BCD) and ∂ (ACD), starting always from Dy. Note that in the
union of these three walks, During the walk around ∂ (ABD), we cover the part from Dy to Ay, then
we go from Ay to By, then back to Dy. Around ∂ (BCD), we cover the part from Dy to By, then we go
from By to Cy, then back to Dy. Finally, around ∂ (ACD), we cover the part from Dy to Cy, then we go

B ∩D

C

A

A ∩D

C ∩D

B

(a)

D′

A

B

C

(b)

D′

Dy

Ay

By

Cy

Figure 6: Proof of §4.

254

(a) (b) (c)

A

B

C A

B

C A

B

C

Figure 7: A triple intersection can be perturbed in two ways.

from Cy to Ay, then back to Dy. Note that each part from D′ occurs there and back, while all the other
parts are disjoint, apart from their endpoints. But this means that by eliminating the there-and-back
parts, we get a walk from Ay to By to Cy, then back to Ay, that has the same orientation as the original
walks, and contains AB,BC and AC. That is, ⟲(ABC) = 1, as claimed. This finishes the proof of the
interiority condition if ⟲(ABC) ̸= 0.

Now assume for a contradiction that ⟲(ABC) = 0, i.e., A∩B∩C ̸= ∅. By §2, A∩B∩C is a single point;
denote it by x. If we replace A with A[x-D], then ⟲(A,B,C,D) remains the same. We can similarly
replace B and C with B[x-D] and C[x-D], respectively. This way each of A, B and C became a curve
ending in x. But then by a slight perturbation of the curves in the vicinity of x we can achieve that they
pairwise intersect once but in three different points, such that ⟲(ABC) becomes −1 (see Figure 7).

But this would contradict the interiority condition for ⟲(ABC) ̸= 0, which we have already proved.
This finishes the proof of the interiority condition if ⟲(ABC) = 0.

The structural description that we have obtained in the ⟲(ABC) ̸= 0 case implies that (ABC) =
(ABD)∪̇ (BCD)∪̇ (ACD)∪̇D′ ∪ {the parts from Ay to A∩D, from By to B∩D, and from Cy to

C∩D}—this last part gives the three possible hairs. Since D intersects (ABC) exactly three times,
this also implies D[A,B,C] ⊂ (ABC). □ Proof:[Proof of §5.] Suppose for a contradiction that

x = D∩E /∈ (ABC).
By §4, D[A,B,C] ⊂ (ABC) and thus x falls in one connected component of D\D[A,B,C] which im-

plies that the three paths D[E-A], D[E-B], D[E-C] all go the same way from x until they reach (ABC).
Denote their intersection point with ∂ (ABC) by Dx. Note that Dx is one of A∩D,B∩D,C∩D.

Similarly, the three paths E[D-A], E[D-B], E[D-C], all start the same way from x. Denote their
intersection point with ∂ (ABC) by Ex. This time there is no need to make any wise notes.

We claim that ⟲(ADE) = ⟲(BDE) = ⟲(CDE). Indeed, this follows from the fact that (ADE),
(BDE) and (CDE) are all contained in the union of (ABC) and the topological triangle whose

vertices are x,Dx, Ex. To see this, note that for any of these hollows, x will be a vertex, while the
two sides of the hollow adjacent to x will go through Dx and Ex, respectively, and then continue inside

(ABC) until they reach the other two vertices of the hollow, because of §4.
But this contradicts that D,E ∈ conv(ABC) and the orientation on A,B,C,D,E is realizable by five

points in general position, as if in this realization the points D and E are contained in the convex hull of
A, B and C, then two of these three points will fall on different sides of the DE line, so ⟲(ADE) = ⟲
(BDE) = ⟲(CDE) is not possible. □

Next, we prove that ⟲ behaves essentially the same way on any good cover as on topological trees.

Lemma 6 The sets in any good cover, where at most one triple has a non-empty intersection, can be
replaced by topological trees that pairwise intersect at most once, such that ⟲ remains unchanged on all
triples.

Proof: See Figure 8(a) for an illustration of the proof.

255

A

B

C D

(a) (b)

Figure 8: (a) A good cover redrawn with topological trees that pairwise intersect in at most one point.
(b) A good cover that cannot be redrawn this way.

We can assume that every set intersects some other set from our family. For each set A from the good
cover, and for each connected component Ai of those points that are only in A and in no other set, we do
the following. On the boundary of Ai there are pairwise disjoint arcs which are on the boundary of some
other set as well. We put a topological star inside Ai whose center is on one of these arcs, and there is a
leaf on each of the rest of the arcs.

Now, assume that there is no triple intersection. For each non-empty intersection A ∩B, we select a
point pAB inside it (pAB will be the intersection point of the topological trees corresponding to A and
B), and draw non-crossing curves from pAB , one to every leaf of the earlier defined stars that are on the
boundary of A∩B. Each such curve is added to the topological tree it touches at the boundary of A∩B.

If there is a triple intersection A∩B∩C ̸= ∅, then we treat (A∩B)∪ (A∩C)∪ (B∩C) as one double
intersection, and do the same as before, selecting a point pABC from A∩B∩C (and no other points from
A ∩ B,A ∩ C, and B ∩ C, so in this case there are no points pAB , pAC , pBC). In the remainder of the
proof, we will not discuss this special triple intersection region in detail—all steps work for it the same
way.

It is easy to see that we get topological trees, as all the points inside a set A are eventually connected.
Denote this tree by TA ⊂ A. These topological trees intersect pairwise exactly once, in the point selected
inside the intersection of their corresponding sets, i.e., TA∩TB = pAB .

We are left to show that the orientations are preserved. As the trees satisfy §2, ⟲ is well-defined on
the trees by §3. Take some A,B,C and the (unique) Jordan curve γ such that γA ⊂ TA, γB ⊂ TB and
γC ⊂ TC . As TX ⊂ X for any set X, also γA ⊂ A, γB ⊂ B and γC ⊂ C, so the same γ shows that
⟲(TATBTC) = ⟲(ABC). □

Remark 7 The condition that at most one triple has a non-empty intersection is necessary because we
allow trees to intersect in at most one point. If, for example, A ∩ B ∩ C ̸= ∅ and A ∩ B ∩ D ̸= ∅ but
A ∩ B ∩ C ∩D = ∅, this obviously cannot be realized by trees that pairwise intersect at most once. See
Figure 8(b) for such a good cover. But this is essentially the only obstruction—our proof can be modified
in a straight-forward way to work also if we require that there are no four sets such that A ∩ B ∩ C ̸= ∅
and A ∩B ∩D ̸= ∅.

Corollary 8 The orientation ⟲ is a 3-order on good covers.

Proof: We need to show that ⟲ satisfies the interiority condition. Take four sets such that ⟲
(ABD) = ⟲ (BCD) = ⟲ (CAD) = 1. In particular, these four sets can have at most one non-

256

empty triple intersection, A ∩ B ∩ C. Therefore, by Lemma 6 we can convert A,B,C,D to trees while
preserving ⟲, and so §4 implies that ⟲(ABC) = 1. □

Remark 9 This also implies that ⟲ is a 3-order on convex sets, reproving a key lemma from [1].

Denote a P3O/T3O realizable by good covers (resp. by topological trees), by GC-P3O/GC-T3O (resp.
by Tr-P3O/Tr-T3O), and the respective subfamilies by calligraphic, as usual.

Corollary 10 GC-T 3O = Tr-T 3O.

This implies that to establish Theorem 1, it is enough to prove p-T 3O ⊊ Tr-T 3O. However, there is
a lot of work left, with multiple intermediate steps, the complete proof is omitted due to space constrains
and can be found in [2].

References

[1] P. Ágoston, G. Damásdi, B. Keszegh, and D. Pálvölgyi, Orientation of convex sets, Preprint,
https: // arxiv. org/ abs/ 2206. 01721

[2] P. Ágoston, G. Damásdi, B. Keszegh, and D. Pálvölgyi, Orientation of good covers,
Preprint, https: // arxiv. org/ abs/ 2206. 01723

[3] Goodman, Jacob E. and Pollack, Richard, Allowable Sequences and Order Types in Discrete
and Computational Geometry, New Trends in Discrete and Computational Geometry, Springer
Berlin Heidelberg 103–134 (1993)

[4] A. S. Jobson, A. E. Kézdy, J. Lehel, T. J. Pervenecki, and G. Tóth., Petruska’s question
on planar convex sets, Discrete Mathematics 343(9):1–13 (2020)

[5] D. E. Knuth., Axioms and hulls, Lecture Notes in Computer Science (1992)

[6] J. Lehel and G. Tóth., On the hollow enclosed by convex sets, Geombinatorics 30(3):113–122
(2021)

[7] A. Weil, Sur les théorèmes de de Rham, Commentarii Math. Helv. 26:119-145 (1952)

257

258

A polynomial-time algorithm to compute the
toughness of graphs with bounded treewidth

Gyula Y. Katona1

Department of Computer Science and
Information Theory

Budapest University of technology and
Economics

Budapest, Hungary
katona.gyula@vik.bme.hu

Humara Khan

Department of Computer Science and
Information Theory

Budapest University of technology and
Economics

Budapest, Hungary
humaraawan@gmail.com

Abstract: Let t be a positive real number. A graph is called t-tough if the removal of any
vertex set S that disconnects the graph leaves at most |S|/t components. The toughness of
a graph is the largest t for which the graph is t-tough. We prove that toughness is fixed-
parameter tractable parameterized with treewidth. More precisely, we give an algorithm
to compute the toughness of a graph G with running time O(tw(G)2tw(G) · |V (G)|3) where
tw(G) is the treewidth. If the treewidth is bounded by a constant, then this is a polynomial
algorithm.

Keywords: toughness, treewidth, fixed-parameter tractable

1 Introduction

1.1 Complexity of toughness

All graphs considered in this paper are finite, simple and undirected. Let c(G) denote the number of
components of G. If S ⊆ V (G), then G−S denotes the graph obtained by deleting all vertices of S from
G. For a connected graph G, a vertex set S ⊆ V (G) is called a cutset if c(G− S) > 1.

The notion of toughness was introduced by Chvátal in [11].

Definition 1 Let t be a real number. A graph G is called t-tough if |S| ≥ t · c(G−S) for any S ⊆ V (G)
with c(G− S) > 1. The toughness of G, denoted by τ(G), is the largest t for which G is t-tough, taking
τ(Kn) =∞ for all n ≥ 1.

Note that a graph is disconnected if and only if its toughness is 0.
The relation of toughness to Hamiltonian cycles, connectivity and other measures of graph robustness

are well researched topics. There are quite a few results on the computational aspects of toughness.
Let t be an arbitrary positive rational number and consider the following problem.

t-Tough
Instance: a graph G.
Question: is it true that τ(G) ≥ t?

It is easy to see that for any positive rational number t the problem t-Tough is in coNP: a witness
is a vertex set S whose removal disconnects the graph and leaves more than |S|/t components. Bauer et
al. proved that this problem is coNP-complete [2] and the problem 1-Tough remains coNP-complete for
at least 3-regular graphs [5].

1The research reported in this paper was supported by the Higher Education Excellence Program of the Ministry of
Human Capacities in the frame of the Artificial Intelligence research area of the Budapest University of Technology and
Economics BME FIKP-MI/SC.

259

Theorem 2 ([2]) For any positive rational number t, the problem t-Tough is coNP-complete.

Theorem 3 ([5]) For any fixed integer r ≥ 3, the problem 1-Tough is coNP-complete for r-regular
graphs.

Although the toughness of any bipartite graph (except for the graphs K1 and K2) is at most one, the
problem 1-Tough does not become easier for bipartite graphs [16], and the same is true for smaller t
values [14]. In [14], the authors prove similar results for different sub-classes of bipartite graphs. A good
survey of further results is [9].

It is widely believed that these complexity results imply that there is no polynomial algorithm that
computes the toughness of a given graph even for these special graph classes. On the other hand, for
some other graph classes we do have such algorithms. The first example is the class of claw-free graphs.
Since the toughness of a claw-free graphs is half of its connectivity [17], and the connectivity of any graph
can be computed in polynomial time, so is the toughness of claw-free graphs. Another class of graphs
for which this is the case is the class of split graphs. In [16], it was shown that the class of 1-tough
graphs can be recognized in polynomial time, and in [20] the same was proved for t-tough split graphs
with t ≥ 0. This was further extended to a larger class, namely to the class of 2K2-free graphs [10]. For
interval graphs, [15] contains a polynomial algorithm to compute the toughness.

For some special values of t there are also polynomial algorithms to compute the toughness of some
regular graphs. For instance, the characterization of 3-regular 3/2-tough graphs in [13] implies that these
graphs can be recognized in polynomial time. Some further results are the following.

Theorem 4 ([14]) For any positive rational number t < 2/3, there is a polynomial-time algorithm to
recognize t-tough 3-regular graphs.

Theorem 5 ([14]) There is a polynomial-time algorithm to recognize 1/2-tough 4-regular graphs.

1.2 Treewidth

The notion of treewidth is proposed in [18, 19] and is a famous parameter in complexity problems. Here
we follow the notations of [6]. Given a graph G = (V,E), a tree decomposition of G is a pair T = (X , T)
where X = {Xi | i ∈ I} ⊆ P(V) and T = (I, F) is a tree satisfying:

1. ∪i∈IXi = V ,

2. for all edges {u, v} ∈ E, there exists i ∈ I such that {u, v} ⊆ Xi,

3. for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The elements of set X which correspond to the nodes of tree T are called bags. Note that the last
condition can be substituted by the following equivalent condition:

3. for each v ∈ V , the set of nodes {i ∈ I | v ∈ Xi} forms a subtree of T .

The width of the tree decomposition T = (X , T) is maxi∈I |Xi| − 1. The treewidth of a graph G is the
minimum width of a tree decomposition of G. We use the term vertex for the elements of V , nodes for
the elements of I, and bags for the elements of X . We say the set Xi is the corresponding bag to node
i ∈ I in tree T .

Computing the treewidth of arbitrary graphs is an NP-hard problem [1]. However, if the treewidth is
bounded, it can be computed in polynomial time [7].

A tree decomposition T of a graph can be simply made rooted by designating a bag as the root bag.
A rooted tree decomposition is called nice [8] whenever each bag Xi ∈ X is one of the following types:

� leaf bag: the node i has no child in T ,

� forget bag: the node i has exactly one child j where Xi ⊆ Xj and |Xi| = |Xj | − 1,

260

� introduce bag: the node i has exactly one child j such that Xj ⊆ Xi and |Xi| = |Xj |+ 1,

� join bag: the node i has exactly two children j and j′ where Xi = Xj = Xj′ .

Given a tree decomposition T of G of width tw(G) with O(n) bags, a nice tree decomposition of width
tw(G) can be obtained with at most O(4n) bags in O(n) [8].

There are many decision problems on graphs that are NP-complete in general but can be solved in
polynomial time for graphs with bounded treewidth using dynamic programming. See [12] for further
details.

2 New result

Theorem 6 There exists an algorithm to compute the toughness of a graph G with running time
O(tw(G)2tw(G) · |V (G)|3).

Sketch of proof: First notice that for a non-complete, connected graph G on n vertices, the toughness
τ(G) is a rational number p

q with 1 ≤ p, q ≤ n. So if we have an algorithm that computes the maximum
number of components after the removal of s vertices for any integer 0 ≤ s < n, then the toughness can
be easily determined by finding the minimum ratio.

To solve this modified problem, we use a dynamic programming approach, similar to many of the
known algorithms in the literature.

Take a nice tree decomposition T = (X , T) with T = (I, F). Let Vi denote the set of all vertices of G
appearing in bags that are descendants of some node i in T , and Gi := G[Vi].

Compute the following information in the rooted tree T for each vertex i ∈ I = V (T) in a bottom up
order (i.e. first for the leafs, then for their parents, etc.):
Mnc(i, s,Q,P): the maximum number of components of Gi−S where the maximum is taken for all sets
S ⊆ Vi having

� |S| = s,

� S ∩Xi = Q, and

� P is the partition of Xi−Q = Xi−S where two vertices belong to the same set if and only if they
belong to the same component of the graph Gi − S.

For every i ∈ I, compute Mnc(i, s,Q,P) for each possible value of 0 ≤ s < n, set Q ⊆ Xi and partition
P using the previously computed information for the child/children of i. The total size of information
for one vertex of T is O

(
|V (G)| · tw(G)tw(G)

)
.

Finally, for the root r of the tree, compute

τ(G) = min

{
s

Mnc(r, s,Q,P)

∣∣∣∣ 0 ≤ s < n, Mnc(r, s,Q,P) ≥ 2

}
.

To complete the description of the algorithm, we need to be able to compute all of these values using
the values of the children of every node in the tree decomposition. For the leaf bags, this is trivial,
for the forget bags, it is straightforward. For the introduce bags, this computation is somewhat more
complicated, but it is the most complex for the join bags. □

Corollary 7 The toughness can be computed in polynomial time for graphs with bounded treewidth.

Corollary 8 Toughness is fixed-parameter tractable parameterized with treewidth.

It is an open question weather there exists a faster algorithm with time bound O
(
cO(tw(G)) · |V (G)|3

)

for some constant c to compute toughness G, as do such algorithms for many similar problems in the lit-
erature. It seems that the known techniques do not work for toughness. For some other similar problems,
it is proven that no such algorithm exists under the Exponential Time Hypothesis. Unfortunately, these
techniques do not seem to work either. So finding a better algorithm or proving that such an algorithm
does not exist seems to be a challenging open problem.

261

References

[1] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree,
SIAM Journal on Algebraic Discrete Methods 8 (2):277–284 (1987)

[2] D. Bauer, S.L. Hakimi, E. Schmeichel, Recognizing tough graphs is NP-hard, Discrete Applied
Mathematics 28:191–195 (1990)

[3] D. Bauer, A. Morgana, E. Schmeichel, On the complexity of recognizing tough graphs, Discrete
Mathematics 124:13–17 (1994)

[4] D. Bauer, J. van den Heuvel, A. Morgana, E. Schmeichel, The complexity of recognizing
tough cubic graphs, Discrete Applied Mathematics 79:35–44 (1997)

[5] D. Bauer, J. van den Heuvel, A. Morgana, E. Schmeichel, The complexity of toughness in
regular graphs, Congressus Numerantium 130:47–61, (1998)

[6] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybernetica 11 (1-2):1–21 (1993)

[7] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth,
SIAM Journal on Computing 25 (6):1305–1317 (1996)

[8] H.L. Bodlaender, P. Bonsma, D. Lokshtanov, The fine details of fast dynamic programming
over tree decompositions, In: International Symposium on Parameterized and Exact Computation,
Springer, 41–53 (2013)

[9] H. Broersma, How tough is toughness?, Bulletin of EATCS 117:28–52 (2015)

[10] H.J. Broersma, V. Patel, A. Pyatkin, On toughness and hamiltonicity of 2K2-free graphs,
Journal of Graph Theory 75(3):244–255 (2014)

[11] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Mathematics 5(3):215–228 (1973)

[12] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, ISBN 978-3-319-21274-6 (2015)

[13] B. Jackson, P. Katerinis, A characterization of 3/2-tough cubic graphs, Ars Combinatoria
38:145–148 (1994)

[14] G.Y. Katona, K. Varga, Strengthening Some Complexity Results on Toughness of Graphs,
Discussiones Mathematicae Graph Theory 43(2):401–419 (2023)

[15] D. Kratsch, T. Kloks, H. Müller, Computing the toughness and the scattering number for
interval and other graphs, INRIA Research Report RR–2237 (1994)

[16] D. Kratsch, J. Lehel, H. Müller, Toughness, hamiltonicity and split graphs, Discrete Mathe-
matics 150(1–3):231–245 (1996)

[17] M.M. Matthews, D.P. Sumner, Hamiltonian results in K1,3-free graphs, Journal of Graph
Theory 8(1):139–146 (1984)

[18] N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, Journal of Combinato-
rial Theory Series B 35(1):39–61 (1983)

[19] N. Robertson, P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, Journal of
Algorithms 7(3):309–322 (1986)

[20] G.J. Woeginger, The toughness of split graphs, Discrete Mathematics 190(1–3):295–297 (1998)

262

On the size of highly redundantly rigid graphs

Csaba Király

Department of Operations Research
ELTE Eötvös Loránd University

and
ELKH-ELTE Egerváry Research Group on

Combinatorial Optimization
Eötvös Loránd Research Network (ELKH)

Pázmány Péter sétány 1/C, Budapest, 1117,
Hungary

csaba.kiraly@ttk.elte.hu

Abstract: A graph is called k-vertex-redundantly rigid in Rd if it remains rigid in Rd even
after the deletion of any set of at most k−1 vertices. k-edge-redundant rigidity can be defined
similarly. The minimum degree in a k-vertex/edge-redundantly rigid graph in Rd is at least
k + d − 1 which implies a lower bound on the number of edges in a k-vertex-redundantly
rigid graph on n vertices, in terms of k, d, and n. For sufficiently large k, we show the
tightness of this bound for all d and infinitely many values of n. Our results have broader
applications, including providing tight lower bounds for other problems such as the size of k-
edge-redundantly rigid, or k-vertex/edge-redundantly globally rigid graphs. We also provide
almost tight upper bound for the size of minimally k-edge-redundantly rigid graphs in Rd

on n vertices for all possible values of k, d, and n, by extending an idea applied earlier for
k-vertex-redundant rigidity.

Keywords: rigidity, vertex-redundant rigidity, global rigidity

1 Introduction

A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p is a map from V
to Rd. We will also refer to (G, p) as a realization of G. Two realizations (G, p) and (G, q) of G are
equivalent if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for all pairs u, v with uv ∈ E. Frameworks (G, p)
and (G, q) are congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs u, v with u, v ∈ V . We say
that (G, p) is globally rigid in Rd if every d-dimensional framework which is equivalent to (G, p) is also
congruent to (G, p). A framework (G, p) is rigid if there exists an ε > 0 such that, if (G, q) is equivalent
to (G, p) and ||p(u)− q(u)|| < ε for all u ∈ V , then (G, q) is congruent to (G, p).

We assign to (G, p) a matrix, called the rigidity matrix R(G, p)∈ R|E|×d|V | that is defined as follows.
We assign a row of R(G, p) to each edge uv ∈ E and d columns to each v ∈ V . Let the d entries of R(G, p)
in the row assigned to uv ∈ E and d colums assigned to w ∈ V be 0d if w 6= u, v, p(u)−p(v) if w = u, and
p(v)− p(u) if w = v. (G, p) is called infinitesimally rigid if rank(R(G, p)) = d|V |−

(
d+1
2

)
. Infinitesimal

rigidity of (G, p) implies its rigidity but the other direction is not always true. The realization p is called
generic if the elements of the set {p(vi)j : i = 1, ..., |V |, j = 1, ..., d} are algebraically independent over
Q. It is known that for generic realizations of a graph rigidity and infinitesimal rigidity are equivalent.

A graph G is called rigid in Rd if it has an infinitesimally rigid realization in Rd. If p0 is a generic
realization of G, then it follows by the definition of genericity that rank(R(G, p0)) = max{rank(R(G, p)) :
p : V → Rd}. Hence generic realizations of a rigid graph are always infinitesimally rigid. A graph G is
called globally rigid in Rd if it has a generic globally rigid realization in Rd. By the results of Connelly

263

[3] Gortler, Healy and Thurston [5], if a graph has a generic globally rigid realization, then all of its
generic realizations are globally rigid. We refer for more details to [6, 23]. As parallel edges and loops are
meaningless in (the above version of) rigidity theory, we assume throughout this paper that all graphs
are simple, that is, contain no parallel edges or loops.

We call a graph G = (V,E) k-vertex-redundantly rigid in Rd (or shortly [k, d]-rigid) if G − U
is rigid in Rd for every U ⊂ V of cardinality at most k − 1. It is well-known (see [10] for a proof) that
a graph G on at least k + 1 vertices is [k, d]-rigid if and only if G− U is rigid in Rd for every U ⊂ V of
cardinality exactly k− 1. We say that a [k, d]-rigid graph G = (V,E) is minimally [k, d]-rigid if G− e
is not [k, d]-rigid for each e ∈ E. The main focus of this paper is on the edge number (that is, the size)
of minimally [k, d]-rigid graphs. When k = 1, it is well-known that all minimally [1, d]-rigid graphs on n
vertices (of cardinality at least d+ 1) have the same size: (d+ 1)n−

(
d+1
2

)
(see Whiteley [23]). However,

as it was shown in [15], no such fix number exist for larger values of k for any pair of d and n ≥ k + d.
Hence the goal is to give (tight) lower and upper bounds to the size of [k, d]-rigid graphs on n vertices.
The first tight lower bound was given by Servatius [20] for k = d = 2. Motevallian, Yu and Anderson
[19] (see also [13]) gave tight lower bound for [k, d] = [3, 2]. In [15] general lower bounds were given for
all pairs of [k, d] and their tightness was proven for k = 2 for all d, and for k = d = 3. It is obvious
that the minimum degree in graph which is rigid in Rd is at least d when it has at least d + 1 vertices.
This implies that the minimum degree in a [k, d]-rigid graph (on at least k+ d vertices) must be at least
k + d− 1 and hence we get the following lower bound to the size of such graphs.

Theorem 1 [15] Let G = (V,E) be a [k, d]-rigid graph on at least d+ k vertices. Then

|E| ≥
⌈
k + d− 1

2
|V |
⌉
. �

Since a rigid graph in Rd on n vertices induces at least dn −
(
d+1
2

)
edges, the above lower bound

cannot be tight when k ≤ d. Furthermore, [15, Theorem 5] implies that it is not tight for k = d + 1
when d ≥ 2. However, it was conjectured in [15] that the bound is tight whenever k ≥ d+ 2. Jordán [10]
verified this conjecture for d = 2, and Jordán, Poston and Roach [14] proved it for d = 3. In this note,

we verify the conjecture for all d ≥ 4 for the cases where k ≥ d2

4 + 2d+ 2.

Similarly to k-vertex redundant rigidity we can define k-edge-redundant rigidity in Rd (or shortly
[k, d]-edge rigidity), and k-edge/vertex-redundant global rigidity in Rd (or shortly [k, d]-edge/
vertex global rigidity). For example, a graph G = (V,E) is called [k, d]-edge globally rigid if G − F
is rigid for all F ⊆ E of cardinality (at most) k − 1. In [10, 14], tight lower bounds were given for the
edge number of all of these type of graphs for d = 2, 3 for (almost) all k (see Table 1 in Section 5 for the
missing cases). As for [k, d]-rigidity, we can obtain a trivial bound based on the minimum degree in rigid
and globally rigid graphs. We have used before that the minimum degree in a rigid graph in Rd on at
least d+ 1 vertices is at least d. On the other hand, by a result of Hendrickson [7], a globally rigid graph
in Rd on at least d+ 2 vertices must be d+ 1-connected, and hence the minimum degree of such a graph
must be at least d+ 1. These imply the following.

Theorem 2 [10, 16] Let G = (V,E) be a [k, d]-edge rigid graph on at least d+1 vertices. Let G′ = (V ′, E′)
be a [k, d]-edge globally rigid graph on at least d+ 1 vertices. Let G′′ = (V ′′, E′′) be a [k, d]-vertex globally
rigid graph on at least d+ k vertices. Then

|E| ≥
⌈
k + d− 1

2
|V |
⌉
, |E′| ≥

⌈
k + d

2
|V ′|

⌉
, and |E′′| ≥

⌈
k + d

2
|V ′′|

⌉
. �

As an application of our main result on the tightness of the bound given in Theorem 1, we show in
the end of Section 3 that the bounds given in Theorem 2 are also tight if k is sufficiently large in term of
d.

Besides seeking for lower bounds, it is natural to ask how large the size of a minimally [k, d]-rigid
([k, d]-edge rigid, [k, d]-edge/vertex globally rigid, respectively) graph on n vertices can be. In [15], a
tight upper bound was given to the size of [k, d]-rigid graphs for all pairs of k and d, as follows.

264

Theorem 3 [15] Let G = (V,E) be a minimally [k, d]-rigid graph on at least d+ k vertices. Then

|E| ≤ (d+ k − 1)|V | −
(
d+ k

2

)
.

Moreover, this bound is tight, when d ≥ 2.

We note that for d = 1 rigidity is equivalent to connectivity and hence [k, 1]-rigidity is equivalent to
k-connectivity. In this case, the tight upper bound can be obtained by a result of Mader [18].

Contrary to vertex-redundant rigidity, just a few partial results exists on the three other variants of
the problem. Jordán [8, 11] gave upper bound for the size of minimally [2, 2]-edge rigid simple graphs
on vertex set V : the upper bound is 3|V | − 9 for |V | ≥ 7 which is tight as the complete bipartite graphs
K3,n−3 show. For larger values of k and d, no tight upper bound is known for the size of minimally
[k, d]-edge rigid graphs. Jordán [11] proved that 2d|V | minus a constant depending on d is an upper
bound for this size when k = 2. However, this bound is far from the conjectured tight upper bound which
is (d + 1)|V | minus a constant depending on d (see also [4]). In Section 4, by using the proof technique
of Theorem 3 in [15], we show that the same upper bound as in Theorem 3 holds for the size minimally
[k, d]-edge rigid simple graphs. This statement verifies (and extends for higher values of k) the above
conjecture. f

For minimal [k, d]-vertex global rigidity, even the upper bound for k = 1 and d ≥ 3 had been open
[9, 16] until recently Garamvölgyi and Jordán [4] proved that the tight upper bound for the edge number
of a minimally [1, d]-vertex globally rigid graph on at least d+ 2 vertices is (d+ 1)|V | −

(
d+2
2

)
, moreover,

this bound is only tight for the complete graph Kd+2. (Although, for larger values of |V |, this bound is
almost tight which follows by the global rigidity of Kd+1,n−d−1 for n ≥

(
d+2
2

)
[12].) For higher values of

k, the following result along with the proof techniques of [15] provides almost tight upper bound for the
size of minimally [k, d]-vertex globally rigid graphs when d = 1, 2. We say that an edge is an Rd-bridge
(of G) if its corresponding row in the rigidity matrix R(G, p) of a generic realization of G in Rd is linearly
independent from the set of the other rows of the matrix.

Theorem 4 [4] Let G be a graph which is globally rigid in Rd where d = 1, 2. Assume that G− e is not
globally rigid for an edge e. Then e is an Rd+1-bridge of G.

It was conjectured in [9, 16] that this statement is also true for higher values of d. The upper bound
which arises by using this result is the following.

Theorem 5 [4] Let G = (V,E) be a minimally [k, d]-vertex globally rigid simple graph on at least d+k+1
vertices where d = 1 or 2. Then

|E| ≤ (d+ k)|V | −
(
d+ k + 1

2

)
. �

The complete graph Kd+k+1 shows that the above bound is tight for |V | = d+k+1, and the complete
bipratite graphs Kd+k,n−d−k (n ≥

(
d+k+1

2

)
show that the bound is almost tight for higher values of |V |.

In Section 4, we show that the same upper bound holds for the size of minimally [k, d]-edge globally rigid
simple graphs if d = 1 or 2. Again, the bound is almost tight. Finally, in Section 5, we give a brief
overview of the corresponding results, summarize the open problems of the topic.

2 The vertex splitting operation

Let G = (V,E) be a graph, let v1 ∈ V , let v1v2, ..., v1vd be d− 1 designated edges incident with v1, and
let E0 and E1 be a bipartition of the remaining edges incident with v1. The (d-dimensional) vertex
splitting operation at v1 removes the edges in E0, adds a new vertex v0, and adds a new set of edges
{v0v1, v0v2, ..., v0vd} ∪ {v0v : v1v ∈ E0} to G. The special cases of vertex splitting where E0 = ∅ or
|E0| = 1 are called 0-extension and 1-extension, respectively. Whiteley [22] proved that the vertex
splitting operation preserves the rigidity of graphs in Rd.

265

Theorem 6 ([22]) Let G be a rigid graph in Rd and let G′ be the result from applying a d-dimensional
vertex splitting to G. Then G′ is rigid in Rd. �

Next, let G be a graph, let v1 ∈ V , let v1v2, ..., v1vd+1 be d designated edges incident with v1,
and let E0 and E1 be a bipartition of the remaining edges incident with v1. The (d-dimensional)
extended vertex split at v1 removes the edges in E0, adds a new vertex v0, and adds the new edges in
E2 = {v0v2, ..., v0vd+1}∪{v0v : v1v ∈ E0} to G. Berenchtein, Chavez and Whiteley [1] proved that the 2-
dimensional extended vertex split preserves the rigidity of graphs in R2. Whiteley [22] also noted (without
proof) that it preserves rigidity in R3. Here we extend these results by showing that the d-dimensional
extended vertex split preserves the rigidity in Rd.

Theorem 7 Let G = (V,E) be a rigid graph in Rd and let G′ = (V + v0, E
′) be the result of a d-

dimensional extended vertex split applied to G at vertex v1. Then G′ is rigid in Rd.

Proof: Let p be a generic realization of G and let us define p(v0) := p(v1). We will show that (G′, p) is
infinitesimally rigid, that is, rank(R(G′, p)) = d(|V |+ 1)−

(
d+1
2

)
= rank(R(G, p)) + d.

Let G′′ = (V + v0, E
′′) be the result of a d-dimensional extended vertex split applied to G at vertex

v1 with E0 = ∅. Observe that

R(G′′, p) =

p(v0)− p(v2) ∗
.

p(v0)− p(vd+1) ∗
0 R(G, p)

 .

Note also that it follows from the genericity of p|V and p(v0) = p(v1) that p(v0)−p(v2), . . . , p(v0)−p(vd+1)
form a basis of Rd. These imply that rank(R(G′′, p)) = rank(R(G, p)) + d.

Next, observe that R(G′′, p) and R(G′, p) differ at the rows corresponding to edges in E0 since the
copy of these edges in G′ ends at v0. In fact, their difference is that the row corresponding to such an
edge ending at v has p(v0)− p(v) = p(v1)− p(v) in the first d columns (corresponding to v0) in R(G′, p)
and zeros in the next d columns corresponding to v1 while, in R(G′′, p), the first d coordinates are zeros
and the second d consists of the vector p(v1)− p(v), all the other entries in these rows are equal to each
other. To show that the rank of the two matrices are equal, it is enough to show the following claim.

Claim 8 Let q ∈ Rd. Then the vector (q,−q, 0d(|V |−1)) is in the row space of both R(G′, p) and R(G′′, p).

Proof: Both matrices contain the rows qi = (p(v0) − p(vi), 0, . . . , 0, p(vi) − p(v0), 0, . . . 0) and q′i =
(0d, p(v0) − p(vi), 0, . . . , 0, p(vi) − p(v0), 0, . . . 0) for each i ∈ {2, . . . , d + 1} since v0vi and v1vi are edges
of both of G′ and G′′ and p(v0) = p(v1). As we have seen before, {p(v0)− p(vi) : i ∈ {2, . . . , d+ 1}} is a

basis of Rd. Hence there exist constants λi for i ∈ {2, . . . , d + 1} such that
∑d+1

i=2 λi(p(v0) − p(vi)) = q.

Now,
∑d+1

i=2 λiqi − λiq′i = (q,−q, 0d(|V |−1)), which proves the claim. �
Let v1v ∈ E0. The difference of the rows of R(G′′, p) and R(G′, p) corresponding to v1v and v0v,

respectively, is (p(v0) − p(v), p(v) − p(v0), 0d(|V |−1)) which is in the row space of both matrices by the
above claim. This implies that the row space of the two matrices coincide and hence they have the same
rank. This finishes our proof. �

3 [k, d]-rigid graphs with minimum size

We shall also use the following result on the rigidity of complete bipartite graphs in our construction.

Theorem 9 (Whiteley [21] and [23, Theorem 11.2.1]) Let m,n ≥ 2 be two integers. The complete
bipartite graph Km,n is [1, d]-rigid if and only if m+ n ≥

(
d+2
2

)
and m,n ≥ d+ 1. �

266

In fact, the results of Whiteley [21] can also be applied for the case where we add extra edges to a
complete bipartite graph. In this case the lower bound

(
d+2
2

)
on the number of vertices can be reduced

by the number of new edges. Since this is only proved exactly for the case where d = 3 in [21], we give a
direct proof for the following (simpler) statement that we shall use in our construction.

Lemma 10 Let G = (S1∪S2∪T1∪T2, E) be the union of the complete bipartite graph KS1∪S2,T1∪T2
and

of the complete graph KS1∪T1
. Assume that ` := |S1 ∪ T1| ≥ d, and |S2| = |T2| ≥ d + 1 + b (d−`/2)

2−`
2 c.

Then G is [1, d]-rigid. �

Proof: We shall use 0- and 1-extensions in the proof. Let us start with KS1∪T1
, which is rigid as it is

complete. (Note that if |S1| ≥ d or |T1| ≥ d, then a rigid subgraph of G can be got from this complete
graph by using 0-extensions. Hence, from now on, we will assume that |S1|, |T1| < d.) Next we add
subsequently d − |S1| vertices from S2 and d − |T1| vertices from T1 by using 0-extensions by adding as
much edges of G as we can and some extra, auxiliary edges. Note that if we add the vertices from S2

first, then we need to add (d − |S1|)(d − |T1|) auxiliary edges to the side of S1 during the 0-extensions
and 0 to the other side. (These edges will be removed later by using 1-extensions.) Suppose that in
a sequence of vertices (of the above 0-extensions), there is a S2 vertex followed by a T2 vertex. If we
change the order by swapping these two vertices, the number of auxiliary edges added to the side of S1

decreases by one, while the number of auxiliary edges added on the other side increases by one. This
way we can assume that we add b(d − |S1|)(d − |T1|)/2 − (|S1| − |T1|)/2c auxiliary edges to the side of
S1 and d(d− |S1|)(d− |T1|)/2 + (|S1| − |T1|)/2e edges to the other side. Before starting 1-extensions, we
need to add one more vertex from T2 by using a 0-extension (without adding any new auxiliary edges).
Next we add d(d− |S1|)(d− |T1|)/2 + (|S1| − |T1|)/2e vertices from S2 by using 1-extensions and deleting
the auxiliary edges from the side of T1, and after this we add b(d − |S1|)(d − |T1|)/2 − (|S1| − |T1|)/2c
vertices from T2 by using 1-extensions and deleting the auxiliary edges from the side of S1. Finally, we
add the rest of vertices (if any) by using 0-extensions. This way we get a rigid subgraph of G. Note
that we needed to add at least d − |S1| + d(d − |S1|)(d − |T1|)/2 + (|S1| − |T1|)/2e vertices from S2 and
d−|T1|+1+b(d−|S1|)(d−|T1|)/2− (|S1|− |T1|)/2c vertices from T2 which is possible by our assumption
on the cardinality of S2 and T2. �

The construction when k+d is odd. Let us take n sets V1, . . . , Vn of cardinality k+d−1
2 and let Ei be

the edge set of the complete bipartite graph with color classes Vi and Vi+1 for i = 1, . . . n, where we use
the notation Vn+i := Vi (i = 1, . . . , n). Let Kk+d−1

2 ×n
denote the graph on vertex set V = V1 ∪ . . . , Vn

with edge set E = E1 ∪ . . . , En. Our main result is the following.

Theorem 11 Assume that d ≥ 2, n ≥ 5d + 1, k ≥ d2

4 + 2d − 1, and k + d is odd. Then K k+d−1
2 ×n is

[k, d]-rigid.

Since K k+d−1
2 ×n is (k + d − 1)-regular, its [k, d]-rigidity implies that it is extremal for the bound of

Theorem 1 on the edge number of [k, d]-rigid graphs.

Proof: Let S ⊂ V be a subset of vertices with |S| = k − 1. We need to show that K k+d−1
2 ×n − S is

rigid in Rd.

Note that k ≥ d2

4 + 2d− 1, d ≥ 2, and the fact that k+ d is odd imply that k ≥ 3d− 1 also holds. For

each triple i1, i2, i3 ∈ {1, . . . , n}, |Vi1 ∪ Vi2 ∪ Vi3 − S| ≥ 3k+d−1
2 − (k − 1) = k+3d−1

2 ≥ 3(d− 1) + 1 holds
by k ≥ 3d− 1. This implies that |Vi − S| ≥ d holds for all but at most two i ∈ {1, . . . , n}. Similarly, for
each i1, i2, i3, i4, i5, i6 ∈ {1, . . . , n}, |Vi1 ∪ Vi2 ∪ Vi3 ∪ Vi4 ∪ Vi5 ∪ Vi6 − S| ≥ 6k+d−1

2 − (k− 1) = 4k+6d−4
2 ≥

9d−4 ≥ 6d+1 holds by k ≥ 3d−1 and d ≥ 2. This implies that |Vi−S| ≥ d+1 holds for all but at most
five i ∈ {1, . . . , n}. Thus, by the pigeonhole principle and n ≥ 5d+1, there exists an index i0 ∈ {1, . . . , n}
such that |Vi0+j − S| ≥ d + 1 holds for j = 0, . . . , d − 1. By relabeling the sets Vi’s cyclically, we can
assume that i0 = 1.

267

We first show that G = (K k+d−1
2 ×n −S)[V1 ∪ · · · ∪ Vd] is rigid in Rd. It is enough to show the rigidity

of an induced subgraph G′ of G for which |V (G′) ∩ (Vi − S)| = d+ 1 holds for each i ∈ {1, . . . , d}, since
G arises from this subgraph by 0-extensions and edge additions.

Claim 12 G′ is rigid.

Proof: Let V (G′)∩ (Vi−S) = {vi1, . . . , vid+1} for i = 1, . . . , d. Observe that if we contract all of the sets

{v21 , v41 , . . . , v
2b d2 c
1 }, . . . , {v2d+1, v

4
d+1, . . . , v

2b d2 c
d+1 } into single vertices, then the arising graph is the complete

bipartite graph Kd+1,d d2 e(d+1) which is rigid by Theorem 9. On the other hand G′ arises from this graph

by using extended vertex splitting and edge additions and hence G′ is rigid by Theorem 7. �
Next, if |Vi−S| ≥ d holds for all but one i ∈ {1, . . . , n}, then we can add all the vertices ofK k+d−1

2 ×n−S
by 0-extensions to G′ in a row to prove its rigidity. Furthermore, if we try to use 0-extensions in the
case where there are two small sets, we only get stuck if there exist two indices d+ 1 ≤ i1 < i2 ≤ n with
i2− i1 ≥ 3 such that |Vi1 −S| ≤ d− 1 and |Vi2 −S| ≤ d− 1. (Note that, when i2− i1 = 2, the vertices in
Vi1+1 have at least d neighbors in Vi1∪Vi2−S.) In this remaining case, like before, we can use the rigidity
of G′ and 0-extensions to prove the rigidity of K k+d−1

2 ×n[V1∪· · ·∪Vd∪Vd+1∪· · ·∪Vi1 ∪Vi2 ∪· · ·∪Vn−S].

This implies that we may add the edge set F of the complete graph KV1∪···∪Vd∪Vd+1∪···∪Vi1
∪Vi2

∪···∪Vn−S
without increasing the rank of the corresponding rigidity matrix (since the part corresponding to the
vertices in V1 ∪ · · · ∪Vi1 ∪Vi2 ∪ · · · ∪Vn−S has already maximum rank), that is, K k+d−1

2 ×n−S is rigid if

and only if (K k+d−1
2 ×n−S)+F is rigid. Next we prove the rigidity of (K k+d−1

2 ×n−S+F)[Vi1 ∪· · ·∪Vi2].

Now |Vi1 − S| ≤ d − 1 and |Vi2 − S| ≤ d − 1 imply that |Vi1 ∩ S| ≥ k+d−1
2 − (d − 1) = k−d+1

2

and |Vi2 − S| ≥ k−d+1
2 . Hence |S ∩ Vi| ≤ d − 2 and hence |Vi − S| ≥ k−d+3

2 holds for each in-
dex i1, i2 6= i ∈ {1, . . . , n}. Like in the previous case, for each i1 < i < i2, we denote the first
k−d+3

2 elements of Vi − S by {vi1, . . . , vik−d+3
2

} and delete the rest of its elements. Next we contract

the sets {vi1+1
1 , vi1+3

1 , . . . , v
i1+2b i2−i1

2 c−1
1 }, . . . , {vi1+1

k−d+3
2

, vi1+3
k−d+3

2

, . . . , v
i1+2b i2−i1

2 c−1
k−d+3

2

} and {vi1+2
1 , vi1+4

1 , . . . ,

v
i1+2d i2−i1

2 e−2
1 }, . . . , {vi1+2

k−d+3
2

, vi1+4
k−d+3

2

, . . . , v
i1+2d i2−i1

2 e−2
k−d+3

2

} into single vertices u11, . . . , u
1
k−d+3

2

and u21, . . . ,

u2k−d+3
2

. (Recall that we are assuming now that i2 − i1 ≥ 3 and hence we indeed get at least 2k−d+3
2

contracted vertices.)
The resulting graph after the contraction is the union of the complete graph K(Vi1

∪Vi2
)−S and either

the complete bipartite graph K k−d+3
2 +|Vi1

−S|, k−d+3
2 +|Vi2

−S| or K k−d+3
2 +|Vi1

−S|+|Vi2
−S|, k−d+3

2
. Note that

|Vi1 ∪ Vi2 − S| ≥ k + d− 1− (k − 1) ≥ d. Hence the contracted graph is rigid by Theorem 10. This also
implies the rigidity of (K k+d−1

2 ×n − S + F)[Vi1 ∪ · · · ∪ Vi2] by using Theorem 7 (and 0-extensions). The

rest of the vertices of K k+d−1
2 ×n−S+F Hence K k+d−1

2 ×n−S+F is indeed rigid which, as we have seen

earlier, implies the rigidity of K k+d−1
2 ×n − S, finishing our proof. �

The construction when k + d is even. Let K′k+d−2
2 ×2n

be obtained from K k+d−2
2 ×2n by adding a

matching between Vi and Vi+n (called long diagonals) for each i = 1, . . . n. (Again, we use the notation
V2n+i := Vi (i = 1, . . . , 2n).) We claim now the following.

Theorem 13 Assume that d ≥ 2, 2n ≥ 5d+ 1, k ≥ d2

4 + 2d+ 2, and k + d is even. Then K ′k+d−2
2 ×2n is

[k, d]-rigid.

Since K ′k+d−2
2 ×2n is (k + d − 1)-regular, its [k, d]-rigidity implies that it is extremal for the bound of

Theorem 1 on the edge number of [k, d]-rigid graphs.

Proof: Let S ⊂ V be a subset of vertices with |S| = k − 1 We need to show that K ′k+d−2
2 ×2n − S is

rigid in Rd.

268

Note that k ≥ d2

4 +2d+2 and d ≥ 2 imply that k ≥ 3d+1 holds. For each triple i1, i2, i3 ∈ {1, . . . , n},
|Vi1 ∪ Vi2 ∪ Vi3 − S| ≥ 3k+d−2

2 − (k − 1) = k+3d−4
2 > 3(d − 1) holds by k ≥ 3d + 1. This implies that

|Vi−S| ≥ d holds for all but at most two i ∈ {1, . . . , 2n}. Similarly, for each i1, i2, i3, i4, i5, i6 ∈ {1, . . . , 2n},
|Vi1 ∪Vi2 ∪Vi3 ∪Vi4 ∪Vi5 ∪Vi6 −S| ≥ 6k+d−2

2 − (k− 1) = 4k+6d−10
2 ≥ 9d− 3 ≥ 6d+ 1 holds by k ≥ 3d+ 1

and d ≥ 2. This implies that |Vi − S| ≥ d+ 1 holds for all but at most five i ∈ {1, . . . , 2n}. Thus, by the
pigeonhole principle and 2n ≥ 5d+ 1, there exists an index i0 ∈ {1, . . . , 2n} such that |Vi0+j −S| ≥ d+ 1
holds for j = 0, . . . , d− 1. By relabeling the sets Vi’s cyclically, we can assume that i0 = 1.

We take an induced subgraph G′ of K ′k+d−2
2 ×2n—like in the proof of Theorem 11—for which |V (G′)∩

(Vi − S)| = d+ 1 holds for each i ∈ {1, . . . , d}. G′ is rigid by Claim 12. If |Vi − S| ≥ d holds for all but
one i ∈ {1, . . . , n}, then we can add all the vertices of K ′k+d−2

2 ×2n − S by 0-extensions to G′ in a row to

prove its rigidity. Furthermore, if we try to use 0-extensions in the case where there are two small sets,
we only get stuck if there exist two indices d+ 1 ≤ i1 < i2 ≤ n with i2− i1 ≥ 3 such that |Vi1 −S| ≤ d−1
and |Vi2 − S| ≤ d− 1. (Note that, when i2 − i1 = 2, either the vertices in Vi1+1 have at least d neighbors
in Vi1 ∪ Vi2 − S, or S ⊂ Vi1 ∪ Vi2 , |Vi1 ∪ Vi2 − S| = d − 1 and the vertices in Vi1+1 have exactly d
neighbors in Vi1 ∪ Vi2 ∪ Vi1+1+n − S since their neighbors along the long diagonals are not deleted.) In
this remaining case, like before, we can use the rigidity of G′ and 0-extensions to prove the rigidity of
K ′k+d−2

2 ×2n[V1∪· · ·∪Vd∪Vd+1∪· · ·∪Vi1∪Vi2∪· · ·∪V2n−S]. This implies that we may add the edge set F of

the complete graph KV1∪···∪Vd∪Vd+1∪···∪Vi1
∪Vi2

∪···∪V2n−S without increasing the rank of the corresponding
rigidity matrix (since the part corresponding to the vertices in V1 ∪ · · · ∪ Vi1 ∪ Vi2 ∪ · · · ∪ V2n − S has
already maximum rank), that is, K ′k+d−2

2 ×2n − S is rigid if and only if (K ′k+d−2
2 ×2n − S) + F is rigid.

Now |Vi1 − S| ≤ d − 1 and |Vi2 − S| ≤ d − 1 imply that |Vi1 ∩ S| ≥ k+d−2
2 − (d − 1) = k−d

2 and

|Vi2−S| ≥ k−d
2 . Hence |S∩Vi| ≤ d−1 and hence |Vi−S| ≥ k−d

2 holds for each index i1, i2 6= i ∈ {1, . . . , n}.
Like in the previous case, for each i1 < i < i2, we denote the first k−d

2 elements of Vi−S by {vi1, . . . , vik−d
2

}
and delete the rest of its elements since we may add them by 0-extensions in the end of the construction.

Next we contract the vertex sets {vi1+1
1 , vi1+3

1 , . . . , v
i1+2b i2−i1

2 c−1
1 }, . . . , {vi1+1

k−d
2

, vi1+3
k−d
2

, . . . , v
i1+2b i2−i1

2 c−1
k−d
2

}

and {vi1+2
1 , vi1+4

1 , . . . , v
i1+2d i2−i1

2 e−2
1 }, . . . , {vi1+2

k−d
2

, vi1+4
k−d
2

, . . . , v
i1+2d i2−i1

2 e−2
k−d
2

} in (K ′k+d−2
2 ×2n −S) +F into

single vertices u11, . . . , u
1
k−d
2

and u21, . . . , u
2
k−d
2

. Recall that we are assuming now that i2− i1 ≥ 3 and hence

we indeed get at least 2k−d
2 contracted vertices.) Let H be the resulting graph.

We have now two cases. Assume first that |Vi1 −S|+ |Vi2 −S| ≥ d. Let now H ′ = H− (V1∪ · · ·∪Vd∪
Vd+1∪· · ·∪Vi1−1∪Vi2+1∪· · ·∪V2n−S). Observe that H ′ is the union of the complete graph K(Vi1∪Vi2)−S
and either the complete bipartite graph K k−d

2 +|Vi1−S|,
k−d
2 +|Vi2−S|

or K k−d
2 +|Vi1−S|+|Vi2−S|,

k−d
2

. Since we

assumed that |Vi1−S|+ |Vi2−S| ≥ d, H ′ is rigid by Lemma 10 and hence we can conclude that H is rigid
by using 0-extensions. Next assume that |Vi1 − S|+ |Vi2 − S| = d− 1 (which is the single case left). Let
now H ′′ = H/(V1∪· · ·∪Vd∪Vd+1∪· · ·∪Vi1−1∪Vi2+1∪· · ·∪V2n−S), that is, the graph that we get from H
after contracting the vertex set V1∪· · ·∪Vd∪Vd+1∪· · ·∪Vi1−1∪Vi2+1∪· · ·∪V2n−S into a single vertex v0.
Observe that H ′′ is the union of the complete graph K((Vi1∪Vi2)−S)∪{v0} and either the complete bipartite
graph K k−d

2 +|Vi1−S|+1, k−d
2 +|Vi2−S|

or K k−d
2 +|Vi1−S|+|Vi2−S|+1, k−d

2
. Since |Vi1 −S|+ |Vi2 −S| = d− 1, H ′′

is rigid by Lemma 10. Now, we can conclude that H is rigid by using Theorem 6 for splitting v0 multiple
times, (and using the edges from v0 to (Vi1 ∪ Vi2)− S as the designated edges).

As H is rigid, K ′k+d−2
2 ×2n − S + F is also rigid by Theorem 7 (and 0-extensions). This, as we have

seen earlier, implies the rigidity of K ′k+d−2
2 ×2n − S, finishing our proof. �

Other variants. Jordán [10] observed that a [k, d]-rigid graph is also [k, d]-edge rigid and [k − 1, d]-
vertex globally rigid. Similarly, a [k−1, d]-vertex globally rigid graph is also [k−1, d]-edge globally rigid.
These facts along with Theorems 11 and 13 provide the following corollaries which imply that K k+d−1

2 ×n
and K ′k+d−2

2 ×2n are extremal for the bounds of Theorem 2.

269

Corollary 14 Assume that d ≥ 2, n ≥ 5d + 1, k ≥ d2

4 + 2d − 1, and k + d is odd. Then K k+d−1
2 ×n is

[k, d]-edge rigid, [k − 1, d]-vertex globally rigid, and [k − 1, d]-edge globally rigid. �

Corollary 15 Assume that d ≥ 2, 2n ≥ 5d+ 1, k ≥ d2

4 + 2d+ 2}, and k + d is even. Then K ′k+d−2
2 ×2n

is [k, d]-edge rigid, [k − 1, d]-vertex globally rigid, and [k − 1, d]-edge globally rigid. �

4 Upper bounds

We show here how the techniques of [15] can be used to prove an almost tight upper bound for the
edge-redundant version of Theorems 3 and 5, verifying (an extension of) the conjecture of [4]. The key
of our proofs is the following observation.

Lemma 16 Let G = (V,E) be a simple graph and F ⊂ E be an edge set with |F | = k − 1. Suppose that
e ∈ E − F is an Rd-bridge of G− Fe. Then e is an Rd+k−1-bridge of G.

Proof: Let F = {u1v1, ..., uk−1vk−1}. By possibly changing the role of ui and vi, we may assume that
no vi is an end vertex of e (since G is simple). As e is an Rd-bridge of G− F , it is also an Rd-bridge of
G−{v1, . . . , vk−1} ⊂ G−Fe. By [15, Lemma 3], e is an Rd+k−1-bridge of (. . . (G−{v1, . . . , vk−1}) ∗ v1) ∗
. . .) ∗ vk−1, where G ∗ v is the cone of G that we get from G by adding a new vertex v and connecting it
to each vertex of G; and here we add the copies of the same vertex (if vi = vj) multiple times. Hence e
is an Rd+k−1-bridge of G as it is a subgraph of (. . . (G− {v1, . . . , vk1

}) ∗ v1) ∗ . . .) ∗ vk−1. �

Theorem 17 Let G = (V,E) be a minimally [k, d]-edge rigid simple graph on at least d + k vertices.
Then

|E| ≤ (d+ k − 1)|V | −
(
d+ k

2

)
.

Proof: As G − e is not [k, d]-edge rigid for each edge e, there is a set Fe ⊆ E such that |Fe| = k − 1,
G − Fe − e is not rigid. On the other hand, G − Fe is rigid by the [k, d]-edge rigidity of G and hence e
is an Rd-bridge of G − Fe. Thus Lemma 16 implies that e is is an Rd+k−1-bridge of G for each edge e.
Now, the upper bound on |E| follows by the fact that the maximum rank of the d-dimensional rigidity
matrix is d|V | −

(
d+1
2

)
if |V | ≥ d+ 1. �

Theorem 18 Let G = (V,E) be a minimally [k, d]-edge globally rigid simple graph on at least d+ k + 1
vertices where d = 1, 2. Then

|E| ≤ (d+ k)|V | −
(
d+ k + 1

2

)
. �

Proof: As G − e is not [k, d]-edge globally rigid for each edge e, there is a set Fe ⊆ E such that
|Fe| = k−1, G−Fe−e is not globally rigid. On the other hand, G−Fe is globally rigid by the [k, d]-edge
global rigidity of G and hence e is an Rd+1-bridge of G−Fe by Theorem 4. Thus Lemma 16 implies that
e is is an Rd+k-bridge of G for each edge e. Now, the upper bound on |E| follows by the fact that the
maximum rank of the d-dimensional rigidity matrix is d|V | −

(
d+1
2

)
if |V | ≥ d+ 1. �

The above bounds are tight for |V | = d + k (|V | = d + k + 1, respectively) by the minimal [k, d]-
edge rigidity ([k, d]-edge global rigidity, respectively) of the complete graph Kd+k (Kd+k+1, respectively).
For higher values of |V |, the bounds are almost tight as Kd+k−1,n−d−k+1 (Kd+k,n−d−k, respectively) is

minimally [k, d]-edge rigid (globally rigid,respectively) for n ≥
(
d+2
2

)
. (The proofs of these facts are easy,

so we leave them to the reader.)

270

5 Concluding remarks and open problems

We have shown that the lower bound of the number of edges in [k, d]-rigid, [k, d]-edge rigid, [k, d]-vertex
globally rigid, and [k, d]-edge globally rigid graphs provided by Theorems 1 and 2 are tight for all d ≥ 2
when k is sufficiently large. The conjecture of [15] that these lower bounds are also tight for all k with

k ≥ d + 2 remains open for k ≤ d2

4 . We note that, when k ≤ d + 1, the problem of giving tight lower
bounds to the above types of graphs is more challenging since in these cases (usually) no regular graphs
will be sufficient for the proof. Table 1 summarizes the current knowledge on these types of problems.

k = 1 2 3 4 > d+ 1

[k, 2]-r 2n− 3 2n− 1 [20] 2n+ 2 [13, 19] d 5n2 e [10] d (k+1)n
2 e [10]

[k, 2]-e-r 2n− 3 2n− 2 2n [10] d 5n2 e [10] d (k+1)n
2 e [10]

[k, 2]-g-r 2n− 2 2n [19, 24] d 5n2 e [24] 3n [10] d (k+2)n
2 e [10]

[k, 2]-e-g-r 2n− 2 2n [10] d 5n2 e [10] 3n [10] d (k+2)n
2 e [10]

[k, 3]-r 3n− 6 3n− 3 [15] 3n [15] 3n+ 5 + ε [14] d (k+2)n
2 e [10]

[k, 3]-e-r 3n− 6 3n− 5 3n− 4 [14] 3n [14] d (k+2)n
2 e [14]

[k, 3]-g-r 3n− 5 [10] 3n− 2[17] 3n+ 2 + δ [14] d 7n2 e [14] d (k+3)n
2 e [14]

[k, 3]-e-g-r 3n− 5 [10] 3n− 4 [2] 3n [14] d 7n2 e [14] d (k+3)n
2 e [14]

[k, d]-r dn−
(
d+1
2

)
dn−

(
d
2

)
[15] OPEN for d ≥ 4 OPEN for d ≥ 4 d (k+d−1)n

2
e∗

[k, d]-e-r dn−
(
d+1
2

)
dn−

(
d+1
2

)
+ 1 OPEN for d ≥ 4 OPEN for d ≥ 4 d (k+d−1)n

2
e∗

[k, d]-g-r dn−
(
d+1
2

)
+ 1 [10] OPEN for d ≥ 4 OPEN for d ≥ 4 OPEN for d ≥ 4 d (k+d)n

2
e∗

[k, d]-e-g-r dn−
(
d+1
2

)
+ 1 [10] OPEN for d ≥ 4 OPEN for d ≥ 4 OPEN for d ≥ 4 d (k+d)n

2
e∗

Table 1: The known tight lower bounds on the edge number, where 0 ≤ ε ≤ 15 and 0 ≤ δ ≤ 18. The
bold bounds are from this paper and are only known to be tight for sufficiently large k.

We also provided upper bounds for the size of minimally [k, d]-edge rigid ([k, d]-edge globally, respec-
tively) simple graphs for all d (for d = 1, 2, respectively). We have seen that the tightness of these bound
was only provided for |V | = k + d (|V | = k + d + 1, respectively), however, for higher values of |V |,
we only gave almost tight examples. Based on the results of Jordán [11] on the [2, 2]-edge rigidity case,
we conjecture that the tight upper bounds (for sufficiently large n) coincide with the edge number of
Kk+d−1,n−k−d+1 (Kk+d−1,n−k−d+1, respectively). A rather important problem is the extension of Theo-
rem 4 for higher values of d, that is, the verification of the conjecture of [9, 16]. Such result will imply
that Theorems 5 and 18 are also true for higher values of d.

Acknowledgments. Projects nos. NKFI-128673 and PD-138102 have been implemented with the
support provided from the National Research, Development and Innovation Fund of Hungary, financed
under the FK 18 and PD 21 funding schemes. This paper was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-20-5 and ÚNKP-21-5 New National
Excellence Program of the Ministry for Innovation and Technology.

References

[1] L. Berenchtein, L. Chavez, and W. Whiteley. Inductive constructions for 2-rigidity: bases and circuits
via tree partitions. Manuscript, York University, Toronto, 2002.

[2] Q. Chen, S. Jajodia, T. Jordán, and K. Perkins. Redundantly globally rigid braced triangulations.
Technical Report TR-2021-12, Egerváry Research Group, Budapest, 2021. egres.elte.hu.

[3] R. Connelly. Generic global rigidity. Discrete & Computational Geometry, 33(4):549–563, 2005.

271

[4] D. Garamvölgyi and T. Jordán. Minimally globally rigid graphs. Eur. J. Comb., 108:103626, 2023.

[5] S.J. Gortler, A.D. Healy, and D.P. Thurston. Characterizing generic global rigidity. American
Journal of Mathematics, 132(4):897–939, 2010.

[6] J.E. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. AMS Graduate studies in
mathematics Vol. 2. American Mathematical Soc., 1993.

[7] B. Hendrickson. Conditions for unique graph realizations. SIAM J. Comput., 21(1):65–84, 1992.

[8] T. Jordán. Combinatorial rigidity: Graphs and matroids in the theory of rigid frameworks. In
Discrete Geometric Analysis, volume 34 of MSJ Memoirs, pages 33–112. Mathematical Society of
Japan, Japan, 2016.

[9] T. Jordán. Extremal problems and results in combinatorial rigidity. In A. Frank, A. Recski, and
G. Wiener, editors, Proc. of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and
Its Applications May 22-25, 2017, Budapest, Hungary, pages 297–303. Department of Computer
Science and Information Theory, Budapest University of Technology and Economics, 2017.

[10] T. Jordán. Minimum size highly redundantly rigid graphs in the plane. Graphs Comb., 37(4):1415–
1431, 2021.

[11] T. Jordán. Ear-decompositions, minimally connected matroids, and rigid graphs. Technical Report
TR-2022-11, Egerváry Research Group, Budapest, 2022. egres.elte.hu.

[12] T. Jordán. The globally rigid complete bipartite graphs. Technical Report (Quick Proof) QP-2022-
02, Egerváry Research Group, Budapest, 2022. egres.elte.hu.

[13] T. Jordán, R. Huang, H. Simmons, K. Weatherspoon, and Z. Zheng. Four-regular graphs with
extremal rigidity properties. Technical Report TR-2022-13, Egerváry Research Group, Budapest,
2022. egres.elte.hu.

[14] T. Jordán, C. Poston, and R. Roach. Extremal families of redundantly rigid graphs in three dimen-
sions. Discret. Appl. Math., 322:448–464, 2022.

[15] V.E. Kaszanitzky and Cs. Király. On minimally highly vertex-redundantly rigid graphs. Graphs
Comb., 32(1):225–240, 2016.

[16] Cs. Király. Graph Structures from Combinatorial Optimization and Rigidity Theory. PhD thesis,
ELTE, Budapest, 2015.

[17] Cs. Király. Unpublished result, 2022.

[18] W. Mader. Über n-fach zusammenhängende, unendliche Graphen und ein extremal Problem. Arch.
Math., 23:553–60, 1972.

[19] S.A. Motevallian, C. Yu, and B.D.O. Anderson. On the robustness to multiple agent losses in 2d
and 3d formations. Int. J. of Robust and Nonlinear Control, 2014.

[20] B. Servatius. Birigidity in the plane. SIAM J. Discrete Math., 2(4):582–589, 1989.

[21] W. Whiteley. Infinitesimal motions of a bipartite framework. Pacific J. Math., 110(1):233–255, 1984.

[22] W. Whiteley. Vertex splitting in isostatic frameworks. Structutal Topology, 16:22–30, 1990.

[23] W. Whiteley. Some matroids from discrete applied geometry. In J.E. Bonin, J.G. Oxley, and
B. Servatius, editors, Matroid Theory, volume 197 of Contemporary Mathematics, pages 171–311.
AMS, 1996.

[24] C. Yu and B.D.O. Anderson. Development of redundant rigidity theory for formation control.
International Journal of Robust and Nonlinear Control, 19(13):1427–1446, 2009.

272

Scheduling under a resource constraint:
the case of negligible processing times

Kristóf Bérczi1

Department of Operations Research
Eötvös Loránd University

Budapest, Hungary
kristof.berczi@ttk.elte.hu

Tamás Király1

ELKH–ELTE Egerváry Research Group
Department of Operations Research

Eötvös Loránd University
Budapest, Hungary

tamas.kiraly@ttk.elte.hu

Simon Omlor

Faculty of Statistics
TU Dortmund

Dortmund, Germany
simon.omlor@tu-dortmund.de

Abstract: We consider single-machine scheduling with a non-renewable resource. In this
setting, we are given a set jobs, each characterized by a processing time, a weight, and a
resource requirement. At fixed points in time, certain amounts of the resource are made
available to be consumed by the jobs. The goal is to assign the jobs non-preemptively to
time slots on the machine, so that each job has enough resource available at the start of its
processing. In this talk, we consider the case when processing times are negligible, so every
job can be scheduled at some resource arrival time.

Our main contribution is a PTAS for minimizing the weighted sum of completion times. We
also investigate a variant where the resource arrival times are unknown, and present a (4 + ϵ)-
approximation algorithm, together with a (4− ε)-inapproximability result for any ε > 0.

Keywords: scheduling; approximation; non-renewable resource; PTAS

1 Introduction

Scheduling problems with non-renewable resource constraints arise naturally in various areas where re-
sources like raw materials, energy, or financial funding arrive at predetermined dates. In the general
setting, we are given a set of jobs and a set of machines. Each job is equipped with a requirement vector
that encodes the needs of the given job for the different types of resources. There is an initial stock
for each resource, and some additional resource arrival times in the future are known together with the
arriving quantities. The aim is to find a schedule of the jobs on the machines such that the necessary
resources are available for each job.

In the present talk, we concentrate on the problem with a single resource, where the objective is to
minimize the weighted sum of completion times. Furthermore, we assume that every job has 0 processing
time. This means that the number of machines is irrelevant, and each job can be scheduled at a resource
arrival time. This case is relevant to situations where processing times are negligible compared to the gaps

1Research is supported by supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number
LP2021-1/2021, and by the Hungarian National Research, Development and Innovation Office – NKFIH, grant number
FK128673

273

between resource arrival times, and the bottleneck is resource availability. Examples include financial
scheduling problems where the jobs are not time-consuming but the availability of funding varies in
time, or production problems where products are shipped at fixed time intervals and production time is
negligible compared to these intervals. Note that the number of machines is irrelevant if processing times
are 0.

Related work Scheduling problems with resource restrictions (also called financial constraints, or raw
material restrictions) were introduced by Carlier and Rinnooy Kan [2] and by Slowinski [7]. Carlier [1]
settled the computational complexity of several variants for the single machine case. In particular, he
showed that the problem of minimizing the weighted sum of completion times is NP-hard.

Kis [6] showed that the problem remains weakly NP-hard even when the resource arrives at only 2
distinct dates. On the positive side, he gave an FPTAS for this case.

Györgyi and Kis [4] gave polynomial-time algorithms for several special cases, and also showed that
the problem remains weakly NP-hard under the very strong assumption that for each job, the processing
time, resource requirement and weight are the same. They also provided a 2-approximation algorithm for
this variant, and a polynomial-time approximation scheme (PTAS) when the number of resource arrival
times is a constant and the processing time equals the weight for each job, while the resource requirements
are arbitrary. The same authors showed in [5] that minimizing the sum of completion times is NP-hard
even for two resource arrival times and all jobs having unit resource requirement, and provided a FPTAS
for a variant in which the jobs have arbitrary weights, but the resource requirements are identical and
the number of resource arrival times is bounded by a constant.

Notation Throughout the paper, we will use the following notation. We are given a set J of n jobs.
Each job j ∈ J has a non-negative weight wj and a resource requirement aj . The resources arrive at
time points t1, . . . , tq, and the amount of resource that arrives at ti is denoted by bi. We assume that∑q

i=1 bi =
∑n

j=1 aj holds. We also assume that t1 = 0 – this is a valid assumption because it is the worst
case for the approximation ratio.

Since the processing times are 0, every job is processed at one of the arrival times in any optimal
schedule. Thus, a schedule can be represented by a mapping π : J → [q], where π(j) denotes the index
of the resource arrival time when job j is processed. The completion time Cj of job j equals tπ(j).

A schedule is feasible if the resource requirements are met, that is, if

∑

j:π(j)≤k

aj ≤
∑

i≤k

bi (1)

for all 1 ≤ k ≤ q. Since we assume that
∑

i bi =
∑

j aj holds, this is equivalent to

∑

j:π(j)≥k

aj ≥
∑

i≥k

bi (2)

for all 1 ≤ k ≤ q. Define Bk =
∑

i≥k bi, and consider the set of jobs that are not processed before a given
time point ti. Inequality (2) means that if the resource requirements of these jobs add up to at least Bi,
then our schedule is feasible.

Using the standard α|β|γ notation of Graham, Lawler, Lenstra and Kan [3], our problem is denoted
by 1|rm = 1, pj = 0|∑Cjwj , where rm stands for raw materials, and pj = 0 means that the processing
time is 0 for every job.

2 Our results

We consider problem 1|rm = 1, pj = 0|∑Cjwj . The problem clearly is NP-hard even for q = 2, as the
knapsack problem can be reduced to it. Indeed, maximizing the weight of the items in the knapsack is

274

equivalent to the task of maximizing the weight of jobs that are scheduled at the first resource arrival
time.

First, as an introductory result, we show a (4+ε)-approximation algorithm that serves as a simplified
illustration of the technique used in the general PTAS.

As a next step towards a general PTAS, we present a PTAS for constant number of resource arrival
times. This uses a fairly standard method of guessing the k heaviest jobs at each arrival time, and it will
be used as a subroutine in our algorithm for the general case. We give a (1+ q

k)-approximation algorithm
with running time O(nqk+1), where q is the number of arrival times. Then we prove the main result,
which is a PTAS for an arbitrary number of resource arrival times.

Finally, we consider a variant of the problem where the number of arrival times and the arriving
quantities are known, but the arrival times themselves are unknown. On one hand, we show that no
(4− ε)-approximation algorithm is possible for any ε > 0. On the other hand, we give a (4 + ε)-approxi-
mation algorithm with running time polynomial in 1/ε and the input length.

2.1 A (4 + ε)-approximation for arbitrary q

We may assume without loss of generality that resource arrival times are integer. The idea of the algorithm
is as follows. First, we shift all resource arrival times to powers of 2. For each time point ti (i > 1) in
the shifted instance, we apply the FPTAS by Kis [6] to the instance which has only two resource arrival
times t1 and ti, and the resource quantity for ti is Bi.

Denote the set of jobs assigned to ti this way by Si. Then, going backwards from the last time point
tq to the first one t1, we assign all previously unassigned jobs from Si to ti, i.e. π(j) = max{i : j ∈ Si}.

More formally, let I be an instance of 1|rm = 1, pj = 0|∑j Cjwj . We assume t1 = 0 and t2 = 1 (the
latter can be assumed because we can add a dummy arrival time with b2 = 0). We define a new instance
I ′ of 1|rm = 1, pj = 0|∑j Cjwj with shifted resource arrival times as follows. Let a′j = aj and w′

j = wj

for every j ∈ J , and let

t′i =

{
0 if i = 1,

2i−2 for i = 2, . . . , ⌈log2(tq)⌉+ 2,

b′i =

{
bi if i = 1, 2∑

[bℓ : tℓ ∈ (2i−3, 2i−2]] for i = 3, . . . , ⌈log2(tq)⌉+ 2.

Claim 1 A solution to I with weighted sum of completion times W can be transformed into a solution
of I ′ with weighted sum of completion times at most 2W . Furthermore, any feasible schedule for I ′ is
also feasible for I.

Proof: Let us define t∗i = min{t′ℓ : ti ≤ t′ℓ} for i = 1, . . . , q. Let π be the solution for I. Then assigning
all jobs that are assigned to time point ti to t∗i gives us a feasible solution to I ′. By this change, the
completion time of any job is at most doubled (recall that each ti is assumed to be integer).

Since the available amount of resources at each time in I ′ is at most as much as in I, a feasible
schedule for I ′ is also a feasible schedule for I. □

Claim 2 For instances I where the resource arrival times are integer powers of 2, there exists a (2 + ε)-
approximation algorithm with running time polynomial in the input size and 1/ε.

Proof: We use the procedure that we described above, i.e., for each i > 1 we solve the instance with Bi

resource arriving at ti and the rest at t1, using the FPTAS provided by [6]. As defined above, Si is the
set of jobs assigned to ti by the FPTAS, and π(j) = max{i : j ∈ Si}.

Let πopt be an optimum solution and let Jopt
k be the set of jobs j with πopt(j) = k. We have

w(Si) ≤ (1 + ε)

q∑

k=i

w(Jopt
k)

275

for i = 1, . . . , q. Then we get

2(1 + ε)
∑

j∈J

wjC
πopt

j =

q∑

i=2

2(1 + ε) · 2i−2w(Jopt
i) =

q∑

i=2

(1 + ε) · 2i−2w(Jopt
i)

1 +

∞∑

j=1

2−j

≥
q∑

i=2

(1 + ε)2i−2

q∑

k=i

w(Jopt
k) ≥

q∑

i=2

2i−2w(Si),

thus the approximation ratio follows. □
The two claims show that this approach leads to a (4+ε)-approximation with running time polynomial

in 1/ε and the input size.

2.2 PTAS for constant q

In this section we give a PTAS for the case when the number of resource arrival times is constant. Recall
that Kis [6] gave a FPTAS for 1|rm = 1|∑Cjwj when there are two resource arrival times.

Our algorithm is a generalization of a well-known PTAS for the knapsack problem, and will be used
later as a subroutine in the PTAS for an arbitrary number of resource arrival times. The idea is to choose
a number k ∈ Z+, guess the k heaviest jobs that are processed at each resource arrival time ti, and then
determine the remaining jobs that are scheduled at ti in a greedy manner. Since we go over all possible
sets containing at most k jobs for each resource arrival time, there is an exponential dependence on the
number q of resource arrival times in the running time.

Theorem 3 There is a (1 + q
k)-approximation algorithm with running time O(nqk+1), where q is the

number of arrival times.

Algorithm 1 PTAS for 1|rm = 1, pj = 0|∑Cjwj when q is a constant.

Input: Jobs J with |J | = n, resource requirements aj , weights wj , resource arrival times t1 ≤ . . . ≤ tq
and resource quantities b1, . . . bq.
Output: A feasible schedule π.

1: for all subpartitions S1 ∪ · · · ∪ Sq ⊆ J with |Si| ≤ k for i > 1 do
2: Set A = 0.
3: Set W = 0.
4: for i from 0 to q − 2 do
5: for j ∈ Sq−i do
6: π(j) = q − i
7: A← A+ aj

8: if |Sq−i| = k then
9: W ← max{W,min{wj : j ∈ Sq−i}}

10: while A < Bq−i do
11: if there exists an unassigned job j with wj ≤W then
12: Let j be an unassigned job with wj ≤W minimizing wj/aj .
13: π(j) = q − i
14: A← A+ aj
15: else
16: break
17: For all remaining jobs set π(j) = 1.

18: Let π be the best schedule found.
19: return π

276

Proof: We claim that Algorithm 1 satisfies the requirements. Let πopt be an optimal schedule and define
Jopt
i = {j ∈ J : πopt(j) = i}. Let Sopt

i be the set of the k heaviest jobs in Jopt
i if |Jopt

i | ≥ k, otherwise let
Sopt
i = Jopt

i . Let Ji = {j ∈ J : π(j) = i} denote the set of jobs assigned to time ti in our solution. In
each iteration of the for loop of Step 4, let ji be the last job added to Ji if such a job exists.

Assume that we are at the iteration of the algorithm when the subpartition Sopt
1 ∪· · ·∪Sopt

q is considered
in Step 1. Let Wq−ℓ denote the value of W at the end of the iteration of the for loop corresponding to
i = ℓ in Step 4. To show feasibility of π, observe that any job j /∈ Sopt

1 ∪· · ·∪Sopt
q for which πopt(j) ≥ q−ℓ

always satisfies wj ≤Wq−ℓ, so we can pick jobs in line 11 until A ≥ Bq−ℓ .
Now we prove the approximation factor. By Steps 3 and 9, we have

Wq−ℓ ≤
1

k

q∑

i=ℓ

∑

j∈Jopt
i

wj .

As our algorithm always picks the most inefficient job, we also have

q∑

i=ℓ

∑

j∈Ji\{ji}
wj ≤

q∑

i=ℓ

∑

j∈Jopt
i

wj ,

where Ji \ {ji} = Ji if ji is not defined for i. Combining these two observations, for ℓ = 1, . . . , q we get

q∑

i=ℓ

∑

j∈Ji

wj =

q∑

i=ℓ

∑

j∈Ji\{ji}
wj +

q∑

i=ℓ

wji ≤
q∑

i=ℓ

∑

j∈Jopt
i

wj + (q − ℓ+ 1) ·Wℓ ≤ (1 +
q

k
)

q∑

i=ℓ

∑

j∈Jopt
i

wj ,

where the first inequality follows from the fact that wji ≤Wi ≤Wℓ whenever i ≥ ℓ. This proves that the
schedule that we get is a (1 + q

k)-approximation.
We get a factor of nqk in the running time for guessing the sets Sk. Assigning the remaining jobs can

be done in linear time by ordering the jobs and using AVL-trees, thus we get an additional factor of n.
In order to get a PTAS, we set k = ε

q . □

2.3 PTAS for arbitrary q

We turn to the proof of the main result of the paper. As in Section 2.1, we shift resource arrival times;
here we use powers of 1 + ε, for a suitably small ε.

Let I be an instance of 1|rm = 1, pj = 0|∑j Cjwj . We assume that resource arrival times are integer,
and that t1 = 0, t2 = 1. We define a new instance I ′ of 1|rm = 1, pj = 0|∑j Cjwj with shifted resource
arrival times as follows. Let a′j = aj and w′

j = wj for every j ∈ J , and set

t′i =

{
0 if i = 1,

(1 + ε)i−2 for i = 2, . . . , ⌈log1+ε(tq)⌉+ 2,

b′i =

{
bi if i = 1, 2,∑

[bℓ : tℓ ∈ ((1 + ε)i−3, (1 + ε)i−2]] for i = 3, . . . , ⌈log1+ε(tq)⌉+ 2.

The proof of the following claim is the same as that of Claim 1.

Claim 4 A solution to I with weighted sum of completion times W can be transformed into a solution
of I ′ with weighted sum of completion times at most (1 + ε)W . Furthermore, any feasible schedule for I ′
is also a feasible schedule for I.

Due to the claim, we may assume that the positive arrival times are powers of 1 + ε. For convenience
of notation, in this section we will assume that the largest arrival time is 1, and arrival times are indexed
in decreasing order, starting with t0 = 1. That is, ti = (1 + ε)−i (i = 0, . . . , q − 2), and tq−1 = 0. We
will also assume that for a given constant r, bq−r−1 = · · · = bq−2 = 0. This can be achieved by adding r
dummy arrival times.

277

Theorem 5 There exists a PTAS for 1|rm = 1, pj = 0|∑Cjwj.

Proof: Let us fix an even integer r and ε > 0; we will later assume that r is very large compared to
ε−1. We assume that resource arrival times are as described above, and are indexed in decreasing order.

In the algorithm, we fix jobs at progressively decreasing arrival times, by using the PTAS of the
previous section for r+ 1 arrival times (except for the first step, when we may use the PTAS for less than
r + 1 arrival times). We will run our algorithm r/2 times with slight modifications, and pick the best
result. Each run is characterized by a parameter ℓ ∈ {1, . . . , r/2}. See Algorithm 2.

Algorithm 2 PTAS for 1|rm = 1, pj = 0|∑Cjwj

Input: Jobs J with |J | = n, resource requirements aj , weights wj ; an even integer r; resource
quantities b0, . . . bq−1 such that bq−r−1 = · · · = bq−2 = 0 and

∑
aj =

∑
bi. We assume resource

arrival times are ti = (1 + ε)−i (i = 0, . . . , q − 2), tq−1 = 0.
Output: A feasible schedule π.

1: for ℓ from 1 to r/2 do
2: Obtain instance I ′ with r/2 + ℓ+ 1 arrival times by moving arrivals before tr/2+ℓ−1 to 0
3: Run Algorithm 1 on I ′ to get schedule σ.
4: Let A = B = 0
5: for i from 0 to ℓ− 1 do
6: For every j ∈ σ−1(i), fix πℓ(j) = i
7: A← A+

∑
j∈σ−1(i) aj

8: B ← B + bi
9: for j from 2 to ⌊2(q − 1− ℓ)/r⌋ do

10: Let s = (j − 2)r/2 + ℓ
11: Obtain instance I ′ with arrival times ts, ts+1, . . . , ts+r−1, 0: remove arrivals after ts, remove

max{A−B, 0} latest remaining resources, and move all arrivals before ts+r−1 to 0
12: Let A = B = 0
13: Run Algorithm 1 on I ′ to get schedule σ.
14: for i from s to s+ r/2− 1 do
15: For every j ∈ σ−1(i), fix πℓ(j) = i
16: A← A+

∑
j∈σ−1(i) aj

17: B ← B + bi
18: For all unscheduled jobs j, set πℓ(j) = q − 1.

19: Let π be the best schedule among π1, . . . , πr/2
20: return π

In the first step, we consider arrival times t0, t1, . . . , tr/2+ℓ−1, 0. We move the resources arriving before
tr/2+ℓ−1 to 0, and use the PTAS for r/2 + ℓ+ 1 arrival times on this instance. We fix the jobs that are
scheduled at arrival times t0, t1, . . . , tℓ−1.

Consider now the jth step for some j ≥ 2. Define s = (j − 2)r/2 + ℓ and consider arrival times
ts, ts+1, . . . , ts+r−1, 0. Move the resources arriving before ts+r−1 to 0, and decrease bs, bs+1, . . . in this
order as needed, so that the total requirement of unfixed jobs equals the total resource. Use the PTAS for
r+ 1 arrival times on this instance. Fix the jobs that are scheduled at arrival times ts, ts+1, . . . , ts+r/2−1.

The algorithm runs while s+ r − 1 ≤ q − 2, i.e., jr/2 + ℓ ≤ q − 1. Since the smallest r arrival times
(except for 0) are dummy arrival times, the algorithm considers all resource arrivals.

The schedule given by the algorithm is clearly feasible, because when jobs at ti are fixed, the total
resource requirement of jobs starting no earlier than ti is at least the total amount of resource arriving no
earlier than ti. To analyze the approximation ratio, we introduce the following notation: Wi is the total
weight that the algorithm schedules at ti; W

′
i is the weight that the algorithm temporarily schedules at

ti when i is in the interval [ts+r/2, ts+r−1] (or, in the first step, in the interval [tℓ, tℓ+r/2−1]); W ∗
i is the

total weight scheduled at ti in the optimal solution.

278

Since we use the PTAS for r/2 + ℓ+ 1 arrival times in the first step, we have

ℓ−1∑

i=0

(1 + ε)−iWi +

ℓ+r/2−1∑

i=ℓ

(1 + ε)−iW ′
i ≤ (1 + ε)

ℓ+r/2−1∑

i=0

(1 + ε)−iW ∗
i ,

as the right-hand side is (1+ε) times the objective value of the feasible solution obtained from the optimal
solution by moving jobs arriving before tℓ+r/2−1 to 0.

For s = jr/2 + ℓ, we compare the output of the PTAS with a different feasible solution: we schedule
total weight W ′

i at ti for i = s, s+1, . . . , s+r/2−1, total weight W ∗
i at ti for i = s+r/2+1, . . . , s+r−1,

and at ts+r/2 we schedule all jobs that are no earlier than ts+r/2 in the optimal schedule but are no later
than ts+r/2 in the PTAS schedule. We get the inequality

(j+1)r/2+ℓ−1∑

i=jr/2+ℓ

(1 + ε)−iWi +

(j+2)r/2+ℓ−1∑

i=(j+1)r/2+ℓ

(1 + ε)−iW ′
i

≤ (1+ε)

(j+1)r/2+ℓ−1∑

i=jr/2+ℓ

(1 + ε)−iW ′
i +

(j+2)r/2+ℓ−1∑

i=(j+1)r/2+ℓ

(1 + ε)−iW ∗
i + (1 + ε)−(j+1)r/2−ℓ

(j+1)r/2+ℓ−1∑

i=0

W ∗
i

 .

The sum of these inequalities gives

q−2∑

i=0

(1+ε)−iWi ≤ ε
q−2∑

i=ℓ

(1+ε)−iW ′
i +(1+ε)

q−2∑

i=0

(1+ε)−iW ∗
i +(1+ε)

q−2∑

i=0

 ∑

j:jr/2+ℓ>i

(1− ε)−(jr/2+ℓ)

W ∗

i .

(3)
To bound the first term on the right hand side of (3), first we observe that

r/2+ℓ−1∑

i=ℓ

(1 + ε)−iW ′
i ≤ (1 + ε)

r/2+ℓ−1∑

i=0

(1 + ε)−iW ∗
i ,

because the left side is at most the value of the PTAS in the first step, while the right side is (1 + ε)
times the value of a feasible solution. Similarly,

(j+2)r/2+ℓ−1∑

i=(j+1)r/2+ℓ

(1 + ε)−iW ′
i ≤ (1 + ε)

(j+2)r/2+ℓ−1∑

i=jr/2+ℓ

(1 + ε)−iW ∗
i + (1 + ε)−jr/2−ℓ

jr/2+ℓ−1∑

i=0

W ∗
i

 ,

because the left side is at most the value of the PTAS in the (j + 1)-th step, and the right side is (1 + ε)
times the value of the following feasible solution: take the optimal solution, move jobs scheduled before
t(j+2)r/2+ℓ−1 to 0, and move jobs scheduled after tjr/2+ℓ to tjr/2+ℓ. Adding these inequalities, we get

ε

q−2∑

i=ℓ

(1 + ε)−iW ′
i ≤

ε(1 + ε)

2

q−2∑

i=0

(1 + ε)−iW ∗
i +

q−2∑

i=0

 ∑

j:jr/2+ℓ>i

(1 + ε)−jr/2−ℓ

W ∗

i

 ≤

ε(1 + ε)

2

q−2∑

i=0

(1 + ε)−iW ∗
i +

q−2∑

i=0

∞∑

j=0

(1 + ε)−jr/2−1

 (1 + ε)−iW ∗

i

 =

ε(1 + ε)

(
2

q−2∑

i=0

(1 + ε)−iW ∗
i +

(1 + ε)r/2−1

(1 + ε)r/2 − 1

q−2∑

i=0

(1 + ε)−iW ∗
i

)
=

ε
(

2(1 + ε) + (1+ε)r/2

(1+ε)r/2−1

) q−2∑

i=0

(1 + ε)−iW ∗
i .

279

The last expression is at most 4ε times the optimum value if r is large enough.
The last term of the right side of (3) is too large to get a bound that proves a PTAS. However, we

can bound the average of these terms for different values of ℓ. The average is

(1 + ε) 2
r

r/2∑

ℓ=1

q−2∑

i=0

 ∑

j:jr/2+ℓ>i

(1− ε)−(jr/2+ℓ)

W ∗

i ≤

(1 + ε) 2
r

q−2∑

i=0

∞∑

j=1

(1 + ε)−j

 (1− ε)−iW ∗

i = (1 + ε)
2

rε

q−2∑

i=0

(1− ε)−iW ∗
i ,

which is at most ε times the optimum if r is large enough. To summarize, we obtained that for large
enough r, the average objective value of our algorithm for ℓ = 1, 2, . . . , r/2 is upper bounded by

4ε

q−2∑

i=0

(1 + ε)−iW ∗
i + (1 + ε)

q−2∑

i=0

(1 + ε)−iW ∗
i + ε

q−2∑

i=0

(1 + ε)−iW ∗
i = (1 + 6ε)

q−2∑

i=0

(1 + ε)−iW ∗
i ,

which is (1 + 6ε) times the objective value of the optimal solution. This proves that the algorithm that
chooses the best of the r/2 runs is a PTAS. □

2.4 Unknown resource arrival times

In this section we consider the variant of the problem where the arriving resource quantities bj are
known in advance, but the resource arrival times tj are not. The problem is denoted by 1|rm = 1, pj =
0, ti unknown|∑Cjwj .

Recall that Bk =
∑

i≥k bi. Let Ji denote the minimum weight job set consuming at least Bi resources.
It turns out that the question of approximability of the above problem can be reformulated as follows:
Given α > 1 and an instance of 1|rm = 1, pj = 0|∑j Cjwj , is there a schedule π such that the set
Si = {j : π(j) ≥ i} has weight at most α times w(Ji), for i = 1, . . . , q? On one hand, such a solution
would also give an α-approximation for the instance, since its objective value is at most α times the
optimum for arbitrary resource arrival times. On the other hand, the smallest α for which the answer
is affirmative in the above problem is the best approximation ratio we can achieve; this can be seen by
choosing the i for which Si is the worst approximation, and setting the arrival time tj to 0 if j < i and
to 1 if j ≥ i.

In the following, we show that for α > 4 the answer to the above question is affirmative and a solution
can be computed efficiently, while for α < 4 there are instances where the answer is negative.

Theorem 6 For 1|rm = 1, pj = 0, ti unknown|
∑
Cjwj, there exists a (4+ε)-approximation with running

time polynomial in 1/ε and the input length. Moreover, there is no (4 − ε)-approximation algorithm for
the problem for any ε > 0.

Proof: Our approximation algorithm is based on the following claim.

Claim 7 There exists a schedule π such that for each i the set Si = {j : π(j) ≥ i} is a 4-approximation
for the problem of finding a minimum weight job set S ⊆ J consuming at least Bi resources.

Proof: Recall that Ji is a minimum weight job set consuming at least Bi resources. Define f(i) =
min{k : w(Jk) ≤ 2w(Ji)} for i = 2, . . . , q and let us consider the following procedure (Algorithm 3).

It is not difficult to see that π fulfills the resource requirements. We prove by induction that w(Si) ≤
4w(Ji) for i = 1, . . . , q. As Sq = Jf(q), the inequality w(Sq) ≤ 4w(Jq) clearly holds. Assume now
that i ≤ q − 1. If no jobs are assigned to ti, then w(Si) = w(Si+1) ≤ 4w(Ji+1) ≤ 4w(Ji). Otherwise

280

Algorithm 3 Subroutine for (4 + ε)-approximation to 1|rm = 1, pj = 0, ti unknown|∑Cjwj .

Input: Jobs J with |J | = n, resource requirements aj , weights wj , resource quantities b1, . . . bq.
Output: A feasible schedule π.

1: Set i = q.
2: while i ≥ 1 do
3: Set Si+1 = {j : π(j) > i}.
4: Set π(j) = i for j ∈ Jf(i) \ Si+1.
5: i← f(i)− 1

6: return π

i = f(i′)−1, where i′ is the index considered in the previous iteration of the while loop in Step 2. Observe
that no jobs are assigned to time points between the ith and the i′th ones. By induction, we get

w(Si) = w(Jf(i) ∪ Si′) ≤ w(Jf(i)) + w(Si′) ≤ 2w(Ji) + 4w(Ji′) ≤ 4w(Ji).

Here the second inequality holds by induction and by the definition of f , while the last inequality follows
from the fact that i < f(i′) which implies w(Ji) > 2w(Ji′). □

Now we show how Algorithm 3 provides a (4 + ε)-approximation for the problem 1|rm = 1, pj =
0, ti unknown|∑Cjwj which has running time polynomial in the input size and 1

ε . Using either an
FPTAS for the knapsack problem or the FPTAS of Kis [6], we determine an approximation of the sets
Ji. Then we apply Algorithm 3 to schedule the jobs. This concludes the proof of the first part of the
theorem.

The following set of instances shows that α is at least 4. We are given (n − 1)m jobs denoted by
1, 2, . . . , (n−1)m with weights wi = n− i

m and ai = 2−i. Furthermore, we have (n−1)m resource arrival
times that are unknown. The resource quantities are given by bq = 2−q and bi = 2−i −Bi+1 = 2−i−1 for
1 < i < q; b1 equals the remaining resource requirement.

In order to fulfill the resource requirements, the set of jobs scheduled at or after time ti has to contain
at least one of the jobs j ≤ i. Observe that the optimal solution of finding a minimum weight job set Ji
consuming at least Bi resources consists of the single job i.

Let j1 be a job processed at time tq. We may assume that wj1 ≤ 4wq = 4, because otherwise this
schedule is not a 4-approximation if tq = 1 and all other arrival times are set to 0.

We create a sequence starting with j1. Since the jobs with indices greater or equal to j1 have total
resource requirement less than Bj1−1, we have to schedule at least one job j2 < j1 at or after tj1−1. This
argument can be iterated to find a job j3 < j2 which is scheduled at or after tj2−1, and so on, until jN = 1
for some N .

The following claim shows that for n,m large enough, there must be an index i such that the jobs in
this sequence that are scheduled at or after tji−1 have large total weight compared to wji−1 = w(Jji−1).

Claim 8 For any β < 4, there exist n and m such that for any feasible schedule, there is some i with

βwji−1 <

i+1∑

k=1

wjk

for the sequence j1, j2, . . . constructed as above.

Proof: Suppose to the contrary that there is no triple n,m, i satisfying the requirements of the claim.
Then for all n,m, there is a feasible schedule such that βwji−1 ≥

∑i+1
k=1 wjk for all i.

By setting m large enough, wji−1−wji = 1/m is very small; we will see that m > 12/(4−β) is enough.
By increasing n, the length N of our sequence increases as well. Indeed, by the indirect assumption, we
have

wji+1 ≤
i+1∑

k=1

wjk ≤ βwji−1 < 4wji−1 = 4wji + 4/m.

281

Since we also have wj1 ≤ 4, wj ≥ 1 for all jobs j, and w1 = n, this implies that N ≥ log5 n. Let us define

zi = wji and z′i =
∑i−1

k=1 zk. By the indirect assumption, β(zi + 1
m) ≥ zi+1 + zi + z′i, thus we have

(β − 1)zi − z′i + 4/m > zi+1. (4)

We claim that
z′i+1

zi+1
>

3

β − 1

z′i
zi

(5)

for every i, or equivalently,
(β − 1)(z2i + ziz

′
i)− 3z′izi+1 > 0.

By (4), the left hand side is at least

(β − 1)(z2i + ziz
′
i)− 3z′i((β − 1)zi − z′i + 4/m) = (β − 1)z2i − 2(β − 1)ziz

′
i + 3z′i(z

′
i − 4/m).

This is positive if 3(z′i − 4/m) > (β − 1)z′i, which holds if m is large enough (e.g. m > 12/(4− β)), since

z′i ≥ 1 and β − 1 < 3. Since 3/(β − 1) > 1, it follows from (5) that
z′
N

zN
> 3 for large enough N , and thus

βwjN−1−1 ≤ βzN < 4zN ≤ zN + z′N ,

contradicting the indirect assumption. □
By Claim 8, there exists a time point ti with

∑
j:π(j)≥i wj > βw(Ji). By setting ti′ = 0 (or very close

to 0) for i′ < i and ti′ = 1 (or very close to 1) for i′ ≥ i, the schedule can only be a (β− ε)-approximation
if we do not know the resource arrival times in advance. □

Acknowledgements

The authors are grateful to Erika Bérczi-Kovács and to Matthias Mnich for the helpful discussions.

References

[1] J. Carlier, Problèmes d’ordonnancement à contraintes de ressources: algorithmes et complexité,
Thése, Université Paris VI-Pierre et Marie Curie, Institut de programmation (1984)

[2] J. Carlier, A.H.G. Rinnooy Kan, Scheduling subject to nonrenewable-resource constraints,
Operations Research Letters 1 (1982) 52–55

[3] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approx-
imation in deterministic sequencing and scheduling: a survey, Annals of discrete mathematics 5
(1979) 287–326

[4] P. Györgyi, T. Kis, Minimizing total weighted completion time on a single machine subject to
non-renewable resource constraints, Journal of Scheduling 22 (2019) 623–634

[5] P. Györgyi, T. Kis, New complexity and approximability results for minimizing the total weighted
completion time on a single machine subject to non-renewable resource constraints, Discrete Applied
Mathematics 311 (2022) 97-109

[6] T. Kis, Approximability of total weighted completion time with resource consuming jobs, Operations
Research Letters 43 (2015) 595–598

[7] R. Slowiński, Preemptive scheduling of independent jobs on parallel machines subject to financial
constraints, European Journal of Operational Research 15 (1984) 366–373

282

Upper bounds for the necklace folding problems

Endre Csóka1

Alfréd Rényi Institute
Budapest, Hungary

csoka.endre@renyi.hu

Zoltán L. Blázsik2

Alfréd Rényi Institute
Budapest, Hungary, and

ELKH–ELTE Geometric and Algebraic
Combinatorics Research Group

Budapest, Hungary
blazsik@caesar.elte.hu

Zoltán Király3

Department of Computer Science
ELTE Eötvös Loránd University

Budapest, Hungary, and
Alfréd Rényi Institute

Budapest, Hungary
kiraly@cs.elte.hu

Dániel Lenger4

Department of Computer Science
ELTE Eötvös Loránd University

Budapest, Hungary, and
Alfréd Rényi Institute

Budapest, Hungary
lengerd@caesar.elte.hu

Abstract: A necklace can be considered as a cyclic list of n red and n blue beads in an
arbitrary order. In the necklace folding problem, the goal is to find a large crossing-free
matching of pairs of beads of different colors in such a way that there exists a “folding” of the
necklace, that is a partition into two contiguous arcs, which splits the beads of any matching
edge into different arcs.

We give counterexamples for some conjectures about the necklace folding problem, also known
as the separated matching problem. The main conjecture (given independently by three sets
of authors) states that µ = 2

3 , where µ is the ratio of the maximum number of matched beads
to the total number of beads.

We refute this conjecture by giving a construction that proves that µ ≤ 2 −
√

2 < 0.5858 ≪
0.66. Our construction also applies to the homogeneous model when we match beads of the
same color. The full version can be found in [2].

Keywords: separated matching, crossing-free matching, counterexample, construction.

1 Introduction

In the last decades, essentially the same problem known as the necklace folding or the separated matching
problem appeared in many areas of mathematics. The problem has two variants which we call the
heterogeneous and the homogeneous model. Consider a necklace that consists of N = 2n beads, n red,
and n blue ones. In both models, the aim is to find a “folding” of the necklace with a large proper
matching of the beads, defined as follows.

1The research was supported by Dynasnet European Research Council Synergy project (ERC-2018-SYG 810115).
2The research was supported by the Hungarian National Research, Development and Innovation Office, OTKA grant

no. SNN 132625.
3This research was partially supported by the Hungarian National Research, Development and Innovation Office, OTKA

grant no. FK 132524 and by Dynasnet European Research Council Synergy project (ERC-2018-SYG 810115).

283

A matching M consists of |M | mutually disjoint pairs of beads. In the heterogeneous model, each
pair consists of one red and one blue bead while in the homogeneous model, each pair consists of two
beads of the same color. The matched pairs will be also called matching edges.

If the beads of the necklace are denoted by a1, . . . , aN in a cyclic order, and i < j are indices, the two
arcs defined by beads ai and aj are contiguous sets of beads: ai, ai+1, . . . , aj and aj , . . . , aN , a1, . . . ai. A
matching is crossing-free if no two matching edges cross each other. (See Figure 1.) That is, if the two
matching edges are ab and cd, then one arc between a and b is disjoint from the set {c, d} while the other
arc contains this set entirely.

Figure 1: A crossing-free matching in the heterogeneous model

A secant partitions the necklace into two arcs, A1 and A2. A matching is secant-respecting if, for
each matching edge, one end is in A1 while the other end is in A2. We call a matching proper if it is
crossing-free and secant-respecting. (See Figure 2.)

Figure 2: A proper matching (with the respected secant) in the heterogeneous model

Let us remark here that if we drop the secant-respecting condition, then one can easily prove that
there is always a crossing-free matching consisting of n edges in the heterogeneous (and n − 1 edges in

284

the homogeneous) model.
Proper matchings were called separated matchings in [4, 5, 7] where the same problem was considered

in a geometric setup. We have n red and n blue points on a circle, the matching edges are considered
as segments. A matching is non-crossing if the corresponding segments are pairwise disjoint and a non-
crossing matching is separated if there is a straight line that intersects the interior of each of its segments.

Let M be a proper matching. The size |M | of the matching is the number of its edges. A bead is
covered if it is contained in a matched pair, the number of the covered beads is clearly 2|M |. Remember
that a necklace consists of N = 2n beads, half of them is red, and the other half is blue (i.e., it is balanced).
For an even integer N , let N (N) denote the set of possible balanced necklaces with N beads, and let
M(L) denote the set of proper matchings for a given necklace L ∈ N (N) in the heterogeneous model, and
µ(L) = maxM∈M(L) 2|M |, i.e., the maximum number of covered beads in a proper matching. Moreover,
let µ(N) = minL∈N (N) µ(L). Thus µ(N) is the maximum number of coverable beads in the “worst”

necklace. We are interested in µ(N)
N , the ratio of the covered beads to the total number of beads. Remark

that it is the same as |M |/n for the maximizing proper matching M . Finally, let µ = lim sup
N→∞

µ(N)
N . For

the homogeneous model, we similarly define µhom(N) and µhom.

It is trivial that there is a proper matching of size n/2 in any given necklace for both models. In
the heterogeneous model, one can take an arbitrary secant that cuts the necklace into two arcs each
containing n beads. Since the number of blue and red beads are the same, therefore in one of the arcs
there are at least as many blue beads as red ones, and in the other arc the opposite is true. Thus we
can create a proper matching using the beads of the majority color from each arc. In the homogeneous
model, one can take an appropriate secant for which the two arcs have the same number of blue beads.
Then there is a proper matching of size ⌊n/2⌋. That is, µ ≥ 1

2 and µhom ≥ 1
2 .

It was very exciting that for 20 years there were no significant improvements about this lower bound,
only about the additional o(1) term. However, very recently Mulzer and Valtr [11] managed to improve
the lower bound of µ to (1/2 + ε) for some absolute constant ε > 0.

The story regarding the upper bound is more diversified. Originally only the heterogeneous model
was studied. Lyngsø and Pedersen [6] in 1999 proved that µ ≤ 2/3, and they conjectured that µ = 2/3.
Later independently Kynčl, Pach and Tóth [4, 5] and Brevier, Preissmann and Sebő [1] proved the same
upper bound and formulated the same conjecture.

Conjecture 1. [6, 4, 5, 1] In the heterogeneous model, there is always a proper matching of size at least
2n/3− o(n), i.e., µ = 2/3.

Actually, in [4, 5] a more refined conjecture can be found. For a necklace L ∈ N (N), let mono(L)
denote the number of maximal monochromatic arcs, i.e., there is mono(L) color changes in the necklace,
or in other words, the necklace L consist of mono(L)/2 red arcs and mono(L)/2 blue arcs.

Conjecture 2 ([4, 5]). If we restrict ourselves to necklaces L where mono(L)/2 = k, then for every
constant k there is always a proper matching of size at least 2k−1

3k−2n− o(n) in the heterogeneous model.

However, for the strict connection to Erdős problem (Problem 1) about non-crossing alternating paths,
it is enough to assume that k = o(n) (see below). In this case, Conjecture 2 can be read as follows.

Conjecture 3. In the heterogeneous model, there is always a proper matching of size at least 2n/3−o(n),
i.e., µ = 2/3, if restrict ourselves for necklaces L ∈ N (N) where mono(L) = o(n).

Surprisingly, there are several connections between our problem and some interesting questions from
different topics in mathematics. In the sequel, we are going to mention some of these examples as a
motivation for our study. The following problem is due to Erdős from the late 80’s.

Problem 1. Determine or estimate the largest number ℓ = ℓ(N) such that, for every set of N/2 red and
N/2 blue points on a circle, there exists a non-crossing alternating path consisting of ℓ vertices.

285

Kynčl, Pach and Tóth [4, 5] disproved the original conjecture of Erdős (stating that ℓ(N) = 3
4N +

o(N)), and showed the following:

Theorem 4 ([4, 5]). There exist constants c, c′ > 0 such that 1
2N + c

√
N

logN < ℓ(N) < 2
3N + c′

√
N .

Moreover, they conjectured that the upper bound is asymptotically tight.

Conjecture 5 ([4, 5]). |ℓ(N)− 2
3N | = o(N).

Given a necklace L ∈ N (N), let ℓ(L) denote the maximum length of a non-crossing alternating path.
They also proved the following.

Theorem 6 ([4, 5]). ℓ(L)− 2 ·mono(L)− 1 ≤ µ(L) ≤ ℓ(L).

In 2010, Hajnal and Mészáros [3, 7] improved the lower bound on ℓ(N) to N/2 + Ω(
√
N), and also

gave a class of configurations reaching the upper bound.
Mészáros [8, 7] investigated separated matchings and found new families of constructions containing

at most 2
3N+O(

√
N) points in any separated matching. Furthermore, she showed that if the discrepancy

is at most three (that is, the difference in the cardinality of the color classes is at most three on any
interval), then there are at least 2

3N points in the maximum separated matching.
Our main theorem (Theorem 8) disproves Conjecture 5 as well by using Theorem 6.
Interestingly, the above-mentioned problems are closely related to some applied questions about the

structure of proteins and some very natural questions about drawing some geometric graphs with non-
crossing straight-line edges, too. In 1999, Lyngsø and Pedersen [6] studied folding algorithms in the two-
dimensional Hydrophobic-Hydrophilic model (2D HP) for protein structure formation. They provided
some approximation algorithms so that the approximation ratio depends exactly on the size of the largest
proper matching in our terminology, and conjectured that there always exists a proper matching of size
at least 2n/3.

Moreover, there are some connections between these problems and the investigation of subsequences in
circular words over the binary alphabet. One can rephrase Conjecture 1 with this terminology as it states
that every binary circular word of length N with an equal number of zeros and ones has an antipalindromic
linear subsequence of length at least 2N/3− o(N). Recently, independently from our work, Müllner and
Ryzhikov [9, 10] gave a construction (which is essentially the same as our simple construction) that yields
an upper bound of 2N/3 + o(N) for both the heterogeneous and the homogeneous models (in this latter
model we are looking for a palindromic linear subsequence). It seems that they were the first who studied
the homogeneous model, and they made the following conjecture.

Conjecture 7 ([9, 10]). µhom = 2/3.

We disprove all Conjectures above. Furthermore, we improve the best known upper bound significantly
by proving the following theorem.

Theorem 8. For Construction 1 (see in Section 2), the size of the maximum proper matching is at
most (2 −

√
2)n + o(n) in both the heterogeneous and the homogeneous models (i.e., µ ≤ 2 −

√
2 and

µhom ≤ 2−
√

2). Moreover, Construction 1 gives an infinite series of necklaces where mono(L) = o(n).

Remark 9. It is not obvious how this theorem disproves Conjecture 2, so we show the transition. By
Theorem 8, there exists a specific necklace L1 ∈ N (N1) with N1 beads where µ(L1) < 0.6 · N1. Let
k = mono(L1)/2. We are giving a counterexample to Conjecture 2 for this k, i.e., an infinite series of
necklaces Li ∈ N (Ni) where mono(Li) = 2k and µ(Li) < 0.6 ·Ni.

We construct Li from L1 by replacing every bead in L1 by i consecutive beads of the same color. So
Ni = iN1, and obviously mono(Li) = mono(L1) = 2k. Using the fact that in bipartite graphs the weight
of the maximum fractional matching is the same as the weight of the maximum matching, it is not hard
to prove that µ(Li) = iµ(L1).

286

Remark 10. The problem itself, and also our construction can be defined in a measurable sense, i.e., a
necklace is a circle with a measurable two-coloring on its points, and for a proper matching we also require
it to be measure-preserving (a red arc with measure λ is matched to a blue arc with measure λ). This is
a natural generalization of the discrete problem. Although this language was very useful for finding our
counterexample, we present our result in the more classical language of discrete objects. If we used the
measurable definition, we may omit the terms o(N) everywhere.

The full version containing the discussion about the unbalanced case (the number of red beads is
between one- and two-thirds of the total number of beads) can be found in [2].

2 Main construction and the proof of Theorem 8

We present here our main construction showing that the size of the maximum proper matching is at most
αn where α can be arbitrarily close to 2−

√
2 = 0.5857 . . . < 0.5858.

Construction 1. Let s ≥ 2 be a integer parameter, and let n = s5s+1. The necklace consists of s large
arcs, each having s5s blue and s5s red beads. Let L1, . . . , Ls denote the large arcs.

Li is divided into s2s−i red and s2s−i blue arcs, the colors alternates. Let ℓi,j denote the jth arc of
Li, where 1 ≤ j ≤ 2s2s−i. The arc ℓi,j always consists of s3s+i beads. In the next step, we will change
the color of some beads in each ℓi,j in the following way. Let λ ≤ 1

2 be a positive parameter and for a
fixed i, let’s divide each ℓi,j into ss+2i intervals of size s2s−i and in each of these tiny intervals, change
the color of

⌊
λs2s−i

⌋
beads backwards from the clockwise end of the tiny interval. We will refer to those

beads whose color were changed as dust in ℓi,j. (See Figure 3.)

Li

⇓

ℓi,1 ℓi,2 ℓi,2s2s−i

Figure 3: The intervals Li and ℓi,j

First, we bound mono(L) for a necklace L given by this construction in order to prove the last
statement of Theorem 8.

mono(L) =

s∑

i=1

2s2s−i∑

j=1

2ss+2i = 4s3s
s∑

i=1

si < 4
ss+1 − 1

s− 1
s3s < 8s4s

(as s ≥ 2), which is O(n4/5) = o(N).
We will see that for λ = 1− 1√

2
, as s tends to ∞, we will get the desired bound, i.e., the upper bound

on the size of the proper matching tends to 2−
√

2. We will use the little-o notation, e.g., n/s = o(n).
For analyzing this construction we fix an optimal pair of a proper matching and a secant in either

the homogeneous or the heterogeneous model, and denote this optimal matching by M . The secant may
split at most two large arcs, call them Lp and Lr. If, e.g., one end of the secant is between the large arcs
Lj and Lj+1, then let p = j. We may assume that p < r (if p = r, then every matching edge has one end
in Lp, so |M | ≤ n/s = o(n)).

Let M ′ ⊆ M consist of those matching edges for which no end-vertex is inside the set Lp ∪ Lr.
Obviously, |M | ≤ |M ′| + 2n/s = |M ′| + o(n). We call a pair of indices (g, h) bonded if there exists at
least one edge of M ′ connecting Lg and Lh. (See Figure 4.)

287

L1Ls

LpLr

Lg

Lh

Figure 4: Bonded pairs.

Lemma 11. The number of the bonded pairs is at most s− 3.

Proof. Consider the auxiliary graph with vertices {1, 2, . . . s} \ {p, r}, and connect two vertices if the
corresponding pair is bonded. There is no cycle in this graph, otherwise a cycle yields a crossing in M .
Thus the auxiliary graph may have at most (s− 2)− 1 edges. □

Let I be an interval. If x and y are the first and last M ′-matched bead in I, and M ′(x) and M ′(y)
are their matched partners, then we assign the arc spanned by M ′(x) and M ′(y) to I, denote this arc by
M ′(I).

Let (g, h) be a bonded pair, where g < h. For i ∈ {1, . . . , s2s−g} let’s call a pair of intervals
(ℓg,2i−1, ℓg,2i) (g, h)-regular, if there exists j ∈ {1, . . . 2s2s−h} such that M ′(ℓg,2i−1 ∪ ℓg,2i) ⊆ ℓh,j . Let’s
call an edge of M ′ regular if one of the end-vertices is in a (g, h)-regular pair for some g < h. Denote the
set of regular edges by M ′′. An edge of M ′ is called a (g, h)-edge if its end-vertices are in Lg and in Lh,
respectively; and irregular if it is not regular. (See Figure 5.)

ℓh,j ℓh,j+1

ℓg,1 ℓg,2 ℓg,3 ℓg,4 ℓg,5 ℓg,6

M ′(ℓg,1 ∩ ℓg,2) M ′(ℓg,5 ∩ ℓg,6)

Figure 5: (ℓg,1, ℓg,2) and (ℓg,5, ℓg,6) are (g, h)-regular, because M ′(ℓg,1 ∩ ℓg,2) ⊆ ℓh,j and M ′(ℓg,5 ∩ ℓg,6) ⊆
ℓh,j+1, but (ℓg,3, ℓg,4) is not (g, h)-regular.

Lemma 12. |M ′| ≤ |M ′′|+ 6n/s = |M ′′|+ o(n).

Proof. Consider a bonded pair (g, h) for some g < h. First, we are going to bound the number of
irregular (g, h)-edges.

Take an i ∈ {1, . . . , s2s−g} for which M ′(ℓg,2i−1∪ℓg,2i)∩Lh ̸= ∅ but (ℓg,2i−1, ℓg,2i) is not (g, h)-regular.
It means that either there exist a “bad index” j ∈ {1, . . . , 2s2s−h−1} such that bothM ′(ℓg,2i−1∪ℓg,2i)∩ℓh,j
and M ′(ℓg,2i−1 ∪ ℓg,2i) ∩ ℓh,j+1 are non-empty. We also call j = 0 bad if M ′(ℓg,2i−1 ∪ ℓg,2i) ∩ Lh−1 is

288

non-empty (where L0 = Ls), and j = 2s2s−h bad if M ′(ℓg,2i−1 ∪ ℓg,2i) ∩ Lh+1 is non-empty (where
Ls+1 = L1).

Moreover, any j can be a bad index at most once therefore the number of such i’s is at most 2s2s−h+1.
Even if all the beads in these non-(g, h)-regular pairs are M ′-covered, we got rid of at most (2s2s−h + 1) ·
2|ℓg,2i| = (2s2s−h + 1) · (2s3s+g) < 6s5s−(h−g) ≤ 6s5s−1, since h > g. This is true for any bonded pairs,
hence altogether we lost at most (s− 3)6s5s−1 < 6s5s = 6n/s = o(n) M ′-edges. □

From now on, we estimate the number of regular edges. For the sake of simplicity, we will omit the
floor and ceiling functions, because the difference in the result is again o(n).

For g < h, let’s fix a bonded pair (g, h). Consider a (g, h)-regular pair of intervals (ℓg,2i−1, ℓg,2i) such
that M ′(ℓg,2i−1 ∪ ℓg,2i) ⊆ ℓh,j .

Until this point, there was no difference between the homogeneous and the heterogeneous case. In the
sequel, there still will not be any significant difference, the calculations work the same way in both cases.
We now present the calculation for the homogeneous case, and we will assume that the “main” color of
ℓh,j is blue (i.e. the dust is red), the “main” color of ℓg,2i−1 is red, thus the “main” color of ℓg,2i is blue.

Let’s denote the efficiency of the matching M ′′ on an interval I with

eff(I) =
of beads in I ∪M ′(I) covered by M ′′

|I ∪M ′(I)| .

In the following lemma, we will show that the efficiency cannot exceed 2−
√

2 + o(1) for a suitable λ.

Lemma 13. eff(ℓg,2i−1 ∪ ℓg,2i) ≤ 2−
√

2 + o(1) if λ = 1− 1√
2
.

Proof. Recall that ℓg,2i−1 (and also ℓg,2i) is divided into ss+2g red and ss+2g blue monochromatic

intervals. We will call them ℓ
(red,1)
g,2i−1, . . . ℓ

(red,ss+2g)
g,2i−1 , ℓ

(blue,1)
g,2i−1 , . . . ℓ

(blue,ss+2g)
g,2i−1 , where the red and blue indicates

the color of the interval.
Also recall that, ℓh,j is divided into blue and red monochromatic intervals (the color alternates) whose

sizes are (1− λ)s2s−h and λs2s−h, respectively. We define numbers ak, bk, ck and dk for 1 ≤ k ≤ ss+2g in
the following way.

Assume that the number of M ′′-covered beads from ℓ
(red,k)
g,2i−1 is x. Then ak = x

λs2s−h , i.e., the necessary
number of small red intervals (dust) from ℓh,j to cover that many beads.

Similarly, assume that the number of M ′′-covered beads from ℓ
(blue,k)
g,2i−1 is x. Then bk = x

(1−λ)s2s−h , i.e.,

the necessary number of blue intervals from ℓh,j to cover that many beads.

. . .

a1 b1 a2 b2 · · · d1 c1

ℓ
(red,1)
g,2i−1 ℓ

(blue,1)
g,2i−1 ℓ

(red,2)
g,2i−1 ℓ

(blue,2)
g,2i−1 ℓ

(blue,1)
g,2i ℓ

(red,1)
g,2i

Figure 6: The definition of ak, bk, ck and dk in the homogeneous case

We define ck and dk in the same way for ℓ
(red,k)
g,2i and ℓ

(blue,k)
g,2i , respectively. (See Figure 6.) It is easy

to see that ak ≤ 1−λ
λ sh−g, bk ≤ λ

1−λs
h−g, and ck, dk ≤ sh−g.

The number of M ′′-covered beads in (ℓg,2i−1 ∪ ℓg,2i) ∪M ′(ℓg,2i−1 ∪ ℓg,2i) is

2
(∑

akλs
2s−h +

∑
bk(1− λ)s2s−h +

∑
ckλs

2s−h +
∑

dk(1− λ)s2s−h
)
.

289

In all of the sums, k runs from 1 up to ss+2g, so we use the following shorthands. Let

A =
ss+2g∑

k=1

ak, B =
ss+2g∑

k=1

bk, C =
ss+2g∑

k=1

ck, D =
ss+2g∑

k=1

dk.

Obviously, |ℓg,2i−1 ∪ ℓg,2i| = 2s3s+g. We will give a lower bound on |M ′(ℓg,2i−1 ∪ ℓg,2i)|. To cover

the M ′′-matched beads in ℓ
(red,k)
g,2i−1 , we need at least ak monochromatic red interval from ℓh,j , thus at

least ak − 1 monochromatic blue interval remained unused, so M ′(ℓ(red,k)g,2i−1) ≥ (ak − 1)s2s−h. Similarly

M ′(ℓ(blue,k)g,2i−1) ≥ (bk − 1)s2s−h, M ′(ℓ(red,k)g,2i) ≥ (ck − 1)s2s−h and M ′(ℓ(blue,k)g,2i) ≥ (dk − 1)s2s−h.
Altogether, we get that eff(ℓg,2i−1 ∪ ℓg,2i) is at most

2
λAs2s−h + (1− λ)Bs2s−h + λCs2s−h + (1− λ)Ds2s−h

[
∑

(ak−1)s2s−h +
∑

(bk−1)s2s−h +
∑

(ck−1)s2s−h +
∑

(dk−1)s2s−h] + 2s3s+g
=

= 2
λA+ (1− λ)B + λC + (1− λ)D

[A+B + C +D − 4ss+2g] + 2s3s+g/s2s−h
=

2
λA+ (1− λ)B + λC + (1− λ)D

A+B + C +D − 4ss+2g + 2ss+g+h
.

Let’s denote this last expression by eff (A,B,C,D) . First, we will show that this expression is mono-
tone increasing in B and D.

eff (A,B,C,D) = 2(1− λ) + 2
(2λ− 1)(A+ C)− (1− λ)(2ss+g+h − 4ss+2g)

A+B + C +D + (2ss+g+h − 4ss+2g)
.

As λ ≤ 1
2 and ss+g+h ≥ ss+2g+1 ≥ 2ss+2g, we have that 2λ− 1 ≤ 0 and 2ss+g+h − 4ss+2g > 0, so the

numerator of the second term is negative. Thus we can increase the value of this expression by choosing
B and D as large as possible which yields:

eff (A,B,C,D) ≤ eff

(
A,

λ

1− λs
s+g+h, C, ss+g+h

)
.

We will do the same trick for A and C.

eff

(
A,

λ

1− λs
s+g+h, C, ss+g+h

)
=

= 2
λA+ (1− λ) λ

1−λs
s+g+h + λC + (1− λ)ss+g+h

A+ λ
1−λs

s+g+h + C + ss+g+h + 2ss+g+h − 4ss+2g
=

= 2
λA+ λC + ss+g+h

A+ C + (λ
1−λ + 3)ss+g+h − 4ss+2g

=

= 2λ+ 2

[
1− λ(λ

1−λ + 3)
]
ss+g+h + 4λss+2g

A+ C +
(

λ
1−λ + 3

)
ss+g+h − 4ss+2g

=

= 2λ+ 2
2λ2−4λ+1

1−λ ss+g+h + 4λss+2g

A+ C +
(

λ
1−λ + 3

)
ss+g+h − 4ss+2g

.

If λ = 1− 1√
2
, then 2λ2 − 4λ+ 1 = 0, so

eff

(
A,

λ

1− λs
s+g+h, C, ss+g+h

)
=

290

= 2λ+ 2
4λss+2g

A+ C +
(

λ
1−λ + 3

)
ss+g+h − 4ss+2g

.

The numerator of the second term is Θ(ss+2g) while the denominator is Θ(ss+g+h) because A ≤
1−λ
λ ss+g+h and C ≤ ss+g+h. Thus

eff

(
A,

λ

1− λs
s+g+h, C, ss+g+h

)
= 2λ+O(sg−h) = 2−

√
2 + o(1). □

We have already proved that the number of those edges in the matching M which are not in M ′′ is
negligible. We can partition the rest of the edges (the regular ones) into disjoint subsets according to the
(a, b)-bonded pairs determined by their beads. In every such (a, b)-bonded pair (for some a < b), we can
repeat the argument of Lemma 13. Hence, we can conclude that in this construction the size of a proper
matching is at most

(
2−
√

2 + o(1)
)
n ≈ 0.5858n. □

Remark 14. In the heterogeneous case, we assume that ℓh,j is divided into red and blue monochromatic
intervals (the color alternates) whose sizes are (1−λ)s2s−h and λs2s−h, respectively. We define numbers
ak, bk, ck and dk for 1 ≤ k ≤ ss+2g in the following way. (See Figure 7.)

Let ak denote the necessary number of small blue intervals (dust) from ℓh,j to cover the M ′′-covered

beads from ℓ
(red,k)
g,2i−1 beads. Similarly, let bk denote the necessary number of red intervals from ℓh,j to cover

the M ′′-covered beads from ℓ
(blue,k)
g,2i−1 beads. We define ck and dk in the same way for ℓ

(red,k)
g,2i and ℓ

(blue,k)
g,2i ,

respectively. It is easy to see that ak ≤ 1−λ
λ sh−g, bk ≤ λ

1−λs
h−g, and ck, dk ≤ sh−g.

. . .

a1 b1 a2 b2 · · · d1 c1

ℓ
(red,1)
g,2i−1 ℓ

(blue,1)
g,2i−1 ℓ

(red,2)
g,2i−1 ℓ

(blue,2)
g,2i−1 ℓ

(blue,1)
g,2i ℓ

(red,1)
g,2i

Figure 7: The definition of ak, bk, ck and dk in the heterogeneous case

The number of M ′′-covered beads in (ℓg,2i−1 ∪ ℓg,2i) ∪M ′(ℓg,2i−1 ∪ ℓg,2i) is

2
(∑

akλs
2s−h +

∑
bk(1− λ)s2s−h +

∑
ckλs

2s−h +
∑

dk(1− λ)s2s−h
)
.

From this point on the same calculation can give us the proof of Lemma 13 in the heterogeneous case
and then conclude that µ ≤ 2−

√
2, too.

Acknowledgement

This research was started during the 9th Emléktábla Workshop, 2019. The authors are thankful to the
organizers for inviting them. We also thank D. Pálvölgyi, G. Damásdi, T. Fleiner and Zs. Jankó for
valuable questions and observations.

References

[1] G. Brevier, M. Preissmann and A. Sebő, personal communication (2004).

291

[2] E. Csóka, Z. L. Blázsik, Z. Király and D. Lenger, Upper bounds for the necklace folding problems,
Journal of Combinatorial Theory, Series B, 157, (2022), pp. 123–143.

[3] P. Hajnal and V. Mészáros, A note on noncrossing path in colored convex sets, manuscript, (2010).

[4] J. Kynčl, J. Pach and G. Tóth, Long alternating paths in bicolored point sets, in Graph Drawing (J.
Pach, ed.), Lecture Notes in Computer Science 3383, Springer-Verlag, Berlin, (2004), pp. 340–348.

[5] J. Kynčl, J. Pach and G. Tóth, Long alternating paths in bicolored point sets, Discrete Mathematics,
308, (2008), pp. 4315–4322.

[6] R. B. Lyngsø and C. N. S. Pedersen, Protein Folding in the 2D HP Model, BRICS Report Series,
RS-99-16, (1999).

[7] V. Mészáros, Extremal problems on planar point sets, Ph.D. thesis, doktori.bibl.u-
szeged.hu/688/1/mvdoktori.pdf, (2011).

[8] V. Mészáros, Separated matchings and small discrepancy colorings. Computational Geometry, Lecture
Notes in Comput. Sci., 7579, Springer, Cham, (2011), pp. 236–248.

[9] C. Müllner and A. Ryzhikov, Palindromic Subsequences in Finite Words. arXiv, 1901.07502, (2019).

[10] C. Müllner and A. Ryzhikov, Palindromic subsequences in finite words. In Proc 13th Int. Conf.
Language and Automata Theory and Applications (LATA), (2019), pp. 460–468.

[11] W. Mulzer and P. Valtr, Long alternating paths exist. arXiv, 2003.13291, (2020).

292

Reconfiguration of Graph Orientations with
Connectivity Constraints1

Takehiro Ito

Tohoku University
takehiro@tohoku.ac.jp

Yuni Iwamasa

Kyoto University
iwamasa@i.kyoto-u.ac.jp

Naonori Kakimura

Keio University
kakimura@math.keio.ac.jp

Naoyuki Kamiyama

Kyushu University
kamiyama@imi.kyushu-u.ac.jp

Yusuke Kobayashi

Kyoto University
yusuke@kurims.kyoto-u.ac.jp

Shun-ichi Maezawa

Tokyo University of Science
maezawa.mw@gmail.com

Yuta Nozaki

Hiroshima University
nozakiy@hiroshima-u.ac.jp

Yoshio Okamoto

The University of
Electro-Communications
okamotoy@uec.ac.jp

Kenta Ozeki

Yokohama National University
ozeki-kenta-xr@ynu.ac.jp

Abstract: Graph orientation is the process of orienting the edges of an undirected graph
to obtain a directed graph, and is a topic that has been actively studied in the fields of
combinatorial optimization and graph theory. In this paper, we present our results on “recon-
figuration of graph orientations”, where the directions of some edges are flipped one by one
while maintaining a certain connectivity constraint. Our main result is the following: for an
arbitrary orientation of a 2k-edge-connected undirected graph, we can monotonically increase
the edge-connectivity by flipping the directions of some edges one by one, and finally obtain
a k-edge-connected orientation. This result strengthens the classical Nash-Williams’ theo-
rem, and is useful when discussing the connectivity of the edge-flip graph of k-edge-connected
orientations.

Graph connectivity, Graph orientation, Combinatorial reconfiguration, Nash-
Williams’ Theorem, Edge-flip graph

1 Increasing Edge-Connectivity by Edge-Flips

For an undirected graph G = (V,E) with possible multiple edges, an orientation of G is a directed
graph D = (V,A) obtained from G by replacing each undirected edge {u, v} ∈ E with a directed edge
(u, v) ∈ A or (v, u) ∈ A. An old result by Robbins [6] states that an undirected graph G has a strongly
connected orientation if and only if G is 2-edge-connected. Robbins’ theorem was extended by Nash-
Williams [5] stating that an undirected graph G has a k-edge-connected orientation if and only if G is
2k-edge-connected.

In this paper, we consider the reorientation of directed graphs, where the directions of some edges are
flipped one by one while maintaining a certain connectivity constraint. This has practical importance
since simultaneous edge flips can be difficult to implement or control in some real-world situations such
as traffic management, and the reduction of edge-connectivity in intermediate orientations may cause the

1The full version of this paper is available at [4]. Research is supported by JSPS KAKENHI Grant Numbers JP20H05793,
JP20H05795, JP20K11670, JP20K11692, JP19K11814, JP18H04091, JP18H05291, and JP21H03397, Japan.

293

loss of network quality. To make the discussion more precise, we define an edge flip (or a flip for short)
of a directed edge (u, v) as an operation that replaces (u, v) by (v, u), i.e., reverses the direction of (u, v).
For directed graphs D and D′, we denote D → D′ if D′ is obtained from D by a single edge flip.

Our main contribution is to show that for any orientation of a 2k-edge-connected undirected graph
G, there exists a sequence of edge flips such that the orientations of G obtained by the successive edge
flips have non-decreasing edge-connectivity and the resulting orientation is k-edge-connected. Here, we
recall that the edge-connectivity of a directed graph D = (V,A) is the maximum integer λ such that every
non-empty subset X ⊊ V has at least λ edges leaving X, and is denoted by λ(D). Formally, our main
result is stated as follows.

Theorem 1 Let k be a non-negative integer. Let G = (V,E) be an undirected 2k-edge-connected graph
and D = (V,A) be an orientation of G with λ(D) ≤ k. Then, there exist orientations D1, D2, . . . , Dℓ

of G such that ℓ ≤ (k − λ(D))|V |3, D → D1 → D2 → · · · → Dℓ, and λ(D) ≤ λ(D1) ≤ λ(D2) ≤ · · · ≤
λ(Dℓ) = k. Furthermore, such orientations D1, . . . , Dℓ can be found in polynomial time.

It is not difficult see that Theorem 1 is obtained by applying the following theorem repeatedly.

Theorem 2 Let k be a non-negative integer. Let G = (V,E) be an undirected (2k + 2)-edge-connected
graph and D = (V,A) be a k-edge-connected orientation of G. Then, there exist orientations D1, D2, . . . , Dℓ

of G such that ℓ ≤ |V |3, D → D1 → D2 → · · · → Dℓ, λ(Di) ≥ k for i ∈ {1, . . . , ℓ−1}, and λ(Dℓ) ≥ k+1.
Furthermore, such D1, . . . , Dℓ can be found in polynomial time.

Thus, in order to obtain Theorem 1, it suffices to show Theorem 2. We here briefly explain the outline
of the proof of Theorem 2; see [4] for the full proof.

For D = (V,A), we fix a vertex r ∈ V arbitrarily. Define Fout(D) and Fin(D) as

Fout(D) := {X ⊆ V − r | δ+D(X) = k} ∪ {V },
Fin(D) := {X ⊆ V − r | δ−D(X) = k} ∪ {V }.

We can easily see that D is (k + 1)-edge-connected if and only if Fout(D) = Fin(D) = {V }. Define
Fmin(D) as the set of all inclusionwise minimal sets in Fout(D) ∪ Fin(D). Actually, Fmin(D) consists of
disjoint sets (see [4]).

In our proof of Theorem 2, by flipping some edges in D, we decrease the value of

val(D) :=
∑

X∈Fmin(D)

(|V | − |X|).

Indeed, we show that we can decrease val(D) by applying at most |V | edge flips. We repeat this procedure
as long as val(D) is positive. If this value becomes 0, then Fmin = {V }. This means that Fout = Fin =
{V }, and hence D is (k + 1)-edge-connected. Note that we decrease the value of val(D) at most |V |2
times, because val(D) is integral and val(D) ≤ |V |2. Therefore, the total number of edge flips is at most
|V |3.

2 Connectedness of the Edge-flip Graph

As a consequence of Theorem 1, we obtain a result on the connectedness of the edge-flip graph of k-edge-
connected orientations. For an undirected graph G = (V,E), we define the edge-flip graph Gk(G) to be
the graph whose vertices correspond to the k-edge-connected orientations of G, and two orientations are
joined by an edge in the edge-flip graph if and only if one is obtained from the other by a single edge flip.
We consider the question that asks when Gk(G) is connected.

When k = 1, this question is completely answered. Greene and Zaslavsky [3] proved by hyperplane
arrangements that the edge-flip graph G1(G) is connected if and only if G is 3-edge-connected. Fukuda,
Prodon, and Sakuma [2] gave a graph-theoretic proof for the same fact. As a higher-edge-connectedness
analogue of this fact, we give a partial answer to this question for k ≥ 2.

294

Theorem 3 Let k ≥ 1. If G is (2k + 2)-edge-connected, then the edge-flip graph Gk(G) is connected.

Theorem 3 is obtained as a corollary of Theorem 1, combined with the following theorem.

Theorem 4 (Frank [1]) Let k ≥ 1 be an integer, G = (V,E) be a 2k-edge-connected undirected graph,
and D1, D2 be two k-edge-connected orientations of G. Then, D1 and D2 can be transformed with each
other by a sequence of path/cycle flips in such a way that all the intermediate orientations are k-edge-
connected.

Here, a path/cycle flip is an operation that flips all the edges of a directed path or a directed cycle
simultaneously.

To prove Theorem 3, for k-edge-connected orientations D1 and D2 of G, we show that D1 can be
transformed to D2 by a sequence of edge flips, while maintaining the k-edge-connectedness. Below is our
strategy to transform D1 to D2; see the full paper [4] for the complete proof.

1. We apply Theorem 1 to transformD1 to a (k+1)-edge-connected orientationD′
1 by edge flips so that

all the intermediate orientations are k-edge-connected. This can be done by the assumption that G
is (2k+2)-edge-connected. We apply the same procedure to D2 to obtain a (k+1)-edge-connected
orientation D′

2.

2. We next apply Theorem 4 to transform D′
1 to D′

2. Since operations in Theorem 4 are path/cycle
flips, we need to turn them into sequences of edge flips. We emphasize that all the intermediate
orientations will be k-edge-connected, but not necessarily (k + 1)-edge-connected.

3. Finally, we consider the reverse sequence of edge flips that transformed D2 to D′
2 from the first

step. Combining them, we obtain a sequence of edge flips that transforms D1 to D2 such that all
the intermediate orientations are k-edge-connected.

We do not know if the (2k+2)-edge-connectedness can be replaced with the (2k+1)-edge-connectedness
when k ≥ 2. However, we know that we cannot replace it with the 2k-edge-connectedness. Indeed, there
exists a 2k-edge-connected graph G such that Gk(G) is disconnected even when k = 1 (e.g. consider the
clockwise orientation and the counterclockwise orientation of a 3-cycle). Note that if the edge-connectivity
of G is less than 2k, then Gk(G) is not defined (or it is the null graph with no vertices).

References

[1] A. Frank, A note on k-strongly connected orientations of an undirected graph, Discret. Math. 39,
1 (1982), 103–104.

[2] K. Fukuda, A. Prodon, and T. Sakuma, Notes on acyclic orientations and the shelling lemma,
Theor. Comput. Sci. 263, 1-2 (2001), 9–16.

[3] C. Greene, and T. Zaslavsky, On the interpretation of Whitney numbers through arrangements
of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Amer. Math.
Soc. 280 (1983), 97–126.

[4] T. Ito, Y. Iwamasa, N. Kakimura, N. Kamiyama, Y. Kobayashi, S. Maezawa, Y. Nozaki, Y.
Okamoto, and K. Ozeki: Monotone edge flips to an orientation of maximum edge-connectivity
à la Nash-Williams, ACM Transactions on Algorithms, to appear. The preprint is available at
arXiv:2110.11585.

[5] C. S. J. A. Nash-Williams, On orientations, connectivity and odd-vertex-pairings in finite graphs,
Canadian Journal of Mathematics 12 (1960), 555–567.

[6] H. E Robbins, A theorem on graphs, with an application to a problem of traffic control, The
American Mathematical Monthly 46, 5 (1939), 281–283.

295

296

Lipschitz Continuous Graph Algorithms

Soh Kumabe1

The University of Tokyo
7-3-1, Hongo, Bunkyo-ward, Tokyo, Japan

soh kumabe@mist.i.u-tokyo.ac.jp

Yuichi Yoshida2

National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda ward, Tokyo,

Japan
yyoshida@nii.ac.jp

Abstract: Adversarial attacks, in which small perturbations to the input can cause a large
change in the prediction of a trained model, have been widely observed in the machine learning
community. As graph algorithms are commonly used for decision-making and knowledge
discovery, it is important to design robust algorithms against such attacks. In this study,
we investigate the Lipschitz continuity of algorithms for (weighted) graph problems as a
measure of robustness against adversarial attacks. Our study initiates a systematic study of
the Lipschitz continuity of algorithms for graph problems.

In this study, we focus on a specific notion of Lipschitz continuity that is invariant under
scaling of weights. Using this measure, we provide Lipschitz continuous algorithms and lower
bounds for the minimum spanning tree problem, the shortest path problem, and the maximum
weight matching problem.

We also consider another Lipschitz continuity notion induced by a natural mapping that
maps the output solution to its characteristic vector. We show that no Lipschitz continuous
algorithms exist for this Lipschitz notion. Instead, we design algorithms with bounded point-
wise Lipschitz constants for the minimum spanning tree problem and the maximum weight
bipartite matching problem.

Keywords: Lipschitz continuity, Sensitivity, Graph algorithms, Approximation
algorithms

1 Introduction

1.1 Backgrounds

In the field of machine learning, adversarial attacks are small perturbations to the input that can cause
a large change in the prediction of a trained model [6, 14]. These attacks pose a threat to the security of
machine learning-based systems, and there is ongoing research on training models that are robust against
them [2, 10]. Surveys on this topic can be found in [1, 19, 23].

While there has been significant attention on adversarial attacks in the context of machine learning,
there has been little research on designing graph algorithms that are robust against such attacks. In
this study, we consider the Lipschitz continuity of graph algorithms as a measure of robustness against
adversarial attacks, and we provide algorithms with small Lipschitz constants for various graph problems.
In this paper, we design graph algorithms that are robust against adversarial attacks, and we provide a
framework for systematically designing such algorithms.

Before presenting our algorithmic results, we discuss how the Lipschitz continuity of a graph algorithm
must be defined.

1Research is supported by JST, PRESTO Grant Number JPMJPR192B.
2Research is supported by JST, PRESTO Grant Number JPMJPR192B.

297

1.2 Lipschitz Continuity

Metrics. Let A be an algorithm that, given a graph G = (V,E) and a weight vector w ∈ RE
≥0 over

edges, outputs an edge set A(G,w) ⊆ E. Then, how should we define the Lipschitz constant of A, or
more specifically, which metric should we impose on the input and output spaces?

In this study, we always adopt the ℓ1 metric for the input space, that is, the distance between two
weight vectors w,w′ ∈ RE

≥0 is defined to be ∥w−w′∥1. We do so because for combinatorial problems, it is
natural to assume that the distance between w and w′ is calculated as the sum of the distances between
w(e) and w′(e) over e ∈ E, and the ℓ1 metric satisfies this property.

We also use the ℓ1 metric for the output space. Depending on how we map the output edge set to a
vector in the ℓ1 space, we can think of the following two variations.

(Unweighted mapping) We map an edge set F ⊆ E to the characteristic vector 1F ∈ RE of F , where
1F (e) = 1 if e ∈ F and 0 otherwise. Then for two edge sets F, F ′ ⊆ E, we define

du(F, F ′) := ∥1F − 1F ′∥1 = |F△F ′|.

(Weighted mapping) We map an edge set F ⊆ E to a vector
∑

e∈F w(e)1e using the weight vector
w ∈ RE

≥0, where 1e ∈ RE is the characteristic vector of e ∈ E, that is, 1e(f) = 1 if f = e and 0

otherwise. Then for two edge sets F, F ′ ⊆ E and weight vectors w,w′ ∈ RE
≥0, we define

dw((F,w), (F ′, w′)) :=

∥∥∥∥∥
∑

e∈F

w(e)1e −
∑

e∈F ′

w′(e)1e

∥∥∥∥∥
1

=
∑

e∈F∩F ′

|w(e)− w′(e)|+
∑

e∈F\F ′

w(e) +
∑

e∈F ′\F
w′(e).

We note that dw((F,w), (F ′, w)) =
∑

e∈F△F ′ w(e) holds.

To understand the difference between the unweighted and weighted mappings, consider the shortest path
problem. In this problem, a graph and a weight vector model a road network and the time required to
pass through roads, respectively, and the output path represents the roads used in a trip. The unweighted
distance du measures the number of roads changed between two trips, while the weighted distance dw
measures the time spent on different roads between the two trips.

The weighted mapping is more natural than the unweighted one for Lipschitzness. To see this, let
us consider a shortest path algorithm A. It is natural to ask A to output the same path regardless of
whether the distance is measured in kilometers or miles. This implies that A is scale invariant, that is,
it outputs the same path when edge weights are multiplied by a constant. Let G = (V,E) be a graph
and w ∈ RE

≥0 be a weight vector measured in kilometers, and consider another weight vector w′ ∈ RE
≥0

obtained from w by setting w′(e) = w(e) + δ, where e ∈ E and δ > 0 is measured in kilometers. Then, if
we measure the distance between outputs using the weighted mapping, the relative change of the output
is dw((A(G,w), w), (A(G,w′), w′))/δ. Let c ≈ 1.609 be the ratio of a mile to a kilometer. Then, if we
calculate edge weights in miles, the relative change of the output is

dw((A(G,w/c), w/c), (A(G,w′/c), w′/c))
δ/c

=
dw((A(G,w), w), (A(G,w′), w′))/c

δ/c

=
dw((A(G,w), w), (A(G,w′), w′))

δ
,

and hence the two relative changes coincide. We do not have this property if we use the unweighted
mapping. Hence, we first focus on the weighted mapping and then discuss the unweighted one later.

298

First Attempt: Lipschitz continuity of deterministic algorithms. Using the metric based on
the weighted mapping imposed on the input and output spaces as mentioned previously, we can define
the Lipschitz constant of a deterministic algorithm as follows:

Definition 1 (Lipschitz constant of a deterministic algorithm) Let A be a deterministic algorithm
that, given a graph G = (V,E) and a weight vector w ∈ RE

≥0, outputs an edge set A(G,w) ⊆ E. Then,
the Lipschitz constant of the algorithm A on a graph G = (V,E) is

sup
w,w′∈RE

≥0,

w ̸=w′

dw((A(G,w), w), (A(G,w′), w′))
∥w − w′∥1

.

Note that we only take the supremum over weight vectors and not over underlying graphs. To explain
why we adopt this definition, let us consider the shortest path problem again. The weight vector can
frequently change owing to traffic jams or inclement weather, whereas the underlying graph may change
because of construction or disasters, which occur less frequently. Hence, it would be more useful to
consider the former type of changes than the latter.

Another reason for not taking the supremum over pairs of graphs is that the change in the underlying
graph often forces any (reasonable) algorithm to change its output drastically, and hence it is impossible
to bound the Lipschitz constant if we allow changes in the underlying graph. For example, consider an
instance of the shortest path problem such that there are two disjoint paths—one short and the other
long—between source and target vertices. Any algorithm with a reasonable approximation guarantee
must output the shorter path. However, if an edge in the shorter path is removed, the algorithm must
change its output to the longer path.

Unfortunately, even though we do not take the supremum over underlying graphs in Definition 1, any
(reasonable) deterministic algorithm for the shortest path problem is not Lipschitz continuous:

Definition 2 Any deterministic algorithm for the shortest path problem with a finite approximation ratio
is not Lipschitz continuous, that is, its Lipschitz constant is unbounded.

To see the reason, consider a graph having two disjoint paths between the source and target vertices and
the transition from a weight vector for which the first path is shorter to one for which the second path is
shorter. Because the algorithm is deterministic, there is some point in the transition where the output
path discontinuously changes from the first path to the second one, which implies that the algorithm is
not Lipschitz.

Second Attempt: Lipschitz continuity of randomized algorithms. To remedy the aforemen-
tioned issue, we consider the Lipschitz continuity of randomized algorithms. First, we extend dw, which
is a metric over outputs, to a metric over output distributions. For two probability distributions F ,F ′

over subsets of E, the earth mover’s distance between F and F ′ is defined as

EMw ((F , w), (F ′, w′)) := min
D

E
(F,F ′)∼D

dw ((F,w), (F ′, w′)) ,

where the minimum is taken over couplings of F and F ′, that is, distributions over pairs of sets such that
its marginal distributions on the first and second coordinates are equal to F and F ′, respectively. We
note that EMw coincides with dw if the distributions F and F ′ are supported by single edge sets.

For a randomized algorithm A, a graph G = (V,E), and a weight vector w ∈ RE
≥0, let A(G,w) denote

the (random) output of A on G and w. Abusing the notation, we often identify it with its distribution.
Then, we define the Lipschitz constant of a randomized algorithm as follows:

Definition 3 (Lipschitz constant of a randomized algorithm) Let A be a randomized algorithm
that, given a graph G = (V,E) and a weight vector w ∈ RE

≥0, outputs a (random) edge set A(G,w) ⊆ E.

299

Table 1: Results for Lipschitz continuity. n represents the number of vertices in the input graph, and
ϵ, α ∈ (0, 1) are arbitrary constants.

Problem
Approximation Lipschitz
Ratio Constant

Minimum Spanning Tree
1 + ϵ O(ϵ−1)
1 + ϵ Ω(ϵ−1)

Shortest Path
1 + ϵ O(ϵ−1 log3 n)
1 + ϵ Ω(ϵ−1)

Maximum Weight Matching
1/8− ϵ O(ϵ−1)
α Ω(α)

Then, the Lipschitz constant of the algorithm A on a graph G = (V,E) is

sup
w,w′∈RE

≥0,

w ̸=w′

EMw ((A(G,w), w), (A(G,w′), w′))
∥w − w′∥1

.

We say that A is Lipschitz continuous if its Lipschitz constant is bounded for any graph G = (V,E) and
is L-Lipschitz if its Lipschitz constant is at most L.

If the algorithm is deterministic, then this definition coincides with Definition 1.
Consider again the graph having two disjoint paths between the source and target vertices and the

transition from a weight vector for which the first path is shorter to one for which the second path is
shorter. Then, the output of a randomized algorithm can also make a transition from a distribution with
most of its mass on the first path to one with most of its mass on the second path, and hence we can
alleviate the issue of deterministic algorithms. However, designing Lipschitz continuous algorithms is a
nontrivial task because we need to bound the ratio in Definition 3 for any pair of weight vectors, which
can be very close.

1.3 Lipschitz Continuous Algorithms for Graph Problems

In this section, we discuss the Lipschitz continuity of randomized algorithms for several graph problems.
Our results are summarized in Table 1.

Minimum spanning tree. In the (weighted) minimum spanning tree problem, we are given a (con-
nected) undirected graph G = (V,E), and a weight vector w ∈ RE

≥0, and the goal is to output a spanning
tree T ⊆ E that minimizes the total weight

∑
e∈T w(e). We show that for any ϵ > 0, there exists a

polynomial-time (1 + ϵ)-approximation algorithm for the minimum spanning tree problem with Lipschitz
constant O(ϵ−1). To understand this upper bound, suppose that w is {0, 1}-valued and that we change
the value of w(f) from 1 to 0 for some edge f ∈ E. This is essentially equivalent to contracting the edge
f , and the upper bound indicates that we only need to change O(ϵ−1) edges in the spanning tree, which
is far smaller than the spanning tree size, i.e., Θ(n). We complement the upper bound by showing that
any (randomized) (1 + ϵ)-approximation algorithm for the minimum spanning tree problem must have
Lipschitz constant Ω(ϵ−1).

Shortest path. In the (weighted) shortest path problem, we are given an undirected graph G = (V,E),
two vertices s, t ∈ V , and a weight vector w ∈ RE

≥0, and the goal is to output the shortest path between
s and t, where the length of a path P ⊆ E is

∑
e∈P w(e). We show that for any ϵ ∈ (0, 1), there exists a

polynomial-time (1 + ϵ)-approximation algorithm for the shortest path problem with Lipschitz constant

300

O
(
ϵ−1 log3 n

)
, where n represents the number of vertices in the input graph. Our algorithm may output

a walk, i.e., the same edge may be used a multiple times in the output. We regard a walk P as a multiset
of edges, and we map it to a vector

∑
e∈P w(e)1e, where an edge e ∈ E appears in the sum the same

number of times that it appears in the walk P . Then, the distance dw(·, ·) for walks and the Lipschitz
constant of an algorithm that outputs a walk can be naturally defined. To understand the upper bound,
suppose that w is {0, 1}-valued and that we change the value of w(f) from 1 to 0 for some edge f ∈ E.
This is essentially equivalent to contracting the edge f , and the upper bound indicates that we only need
to change O(ϵ−1 log3 n) edges in the output path, which is nontrivially small when the shortest path from
s to t is ω(log3 n). We also show that any (randomized) (1 + ϵ)-approximation algorithm for the shortest
path problem must have Lipschitz constant Ω(ϵ−1), which implies that our upper bound is tight up to a
polylogarithmic factor in n.

Maximum weight matching. In the maximum weight matching problem, given a graph G = (V,E)
and a weight vector w ∈ RE

≥0, we want to find a matching M ⊆ E with the maximum weight, i.e.,∑
e∈M w(e). We show that for any ϵ > 0, there exists a polynomial-time (1/8 − ϵ)-approximation

algorithm with Lipschitz constant O(ϵ−1). To understand this upper bound, suppose again that w is
{0, 1}-valued and that we change the value of w(f) from 1 to 0 for some f ∈ E. This is essentially
equivalent to deleting the edge f , and the upper bound indicates that we only need to change O(ϵ−1)
edges in the matching, which is nontrivially small when the matching size is ω(1). We also show that any
(randomized) α-approximation algorithm for the maximum weight matching problem must have Lipschitz
constant Ω(α).

We note that the proof of Theorem 2 can be easily extended to the minimum spanning tree problem
and the maximum weight matching problem, and hence randomness is necessary to obtain Lipschitz
continuous algorithms for them.

1.4 Pointwise Lipschitz Continuity for Unweighted Mapping

In this section, we discuss Lipschitz continuity in the case where the distances between outputs are
measured using the unweighted mapping. First, we define the earth mover’s distance between output
distributions F and F ′ with respect to the unweighted mapping as follows:

EMu (F ,F ′) := min
D

E
(F,F ′)∼D

du(F, F ′),

where the minimum is taken over couplings of F and F ′.
We cannot hope that a scale-invariant algorithm has a bounded Lipschitz constant with respect to

the unweighted mapping. To see this, let w,w′ ∈ RE
≥0 be arbitrary weight vectors. Then for any constant

c > 0, we have
du(A(G,w/c),A(G,w′/c))

∥w/c− w′/c∥1
=
c · du(A(G,w),A(G,w))

∥w − w′∥1
,

which implies that the Lipschitz constant is unbounded. Hence, we consider the following variant that
look at the relative change in a local neighborhood:

Definition 4 (Pointwise Lipschitz constant of a randomized algorithm with respect to the
unweighted mapping) Let A be a randomized algorithm that, given a graph G = (V,E) and a weight
vector w ∈ RE

≥0, outputs a (random) edge set A(G,w) ⊆ E. Then, the pointwise Lipschitz constant of the

algorithm A on a graph G = (V,E) at a weight vector w ∈ RE
≥0 with respect to the unweighted mapping

is

lim sup
w′∈RE

≥0,w
′→w

EMu (A(G,w),A(G,w′))
∥w − w′∥1

.

301

Table 2: Results for pointwise Lipschitz continuity with respect to the unweighted mapping. For the
minimum spanning tree problem, n represents the number of vertices in the input graph, and for the
maximum weight bipartite matching problem, n and m represent the number of vertices in the left and
right parts of the input bipartite graph, respectively. ϵ ∈ (0, 1) is an arbitrary constant, and opt represents
the optimal value.

Problem
Approximation Lipschitz
Ratio Constant

Minimum Spanning Tree 1 + ϵ O(ϵ−1n/opt)

Maximum Weight Bipartite Matching 1/2− ϵ O(ϵ−1n3/2 logm/opt)

In contrast to Lipschitz constant, the pointwise Lipschitz constant can depend on the weight vector w,
and hence a scale-invariant algorithm can have a bounded pointwise Lipschitz constant.

We consider the pointwise Lipschitz continuity of algorithms with respect to the unweighted mapping
for the minimum spanning tree problem and the maximum weight bipartite matching problem. Our
results are summarized in Table 2. Below, we discuss them in detail.

For any ϵ > 0, we show that there exists a polynomial-time (1 + ϵ)-approximation algorithm for the
minimum spanning tree problem with pointwise Lipschitz constant O(ϵ−1n/opt), where n is the number
of vertices in the input graph and opt is the minimum weight of a spanning tree. As discussed previously,
the dependency on opt (or some other function depending on edge weights) is unavoidable. Suppose
w ∈ RE

≥0 is {0, 1}-valued. Then, the bound shows that the change in the output tree is smaller than the

tree size, n− 1, when opt = ωn(ϵ−1).
In the maximum weight bipartite matching problem, given a complete bipartite graph G = (U ∪V,E =

U ×V) and a weight vector w ∈ RE
≥0, the goal is to output a matching M ⊆ E that maximizes its weight,

i.e.,
∑

e∈M w(e). For this problem, we show that there exists a polynomial-time (1/2− ϵ)-approximation

algorithm with pointwise Lipschitz constant O(ϵ−1n3/2 logm/opt), where n and m are the numbers of
vertices in the left and right parts of the input bipartite graph, respectively, and opt is the maximum
weight of a matching. Suppose n < m and the weight vector w ∈ RE

≥0 is {0, 1}-valued. Then, the bound
shows that the change in the output matching is smaller than the maximum matching size, n, when
opt = ω(ϵ−1

√
n logm).

We note that, in general, a Lipschitz continuous algorithm does not imply an algorithm with a bounded
pointwise Lipschitz constant, and vice versa.

1.5 Related Work

Worst-case and average sensitivity. Lipschitz continuity is closely related to the sensitivity of
algorithms introduced in [12, 16]. The worst-case and average sensitivities of a randomized algorithm A
on an (unweighted) graph G = (V,E) are defined as

max
e∈E

EMu(A(G),A(G \ e)) and
1

|E|
∑

e∈E

EMu(A(G),A(G \ e)), (1)

respectively, where G \ e is the graph obtained from G by deleting the edge e ∈ E. Clearly, the average
sensitivity is bounded from above by the worst-case sensitivity. The sensitivity of algorithms has been
investigated for various graph problems including the minimum cut problem [16], the maximum matching
problem [16, 22], and spectral clustering [13]. It is known that there is no algorithm with o(n) worst-
case/average sensitivity for the shortest path problem [16]. As the definition of sensitivity (1) can be
easily generalized, other non-graph problems such as dynamic programming problems [8, 9] and Euclidean
k-means [20] have also been studied from the viewpoint of sensitivity.

To see the connection to Lipschitz continuity, suppose that in the supremum of Definition 3, we fix
w to be the all-one vector 1E and we restrict the domain of w′ to {0, 1}-valued vectors. Then by the

302

triangle inequality, the (modified) Lipschitz constant on a graph G = (V,E) can be bounded from above
as

max
w′∈{0,1}E

EMw((A(G,1E),1E), (A(G,w′), w′))
∥1E − w′∥ = max

F⊆E

EMw((A(G,1E),1E), (A(G,1E\F),1E\F))

|F |
≤ max

e∈E
EMw((A(G,1E),1E), (A(G,1E\{e}),1E\{e})), (2)

where 1E\{e} ∈ {0, 1}E is the characteristic vector of E \ {e}.
For the shortest path problem, the weighted graph (G,w) for a {0, 1}-valued weight vector w is

equivalent to the graph obtained from G by contracting edges e ∈ E with w(e) = 0. In particular, the
weighted graph (G,1E\{e}) is equivalent to G/e, which is the graph obtained from G by contracting the
edge e. Hence, (2) can be seen as a variant of the worst-case sensitivity, where the operation applied to
the graph is edge contraction instead of edge deletion, that is,

max
e∈E

EMu(A(G),A(G/e)). (3)

Indeed, our Lipschitz continuous algorithm for the shortest path problem is based on an algorithm with
a bounded sensitivity with respect to edge contraction.

A notable difference between the sensitivity and the Lipschitz constant is that the former is trivially
bounded by the maximum solution size whereas it is not clear a priori whether there is an algorithm for
which the latter is bounded.

Lipschitz continuity of neural networks. As mentioned previously, adversarial attacks is a consid-
erable threat to machine learning-based systems. To mitigate the effects of adversarial attacks, neural
networks with small Lipschitz constants have been proposed and their properties have been investi-
gated [3, 5, 15, 17, 18]. It is also reported that bounding Lipschitz constants of neural networks stabilizes
the training process and often produces models with better output quality [7, 11, 21].

We note that bounding the Lipschitz constant of a neural network is often easy because it is bounded
by the product of the Lipschitz constants of the activation functions and linear transformations used in
the neural network, which are easy to calculate. However, to design Lipschitz continuous algorithms for
graph problems, we need to bound approximation ratio and Lipschitz constant simultaneously, and we
often need nontrivial techniques as we will see in this paper.

1.6 Technical Overview

Minimum spanning tree. It is known that Kruskal’s algorithm has (worst-case) sensitivity O(1)
against edge deletions [16]. However, it is not Lipschitz continuous because it is deterministic (see
Theorem 2), and hence some modification is required.

Our Lipschitz continuous algorithm for the minimum spanning tree problem works as follows: Given
a graph G = (V,E) and a weight vector w ∈ RE

≥0, we sample ŵ(e) uniformly from [w(e), (1 + ϵ)w(e)] for
each edge e ∈ E, and then apply Kruskal’s algorithm to the new weight vector ŵ. This algorithm clearly
achieves (1 + ϵ)-approximation.

We can show that, to bound the Lipschitz constant, it suffices to consider a pair of weight vectors
(w,w′) such that w′ is obtained from w by setting w′(e) = w(e) + δ for some e ∈ E and δ > 0. Then, the
total variation distance between ŵ and ŵ′ is O(ϵ−1δ/w(e)), where ŵ′ is constructed from w′ in the same
way as ŵ is constructed from w. Then, we can define a coupling, i.e., a joint distribution, between ŵ and
ŵ′ such that ŵ ̸= ŵ′ with probability O(ϵ−1δ/w(e)). Also, we can show that when w ̸= w′ occurs in the
coupling, the distance between the output spanning trees is O(w(e)). This implies that the earth mover’s
distance is O(ϵ−1δ) and hence the Lipschitz constant is O(ϵ−1). Our algorithm and analysis for pointwise
Lipschitzness with respect to the unweighted mapping is similar though we need some care because we
use the optimal value to determine the range from which we sample ŵ(e) and it varies depending on the
weight vector.

303

Shortest path. To obtain Lipschitz continuous algorithm for the shortest path problem, we first design
an algorithm for the (unweighted) shortest path problem with a low sensitivity with respect to edge
contraction (see (3)). We will use this algorithm as a subroutine in our Lipschitz continuous algorithm.

The subroutine takes an unweighted graph Ĝ and two vertices s, t ∈ V (G) as the input and returns an

approximate s-t shortest path in Ĝ. This subroutine is recursive: It samples a vertex v called a pivot,
recursively computes s-v and v-t walks that are nearly optimal, and then returns the walk obtained
by concatenating the two walks. We choose the pivot v so that it is roughly in the middle of a nearly
optimal s-t path. By doing so, we can bound the depth of the recursion by O(log n) and guarantee that
the output walk is nearly optimal. Now, we turn to analyzing the sensitivity of the subroutine with
respect to edge contraction. Let e ∈ E(Ĝ) and we want to bound the earth mover’s distance between the

output distributions for Ĝ and Ĝ/e. Informally, we say that a recursion call for computing a u-v shortest
path is active if there is a nearly optimal u-v path passing through e and is inactive otherwise. Then, we
can show the following:

• recursion calls invoked in an inactive recursion call are also inactive, and

• with high probability, at most one of the two recursion calls invoked in an active recursion call is
active.

These properties imply that the expected number of active recursion calls in each recursion depth is O(1).
Also, we can prove that in an inactive call, the pivot is sampled from exactly the same distributions for
Ĝ and Ĝ/e, and thus it does not contribute to the sensitivity at all. Additionally, we can show that
each active call contributes to the sensitivity by O(log2 n). Regarding that the number of active calls is
O(log n), the sensitivity of the algorithm can be bounded by O(log3 n).

To obtain a Lipschitz continuous algorithm for the shortest path problem, we construct an unweighted
graph Ĝ(w) from the input weighted graph (G,w), and apply the subroutine to it to obtain a walk in

Ĝ(w), and then output the corresponding walk in G. Here, the graph Ĝ(w) is obtained by replacing each
edge of the input graph G with a path of suitable length so that each path in G naturally corresponds to a
path in Ĝ(w). The length of each path is sampled from a certain distribution so that the total variation

distance between Ĝ(w) and Ĝ(w′) is proportional to ∥w − w′∥1. Then, we can bound the Lipschitz
continuity of the algorithm by using the sensitivity of the subroutine.

Maximum weight matching. Our algorithm is based on the algorithm for the maximum weight
matching proposed by Yoshida and Zhou [22]. For a parameter α > 2, their algorithm first classifies
edges e according to the value ⌊logα w(e)⌋. Then, it runs a randomized greedy to compute a matching
for each edge class, and then returns a matching obtained by combining them.

Although their algorithm has a bounded weighted sensitivity, a discrete analogue of Lipschitz constant,
its Lipschitz constant is not bounded. This is because an arbitrarily small change in the weight of an edge
may cause the edge to be classified into a different class. To resolve this issue, we sample a parameter

b ∈ [1, α] and classify edges e according to the value
⌊
logα

w(e)
b

⌋
. Then, the total variation distance

between the classifications obtained from weight vectors w and w′ is proportional to ∥w − w′∥1, and we
can bound the Lipschitz constant.

Maximum weight bipartite matching. In contrast to the previous Lipschitz continuous algorithm
for the maximum weight matching problem, our pointwise Lipschitz continuous algorithm for the max-
imum weight bipartite matching problem is based on linear programming (LP). The standard LP re-
laxation for the maximum weight bipartite matching problem is not stable against perturbations to the
edge weight. Hence, we consider LP with entropy regularization [4]. Although entropy regularization was
originally introduced to speed up the computation of the earth mover’s distance, we use it here to stabilize
the computation of LP. For a weight vector w ∈ RE

≥0, let LPent(w) denote the LP for the weighted graph
(G,w) with entropy regularization. Then, we can show that (i) the solution to LPent is nearly optimal
to the original LP, and (ii) for any weight vector w′, the ℓ1 distance between the solutions of LPent(w)

304

and LPent(w
′) is proportional to ∥w−w′∥1. Then, we carefully round the obtained fractional solution to

an integral one in such a way that for any two fractional solutions x and x′, the earth mover’s distance
between the (random) integer solutions obtained from x and x′ is proportional to ∥x− x′∥1 with respect
to the unweighted mapping.

References

[1] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision:
A survey. IEEE Access, 6:14410–14430, 2018.

[2] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pages 39–57. Ieee, 2017.

[3] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, pages 854–863. PMLR, 2017.

[4] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

[5] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Effi-
cient and accurate estimation of lipschitz constants for deep neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations (ICLR), 2015.

[7] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural net-
works by enforcing lipschitz continuity. Machine Learning, 110(2):393–416, 2021.

[8] Soh Kumabe and Yuichi Yoshida. Average sensitivity of dynamic programming. In Proceedings of
the 33th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1925–1961, 2022.

[9] Soh Kumabe and Yuichi Yoshida. Average sensitivity of the knapsack problem. In 30th Annual
European Symposium on Algorithms (ESA), volume 244, pages 75:1–75:14, 2022.

[10] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learning
Representations (ICLR), 2018.

[11] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

[12] Shogo Murai and Yuichi Yoshida. Sensitivity analysis of centralities on unweighted networks. In
Proceedings of the 2019 World Wide Web Conference (WWW), pages 1332–1342, 2019.

[13] Pan Peng and Yuichi Yoshida. Average sensitivity of spectral clustering. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pages
1132–1140, 2020.

[14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations (ICLR), 2013.

[15] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification
of perturbation invariance for deep neural networks. Advances in neural information processing
systems, 31, 2018.

305

[16] Nithin Varma and Yuichi Yoshida. Average sensitivity of graph algorithms. In Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 684–703. 2021.

[17] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

[18] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach. In
International Conference on Learning Representations, 2018.

[19] Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and Anil K Jain. Adversarial
attacks and defenses in images, graphs and text: A review. International Journal of Automation
and Computing, 17(2):151–178, 2020.

[20] Yuichi Yoshida and Shinji Ito. Average sensitivity of Euclidean k-clustering. In NeurIPS, 2022. to
appear.

[21] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv preprint arXiv:1705.10941, 2017.

[22] Yuichi Yoshida and Samson Zhou. Sensitivity analysis of the maximum matching problem. In
Innovations in Theoretical Computer Science (ITCS), pages 58:1–58:20, 2021.

[23] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks on deep-
learning models in natural language processing: A survey. ACM Transactions on Intelligent Systems
and Technology, 11(3):1–41, 2020.

306

Simultaneous Assignments

Péter Madarasi

Department of Operations Research, ELTE
Eötvös Loránd University, and the ELKH-ELTE

Egerváry Research Group on Combinatorial
Optimization, Eötvös Loránd Research Network

(ELKH), Pázmány Péter sétány 1/C, 1117
Budapest, Hungary.

madarasip@staff.elte.hu

Abstract: This paper introduces the simultaneous assignment problem. Let us given a graph
with a weight and a capacity function on its edges, and a set of its subgraphs along with a
degree upper bound function for each of them. In addition, we are given a laminar system on
the nodes with an upper bound on the degree-sum of the nodes in each member of the system.
Our goal is to assign each edge a non-negative integer below its capacity such that the total
weight is maximized, the degrees in each subgraph are below the bound associated with the
subgraph, and the degree-sum bound is respected in each member of the laminar system.

We identify special cases when the problem can be shown to be solvable in polynomial time.
One of these cases is a common generalization of the hierarchical b-matching problem and the
laminar matchoid problem. This implies that both problems can be solved efficiently in the
weighted, capacitated case even if both lower and upper bounds are present — generalizing
the previous polynomial-time algorithms. The problem is also solvable for trees provided that
the laminar system is empty and a natural assumption holds for the subgraphs.

The general problem, however, is shown to be APX-hard in the unweighted case. Furthermore,
we prove that the approximation guarantee of any polynomial-time algorithm must increase
asymptotically linearly in the number of the given subgraphs unless P=NP.

We give a generic framework for deriving approximation algorithms, which can be applied
to a wide range of problems. As an application to our problem, a constant-approximation
algorithm is derived when the number of the given subgraphs is a constant. The approximation
guarantee is the same as the integrality gap of a strengthened LP-relaxation when the number
of the given subgraphs is small. Furthermore, improved approximation algorithms are given
for special cases, for example, when the degree bounds are uniform or the graph is sparse.

Keywords: Restricted b-matching, Matchoid, Approximation algorithms, Inte-
grality gap

1 Introduction

In the simultaneous assignment problem, we are given a graph with a weight and capacity function on
its edges and a set of its subgraphs along with a degree upper bound function for each of them. We are

1Supported by the ÚNKP-22-4 New National Excellence Program of the Ministry for Culture and Innovation from the
source of the National Research, Development and Innovation Fund. The work was supported by the Lendület Programme
of the Hungarian Academy of Sciences – grant number LP2021-1/2021, and the Ministry of Innovation and Technology of
Hungary from the National Research, Development and Innovation Fund, financed under the ELTE TKP 2021-NKTA-62
funding scheme.

307

also given a laminar system on the node set with an upper bound on the degree-sum of the nodes in each
member of the system. Our goal is to assign each edge a non-negative integer below its capacity such that
the total weight is maximized, the degrees in each subgraph are below the degree upper bound associated
with the subgraph, and the degree-sum bound is respected in each member of the laminar system.

More precisely, given are 1) a loop-free graph G = (V,E), 2) a capacity function c : E → Z+, 3) a
set H of the subgraphs of G along with a function bH : VH → Z+ for each subgraph H = (VH , EH) ∈ H
and 4) a laminar system L on the nodes of G with a function g : L → Z+. An integer vector x ∈ ZE+
is a simultaneous assignment if 1) x ≤ c, 2) x is a c-capacitated bH -matching in H for all H ∈ H
and 3)

∑
v∈L

∑
e∈∆G(v) xe ≤ g(L) holds for all L ∈ L, where ∆G(v) denotes the set of edges incident

to node v. In the weighted version of the problem,
∑
e∈E wexe is to be maximized for a given weight

function w : E → R+. The case w ≡ 1 will be referred to as the unweighted problem. We will see that
this cumbersome problem includes a number of natural, interesting special cases — some of which are
solvable in polynomial time.

Note that constraint 3) poses an upper bound on the x-degree sum in each L ∈ L — this means that
the x-values of the edges induced by L count twice while those of the non-induced incident edges once.
Constraints 3) will be referred to as the degree-sum constraints. The problem is called uncapacitated
when c ≡ ∞. Without loss of generality, we assume that no subgraph in H contains isolated nodes.

The integer solutions of the following linear program are, by definition, the feasible simultaneous
assignments.

max
∑

st∈E
wstxst (LP1)

s.t.

x ∈ RE+ (1a)

xe ≤ ce ∀e ∈ E (1b)
∑

e∈∆H(v)

xe ≤ bH(v) ∀H ∈ H ∀v ∈ VH (1c)

∑

v∈L

∑

e∈∆G(v)

xe ≤ g(L) ∀L ∈ L (1d)

Indeed, all feasible integer solutions to (LP1) are non-negative by (1a) and respect the capacity constraints
by (1b). The degree constraints in each subgraph H ∈ H and the degree-sum constraint for L ∈ L hold
by (1c) and (1d), respectively.

Motivation Imagine k consecutive events taking place in the same hall and a set of attendees who want
to buy tickets. Given the event and the seat, we know how much a ticket costs. Each customer provides
the list of seats that would suit him/her and also selects which of the k events (possibly more than one)
they want to attend. Our goal is to assign customers to seats such that the total income is maximized and
if somebody wanted to attend multiple events, then he/she must be either completely refused or seated
to the same place for all the events. This scenario can be modeled as a simultaneous assignment problem
as follows. Define a bipartite graph G = (S, T ;E), where S corresponds to the customers and T to the
seats. For s ∈ S and t ∈ T , add st to E if customer s likes seat t, and let w(st) be the income if s is seated
to t. Let Si denote the set of customers who want to attend event i, and let H = {H1, . . . ,Hk}, where
Hi is the subgraph of G induced by node set Si ∪ T . Let c ≡ 1, L = ∅ and bHi

≡ 1 for i ∈ {1, . . . , k}. By
the construction, there is a one-to-one correspondence between feasible customer-seat assignments and
feasible simultaneous assignments.

It is quite natural to require these constraints only for intervals of events, that is, if a customer skips
some of the events, then he/she may be seated to a new place when he/she arrives back. Observe that
a participant s leaving the hall at some point can be replaced with new dummy participants each of
whom attends exactly one of the intervals of the events selected by s. That is, one can assume that each
customer participates in an interval of events. This special case will be investigated in Section 2.2.

308

Previous work In the special case when H = {G} and L = ∅, one gets back the usual weighted
capacitated b-matching problem, where b = bG [1]. Another way to obtain this problem is when H = ∅
and L = {{v} : v ∈ V }, where b(v) = g({v}) for all v ∈ V .

For the `-matchiod problem, there exists an FPT algorithm parameterized by ` and the size of the
solution [5]. This immediately implies that for the simultaneous assignment problem with L = ∅ and
c ≡ 1, there exists an FPT algorithm parameterized by the size of the solution and the size of H.

One can show that uncapacitated simultaneous assignments form a (2|H|+1)-extendible system, hence
the greedy algorithm is a (2|H| + 1)-approximation algorithm [10]. This result is not hard to extend to
the capacitated version, hence one gets that there exists a (2|H| + 1)-approximation algorithm for the
simultaneous assignment problem.

In the double matching problem, we are given a bipartite graph G = (S, T ;E) and S1, S2 ⊆ S such
that S1 ∪ S2 = S. It is NP-complete to decide whether there exists M ⊆ E for which |M | = |S| and both
M ∩E1 and M ∩E2 are matchings, where Ei denotes the edges induced by T and Si for i ∈ {1, 2} [8]. The
double matching problem is a special case of the simultaneous assignment problem, and this implies that
it is NP-complete to decide whether a simultaneous assignment satisfying constraints (1c) with equality
exists, even if L = ∅.

As a direct application of the bounded-violation algorithms given for the upper bounded degree g-
polymatroid element problem described in [2], one can find a vector z ∈ ZE in polynomial time such that
wz is at least the weight of the optimal simultaneous assignment, and it satisfies constraints (1a) and (1b),
but it may violate constraints (1c) by an additive factor of at most (2|H| − 1), provided that L = ∅.

Our results The special case when H = ∅ corresponds to the so-called weighted hierarchical b-matching
problem. This problem was introduced in [3], where a strongly polynomial-time algorithm was given for
the unweighted case. Answering an open question from the same paper, our results in Section 2.1 imply
that the weighted version of the problem can be solved in strongly polynomial time as well.

If L = ∅ and H is such that the subgraphs in H restricted to the edges incident to v form a laminar
system for each node v ∈ V , then we get back the laminar matchoid problem [6]. In [7], the laminar
matchoid problem was solved in polynomial time when the so-called similarity condition holds, that is,
the components of b and c are polynomial in the size of V . Our results in Section 2.1 also imply that the
problem can be solved in strongly polynomial time even if the similarity condition does not hold.

In fact, Section 2.1 solves the simultaneous assignment problem in strongly polynomial time when
H is such that the subgraphs in H restricted to the edges incident to v form a laminar system for each
node v ∈ V . This can be seen as a common generalization of the (weighted, capacitated) hierarchical
b-matching and the laminar matchoid problems, in which the laminar matchoid problem subject to the
degree-sum (or hierarchical) constraints is to be solved. This approach settles the weighted, capacitated
version of this common generalization even if both lower and upper bounds are given on the degrees in the
subgraphs in H and on the degree-sums in the members of L — generalizing the hierarchical b-matching
and the laminar matchoid problems with the presence of capacities and both lower and upper bounds.

We show in Section 2.2 that the simultaneous assignment problem can be solved for trees when L = ∅
and the so-called local-interval property holds — the latter corresponds to the special case of the first
motivation above when each customer is supposed to participate in an interval of the events.

Section 3 proves the NP-hardness of α-approximating the unweighted problem on bipartite graphs in
two special cases for small enough constant α: 1) the size of H is two and all connected components of
G are claws 2) each subgraph in H consists of two edges, the size of all members of L is at most two and
all connected components of G are claws. Furthermore, we also show that the approximation guarantee
of any polynomial-time approximation algorithm must grow asymptotically linearly in the size of H.

Then, Section 4 introduces the concept of (m, `)-covers and gives a general framework for deriving
approximation algorithms, which can be applied to any problem in which one has an efficiently solvable
special case with which every instance of the problem can be covered “equitably”. The rest of Section 4
applies this approach to the simultaneous assignment problem. First, Section 4.2 gives an approximation
algorithm when the size of H is small, and gives a bound on the integrality gap of a strengthened

309

LP-relaxation. In Section 4.1, we give an improved algorithm for the uniform case, that is, when the
coordinates of all the degree bounds bH are the same.

Notation Throughout this paper, G = (V,E) is an undirected loop-free graph. Let NG(v) denote the
set of the neighbors of v. For a subset X of the nodes, ∆G(X) denotes the union of the edges incident
to the nodes in X. We use degG(v) to denote the degree of node v in G. The maximum of the empty
set is −∞ by definition. Given a function f : A → B, both f(a) and fa denote the value f assigns to
a ∈ A, and let f(X) =

∑
a∈X f(a) for X ⊆ A. Let χZ denote the characteristic vector of set Z, that is,

χZ(y) = 1 if y ∈ Z, and 0 otherwise. Occasionally, the braces around sets consisting of a single element
are omitted, for example, ∆G({v}) = ∆G(v) for v ∈ V . The power set of a set X is denoted by 2X . Let
N and Z+ denote the sets of positive and non-negative integers, respectively.

2 Tractable Cases

2.1 Locally Laminar Subgraphs

A set system F is laminar if, for any two members X,X ′ ∈ F , either X ⊆ X ′, X ′ ⊆ X or X ∩X ′ = ∅
holds. A set H of the subgraphs of G is laminar if the edge sets of the subgraphs in H form a laminar
system. We say that H is locally laminar if, for each node v ∈ V , the subgraphs in H restricted to ∆G(v)
form a laminar system, that is, Fv = {∆H(v) : H ∈ H} is laminar for all v ∈ V . By definition, if H is
laminar, then it is locally laminar.

Throughout this section, assume that H is locally laminar. In what follows, a polynomial-time al-
gorithm is given to solve the weighted simultaneous assignment problem under this condition. The
description of the polyhedron of feasible simultaneous assignments will be derived as well. The following
definition and two theorems from [11, Page 594-598] will be useful.

Definition 1 An integer matrix M ∈ Zm×n is bidirected if
∑m
i=1 |Mij | = 2 for all j ∈ {1, . . . , n}.

For a matrix M ∈ Zm×n and vectors a, b ∈ Zm and c, d ∈ Zn, we consider the integer solutions of

{x ∈ Zn : d ≤ x ≤ c, a ≤Mx ≤ b}. (2)

Theorem 2 For a bidirected matrix M ∈ Zm×n and for arbitrary vectors a, b ∈ Zm and c, d ∈ Zn, the
convex hull of the integer solutions of (2) is described by the following system.

(LP2)

x ∈ Rn (3a)

d ≤ x ≤ c (3b)

a ≤Mx ≤ b (3c)

1

2
((χU − χW)M + χF − χH)x ≤

⌊
1

2
(b(U)− a(W) + c(F)− d(H))

⌋

for all disjoint U,W ⊆ {1, . . . ,m} and for all partition F,H

of δ(U ∪W) with b(U)− a(W) + c(F)− d(H) odd, (3d)

where δ(U ∪W) = {j ∈ {1, . . . , n} :
∑
i∈U∪W |Mij | = 1}.

Theorem 3 For a bidirected matrix M ∈ Zm×n, and arbitrary vectors a, b ∈ Zm, c, d ∈ Zn and w ∈ Qn,
an integer vector x maximizing wx over (2) can be found in strongly polynomial time.

It is not hard to show that Theorems 2 and 3 hold in the slightly more general case when M ∈ Zm×n is
such that

∑m
i=1 |Mij | ≤ 2 for all j ∈ [n]:

310

Corollary 4 Let M ∈ Zm×n be a matrix such that
∑m
i=1 |Mij | ≤ 2 for all j ∈ {1, . . . , n}, and let

a, b ∈ Zm, c, d ∈ Zn. Then, the convex hull of the integer solutions of (2) is described by (LP2).

Corollary 5 Let M ∈ Zm×n be a matrix such that
∑m
i=1 |Mij | ≤ 2 for all j ∈ {1, . . . , n}, and let

d, c ∈ Zn, a, b ∈ Zm, w ∈ Qn. Then, an integer vector x maximizing wx over (2) can be found in strongly
polynomial time.

In what follows, we show that the locally laminar simultaneous assignment problem can be formulated
in such a way that it fits the framework given by (2), where M is such that

∑m
i=1 |Mij | ≤ 2 for all j —

and hence one can apply Corollaries 4 and 5. First, consider the following notation. For a laminar system
F , let C(F) denote the inclusion-wise maximal sets in F . The maximal sets in F inside a member X in F
will be denoted by C(F , X). For a degree-sum-constrained simultaneous assignment x, let yvF =

∑
e∈F xe

for v ∈ V and F ∈ Fv. Furthermore, let zL =
∑
v∈L

∑
e∈∆G(v) xe for L ∈ L. That is, yvF is the x-degree

of node v restricted to F and zL is the sum of the x-degrees of the nodes in L — which appear as the
left-hand side of (1c) and (1d), respectively. By definition,

yvF =
∑

e∈F\⋃ C(Fv,F)

xe +
∑

F ′∈C(Fv,F)

yvF ′ (4)

holds for all v ∈ V and F ∈ Fv. Without loss of generality, assume that {v} ∈ L for all v ∈ V (if this is
not the case for some v ∈ V , then one can add {v} to L and set g({v}) =∞). Then,

z{v} =
∑

e∈∆G(v)\⋃ C(Fv)

xe +
∑

F∈C(Fv)

yvF (5)

holds for all v ∈ V as well. Similarly to (4),

zL =
∑

v∈L\⋃ C(L,L)

z{v} +
∑

L′∈C(L,L)

zL′ (6)

holds for all L ∈ L. Considering x, y and z as variables, and combining (LP1) with equations (4), (5) and
(6), one obtains the following linear program.

max
∑

st∈E
wstxst (LP3)

s.t.

x ∈ RE+ (7a)

yv ∈ RFv
+ ∀v ∈ V (7b)

z ∈ RL+ (7c)

x ≤ c (7d)

yv∆H(v) ≤ bH(v) ∀H ∈ H, v ∈ VH (7e)

z ≤ g (7f)
∑

e∈F\⋃ C(Fv,F)

xe +
∑

F ′∈C(Fv,F)

yvF ′ − yvF = 0 ∀v ∈ V, ∀F ∈ Fv (7g)

∑

e∈∆G(v)\⋃ C(Fv)

xe +
∑

F∈C(Fv)

yvF − z{v} = 0 ∀v ∈ V (7h)

∑

v∈L\⋃ C(L)

z{v} +
∑

L′∈C(L)

zL′ − zL = 0 ∀L ∈ L \ {{v} : v ∈ V } (7i)

By the construction, the solutions to (LP3) restricted to x are exactly the feasible simultaneous
assignments. Note that each variable appears at most twice in constraints (7g), (7h) and (7i) with
coefficient 1 or−1, hence the matrixM given by these three sets of constraints is such that

∑m
i=1 |Mij | ≤ 2.

Therefore, Corollary 5 immediately implies the following.

311

Theorem 6 If H is locally laminar, then the simultaneous assignment problem can be solved in strongly
polynomial time.

As it has been already mentioned in Section 1, the hierarchical b-matching problem [3] is exactly the
simultaneous assignment problem with H = ∅. Since in this case H is locally laminar, Theorem 6 can be
applied.

Corollary 7 The weighted, capacitated hierarchical b-matching problem can be solved in strongly poly-
nomial time.

In the case when L = ∅ and H is laminar, we get back the laminar matchoid problem, hence we obtain
the following.

Corollary 8 The weighted laminar matchoid problem can be solved in strongly polynomial time.

In fact, Theorem 6 applies even if we pose both lower and upper bounds in constraints (7d), (7e)
and (7f). This immediately implies the following:

Theorem 9 The locally laminar case can be also solved when both lower and upper bounds are given
in (1b), (1c) and (1d), that is, on the capacities of the edges, on the degrees in each subgraph H ∈ H and
on the degree-sum in each L ∈ L.

Corollary 10 The weighted, capacitated hierarchical b-matching problem can be solved in strongly poly-
nomial time even when both lower and upper bounds are given on the capacities of the edges and on the
degree sums in each member of the laminar family.

Note that Theorem 2 gives a description of the convex hull of the integer points of (LP3). Substituting
variables y and z, this in turn implies a description of the convex hull of the integer points of (LP1) when
H is locally laminar. These constraints will be referred to as projected blossom inequalities.

Theorem 11 If H is locally laminar, then (LP1) extended with the projected blossom inequalities de-
scribes the convex hull of simultaneous assignments.

The projected blossom inequalities can be used to strengthen (LP1) if H is not locally laminar.
Namely, one can add the projected blossom inequalities to (LP1) for all F ⊆ E for which H becomes
locally laminar when restricted to F :

max
∑

st∈E
wstxst (LP1∗)

s.t.

(1a) (1b) (1c) (1d)

B(F) ∀F ⊆ E : H|F is locally laminar, (8a)

where B(F) denotes the set of projected blossom inequalities when the problem is restricted to F ⊆ E.
By Theorem 11, the polyhedron defined by (LP1∗) becomes integer when the problem is restricted to a
locally laminar edge set. The integrality gap of this strengthened linear program will be investigated in
Section 4.

2.2 When the Graph is a Tree

In Section 3, we will see that the simultaneous assignment problem is hard even if G consists of node-
disjoint claws and the size of H is two. However, assuming that G is a tree and L = ∅, the problem
becomes solvable provided that a natural assumption on H holds. Motivated by the first application
described in the introduction, consider the following definition.

312

Definition 12 We say that H = {H1, . . . ,Hk} has the local-interval property if, for each node v ∈ V ,
there exists a permutation Hi1 , . . . ,Hik under which each edge in ∆v is included in a (possibly empty)
interval Hip , . . . ,Hiq .

Note that the local-interval property holds in the first motivation mentioned in the introduction when
each customer selects an interval of the events. Under these assumptions, one can prove that the matrix
of (LP1) is a network matrix [4, Page 151], hence the problem is solvable in polynomial time:

Theorem 13 Let G = (V,E) be a tree, let L = ∅ and assume that H has the local-interval property.
Then, the simultaneous assignment polyhedron is described by (LP1) and hence the problem can be solved
in strongly polynomial time.

Observe that H has the local-interval property if its size is two, therefore, one obtains the following
corollary of Theorem 13.

Corollary 14 Let G be a tree, let L = ∅ and assume that the size of H is two. Then, the simultaneous
assignment polyhedron is described by (LP1) and hence the problem can be solved in strongly polynomial
time.

3 Hardness Results

As we have already seen in the introduction, it is NP-complete to decide whether a simultaneous assign-
ment satisfying constraints (1c) with equality exists. In this section, we give further hardness results, the
proofs of which can be found in [9]

Theorem 15 The unweighted simultaneous assignment problem is NP-hard to approximate within any
factor smaller than 570

569 even if |H| = 2, the connected components of G are claws and the size of every
member in L is two.

One can also show that the problem is hard to approximate when the size of each subgraph in H is
assumed to be two.

Corollary 16 The unweighted simultaneous assignment problem is NP-hard to approximate within any
factor smaller than 570

569 even if all subgraphs in H consist of at most two edges, the size of all members
of L is two and the connected components of G are claws.

Similar results hold in the weighted case even if L = ∅.

Theorem 17 The weighted simultaneous assignment problem is NP-hard to approximate within any
factor smaller than 760

759 , even if |H| = 2, L = ∅, each occurring weight is either 1 or 2 and G is bipartite
with maximum degree at most four.

It is quite natural to ask whether there exists an α-approximation algorithm for some constant α
independent of the size of H. The next theorem shows that no such algorithm is possible, in fact, the
approximation factor must grow asymptotically (essentially) linearly with the size of H unless P=NP.

Theorem 18 The simultaneous assignment problem is Ω(|H|1−ε)-inapproximable for all ε > 0 unless
P=NP. The result holds even if L = ∅.

313

4 Approximation Algorithms

Throughout this section, let k = |H|, H = {H1, . . . ,Hk} and Hi = (Vi, Ei) for i ∈ {1, . . . , k}. Without
loss of generality, assume that H 6= ∅. First, a general framework is given for deriving approximation
algorithms, which will be utilized in the rest of the section in multiple settings. The following definition
plays a central role:

Definition 19 Given an instance of the simultaneous assignment problem, we call m not necessarily
distinct subsets F1, . . . , Fm of the edges an (m, `)-cover if every edge of G is contained in at least ` of
F1, . . . , Fm.

Theorem 20 Given a linear program whose integer solutions are exactly the feasible simultaneous as-
signments, let F1, . . . , Fm be an (m, `)-cover of G = (V,E) such that the polytope defined by the linear
program becomes integer when restricted to Fi for all i ∈ {1, . . . ,m}. Then, the integrality gap of the
linear program is at most m

` .

Proof: Let x be an optimal solution to the linear program and let z be an optimal integer solution.
Furthermore, let xi and zi denote an optimal fractional and integer solution to the problem restricted to
Fi for i ∈ {1, . . . ,m}. Note that these solutions are also feasible solutions to the original problem. The
following computation shows that the integrality gap is at most m

` .

`wx ≤
m∑

i=1

∑

e∈Fi

w(e)x(e) ≤
m∑

i=1

∑

e∈Fi

w(e)xi(e) ≤ m
∑

e∈Fi∗

w(e)xi∗(e) = m
∑

e∈Fi∗

w(e)zi∗(e) ≤ mwz, (9)

where i∗ = arg maxi∈{1,...,m}{
∑
e∈Fi

w(e)xi(e)}. The first inequality holds because every edge of G is
contained in at least ` of F1, . . . , Fm, the second one follows by the optimality of xi for Fi, the third one
by the selection of i∗, whereas the equation holds because the polyhedron defined by the linear program
is integer when the problem is restricted to Fi∗ . By (9), one gets that wx

wz ≤ m
` , which completes the

proof. �
Theorem 20 gives a general framework for deriving bounds on the integrality gap. Note that the proof

of Theorem 20 can be turned into an approximation algorithm if an (m, `)-cover F1, . . . , Fm is given and
the linear program can be solved efficiently when the problem is restricted to Fi for all i ∈ {1, . . . ,m}
and m is polynomial in the size of the problem. In fact, one can avoid linear programming altogether and
obtain an efficient m

` -approximation algorithm provided that the problems restricted to Fi are tractable
and the heaviest among them can be found in polynomial time.

Theorem 21 Let F1, . . . , Fm be an (m, `)-cover. Then, the heaviest among the optimal simultaneous
assignments in the problems restricted to Fi is an m

` -approximate solution for the original problem.

Proof: Let Mi denote an optimal solution to the problem restricted to Fi and let M∗ be an optimal
simultaneous assignment in G. Then,

`w(M∗) ≤
m∑

i=1

∑

e∈Fi∩M∗
w(e) ≤

m∑

i=1

∑

e∈Mi

w(e) ≤ m
∑

e∈Mi∗

w(e) = mw(Mi∗) (10)

holds, where i∗ = arg max{w(Mi) : i ∈ {1, . . . ,m}}. This means that w(M∗)
w(Mi∗) ≤ m

` , that is, Mi∗ is indeed
m
` -approximate. Finally, observe that Mi∗ is a feasible solution to the original problem. �

Theorem 21 gives a framework for deriving approximation algorithms for the simultaneous assignment
problem. Namely, we need to find an (m, `)-cover F1, . . . , Fm — trying to minimize the ratio m

` — such
that one can find the best among the optimal solutions to the problems restricted to Fi for i ∈ {1, . . . ,m},
which is an m

` -approximate solution by Theorem 21. In fact, this framework easily extends to problems
other than the simultaneous assignment problem — the main requirement is that any subset of a feasible
solution should be feasible.

314

4.1 Approximation Algorithm for Uniform b

This section investigates the case of uniform b, that is, when there exists a ∈ Z+ such that bH ≡ a for
all H ∈ H. The following approach is an application of the approximation framework given above.

Theorem 22 If b is uniform, then the integrality gap of (LP1∗) is at most k+1
2 , and a k+1

2 -approximate
solution can be found in strongly polynomial time.

Proof: Let xi denote an optimal solution to the problem restricted to those edges which are in either
Hi ∈ H or non of the subgraphs in H, and let z denote an optimal solution to the problem restricted to
those edges of G which are included in at most one of the subgraphs in H. First, we show that (LP1∗)
defines an integer polyhedron for the problem restricted to Hi and also that xi can be found in strongly
polynomial time. In the problem restricted to Hi, all degree constraints posed in other subgraphs in H are
redundant, hence we can delete all subgraphs other than Hi. The size of H being one, we conclude that
xi can be found in strongly polynomial time and (LP1∗) defines an integer polyhedron for the restricted
problem by Theorems 6 and 11. Second, if one restricts the problem to the edges contained in at most
one of the subgraphs in H, then the problem is again laminar. Therefore, z can be found in strongly
polynomial time and the polytope defined by (LP1∗) is integer when the problem is restricted to these
edges.

Furthermore, observe that z, x1, . . . , xk is a (k + 1, 2)-cover of E. By Theorem 20, this implies that
the integrality gap of (LP1∗) is at most k+1

2 and, by Theorem 21, the heaviest among z, x1, . . . , xk is a
k+1

2 -approximate solution, which completes the proof of the theorem. �
As a special case, this gives a 3

2 -approximation algorithm for the weighted double matching problem.

4.2 Approximation Algorithm for Small k

This section applies the approximation framework for the simultaneous assignment problem in the case
when the size of H is small. Throughout this section, let k = |H| and let k′ ∈ {1, . . . , k} be the smallest
integer for which every edge appears in at most k′ of the subgraphs in H. Consider the following type of
(m, `)-covers.

Definition 23 An (m, `)-cover F1, . . . , Fm is laminar if the problem restricted to Fi is laminar for each
i ∈ {1, . . . ,m}.

In the light of Theorems 20 and 21, we want to construct a laminar (m, `)-cover minimizing the value
m
` . Let α(k, k′) denote the minimum value of m

` for which a laminar (m′, `′)-cover always exists such

that m′

`′ ≤ m
` whenever k = |H| and every edge appears in at most k′ subgraphs in H. In other words,

α(k, k′) is the best approximation ratio one can hope for by applying Theorem 21 to a laminar cover.
The following min-max theorem gives an easy-to-compute formula for α(k, k′).

Theorem 24 Let k and k′ be as above. The minimum value of m` for which there always exists a laminar

(m′, `′)-cover such that m′

`′ ≤ m
` , that is, α(k, k′), equals

max
j∈{0,...,k′−1}

1

k − j
k′∑

i=j+1

(
k

i

)
. (11)

Furthermore, an α(k, k′)-approximate solution can be found in O(f(k) poly(|V |, |E|)) steps.

One possible approach to prove this is by a non-trivial reduction to the Duality theorem. For details, the
reader is referred to [9].

Table 1 summarizes the value of α(k, k′) given by Theorem 24 for small values of k and k′. By
Theorems 21 and 24 we get the following.

315

k
k′

1 2 3 4 5

1 1
2 1 3/2
3 1 2 7/3
4 1 5/2 7/2 15/4
5 1 3 5 25/4 13/2

Table 1: The approximation guarantees given by Theorem 24, where k = |H| and every edge is in at
most k′ subgraphs in H. The highlighted values match the integrality gap of (LP1∗).

Theorem 25 One can find an α(k, k′)-approximate solution to the simultaneous assignment problem in
O(f(k) poly(|V |, |E|)) time, where k = |H| and every edge appears in at most k′ of the subgraphs in H.

For small k, this approximation guarantee is significantly better than that of the greedy algorithm, which
is (2k + 1).

By Theorem 11, (LP1∗) defines an integer polyhedron when the problem is restricted to a locally
laminar edge set, hence applying Theorems 20 and 24, one gets the following.

Theorem 26 The integrality gap of (LP1∗) is at most α(k, k′), where k = |H| and every edge appears
in at most k′ of the subgraphs in H.

References

[1] R. P. Anstee. A polynomial algorithm for b-matchings: an alternative approach. Information
Processing Letters, 24(3):153–157, 1987.

[2] K. Bérczi, A. Berger, M. Mnich, and R. Vincze. Degree-bounded generalized polymatroids and
approximating the metric many-visits TSP. arXiv preprint arXiv:1911.09890, 2019.

[3] Y. Emek, S. Kutten, M. Shalom, and S. Zaks. Hierarchical b-matching. In SOFSEM 2021: Theory
and Practice of Computer Science: 47th International Conference on Current Trends in Theory
and Practice of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, January 25–29, 2021,
Proceedings 47, pages 189–202. Springer, 2021.

[4] A. Frank. Connections in Combinatorial Optimization. Oxford University Press, 2011.

[5] C. C. Huang and J. Ward. FPT-algorithms for the `-matchoid problem with a coverage objective.
arXiv preprint arXiv:2011.06268, 2020.

[6] T. A. Jenkyns. Matchoids: A generalization of matchings and matroids. PhD thesis, University of
Waterloo, Waterloo, Ontario, 1974.

[7] K. Kaparis. On laminar matroids and b-matchings. submitted for publication, 2014.

[8] P. Madarasi. Matchings under distance constraints I. Annals of Operations Research, 305(1):137–161,
2021.

[9] P. Madarasi. The simultaneous assignment problem. arXiv preprint arXiv:2105.09439, 2021.

[10] J. Mestre. Greedy in approximation algorithms. In Yossi Azar and Thomas Erlebach, editors,
Algorithms – ESA 2006, pages 528–539, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[11] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume B. Springer, 2003.

316

Finding a PROPavg Allocation in Polynomial Time

Yusuke Kobayashi

Research Institute for Mathematical Sciences
Kyoto University, Japan

yusuke@kurims.kyoto-u.ac.jp

Ryoga Mahara

Research Institute for Mathematical Sciences
Kyoto University, Japan

ryoga@kurims.kyoto-u.ac.jp

Abstract: We study the problem of fairly allocating a set of indivisible goods to multiple
agents and focus on the proportionality, which is one of the classical fairness notions. Since
proportional allocations do not always exist when goods are indivisible, approximate concepts
of proportionality have been considered in the previous work. Among them, proportionality
up to the minimum valued good on average (PROPavg) has been the best approximate notion
of proportionality that can be achieved for all instances. In this paper, we show that a
PROPavg allocation can be computed in polynomial time. Our results establish PROPavg as
a notable non-trivial fairness notion that can be achieved for all instances in polynomial time.
Our algorithm is based on a generalized cut-and-choose protocol and a recursive technique.

Keywords: discrete fair division, indivisible goods, proportionality

1 Introduction

1.1 Proportional Allocation of Indivisible Goods

We study the problem of fairly allocating a set of indivisible goods to multiple agents under additive
valuations. Fair division of indivisible goods is a fundamental and well-studied problem in Economics
and Computer Science. We are given a set M of m indivisible goods and a set N of n agents with
individual valuations. Under additive valuations, each agent i ∈ N has value vi({g}) ≥ 0 for each
good g and her value for a bundle S of goods is equal to the sum of the value of each good g ∈ S, i.e.,
vi(S) =

∑
g∈S vi({g}). An indivisible good can not be split among multiple agents and this causes finding

a fair division to be a difficult task.
One of the standard notions of fairness is proportionality. Let X = (X1, X2, . . . , Xn) be an allocation,

i.e., a partition of M into n bundles such that Xi is allocated to agent i. An allocation X is said to
be proportional (PROP) if vi(Xi) ≥ 1

nvi(M) holds for each agent i. In other words, in a proportional
allocation, every agent receives a set of goods whose value is at least 1/n fraction of the value of the
entire set. Unfortunately, proportional allocations do not always exist when goods are indivisible. For
instance, when allocating a single indivisible good to more than one agents it is impossible to achieve
any proportional allocation. Thus, several relaxations of proportionality such as PROP1, PROPx, and
PROPm have been considered in the previous work.

Each of these notions requires that each agent i ∈ N receives value at least 1
nvi(M) − di(X),

where di(X) is appropriately defined for each notion. Proportionality up to the largest valued good
(PROP1) is a relaxation of proportionality that was introduced by Conitzer et al. [17]. PROP1 re-
quires di(X) to be the largest value that agent i has for any good allocated to other agents, i.e.,
di(X) = maxk∈N\{i} maxg∈Xk

vi({g}). It is shown in [17] that there always exists a Pareto optimal1

allocation that satisfies PROP1. Moreover, Aziz et al. [4] presented a polynomial-time algorithm that
finds a PROP1 and Pareto optimal allocation even in the presence of chores, i.e., some items can have
negative value.

1An allocation X = (X1, . . . , Xn) is Pareto optimal if there is no allocation Y = (Y1, . . . , Yn) such that vi(Yi) ≥ vi(Xi)
for any agent i, and there exists an agent j such that vj(Yj) > vj(Xj).

317

Another relaxation is proportionality up to the least valued good (PROPx), which is much stronger
than PROP1. PROPx requires di(X) to be the least value that agent i has for any good allocated to other
agents, i.e., di(X) = mink∈N\{i} ming∈Xk

vi({g}). Moulin [26] gave an example for which no PROPx
allocation exists, and Aziz et al. [4] gave a simpler example.

Recently, Baklanov et al. [5] introduced proportionality up to the maximin good (PROPm). PROPm
requires di(X) = maxk∈N\{i} ming∈Xk

vi({g}), which shows that PROPm is the notion between PROP1
and PROPx. It is shown in [5] that a PROPm allocation always exists for instances with at most five
agents, and later Baklanov et al. [6] showed that there always exists a PROPm allocation for any instance
and it can be computed in polynomial time.

However, in some cases, PROPm is not a good enough relaxation of proportionality. Suppose that
there exists a good g ∈ M for which every agent has value at least 1/n fraction of the value of M .
Then allocating g to some agent i and allocating all the goods in M \ {g} to another agent achieves
a PROPm allocation, whereas it will be better to allocate M \ {g} to N \ {i} in a fair manner. This
motivates the study of better relaxations of proportionality than PROPm. Very recently, Kobayashi
and Mahara [21] introduced proportionality up to the least valued good on average (PROPavg), a new
relaxation of proportionality, and showed that a PROPavg allocation always exists for all instances.

1.2 Our Contribution

In this paper, we show that a PROPavg allocation can be computed in polynomial time. PROPavg requires
di(X) to be the average of minimum value that agent i has for any good allocated to other agents, i.e.,
di(X) = 1

n−1

∑
k∈N\{i} ming∈Xk

vi({g}). It is easy to see that PROPavg implies PROPm. Note that a

similar and slightly stronger notion than PROPavg was introduced by Baklanov et al. [5] with the name
of Average-EFX (Avg-EFX), where di(X) = 1

n

∑
k∈N\{i} ming∈Xk

vi({g}). It remains open whether an
Avg-EFX allocation always exists. The main contribution of this paper is to show the following theorem
which extends the results on PROPm allocations shown by Baklanov et al. [6].

Theorem 1 A PROPavg allocation can be computed in polynomial time when each agent has a non-
negative additive valuation.

1.3 Related Work

Fair division of divisible resources is a classical topic starting from the 1940’s [29] and has a long history in
multiple fields such as Economics, Social Choice Theory, and Computer Science [9,10,25,28]. In contrast,
fair division of indivisible items has been actively studied in recent years (see, e.g., [2, 3]).

In the context of fair division, besides proportionality, envy-freeness is another well-studied notion of
fairness. An allocation is called envy-free (EF) if each agent receives a set of goods that she values at least
as much as any other agent’s goods. As in the proportionality case, envy-free allocations do not always
exist when goods are indivisible, and several relaxations of envy-freeness have been considered. Among
them, a notable one is envy-freeness up to one good (EF1) [11]. It is known that an EF1 allocation always
exists, and it can be computed in polynomial time [22]. Another notable relaxation is envy-freeness up
to any good (EFX) [13]. An allocation X = (X1, . . . , Xn) is called EFX if for any pair of agents i, j ∈ N ,
vi(Xi) ≥ vi(Xj)−mi(Xj), where mi(Xj) is the value of the least valued good for agent i in Xj . Whether
EFX allocations always exist or not is one of the major open problems in fair division.

There have been several studies on the existence of an EFX allocation for restricted cases. Plaut and
Roughgarden [27] showed that an EFX allocation always exists for instances with two agents even when
each agent can have more general valuations than additive valuations. Chaudhury et al. [14] showed that
an EFX allocation always exists for instances with three agents. It is not known whether EFX allocations
always exist even for instances with four agents having additive valuations. As mentioned in [5], it is easy
to see that EFX implies Avg-EFX. As with EFX, whether Avg-EFX allocations always exist is not known
even for instances with four or more agents. We can also consider the cases with restricted valuations.
For example, there always exists an EFX allocation when valuations are identical [27], two types [23,24],
binary [7, 18], or bi-valued [1].

318

Another direction of research related to EFX is EFX-with-charity, in which unallocated goods are
allowed. Obviously, without any constraints, the problem is trivial: leaving all goods unallocated results
in an envy-free allocation. Thus, the goal here is to find allocations with better guarantees. For additive
valuations, Caragiannis et al. [12] showed that there exists an EFX allocation with some unallocated
goods where every agent receives at least half the value of her bundle in a maximum Nash social welfare
allocation2. For normalized and monotone valuations, Chaudhury et al. [16] showed that there exist an
EFX allocation and a set of unallocated goods U such that every agent has value for her own bundle at
least her value for U , and |U | < n. Berger et al. [8] showed that the number of the unallocated goods
can be decreased to n− 2, and to just one for the case of four agents having nice cancelable valuations,
which are more general than additive valuations. Mahara [24] showed that the number of the unallocated
goods can be decreased to n − 2 for normalized and monotone valuations, which are more general than
nice cancelable valuations. For additive valuations, Chaudhury et al. [15] presented a polynomial-time
algorithm for finding an approximate EFX allocation with at most a sublinear number of unallocated
goods and high Nash social welfare.

2 Preliminaries

Let N = {1, . . . , n} be a set of n agents and M be a set of m goods. We assume that goods are
indivisible: a good can not be split among multiple agents. Each agent i ∈ N has a non-negative
valuation vi : 2M → R≥0, where 2M is the power set of M . We assume that each valuation vi is
normalized: vi(∅) = 0, monotone: S ⊆ T implies vi(S) ≤ vi(T) for any S, T ⊆ M , and additive:
vi(S) =

∑
g∈S vi({g}) for any S ⊆ M . For ease of explanation, we normalize the valuations so that

vi(M) = 1 for all i ∈ N .
To simplify notation, we denote {1, . . . , k} by [k] for any positive integer k, write vi(g) instead of

vi({g}) for g ∈M , and use S \ g and S ∪ g instead of S \ {g} and S ∪ {g}, respectively.
We say that X = (X1, X2, . . . , Xn) is an allocation of M to N if it is a partition of M into n disjoint

subsets such that each set is indexed by i ∈ N . Each Xi is the set of goods given to agent i, which we
call a bundle. It is simply called an allocation to N if M is clear from context. For i ∈ N and S ⊆ M ,
let mi(S) denote the value of the least valuable good for agent i in S, that is, mi(S) = ming∈S{vi(g)}
if S ̸= ∅ and mi(∅) = 0. For an allocation X = (X1, X2, . . . , Xn) to N , we say that an agent i is
PROPavg-satisfied by X if

vi(Xi) +
1

n− 1

∑

k∈[n]\i
mi(Xk) ≥ 1

n
,

where we recall that vi(M) = 1. In other words, agent i receives a set of goods for which she has value
at least 1/n fraction of her total value minus the average of minimum value of the set of goods any other
agent receives. An allocation X is called PROPavg if every agent i ∈ N is PROPavg-satisfied by X.

Let G = (V,E) be an undirected graph. For v ∈ V , let G − v denote the graph obtained from G by
deleting v. A perfect matching in G is a set of pairwise disjoint edges of G covering all the vertices of G.

3 PROPavg-Graph

In order to prove Theorem 1, we give an algorithm for finding a PROPavg allocation by improving
the previous one in [21]. Let us briefly explain the previous algorithm in [21]. This algorithm is a
generalization of the cut-and-choose protocol that consists of the following three steps.

1. We partition the goods into n bundles without assigning them to agents.

2. A specified agent, say n, chooses the best bundle for her valuation.

3. We determine an assignment of the remaining bundles to the agents in N \ n.

2This is an allocation that maximizes Πn
i=1vi(Xi).

319

The partition given in the first step is represented by an allocation of M to a newly introduced set of
size n, say V2, and the assignment in the third step is represented by a matching in an auxiliary bipartite
graph, which we call PROPavg-graph. In this section, we define the PROPavg-graph and its desired
properties.

Let V2 be a set of n elements and fix a specified element r ∈ V2. We say that X = (Xu)u∈V2
is an

allocation to V2 if it is a partition of M into n disjoint subsets such that each set is indexed by an element
in V2, that is,

⋃
u∈V2

Xu = M and Xu ∩Xu′ = ∅ for distinct u, u′ ∈ V2. For an allocation X = (Xu)u∈V2

to V2, we define a bipartite graph GX = (V1, V2;E) called PROPavg-graph as follows. The vertex set
consists of V1 = N \ n and V2, and the edge set E is defined by

(i, u) ∈ E ⇐⇒ vi(Xu) +
1

n− 1

∑

u′∈V2\{r,u}
mi(Xu′) ≥ 1

n

for i ∈ V1 and u ∈ V2. It should be emphasized that the summation is taken over V2 \ {r, u}, i.e., mi(Xr)
is not counted, in the above definition. The following lemma shows that the PROPavg-graph is closely
related to the definition of PROPavg-satisfaction.

Lemma 2 (Kobayashi and Mahara [21]) Suppose that GX = (V1, V2;E) is the PROPavg-graph for
an allocation X = (Xu)u∈V2 to V2. Let σ be a bijection from N to V2 and define an allocation Y =
(Y1, . . . , Yn) to N by Yi = Xσ(i) for i ∈ N . For i∗ ∈ V1, if (i∗, σ(i∗)) ∈ E, then i∗ is PROPavg-satisfied
by Y .

As we will see in Section 4, throughout the algorithm in [21], we always keep an allocation X =
(Xu)u∈V2

to V2 that satisfies the following property.

(P1) GX − r has a perfect matching.

By updating allocation X repeatedly while keeping (P1), we construct an allocation that satisfies the
following stronger property.

(P2) For any u ∈ V2, GX − u has a perfect matching.

4 Existence of a PROPavg Allocation

In this section, we briefly show the pseudo-polynomial algorithm in [21] to find a PROPavg allocation.
The algorithm begins with obtaining an initial allocation X = (Xu)u∈V2

to V2 satisfying (P1). Unless
X satisfies (P2), we appropriately choose a good in

⋃
u∈V2\rXu and move it to Xr while keeping (P1).

Finally, we get an allocation X∗ = (X∗
u)u∈V2

to V2 satisfying (P2). As we will see in Lemma 4, we can
obtain a PROPavg allocation to N by using this allocation.

Lemma 3 (Kobayashi and Mahara [21]) There exists an allocation X = (Xu)u∈V2 to V2 satisfying
(P1).

The following lemma shows that if we obtain an allocation X = (Xu)u∈V2
to V2 satisfying (P2), then we

can find a PROPavg allocation to N in polynomial time.

Lemma 4 Suppose that X = (Xu)u∈V2
is an allocation to V2 satisfying (P2). Then, we can construct a

PROPavg allocation to N in polynomial time.

Proof: Let X = (Xu)u∈V2 be an allocation to V2 satisfying (P2). First, agent n chooses the best bundle
Xu∗ for her valuation among {Xu | u ∈ V2} (if there is more than one such bundle, choose one arbitrarily).
Since X satisfies (P2), there exists a perfect matching A in GX −u∗. For each agent i ∈ V1(= N \n), the
bundle corresponding to the vertex that matches i in A is allocated to i. By Lemma 2, i is PROPavg-
satisfied for each agent i ∈ V1. Furthermore, since we have vn(Xu∗) = maxu∈V2

vn(Xu) ≥ 1
n , agent n is

320

also PROPavg-satisfied. Therefore, the obtained allocation is a PROPavg allocation. Furthermore, such
an allocation can be found in polynomial-time by a maximum matching algorithm. □

The following proposition shows how to update an allocation in each iteration.

Proposition 5 (Kobayashi and Mahara [21]) Suppose that X = (Xu)u∈V2 is an allocation to V2
that satisfies (P1) but does not satisfy (P2). Then, there exists another allocation X ′ = (X ′

u)u∈V2 to V2
satisfying (P1) such that |X ′

r| = |Xr|+ 1.

We note that the allocation X ′ in Proposition 5 is obtained by moving an appropriate item g ∈⋃
u∈V2\rXu to Xr.

In summary, the algorithm in [21] find a PROPavg allocation as follows. See Algorithm 1 for the
algorithm description. By Lemma 3, we first obtain an initial allocation X = (Xu)u∈V2 to V2 satisfying
(P1). By Proposition 5, unless X satisfies (P2), we can increase |Xr| by one while keeping the property
(P1). Since |Xr| ≤ |M |, this procedure terminates in at most m steps, and we finally obtain an allocation
X∗ to V2 satisfying (P2). Therefore, there exists a PROPavg allocation to N by Lemma 4.

Algorithm 1 Algorithm for finding a PROPavg allocation

Input: agents N , goods M , and a valuation vi for each i ∈ N
Output: a PROPavg allocation to N
1: Apply Lemma 3 to obtain an allocation X to V2 satisfying (P1).
2: while X does not satisfy (P2) do
3: Apply Proposition 5 to X and obtain another allocation X ′ to V2.
4: X ← X ′.
5: Apply Lemma 4 to obtain a PROPavg allocation to N .

Algorithm 1 runs in pseudo-polynomial time. This is because we use the algorithm in [16] as a
subroutine in order to obtain an initial allocation X to V2 satisfying (P1). Actually, the algorithm
in [16] only leads to a pseudo-polynomial time algorithm when each valuations are additive. We give a
polynomial-time algorithm to find a PROPavg allocation by improving Algorithm 1 in Section 5.

5 Finding a PROPavg Allocation in Polynomial Time

In this section, we show how to find a PROPavg allocation in polynomial time. As mentioned in Section 4,
Algorithm 1 runs in pseudo-polynomial time. This is because we can not guarantee the polynomial
solvability in line 1 of Algorithm 1. We can see that the other parts of Algorithm 1 run in polynomial
time as follows. In line 2, we can check (P2) in polynomial time by applying a maximum matching
algorithm for each GX − u. In line 3, it suffices to find a good g ∈ ⋃u∈V2\rXu such that (P1) is kept

after moving g. Since (P1) can be checked in polynomial time, this can be done in polynomial time by
considering all g in a brute-force way. Finally, line 5 is executed in polynomial time by Lemma 4. Note
that we can speed up lines 2 and 3 by using the DM-decomposition of GX [19,20], but we do not go into
details, because we only focus on the polynomial solvability.

Let us now consider how to find an initial allocation X to V2 satisfying (P1) in polynomial time. Our
idea is to use a recursive algorithm. That is, we use a PROPavg allocation of M to n − 1 agents as an
initial allocation X to V2 satisfying (P1). Indeed, if it holds that vi(g) ≤ 1

n for any agent i ∈ N and any
good g ∈M , then we can show that a PROPavg allocation of M to n− 1 agents satisfies (P1) as follows.

Lemma 6 Suppose that for any agent i ∈ N and any good g ∈M , we have vi(g) ≤ 1
n . Let (X1, . . . , Xn−1)

be a PROPavg allocation for N \n. Then, X = (X1, . . . , Xn−1, Xn) is an allocation to V2 = [n] satisfying
(P1), where Xn = ∅ and the specific element r ∈ V2 is equal to n.

321

Proof: Let GX = (V1, V2;E) be the PROPavg-graph corresponding to X. It is enough to show that
(i,Xi) ∈ E for any i ∈ [n− 1]. Fix any i ∈ [n− 1]. We obtain that

vi(Xi) ≥
1

n− 1
− 1

n− 2

∑

j∈[n−1]\i
mi(Xj)

=
1

n
− 1

n− 1

∑

j∈[n−1]\i
mi(Xj)

+
1

n− 1

 1

n
− 1

n− 2

∑

j∈[n−1]\i
mi(Xj)

︸ ︷︷ ︸
≥0

≥ 1

n
− 1

n− 1

∑

j∈[n−1]\i
mi(Xj),

where the first inequality follows from the assumption that (X1, . . . , Xn−1) is a PROPavg allocation and
the second inequality follows from the assumption that vi(g) ≤ 1

n for any i ∈ N and g ∈M . This implies
that (i,Xi) ∈ E and thus X is an allocation to V2 = [n] satisfying (P1). □

Unfortunately, the argument in Lemma 6 does not work without the assumption that vi(g) ≤ 1
n for

any i ∈ N and g ∈ M . To elude this difficulty, our algorithm applies preprocessing. This preprocessing
allocates g to i and remove i and g from our instance as long as there exists an agent i and a good g such
that vi(g) ≤ 1

n . See Algorithm 2 for the entire algorithm.
If this preprocessing removes at least one agent from our instance, then our algorithm recursively

computes a PROPavg allocation for the remaining agents and goods, and return the overall allocation
together with the removed agents. In order to verify that the returned allocation is a PROPavg allocation
for n agents, we need a refined inequality (see line 7 of Algorithm 2).

Otherwise, our algorithm recursively computes a PROPavg allocation for n−1 agents. Since vi(g) < 1
n

holds for any agent i and good g, we can use this allocation as an initial allocation to V2 satisfying (P1)
by Lemma 6. The rest of our algorithm finds an allocation to V2 satisfying (P2) and return a PROPavg
allocation as in Algorithm 1.

In the remaining part of this section, we prove the correctness of Algorithm 2 and the latter part of
Theorem 1. The following lemma shows that if the preprocessing removes at least one agent from our
instance, then algorithm returns a legal PROPavg allocation for N .

Lemma 7 In line 14 of Algorithm 2, X = (X1, . . . , X|N |) is a PROPavg allocaiton to N .

Proof: Fix any i ∈ N . We show that i is PROPavg-satisfied by X.

Case 1: i ∈ N2

In this case, agent i receives exactly one good in the while statement. By the while condition, we
have

vi(Xi) ≥
1

n
− 1

n− 1

∑

j∈N2

mi(Xj)

≥ 1

n
− 1

n− 1

∑

j∈N\i
mi(Xj).

Thus, i is PROPavg-satisfied by X.

322

Algorithm 2 Algorithm for finding a PROPavg allocation in polynomial time

1: procedure PROPavg(N , M , {vi}i∈N)
2: if |N | = 1 then
3: return X = (M)
4: else
5: N1 ← N,N2 ← ∅
6: M1 ←M,M2 ← ∅
7: while ∃i ∈ N1 and ∃g ∈M1 s.t. vi(g) ≥ vi(M)

|N | − 1
|N |−1

∑
j∈N2

mi(Xj) do

8: Xi ← {g}
9: N1 ← N1 \ i,N2 ← N2 ∪ i

10: M1 ←M1 \ g,M2 ←M2 ∪ g
11: Let N1 = {1, . . . , l} and N2 = {l + 1, . . . , |N |}, renumbering if necessary.
12: if |N2| ≥ 1 then
13: (X1, . . . , Xl)← PROPavg(N1, M1, {vi}i∈N1

)
14: return X = (X1, . . . , X|N |)
15: else
16: (X1, . . . , Xn−1)← PROPavg(N \ n, M , {vi}i∈N\n) ▷ N1 = N,M1 = M
17: Apply Lemma 6 to obtain an allocation X = (X1, . . . , Xn) satisfying (P1).
18: while X does not satisfy (P2) do
19: Apply Proposition 5 to X and obtain another allocation X ′ to V2.
20: X ← X ′.
21: Apply Lemma 4 to obtain a PROPavg allocation X = (X1, . . . , X|N |)to N .
22: return X = (X1, . . . , X|N |)

Case 2: i ∈ N1 and l = 1

In this case, we have

vi(Xi) = vi(M1) = vi(M)−
∑

j∈N2

mi(Xj)

=

 1

n
− 1

n− 1

∑

j∈N2

mi(Xj)

+

n− 1

n
− n− 2

n− 1

∑

j∈N2

mi(Xj)

︸ ︷︷ ︸
≥0

≥ 1

n
− 1

n− 1

∑

j∈N2

mi(Xj)

=
1

n
− 1

n− 1

∑

j∈N\i
mi(Xj),

where the last inequality follows from n−1
n ≥ n−2

n−1 ≥ n−2
n−1

∑
j∈N2

mi(Xj).

Case 3: i ∈ N1 and l ≥ 2

Since (X1, . . . , Xl) is a PROPavg allocation of M1 to N1, we have

vi(Xi) ≥
vi(M1)

l
− 1

l − 1

∑

j∈N1\i
mi(Xj)

=
1

l
− 1

l

∑

j∈N2

mi(Xj)−
1

l − 1

∑

j∈N1\i
mi(Xj). (1)

323

In line 13 of Algorithm 2, the while condition in line 7 does not hold for any agent in N1. Thus, it
holds that

mi(Xj) <
1

n
− 1

n− 1

∑

j∈N2

mi(Xj) (2)

for any j ∈ N1 \ i. Summing up inequality (2) for each j ∈ N1 \ i, we obtain

∑

j∈N1\i
mi(Xj) <

l − 1

n
− l − 1

n− 1

∑

j∈N2

mi(Xj). (3)

By multiplying inequality (3) by n−l
l(l−1) and rearranging, we have

0 > −n− l
ln

+
n− l
l(n− 1)

∑

j∈N2

mi(Xj) +
n− l
l(l − 1)

∑

j∈N1\i
mi(Xj). (4)

Summing up inequalities (1) and (4), we have

vi(Xi) >
1

n
+

(
−1

l
+

n− l
l(n− 1)

) ∑

j∈N2

mi(Xj) +

(
− 1

l − 1
+

n− l
l(l − 1)

) ∑

j∈N1\i
mi(Xj). (5)

By direct calculation, we have

−1

l
+

n− l
l(n− 1)

+
1

n− 1
=

1

l(n− 1)
≥ 0

and

− 1

l − 1
+

n− l
l(l − 1)

+
1

n− 1
=

1

l(l − 1)(n− 1)
(−l(n− 1) + (n− l)(n− 1) + l(l − 1))

=
(n− l)(n− l − 1)

l(l − 1)(n− 1)

≥ 0.

Applying these inequalities to inequality (5), we finally obtain

vi(Xi) >
1

n
− 1

n− 1

∑

j∈N2

mi(Xj) +
∑

j∈N1\i
mi(Xj)

 .

=
1

n
− 1

n− 1

∑

j∈N\i
mi(Xj),

which implies that i is PROPavg-satisfied by X.

Therefore, X is a PROPavg allocation to N in line 16 of Algorithm 2. □
We finally give the proof of Theorem 1 by showing that Algorithm 2 is a polynomial time algorithm

to find a PROPavg allocation.

Proof:[Proof of Theorem 1] We first show the correctness of Algorithm 2. If |N | = 1, our algorithm
obviously returns a PROPavg allocation in line 3. Assume that |N | ≥ 2. If |N2| ≥ 1, it returns a PROPavg
allocation in line 14 by Lemma 7. Otherwise, since the while condition in line 7 does not hold for any
agent in N1, vi(g) < 1

n holds for any agent i ∈ N1 and good g ∈M1 in line 16. Thus, X = (X1, . . . , Xn)
satisfies (P1) by Lemma 6, where Xn is an empty set. The rest of the algorithm finds an allocation to

324

V2 satisfying (P2) and return a PROPavg allocation as in Algorithm 1. Therefore, Algorithm 2 returns a
PROPavg allocation in all cases.

We finally show that Algorithm 2 completes in time polynomial in the number of agents and items.
Let T (n,m) be the worst case time complexity of Algorithm 2 when |N | = n and |M | = m. Clearly,

T (1,m) = O(1). We can check the while condition in line 7 and execute the body of the while loop in
polynomial time of n and m. In addition, as mentioned at the beginning of Section 5, Lines 17 to 22 can
be executed in polynomial time of n and m. Thus, T (n,m) can be expressed as

T (n,m) = poly(n,m) + max{ max
1≤n′≤n−1
1≤m′≤m−1

T (n′,m′), T (n− 1,m)}

Therefore, T (n,m) is polynomially bounded in n and m.
□

Acknowledgments

This work was partially supported by the joint project of Kyoto University and Toyota Motor Corporation,
titled “Advanced Mathematical Science for Mobility Society”, and by JSPS, KAKENHI grant number
JP19H05485, Japan.

References

[1] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Hollender, and Alexan-
dros A Voudouris. Maximum Nash welfare and other stories about EFX. Theoretical Computer
Science, 863:69–85, 2021.

[2] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, and Alexandros A Voudouris. Fair
division of indivisible goods: A survey. arXiv preprint arXiv:2202.07551, 2022.

[3] Haris Aziz, Bo Li, Herve Moulin, and Xiaowei Wu. Algorithmic fair allocation of indivisible items:
A survey and new questions. arXiv preprint arXiv:2202.08713, 2022.

[4] Haris Aziz, Hervé Moulin, and Fedor Sandomirskiy. A polynomial-time algorithm for computing
a Pareto optimal and almost proportional allocation. Operations Research Letters, 48(5):573–578,
2020.

[5] Artem Baklanov, Pranav Garimidi, Vasilis Gkatzelis, and Daniel Schoepflin. Achieving proportion-
ality up to the maximin item with indivisible goods. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 5143–5150, 2021.

[6] Artem Baklanov, Pranav Garimidi, Vasilis Gkatzelis, and Daniel Schoepflin. PROPm allocations of
indivisible goods to multiple agents. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI), pages 24–30, 2021.

[7] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Greedy algorithms for max-
imizing Nash social welfare. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pages 7–13, 2018.

[8] Ben Berger, Avi Cohen, Michal Feldman, and Amos Fiat. (Almost full) EFX exists for four agents
(and beyond). arXiv preprint arXiv:2102.10654, 2021.

[9] Steven J Brams, Steven John Brams, and Alan D Taylor. Fair Division: From cake-cutting to dispute
resolution. Cambridge University Press, 1996.

325

[10] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia. Handbook of
computational social choice. Cambridge University Press, 2016.

[11] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium from
equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

[12] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high Nash
welfare: The virtue of donating items. In Proceedings of the 20th ACM Conference on Economics
and Computation (EC), pages 527–545, 2019.

[13] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing
Wang. The unreasonable fairness of maximum Nash welfare. ACM Transactions on Economics and
Computation, 7(3):1–32, 2019.

[14] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. EFX exists for three agents. In Proceedings
of the 21st ACM Conference on Economics and Computation (EC), pages 1–19, 2020.

[15] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and Pranabendu Misra. Improv-
ing EFX guarantees through rainbow cycle number. In Proceedings of the 22nd ACM Conference on
Economics and Computation (EC), pages 310–311, 2021.

[16] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little charity
guarantees almost envy-freeness. SIAM Journal on Computing, 50(4):1336–1358, 2021.

[17] Vincent Conitzer, Rupert Freeman, and Nisarg Shah. Fair public decision making. In Proceedings
of the 18th ACM Conference on Economics and Computation (EC), pages 629–646, 2017.

[18] Andreas Darmann and Joachim Schauer. Maximizing Nash product social welfare in allocating
indivisible goods. European Journal of Operational Research, 247(2):548–559, 2015.

[19] Andrew L Dulmage. A structure theory of bipartite graphs of finite exterior dimension. The Trans-
actions of the Royal Society of Canada, Section III, 53:1–13, 1959.

[20] Andrew L Dulmage and Nathan S Mendelsohn. Coverings of bipartite graphs. Canadian Journal of
Mathematics, 10:517–534, 1958.

[21] Yusuke Kobayashi and Ryoga Mahara. Proportional Allocation of Indivisible Goods up to the Least
Valued Good on Average. In 33rd International Symposium on Algorithms and Computation (ISAAC
2022), pages 55:1–55:13, 2022.

[22] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately fair
allocations of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce
(EC), pages 125–131, 2004.

[23] Ryoga Mahara. Existence of EFX for two additive valuations. arXiv preprint arXiv:2008.08798,
2020.

[24] Ryoga Mahara. Extension of additive valuations to general valuations on the existence of EFX. In
Proceedings of the 29th Annual European Symposium on Algorithms (ESA), pages 66:1–15, 2021.

[25] Hervé Moulin. Fair division and collective welfare. MIT press, 2004.

[26] Hervé Moulin. Fair division in the internet age. Annual Review of Economics, 11:407–441, 2019.

[27] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. SIAM Journal
on Discrete Mathematics, 34(2):1039–1068, 2020.

[28] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can, 1998.

[29] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101–104, 1948.

326

Weighted exchange distance of basis pairs

Kristóf Bérczi1

MTA-ELTE Matroid Optimization
Research Group

ELKH-ELTE Egerváry Research Group
Department of Operations Research

Eötvös Loránd University
Budapest, Hungary

kristof.berczi@ttk.elte.hu

Bence Mátravölgyi1

MTA-ELTE Matroid Optimization
Research Group

Department of Operations Research
Eötvös Loránd University

Budapest, Hungary
matben@student.elte.hu

Tamás Schwarcz12

MTA-ELTE Matroid Optimization
Research Group

Department of Operations Research
Eötvös Loránd University

Budapest, Hungary
tamas.schwarcz@ttk.elte.hu

Abstract: Two pairs of disjoint bases P1 = (R1, B1) and P2 = (R2, B2) of a matroid M are
called equivalent if P1 can be transformed into P2 by a series of symmetric exchanges. In
1980, White conjectured that such a sequence always exists whenever R1 ∪B1 = R2 ∪B2. A
strengthening of the conjecture was proposed by Hamidoune, stating that minimum length of
an exchange is at most the rank of the matroid.

We propose a weighted variant of Hamidoune’s conjecture, where the weight of an exchange
depends on the weights of the exchanged elements. We prove the conjecture for several
matroid classes: strongly base orderable matroids, split matroids, graphic matroids of wheels,
and spikes.

Keywords: Graphic matroid, Sequential symmetric basis exchange, Spike, Split matroid,
Strongly base orderable matroid, Wheel graph

1 Introduction

Given a matroid M over a ground set S, the exchange axiom implies that for any pair of bases R and B
there exists a sequence of exchanges that transforms R into B, and the shortest length of such a sequence
is |R−B|. In the light of this, it is natural to ask whether analogous results hold for basis pairs instead
of single basis. More precisely, let (R,B) be an ordered pair of disjoint bases of M , and let e ∈ R \B and
f ∈ B \R be such that both R′ := R− e+ f and B′ := B + e− f are bases. In such a case, we call the
exchange feasible and say that the pair (R′, B′) is obtained from (R,B) by a symmetric exchange.
Using this terminology, we define the exchange distance (or distance for short) of two pairs of disjoint

1The work was supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021 and by the Hungarian National Research, Development and Innovation Office – NKFIH, grant numbers FK128673
and TKP2020-NKA-06.

2Tamás Schwarcz was supported by the ÚNKP-22-3 New National Excellence Program of the Ministry for Culture and
Innovation from the source of the National Research, Development and Innovation Fund.

327

bases P1 = (R1, B1) and P2 = (R2, B2) to be the minimum number of symmetric exchanges needed
to transform the former into the latter if such a sequence exists and +∞ otherwise. We call two pairs
of disjoint bases equivalent if their exchange distance is finite. A sequence of symmetric exchanges
starting from a pair P1 is called strictly monotone with respect to another pair P2 (or strictly
monotone for short when P2 is clear from the context) if each step decreases the difference between the
first member of the current pair and that of P2. In other words, a strictly monotone exchange sequence
uses elements only from (R1 ∩B2) ∪ (R2 ∩B1) and at most once.

At this point it is not clear (I) when the distance of two pairs will be finite, and (II) if their distance is
finite, whether we can give an upper bound on it. Regarding question (I), one can formulate an obvious
necessary condition for the distance of P1 and P2 to be finite, namely R1∪B1 = R2∪B2 should certainly
hold – two pairs with this property are called compatible. In [19], White conjectured that two basis
pairs P1 and P2 are equivalent if and only if they are compatible. While the conjecture was verified for
various matroid classes, it remains open in general.

Much less is known about question (II), that is, the optimization version of the problem. Gabow [10]
studied sequential symmetric exchanges and posed the following problem, which was later stated as a
conjecture by Wiedemann [20] and by Cordovil and Moreira [7]: for any two disjoint bases R and B of
a matroid M , there is a sequence of r symmetric exchanges that transforms the pair P1 = (R,B) into
P2 = (B,R). The rank of the matroid is a trivial lower bound on the minimum number of exchanges
needed to transform a pair (R,B) into (B,R), and the essence of Gabow’s conjecture is that that many
steps might always suffice. The relation between the conjectures of White and Gabow is immediate: the
latter would imply the former for sequences of the form (R,B) and (B,R).

In general, if M has rank r, then r − |R1 ∩ R2| is an obvious lower bound on the exchange distance
of P1 = (R1, B1) and P2 = (R2, B2). However, it might happen that more symmetric exchanges are
needed even if M is a graphic matroid; see [8] for a counterexample. As a common generalization of the
conjectures of White and Gabow, Hamidoune [7] proposed a rather optimistic variant stating that the
exchange distance of compatible basis pairs is at most the rank of the matroid.

Let w : S → R+ be a weight function on the elements of the ground set S. Given a pair (R,B) of
disjoint bases, we define the weight of a symmetric exchange R′ := R− e+ f and B′ := B+ e− f to
be w(e)+w(f), that is, the sum of the weights of the exchanged elements. Analogously to the unweighted
setting, we define the weighted exchange distance (or weighted distance for short) of two pairs of
disjoint bases P1 = (R1, B1) and P2 = (R2, B2) to be the minimum total weight of symmetric exchanges
needed to transform the former into the latter if such a sequence exists and +∞ otherwise. As a weighted
extension of Hamidoune’s conjecture, we propose the following.

Conjecture 1 Let P1 = (R1, B1) and P2 = (R2, B2) be compatible basis pairs of a matroid M over a
ground set S, and let w : S → R+ be a weight function. Then the weighted exchange distance of P1 and
P2 is at most w(R1 ∪B1) = w(R2 ∪B2).

By setting the weight function to be identically one, we get back Hamidoune’s conjecture. It is worth
mentioning that a strictly monotone exchange sequence transforming P1 into P2 is optimal in every
sense, i.e., it has both minimum length and minimum weight.

Previous work. By relying on the constructive characterization of bispanning graphs, Farber, Richter,
and Shank [9] proved White’s conjecture for graphic and cographic matroids, while Farber [8] settled the
statement for transversal matroids. Bonin [6] verified the conjecture for sparse paving matroids. The case
of strongly base orderable matroids was solved by Lasoń and Micha lek [15]. McGuinness [17] extended
the graphic case to frame matroids satisfying a certain linearity condition. Kotlar and Ziv [14] showed
that any two elements of a basis have a sequential symmetric exchange with some two elements of any
other basis. At the same time, Kotlar [13] proved that three consecutive symmetric exchanges exist for
any two bases of a matroid, and that a full sequential symmetric exchange, of length at most 6, exists
for any two bases of a matroid of rank 5.

Gabow’s conjecture was verified for partition matroids, matching and transversal matroids, and ma-
troids of rank less than 4 in [10], and an easy reasoning shows that it also holds for strongly base orderable

328

matroids as well. The graphic case was settled by Wiedemann [20], Kajitani, Ueno, and Miyano [12], and
Cordovil and Moreira [7].

Recently, Bérczi and Schwarcz [3] showed that Hamidoune’s conjecture holds for split matroids, a large
class that contains paving matroids as well. While studying a specific maker-breaker game on bispanning
graphs, Andres, Hochstättler and Merkel [1] showed that there is an exchange sequence between any two
pairs of disjoint spanning trees of a wheel of rank at least four using only so-called left unique exchanges.
They also asked whether the exchange distance of compatible basis pairs of a matroid can be bounded
by a polynomial of the rank – this latter problem is a weakening of Hamidoune’s conjecture.

The rank of the graphic matroid of a connected graph on n vertices is n− 1. Though it is not stated
explicitly, the algorithms of [9] and [5] that prove White’s conjecture for graphic matroids give a sequence
of exchanges of length at most O(n2). It remains an intriguing open problem to improve the bound to
O(n), matching the order of the bound in the conjecture.

Our results. We verify Conjecture 1 for various matroid classes. First we consider strongly base
orderable matroids, a class with distinctive structural properties.

For the remaining matroid classes, we work with a further strengthening of the conjecture where both
the length and the weight of the exchange sequence are ought to be bounded. We verify this stronger
variant for split matroids, a class that was introduced only recently and generalizes paving matroids.

Our main result is a proof of the conjecture for graphic matroids of wheels. Though wheels are
structurally rather simple, the proof for this graph class is already non-trivial and requires a thorough
understanding of feasible exchanges. As a byproduct, we show that the minimum number of steps required
to transform P1 into P2 can be arbitrarily large compared to the lower bound r − |R1 ∩R2|.

Finally, we prove the conjecture for spikes, an important class of 3-connected matroids. Spikes are
interesting because, as we show, one can define an arbitrarily large number of basis pairs without a strictly
monotone exchange sequence between any two of them. This is in sharp contrast to the case of wheels,
where for any three pairs of bases, there exist two with a strictly monotone exchange sequence between
them.

The rest of the paper is organized as follows. Basic notions and definitions are given in Section 2,
together with some elementary observations on wheels. We verify Conjecture 1 for strongly base orderable
matroids and for split matroids in Section 3. Graphic matroids of wheels are considered in Section 4,
while spikes are discussed in Section 5.

Due to space constraints, several proofs and details are deferred to the full version of this paper, which
is available at https://arxiv.org/abs/2211.12750.

2 Preliminaries

General notation. The set of nonnegative real numbers is denoted by R+. For subsets X,Y ⊆ S,
their symmetric difference is defined as X△Y := (X \ Y) ∪ (Y \ X). When Y consist of a single
element y, then X \ {y} and X ∪ {y} are abbreviated as X − y and X + y, respectively. Given a weight
function w : S → R+ and a subset X ⊆ S, we use the notation w(X) =

∑
s∈X w(s).

Matroids. For basic definitions on matroids, we refer the reader to [18]. If M is a rank-r matroid
over a ground set S of size 2r such that S decomposes into two disjoint bases R and B of M , then such
a decomposition is called a coloring of M1. A feasible exchange of elements r ∈ R and b ∈ B is
denoted by (r, b). We extend this notation to a sequence of symmetric exchanges as well by writing
(r1, b1), . . . , (rk, bk), meaning that (R \ {r1, . . . , ri})∪ {b1, . . . , bi} and (B ∪ {r1, . . . , ri}) \ {b1, . . . , bi} are
bases for i = 1, . . . , k. A matroid M is strongly base orderable if for any two bases B1, B2, there
exists a bijection ϕ : B1 → B2 such that (B1 \X)∪ϕ(X) is also a basis for any X ⊆ B1, where we denote
ϕ(X) := {ϕ(e) | e ∈ X}.

1Throughout the paper, we will refer to the elements of R and B as ‘red’ and ‘blue’, respectively.

329

Let S be a ground set of size at least r, H = {H1, . . . ,Hq} be a (possibly empty) collection of subsets
of S, and r, r1, . . . , rq be nonnegative integers satisfying |Hi ∩Hj | ≤ ri + rj − r for 1 ≤ i < j ≤ q, and
|S \Hi| + ri ≥ r for i = 1, . . . , q. Then I = {X ⊆ S | |X| ≤ r, |X ∩Hi| ≤ ri for 1 ≤ i ≤ q } forms the
family of independent sets of a rank-r matroid M that we call an elementary split matroid; see [2] for
details. A set F ⊆ S is called Hi-tight if |F ∩Hi| = ri. A split matroid is the direct sum of a single
elementary split matroid and some (maybe zero) uniform matroids.

For a graph G = (V,E) on n vertices, the graphic matroid M = (E, I) of G is defined on the
edge set by considering a subset F ⊆ E to be independent if it is a forest, that is, I = {F ⊆ E |
F does not contain a cycle}. If the graph is connected, then the bases of the graphic matroid are exactly
the spanning trees of G and the rank of the matroid is n− 1.

Let S = {t, x1, y1, . . . , xr, yr} be a ground set of size 2r+1 for some r ≥ 3, and let C1 = {{t, xi, yi} | 1 ≤
i ≤ r} and C2 = {{xi, yi, xj , yj} | 1 ≤ i < j ≤ r}. Furthermore, let C3 ⊆ {Z ⊆ S | |Z| = r, |Z∩{xi, yi}| =
1 for 1 ≤ i ≤ r} be such that the intersection of any two members of C3 has size at most r− 2. Note that
C3 might be empty. Finally, define C4 = {C ⊆ S | |C| = r + 1, C ′ ̸⊆ C for C ′ ∈ C1 ∪ C2 ∪ C3}. Then
the family C = C1 ∪ C2 ∪ C3 ∪ C4 satisfies the circuit axioms, hence M = (S, C) is a rank-r matroid with
circuit family C. Matroids arising this way are called spikes, where t and the pairs {xi, yi} are called
the tip and the legs of the spike, respectively. It is not difficult to check that by restricting M to any
2r of its elements (or in other words, deleting any of its elements) results in a matroid whose ground set
decomposes into two disjoint bases.

Wheels. A graph G = (V,E) is called a wheel graph (or wheel for short) if it is obtained by
connecting a vertex, called the center of the wheel, to all the vertices of a cycle of length at least three,
called the outer cycle of the wheel. In particular, wheels have at least four vertices. Edges connecting
the center vertex with the vertices of the outer cycle are called spokes, while the edges of the outer cycle
are called rim edges. Wheels are clearly planar, and so the order of the vertices on the outer cycle
implies a natural cyclic ordering of the spokes and the rim edges as well.

It is not difficult to check that any wheel is the disjoint union of two spanning trees. Therefore, a
coloring of the graphic matroid of a wheel is basically a partition of its edge set into two colors R and
B such that both color classes form a spanning tree. A nice property of wheels is that we have a fairly
good understanding of the structure of their colorings. Indeed, in order to decompose a wheel into two
spanning trees, we first need to split the spokes into two nonempty sets. Then, if a rim edge goes between
the endpoints of two spokes having the same color, then it automatically has to be colored with the
other color to obtain a basis. Hence it only remains to decide the color of the rim edges going between
the endpoints of spokes having different colors. However, once we fix the color of any of those edges, it
determines the color of all the remaining ones.

We call a maximal set of consecutive spokes of the same color an interval. By the length and color
of the interval we mean the number and color of the spokes in it, respectively. Rim edges going between
two intervals are called boundary edges. By the above, for X ∈ {R,B}, either every interval of color
X is followed by a boundary edge of color X in a counterclockwise direction, or every interval of color
X is followed by a boundary edge of color X in a clockwise direction. This property is referred to as the
orientation of the coloring, and the orientation is called positive in the former and negative in the
latter case; see Figure 1a for an example. Orientations will play a crucial role in whether one can go from
one coloring to another using a small number of exchanges or not.

Given a coloring P = (R,B) of the wheel graph, each spoke e is incident to two rim edges. The rim
edge sharing a vertex with e in the direction opposite of the orientation of the coloring can always be
exchanged with e. We denote this rim edge by φP,−(e), while the other rim edge incident to e is denoted
by φP,+(e); see Figure 1b for an example. Both φP,− and φP,+ provide bijections between spokes and
rim edges. Note that these bijections are already determined by the orientation of P. If there are at least
four intervals in the coloring, then the feasible exchanges are exactly the ones exchanging e and φP,−(e)
for some spoke e. When there are only two intervals in the coloring, then there are other pairs that can
be symmetrically exchanged.

330

b

b

b b

b

b

bb

b

b

e

ϕP,+(e)

ϕP,−(e)

I1

I2

I3

I4

(a) The red and blue intervals are denoted by I1, I3
and I2, I4, respectively.

b

b

b b

b

b

bb

b

b

e

ϕP,+(e)

ϕP,−(e)

I1

I2

I3

I4

(b) The coloring obtained by symmetrically exchang-
ing e and its pair φP,−(e).

Figure 1: Colorings containing four intervals. Thick rim edges correspond to boundary edges. Note that
both colorings have positive orientation.

3 Strongly base orderable and split matroids

As a warm-up, we first consider two basic cases: strongly base orderable and split matroids. For strongly
base orderable matroids, the proof of Conjecture 1 can be read out directly from the proof of White’s
conjecture in [15] for strongly base orderable matroids. However, it might help the reader to get familiar
with the notion of basis exchanges, and also sheds light to the difficulties caused by the presence of a
weight function. For split matroids, the proof is more involved and relies heavily on that of Hamidoune’s
conjecture appeared in [3].

3.1 Strongly base orderable matroids

Theorem 2 Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases of a rank-r
strongly base orderable matroid M over a ground set S, and let w : S → R+ be a weight function. Then
there exists a sequence of exchanges of total weight at most w(R1 ∪ B1) = w(R2 ∪ B2) that transforms
P1 into P2 and uses each element at most twice.

Proof: Let ϕ1 : R1 → B1 and ϕ2 : R2 → B2 be bijections such that (Ri \X) ∪ ϕi(X) is a basis for each
X ⊆ Ri and i = 1, 2. Consider the bipartite graph G with vertex set R1 ∪ B1 = R2 ∪ B2, and edges of
the form eϕ1(e) for e ∈ R1 and fϕ2(f) for f ∈ R2. We denote the color classes of G by S and T . Note
that

S = (S ∩R1) ∪ (S ∩B1) = (R1 \ (R1 \ S)) ∪ ϕ1(R1 \ S)

and
T = (T ∩R1) ∪ (T ∩B1) = (R1 \ (R1 \ T)) ∪ ϕ1(R1 \ T),

hence both S and T are bases of M . Let us define the basis pairs P = (S, T) and P′ = (T, S).
By exchanging the elements between R1 \ S and S \R1 according to ϕ1, we get a sequence of weight

w(R1△S) that transforms P1 into P. By exchanging the elements between S \R2 and R2 \ S according
to ϕ2, we get a sequence of weight w(R2△S) that transforms P into P2. The concatenation of these two
sequences transforms P1 into P2, has total weight w(R1△S) +w(R2△S), and uses each element at most
twice.

By exchanging the elements between R1 \ T and T \R1 according to ϕ1, we get a sequence of weight
w(R1△T) that transforms P1 into P′. By exchanging the elements between T \R2 and R2 \T according
to ϕ2, we get a sequence of weight w(R2△T) that transforms P into P2. The concatenation of these two
sequences transforms P1 into P2, has total weight w(R1△T) +w(R2△T), and uses each element at most
twice.

331

Since

w(R1△S) + w(R2△S) + w(R1△T) + w(R2△T)

= (w(R1△S) + w(R1△T)) + (w(R2△S) + w(R2△T))

= (w(R1) + w(B1)) + (w(R2) + w(B2)),

at least one of the above defined sequences has total weight at most w(R1 ∪B1) = w(R2 ∪B2) and uses
each element at most twice. This concludes the proof of the theorem. □

3.2 Split matroids

The introduction of split matroids was motivated by the study of matroid polytopes from a geometry
point of view [11]. Besides their immediate applications in tropical geometry, split matroids generalize
paving matroids, a class that plays a fundamental role among matroids. In [3], Bérczi and Schwarcz
showed that Hamidoune’s conjecture holds for split matroids. In fact, they proved that the exchange
distance of compatible basis pairs P1 = (A1, A2) and P2 = (B1, B2) of a rank-r split matroid is at most
min{r, r−|A1∩B1|+1}, and that a shortest sequence transforming P1 into P2 can be found in polynomial
time if the matroid in question is given by an independence oracle. By building on their proof, once can
show how to deduce a strengthening of their result; see [4] for the details.

Theorem 3 Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases of a rank-r split
matroid M over a ground set S, and let w : S → R+ be a weight function. Then there exists a sequence of
exchanges of length at most min{r, r− |R1 ∩R2|+ 1} and total weight at most w(R1 ∪B1) = w(R2 ∪B2)
that transforms P1 into P2 and uses each element at most twice. □

4 Wheels

Our first main result is a proof of Conjecture 1 for the graphic matroid of wheels. In fact, we prove a
much stronger statement: we verify that for any pair P1 = (R1, B1) and P2 = (R2, B2) of colorings of
a wheel G = (V,E), there exists a sequence of exchanges of length at most r and total weight at most
w(E) that transforms P1 into P2 and uses each edge at most twice.

Throughout the section, we assume that P1 has positive orientation. For ease of notation, we introduce
φ⊕ := φP1,+ and φ⊖ := φP1,−. Recall that both φ⊖ and φ⊕ provide a bijection between spokes and rim
edges.

First we settle the case when the two colorings have the same orientation.

Lemma 4 Let P1 = (R1, B1) and P2 = (R2, B2) be colorings of a wheel G = (V,E) with the same
orientation. Then there exists a strictly monotone sequence of exchanges that transforms P1 into P2.

Proof: Exchange each spoke e that has different color in P1 than in P2 with its pair φ⊖(e) in an
arbitrary order, only paying attention to always have at least one spoke in both color classes. Once the
spokes have the right colors, that is, they are colored as in P2, the rim edges are also colored as required.
Indeed, the orientation was not changed during the procedure and the coloring of the spokes together
with the orientation of the coloring uniquely determines the colors of the rim edges. □

Next we consider colorings with different orientations and a bounded number of intervals in one of
the color classes.

Lemma 5 Let P1 = (R1, B1) and P2 = (R2, B2) be colorings of a wheel G = (V,E) with different
orientations where P1 has at most four intervals, and let w : E → R+ be a weight function. Then there
exists a sequence of exchanges of length at most n− 1 and total weight at most w(E) that transforms P1

into P2 and uses each edge at most twice.

332

b

b

b b

b

b

bb

b

b
a

b

c d

(a) P1 contains two inter-
vals, one of them having
length one.

b

b

b b

b

b

bb

b

b

a
b c d

(b) P1 contains two inter-
vals, both having length
at least two.

b

b

b b

b

b

bb

b

b

a
b

c
dI1

I2
I3

I4

(c) P1 contains four inter-
vals, one of them having
length one.

b

b

b b

b

b

bb

b

b

a
b

c
dI1

I2
I3

I4

e

f

(d) P1 contains both a
red and a blue interval of
length one.

Figure 2: Illustration of the cases in the proof of Lemma 5.

Proof: We distinguish two main cases and several subcases based on the number of intervals in P1.
Due to space constraints, we only include the proof for some of the cases, see [4] for the missing ones.
Recall that P1 is assumed to have positive orientation throughout.

Case 1. P1 has two intervals.

Case 1.1. P1 has an interval of length one.
We may assume that there exists a red interval of length one, and let c denote the unique spoke in

it. We denote by a the spoke following c in negative direction, and further define b := φ⊕(a) = φ⊖(c)
and d := φ⊕(c). Note that a and b are blue, while d is a red edge; see Figure 2a. As P2 has negative
orientation, a and φ⊕(a) = b have different colors in P2, and the same holds for c and φ⊕(c) = d. Hence
the set of edges among a, b, c and d that have different colors in P1 and P2 is either {a, c}, {a, d}, {b, d}
or {b, c}. In the first three cases, changing the color of the two edges is a feasible exchange which reverses
the orientation. Once the orientation of the coloring is reversed, there exists a strictly monotone exchange
sequence to P2 by Lemma 4, altogether resulting in a strictly monotone exchange sequence from P1 to
P2.

The only remaining case is when the set of edges among a, b, c and d that need to change color is {b, c}.
In this case, the difficulty comes from the fact that these edges do not define a feasible exchange between
the two color classes. In order to overcome this, extra steps are needed to reverse the orientation. Let s
be an arbitrary red spoke of P2. Note that s ̸∈ {a, c} as we are in the case when a and c are blue in P2.
As P1 has a unique red spoke, namely c, we get that s is blue in P1, and φ⊕(s) is red in P1 and blue in P2

since P2 has negative orientation. Consider the two exchange sequences of length three (b, d), (s, φ⊕(s)),
(c, d) and (a, c), (s, φ⊕(s)), (a, b). Both of these sequences reverse the orientation of the coloring and
fix the colors of the edges a, b, c and d. Therefore, after applying any of them, there exists a strictly
monotone exchange sequence to P2 by Lemma 4 that uses all the remaining edges in E − {a, b, c, d} at
most once. Thus in overall, we get an exchange sequence that uses each edge in E −{a, d} at most once,
does not use one of a and d and uses the other twice. Hence the length of the sequence is at most half
of the number of edges, that is, n− 1. If w(a) ≥ w(d), then starting the sequence with (b, d), (s, φ⊕(s)),
(c, d), while if w(a) < w(d), then starting the sequence with (a, c), (s, φ⊕(s)), (a, b) ensures that total
weight of the exchange sequence is at most w(E), concluding the proof of the case.

Case 1.2. Both intervals of P1 have length at least two.
Let c denote the last spoke of the red interval in positive direction and let d := φ⊕(c). Furthermore,

let a be the last spoke of the blue interval in positive direction and let b := φ⊕(a), see Figure 2b. Similarly
to Case 1.1, the set of edges among a, b, c and d that have different colors in P1 and P2 is either {a, c},
{a, d}, {b, d} or {b, c}. However, now fixing the orientation is even simpler than before as any of the
exchanges (a, c), (a, d), (b, c) and (b, d) is feasible. After reversing the orientation using one of these
exchanges, there exists a strictly monotone exchange sequence to P2 by Lemma 4, altogether resulting
in a strictly monotone exchange sequence from P1 to P2.

333

We denote the number of spokes in R1, R2, B1 and B2 by r1, r2, b1 and b2, respectively. Let 2q
denote the number of intervals in P1, and let I1, . . . , I2q denote the intervals in a positive direction, where
intervals with odd indices have color red and intervals with even indices have color blue. Furthermore,
for 1 ≤ i ≤ 2q, we define

xi :=
∑

[w(e) | e ∈ Ii ∪ φ⊖(Ii), e has the same color in P1 and P2],

yi :=
∑

[w(e) | e ∈ Ii ∪ φ⊖(Ii), e has different colors in P1 and P2].

By the above definitions, we have w(Ii ∪ φ⊖(Ii)) = xi + yi for 1 ≤ i ≤ 2q, and
∑2q

i=1(xi + yi) = w(E).

The following cases can be solved in a similar manner.
Case 2. P1 has four intervals.

Since r1 + r2 + b1 + b2 = 2(n − 1), we have min{r1 + r2, b1 + b2} ≤ n − 1. We may assume that
r1 + r2 ≤ n− 1. We distinguish two cases based on the structure of the red intervals in P1.

Case 2.1. P1 has no red interval of length one.

Case 2.2. P1 has a red interval of length one. □
Our last technical lemma shows that when one of the colorings has at least six intervals, then there

exists a sequence of exchanges that has low weight with respect to two arbitrary weight functions simul-
taneously.

Lemma 6 Let P1 = (R1, B1) and P2 = (R2, B2) be colorings of a wheel G = (V,E) with different
orientations such that P1 has at least six intervals, and let w1, w2 : E → R+ be weight functions. Then
there exists a sequence of exchanges of total wi-weight at most wi(E) for i = 1, 2 that transforms P1 into
P2 and uses each edge at most twice.

Proof: We distinguish two cases based on the remainder of the number of intervals modulo four.

Case 1. q = 2k + 1 for some integer k ≥ 1.
For an index 1 ≤ j ≤ 4k + 2, exchange each spoke e ∈ ⋃k

i=1 Ij+2i−1 with its pair φ⊖(e), and do the

same for each spoke e ∈ ⋃2k
i=k+1 Ij+2i. After these exchanges, the resulting coloring P′

1 has two intervals:
Ij ∪ Ij+1 ∪ · · · ∪ Ij+2k has the same color in P′

1 as Ij in P1, and Ij+2k+1 ∪ Ij+2k+2 ∪ · · · ∪ Ij+4k+1 has
the other color. Note that none of these two intervals has length one as k ≥ 1. Therefore, there exists a
strictly monotone exchange sequence from P′

1 to P2 by Case 1.2 of Lemma 5. Let w ∈ {w1, w2}, and let
us define Ii, xi and yi for 1 ≤ i ≤ 2q as in the proof of Lemma 5, where the xi and yi values are computed
with respect to w. Our goal is to bound the w-weight of the above defined sequence of exchanges.

Exchanging each spoke e in
⋃k

i=1 Ij+2i−1 ∪
⋃2k

i=k+1 Ij+2i with its pair φ⊖(e) has weight

k∑

i=1

(xj+2i−1 + yj+2i−1) +

2k∑

i=k+1

(xj+2i + yj+2i).

Then the strictly monotone sequence to P2 has weight

k∑

i=0

yj+2i +
k∑

i=1

xj+2i−1 +
2k∑

i=k

yj+2i+1 +
2k∑

i=k+1

xj+2i.

The total weight is then

2 ·
(

k∑

i=1

xj+2i−1 +
2k∑

i=k+1

xj+2i

)
+

4k+2∑

i=1

yi.

Therefore the total w-weight of the exchange sequence is at most w(E) =
∑4k+2

i=1 (xi + yi) if and only if

k∑

i=1

xj+2i−1 +
2k∑

i=k+1

xj+2i ≤
k∑

i=0

xj+2i +
2k∑

i=k

xj+2i+1. (Aw(j))

334

Consider inequalities Aw(j) and Aw(j + 1). The sum of these two inequalities gives

(
4k+2∑

i=1

xi

)
− (xj + xj+2k+1) ≤

(
4k+2∑

i=1

xi

)
+ (xj + xj+2k+1).

As this inequality clearly holds, at least one of Aw(j) and Aw(j + 1) must hold as well. Furthermore,
Aw(j) is identical to Aw(j + 2k+ 1). These together imply that Aw(j) holds for at least k+ 1 choices of
j from {1, . . . , 2k + 1} for w ∈ {w1, w2}. Therefore, there exists an index j for which both Aw1(j) and
Aw2(j) are satisfied. As each edge is used at most twice, the statement follows.

Case 2. q = 2k for some integer k ≥ 2.
Our approach is similar to that of Case 1. For an index 1 ≤ j ≤ 4k, exchange each spoke e ∈⋃k−1

i=1 Ij+2i−1 with its pair φ⊖(e), and do the same for each spoke e ∈ ⋃2k−1
i=k Ij+2i. After these exchanges,

the resulting coloring P′
1 has two intervals: Ij ∪ Ij+1 ∪ · · · ∪ Ij+2k−1 has the same color in P′

1 as Ij in P1,
and Ij+2k ∪ Ij+2k+1 ∪ · · · ∪ Ij+4k−1 has the other color. Note that none of these two intervals has length
one as k ≥ 2. Therefore, there exists a strictly monotone exchange sequence from P′

1 to P2 by Case 1.2
of Lemma 5. Let w ∈ {w1, w2}, and let us define Ii, xi and yi for 1 ≤ i ≤ 2q as in the proof of Lemma 5,
where the xi and yi values are computed with respect to w. Our goal is to bound the w-weight of the
above defined sequence of exchanges.

Exchanging each spoke e in
⋃k−1

i=1 Ij+2i−1 ∪
⋃2k−1

i=k Ij+2i with its pair φ⊖(e) has weight

k−1∑

i=1

(xj+2i−1 + yj+2i−1) +
2k−1∑

i=k

(xj+2i + yj+2i).

Then the strictly monotone sequence to P2 has weight

k−1∑

i=0

yj+2i +

k−1∑

i=1

xj+2i−1 +

2k∑

i=k

yj+2i−1 +

2k−1∑

i=k

xj+2i.

The total weight is then

2 ·
(

k−1∑

i=1

xj+2i−1 +
2k−1∑

i=k

xj+2i

)
+

4k∑

i=1

yi.

Therefore the total w-weight of the exchange sequence is at most w(E) =
∑4k

i=1(xi + yi) if and only if

k−1∑

i=1

xj+2i−1 +
2k−1∑

i=k

xj+2i ≤
k−1∑

i=0

xj+2i +
2k−1∑

i=k−1

xj+2i+1. (Bw(j))

Consider inequalities Bw(j) and Bw(j + 1). The sum of these two inequalities gives

(
4k∑

i=1

xi

)
− (xj + xj+2k−1) ≤

(
4k∑

i=1

xi

)
+ (xj + xj+2k−1).

As this inequality clearly holds, at least one of Bw(j) and Bw(j + 1) must hold as well. This implies
that Bw(j) holds for at least 2k choices of j from {1, . . . , 4k}. Note that if the number of such choices is
exactly 2k, then Bw(j) holds either for all odd or for all even indices.

Now consider inequalities Bw(j) and Bw(j + 2k). The sum of these two inequalities gives

(
4k∑

i=1

xi

)
− (xj+2k−1 + xj+4k−1) ≤

(
4k∑

i=1

xi

)
+ (xj+2k−1 + xj+4k−1).

As this inequality clearly holds, at least one of Bw(j) and Bw(j + 2k) must hold as well. As the parities
of j and j + 2k are the same, this, together with the above observation, implies that Bw(j) holds for at

335

least 2k + 1 choices of j from {1, . . . , 4k} for w ∈ {w1, w2}. Therefore, there exists an index j for which
both Bw1

(j) and Bw2
(j) are satisfied. As each edge is used at most twice, the statement follows. □

With the help of Lemmas 4, 5 and 6, we are ready to prove the main result of the paper.

Theorem 7 Let P1 = (R1, B1) and P2 = (R2, B2) be colorings of a wheel G = (V,E), and let w : E →
R+ be a weight function. Then there exists a sequence of exchanges of length at most n − 1 and total
weight at most w(E) that transforms P1 into P2 and uses each edge at most twice.

Proof: If the colorings have identical orientation, then the theorem follows by Lemma 4. Indeed, the
length and the weight of any strictly monotone sequence of exchanges that transforms P1 into P2 achieves
the natural lower bounds (n− 1)−|R1 ∩R2| ≤ n− 1 and w(R1△R2) ≤ w(E), respectively, and uses each
edge at most once.

Hence assume that the colorings have different orientations. If P1 has at most four intervals, then
the theorem immediately follows by Lemma 5. Otherwise, Lemma 6 with the choice w1 := w and w2 ≡ 1
ensures the existence of a sequence of exchanges of total weight at most w1(E) = w(E) and length at
most w2(E)/2 = |E|/2 = n− 1 that uses each edge at most twice, concluding the proof. □

5 Spikes

A strengthening of Conjecture 1 analogous to Theorem 7 holds for spikes as well. Consider a rank-r spike
M over ground set S, and let w : S → R+ be a weight function. We show that for any two compatible
basis pairs P1 = (R1, B1) and P2 = (R2, B2), there exists a sequence of exchanges of length at most r
and total weight at most w(S) that transforms P1 into P2 and uses each element at most twice.

Recall that S = {t, x1, y1, . . . , xr, yr}, where t is the tip and {xi, yi} for 1 ≤ i ≤ r are the legs of the
spike. Hence R1 ∪B1 = R2 ∪B2 does not contain exactly one element s of S; for short, we say that the
pairs P1 and P2 miss the element s. We distinguish two cases depending on whether this element is the
tip of M or not.

Lemma 8 Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases of a rank-r spike
M over a ground set S missing the tip t, and let w : S → R+ be a weight function. Then there exists a
sequence of exchanges of length at most r and total weight at most w(S − t) that transforms P1 into P2

and uses each element at most twice. □

Lemma 9 Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases of a rank-r spike
M over a ground set S missing the non-tip element x1, and let w : S → R+ be a weight function. Then
there exists a sequence of exchanges of length at most r and total weight at most w(S−x1) that transforms
P1 into P2 and uses each element at most twice. □

The two lemmas together implies the following theorem.

Theorem 10 Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases of a rank-r
spike M over a ground set S, and let w : S → R+ be a weight function. Then there exists a sequence of
exchanges of length at most r and total weight at most w(S) that transforms P1 into P2 and uses each
element at most twice.

Proof: The theorem follows by combining Lemmas 8 and 9. □

336

References

[1] S. D. Andres, W. Hochstättler, and M. Merkel. On a base exchange game on bispanning graphs.
Discrete Applied Mathematics, 165:25–36, 2014.

[2] K. Bérczi, T. Király, T. Schwarcz, Y. Yamaguchi, and Y. Yokoi. Hypergraph characterization of
split matroids. Journal of Combinatorial Theory, Series A, 194:105697, 2023.

[3] K. Bérczi and T. Schwarcz. Exchange distance of basis pairs in split matroids. arXiv preprint
arXiv:2203.01779, 2022.

[4] K. Bérczi, B. Mátravölgyi, and T. Schwarcz. Weighted exchange distance of basis pairs. arXiv
preprint arXiv:2211.12750, 2022.

[5] J. Blasiak. The toric ideal of a graphic matroid is generated by quadrics. Combinatorica, 28(3):283–
297, 2008.

[6] J. E. Bonin. Basis-exchange properties of sparse paving matroids. Advances in Applied Mathematics,
50(1):6–15, 2013.

[7] R. Cordovil and M. L. Moreira. Bases-cobases graphs and polytopes of matroids. Combinatorica,
13(2):157–165, 1993.

[8] M. Farber. Basis pair graphs of transversal matroids are connected. Discrete Mathematics, 73(3):245–
248, 1989.

[9] M. Farber, B. Richter, and H. Shank. Edge-disjoint spanning trees: A connectedness theorem.
Journal of Graph Theory, 9(3):319–324, 1985.

[10] H. Gabow. Decomposing symmetric exchanges in matroid bases. Mathematical Programming,
10(1):271–276, 1976.

[11] M. Joswig and B. Schröter. Matroids from hypersimplex splits. Journal of Combinatorial Theory,
Series A, 151:254–284, 2017.

[12] Y. Kajitani, S. Ueno, and H. Miyano. Ordering of the elements of a matroid such that its consecutive
w elements are independent. Discrete Mathematics, 72(1-3):187–194, 1988.

[13] D. Kotlar. On circuits and serial symmetric basis-exchange in matroids. SIAM Journal on Discrete
Mathematics, 27(3):1274–1286, 2013.

[14] D. Kotlar and R. Ziv. On serial symmetric exchanges of matroid bases. Journal of Graph Theory,
73(3):296–304, 2013.

[15] M. Lasoń and M. Micha lek. On the toric ideal of a matroid. Advances in Mathematics, 259:1–12,
2014.

[16] D. Mayhew, M. Newman, D. Welsh, and G. Whittle. On the asymptotic proportion of connected
matroids. European Journal of Combinatorics, 32(6):882–890, 2011.

[17] S. McGuinness. Frame matroids, toric ideals, and a conjecture of White. Advances in Applied
Mathematics, 118:102042, 2020.

[18] J. Oxley. Matroid Theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University
Press, Oxford, second edition, 2011.

[19] N. L. White. A unique exchange property for bases. Linear Algebra and its Applications, 31:81–91,
1980.

[20] D. Wiedemann. Cyclic base orders of matroids. Manuscript, 1984.

337

338

Pebble Game algorithms and their implementations

Péter Madarasi

Department of Operations Research, ELTE
Eötvös Loránd University, and the ELKH-ELTE

Egerváry Research Group on Combinatorial
Optimization, Eötvös Loránd Research Network

(ELKH), Pázmány Péter sétány 1/C, 1117
Budapest, Hungary.

madarasip@staff.elte.hu

Lóránt Matúz

Department of Operations Research, ELTE
Eötvös Loránd University, Pázmány Péter

sétány 1/C, 1117 Budapest, Hungary.
matuzl20@student.elte.hu

Abstract: A multigraph G = (V,E) is (k, `)-sparse if every subset X ⊆ V of the vertices
induces at most max{k|X| − `, 0} edges. Finding a largest (k, `)-sparse subgraph is a well-
studied, polynomial-time solvable problem, which is widely used in rigidity applications and
serves as the basis of several combinatorial algorithms. We present a new implementation and
compare it with the library called KINARI-web on a wide range of random and real-world
datasets. The computational study shows that the new implementation is consistently faster
by one order of magnitude. Furthermore, we propose several heuristics to fine-tune the free
parameters of the algorithm and investigate their practical efficiency. We also implement an
algorithm for finding k arc-disjoint r-arborescences in a digraph and k edge-disjoint spanning
trees in an undirected graph, which corresponds to the case ` = k. Finally, we give an improved
algorithm for the case ` = 2k when the sparsity condition is required only for the subsets of
vertices of size at least 3, which is a crucial necessary condition of 3D rigidity for k = 3. Our
implementation is available at https://lemon.cs.elte.hu/repos/sparseGraphs, and it is
proposed to be part of the LEMON library.

Keywords: (k, `)-sparse graphs, Pebble Game algorithms, LEMON library

1 Introduction

An undirected multigraph G = (V,E) is called (k, `)-sparse if every subset of the vertices induces at most
max{0, k|X| − `} edges. Essentially, this means that there are only a limited number of edges induced
in each subset of the vertices, in other words, the graph is “uniformly sparse”. Testing sparsity and
finding a largest sparse subgraph are widely used tools in rigidity applications. The concept of sparsity
also often occurs in combinatorial optimization, for example, a graph is (k, k)-sparse if and only if its
edge set can be partitioned into k forests. Therefore, efficient algorithms for testing sparsity and their
implementations are crucial.

Historical overview The definition of (k, `)-sparse graphs was introduced in 1979 by Loréa [19] as an
example of matroidal families. They have been studied intensively in the last decades, and it became
apparent that they have a variety of applications. For example, (k, k)-tight graphs (that is, the largest
(k, k)-sparse graphs) appeared in the classical results of Nash-Williams [21] and Tutte [25] as the charac-
terization of the graphs that can be decomposed into k edge-disjoint spanning trees. Later, Laman [15]
showed that (2, 3)-tight graphs are the generic minimally rigid graphs for bar-and-joint frameworks in
the plane, and (2, 3)-spanning graphs are the rigid ones. Note that the complexity of testing rigidity in
3D is wide open. For a more detailed treatment of this area, the reader is referred to [8, 24].

1This research has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, financed under the ELTE TKP 2021-NKTA-62 funding
scheme. The research was supported by the Ministry of Innovation and Technology NRDI Office within the framework of
the Artificial Intelligence National Laboratory Program.

339

Previous work The family of the celebrated Pebble Game algorithms can find a maximum-weight
(k, `)-sparse subgraph in O(nm) time and a largest one in O(n2) time [7, 16, 17, 1, 2]. These algorithms
play a crucial role in rigidity applications and serve as the basis of several combinatorial algorithms.
For recognizing planar (2, 3)-tight graphs, called Laman graphs, there is an O(n log3 n) algorithm due
to Rollin, Schlipf and Schulz [22]. However, no faster algorithms than the Pebble Game are known for
the entire range of parameters k > 0 and 0 ≤ ` < 2k. To the best of our knowledge, the only (non-
open-source) implementation aimed to recognize (k, `)-sparse graphs is KINARI-web [11], due to Fox,
Jagodzinski, Yang and Streinu. Another related implementation and algorithm are due to Cs. Király
and A. Mihálykó [13, 14, 20, 12], which makes a (k, `)-tight (hyper)graph (k, `)-redundant.

Our results We present a new implementation of several versions of the Pebble Game algorithm and
compare them with the library called KINARI-web [11] on a wide range of random and real-world molec-
ular graphs. We show that our implementation of the Component Pebble Game algorithm is consistently
faster by an order of magnitude. Furthermore, we propose several heuristics to fine-tune the free pa-
rameters of the Basic Pebble algorithm and investigate their practical efficiency. We also implement an
algorithm for finding k arc-disjoint r-arborescences in a digraph and k edge-disjoint spanning trees in
an undirected graph, which correspond to the case ` = k. In addition, we implement an algorithm for
covering the arc set of a digraph with k arc-disjoint branchings and for covering the edge set of a graph
with k edge-disjoint forests. The algorithms use the Pebble Game algorithm to find a proper orientation
of the graph, then we try to construct k arc-disjoint arborescences [23, p. 904-928]. Our implementa-
tion is available online [18], and it is proposed to be part of the LEMON library [3]. We also give an
improved algorithm for the case ` = 2k when the sparsity condition is required only for the subsets of
vertices of size at least 3. Note that the case ` = 2k is a crucial tool for testing the 3D rigidity of the so-
called block and hole graphs with a single hole [9], and gives a necessary condition of 3D rigidity for k = 3.

The next section summarizes the basic definitions related to (k, `)-sparsity. In Section 3, we improve
the best-known algorithm for the special case of ` = 2k. Then, we give an overview of our new im-
plementation, and compare it with another implementation, called KINARI. Finally, we introduce and
benchmark some heuristics to improve the running time of the Basic Pebble Game algorithm.

2 Definitions and the Pebble Game algorithms

A multigraph G = (V,E) is (k, `)-sparse if any subset X of the vertices induces at most max{0, k|X| − `}
edges. In the special case ` = 2k, we require this only for the subsets X of the vertices of size at least
3. Furthermore, if G is (k, `)-sparse and it has exactly (k|V | − `) edges, then it is called (k, `)-tight. We
say that G is (k, `)-spanning if it contains a (k, `)-tight subgraph that spans the entire vertex set V . A
(k, `)-component is a largest induced proper subgraph G′ = (V ′, E′) of a (k, `)-sparse graph which induces
exactly (k|V ′| − `) edges. In this paper, we focus on the following four problems. 1) Decision: decide if
G is sparse, tight, spanning, or none; 2) Extraction: extract a largest sparse subgraph from G; and 3)
Components: find all (k, `)-components of G. We restrict ourselves to the case k > 0 and 0 ≤ ` ≤ 2k [16].
As we will see, the case ` = 2k needs to be treated separately.

Roughly speaking, the Pebble Game algorithms [16] process the edges of the input graph one by one,
and either accept or reject each of them. The edge acceptance condition is checked by reorienting an
inner digraph constructed from the accepted edges. Initially, k pebbles are placed on each vertex of the
directed graph, and throughout the algorithm, the number of pebbles plus the number of outgoing arcs
remains k on each vertex — and hence the pebbles are moved along the arc whenever it is reversed. An
edge uv is accepted if the total number of pebbles on its endpoints u and v is more than `, where ` is the
parameter of the sparsity. When accepting an edge, it is inserted into the digraph oriented away from
an endpoint containing at least one pebble, and we remove one pebble from the vertex entered by the
new arc. The rules of the algorithm ensure that the inner digraph has an orientation, which — using the
Orientation lemma [6] — ensures that the set of accepted edges forms a largest (k, `)-sparse subgraph at
the end of the execution. For a more detailed description of this algorithm, the reader is referred to [16].

340

Note that the number of pebbles plus the number of outgoing arcs is always k on each vertex, therefore,
one can easily present the algorithm without using the concept of pebbles [2].

For 0 ≤ ` < 2k, the algorithm finds a largest (k, `)-sparse subgraph regardless of the order in which the
edges are processed, because the (k, `)-sparse subsets of the edges form the independent sets of a matroid.
For the same reason, processing the edges in non-increasing order by their weights, the algorithms extracts
a maximum-weight (k, `)-sparse subgraph.

Note, however, that for ` = 2k, the (k, `)-sparse edges sets do not form the independent sets of a
matroid, hence the algorithm finds an inclusion-wise maximal (k, `)-sparse subgraph only.

The Component Pebble game is an improved version of the algorithm above in the case 0 ≤ ` < 2k.
The main ingredient of this enhanced version is that the rejection of an edge can be performed by
checking whether it is induced by a (k, `)-component of the graph formed by the accepted edges. The
(k, `)-components can be represented in such a way that rejecting an edge takes constant time, whereas
accepting an edge takes linear time in the number of the vertices, hence the running time of the algorithm
is O(n2) [16, 17, 1, 2]. The algorithm requires that the edges are processed in a specific order, therefore
it is not clear whether this idea extends to the weighted case. An attempt was given in [17], but the
analysis of the proposed data structure is not correct: the “bounded property” does not hold in general.

3 Algorithms for the case ` = 2k

In this section, we present an algorithm for extracting an inclusion-wise maximal (k, 2k)-sparse subgraph
which runs in time O(kn2m), then we give an improved algorithm running in O(k2nm) steps. Note that
if ` = 2k, then only the empty graph would be (k, 2k)-sparse with respect to the original definition.
Therefore, we only require that the subgraphs on at least three vertices are (k, `)-sparse. First of all, we
need the following lemma.

Lemma 1 Let G = (V,E) be a (k, 2k)-sparse simple graph and let u, v ∈ V two of its vertices. Assume
that there is no edge between u and v. Let D be an orientation of G in which the outdegrees are at most
k, and the outdegrees of u and v are zero. Then, G+ uv is sparse if and only if there exists a path from
each vertex in V \ {u, v} to a vertex distinct from u and v with outdegree smaller than k.

Proof: Since G is (k, 2k)-sparse, G can always be oriented in such a way that the outdegree of each
vertex is at most k, and the outdegrees of u and v are zero by the Orientation lemma [6].

Now, we prove the statement of the lemma. First, assume that there exists a path from each vertex
V \ {u, v} to a vertex with outdegree smaller than k distinct from u and v. For a subset X of the vertices
containing u, v and a third vertex w, take a path from w to a vertex with outdegree smaller than k distinct
from u and v, and reverse it. Since the outdegree of every vertex remains at most k, the outdegrees of u
and v are zero, and the outdegree of w is smaller than k, we get that

i(X) ≤
∑

x∈X

out(x) < (|X| − 2)k = k|X| − 2k,

which means that X is not tight. Therefore, G+ uv is (k, `)-sparse.
Second, assume that for a vertex w, there exist no paths from w to any vertices with outdegree smaller

than k distinct from u and v. Let R denote the set of vertices reachable from w in D. We prove that
X := R ∪ {u, v} is a tight set, which prevents the insertion of edge uv. Observe that the outdegree of
every vertex in R is exactly k, while the outdegrees of u and v are zero. Therefore,

i(X) =
∑

x∈X

out(x) = (|X| − 2)k = k|X| − 2k,

which was to be shown. �
Note that one obtains a straightforward algorithm from this proof, proposed by Cs. Király, which

runs in O(kn2m) time.

341

Now, we present an improved version of this algorithm for extracting an inclusion-wise maximal
(k, 2k)-sparse subgraph running in O(k2nm) time, also based on Lemma 1. To achieve this, instead
of traversing the graph n times to process an edge, we execute merely one BFS from the vertices with
outdegree smaller than k in the reversed of the digraph built by the Pebble Game algorithm and check
whether all vertices are reached.

The detailed description of the algorithm is the following.

Algorithm 1: Pebble Game for ` = 2k, improved version

Input: A simple graph G = (V,E) on at least three vertices and an integer k > 0.
Output: An inclusion-wise maximal (k, 2k)-sparse subgraph in G.
Method: Construct a new digraph D on the vertex set V without any arcs. Then, process
each edge uv in an arbitrary order as follows.
Reorient D such that the outdegrees of u and v are zero, which takes at most 2k path
reversals. Run a BFS in the reverse of D from the vertices with outdegree smaller than k,
distinct from u and v.

• If every vertex in V \ {u, v} is reached, then accept edge uv, and insert it into D with
arbitrary orientation.

• Otherwise, there exists a vertex w which was not reached, and hence edge uv cannot
be inserted by Lemma 1.

After each edge is processed, output the set of accepted edges.

Complexity: One reorientation requires at most 2k path reversal in time O(k2n), and the further BFS
calls take O(kn) time for each edge. Hence, the algorithm takes O(k2nm) steps in total.

4 An efficient implementation of the Pebble Game algorithms

In this section, we give a detailed description of our implementations and an in-depth practical comparison
with a previous implementation. Also, we present some of the ideas we used to speed up the Basic Pebble
Game algorithm in practice, and finally, we discuss different heuristics to fine-tune the order of edges in
the Basic Pebble Game, which we can choose freely in the unweighted case.

4.1 The implemented algorithms

We implemented the following algorithms.

1. Basic Pebble Game [16] for the basic range of k > 0 and 0 ≤ ` < 2k, including some practical
improvements discussed later in Section 4.2.

2. Algorithm 1 for extracting an inclusion-wise maximal (k, 2k)-sparse graphs.

3. Unweighted Component Pebble Game [16, 17], which stores the vertex sets of the (k, `)-components
to improve the efficiency instead of their edge sets like in [17]. Furthermore, it also contains our
terminating condition, discussed in the following section.

4. Finding k arc-disjoint r-arborescences and covering with k arc-disjoint branchings, based on the
algorithms described in [23, p. 904-928].

5. Finding k edge-disjoint spanning trees and covering with k edge-disjoint forests, based on the
algorithms described in [23, p. 904-928].

All of our algorithms provide loads of flexible options, which are configurable through a user-friendly
interface. All the implementations provide step-by-step execution control, furthermore, lots of query
functions make sure that all relevant information produced by the algorithms can be accessed.

342

4.2 Details of the Basic Pebble Game

Now we give some interesting details about our implementation of the Basic Pebble Game algorithms.

Terminating condition The edge acceptance condition is to have more than ` pebbles on the end-
points. Therefore, if the total number of pebbles drops to `, then each remaining edge is surely rejected.
Terminating the algorithm at this point reduces the running time significantly on dense graphs because
the largest sparse subgraph is often found after processing a small portion of the edges — this means
that the total number of pebbles drops to ` quickly.

Breadth-first search Since the most time-consuming part of the Basic Pebble Game is the graph
traversal algorithm, we made it as efficient as possible. We changed the complete implementation of BFS
in the LEMON library in the following way. The initializing of the BFS consists of clearing the queue
and marking the vertices as non-visited. Whilst the original BFS of LEMON iterates through all vertices
and marks them, our version iterates only on the elements of the queue.

4.3 Benchmark environment

Now we describe the exact environment of the benchmarks that are discussed later. All compared
algorithms solved the extraction problem, that is, they extract a largest sparse subgraph. The parameters
k and ` are tested for each possible pair until a limit K = 7 on k, that is, each pair (k, `) with 1 ≤ k ≤ K
and 0 ≤ ` < 2k. For a fixed number n of vertices, 5 graphs were generated, and the running times
represent the average of the graphs on n vertices for all k and `.

The types of multigraphs we tested were the following.

1. Rigid: Rigid graphs in the plane, that is, (2, 3)-spanning graphs generated by the following process,
suggested by Cs. Király and implemented by A. Mihálykó. Let T denote the union of three trees
on the same vertex set. Replace each vertex v ∈ T with a complete graph on dT (v) + 1 vertices
such that all except one new vertex is incident with exactly one of the edges of v.

2. Tight: (k, k)-tight graphs, which are generated as taking the union of the edge sets of k random
(labeled) spanning trees on the same vertex set.

3. Molecular: Molecular graphs from the Protein Data Bank (https://www.rcsb.org). Their rigid-
ity in 3D can be determined using the molecular conjecture [10], which boils down to finding six
disjoint spanning trees in the graph obtained by adding every edge five times.

4. Random: Erdős-Rényi random multigraphs, meaning that each edge is independently included
with a given probability p. We take p = 0.2 and p = 0.6.

These test instances cover all possible outputs of the Pebble Game algorithms, that is, sparse, tight,
spanning and none of them.

The benchmarks mentioned above were executed on a computer with 32 GB RAM and an AMD
Ryzen 9 3950X CPU, using Linux operating system.

4.4 Comparison of the implementations

In this section, we compare our implementation with a previous one, called KINARI-web [11, 4, 5], which
is a software project implementing data structures and algorithms for rigidity analysis, with a special
focus on applications in mechanical structures, abstract sparse graphs, and molecules.

We compare the running times of the following algorithms.

1. KINARI: The Unweighted Component Pebble Game implemented in KINARI.

2. Old: A naive implementation of the Basic Pebble Game algorithm implemented in LEMON. This
version does not use the terminating condition based on the total number of remaining pebbles.
Moreover, unlike the current version, it does not contain the fast initialization of the BFS algorithm.

343

3. Basic: A refined version of the Basic Pebble Game algorithm, implemented in LEMON. This
version includes all improvements described in Section 4.2.

4. Comp: The Unweighted Component Pebble Game implemented in LEMON. It uses the concept of
(k, `)-components to reject edges in constant time, described precisely in [16]. This implementation
also includes the ideas described in Section 4.2.

4.4.1 Benchmarks

Now we present the running times of the algorithms for the graph types mentioned above. In each figure,
the horizontal axis represents the number of vertices of the graphs and the vertical axis shows the running
time of the particular algorithms in seconds. For each set of instances, there are two figures next to each
other, except for the random graphs. The left compares all algorithms, while the right includes only the
implementations in LEMON — which tend to be the fastest.

Rigid graphs

0 200 400 600 800 1,000
0

10

20

30

40

50
KINARI
Old
Comp
Basic

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8
Old
Comp
Basic

Figure 1: The comparison on rigid graphs. Based on the figure on the left, the three LEMON algorithms
seem to be asymptotically faster than KINARI on rigid graphs. Moreover, the Component Pebble Game
in LEMON seems to have larger running times than the Basic Pebble Game on rigid graphs. This is
because it takes more time to update the (k, `)-components than the extra graph traversals of the Basic
Pebble Game.

Tight graphs

0 200 400 600 800 1,000
0

10

20

30

40

50

60
KINARI
Old
Comp
Basic

0 200 400 600 800 1,000
0

0.1

0.2

0.3

0.4

0.5

0.6
Old
Comp
Basic

Figure 2: The comparison on tight graphs. The running times seem similar on tight and rigid graphs.
However, the gap between the Component Pebble Game and the Basic Pebble Game is greater on tight
graphs than on rigid ones. This is because no edge is rejected, which means that we update the data
structures unnecessarily.

344

Molecular graphs

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3
KINARI
Old
Comp
Basic

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1
·10−2

Old
Comp
Basic

Figure 3: The comparison on molecular graphs. KINARI was principally developed for the rigidity
analysis of molecular and protein graphs in 3D. Nevertheless, it seems an order of magnitude slower
than the LEMON versions on molecular graphs as well. Again, the Component Pebble Game algorithm
is slower than the Basic Pebble Game on molecular graphs just like in the case of rigid and tight graphs.

Random graphs

0 200 400 600 800 1,000
0

25

50

75

100

125

150
KINARI
Old
Basic
Comp

(a) Random multigraphs with p = 0.2.

0 200 400 600 800 1,000
0

50

100

150

200

250

300

350
KINARI
Old
Basic
Comp

(b) Random multigraphs with p = 0.6.

Figure 4: The comparison on random graphs with the given probabilities on the edges. Surprisingly,
the running time of the Component Pebble Game implementation in KINARI is the closest to the Basic
Pebble Game algorithm in LEMON — the former is supposed to be an order of magnitude faster than
the latter on dense graphs. Furthermore, the denser the graphs are, the larger the gap grows between
the Component Pebble Game in LEMON and the other algorithms. The reason behind this is that there
are more and more edges to be rejected in the graphs, therefore, the constant-time rejections using the
(k, `)-components pay off. Moreover, the old version is also getting slower on dense random graphs, since
the effect of our terminating condition increases heavily.

4.4.2 Summary of the benchmarks

The Component Pebble Game in LEMON is an order of magnitude faster than the Component Pebble
Game of KINARI based on testing on a wide range of graphs. We also saw that the running time of the
implementation in KINARI heavily depends on the density of the graphs, unlike the Component Pebble
Game algorithm implemented in LEMON. In fact, the running time of the Component Pebble Game
algorithm in KINARI seems much larger than the running times of any version implemented in LEMON.

345

The Component Pebble Game is outstanding for dense graphs and the Basic Pebble Game for sparse
graphs, as we expected based on the worst-case analysis. We note that our experiment shows that the
running time of Algorithm 1 for the case ` = 2k is similar to that of the Basic Pebble game for ` = 2k−1.

4.5 Heuristic edge ordering

The running time of the Basic Pebble Game algorithm heavily depends on the processing order of the
edges, because the algorithm terminates as soon as the largest sparse subgraph is found. In this section,
we propose multiple heuristics for finding an order of the edges in which the algorithm processes the edges
more efficiently. The basic idea is as follows. The edge acceptance condition for an edge uv depends on
the total number of pebbles on its endpoints u and v. This means that the edges that have a large
number of pebbles on their endpoints are more “likely” to be accepted by the Pebble Game algorithms.
For example, if there is an edge that is insertable without any pebble collection, then we should choose
that one. Therefore, we design heuristics that prioritize the edges with many pebbles on their endpoints,
in the hope of finding a largest sparse subgraph and terminating as soon as possible.

4.5.1 The tested heuristics

The tested heuristics were the following.

1. Basic and Comp: the most effective versions of the Basic and the Component Pebble Game
implemented in LEMON, respectively. They process the edges in the order in which they appear
in the graph representation, that is, they iterate over the vertices and process the incident edges
with each vertex. This edge order is to be considered as the baseline in our experiments.

2. Degmin: select an edge incident with a vertex that has the smallest degree.

3. Disjoint: select an edge that has the fewest incident edges.

4. Maxpeb: select an edge such that the total number of pebbles on the endpoints of the edge is
maximal.

4.5.2 Benchmarks

Now we present a practical study of the heuristics for the types of graphs mentioned above. Note that
the presented running times do not include the time needed to select the next edge to be processed.

Rigid and tight graphs

0 200 400 600 800 1,000
0

0.1

0.2

0.3

0.4

0.5

0.6
Comp
Disjoint
Basic
Degmin
Maxpeb

(a) Rigid multigraphs.

0 200 400 600 800 1,000
0

0.1

0.2

0.3

0.4

0.5
Comp
Basic
Degmin
Disjoint
Maxpeb

(b) Tight multigraphs.

Figure 5: The comparison of the heuristics in rigid and tight graphs. The running times of the heuristic
seem to be similar on both rigid and tight graphs, because a largest sparse subgraph is found almost at
the same time regardless of the order of the edges as only a few of them are rejected.

346

Random graphs

0 200 400 600 800 1,000
0

0.4

0.8

1.2

1.6 Comp
Degmin
Disjoint
Maxpeb

0 200 400 600 800 1,000
0

0.4

0.8

1.2

1.6 Comp
Degmin
Disjoint
Maxpeb

Figure 6: Random graphs with probabilities 0.2 and 0.6 on the edges, respectively. The Basic edge
order is not shown, as it was utterly slower than any other algorithm for random graphs, see Figure 4.
Moreover, observe that the running time of the Basic algorithm decreases, but that of the other heuristics
increases on denser graphs. The figures on the right represent the differences between the rest of the
heuristics. Selecting a vertex with a minimal degree seems to be the slowest among them. The second
fastest heuristic is selecting a disjoint edge. Observe that the running time of this heuristic does not
depend on the density of the graphs. The quickest heuristic on random graphs is selecting an edge with
a maximum number of pebbles on the endpoints.

4.5.3 Conclusion of the heuristics

The order of the edges is proven highly decisive in speeding up the Pebble Game algorithms. The heuristic
edge orders make the execution of the Basic Pebble Game algorithm one order of magnitude faster on
dense graphs, similarly to the Component Pebble Game algorithm. Among the proposed heuristics,
Maxpeb seems to be the most efficient, which supports our intuition.

Acknowledgement

The authors are grateful to Tibor Jordán, Csaba Király and András Mihálykó for the discussions and for
pointing to relevant literature.

References

[1] A. R. Berg. Rigidity of Frameworks and Connectivity of Graphs. PhD thesis, Aarhus University,
Denmark, 2004.

[2] A. R. Berg and T. Jordán. Algorithms for graph rigidity and scene analysis. In G. Di Battista and
U. Zwick, editors, Algorithms-ESA 2003: 11th Annual European Symposium, Budapest, Hungary,
September 16-19, 2003. Proceedings 11, pages 78–89. Springer LNCS 2832, 2003.

[3] B. Dezső, A. Jüttner, and P. Kovács. LEMON–An open source C++ graph template library. Elec-
tronic notes in theoretical computer science, 264(5):23–45, 2011.

[4] N. Fox, F. Jagodzinski, Y. Li, and I. Streinu. KINARI-Web: a server for protein rigidity analysis.
Nucleic acids research, 39(suppl 2):W177–W183, 2011.

[5] N. Fox, F. Jagodzinski, and I. Streinu. KINARI-Lib: A C++ library for mechanical modeling and
pebble game rigidity analysis. Minisymposium on Publicly Available Geometric/Topological Software,
pages 29–32, 2012.

347

[6] S. L. Hakimi. On the degrees of the vertices of a directed graph. Journal of the Franklin Institute,
279(4):290–308, 1965.

[7] D. J. Jacobs and B. Hendrickson. An algorithm for two-dimensional rigidity percolation: the pebble
game. Journal of Computational Physics, 137(2):346–365, 1997.

[8] T. Jordán. Combinatorial rigidity: graphs and matroids in the theory of rigid frameworks. Discrete
Geometric Analysis, MSJ Memoirs, 34:33–112, 2016.

[9] T. Jordán. Rigid block and hole graphs with a single block. Discrete Mathematics, 346(3):113268,
2023.

[10] N. Katoh and S. Tanigawa. A proof of the molecular conjecture. Discrete & Computational Geometry,
45(4):647–700, 2011.

[11] KINARI. Kinematics and rigidity. http://kinari.cs.umass.edu. Accessed: April 27, 2022.

[12] Cs. Király and A. Mihálykó. Fast algorithms for sparsity matroids and the global rigidity aug-
mentation problem. Technical Report TR-2022-05, Egerváry Research Group, Budapest, 2022.
https://egres.elte.hu.

[13] Cs. Király and A. Mihálykó. Globally rigid augmentation of rigid graphs. SIAM Journal on Discrete
Mathematics, 36(4):2473–2496, 2022.

[14] Cs. Király and A. Mihálykó. Sparse graphs and an augmentation problem. Mathematical Program-
ming, 192(1-2):119–148, 2022.

[15] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering mathematics,
4(4):331–340, 1970.

[16] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. Discrete Mathematics, 308(8):1425–
1437, 2008.

[17] A. Lee, I. Streinu, and L. Theran. Finding and maintaining rigid components. Canadian Conference
on Computational Geometry, 2005.

[18] LEMON. Library for Efficient Modeling and Optimization in Networks. Repository of sparse graphs:
https://lemon.cs.elte.hu/repos/sparseGraphs. Accessed: February 21, 2023.

[19] M. Lorea. On matroidal families. Discrete Mathematics, 28(1):103–106, 1979.

[20] A. Mihálykó. https://github.com/mihalykoandras/rigidityAugmentations.git. Accessed:
February 21, 2023.

[21] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London
Mathematical Society, 1(1):445–450, 1961.

[22] J. Rollin, L. Schlipf, and A. Schulz. Recognizing Planar Laman Graphs. In M. A. Bender, O. Svens-
son, and G. Herman, editors, 27th Annual European Symposium on Algorithms (ESA 2019), volume
144 of Leibniz International Proceedings in Informatics (LIPIcs), pages 79:1–79:12, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[23] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume B. Springer, 2003.

[24] B. Schulze and W. Whiteley. Rigidity and scene analysis. In Handbook of Discrete and Computational
Geometry, pages 1593–1632. Chapman and Hall/CRC, 2017.

[25] W. T. Tutte. On the problem of decomposing a graph into n connected factors. Journal of the
London Mathematical Society, 1(1):221–230, 1961.

348

Newton-type algorithms for inverse optimization
problems I and II: Weighted infinity norm and span

Kristóf Bérczi1

MTA-ELTE Matroid Optimization
Research Group

ELKH-ELTE Egerváry Research Group
Department of Operations Research

Eötvös Loránt University
Budapest, Hungary

kristof.berczi@ttk.elte.hu

Lydia Mirabel Mendoza-Cadena1

MTA-ELTE Matroid Optimization
Research Group

Department of Operations Research
Eötvös Loránt University

Budapest, Hungary
lmmendoza@proton.me

Kitti Varga12

MTA-ELTE Matroid Optimization
Research Group

ELKH-ELTE Egerváry Research Group
Department of Operations Research

Eötvös Loránt University
Budapest, Hungary
vkitti@math.bme.hu

Abstract: Inverse optimization problems appear naturally in diverse applications, such as
system identification in seismic and medical tomography, or bilevel programming. In such
problems, we are given a feasible but not necessarily optimal solution to an underlying opti-
mization problem together with a linear cost function, and the goal is to modify the costs by
a small deviation vector so that the input solution becomes optimal.

The difference between the new and the original cost functions can be measured in several
ways. In this work, we focus on two variants: Part I concentrates on minimizing the weighted
ℓ∞-norm of the deviation vector, while Part II concentrates on minimizing its weighted span.
In both cases, we provide a min-max characterization for the minimum size of an optimal
deviation vector with respect to the given objective. Furthermore, we give a simple, purely
combinatorial algorithm that determines such a vector in pseudo-polynomial time, assuming
that a pseudo-polynomial time algorithm for solving the underlying combinatorial optimiza-
tion problem is available.

Keywords: Algorithms, Infinity norm, Inverse optimization, Min-max theorem, Span

1 Introduction

Inverse optimization problems have long been the focus of research due to their wide applicability in both
theory and practice. The roots of inverse optimization go back to the work of Burton and Toit [5] who

1The work was supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021 and by the Hungarian National Research, Development and Innovation Office – NKFIH, grant numbers FK128673
and TKP2020-NKA-06.

2Kitti Varga was supported by the Hungarian National Research, Development and Innovation Office – NKFIH, grant
number K124171.

349

studied the inverse shortest paths problem, that is, the problem of recovering the edge costs given some
information about the shortest paths in the graph. Since their pioneering work, countless of applications
and extensions emerged; we refer the interested reader to [14] for the basics and to [7, 10] for surveys.

In a classical optimization problem, we are given a set of feasible solutions together with a linear cost
function, and the goal is to find a feasible solution that minimizes or maximizes the cost. In contrast,
in an inverse optimization problem we are also given a fixed feasible solution, and the goal is to modify
the costs ‘as little as possible’ so that the input solution becomes optimal. There may be various ways
to measure the deviation of the new cost function from the original one, and, as one would expect, the
choice of the objective greatly affects the complexity of the problem. In order to avoid confusion, we
refer to solutions of the inverse optimization problem and of the underlying combinatorial optimization
problem as feasible deviation vectors and solutions, respectively.

In the past decades, inverse optimization problems found numerous applications. As an example, let
us briefly describe the Pathway concordance problem, see [6]. A clinical pathway describes a standardized
sequence of steps for managing a clinical process in the delivery of care for a specific disease, with the
aim of optimizing the outcome on a patient or population-level. These processes are determined by
multidisciplinary medical experts, and have been shown to efficiently improve e.g. patient survival and
satisfaction, wait times, and cost of care. However, patients’ journeys through the healthcare system
can differ significantly from the recommended pathways, which raises the problem of measuring the
concordance of patient-traversed pathways against the recommended ones. The problem can be modeled
by a directed graph whose vertices correspond to activities that the patient can undertake, and the arcs
indicate that a patient went from one activity to another. The ‘cost’ of a patient undertaking or missing
certain activities and traversing arcs can be modeled by arc costs. The goal is to determine arc costs
such that the reference pathways are optimal, that is, they are shortest paths between the corresponding
start and end vertices. Then, assuming such arc costs are available, the journey of any patient can be
scored based on the cost of the associated directed walk through the network.

Other applications include tomographic imaging [8], timely decision-making [11], and inverse transport
that plays an important role e.g. in medical imaging (optical tomography, optical molecular imaging) and
in geophysical imaging (remote sensing in the atmosphere), as explained in [3]. In all cases, the function
used to measure the size of the deviation vector may be different depending on the actual problem. Two
natural objectives are to minimize the largest absolute value of the coordinates of the deviation vector,
and to minimize the difference between its largest and smallest coordinates. The former motivates the
investigation of the ℓ∞-norm objective, while the latter leads to the study of the span objective.

Previous work. Inverse problems under the ℓ∞-norm have been studied in various settings. Xi-
aoguang [15] considered the inverse optimization problem of submodular functions on digraphs, and
gave an LP-based algorithm that solves most inverse network optimization problems in polynomial time.
Zhang and Liu [18] suggested a method for solving a general inverse LP problem including upper and
lower bound constraints. Their approach is based on the optimality conditions for LP problems if the
given feasible solution is a 0-1 vector, and one optimal solution of the original LP problem has all com-
ponents between 0 and 1, which often happens in network or combinatorial optimization problems. In
a later paper [13], the same authors studied the inverse maximum-weight matching problem in non-
bipartite graphs under the ℓ∞-norm objective. They showed that the problem can be formulated as a
maximum-mean alternating cycle problem in an undirected network, and can be solved in polynomial
time by a binary search algorithm and in strongly polynomial time by an ascending algorithm.

Using LP descriptions, Ahuja and Orlin [2] proved that if an optimization problem can be modeled
as an LP, then the same holds for the underlying inverse optimization problem under ℓ1- or ℓ∞-norm
objectives. Furthermore, if the optimization problem is polynomially solvable for linear cost functions,
then the inverse counterparts with ℓ1- and ℓ∞-norms are also polynomially solvable.

In [19], Zhang and Liu proposed a model that generalizes numerous inverse combinatorial optimization
problems when no bounds are given on the coordinates of the deviation vector. They exhibited a Newton-
type algorithm for their model under the ℓ∞-norm that solves the problem in strongly polynomial time,
assuming that an underlying subproblem is solvable in strongly polynomial time for any fixed value of a

350

certain parameter that the subproblem depends on. In general, the problem arising is NP-hard, but it
can be solved efficiently in special cases, such as the inverse spanning tree, shortest path, matching, or
matroid intersection problems.

Zhang, Guan, and Zhang [17] provided a mathematical model of the inverse spanning tree problem,
gave a characterization of optimal solutions, and developed a strongly polynomial-time algorithm for
determining an optimal deviation vector. Yang and Zhang [16] presented strongly polynomial-time al-
gorithms to solve the inverse min-max spanning tree and the inverse maximum capacity path problems
when bounds are also given on the coordinates of the deviation vector. Lasserre [12] considered the inverse
optimization problem associated with the polynomial program and a given current feasible solution, and
provided a systematic numerical scheme to compute an inverse optimal solution. Ahmadian, Bhaskar,
Sanità, and Swamy [1] studied integral inverse optimization problems from an approximation point of
view. They obtained tight or nearly-tight approximation guarantees for various inverse optimization
problems, and some of their results apply for ℓ∞-norm as well. Recently, inverse optimization problems
with multiple weight functions were introduced by the authors, see [4].

Most papers on inverse optimization consider algorithmic aspects, and so they do not provide a min-
max characterization for the optimum value in question. Recently, Frank and Murota [9] developed
a general min-max formula for the minimum of an integer-valued separable discrete convex function,
where the minimum is taken over the set of integral elements of a box total dual integral polyhedron.
Their approach covers and even extends a wide class of inverse combinatorial optimization problems.
Nevertheless, our problems do not fit in the box-TDI framework as neither the ℓ∞-norm nor the span is
separable convex, and the optimal solutions are not necessarily integral for them.

Basic notation. We denote the sets of real and positive real numbers by R and R+, respectively. For
a positive integer k, we use [k] := {1, . . . , k}. Given a ground set S and subsets X,Y ⊆ S, the symmetric
difference of X and Y is denoted by X△Y := (X \ Y) ∪ (Y \ X). For a weight function w ∈ RS

+, the
total sum of its values over X is denoted by w(X) :=

∑{
w(s)

∣∣ s ∈ X
}

, where the sum over the empty

set is always considered to be 0. Furthermore, we use 1
w (X) :=

∑{
1

w(s)

∣∣ s ∈ X
}

. By convention, we

define min{∅} = +∞ and max{∅} = −∞.

Our results. Let S be a finite ground set, F ⊆ 2S be a collection of feasible solutions for an underlying
optimization problem, F ∗ ∈ F be an input solution, c ∈ RS be a cost function, w ∈ RS

+ be a positive
weight function, and ℓ : S → R∪ {−∞} and u : S → R∪ {+∞} be lower and upper bounds, respectively,
such that ℓ ≤ u. In the minimum-cost inverse optimization problem under weighted ℓ∞-norm objective
(S,F , F ∗, c, ℓ, u, ∥ · ∥∞,w), we seek a deviation vector p ∈ RS such that

(a) F ∗ is a minimum cost member of F with respect to c− p,
(b) p is within the bounds ℓ ≤ p ≤ u, and

(c) ∥p∥∞,w := max
{
w(s) · |p(s)|

∣∣ s ∈ S
}

is minimized.

In the minimum-cost inverse optimization problem under weighted span objective
(
S, F , F ∗, c, ℓ, u,

spanw(·)
)
, condition (c) modifies to

(c’) spanw(p) := max
{
w(s) · p(s)

∣∣ s ∈ S
}
−min

{
w(s) · p(s)

∣∣ s ∈ S
}

is minimized.

Due to the lower and upper bounds ℓ and u, it might happen that there exists no deviation vector p satisfy-
ing the requirements. A deviation vector is called feasible if it satisfies conditions (a) and (b), and optimal
if in addition it attains the minimum in (c) or (c’). We denote the problems by (S,F , F ∗, c,−∞,+∞,
∥ · ∥∞,w) and

(
S,F , F ∗, c,−∞,+∞, spanw(·)

)
when no bounds are given on the coordinates of p at all.

For the problems above, we provide min-max characterizations for the optimum value when ℓ ≡ −∞
and u ≡ +∞. Our main result is giving purely combinatorial algorithms that determines an optimal
deviation vector in pseudo-polynomial time, assuming access to a pseudo-polynomial time algorithm for
the underlying combinatorial optimization problem. However, if w ≡ 1 and the underlying optimization

351

problem can be solved in (strongly) polynomial time, then our algorithms run in (strongly) polynomial
time as well. Furthermore, the algorithms also work when the lower and upper bounds are arbitrary, and
the feasible solutions of the underlying optimization problem have different sizes. Hence our framework
includes classical inverse optimization problems such as the inverse spanning arborescence, matching, and
matroid intersection problems under the ℓ∞-norm and span objectives.

Although being rather similar in nature, the ℓ∞-norm and the span behave quite differently as the
infinite norm measures how far the coordinates of p are from 0, while the span measures how far the
coordinates of p are from each other. In particular, it might happen that there exists a non-zero feasible
deviation vector p with span(p) = 0.

In the rest of the paper, results on the infinity norm objective are discussed in Section 2, while
Section 3 considers the span objective. Due to space constraints, most of the proofs and details are
deferred to the full version of this paper, which will soon be available on arXiv.

2 Weighted infinity norm

First, we consider the problem of minimizing the weighted ℓ∞-norm of the deviation vector, where w ∈ RS
+

is a positive weight function. For any δ ≥ 0, let p[δ|ℓ,u|w] : S → R be defined as

p[δ|ℓ,u|w](s) :=

ℓ(s) if s ∈ F ∗ and δ/w(s) < ℓ(s),

δ/w(s) if s ∈ F ∗ and ℓ(s) ≤ δ/w(s) ≤ u(s),

u(s) if s ∈ F ∗ and u(s) < δ/w(s),

ℓ(s) if s ∈ S \ F ∗ and −δ/w(s) < ℓ(s),

−δ/w(s) if s ∈ S \ F ∗ and ℓ(s) ≤ −δ/w(s) ≤ u(s),

u(s) if s ∈ S \ F ∗ and u(s) < −δ/w(s).

We simply write p[δ||w] when ℓ ≡ −∞ and u ≡ +∞. The following technical claim shows that there exists
an optimal deviation vector of special form.

Lemma 1 Let (S,F , F ∗, c, ℓ, u, ∥ · ∥∞,w) be a feasible minimum-cost inverse optimization problem and
let p be an optimal deviation vector. Then p[δ|ℓ,u|w] is also an optimal deviation vector, where δ :=

max
{
w(s) · |p(s)|

∣∣ s ∈ S
}
.

Proof: The lower and upper bounds ℓ ≤ p[δ|ℓ,u|w] ≤ u hold by definition, hence (b) is satisfied.
Now we show that (a) holds. The assumption ℓ ≤ p ≤ u and the definition of δ imply that −δ/w(s) ≤

p(s) ≤ u(s) and ℓ(s) ≤ p(s) ≤ δ/w(s) hold for every s ∈ S. Let F ∈ F be an arbitrary solution. Then

(c− p[δ|ℓ,u|w])(F
∗)− (c− p[δ|ℓ,u|w])(F)

=

[
c(F ∗)−

∑

s∈F∗

p[δ|ℓ,u|w](s)

]
−
[
c(F)−

∑

s∈F

p[δ|ℓ,u|w](s)

]

= c(F ∗)− c(F)−
∑

s∈F∗\F
p[δ|ℓ,u|w](s) +

∑

s∈F\F∗

p[δ|ℓ,u|w](s)

= c(F ∗)− c(F)−
∑

s∈F∗\F
ℓ(s)≤δ/w(s)≤u(s)

δ/w(s)−
∑

s∈F∗\F
u(s)<δ/w(s)

u(s) +
∑

s∈F\F∗

−δ/w(s)<ℓ(s)

ℓ(s) +
∑

s∈F\F∗

ℓ(s)≤−δ/w(s)≤u(s)

(
− δ/w(s)

)

≤ c(F ∗)− c(F)−
∑

s∈F∗\F
p(s) +

∑

s∈F\F∗

p(s)

352

=
(
c(F ∗)− p(F ∗)

)
−
(
c(F)− p(F)

)

= (c− p)(F ∗)− (c− p)(F)

≤ 0,

where the last inequality holds by the feasibility of p.
Finally, to see that (c) holds for p[δ|ℓ,u|w], observe that ∥p[δ|ℓ,u|w]∥∞,w ≤ δ = ∥p∥∞,w. This concludes

the proof of the lemma. □

Corollary 2 For any feasible minimum-cost inverse optimization problem (S,F , F ∗, c, ℓ, u, ∥ · ∥∞,w),
there exists δ ≥ 0 for which p[δ|ℓ,u|w] is an optimal deviation vector.

2.1 Min-max characterization

With the help of Corollary 2, we are ready to provide a min-max characterization for the weighted infinity
norm of an optimal deviation vector when no bounds are given.

Theorem 3 Let (S,F , F ∗, c,−∞,+∞, ∥ · ∥∞,w) be a minimum-cost inverse optimization problem. Then

min
{
∥p∥∞,w

∣∣ p is a feasible deviation vector
}

= max

{
0, max

{
c(F ∗)− c(F)

1
w (F ∗△F)

∣∣∣∣F ∈ F , F ̸= F ∗
}}

.

Proof: Let p be an optimal deviation vector. By Corollary 2, we may assume that p is of the form
p[δ||w] for some δ ≥ 0. For ease of notation, let us define

d := max

{
c(F ∗)− c(F)

1
w (F ∗△F)

∣∣∣∣F ∈ F , F ̸= F ∗
}
.

If F ∗ is a minimum c-cost member of F , then we are clearly done. Otherwise, δ, d > 0 holds, and it
suffices to show δ = d. Let F ∈ F , F ̸= F ∗ be arbitrary. Since p[δ||w] is feasible, we get

0 ≥ (c− p[δ||w])(F
∗)− (c− p[δ||w])(F)

=

[
c(F ∗)−

∑

s∈F∗

δ/w(s)

]
−

c(F)−

∑

s∈F∩F∗

δ/w(s)−
∑

s∈F\F∗

(
− δ/w(s)

)

= c(F ∗)− c(F)−
∑

s∈F∗△F

δ/w(s)

= c(F ∗)− c(F)− δ · 1
w (F ∗△F).

This implies

δ ≥ c(F ∗)− c(F)
1
w (F ∗△F)

,

hence δ ≥ d. To prove δ ≤ d, it is enough to show that p[d||w] is a feasible deviation vector. For any
F ∈ F , F ̸= F ∗, we have

(c− p[d||w])(F
∗)− (c− p[d||w])(F) = c(F ∗)− c(F)− d · 1

w (F ∗△F)

≤ c(F ∗)− c(F)− c(F ∗)− c(F)
1
w (F ∗△F)

· 1
w (F ∗△F)

= 0,

which means that p[d||w] is indeed feasible. □

353

2.2 Algorithm

The goal of this section is to give a simple algorithm for determining an optimal deviation vector. First,
we give a necessary and sufficient condition for the feasibility of the minimum-cost inverse optimization
problem (S,F , F ∗, c, ℓ, u, ∥ · ∥∞,w).

Lemma 4 Let (S,F , F ∗, c, ℓ, u, ∥ · ∥∞,w) be a minimum-cost inverse optimization problem. For any
F ∈ F , define

W (F) :=

1/

∑

s∈F∗\F
u(s)=+∞

1/w(s) +
∑

s∈F\F∗

ℓ(s)=−∞

1/w(s)

 if the divisor is not 0,

0 otherwise,

and

m1 := max
{
w(s) · |u(s)|

∣∣ s ∈ F ∗, u(s) ̸= +∞
}
,

m2 := max
{
w(s) · |ℓ(s)|

∣∣ s ∈ S \ F ∗, ℓ(s) ̸= −∞
}
,

m3 := max
F∈F

W (F) ·

c(F

∗)− c(F)−
∑

s∈F∗\F
u(s)̸=+∞

u(s) +
∑

s∈F\F∗

ℓ(s)̸=−∞

ℓ(s)

 .

Then the problem is feasible if and only if p[m|ℓ,u|w] is a feasible deviation vector for

m := max{0,m1,m2,m3}.

Proof: Clearly, if p[m|ℓ,u|w] is feasible, then so is the problem.
To see the other direction, suppose to the contrary that p[m|ℓ,u|w] is not feasible, but there exists a

feasible deviation vector p. Then there exists F ∈ F such that

0 < (c− p[m|ℓ,u|w])(F
∗)− (c− p[m|ℓ,u|w])(F)

= c(F ∗)− c(F)−
∑

s∈F∗\F
u(s)̸=+∞

u(s)−
∑

s∈F∗\F
u(s)=+∞

m/w(s) +
∑

s∈F\F∗

ℓ(s)̸=−∞

ℓ(s) +
∑

s∈F\F∗

ℓ(s)=−∞

(
−m/w(s)

)

= c(F)− c(F ′)−
∑

s∈F∗\F
u(s)̸=+∞

u(s) +
∑

s∈F\F∗

ℓ(s) ̸=−∞

ℓ(s)−m

∑

s∈F∗\F
u(s)=+∞

1/w(s) +
∑

s∈F\F∗

ℓ(s)=−∞

1/w(s)

 .

If {s ∈ F ∗ \ F | u(s) = +∞} ∪ {s ∈ F \ F ∗ | ℓ(s) = −∞} = ∅, then we obtain

0 < c(F ∗)− c(F)−
∑

s∈F∗\F
u(s)̸=+∞

u(s) +
∑

s∈F\F∗

ℓ(s)̸=−∞

ℓ(s)−m · 0

≤ c(F ∗)− c(F)−
∑

s∈F∗\F
p(s) +

∑

s∈F\F∗

p(s)

=
(
c(F ∗)− p(F ∗)

)
−
(
c(F)− p(F)

)

≤ 0,

354

where the last inequality holds since p is feasible, leading to a contradiction. If
{
s ∈ F ∗ \ F

∣∣ u(s) = +∞
}

∪
{
s ∈ F \ F ∗ ∣∣ ℓ(s) = −∞

}
̸= ∅, then we obtain

0 < c(F ∗)− c(F)−
∑

s∈F∗\F
u(s)̸=+∞

u(s) +
∑

s∈F\F∗

ℓ(s)̸=−∞

ℓ(s) −m/W (F),

which contradicts the definition of m. □
Now we turn to the description of the algorithm and its analysis. The high-level idea is as follows. In

each iteration, we determine an optimal solution F ∈ F of the underlying optimization problem using an
oracle as a black box. If the cost of F equals that of F ∗, then we stop. Otherwise, we modify the costs
in such a way that F is ‘eliminated’, that is, F and F ∗ share the same cost with respect to the modified
cost function – hence the name Newton-type algorithm. The algorithm is presented as Algorithm 1.

Algorithm 1: Algorithm for the minimum-cost inverse optimization problem under the weighted
ℓ∞-norm objective

Input: A minimum-cost inverse optimization problem (S,F , F ∗, c, ℓ, u, ∥ · ∥∞,w) and an oracle O
for the minimum-cost optimization problem (S,F , c′) with any cost function c′.

Output: An optimal deviation vector if the problem is feasible, otherwise Infeasible.

1 d0 ← max

{
0, max

{
w(s) · ℓ(s)

∣∣ s ∈ S, ℓ(s) > 0
}
, max

{
w(s) ·

∣∣u(s)
∣∣
∣∣∣ s ∈ S, u(s) < 0

}}

2 c0 ← c− p[d0|ℓ,u|w]

3 F0 ← a minimum c0-cost member of F determined by O
4 i← 0
5 while ci(F

∗) > ci(Fi) do
6 Si ←

{
s ∈ F ∗ ∣∣ di < w(s) · u(s)

}
∪
{
s ∈ S \ F ∗ ∣∣ di > w(s) · ℓ(s)

}

7 if (F ∗△Fi) ∩ Si ̸= ∅ then

8 δi+1 ← min

{
ci(F

∗)− ci(Fi)
1
w

(
(F ∗△Fi) ∩ Si

) , min
s∈F∗∩Si

{
u(s)− di

w(s)

}
, min
s∈(S\F∗)∩Si

{
di
w(s)

− ℓ(s)
}}

9 else
10 return Infeasible

11 di+1 ← di + δi+1

12 ci+1 ← c− p[di+1|ℓ,u|w]

13 Fi+1 ← a minimum ci+1-cost member of F determined by O
14 i← i+ 1

15 return p[di|ℓ,u|w]

The correctness and the running time of the algorithm can be proved relying on the following lemmas.

Lemma 5 For any i ∈ N, if F ∗ is not a minimum ci-cost member of F , then either δi+1 > 0 or
Algorithm 1 declares the problem to be infeasible. □

Lemma 6 For any i ∈ N, if F ∗ is not a minimum ci-cost member of F , then either Si+1 ⊆ Si or
Algorithm 1 declares the problem to be infeasible. □

Lemma 7 For any i ∈ N, if F ∗ is not a minimum ci-cost member of F , then ci+1(F ∗) = ci+1(Fi) or
Si+1 ⊊ Si, or Algorithm 1 declares the problem to be infeasible. □

Lemma 8 For any i ∈ N, if F ∗ is not a minimum ci-cost member of F , then
1
w

(
(Fi − F ∗) ∩ Si

)
− 1

w

(
(Fi ∩ F ∗) ∩ Si

)
> 1

w

(
(Fi+1 − F ∗) ∩ Si+1

)
− 1

w

(
(Fi+1 ∩ F ∗) ∩ Si+1

)

or Si+1 ⊊ Si, or Algorithm 1 declares the problem to be infeasible. □

355

With the help of Lemmas 5-8, one can verify that Algorithm 1 solves the problem in pseudo-polynomial
time, assuming that a pseudo-polynomial algorithm for the underlying optimization problem is available.
However, if w ≡ 1 and the underlying optimization problem can be solved in (strongly) polynomial time
for any cost function, then the algorithm finds an optimal deviation vector in (strongly) polynomial time.

Theorem 9 Given a pseudo-polynomial algorithm for the minimum-cost optimization problem (S,F , c′)
for any cost function c′, Algorithm 1 is a pseudo-polynomial-time algorithm for the minimum-cost inverse
optimization problem (S,F , F ∗, c, ℓ, u, ∥ · ∥∞,w). □

3 Weighted span

Now we turn our attention to the weighted span objective. Recall that w ∈ RS
+ is a positive weight

function. For any δ,∆ ∈ R, let p[δ,∆|ℓ,u|w] : S → R be defined as

p[δ,∆|ℓ,u|w](s) :=

(δ + ∆)/w(s) if s ∈ F ∗ and ℓ(s) ≤ (δ + ∆)/w(s) ≤ u(s),

ℓ(s) if s ∈ F ∗ and (δ + ∆)/w(s) < ℓ(s),

u(s) if s ∈ F ∗ and u(s) < (δ + ∆)/w(s),

∆/w(s) if s ∈ S \ F ∗ and ℓ(s) ≤ ∆/w(s) ≤ u(s),

ℓ(s) if s ∈ S \ F ∗ and ∆/w(s) < ℓ(s),

u(s) if s ∈ S \ F ∗ and u(s) < ∆/w(s).

We simply write p[δ,∆||w] when ℓ ≡ −∞ and u ≡ +∞. The following technical claim shows that there
exists an optimal deviation vector of special form.

Lemma 10 Let
(
S,F , F ∗, c, ℓ, u, spanw(·)

)
be a feasible minimum-cost inverse optimization problem and

let p be an optimal deviation vector. Then p[δ,∆|ℓ,u|w] is also an optimal deviation vector, where ∆ :=

min
{
w(s) · p(s)

∣∣ s ∈ S
}
and δ := max

{
w(s) · p(s)

∣∣ s ∈ S
}
−∆.

Proof: The lower and upper bounds ℓ ≤ p[δ,∆|ℓ,u|w] ≤ u hold by definition, hence (b) is satisfied.
Now we show that (a) holds. The assumption ℓ ≤ p ≤ u and the definition of ∆ and δ imply that

ℓ(s) ≤ p(s) ≤ (δ + ∆)/w(s) and ∆/w(s) ≤ p(s) ≤ u(s) hold for every s ∈ S. Let F ∈ F be an arbitrary
solution. Then

(c− p[δ,∆|ℓ,u|w])(F
∗)− (c− p[δ,∆|ℓ,u|w])(F)

=

c(F

∗)−
∑

s∈F∗
ℓ(s)≤(δ+∆)/w(s)≤u(s)

(δ + ∆)/w(s)−
∑

s∈F∗
u(s)<(δ+∆)/w(s)

u(s)

−

c(F)−

∑

s∈F∩F∗
ℓ(s)≤(δ+∆)/w(s)≤u(s)

(δ + ∆)/w(s)−
∑

s∈F∩F∗
u(s)<(δ+∆)/w(s)

u(s)−
∑

s∈F\F∗

∆/w(s)<ℓ(s)

ℓ(s)−
∑

s∈F\F∗

ℓ(s)≤∆/w(s)≤u(s)

∆/w(s)

= c(F ∗)− c(F)−
∑

s∈F∗\F
ℓ(s)≤(δ+∆)/w(s)≤u(s)

(δ + ∆)/w(s)−
∑

s∈F∗\F
u(s)<(δ+∆)/w(s)

u(s) +
∑

s∈F\F∗

∆/w(s)<ℓ(s)

ℓ(s) +
∑

s∈F\F∗

ℓ(s)≤∆/w(s)≤u(s)

∆/w(s)

≤ c(F ∗)− c(F)−
∑

s∈F∗\F
p(s) +

∑

s∈F\F∗

p(s)

=
(
c(F ∗)− p(F ∗)

)
−
(
c(F)− p(F)

)

≤ 0,

356

where the last inequality holds by the feasibility of p.
Finally, to see that (c’) holds for p[δ,∆|ℓ,u|w], observe that spanw(p) = max

{
w(s) · p(s)

∣∣ s ∈ S
}
−

min
{
w(s) · p(s)

∣∣ s ∈ S
}

= δ and spanw(p[δ,∆|ℓ,u|w]) ≤ (δ + ∆) − ∆ = δ. That is, p[δ,∆|ℓ,u|w] is also
optimal, concluding the proof of the lemma. □

Corollary 11 For any feasible minimum-cost inverse optimization problem
(
S,F , F ∗, c, ℓ, u, spanw(·)

)
,

there exist δ,∆ ∈ R for which p[δ,∆|ℓ,u|w] is an optimal deviation vector with

min
{
w(s) · p[δ,∆|ℓ,u|w](s)

∣∣ s ∈ S
}

= ∆, and

max
{
w(s) · p[δ,∆|ℓ,u|w](s)

∣∣ s ∈ S
}

= δ + ∆.

Moreover,

∆ ≤ min
{
w(s) · u(s)

∣∣ s ∈ S
}
, and

δ + ∆ ≥ max
{
w(s) · ℓ(s)

∣∣ s ∈ S
}
.

Proof: The first half is straightforward from Lemma 10. Since ℓ(s) ≤ p[δ,∆|ℓ,u|w](s) ≤ u(s) and ∆ ≤
w(s) · p[δ,∆|ℓ,u|w](s) ≤ δ + ∆ hold for any s ∈ S, the second statement follows. □

3.1 Min-max characterization

With the help of Corollary 11, we are ready to provide a min-max characterization for the weighted span
of an optimal deviation vector when no bounds are given.

Theorem 12 Let
(
S, F , F ∗, c, −∞, +∞, spanw(·)

)
be a minimum-cost inverse optimization problem.

Then

min
{

spanw(p)
∣∣ p is a feasible deviation vector

}

= max

0, max

{
c(F ∗)− c(F ′′)

1
w (F ∗ \ F ′′)

∣∣∣∣F ′′ ∈ F , F ′′ ̸= F ∗, 1
w (F ′′) = 1

w (F ∗)

}
,

max

c(F ∗)− c(F ′)
1
w (F ∗)− 1

w (F ′)
− c(F ∗)− c(F ′′′)

1
w (F ∗)− 1

w (F ′′′)
1
w (F ∗ \ F ′)

1
w (F ∗)− 1

w (F ′)
−

1
w (F ∗ \ F ′′′)

1
w (F ∗)− 1

w (F ′′′)

∣∣∣∣∣∣∣∣∣∣

F ′, F ′′′ ∈ F , 1
w (F ′) < 1

w (F ∗) < 1
w (F ′′′)

.

Proof: Let p be an optimal deviation vector. By Corollary 11, we may assume that p is of the form
p[δ,∆||w] for some δ,∆ ∈ R such that min

{
w(s) ·p(s)

∣∣ s ∈ S
}

= ∆ and max
{
w(s) ·p(s)

∣∣ s ∈ S
}

= δ+ ∆.
For ease of notation, let us denote the value of the maximum in the statement of the theorem by d.
Furthermore,

D :=

max
F ′∈F

1
w (F ′)< 1

w (F∗)

{
c(F ∗)− c(F ′)− d · 1

w (F ∗ \ F ′)
1
w (F ∗)− 1

w (F ′)

}
if
{
F ′ ∈ F

∣∣ 1
w (F ′) < 1

w (F ∗)
}
̸= ∅,

min
F ′′′∈F

1
w (F ′′′)> 1

w (F∗)

{
c(F ∗)− c(F ′′′)− d · 1

w (F ∗ \ F ′′′)
1
w (F ∗)− 1

w (F ′′′)

}
if
{
F ′ ∈ F

∣∣ 1
w (F ′) < 1

w (F ∗)
}

= ∅ and
{
F ′′′ ∈ F

∣∣ 1
w (F ′′′) > 1

w (F ∗)
}
̸= ∅,

0 otherwise.

357

Define δ := max
{
w(s) · p(s)

∣∣ s ∈ S
}
−min

{
w(s) · p(s)

∣∣ s ∈ S
}

. Clearly, δ ≥ 0. Let F ∈ F , F ̸= F ∗

be an arbitrary solution. Since p[δ,∆||w] is feasible, we have

0 ≥ (c− p[δ,∆||w])(F
∗)− (c− p[δ,∆||w])(F)

=
(
c(F ∗)− δ · 1

w (F ∗)−∆ · 1
w (F ∗)

)
−
(
c(F ∗)− δ · 1

w (F ∩ F ∗)−∆ · 1
w (F)

)

= c(F ∗)− c(F)− δ · 1
w (F ∗ \ F)−∆ ·

(
1
w (F ∗)− 1

w (F)
)
.

Thus for any F ′′ ∈ F such that F ′′ ̸= F ∗ and 1
w (F ′′) = 1

w (F ∗), if such F ′′ exists,

δ ≥ c(F ∗)− c(F ′′)
1
w (F ∗ \ F ′′)

,

for any F ′ ∈ F such that 1
w (F ′) < 1

w (F ∗), if such F ′ exists,

∆ ≥ c(F ∗)− c(F ′)− δ · 1
w (F ∗ \ F ′)

1
w (F ∗)− 1

w (F ′)
,

and for any F ′′′ ∈ F such that 1
w (F ′′′) > 1

w (F ∗), if such F ′′′ exists,

∆ ≤ c(F ∗)− c(F ′′′)− δ · 1
w (F ∗ \ F ′′′)

1
w (F ∗)− 1

w (F ′′′)
.

By the above, for any F ′, F ′′′ ∈ F with 1
w (F ′) < 1

w (F ∗) < 1
w (F ′′′), if such F ′ and F ′′′ exist, we have

c(F ∗)− c(F ′)− δ · 1
w (F ∗ \ F ′)

1
w (F ∗)− 1

w (F ′)
≤ c(F ∗)− c(F ′′′)− δ · 1

w (F ∗ \ F ′′′)
1
w (F ∗)− 1

w (F ′′′)
,

implying

δ ≥

c(F ∗)− c(F ′)
1
w (F ∗)− 1

w (F ′)
− c(F ∗)− c(F ′′′)

1
w (F ∗)− 1

w (F ′′′)
1
w (F ∗ \ F ′)

1
w (F ∗)− 1

w (F ′)
−

1
w (F ∗ \ F ′′′)

1
w (F ∗)− 1

w (F ′′′)

.

Therefore δ ≥ d holds. To prove δ ≤ d, it is enough to show that p[d,D||w] is a feasible deviation vector.

For any F ′ ∈ F with 1
w (F ′) < 1

w (F ∗), if such F ′ exists,

(c− p[d,D||w])(F
∗)− (c− p[d,D||w])(F

′)

= c(F ∗)− c(F ′)− d · 1
w (F ∗ \ F ′)−D ·

(
1
w (F ∗)− 1

w (F ′)
)

≤ c(F ∗)− c(F ′)− d · 1
w (F ∗ \ F ′)− c(F ∗)− c(F ′)− d · 1

w (F ∗ \ F ′)
1
w (F ∗)− 1

w (F ′)
·
(
1
w (F ∗)− 1

w (F ′)
)

= 0.

For any F ′′ ∈ F with F ′′ ̸= F and 1
w (F ′′) = 1

w (F ∗), if such F ′′ exists,

(c− p[d,D||w])(F
∗)− (c− p[d,D||w])(F

′′)

= c(F ∗)− c(F ′′)− d · 1
w (F ∗ \ F ′′)−D ·

(
1
w (F ∗)− 1

w (F ′′)
)

= c(F ∗)− c(F ′′)− d · 1
w (F ∗ \ F ′′)−D · 0

358

≤ c(F ∗)− c(F ′′)− c(F ∗)− c(F ′′)
1
w (F ∗ \ F ′′)

· 1
w (F ∗ \ F ′′)

= 0.

Let F ′′′ ∈ F with 1
w (F ′′′) > 1

w (F ∗) be arbitrary, if such F ′′′ exists. First note that

D ≤ c(F ∗)− c(F ′′′)− d · 1
w (F ∗ \ F ′′′)

1
w (F ∗)− 1

w (F ′′′)

holds since otherwise there would exist F ′ ∈ F with 1
w (F ′) < 1

w (F ∗) such that

c(F ∗)− c(F ′)− d · 1
w (F ∗ \ F ′)

1
w (F ∗)− 1

w (F ′)
>
c(F ∗)− c(F ′′′)− d · 1

w (F ∗ \ F ′′′)
1
w (F ∗)− 1

w (F ′′′)
,

contradicting the definition of d. Thus,

(c− p[d,D||w])(F
∗)− (c− p[d,D||w])(F

′′′)

= c(F ∗)− c(F ′′′)− d · 1
w (F ∗ \ F ′′′)−D ·

(
1
w (F ∗)− 1

w (F ′′′)
)

≤ c(F ∗)− c(F ′′′)− d · 1
w (F ∗ \ F ′′′)− c(F ∗)− c(F ′′′)− d · 1

w (F ∗ \ F ′′′)
1
w (F ∗)− 1

w (F ′′′)
·
(
1
w (F ∗)− 1

w (F ′′′)
)

= 0.

Therefore, p[d,D||w] is indeed feasible. □

3.2 Algorithm

Similarly to the case of the weighted ℓ∞-norm, we give an algorithm for determining a feasible deviation
vector with minimum weighted span. However, due to the different nature of the span objective, the
algorithm and its analysis is significantly more complicated than the previous one.

Let us order the elements of the ground set S = {s1, . . . , sn} in such a way that F ∗ =
{
s1, . . . , s|F∗|

}
.

By Corollary 11, we may assume that

w(s1) · ℓ(s1) = . . . = w
(
s|F∗|

)
· ℓ
(
s|F∗|

)
≥ w

(
s|F∗|+1

)
· ℓ
(
s|F∗|+1

)
≥ . . . ≥ w(sn) · ℓ(sn)

and

w(s1) · u(s1) ≥ . . . ≥ w
(
s|F∗|

)
· u
(
s|F∗|

)
≥ w

(
s|F∗|+1

)
· u
(
s|F∗|+1

)
= . . . = w(sn) · u(sn).

In the following, we look for the values of δ + ∆ and ∆ for which p[δ,∆|ℓ,u|w] is an optimal deviation
vector in the intervals

[
w
(
s|F∗|

)
·ℓ
(
s|F∗|

)
, w

(
s|F∗|

)
·u
(
s|F∗|

)]
,

[
w
(
s|F∗|

)
·u
(
s|F∗|

)
, w

(
s|F∗|−1

)
·u
(
s|F∗|−1

)]
,

[
w
(
s|F∗|−1

)
·u
(
s|F∗|−1

)
, w

(
s|F∗|−2

)
·u
(
s|F∗|−2

)]
,

...
[
w(s2)·u(s2), w(s1)·u(s1)

]

359

and [
w
(
s|F∗|+1

)
·ℓ
(
s|F∗|+1

)
, w

(
s|F∗|+1

)
·u
(
s|F∗|+1

)]
,

[
w
(
s|F∗|+2

)
·ℓ
(
s|F∗|+2

)
, w

(
s|F∗|+1

)
·ℓ
(
s|F∗|+1

)]
,

[
w
(
s|F∗|+3

)
·ℓ
(
s|F∗|+3

)
, w

(
s|F∗|+2

)
·ℓ
(
s|F∗|+2

)]
,

...
[
w(sn−1)·ℓ(sn−1), w(sn)·ℓ(sn)

]
,

respectively. By the definition of p[δ,∆|ℓ,u|w], if δ + ∆ ∈
[
w(si+1) · u(si+1), w(si) · u(si)

]
for some i ∈[

|F ∗| − 1
]
, then p[δ,∆|ℓ,u|w](sj) = u(sj) holds for all j ∈

{
i + 1, i + 2, . . . , |F ∗|

}
. Similarly, if ∆ ∈[

w(si+1) · ℓ(si+1), w(si) · ℓ(si)
]

for some i ∈
{
|F ∗|+ 1, |F ∗|+ 2, . . . , n

}
, then p[δ,∆|ℓ,u|w](sj) = ℓ(sj) holds

for all j ∈
{
|F ∗|+ 1, |F ∗|+ 2, . . . , i

}
. By the above and by Corollary 11, it is enough to consider the case

when the lower and upper bounds are of the following form:

ℓ(s) :=

0 if s ∈ S0,

ℓin/w(s) if s ∈ F ∗ − S0,

ℓout/w(s) otherwise

u(s) :=

0 if s ∈ S0,

uin/w(s) if s ∈ F ∗ − S0,

uout/w(s) otherwise

for some S0 ⊆ S, ℓin, ℓout ∈ R ∪ {−∞} and uin, uout ∈ R ∪ {+∞} satisfying

ℓin ≤ uin, ℓout ≤ uout, (SPEC-LU)

max
{
w(s)

∣∣ s ∈ S − F ∗} · ℓout ≤ min
{
w(s)

∣∣ s ∈ F ∗} · ℓin,
max

{
w(s)

∣∣ s ∈ S − F ∗} · uout ≤ min
{
w(s)

∣∣ s ∈ F ∗} · uin,
ℓin ≥ 0 if S0 ∩ F ∗ ̸= ∅, and

uout ≤ 0 if S0 ∩ (S − F ∗) ̸= ∅.
Now we are ready to characterize the feasibility of a minimum-cost inverse optimization problem(

S,F , F ∗, c, ℓ, u, spanw(·)
)
.

Lemma 13 Let
(
S,F , F ∗, c, ℓ, u, spanw(·)

)
be a minimum-cost inverse optimization problem, where ℓ and

u satisfy (SPEC-LU). Let

m1 := min

{
c(F)− c(F ∗) + uin · 1

w

(
(F ∗ − S0)− (F − S0)

)
1
w

(
(F − S0)− (F ∗ − S0)

)
∣∣∣∣∣ F ∈ F , F − S0 ⊈ F ∗ − S0

}
,

m2 := max

{
c(F ∗)− c(F) + ℓout · 1

w

(
(F − S0)− (F ∗ − S0)

)
1
w

(
(F ∗ − S0)− (F − S0)

)
∣∣∣∣∣ F ∈ F , F

∗ − S0 ⊈ F − S0

}
,

m3 := min

{
c(F)− c(F ∗)

1
w

(
(F − S0)− (F ∗ − S0)

)
∣∣∣∣∣ F ∈ F , F − S0 ⊈ F ∗ − S0

}
, and

m4 := max

{
c(F ∗)− c(F)

1
w

(
(F ∗ − S0)− (F − S0)

)
∣∣∣∣∣ F ∈ F , F

∗ − S0 ⊈ F − S0

}
.

• If uin ̸= +∞ and ℓout ̸= −∞, then the minimum-cost inverse optimization problem is feasible if
and only if p[uin−ℓout,ℓout|ℓ,u|w] is a feasible deviation vector.

• If uin ̸= +∞ and ℓout = −∞, then the minimum-cost inverse optimization problem is feasible if
and only if p[uin−m,m|ℓ,u|w] is a feasible deviation vector, where

m :=

{
m1 if m1 ̸= +∞,

0 otherwise.

360

• If uin = +∞ and ℓout ̸= −∞, then the minimum-cost inverse optimization problem is feasible if
and only if p[M−ℓout,ℓout|ℓ,u|w] is a feasible deviation vector, where

M :=

{
m2 if m2 ̸= −∞,

0 otherwise.

• If uin = +∞ and ℓout = −∞, then the minimum-cost inverse optimization problem is feasible if
and only if p[M ′−m′,m′|ℓ,u|w] is a feasible deviation vector, where

m′ :=

{
m3 if m3 ̸= +∞,

0 otherwise,
and M ′ :=

{
m4 if m4 ̸= −∞,

0 otherwise.

Proof: Assume first that uin ̸= +∞ and ℓout ̸= −∞. Suppose to the contrary that p[uin−ℓout,ℓout|ℓ,u|w] is
not feasible, but there exists a feasible deviation vector p. Then there exists F ∈ F such that

0 <
(
c− p[uin−ℓout,ℓout|ℓ,u|w]

)
(F ∗)−

(
c− p[uin−ℓout,ℓout|ℓ,u|w]

)
(F)

=

[
c(F ∗)−

∑

s∈F∗−S0

uin/w(s)

]
−

c(F)−

∑

s∈(F−S0)∩(F∗−S0)

uin/w(s)−
∑

s∈(F−S0)−(F∗−S0)

ℓout/w(s)

= c(F ∗)− c(F)−
∑

s∈(F∗−S0)−(F−S0)

uin/w(s) +
∑

s∈(F−S0)−(F∗−S0)

ℓout/w(s)

= c(F ∗)− c(F)−
∑

s∈(F∗−S0)−(F−S0)

u(s) +
∑

s∈(F−S0)−(F∗−S0)

ℓ(s)

≤ c(F ∗)− c(F)−
∑

s∈(F∗−S0)−(F−S0)

p(s) +
∑

s∈(F−S0)−(F∗−S0)

p(s)

=
[
c(F ∗)− p(F ∗)

]
−
[
c(F)− p(F)

]

≤ 0,

a contradiction.
Now assume that uin ̸= +∞ and ℓout = −∞. Suppose to the contrary that p[uin−m,m|ℓ,u|w] is not

feasible but there exists a feasible deviation vector p. Then there exists F ∈ F such that

0 <
(
c− p[uin−m,m|ℓ,u|w]

)
(F ∗)−

(
c− p[uin−m,m|ℓ,u|w]

)
(F)

= c(F ∗)− c(F)−
∑

s∈(F∗−S0)−(F−S0)

uin/w(s) +
∑

s∈(F−S0)−(F∗−S0)

m/w(s)

= c(F ∗)− c(F)− uin · 1
w

(
(F ∗ − S0)− (F − S0)

)
+m · 1

w

(
(F − S0)− (F ∗ − S0)

)
.

The definition of m implies F − S0 ⊆ F ∗ − S0, otherwise the right-hand side of the above inequality
should be non-positive. Thus

0 < c(F ∗)− c(F)− uin · 1
w

(
(F ∗ − S0)− (F − S0)

)
+m · 1

w

(
(F − S0)− (F ∗ − S0)

)

= c(F ∗)− c(F)− uin · 1
w

(
(F ∗ − S0)− (F − S0)

)
+m · 0

≤ (c− p)(F ∗)− (c− p)(F)

≤ 0,

361

a contradiction.
The remaining two cases can be proved analogously. □
With the help of Lemma 4 and a series of technical observations, one can give a pseudo-polynomial

algorithm that determines a feasible deviation vector of minimum weighted span, assuming that a pseudo-
polynomial algorithm for the underlying optimization problem is available. Similarly to the case of
the weighted ℓ∞-norm, if w ≡ 1 and the underlying optimization problem can be solved in (strongly)
polynomial time for any cost function, then the algorithm finds an optimal deviation vector in (strongly)
polynomial time.

Due to the high number of different cases discussed in the algorithm, we omit its description here,
and only state the main result of the section.

Theorem 14 Given a pseudo-polynomial algorithm for the minimum-cost optimization problem (S,F , c′)
for any cost function c′, there is a pseudo-polynomial-time algorithm for the minimum-cost inverse opti-
mization problem

(
S,F , F ∗, c, ℓ, u, spanw(·)

)
. □

References

[1] S. Ahmadian, U. Bhaskar, L. Sanità, and C. Swamy. Algorithms for inverse optimization problems.
In 26th Annual European Symposium on Algorithms (ESA 2018), Leibniz International Proceedings
in Informatics, LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018.

[2] R. K. Ahuja and J. B. Orlin. Inverse optimization. Operations Research, 49(5):771–783, 2001.

[3] G. Bal. Inverse transport theory and applications. Inverse Problems, 25(5):053001, 2009.

[4] K. Bérczi, L. M. Mendoza-Cadena, and K. Varga. Inverse optimization problems with multiple
weight functions. Discrete Applied Mathematics, 327:134–147, 2023.

[5] D. Burton and P. L. Toint. On an instance of the inverse shortest paths problem. Mathematical
Programming, 53:45–61, 1992.

[6] T. C. Y. Chan, M. Eberg, K. Forster, C. Holloway, L. Ieraci, Y. Shalaby, and N. Yousefi. An
inverse optimization approach to measuring clinical pathway concordance. Management Science,
68(3):1882–1903, 2021.

[7] M. Demange and J. Monnot. An introduction to inverse combinatorial problems. In Paradigms of
Combinatorial Optimization: Problems and New Approaches, pages 547–586. John Wiley & Sons,
Inc., second edition, 2014.

[8] Z. W. Di, S. Leyffer, and S. M. Wild. Optimization-based approach for joint X-ray fluorescence and
transmission tomographic inversion. SIAM Journal on Imaging Sciences, 9(1):1–23, 2016.

[9] A. Frank and K. Murota. A discrete convex min-max formula for box-TDI polyhedra. Mathematics
of Operations Research, 47(2):1026–1047, 2022.

[10] C. Heuberger. Inverse combinatorial optimization: A survey on problems, methods, and results.
Journal of Combinatorial Optimization, 8(3):329–361, 2004.

[11] D. Jarrett and M. van der Schaar. Inverse active sensing: Modeling and understanding timely
decision-making. In Proceedings of the 37th International Conference on Machine Learning, volume
119 of PMLR, pages 4713–4723, 2020.

[12] J. B. Lasserre. Inverse polynomial optimization. Mathematics of Operations Research, 38(3):418–436,
2013.

362

[13] Z. Liu and J. Zhang. On inverse problems of optimum perfect matching. Journal of Combinatorial
Optimization, 7(3):215–228, 2003.

[14] M. Richter. Inverse Problems: Basics, Theory and Applications in Geophysics. Birkhäuser, 2016.

[15] Y. Xiaoguang. Note on inverse problem with ℓ∞ objective function. Applied Mathematics – A
Journal of Chinese Universities, 13(3):341–346, 1998.

[16] X. Yang and J. Zhang. Some inverse min-max network problems under weighted ℓ1 and ℓ∞ norms
with bound constraints on changes. Journal of Combinatorial Optimization, 13(2):123–135, 2007.

[17] B. Zhang, X. Guan, and Q. Zhang. Inverse optimal value problem on minimum spanning tree under
unit ℓ∞ norm. Optimization Letters, 14(8):2301–2322, 2020.

[18] J. Zhang and Z. Liu. A further study on inverse linear programming problems. Journal of Compu-
tational and Applied Mathematics, 106(2):345–359, 1999.

[19] J. Zhang and Z. Liu. A general model of some inverse combinatorial optimization problems and its
solution method under ℓ∞ norm. Journal of Combinatorial Optimization, 6(2):207–227, 2002.

363

364

Supermodular Extension of
Vizing’s Edge-Coloring Theorem

Ryuhei Mizutani1

Department of Mathematical Informatics
The University of Tokyo
Tokyo, 113-8656, Japan

ryuhei mizutani@mist.i.u-tokyo.ac.jp

Abstract: Kőnig’s edge-coloring theorem for bipartite graphs and Vizing’s edge-coloring the-
orem for general graphs are celebrated results in graph theory and combinatorial optimization.
Schrijver generalized Kőnig’s theorem to a framework defined with a pair of intersecting su-
permodular functions. The result is called the supermodular coloring theorem.

In this talk, we present a common generalization of Vizing’s theorem and a weaker ver-
sion of the supermodular coloring theorem. To describe this theorem, we introduce strongly
triple-intersecting supermodular functions, which are extensions of intersecting supermodular
functions.

Keywords: Edge-coloring, Supermodular coloring, Strongly triple-intersecting su-
permodular function

1 Introduction

Let G = (V,E) be a multigraph. An edge-coloring of G is an assignment of colors to all edges in E
such that no adjacent edges have the same color. The edge-coloring number χ′(G) of G is the minimum
number k such that there exists an edge-coloring of G using k colors. For a vertex v ∈ V , the degree of v
is the number of edges incident to v. Kőnig [4] showed the following relation between the edge-coloring
number χ′(G) and the maximum degree ∆(G) of a bipartite multigraph G.

Theorem 1 (Kőnig [4]) For a bipartite multigraph G, we have

χ′(G) = ∆(G).

For any multigraph G, we have χ′(G) ≥ ∆(G) because the edges adjacent to the same vertex must
have different colors. Theorem 1 states that this lower bound ∆(G) is equal to χ′(G) for every bipartite
multigraph.

The multiplicity µ(G) of G is the maximum number of parallel edges in G. Vizing [8] showed the
following analogue of Theorem 1 for general multigraphs.

Theorem 2 (Vizing [8]) For any multigraph G, we have

∆(G) ≤ χ′(G) ≤ ∆(G) + µ(G).

Schrijver [6] extended Theorem 1 to a framework of supermodular functions on intersecting families.
To describe this, we need some definitions. Let U be a finite set. A pair of X,Y ⊆ U is called an
intersecting pair if X∩Y 6= ∅. A family F ⊆ 2U is called an intersecting family if X∪Y,X∩Y ∈ F holds
for every intersecting pair X,Y ∈ F . A function g : F → R is called intersecting supermodular if F is an
intersecting family and g(X) + g(Y) ≤ g(X ∪ Y) + g(X ∩ Y) holds for every intersecting pair X,Y ∈ F .
Schrijver [6] showed the following coloring-type theorem on an intersecting supermodular function.

1Research is supported by JST SPRING, Grant Number JPMJSP2108, Japan.

365

Figure 1: The relationship between the coloring-type theorems. The arrows mean implications.

Theorem 3 (Schrijver [6]) Let F ⊆ 2U be an intersecting family and g : F → Z an intersecting
supermodular function. For k ∈ Z>0, if

min{|X|, k} ≥ g(X)

holds for each X ∈ F , then there exists an assignment of colors π : U → [k] satisfying

|π(X)| ≥ g(X)

for each X ∈ F , where π(X) := {π(u) | u ∈ X} and [k] := {1, 2, . . . , k}.

We are now ready to describe the supermodular coloring theorem, which is a generalization of Theorem
1 to the framework of intersecting supermodular functions.

Theorem 4 (Schrijver [6]) Let F1,F2 ⊆ 2U be intersecting families, and g1 : F1 → Z and g2 : F2 → Z
intersecting supermodular functions. For k ∈ Z>0, if

min{|X|, k} ≥ gi(X)

holds for each i = 1, 2 and each X ∈ Fi, then there exists an assignment of colors π : U → [k] such that

|π(X)| ≥ gi(X)

holds for each i = 1, 2 and each X ∈ Fi.

Tardos [7] gave an alternative proof of Theorem 4 using properties on generalized matroids. Theorem
4 was further extended to more general frameworks such as a framework including skew-supermodular
coloring [2], and a framework of list supermodular coloring [3, 9].

Figure 1 describes the relationship between the above coloring-type theorems. A natural question
arising from the supermodular coloring theorem is how to generalize Theorem 2 to a similar framework
of supermodular functions.

2 Main result

Our main goal in this talk is to generalize Theorem 2 to a framework of a certain type of supermodular
functions; i.e., we provide a common generalization of Theorems 2 and 3. To describe this, we need some
definitions including new classes of intersecting families and intersecting supermodular functions. A

366

family F ⊆ 2U is called a strongly triple-intersecting family if for every distinct X1, X2, X3 ∈ F satisfying
X1 ∩X2 ∩X3 6= ∅, we have

Xi ∪Xj , Xi ∩Xj ∈ F and Xk ∪Xl, Xk ∩Xl ∈ F
for two pairs (i, j), (k, l) ∈ {(1, 2), (2, 3), (3, 1)}. A function g : F → R is called strongly triple-intersecting
supermodular if F is a strongly triple-intersecting family and for every distinct X1, X2, X3 ∈ F satisfying
X1 ∩X2 ∩X3 6= ∅, we have

Xi ∪Xj , Xi ∩Xj ∈ F and Xk ∪Xl, Xk ∩Xl ∈ F ,
and

g(Xi) + g(Xj) ≤ g(Xi ∪Xj) + g(Xi ∩Xj),

g(Xk) + g(Xl) ≤ g(Xk ∪Xl) + g(Xk ∩Xl)

for two pairs (i, j), (k, l) ∈ {(1, 2), (2, 3), (3, 1)}. For a family F ⊆ 2U and a function g : F → R, L ⊆ F
is called a g-laminar family if for every pair of sets X,Y ∈ L, at least one of the following two conditions
holds.

� At least one of X \ Y, Y \X,X ∩ Y is the empty set.

� X ∪ Y,X ∩ Y ∈ F and g(X) + g(Y) ≤ g(X ∪ Y) + g(X ∩ Y) holds.

For F ⊆ 2U and X ∈ F , we denote DF (X) := max{|X ∩ Y | | Y ∈ F , X 6⊆ Y 6⊆ X} (if Y ∈ F satisfying
X 6⊆ Y 6⊆ X does not exist, then we define DF (X) := 0). We are now ready to describe the common
generalization of Theorems 2 and 3:

Theorem 5 Let F ⊆ 2U be a strongly triple-intersecting family and g : F → Z a strongly triple-
intersecting supermodular function. For k ∈ Z>0, suppose that L := {X ∈ F | g(X) +DF (X) > k} is a
g-laminar family and

min{|X|, k} ≥ g(X)

holds for every X ∈ F . Then there exists an assignment of colors π : U → [k] such that

|π(X)| ≥ g(X)

holds for every X ∈ F .

The proof of this Theorem combines the proof technique of Theorem 2 by Berge and Fournier [1], and
that of Theorems 3 and 4 by Schirijver [6]. See Figure 1 for the relationship between Theorem 5 and other
coloring-type theorems. To see that Theorem 5 includes Theorem 2, let F := {δ(v) | v ∈ V } ⊆ 2E and
let g : F → Z be a function defined by g(X) := |X| for every X ∈ F , where δ(v) denotes the set of edges
incident to v. Then, F is a strongly triple-intersecting family because we have δ(v1) ∩ δ(v2) ∩ δ(v3) = ∅
for every distinct vertices v1, v2, v3 ∈ V (note that no edge in G has three endpoints v1, v2, v3). This
also implies that g is a strongly triple-intersecting supermodular function. Let k := ∆(G) +µ(G). Then,
L := {δ(v) ∈ F | g(δ(v))+DF (δ(v)) > ∆(G)+µ(G)} is the empty set because we have g(δ(v)) = |δ(v)| ≤
∆(G) and DF (δ(v)) ≤ µ(G). Hence, L is a g-laminar family. We also have

min{|δ(v)|,∆(G) + µ(G)} = |δ(v)| = g(δ(v))

for every v ∈ V . Therefore, by Theorem 5, there exists an assignment of colors π : E → [∆(G) + µ(G)]
such that |π(δ(v))| ≥ g(δ(v)) = |δ(v)| holds for every v ∈ V , which implies Theorem 2.

Theorem 3 is also a special case of Theorem 5 as follows. Let F be an intersecting family, and g
an intersecting supermodular function satisfying min{|X|, k} ≥ g(X) for every X ∈ F . Then F is also
a strongly triple-intersecting family, and g is also a strongly triple-intersecting supermodular function.
Moreover, L := {X ∈ F | g(X)+DF (X) > k} is a g-laminar family because if X,Y ∈ L satisfy X∩Y 6= ∅,
then we have X ∪ Y,X ∩ Y ∈ F and g(X) + g(Y) ≤ g(X ∪ Y) + g(X ∩ Y). Hence, by Theorem 5, there
exists an assignment of colors π : U → [k] such that |π(X)| ≥ g(X) holds for every X ∈ F , which implies
Theorem 3.

The original paper of this talk is available at arXiv preprint [5].

367

References

[1] C. Berge and J.-C. Fournier, A short proof for a generalization of Vizing’s theorem, Journal
of Graph Theory 15 (1991).

[2] A. Frank, T. Király, J. Pap, and D. Pritchard, Characterizing and recognizing generalized
polymatroids, Mathematical Programming 146 (2014).

[3] S. Iwata and Y. Yokoi, List supermodular coloring, Combinatorica 38 (2018).

[4] D. Kőnig, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére, Mathematikai és
Természettudományi Értesitő 34 (1916).

[5] R. Mizutani, Supermodular extension of Vizing’s edge-coloring theorem, arXiv preprint
arXiv:2211.07150, 2022.

[6] A. Schrijver, Supermodular colourings, In Matroid Theory (L. Lovász and A. Recski, eds.),
North-Holland, 1985.

[7] É. Tardos, Generalized matroids and supermodular colourings, In Matroid Theory (L. Lovász and
A. Recski, eds.), North-Holland, 1985.

[8] V. G. Vizing, The chromatic class of a multigraph, Cybernetics 1 (1965).

[9] Y. Yokoi, List supermodular coloring with shorter lists, Combinatorica 39 (2019).

368

The extensible No-Three-In-Line problem

Dániel T. Nagy1

Department of Extremal Combinatorics
Alfréd Rényi Institute of Mathematics

Budapest, Hungary
nagydani@renyi.hu

Zoltán L. Nagy2

ELTE Linear Hypergraphs Research Group,
ELTE GAC Research Group

Eötvös Loránd University
Budapest, Hungary

nagyzoli@cs.elte.hu

Russ Woodroofe3

University of Primorska
Koper, Slovenia

russ.woodroofe@famnit.upr.si

Abstract: The classical No-Three-In-Line problem seeks the maximum number of points
that may be selected from an n × n grid while avoiding a collinear triple. The maximum is
well known to be linear in n. Following a question of Erde, we seek to select sets of large
density from the infinite grid Z2 while avoiding a collinear triple. We show the existence of
such a set which contains Θ(n/ log1+ε n) points in [1, n]2 for all n, where ε > 0 is an arbitrarily
small real number. We also give computational evidence suggesting that a set of lattice points
may exist that has at least n/2 points on every large enough n× n grid.

Keywords: no-three-in-line, collinear triples, square lattice

1 Introduction

A set of points in the plane are said to be in general position if no three of the points lie on a common
line. Motivated by a problem concerning the placement of chess pieces, Dudeney [4] asked how many
points may be placed in an n× n grid so that the points are in general position. This No-Three-In-Line
problem has received considerable attention: for history and background, we refer to the book of Brass,
Moser, and Pach [3] and that of Eppstein [5]; see also [10] for the problem in a higher dimensional setting.
For an upper bound, it is straightforward to see that at most 2n points may so be placed. For rather
small n, several examples have been constructed where the theoretical bound 2n can be attained [2, 6].

Joshua Erde proposed the following question at the Third Southwestern German Workshop on Graph
Theory.

Problem 1 Suppose that S ⊆ Z2 is a set of grid points in general position. Is it true that

lim inf

∣∣S ∩ [1, n]2
∣∣

n
= 0?

The purpose of this paper is to give evidence suggesting that the answer to the question may be “no”.

1Research is supported by NKFIH grants FK 132060 and PD 137779 and by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences.

2Research is supported by NKFIH grants PD 134953 and K 124950.
3Research is supported by the Slovenian Research Agency (ARRS) research program P1-0285 and research projects

J1-9108, N1-0160, J1-2451, and J3-3003.

369

While it is unknown for larger n whether the upper bound 2n is achievable in the n × n grid, there
are several constructions where the size of the set is a smaller multiple of n. The earliest of these is
due to Erdős (appearing in a paper published by Roth [11]), and uses the modular parabola, consisting
of the points (i, i2) mod p. If n = p is a prime number, then this yields n points in general position in
Z2 ∩ [1, n]2. If n is not prime, then taking p to be the largest prime before n yields n − o(n) points in
general position.

The best known general construction for the No-Three-In-Line problem is due to Hall, Jackson,
Sudbery, and Wild [7]. Their construction places points on a hyperbola xy = k (mod p), where p is a
prime slightly smaller than n/2, and yields 3

2n− o(n) points in general position.
Our aim in this paper is to give a bound on the growth rate of |S ∩ [1, n]2|. Thus, in contrast with

the finite grid case, we need S to be dense in every square [1, n]2 simultaneously.
A trivial lower bound follows from the parabola construction {(x, x2) : x ∈ Z+}, giving |S ∩ [1, n]2| =

Ω(n1/2). The constructions of Erdős and of Hall, Jackson, Sudbery, and Wild give large point sets in
general position in any n× n grid, but rely heavily on choosing a prime based on n. These constructions
do not straightforwardly generalize to an infinite set, as required for Question 1. Payne and Wood in [9]
give a probabilistic construction (which can be turned into a probabilistic algorithm, as observed in [5,
Algorithm 9.22]), but their techniques also rely on n being fixed. Thus, Problem 1 asks whether there
are large sets of points in general position in the n× n grid, which can be extended nicely to larger sets
of such points in larger grids.

Recently, Aichholzer, Eppstein, and Hainzl found the following lower bound on saturated subsets.

Theorem 2 (Aichholzer, Eppstein, and Hainzl [1]) If S is a saturated subset of points in general
position from an n× n grid, then |S| = Ω(n2/3).

It follows straightforwardly that there is an infinite subset S ⊆ Z2 in general position so that∣∣S ∩ [1, n]2
∣∣ = Ω(n2/3).

2 Main result and proof idea

We show that the asymptotic growth of the size of the point set for the problem on the infinite grid can,
in fact, be almost linear.

Theorem 3 For any ε > 0, it is possible to construct a set S ⊆ Z2 of grid points in general position with
∣∣S ∩ [1, n]2

∣∣ = Θ(n/ log1+ε n).

In particular, it holds that

lim inf

∣∣S ∩ [1, n]2
∣∣

n/ log1+ε n
> 0.

The main ingredients of the construction underlying Theorem 3 are as follows. We place separated
copies of the parabola construction of Erdős along the curve x/ logε x. Specifically, for each value x = 2n,
we consider a square Qn placed near the point (2n, 2n/nε) having side length a small multiple of 2n/n1+ε.
(See Figure 1.) We choose a suitable prime pn for each integer n, and place a translated copy of Erdős’
parabola construction with respect to pn in the square. Finally, we delete those points from each such
parabola that would form a collinear triple with points to their left.

By concavity, any line intersects the curve x/ logε x in at most two points. If we choose the squares
in the construction to be small enough, then (as we will see) a line intersects at most two of the squares.
Thus to avoid collinear triples, it is enough to delete a point from each line which intersects the previously
defined point set in one point and the parabola in the nth square in two points, or vice versa. By bounding
from above the number of deleted points, we obtain Θ(N

log1+ε N
) lattice points in general position for each

[1, N]2, verifying Theorem 3.
The details of the proof are in the full version of this extended abstract [8].

370

y = x

log(x)ε

(2n, 2n

n
ε
)

(2n−1, 2n−1

(n−1)ε
)

(2n+1, 2n+1

(n+1)ε
)

Qn

Qn−1

Qn+1

Figure 1: Illustration for the proof of Theorem 3 (not to scale)

3 Greedy lexicographic construction

A concrete and deterministic construction for large grid sets that are in general position may be described
as follows. We iteratively look at each vertical line x = 1, x = 2, etc. At each line x = i, we find the
least positive j so that the point (i, j) is not on a common line with any two previously selected points.
We select this point (i, j) as well and move on to the next vertical line. This process yields an infinite set
Slex of triple-wise non-collinear integer points. This construction has been previously examined in OEIS
sequence A236335, and similar constructions are the subject of sequences A236266, A179040.

Since we are interested in high density in squares [1, n]2, we vary the lexicographic construction slightly
to require j < i at each step. If there is no allowed point (i, j) with j < i for a given i, we move on
to the next vertical line without selecting anything here. This process yields a set Slex<. Experimental
evidence suggests that [1, n]2 ∩ Slex< is of approximate size that is slightly larger than 0.8 · n. Refer to
Table 1 for densities of Slex< at several values of n, or to Figure 2 for a plot of the first points in Slex<.

500

400

y = x

y =
1

2
x

y =
1

7
x

Figure 2: Construction Slex< for n = 500

We also consider the variant where we only take points on vertical lines having even x-intercept. In
computer experiments, this even variant appears to find points without fail, yielding exactly n points in
general position in [1, 2n]2.

371

n 100 200 300 400 500 1000 2000 3000 4000 5000 10000
points Slex< 81 166 254 340 424 830 1678 2515 3353 4197 8385

density % n 81 83 84.6 85 84.8 83 83.9 83.8 83.8 83.9 83.9

Table 1: Density achieved by the lexicographic greedy construction

References

[1] O. Aichholzer, D. Eppstein, and E.-M. Hainzl, Geometric dominating sets - a minimum
version of the No-Three-In-Line problem, Computational Geometry 108 (2023) Article 101913.

[2] D. B. Anderson, Update on the no-three-in-line problem, J. Combinatorial Theory Ser. A 27
(1979) 365–366.

[3] P. Brass, W. O. J. Moser, and J. Pach, Lattice point problems, Springer New York (2005)
417–433.

[4] H. E. Dudeney, Amusements in mathematics, Courier Corporation 473 (1917)

[5] D. Eppstein, Forbidden configurations in discrete geometry, Cambridge University Press (2018)

[6] A. Flammenkamp, Progress in the no-three-in-line problem, ii, J. Combinatorial Theory Ser. A
81 (1998) 108–113.

[7] R. R. Hall, T. H. Jackson, A. Sudbery, and K. Wild, Some advances in the no-three-in-line
problem, J. Combinatorial Theory Ser. A 18 (1975) 336–341.

[8] D. T. Nagy, Z. L. Nagy and R. Woodroofe, The extensible No-Three-In-Line problem,
arXiv:2209.01447 (2022)

[9] M. S. Payne and D. R. Wood, On the general position subset selection problem, SIAM J.
Discrete Math. 27 (2013) 1727–1733.

[10] A. Pór and D. R. Wood, No-three-in-line-in-3D, Algorithmica 47 (2007) 481–488.

[11] K. F. Roth, On a problem of Heilbronn, J. London Math. Soc. 26 (1951) 198–204.

372

Simulations of quantum walks
on regular graphs

Katalin Friedl

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

Budapest, Hungary
friedl@cs.bme.hu

Viktória Nemkin

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

Budapest, Hungary
nemkin@cs.bme.hu

Abstract: We have developed a simulator program in Python that can execute classical and
quantum random walks on regular graphs. The user implements the oracle (a function that
returns the adjacency list for a given vertex) and the quantum coin used in the simulation. The
software simulates the walk and produces a Latex report file detailing the results. Running
several simulations, we compared the behavior of classical and coined quantum walks on some
regular graphs and demonstrated the periodicity in a few small special cases. We present such
reports with some mathematical explanations.

Keywords: quantum walks, regular graphs, simulation

1 Introduction

Classical random walks are important tools for dealing with large instances of any computational problem
that can be formulated as a search. They locally explore the space of possible solutions, iteratively
improving on the current candidate via small transformations. It is not guaranteed that the global
optimum will be found, however, they can discover good enough approximate solutions and are easy
to implement, which can be useful in practical applications. For example, WalkSAT [6] is a popular
random walk-based algorithm for testing the satisfiability of CNF formulas. It starts with a random
truth assignment, then it repeatedly picks an unsatisfied clause and fixes it by flipping one of its variables
until a solution is found or the iteration limit is reached.

Quantum walks [4, 7, 8] are generalized versions of classical random walks on a quantum computer.
Since their introduction, the fact that their behaviour is different from their classical counterparts was
demonstrated and referenced in many works [4, 5], and they are still being actively researched today.
Grover’s famous quantum search algorithm [3] can also be viewed as a special case of them[2, 1].

In the literature, there are two types of quantum random walks. The original coined version corre-
sponds to the classical random walk that moves from vertex to vertex on a graph. Since this cannot
be used for every graph, there is a more general (and somewhat more complicated) version of quantum
walks due to Szegedy [7, 8]. Here we make experiments only with the first, coined version.

2 Quantum walks on regular graphs

In classical random walks on graphs, the only information stored about the system’s state is the current
position of the walker. This state is updated based on a random choice between the local outgoing edges.

One of the ways classical random walks can be formulated as a quantum algorithm is to implement
the random choice as a quantum coin toss. We store the coin’s state and update (toss) it using quantum

373

operators, which can result in a superposition of multiple states. The walker moves from a vertex on all
of its outgoing edges in superposition (the current coin register determines the amplitudes). In general,
the walker is in a superposition of vertices and moves to another superposition.

2.1 Quantum coins

For a d-regular graph, the current state of the coin is represented as a state vector in d-dimensional
Hilbert space, each basis state corresponding to an outgoing edge choice. The coin toss is represented as
a quantum operator, which is a (d× d) dimensional unitary matrix, acting on the state vector.

Based on the operator, several types of coins can be defined. The following ones are typically used in
quantum walks.

Hadamard coin

The Hadamard coin is the most commonly used quantum coin. It is defined by the Hadamard-matrix,
H⊗n, where H is

H =
1√
2

(
1 1
1 −1

)
.

An interesting property of this is that starting from one of the basis vector states, measuring after one
toss results in a uniform random distribution while measuring after only the second consecutive toss
results in the original state with 100% probability since H is Hermitian.

Grover coin

The Grover coin originates from Grover’s search algorithm, where it is applied as the diffusion operator.
Let |D⟩ be the uniform state

|D⟩ = H⊗n |0⟩ =
1√
2n

2n−1∑

i=0

|i⟩ ,

then the Grover coin is the unitary matrix G = 2 |D⟩ ⟨D| − I.

Fourier coin

In contrast to the Hadamard and Grover coins, the Fourier coin can be of any size, not just a power of
2. A Fourier-coin FN of size N is defined by the matrix of the Quantum Fourier Transform

FN =

[
1√
N
ωxy

]

x,y

,

where ω = e
2πi
N is an Nth root of unity.

2.2 Quantum walk in 1 dimension

Following [4] the quantum walk on a line is defined using a particle characterised by its position |x⟩ and
coin (or spin) state |s⟩. Actually, it is a walk on the circle but when the circle is large enough compared
to the number of steps, this can be viewed as a quantum version of the classical random walk on the line.

374

Coin state In case of the circle, there are two directions to move so the coin state is represented in the
two-dimensional space C2 with basis states |0⟩ and |1⟩. A coin state vector is a unit vector in the form
|s⟩ = s0 |0⟩+ s1 |1⟩.

Position state At the start of the walk, the particle is at the origin |0⟩. After N steps a classical
walker could be in any of the positions between −N and N . For the quantum case, the position state is
a unit vector in C2N+1, the basis vectors correspond to the possible positions, denoted by

|−N⟩ , |−N + 1⟩ , . . . , |−1⟩ , |0⟩ , |1⟩ , . . . , |N − 1⟩ , |N⟩ .

The position state vector is given by

|x⟩ =
N∑

i=−N

xi |i⟩ .

Composite state The composite state of the system with the position and coin state is |x⟩ ⊗ |s⟩ .

2.3 Evolution

The particle travels on the line based on its current coin state:

• If the current coin state is |0⟩, the particle moves to the left, i.e. from position |i⟩ to position |i− 1⟩.

• If the current coin state is |1⟩, the particle moves to the right, i.e. from position |i⟩ to position
|i+ 1⟩.

This step is realised with the unitary matrix S which operates on the complete state of the system,
|x⟩⊗ |s⟩ and is assembled from a left and a right shift operator acting on |x⟩ and another operator acting
on |s⟩ compiled using tensor product.

Left shift operator To move from position |i⟩ to its left to |i− 1⟩ the position vector is multiplied
with matrix L that can be expressed in the form

L = |N⟩ ⟨−N |+
N∑

i=−(N−1)

|i− 1⟩ ⟨i| .

It is easy to see that L |j⟩ = |j − 1⟩ ⟨j|j⟩ = |j − 1⟩, when −N < j ≤ N , while the first term on the
right hand side closes the cycle, achieving L |−N⟩ = |N⟩, as it was desired.

Right shift operator Similarly, R = |−N⟩ ⟨N |+
N−1∑
i=−N

|i+ 1⟩ ⟨i| maps |i⟩ to |i+ 1⟩ and |N⟩ to |−N⟩
performing a right shift.

Shift operator Using matrices L and R operating on the position register |x⟩ only, a unitary operator
S can be defined, which operates on the composite state of the system, |x⟩ ⊗ |s⟩, executing matrix L on
|x⟩ only when |s⟩ = |0⟩ and matrix R only when |s⟩ = |1⟩,

S = L⊗ |0⟩ ⟨0|+ R⊗ |1⟩ ⟨1| .

The action of S on a vector |x⟩ ⊗ |s⟩ is S(|x⟩ ⊗ |s⟩) = s0 |x− 1, 0⟩+ s1 |x+ 1, 1⟩ .

375

So when the coin state is |s⟩ = |0⟩ then this S maps |x, 0⟩ to |x− 1, 0⟩ and in the case of |s⟩ = |1⟩ S
maps |x, 1⟩ to |x+ 1, 1⟩, as intended.

In the quantum setting the coin state can be any mixed state s0 |0⟩+ s1 |1⟩ as well. In this case the
particle will shift both to the left and to the right, at the same time. When measured, the particle can
be found in position |x− 1⟩ with probability |s0|2 and in position |x+ 1⟩ with probability |s1|2.

Coin operator To replace the classical coin tossing and to inject quantum superposition into the walk,
the coin state can be transformed using an arbitrary 2 dimensional unitary matrix between the application
of two shift operations. The Hadamard, Grover, and Fourier coins mentioned earlier are commonly used.

For any operator C on the coin register, the corresponding operator for the composite system that
does not modify the position state is I⊗C.

Evolution operator Combining the shift operator and the coin operator together, we obtain the
following evolution operator, defining one step of the quantum walk on the line. The step consists of
flipping the coin once, then applying the shifts

U = S(I⊗C).

3 Quantum walk on regular graphs

Let us have an undirected, connected, regular graph. It will be useful to consider it also as a directed
graph having the edges directed in both ways.

In a d-regular graph, the walker must choose from d possible edges to follow at every step. This
suggests using a coin with d sides. In the quantum setting the previous 2-dimensional coin state is
replaced by a d dimensional state vector, the basis vectors are |0⟩ , |1⟩ , . . . , |d− 1⟩ corresponding to the
different choices.

The coin operator is a unitary matrix C ∈ Cd×d. The evolution operator formally looks the same as
for the line, U = S(I⊗C)

To generalize the shift operator, the previous left and right shifts are replaced by d transition matrices
with nonnegative elements,

S = S0 ⊗ |0⟩ ⟨0|+ S1 ⊗ |1⟩ ⟨1|+ · · ·+ Sd−1 ⊗ |d− 1⟩ ⟨d− 1| ,
where S0 +S1 + · · ·+Sd−1 is the adjacency matrix of the graph (as it was in the previous case, where

L + R was the adjacency matrix of the circle).
Since in a quantum walk the operators have to be unitary, S has to be unitary. This gives the following

condition for the good decompositions of the adjacency matrix:

Theorem 1 Let S0, . . . ,Sd−1 be matrices with nonnegative elements and assume that
d−1∑
i=0

Si is the adja-

cency matrix of a d-regular graph. The operator S =
d−1∑
i=0

Si ⊗ |i⟩ ⟨i| can be a shift operator of a quantum

walk on the graph if and only if the Si are permutation matrices.

□

Corollary 2 In the previous Theorem all the Si are symmetric if and only if they correspond to a d
coloring of the edges of the undirected graph, Si is the adjacency matrix of the ith color class.

□
Although usually this decomposition, based on edge coloring is mentioned, there are (nonsymmetric)

possibilities, even when coloring the edges needs more than d (namely d+ 1) colors, since

Fact 3 The adjacency matrix of any d-regular graph can be obtained as a sum of permutation matrices.

376

4 Properties of quantum walks

Similarly to classical random walks, the effect of several steps in a quantum walk can be described by
a power of the matrix representing one step. However, quantum walks behave differently than classical
walks, since the matrix U = S(I ⊗ C) is unitary, therefore all of its eigenvalues have unit length, they
cannot diminish. Furthermore, when all the eigenvalues are Mth roots of unity, then the walk is periodic
by M .

The eigenvalues in some special cases can be computed from smaller matrices. Let λ(A) denote the
spectra of the operator A. Then it is easy to see the following

Theorem 4 Let U = S(I⊗C) where S =
d−1∑
j=0

Sj⊗ |j⟩ ⟨j|. Assume that the Sj have a common eigenvector

basis, i.e. Sjvk = λj,kvk, where 0 ≤ j < d and 0 ≤ k < n. Then λ(U) =
⋃n−1

k=0 λ(ΛkC), where the Λk

are d× d diagonal matrices formed from the λj,k.

□
This shows that although the matrix of the walk has size nd × nd its eigenvalues can be computed

from n matrices of sizes d× d.
The condition of the Theorem is fulfilled, for example, when the Sj commute.
An interesting special case is when the graph is a Cayley graph of an Abelian group. Let Γ be an

Abelian group, and B ⊆ Γ be a symmetric generating system (i.e. g ∈ B implies g−1 ∈ B). The vertices
of the Cayley graph are the elements of Γ and there is an edge from a to b if b = ag for some g ∈ B.
This is a regular graph, the adjacency matrix of edges belonging to a fixed g ∈ B form a permutation
matrix, they provide a good decomposition for the adjacency matrix of the Cayley graph. It is known
that they have common eigenvectors (formed from the characters of the group), the eigenvalues are values
of characters.

Based on this, in some special cases, the eigenvalues of the quantum walk are not too difficult to
compute.

For example, in the case of the circle when n = 4 then the eigenvalues are 8th roots of unity, when
n = 8, then 24th roots of unity. This means that the walk is periodic in these cases. For a general n the
eigenvalues eiφ are such that

√
2 sinφ = sin 2πa

n holds (a = 0, 1, . . . , n− 1).
The rest of the section shows some results of our simulations.

377

4.1 Walks on a circle

The first walk to be reviewed is the 1-dimensional walk, it is a walk on a circle (with 128 vertices,
numbered along the perimeter). Since this is a 2-regular graph, a 2-dimensional coin is used.

The 2-dimensional Hadamard and Fourier coins are identical, while the 2-dimensional Grover coin is
just an X gate, which means the walker stays around to the starting position at all times.

In the following figures, we can see the changes in the probability distribution during the walk. The
x axis contains the vertices, and the y axis contains the steps. The walker starts from the center (vertex
64), and in the classical case, multiple runs are done to arrive at a probability distribution, while in the
quantum case, a single walker is enough, as it spreads in superposition over the graph.

The ballistic nature of the walk can be seen from steps 0 to around 100, where the bright red diagonals
represent a strong probability concentration moving away from the origin. When the probability bumps
reach the sides, they cross over and travel towards the center at the opposite side. We can also see
secondary, tertiary, and further red lines traveling alongside the main ones. These reach cross over later,
which results in a weaved pattern.

0 10 20 30 40 50 60 70 80 90 100 110 120
Vertices

0

200

400

600

800

1000

St
ep

s

Classical simulation

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80 90 100 110 120
Vertices

0

200

400

600

800

1000

St
ep

s

Quantum simulation (Hadamard coin)

10−3

10−2

10−1

100

Figure 1: Probability distribution of walks on a larger circle of 128 vertices

378

4.2 Walks on the grid

The second graph reviewed is the 2-dimensional grid (torus), with 4 × 4 = 16 vertices, indexed in row-
major order. The vertices are horizontally and vertically connected, the outer vertices connecting to the
vertex at the opposite end of the same row or column.

The following 4 images contain the classical, the quantum Hadamard, the quantum Grover and the
quantum Fourier walks on the grid. The walker starts from the center (vertex 8). The classical walk
quickly spreads over the graph since all vertices are close to each other (as opposed to the line, where the
maximum distance is large).

In the quantum case, using the Hadamard and Grover coins, an interesting quality can be distinctly
observed: these quantum walks are periodic. On the 4× 4 grid using the Hadamard coin, the periodicity
is 40 steps, while using the Grover coin, it is 12 steps.

0 10
Vertices

0

20

40

60

80

100

St
ep

s

Classical simulation

10−1

100

0 10
Vertices

0

20

40

60

80

100

St
ep

s

Quantum simulation (Hadamard coin)

10−1

100

0 10
Vertices

0

20

40

60

80

100

St
ep

s

Quantum simulation (Grover coin)

10−1

100

0 10
Vertices

0

20

40

60

80

100

St
ep

s

Quantum simulation (DFT coin)

10−2

10−1

100

Figure 2: Probability distribution of walks on the grid (with horizontal / vertical steps)

379

4.3 Walks on hypercube

The third graph reviewed is the 4-dimensional boolean hypercube (with 24 = 16 vertices).
On the 4 dimensional hypercube using the Hadamard coin, the periodicity is 24 steps, using the

Grover coin, it is 12 steps while using the Fourier coin it turns out to be 48 steps.

0 10
Vertices

0

20

40

60

80

100

St
ep

s

Classical simulation

10−1

100

0 10
Vertices

0

20

40

60

80

100

St
ep

s

Quantum simulation (Hadamard coin)

10−1

100

0 10
Vertices

0

20

40

60

80

100

St
ep

s

Quantum simulation (Grover coin)

10−1

100

0 10
Vertices

0

20

40

60

80

100

St
ep

s
Quantum simulation (DFT coin)

10−1

100

Figure 3: Probability distribution of walks on the hypercube

380

References

[1] A. Ambainis, Quantum walks and their algorithmic applications, International Journal of Quantum
Information 1(4):507–518 (2003)

[2] F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via Quantum Walk, SIAM Journal
on Computing 40(1):142–164 (2011)

[3] L. K. Grover, A Fast Quantum Mechanical Algorithm for Database Search, Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing pp. 212–219 (1996)

[4] J. Kempe, Quantum random walks: An introductory overview, Contemporary Physics 44(4):307–
327 (2003)

[5] R. Portugal, Quantum Walks and Search Algorithms, Springer International Publishing Quan-
tum Science and Technology (2018)

[6] B. Selman, H. Kautz, and B. Cohen, Local Search Strategies for Satisfiability Testing, Cliques,
Coloring, and Satisfiability: Second DIMACS Implementation Challenge 26 (1999)

[7] M. Szegedy, Quantum speed-up of Markov chain based algorithms, 45th Annual IEEE Symposium
on Foundations of Computer Science pp. 32–41. (2004)

[8] R. de Wolf, Quantum Computing: Lecture Notes, arXiv:1907.09415 v4 (2022)

381

382

Algebraic Algorithms for Fractional Linear
Matroid Parity via Non-commutative Rank∗

Taihei Oki†

Graduate School of Information Science and
Technology

The University of Tokyo
Tokyo 113-8656, Japan

oki@mist.i.u-tokyo.ac.jp

Tasuku Soma

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139, United States

tasuku@mit.edu

Abstract: Matrix representations are a powerful tool for designing efficient algorithms for
combinatorial optimization problems such as matching, and linear matroid intersection and
parity. In this paper, we initiate the study of matrix representations using the concept of
non-commutative rank (nc-rank), which has recently attracted attention in the research of
Edmonds’ problem. We reveal that the nc-rank of the matrix representation of linear matroid
parity corresponds to the optimal value of fractional linear matroid parity: a half-integral
relaxation of linear matroid parity. Based on our representation, we present an algebraic
algorithm for the fractional linear matroid parity problem by building a new technique to
incorporate the search-to-decision reduction into the half-integral problem represented via
the nc-rank. Our algorithm is significantly simpler and faster than the existing algorithm.

Keywords: fractional matching, fractional matroid parity, non-commutative Edmonds’ prob-
lem, non-commutative rank, search-to-decision reduction

1 Introduction

Matrix representations of combinatorial optimization problems have been a powerful tool for designing
efficient algorithms. This line of research originates in Tutte’s work [21] for the matching problem,
where his matrix representation is now known as the Tutte matrix. Edmonds [6] dealt with a simpler
representation for the bipartite case, and this result was later extended by Tomizawa and Iri [20] to
the linear matroid intersection problem. Unifying these works, Lovász [17] gave a matrix representation
for the linear matroid parity problem [16] (also called the linear matroid matching problem), a common
generalization of the matching and linear matroid intersection problems.

These matrix representations are of the form so called linear (symbolic) matrices:

A =

m∑

i=1

xiAi, (1)

where x1, . . . , xm are distinct indeterminates (symbols), and A1, . . . , Am are constant matrices over a
field K determined from a given instance of the problem. Intuitively, each xi corresponds to each element
of the problem’s ground set, and setting xi to zero means removing the element from consideration.
Every Ai is (i) a matrix having only one nonzero entry for the bipartite matching problem, (ii) a skew-
symmetric matrix having two nonzero entries for the matching problem, (iii) a rank-one matrix for the
linear matroid intersection problem, and (iv) a rank-two skew-symmetric matrix for the linear matroid
parity problem. The rank of A (as a matrix over the rational function field K(x1, . . . , xm)) coincides with

∗The full version of this paper is available at https://arxiv.org/abs/2207.07946.
†Research is supported by JSPS KAKENHI Grant Number JP22K17853 and JST ERATO Grant Number JPMJER1903.

383

the size of maximum bipartite matchings and maximum common independent sets, and with twice the
size of maximum matching and maximum independent parity set.

The problem of computing the rank of a given linear matrix is called Edmonds’ problem [6]. When
|K| is large enough, we can solve Edmonds’ problem by substituting random values drawn from K into
the indeterminates x1, . . . , xm and computing the rank of the obtained constant matrix; the probability
of success can be bounded by the Schwartz–Zippel lemma [19, 23]. This remarkably simple idea leads
to efficient randomized polynomial-time algorithms for various combinatorial optimization problems via
matrix representations. These algorithms are called algebraic algorithms. Indeed, the current fastest
algorithm for linear matroid intersection [11] and parity [4] are algebraic algorithms.

A major open question in Edmonds’ problem is to develop a deterministic polynomial-time algorithm
for general Ai; the existence of such an algorithm would imply non-trivial circuit complexity lower
bounds [15]. To shed light on this question, recent studies [8, 10, 12, 14] focused on the non-commutative
version of Edmonds’ problem. This problem is to compute the non-commutative rank (nc-rank) of a linear
matrix: the rank when the indeterminates x1, . . . , xm are regarded as “pairwise non-commutative”, i.e.,
xixj ̸= xjxi if i ̸= j. An equivalent and elementary definition of nc-rank involves the blow-up of linear
matrices. For d ≥ 1, the dth-order blow-up of an n× n linear matrix A is a dn× dn linear matrix

A{d} =

m∑

i=1

Xi ⊗Ai, (2)

where X1, . . . , Xm are d × d matrices of distinct indeterminates in their entries, and ⊗ denotes the
Kronecker product. Then, nc-rankA is equal to 1

d rankA{d} for d ≥ n − 1 [5]. The nc-rank can also
be defined via a min-max type formulation [7]. Recent breakthrough results [8, 10, 14] show that non-
commutative Edmonds’ problem is solvable in deterministic polynomial time.

Given the recent advances in the studies of nc-rank, it is quite natural to ask: Can we devise an
efficient and simple randomized algorithm for combinatorial optimization problems via nc-rank? In this
paper, we initiate the study of algebraic algorithms via nc-rank. We first reveal that the nc-rank of
the matrix representation of the linear matroid parity problem is equal to twice the optimal value of
the corresponding fractional linear matroid parity problem, which is a continuous relaxation of the linear
matroid parity problem introduced by Vande Vate [22]. The set of feasible solutions of this problem,
called the fractional matroid parity polytope, is a half-integral polytope contained in the 0-1 hypercube
whose integral points correspond to the feasible solutions of the linear matroid parity problem. We prove
our claim by establishing a correspondence between dual solutions of the fractional linear matroid parity
and non-commutative Edmonds’ problems.

This result provides a “matrix representation” that involves the nc-rank for the fractional linear
matroid parity problem. Thus, we can compute the optimal value of fractional linear matroid parity by
any deterministic polynomial-time algorithms [8, 10, 14] for non-commutative Edmonds’ problem, and if
|K| is large, one can also use the simple randomized algorithm that substitutes random values into the
entries of X1, . . . , Xm in A{n−1} with high probability, where n is the dimension of the space. These
algorithms, however, do not output an actual optimal solution. In the known matrix representations
of matching and linear matroid intersection and parity, this issue can be addressed with the search-to-
decision reduction: we can test whether each element, say i, is contained in an optimal solution by simply
checking whether setting xi = 0 decreases the rank.

To incorporate the search-to-decision reduction into fractional linear matroid parity, whose extreme
solutions are half-integral, we establish a novel correspondence between the rank of Xi in the blow-up
and the ith component of a solution. Letting A be the matrix representation of this problem, we prove
that nc-rankA = 1

2 rankA{2} holds, i.e., the second-order blow-up is enough for attaining the nc-rank.
Then, roughly speaking, we show that restricting the rank of Xi to 0, 1, or 2 corresponds to setting an
upper bound on the ith component yi of a solution y ∈ Rm to 0, 1

2 , or 1, respectively. Our algorithm
runs in O(nω + mn2) time, where n is the dimension of the space, m is the size of the ground set (see
Section 2 for precise definitions), and 2 ≤ ω ≤ 3 is the matrix multiplication exponent. This is faster
than the existing algorithm of Chang et al. [2] that takes O(m4nω) time.

384

In the full version of this paper, we further present a much faster divide-and-conquer algorithm that
runs in O(mnω−1) time. The full paper also develops an algebraic algorithm to obtain a dual optimal
solution. Interested readers are referred to the arXiv preprint.

2 Preliminaries

We give basic definitions and notations. Let N be the set of natural numbers and R the set of reals. For
n ∈ N, let [n] := {1, 2, . . . , n}. For two real vectors y = (y1, . . . , ym) and z = (z1, . . . , zm), y ≤ z means
that yi ≤ zi for all i ∈ [m]. The cardinality of a nonnegative vector y ∈ Rm is |y| :=

∑m
i=1 yi. Let 0

and 1 denote the all-zero and all-one vectors, respectively, of appropriate dimensions. Let ei be the ith
standard unit vector, i.e., its jth component is 1 if i = j and 0 otherwise.

Let K be a ground field. We assume that arithmetic operations on K can be performed in constant
time. We denote by GLn(K) the set of n× n nonsingular matrices over K. For a matrix A, a row subset
I, and a column subset J , we denote by A[I, J] the submatrix indexed by I and J , and by A[I] the
principal submatrix A[I, I] for square A. When I (resp. J) is all the rows (resp. columns), we denote
A[I, J] by A[∗, J] (resp. A[I, ∗]). The n× n identity matrix and the n×m zero matrix are denoted as In
and On,m, respectively. We will omit the subscript of a zero matrix when its size does not matter.

A square matrix A ∈ Kn×n is said to be skew-symmetric if A⊤ = −A and its diagonals are zero. For
two vectors a, b ∈ Kn, we define the wedge product as a∧b := ab⊤−ba⊤. This is a skew-symmetric matrix
of rank-two if a and b are linearly independent. For V,W ⊆ Kn, we mean by V ≤W that V and W are
vector subspaces of Kn such that V ⊆ W , i.e., V is a subspace of W , and V < W means V ≤ W and
V ̸= W . For vectors a1, . . . , am ∈ Kn, let ⟨a1, . . . , am⟩ denote the vector subspace spanned by a1, . . . , am.

2.1 Linear Matroid Parity and Fractional Linear Matroid Parity

Let ℓ1, . . . , ℓm ≤ Kn be two-dimensional vector subspaces, called lines. A line subset M ⊆ L :=
{ℓ1, . . . , ℓm} is called a matroid matching if it spans a 2|M |-dimensional vector subspace of Kn. A parity
base is a matroid matching M with 2|M | = n. Without loss of generality, we assume n ≤ 2m since we
can focus on the at most 2m-dimensional subspace spanned by the lines. The linear matroid parity prob-
lem [16] (or the linear matroid matching problem) is to find a matroid matching of maximum cardinality.
For the linear matroid parity problem, Lovász [17] introduced the following matrix representation:

A =
m∑

i=1

xi(ai ∧ bi), (3)

where {ai, bi} is any basis of ℓi for i ∈ [m] and x1, . . . , xm are distinct indeterminates. That is, A is a
linear matrix (1) with rank-two skew-symmetric coefficients.

Theorem 1 ([17, 18]) Let A be the matrix representation (3) corresponding to lines L. Then, we have

rankA = 2 max{|M | : M ⊆ L is a matroid matching}.

The matroid parity polytope is the convex hull of the incidence vectors of the matroid matchings. In
contrast to the matching and matroid intersection polytopes, a polyhedral description of matroid parity
polytopes is still unknown. As a relaxation of the matroid parity polytope, Vande Vate [22] introduced
a fractional matroid parity (matching) polytope as follows. Let L = {ℓ1, . . . , ℓm} be lines. A fractional
matroid matching is a nonnegative vector y ∈ Rm such that

∑m
i=1 dim(S ∩ ℓi)yi ≤ dimS holds for all

S ≤ Kn. The fractional matroid parity polytope P is the set of all fractional matroid matchings. This
polytope is half-integral, i.e., extreme fractional matroid matchings are half-integral, and the integral
ones are the incidence vectors of the matroid matchings [22].

The fractional linear matroid parity (matching) problem is to find a fractional matroid matching of
maximum cardinality. Since fractional matroid parity polytopes are half-integral, there always exists

385

a half-integral optimal solution. Chang et al. [2, 3] gave a min-max theorem and a polynomial-time
algorithm for this problem. We shall define a 2-cover as a pair (S, T) of vector subspaces of Kn such that
dim(S ∩ ℓi) + dim(T ∩ ℓi) ≥ 2 for all i ∈ [m]. A 2-cover (S, T) is said to be nested if S ≤ T .

Theorem 2 ([2, Corollary 4.3]) For a fractional matroid parity polytope P , it holds

2 max
y∈P
|y| = min

(S,T):nested 2-cover
(dimS + dimT). (4)

A minimizer in (4) is called a minimum 2-cover. By the modularity of the dimension, if (S, T) and
(S′, T ′) are minimum nested 2-covers, then (S∩S′, T +T ′) and (S+S′, T ∩T ′) are also minimum 2-covers
and the former is nested. Hence, there exists a unique minimum nested 2-cover (S∗, T ∗) such that S∗ ≤ S
and T ≤ T ∗ for any minimum nested 2-cover (S, T) [3, Lemma 4.9]. This nested 2-cover (S∗, T ∗) is called
the dominant 2-cover. The dominant 2-cover plays an important role in the weighted fractional matroid
parity algorithm by Gijswijt and Pap [9].

2.2 Non-commutative Rank

Let A be a linear matrix (1) with A1, . . . , Am ∈ Kn×n. As described in Section 1, the non-commutative
rank (nc-rank) of A, denoted as nc-rankA, is equal to 1

d rankA{d} for d ≥ n − 1, where A{d} is the
dth-order blow-up (2) of A. In general, the rank and nc-rank of a linear matrix A satisfy rankA ≤
nc-rankA ≤ 2 rankA [7]. Generalizing the König–Egeváry theorem for bipartite matching and Edmonds’
matroid intersection theorem, Fortin and Reutenauer [7] presented the following min-max formulation.

Theorem 3 ([7, Theorem 1]) For an n× n linear matrix A, it holds

nc-rankA = min

{
2n− s− t : P,Q ∈ GLn(K), PAQ =

[
∗ ∗
Os,t ∗

]}
.

Hamada and Hirai [10] rephrased Theorem 3 as follows.

Theorem 4 ([10]) For an n× n linear matrix A, it holds

nc-rankA = min{2n− dimX − dimY : X,Y ≤ Kn, Ai(X,Y) = {0} for i ∈ [m]}, (5)

where Ai(X,Y) := {x⊤Aiy : x ∈ X, y ∈ Y }.
The dual problem (5) is called the minimum vanishing subspace problem (MVSP). It is known that

the MVSP is an example of submodular function minimization on the product of the lattice of all vector
subspaces of Kn and its order-reversed lattice. Namely, if (X,Y) and (X ′, Y ′) attain the minimum, so
do (X +X ′, Y ∩ Y ′) and (X ∩X ′, Y + Y ′). Using this property, we can show the following.

Lemma 5 For an n× n skew-symmetric linear matrix A, we have

nc-rankA = min

2n− s− t : P ∈ GLn(K), PAP⊤ =

n− s s− t t
n− s ∗ ∗ ∗
s− t ∗ ∗ O

t ∗ O O

. (6)

2.3 Linear Algebra Toolbox

We collect useful tools in linear algebra. First, we deal with the Kronecker product. Recall that the
Kronecker product of an n×m matrix A = (aij) and a p× q matrix B is an np×mq matrix

A⊗B :=

a11B a1mB

an1B anmB

.

386

For matrices A,B,C,D,E, and F of such size that ABC and DEF are defined, the Kronecker product
satisfies the mixed-product property (ABC)⊗ (DEF) = (A⊗D)(B ⊗ E)(C ⊗ F).

Next, let A = (aij) be an n× n skew-symmetric matrix with n being even. The Pfaffian of A is

pf A :=
∑

σ∈Fn

sgnσ
∏

i∈[n]:even

aσ(i−1)σ(i),

where Fn is the set of permutations σ : [n]→ [n] such that σ(1) < σ(3) < · · · < σ(n) and σ(i− 1) < σ(i)

for even i ∈ [n]. Let pf A = 0 when n is odd. The Pfaffian satisfies (pf A)
2

= detA, meaning that A is
nonsingular if and only if pf A ̸= 0, and the following generalization of the Cauchy–Binet formula.

Proposition 6 ([13]) For skew-symmetric A ∈ Kn×n and B ∈ Km×n, it holds

pf BAB⊤ =
∑

J

detB[∗, J] pf A[J],

where J runs over all row (column) subsets of A of size m.

3 Non-commutative Rank and Fractional Linear Matroid Parity

In this section, we show the following non-commutative and fractional counterpart to Theorem 1.

Theorem 7 Let P be a fractional matroid parity polytope and A the corresponding matrix representa-
tion (3). Then, we have

nc-rankA = 2 max
y∈P
|y|.

Proof: First, we show that nc-rankA ≤ 2 maxy∈P |y|. Let Bi =
[
ai bi

]
for i ∈ [m] and (S, T) be

a minimum nested 2-cover. By appropriate change of basis, we can assume that S = ⟨e1, . . . , es⟩ and
T = ⟨e1, . . . , et⟩ for s ≤ t. Since (S, T) is a 2-cover, the column-echelon form of Bi must have one of the
following block structures:

s ∗ ∗

t− s ∗ 0
n− t ∗ 0

,

∗ ∗
∗ ∗
0 0

.

Note that column operations do not change the wedge product ai ∧ bi except for the sign.
We will show that the same change of basis yields a common (n−t)×(n−s) block for each ai∧bi. IfBi ∼

∗ ∗
∗ 0
∗ 0

, then ai ∧ bi =

s t− s n− t
s ∗ ∗ ∗

t− s ∗ O O
n− t ∗ O O

. If Bi ∼

∗ ∗
∗ ∗
0 0

, then ai ∧ bi =

s t− s n− t
s ∗ ∗ O

t− s ∗ ∗ O
n− t O O O

.

Therefore, the right bottom (n− t)× (n− s) zero block is common for all ai ∧ bi. By Theorems 2 and 3,
we have nc-rankA ≤ 2n− (n− t)− (n− s) = s+ t = 2 maxy∈P |y|.

We show the other direction. Let P ∈ GLn(K) be an optimal solution in Lemma 5 and s, t (s ≥ t)
be the values in (6) for P . By appropriate change of basis, we can assume that P = In. For p, q ∈ [n]
(p ̸= q), let us denote by detBi[p, q] the 2× 2 minor corresponding to the pth and qth rows of B̃i. Then,
every minor detBi[p, q] vanishes for p > n− s and q > n− t, because it equals the (p, q)-entry of ai ∧ bi.
This implies that the column-echelon form of Bi must be one of the following block structures:

n− s ∗ ∗
s− t ∗ 0

t ∗ 0

,

∗ ∗
∗ ∗
0 0

.

Therefore, letting S = ⟨e1, . . . , es⟩ and T = ⟨e1, . . . , et⟩, we can conform that (S, T) is a nested 2-cover
with dimS + dimT = 2n− s− t. This completes the proof. □

387

Algorithm 1 Simple algebraic algorithm for the fractional linear matroid parity problem

Input: A fractional matroid parity polytope P given as ai, bi ∈ Kn (i ∈ [m]) and a finite subset R of K.
Output: The lexicographically minimum maximum fractional matroid matching in P
1: Let A =

∑m
i=1 xi(ai ∧ bi).

2: Estimate ρA(·) by substituting elements of R uniformly at random in the following.
3: r := ρA(1)
4: y ← 1
5: for i = 1, . . . ,m do
6: if ρA

(
y − 1

2ei
)

= r then
7: yi ← 1

2
8: if ρA(y − 1

2ei) = r then
9: yi ← 0

10: return y

4 Algebraic Algorithm

In this section, we present an algebraic algorithm for the fractional linear matroid parity problem that
outputs not only the optimal value but also an optimal solution.

4.1 Algorithm Description

Let P be the fractional matroid parity polytope defind from lines ℓi = ⟨ai, bi⟩ (i ∈ [m]) and A be the
corresponding matrix representation (3). For a half-integral vector y ∈

{
0, 12 , 1

}m
, let

A{2}(y) :=

m∑

i=1

Yi ⊗ (ai ∧ bi),

where Yi = UiU
⊤
i and Ui is a 2 × 2yi matrix with indeterminates in its entries for i ∈ [m]. We define

Yi = O if yi = 0. Namely, A{2}(y) is the matrix obtained by substituting the 2× 2 symmetric matrix Yi
of rank 2yi into Xi in the second-order blow-up A{2} for i ∈ [m]. Note that A{2}(y) is skew-symmetric.
We let ρA(y) := rankA{2}(y).

Algorithm 1 describes the presented algebraic algorithm. The algorithm iteratively computes ρA(y)
for different y ∈

{
0, 12 , 1

}m
, which can be efficiently performed via the random substitution from a finite

subset R ⊆ K. We will show that the value r = ρA(1) computed in Algorithm 1 is four times the
cardinality of maximum fractional matroid matching, and ρA(y) computed in Algorithm 1 is equal to r
if and only if there exists z ∈

{
0, 12 , 1

}m
such that z ≤ y, z ∈ P , and |z| = r

4 . Thus, Algorithm 1 finds
a maximum fractional matroid matching via the search-to-decision reduction. Specifically, the algorithm
outputs the lexicographically minimum optimal solution. In the rest of this section, we give proofs of
these facts and then show the following conclusion.

Theorem 8 If |R| ≥ 16mn, Algorithm 1 finds the lexicographically minimum vector among all maximum
fractional matroid matchings in P in O(nω +mn2) time with probability at least 1

2 .

4.2 Characterizing Rank of Second-order Blow-up

By the skew-symmetricity, rankA{2}(y) is equal to the maximum size of a nonsingular principal subma-
trix. We first give an expansion formula of the Pfaffian of nonsingular principal submatrices of A{2}(y)
and use it to characterize the rank of A{2}(y). Let Bi =

[
ai bi

]
for i ∈ [m].

388

Lemma 9 For y ∈
{

0, 12 , 1
}m

and I ⊆ [2n], it holds

pf A{2}(y)[I] =
∑

z∈
{
0, 12 ,1

}m
:

|z|= |I|
4 , z≤y

∑

(J1,...,Jm)∈J y(z)

τJ1,...,Jm
, (7)

where J y(z) is the family of m-tuples (J1, . . . , Jm) such that

Ji =

{1, 2, 3, 4} (zi = 1),

{1, 2} or {3, 4}
(
yi = 1, zi = 1

2

)
,

{1, 2}
(
yi = zi = 1

2

)
,

∅ (zi = 0),

τJ1,...,Jm = det
[
(U1 ⊗B1)[I, J1] (Um ⊗Bm)[I, Jm]

]
, (8)

and Ui is the 2× 2yi matrix given in Section 4.1.

Proof: The wedge product ai ∧ bi is written as Bi∆B
⊤
i with ∆ =

[
0 +1
−1 0

]
. Using the mixed-product

property, we obtain Yi ⊗ (ai ∧ bi) =
(
UiI2yi

Ui
⊤) ⊗

(
Bi∆B

⊤
i

)
= (Ui ⊗ Bi)(I2yi

⊗ ∆)(Ui ⊗Bi)
⊤

and

A{2}(y) = B(y)D(y)B(y)
⊤

, where

B(y) =
[
U1 ⊗B1 Um ⊗Bm

]
, D(y) =

I2y1
⊗∆

I2ym
⊗∆

. (9)

Thus, we have A{2}(y)[I] = B(y)[I, ∗]D(y)B(y)[I, ∗]⊤. Applying Proposition 6, we obtain

pf A{2}(y)[I] = pf B(y)[I, ∗]D(y)B(y)[I, ∗]⊤ =
∑

J

detB(y)[I, J] pf D(y)[J], (10)

where J runs over all column subsets in B(y) of cardinality |I|. Letting Ji be the columns of (Ui⊗Bi)[I, ∗]
in B(y)[I, J], we have

pf A{2}(y)[I] =
∑

(J1,...,Jm):∑m
i=1 |Ji|=|I|

τJ1,...,Jm

m∏

i=1

pf(I2yi ⊗∆)[Ji].

Let zi = |Ji|
4 for i ∈ [m]. Now pf(I2yi

⊗∆)[Ji] ∈ {0, 1} and it does not vanish if and only if |Ji| ≤ 4yi and
Ji = {1, 2, 3, 4}, {1, 2}, {3, 4} (allowed only when yi = 1), or ∅. Thus, z corresponding to non-vanishing
terms is a half-integral vector with z ≤ y. The equation (10) is represented as (7) in this way. □

Corollary 10 For y ∈
{

0, 12 , 1
}m

, ρA(y) is equal to four times the maximum cardinality of z ∈
{

0, 12 , 1
}m

such that z ≤ y and B(z) is of column-full rank, where B(z) is defined by (9).

Proof: Since A{2}(y) is skew-symmetric, ρA(y) = rankA{2}(y) is equal to the maximum cardinality
of I ⊆ [2n] such that A{2}(Y)[I] is nonsingular. Fix I ⊆ [2n]. By Lemma 9, pf A{2}(y)[I] is expanded
as (7). Now the summand (8) of (7) for z is the same polynomial as detB(z)[I] up to the indeterminates’

labeling. Thus, if B(z)[I] is singular for any z ∈
{

0, 12 , 1
}m

with z ≤ y and |z| = |I|
4 , the principal

submatrix A{2}(y)[I] must be singular. Conversely, if there exists z ∈
{

0, 12 , 1
}m

such that z ≤ y,

|z| = |I|
4 , and B(z)[I] is nonsingular, the principal submatrix A{2}(y)[I] becomes nonsingular because

different z and (J1, . . . , Jm) ∈ J y(z) yield summands (8) that do not cancel out.
To summarize, A{2}(y)[I] is nonsingular if and only if there exists z ∈

{
0, 12 , 1

}m
with z ≤ y such

that B(z)[I] is nonsingular. Finding a maximum I satisfying these conditions, we obtain the claim. □

389

4.3 Full-column Rankness and Half-integral Fractional Matroid Matchings

Corollary 10 characterizes the ρA(y) value in terms of the column full rankness of B(y). We next relate
B(y) and half-integral points in P .

Lemma 11 A half-integral vector y ∈
{

0, 12 , 1
}m

is in P if B(y) is of full-column rank.

Proof: We check
∑m

i=1 dim(S ∩ ℓi)yi ≤ dimS for S ≤ Kn. Recall that B(y) is constructed from
U = (U1, . . . , Um) where each Ui is of size 2 × 2yi with indeterminates. Let F = K(U) be the rational

function field obtained by adjoining the entries of U to K, and Ŝ = F⊗K S and ℓ̂i = F⊗K ℓi be the scalar
extensions of S and ℓi, respectively. Then, dimS = dim Ŝ holds and

dim(S ∩ ℓi) = dimF⊗K (S ∩ ℓi) = dim
(
Ŝ ∩ ℓ̂i

)
. (11)

Let Wi = (F2⊗F Ŝ)∩ ImF(Ui⊗Bi), where F2⊗F Ŝ is the tensor product of F2 and Ŝ and ImF(Ui⊗Bi)
is the image space of the matrix Ui ⊗ Bi over F. Using the distributive inequality V1 ∩ (V2 + V3) ⊇
(V1 ∩ V2) + (V1 ∩ V3) of vector spaces V1, V2, and V3, we have

F2 ⊗F Ŝ ⊇
(
F2 ⊗F Ŝ

)
∩ ImB(y) =

(
F2 ⊗F Ŝ

)
∩

m∑

i=1

Im(Ui ⊗Bi) ⊇
m∑

i=1

Wi.

This means that

2 dimS = 2 dim Ŝ = dim
(
F2 ⊗F Ŝ

)
≥ dim

m∑

i=1

Wi =
m∑

i=1

dimWi, (12)

where the last equality is due to the assumption that B(y) is of full-column rank.

We next show dimWi = 2 dimF(Ŝ ∩ ℓ̂i)yi for i ∈ [m], which completes the proof by (11) and (12).

Using ImFBi = ℓ̂i, we obtain ImF(Ui ⊗Bi) = ImF Ui ⊗F ImFBi = ImF Ui ⊗F ℓ̂i. Thus, we have

Wi =
(
F2 ⊗F Ŝ

)
∩
(
ImF Ui ⊗F ℓ̂i

)
=
(
F2 ∩ ImF Ui

)
⊗F
(
Ŝ ∩ ℓ̂i

)
= ImF Ui ⊗F

(
Ŝ ∩ ℓ̂i

)

and hence dimWi = (dim ImF Ui) ·
(
dim

(
Ŝ ∩ ℓ̂i

))
= 2yi · dim

(
Ŝ ∩ ℓ̂i

)
holds as required. □

The converse of Lemma 11 holds for extreme points in P . The extremality is needed to use the
characterization of extreme fractional matroid matchings given by Chang et al. [3]. We omit the proof
due to space limitation; see the full paper for complete proof.

Lemma 12 The matrix B(y) with y ∈
{

0, 12 , 1
}m

is of full-column rank if y is an extreme point of P .

It is unknown whether B(y) is of full-column rank even for a half-integral but non-extreme y ∈ P .
Nevertheless, our weak characterization is enough to show the validity of Algorithm 1.

4.4 Proof of Theorem 8

Corollary 10 and Lemmas 11 and 12 are aggregated into the following lemma.

Lemma 13 For y ∈
{

0, 12 , 1
}m

, ρA(y) ≤ 4 max{|z| : z ∈ P, z ≤ y} holds. The equality is attained if
there exists extreme z ∈ P with z ≤ y that attains the maximum in max{|z| : z ∈ P, z ≤ y}.

Proof: By Corollary 10, ρA(y) is equal to four times the maximum cardinality of z ∈
{

0, 12 , 1
}m

such that z ≤ y and B(z) is of column-full rank. Since such z is in P by Lemma 11, we have the
inequality. Next, suppose that there exists extreme z∗ ∈ P with z∗ ≤ y that attains the maximum
in max{|z| : z ∈ P, z ≤ y}. By Lemma 12, B(z∗) is of full column rank, meaning 4|z∗| ≤ ρA(y) by

390

Corollary 10. Now we have ρA(y) ≤ 4 max{|z| : z ∈ P, z ≤ y} = 4|z∗| ≤ ρA(y) and hence the equality is
attained. □

Now we are ready to prove Theorem 8.

Proof: First, we show the validity of the algorithm assuming that the exact value of ρA can be computed.
Let y∗ be the lexicographically minimum point among all points in P with maximum cardinality. Note
that y∗ is half-integral since y∗ is extreme. Let y(0) = 1 and y(i) denote y in Algorithm 1 at the end of
the ith iteration for i ∈ [m]. We show by induction on i the following claim: for every i = 0, . . . ,m, it

holds y
(i)
j = y∗j if j ≤ i and y

(i)
j = 1 if j > i. Then Theorem 8 is obtained as the case for i = m.

The claim for i = 0 is trivial. Suppose that the claim is true for i − 1 and consider the case for i.
Let y be the candidate solution given to ρA in Line 6 of Algorithm 1. Suppose the case when y∗i = 1.
Then y is lexicographically smaller than y∗ by the inductive assumption. This means that that there is
no maximum point z ∈ P satisfying z ≤ y. By Lemma 13, we have

ρA(y) ≤ 4 max{|z| : z ∈ P, z ≤ y} < 4 max{|z| : z ∈ P} = ρA(1)

and thus the ith iteration in Algorithm 1 does not execute Lines 7–9 and y
(i)
i is fixed to 1. Suppose the

case when y∗i ≤ 1
2 . Then y∗ ≤ y by the inductive assumption. We have

max{|z| : z ∈ P} = |y∗| ≤ max{|z| : z ∈ P, z ≤ y} ≤ max{|z| : z ∈ P},

which means that y∗ attains the maximum in max{|z| : z ∈ P, z ≤ y}. Since y∗ is extreme, we have

ρA(y) = 4 max{|z| : z ∈ P, z ≤ y} = 4|y∗| = ρA(1)

by Lemma 13. Thus the ith iteration goes to Line 7. The same argument can be applied to the conditional
branch in Line 8. This completes the proof of validity assuming that all the evaluations of ρA is exact.

Next, we analyze the probability of success when we estimate ρA(y) by substituting uniform random
elements from R to the entries of Ui. Since each entry of A{2}(y) =

∑m
i=1 UiU

⊤
i ⊗ (ai ∧ bi) is quadratic,

the degree of any non-vanishing k× k minor is 2k for any k ≤ 2n. Therefore, the probability that such a
non-vanishing minor remains non-vanishing after the random substitution from R is at least 1 − 4n

|R| by

the Schwartz-Zippel lemma. Since there are at most 2m evaluations of ρA, it suffices to take |R| = 16mn
to guarantee that all the evaluations of ρA during the algorithm are correct with probability at least 1

2 .
Thus, the output of the algorithm is correct with probability at least 1

2 .
Finally, we analyze the time complexity. The value of ρA can be evaluated in O(n2) time as follows.

Let y be a tentative solution, y′ = y− 1
2ei be a candidate solution in the algorithm, and Ui be a random

matrix of size 2 × 2yi for i ∈ [m]. Suppose that we already have an LU decomposition LU of A{2}(y).
Then, to evaluate ρA(y′), it suffices to compute an LU decomposition of M ′ = LU +Di⊗ (ai ∧ bi), where

Di =

{
−Ui[∗, {1}]Ui[∗, {1}]⊤

(
yi = 1, y′i = 1

2

)
,

−UiU
⊤
i

(
yi = 1

2 , y
′
i = 0

)
.

Note that the rank of Di is 1, so that of Di⊗ (ai∧bi) is 2. Hence, we can use an update formula [1] for an
LU decomposition to compute rankM ′ in O(n2) time. For the first evaluation of ρA, we simply compute
an LU decomposition in O(nω) time. Thus, the time complexity of Algorithm 1 is O(nω +mn2). □

References

[1] J. M. Bennett. “Triangular factors of modified matrices”. In: Numerische Mathematik 7.3 (1965),
pp. 217–221.

[2] S. Y. Chang, D. C. Llewellyn, and J. H. Vande Vate. “Matching 2-lattice polyhedra: finding a
maximum vector”. In: Discrete Mathematics 237.1-3 (2001), pp. 29–61.

391

[3] S. Y. Chang, D. C. Llewellyn, and J. H. Vande Vate. “Two-lattice polyhedra: duality and extreme
points”. In: Discrete Mathematics 237.1-3 (2001), pp. 63–95.

[4] H. Y. Cheung, L. C. Lau, and K. M. Leung. “Algebraic algorithms for linear matroid parity prob-
lems”. In: ACM Transactions on Algorithms 10.3 (2014), pp. 1–26.

[5] H. Derksen and V. Makam. “Polynomial degree bounds for matrix semi-invariants”. In: Advances
in Mathematics 310 (2017), pp. 44–63.

[6] J. Edmonds. “Systems of distinct representatives and linear algebra”. In: Journal of research of the
National Bureau of Standards 71B.4 (1967), pp. 241–245.

[7] M. Fortin and C. Reutenauer. “Commutative/noncommutative rank of linear matrices and sub-
spaces of matrices of low rank”. In: Séminaire Lotharingien de Combinatoire 52 (2004), B52f.

[8] A. Garg, L. Gurvits, R. Oliveira, and A. Wigderson. “Operator scaling: theory and applications”.
In: Foundations of Computational Mathematics 20.2 (2020), pp. 223–290.

[9] D. Gijswijt and G. Pap. “An algorithm for weighted fractional matroid matching”. In: Journal of
Combinatorial Theory, Series B 103.4 (2013), pp. 509–520.

[10] M. Hamada and H. Hirai. “Computing the nc-rank via discrete convex optimization on CAT(0)
spaces”. In: SIAM Journal on Applied Algebra and Geometry 5.3 (2021), pp. 455–478.

[11] N. J. A. Harvey. “Algebraic algorithms for matching and matroid problems”. In: SIAM Journal on
Computing 39.2 (2009), pp. 679–702.

[12] P. Hrubeš and A. Wigderson. “Non-commutative arithmetic circuits with division”. In: Theory of
Computing 11.14 (2015), pp. 357–393.

[13] M. Ishikawa and M. Wakayama. “Minor summation formula of Pfaffians”. In: Linear and Multilinear
Algebra 39.3 (1995), pp. 285–305.

[14] G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam. “Constructive non-commutative rank computation
is in deterministic polynomial time”. In: Computational Complexity 27.4 (2018), pp. 561–593.

[15] V. Kabanets and R. Impagliazzo. “Derandomizing polynomial identity tests means proving circuit
lower bounds”. In: Computational Complexity 13.1–2 (2004), pp. 1–46.

[16] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. New York: Holt, Rinehart and
Winston, 1976.

[17] L. Lovász. “On determinants, matchings, and random algorithms”. In: Fundamentals of Computa-
tion Theory. Ed. by L. Budach. Berlin: Akademie-Verlag, 1979.

[18] L. Lovász. “Singular spaces of matrices and their application in combinatorics”. In: Bulletin of the
Brazilian Mathematical Society. New Series. Boletim da Sociedade Brasileira de Matematica 20.1
(1989), pp. 87–99.

[19] J. T. Schwartz. “Fast probabilistic algorithms for verification of polynomial identities”. In: Journal
of the ACM 27.4 (1980), pp. 701–717.

[20] N. Tomizawa and M. Iri. “An algorithm for determining the rank of a triple matrix product AXB
with application to the problem of discerning the existence of the unique solution in a network (in
Japanese)”. In: Electronics and Communications in Japan 57.11 (1974), pp. 50–57.

[21] W. T. Tutte. “The factorization of linear graphs”. In: Journal of the London Mathematical Society.
Second Series s1-22.2 (1947), pp. 107–111.

[22] J. H. Vande Vate. “Fractional matroid matchings”. In: Journal of Combinatorial Theory, Series B
55.1 (1992), pp. 133–145.

[23] R. Zippel. “Probabilistic algorithms for sparse polynomials”. In: Symbolic and Algebraic Computa-
tion. Ed. by E. W. Ng. Vol. 72. Lecture Notes in Computer Science. Berlin: Springer, 1979, pp. 216–
226.

392

Common systems of two equations over the binary
field

Daniel Král’1

Faculty of Informatics
Masaryk University

Botanická 68A, 602 00 Brno, Czech Republic
dkral@fi.muni.cz

Ander Lamaison1

Faculty of Informatics
Masaryk University

Botanická 68A, 602 00 Brno, Czech Republic
lamaison@fi.muni.cz

Péter Pál Pach2

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

Műegyetem rkp. 3., H-1111 Budapest, Hungary;
MTA-BME Lendület Arithmetic Combinatorics

Research Group, ELKH
Műegyetem rkp. 3., H-1111 Budapest, Hungary;

and
Extremal Combinatorics and Probability Group
(ECOPRO), Institute for Basic Science (IBS)

Daejeon, South Korea
ppp@cs.bme.hu

Abstract: A system of linear equations over a finite field Fq is said to be common if, among
all two-colorings of Fn

q , the uniform random coloring minimizes the number of monochromatic
solutions asymptotically. The notion of common systems of linear equations was introduced
by Saad and Wolf, as an analogue to the well-studied notion of common graphs.

Fox, Pham and Zhao characterized the common systems consisting of one equation. We
study systems consisting of two equations over the binary field F2. We characterize, up to
a finite number of cases, which systems with an odd number of variables are common. Our
characterization answers a question by Kamčev, Liebenau and Morrison in the affirmative
way whether there exist common systems of equations that are not translation invariant.

Keywords: common systems, monochromatic solutions, Sidorenko’s conjecture

1The work of D.K. and A.L. has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 648509). This publication reflects only its
authors’ view; the European Research Council Executive Agency is not responsible for any use that may be made of the
information it contains. The authors were also supported by the MUNI Award in Science and Humanities of the Grant
Agency of Masaryk University.

2P.P.P. was supported by the Lendület program of the Hungarian Academy of Sciences (MTA), the National Research,
Development and Innovation Office NKFIH (Grant Nr. K124171 and K129335) and by the Institute for Basic Science
(Grant Nr. IBS-R029-C4).

393

394

New results on synchronized TSP

Gyula Pap1

Department of Operations Research
Eötvös University, Budapest, Hungary

gyula.pap@ttk.elte.hu

Abstract: In synchronized TSP we consider multiple agents walking around in a graph
without bumping into each other, a notion introduced in [2]. We can consider optimization
problems relating to synchronized TSP, and some lower and upper bounds have been proved
in [2]. In this paper we extend on these results in two different ways. First we consider so-
called periodic agencies, and prove that an optimal periodic agency can be found for bounded
treewidth graphs and bounded periodicity. Second we elaborate on the maximum number of
agents problem from [2], and prove that for connected graphs with minimum degree 3 there
is an agency of at least n− 5.

Keywords: traveling salesman, optimization, spanning tree

1 Introduction

The notion of the synchronized traveling salesman problem was introduced in [2], in which there is a set
of so-called agents walking around in an undirected graph, and avoiding a collision with each other, but
each of them performing a tour of all vertices of the graph. In many cases considered, a feasible agency is
constructed in a way that the trajectory of the agents is repeated after a delay, and thus resulting in this
bunch of trajectories avoiding a collision. An agency that is constructed in this way is called an periodic
agency and in this paper we investigate the problem of finding an optimal periodic agency in the input
graph.

2 Problem setting

In the notation and terminology we go by those introduced in [2], which is summarized as follows.
Let G = (V,E) be an undirected graph with n = |V |. A sequence v(0), v(1), v(2), . . . , v(T) of nodes
v(t) ∈ V is called a walk (with parking) if for all t = 0, 1, . . . , T − 1 we have either v(t) = v(t + 1)
or v(t)v(t + 1) ∈ E. A sequence v(0), v(1), v(2), . . . , v(T) of nodes v(t) ∈ V is called a walk (without
parking) if for all t = 0, 1, . . . , T − 1 we have v(t)v(t+ 1) ∈ E. For a walk, T is called the time horizon.

A sequence v(0), v(1), v(2), . . . , v(T) of nodes v(t) ∈ V is called a traveling salesman tour (with/
without parking), if it is a walk (with/without parking) in the graph such that every node appears at
least once, and the tour returns to its initial node, that is, v(0) = v(T). A traveling salesman tour with
parking is called a tour, for short. As a tour returns to its initial node, we may consider a tour by time
units modulo T (which is similar to picturing a tour as if it were to repeat all over after the time horizon).

Of course in the usual setting of the traveling salesman problem, there is no need for parking, because
it is just a waste of time or cost; here in our setting, however, parking may be needed to avoid two
salesmen of crashing into each other: one of them would wait until the other one passes a node or an

1Member of MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Pázmány
Péter sétány 1/C, Budapest, Hungary, H-1117. E-mail: gyula.pap@ttk.elte.hu. This research is supported by the
Hungarian National Research, Development and Innovation Office grant NKFI-132524.

395

edge, and move on afterwards. Vaguely speaking, the point is that we introduce a setting in which there
are multiple salesmen touring the same graph at the same time so that they are not allowed to crash into
each other. In this setting it makes a lot of sense to allow parking, and this is what we do in this paper.

In the synchronized traveling salesman problem, we consider an ”agency” of a number of salesmen
each one of which has to do a tour with the same time horizon, though they need to start from different
initial nodes, and must not ”crash” into each other. Essentially there is a unit capacity for each node or
each edge. More precisely, we define an agency as follows.

Let k, T ∈ Z+ be positive integers, where k denotes the number of salesmen, or agents, and T denotes
the joint time horizon. Let ai(t) ∈ V be the node where agent i is supposed to be at time t, where
i = 1, 2, . . . , k, and t = 0, 1, . . . , T . This triple k, T, ai is called an agency with time horizon T and
k agents if for any fixed i, ai(0), ai(1), . . . , ai(T) gives a tour (with parking). In practical terms, each
i denotes an agent that moves along the unit-length edges of the graph, so that every agent makes a
traveling salesman tour of time horizon T .

If i and j are agents from the same agency, i ̸= j, then we say that these agents i and j crash in a
node v at time t if v = ai(t) = aj(t). If i and j are agents from the same agency, i ̸= j, then we say that
these agents i and j crash in an edge uv ∈ E at time t if v = ai(t) = aj(t + 1), u = ai(t + 1) = aj(t) or
v = ai(t+ 1) = aj(t), u = ai(t) = aj(t+ 1).

An agency is called a feasible agency if there is no crash between any pair of agents in neither an edge
nor a node. In practical terms, this may be understood as a set of agents moving along the unit-length
edges of the graph so that they avoid crashing into each other, but each of them manages to visit every
node at least once, before finally arriving at their respective nodes of origin.

3 Maximum number of agents

In [2] we determined that if the input graph G is a tree, then the maximum number of agents in a
feasible agency can be determined by the maximum stretch in the tree (here there is no bound on the
time horizon). Here we use an equivalent definition: for a tree T let s(T) denote the maximum of |V (P)|
where P is a subpath of T such that all nodes of P have degree at least 2, and all internal nodes of P
have degree equal to 2. This value of s(T) defines a kind of ”stretch” of the tree: the longest path in
the tree that does not go through any branching nodes and excludes leaf nodes. In [2] we proved the
following result.

Theorem 1 (Pap, Varnyú [2]) Given any tree T on at least 3 vertices, the maximum number of agents
in a tree T is equal to |V (T)| − s(T)− 1.

We would, however, like to determine the maximum number of agents for any graph, not just trees.
One possibility is that we determine a spanning tree T with s(T) as small as possible, and then use the
above result to construct an agency with |V (T)| − s(T)− 1 agents. This provides a lower bound on the
maximum number of agents, but the question is, how good a lower bound this is?

s(T) = 1 if and only if T is a star. If s(T) ≤ 2 then there are no two consecutive nodes of degree
2. More generally, the maximum number of degree 2 nodes of T forming a connected path is equal to
s(T) − 1 or s(T) − 2. So our problem is closely related with finding a spanning tree that minimizes the
number of degree 2 nodes forming a path.

Following the terminology of Lyngsie, Merker [1], a tree is called a homeomorphically irreducible, or
HIT, if it has no nodes of degree equal to 2. Thus for a every HIT T , we get that s(T) ≤ 2. As an
approach of constructing a feasible agency maximizing the number of agents, we may try to find a HIT
spanning tree. However, we bump into the difficulty that this problem is NP-hard:

Claim 2 The problem of finding a HIT spanning tree is NP-complete, even for planar graphs.

Proof: We can prove this by a reduction from the Hamiltonian path problem. Suppose we would want
to find a Hamiltonian path in an input graph G = (V,E) from s to t for some s, t ∈ V . Then we define

396

an auxiliary graph as follows: V ′ := V ∪ {v′ : v ∈ V } ∪ {s′′, t′′} and E′ := E ∪ {vv′ : v ∈ V } ∪ {ss′′, tt′′}.
It is pretty easy to see that G′ := (V ′, E′) contains a HIT spanning tree if and only if the original graph
G contains an s-t Hamiltonian path. □

To provide a positive result, Lyngsie, Merker [1] considered the problem of finding spanning trees in a
graph so that the tree has as few consecutive adjacent nodes of degree 2 as possible. Clearly this problem
is related with our problem above, although there is a difference of 1 or 2 between s(T), and this value.
They proved the following result:

Theorem 3 (Lyngsie, Merker [1]) If a simple connected graph G has minimum degree 3, then it has
a spanning tree T such that no three adjacent nodes in T have degree equal to 2 in T .

Note that if a tree T nos no three adjacent nodes of degree equal to 2, then s(T) ≤ 4. Together with
Theorem 1 we get the following bound on the maximum number of agents.

Theorem 4 In a simple connected graph with minimum degree at least 3, the maximum number of agents
in a feasible agency is at least n− 5.

Thus we have established a lower and upper bounds for a number of problems above, and because these
problems turn out to be NP-hard, we only got to find an approximation, but not an exact solution. It is
worth noting that these problems are polynomial-time solvable for the special case of bounded treewidth
graphs:

Claim 5 The following problems are fixed parameter tractable for bounded treewidth graphs:

1. Find a HIT spanning tree, or conclude that there aren’t any.

2. Find a spanning tree minimizing the maximum number of consecutive nodes of degree equal to 2.

3. Minimizing s(T) for a spanning tree T .

4 Periodic agencies

In many cases, and earlier results, a feasible agency can be constructed so that after just a few steps,
the set of agents will occupy the exact same subset of nodes as in the beginning, albeit in a different
permutation. In [2] we constructed a periodic agency for the lower bound in the case when graph G is
a tree, and a a different construction resulted in a periodic agency in the case when G is a 3-connected
3-regular graph. This hints to that periodic agencies can provide a good solution in many cases. The
definition of periodic agencies goes as follows.

Consider a walk a1(0), a1(1), · · · , a1(T − 1), a1(T) so that it returns to the initial node a1(0) = a1(T)
after time horizon T . This would be the trajectory of the first agent. We allow parking in this definition,
but the definition also works the same when we don’t allow parking. Suppose that T is a multiple of the
positive integer λ, which will be the length of the period. Thus we have T = λµ, where µ is another
positive integer. The motion of the agency repeats with a period of λ, so for certain remainders modulo
λ there will be an agent following agent 1 after that delay. We denote these ”delays” (remainders modulo
λ) by 0 = j1 < j2 < · · · jk0

≤ λ− 1. So agents 1, 2, · · · , k0 are trailing behind agent 1 at a time delay of
j1, j2, · · · , jk0

. All this is repeated for any delay that is a multiple of λ, so in total there will be k = k0µ
agents in this agency. So this means that aαk0+β(jβ + αλ + t) = a1(j1 + t) for any t, α, β. A feasible
agency that is constructed this way is called a λ-periodic agency.

In [2] all feasible agencies constructed for the purpose of a lower bound are actually periodic agencies.
It is thus quite natural to try to find an optimal periodic agency in general, or in special cases. Because
of the same reduction from the Hamiltonian cycle problem, the problem of finding a periodic agency with
a given number of agents and a given periodicity is NP-hard. However for certain special cases we may
prove that a periodic agency can be found in polynomial time.

397

Theorem 6 Consider fixed positive integer parameters w, λ. Then there is a polynomial time algorithm
to find a λ-periodic agency in a graph with tree-width at most w with a maximum number of agents.

Proof: In the minimum treewidth representation of our graph G = (V,E), let T denote the tree, and
choose a root r ∈ V (T). We may assume that T has maximum degree 3, and thus any node has at most
two children making it a binary tree. For any t ∈ V (T) let Tt denote the subtree of T below t. For any
t ∈ V (T) let Vt ⊆ V be the corresponding ”bag”, and let Ut := ∪q∈Tt

Vq. By definition, the treewidth
is tw(G) = max |Vt| − 1, thus the size of Vt is bounded from above by the fixed constant |Vt| ≤ w + 1.
As usual for bounded treewidth graph algorithms, we use a dynamic programming approach in which we
solve a large (but polynomial) number of sub-problems, where the sub-problems correspond to subtrees
Tt of the representation tree, and in the end we can put together the final solution.

We specify the subproblems as follows. For some t ∈ V (T), and a subset Z ⊆ Vt × {0, 1, · · · , λ− 1},
and a set of disjoint pairs M ⊆

(
Z
2

)
, let K(t, Z,M) denote the maximum number of agents in a sub-

agency in subgraph Ut such that Z is the set of time units occupied at the specific node, modulo λ,
and M denotes the set of pairs for which the sub-agency performs a sub-walk. The singletons of Z not
appearing in any pair in M are time units occupied at that specific node, by a sub-walk corresponding
to some pair in M (it does not matter which pair it is). The number of sub-problems define this way is
at most w · 8wλ · (1

2wλ)!, which can be determined by |V (T)| ≤ w, and counting the number of subsets
Z, and counting the number of matchings in Z. This is a fixed constant upper bound, assuming that w
and λ are fixed, as of the assumptions of the theorem.

The dynamic programming recursion can be formulated as follows. In T any node has at most two
children, and actually we may assume that and thus, to determine the value of K(t, Z,M) we need
to consider (at most) two children of t, say t′, t′′. The optimum sub-agency for t, Z,M can then be
determined by choosing one optimum sub-agency for t′, Z ′,M ′, another sub-agency for t′′, Z ′′,M ′′, and
using any of the edges in E[Vt] to connect between any of these sub-paths. Using any edges in E[Vt]
also means that we are committing to the remainder modulo λ the particular edge is used, so there are
actually |E[Vt]|λ number of possibilities for that, and each of thos possibilities is either chosen or not, so

that makes it at most 2(w
2)λ number of possibilities to consider. There are 2wλ choices to choose Z ′, same

number of choses for Z ′′. There are 4wλ · (1
2wλ)! choices to choose M ′, same number of choses for M ′′.

We need to do this for all t ∈ V (T), meaning |V (T)| ≤ |V | = n number of choices. The total running

time for this algorithm becomes O(n2(w
2)λ4wλ16wλ · (1

2wλ)!2) = O(n2(w
2)λ64wλ · (1

2wλ)!2), which is linear
in n, although quite a terrible fixed constant when it comes to the two parameters w, λ. This proves the
theorem. □

References

[1] Kasper Szabo Lyngsie and Martin Merker, Spanning trees without adjacent vertices of degree
2 Discrete Mathematics 342 12 (2019)

[2] Gyula Pap and József Varnyú, Synchronized Traveling Salesman Problem J. Graph Algorithms
Appl. 25 1 (2021)

[3] Gyula Pap , Synchronized Traveling Salesman Problem IN: Proceedings of The 11th Hungarian-
Japanese Symposium on Discrete Mathematics and Its Applications (2019)

398

Connected Turán number of trees

Yair Caro

Department of Mathematics
University of Haifa-Oranim, Israel

yacaro@kvgeva.org.il

Balázs Patkós1

Alfréd Rényi Institute of Mathematics
Budapest, Hungary
patkos@renyi.hu

Zsolt Tuza 2

Alfréd Rényi Institute of Mathematics and
University of Pannonia

tuza@dcs.uni-pannon.hu

Abstract: As a variant of the much studied Turán number, ex(n, F), the largest number of
edges that an n-vertex F -free graph may contain, we introduce the connected Turán number
exc(n, F), the largest number of edges that an n-vertex connected F -free graph may contain.
We focus on the case where the forbidden graph is a tree. The celebrated conjecture of Erdős
and Sós states that for any tree T , we have ex(n, T) ≤ (|T |−2)n

2 . We address the problem how
much smaller exc(n, T) can be, what is the smallest possible ratio of exc(n, T) and (|T | − 2)n

2
as |T | grows. We also determine the exact value of exc(n, T) for small trees, in particular for
all trees with at most six vertices. We introduce general constructions of connected T -free
graphs based on graph parameters as longest path, matching number, branching number, etc.

Keywords: extremal graph theory, connected graphs, trees

1 Introduction

One of the most studied problems in extremal graph theory is to determine the Turán number ex(n, F),
the largest number of edges that an n-vertex graph can have without containing a subgraph isomorphic
to F . In this paper, we study a variant of this parameter: the connected Turán number exc(n, F) is the
largest number of edges that a connected n-vertex graph can have without containing F as a subgraph.
Observe that if F is 2-edge-connected, then any maximal F -free graph G is connected, as if G had at
least two components, then adding an edge between them would not create any copy of F . Also, if the
chromatic number of F is at least 3, then by the famous theorem by Erdős, Stone, and Simonovits [5, 6],
we know that ex(n, F) is attained asymptotically (and for some graphs precisely) at the Turán graph
that is connected. These two observations imply the following proposition.

Proposition 1

1. If all components of F are 2-edge-connected, then ex(n, F) = exc(n, F).

2. If χ(F) ≥ 3, then exc(n, F) = (1 + o(1)) ex(n, F).

The asymptotics of ex(n, F) is unknown for most biparite F (for a general overview of the so-called
degenrate Turán problems, see the survey by Füredi and Simonovits [7]). And we do not know the
relationship of ex(n, F) and exc(n, F) for most bipartite F that are not 2-edge-connected. There is a

1Research is supported by NKFIH grants SNN 129364 and FK 132060
2Research is supported by NKFIH grants SNN 129364

399

relatively large literature on the Turán number of forests (see e.g. [3, 9, 10, 12, 13]), and in many cases the
extremal graphs turned out to be connected, so for those forests F , we have ex(n, F) = exc(n, F). A wide
and important class of connected non-2-edge-connected graphs is the set of trees. A famous conjecture of

Erdős and Sós (that appeared in print first in [4]) states that any n-vertex graph with more than (k−2)n
2

edges contains any tree T on k vertices. A proof was announced in the early 1990’s by Ajtai, Komlós,
Simonovits, and Szemerédi, but only arguments of special cases have appeared. A recent survey of these
and other degree conditions that imply embeddings of trees is [11]. The universal construction that shows
the tigthness of the Erdős–Sós conjecture is the union of vertex-disjoint cliques of size k − 1. This is not
a connected graph and we are only aware of one result concerning exc(n, T) (but there exist results on
Turán problems in connected host graphs, see e.g. [2]). We denote by Pk the path on k vertices. The
value of exc(n, Pk) was determined by Kopylov, and independently by Balister, Győri, Lehel, and Schelp
with the latter group also showing the uniqueness of extremal constructions.

Theorem 2 (Kopylov [8], Balister, Győri, Lehel, Schelp [1]) If G is an n-vertex connected graph
that does not contain any paths on k + 1 vertices, then

e(G) ≤ max

{(
k − 1

2

)
+ n− k + 1,

(⌈k+1
2 ⌉
2

)
+

⌊
k − 1

2

⌋(
n−

⌈
k + 1

2

⌉)}

holds.

We shall now present the various results obtained concerning exc(n, T). Lower bound constructions
are given in Section 2 and exact determination of exc(n, T) including all trees up to 6 vertices is included
in Section 3.

Our first result gathers several constructions, all based on some graph parameters, that provide lower
bounds on exc(n, T). For those parameters we use the following notation.

Definition 3

• ℓ(G) denotes the number of vertices in a longest path in G.

• p(G) denotes the maximum number of vertices in a path P of G such that for all x ∈ V (P) we have
dG(x) ≤ 2.

• ∆(G) and δ(G) denote the maximum and the minimum degree in G.

• ν(G) denotes the number of edges in a largest matching of G.

• δ2(T) denotes the smallest degree in T that is larger than 1.

• For a vertex v ∈ V (T) let mT (v) be the size of largest component of T − v and let m(T) =
min{mT (v) : v ∈ V (T)}.

• For a vertex v ∈ V (T) let mT,2(v) be the sum of the sizes of two largest components of T − v and
let m2(T) = min{mT,2(v) : v ∈ V (T)}.

• For an edge e = xy ∈ E(G) we write w(e) = min{dG(x), dG(y)} and define w(G) = max{w(e) : e ∈
E(G)}.

Proposition 4 Suppose T is a tree on k ≥ 4 vertices.

1. exc(n, T) ≥
(⌈ ℓ(T)

2 ⌉
2

)
+ ⌊ ℓ(T)−2

2 ⌋(n− ⌈ ℓ(T)
2 ⌉).

2. exc(n, T) ≥ (
(
k−2p(T)−3

2

)
+ p(T) + 2)⌊ n

k−p(T)−2⌋. Furthermore, if T contains at least two vertices

of degree at least three, then exc(n, T) ≥ (k−p(T)−1
2)+p(T)+2

k n−O(k).

400

3. exc(n, T) ≥ ⌊n(∆(T)−1)
2 ⌋.

4. exc(n, T) ≥ (ν(T)− 1)(n− ν(T) + 1) +
(
ν(T)−1

2

)
.

5. If T is not a star and δ2(T) > 2, then exc(n, T) ≥ ⌊n−1
k−1 ⌋(

(
k−2
2

)
+ δ2(T)− 1).

6. If the bipartition of T consists of classes of sizes a and b with a ≤ b, then exc(n, T) ≥ (a− 1)(n−
a+ 1).

7. If T is not a path, then exc(n, T) ≥ n− 1 + ⌊ n−1
m(T)−1⌋

(
m(T)−1

2

)
.

8. exc(n, T) ≥ ⌊ n
k−m2(T)⌋(1 +

(
k−m2(T)

2

)
).

9. exc(n, T) ≥ (w(T)− 1)(n− w(T) + 1).

According to the Erdős–Sós conjecture, ex(n, T) = k−2
2 n+Ok(1). We would like to know how much

smaller exc(n, T) can be than ex(n, T). For any tree T we introduce

γT := lim sup
n

2

|T | − 2

exc(n, T)

n

where |T | denotes the number of vertices in T . It is well-known that any graph with average degree
at least 2d contains a subgraph with minimum degree at least d. Also, any tree on k vertices can be
embedded to any graph with minimum degree at least k. This shows that γT ≤ 2 for any tree T on k
vertices. The Erdős–Sós conjecture would imply γT ≤ 1.

Let Tk denote the set of trees on at least k vertices. We write γk := inf{γT : T ∈ Tk} and γ :=
limk→∞ γk (the limit exists as γk is monotone increasing).

Theorem 5 The following upper and lower bounds hold: 1
3 ≤ γ ≤ 2

3 .

Finally, we determine exc(n, T) for all trees on k vertices with 4 ≤ k ≤ 6 (note that there do not exist
P3-free connected graphs), and some trees on 7 vertices. We need some notation first.

Da,b denotes the double star on a + b + 2 vertices such that the two non-leaf vertices have degree
a + 1 and b + 1. The star with k leaves is denoted by Sk. Sa1,a2,...,aj with j ≥ 3 denotes the spider
obtained from j paths with a1, a2, . . . , aj edges by identifying one endpoint of all paths. So Sa1,a2,...,aj

has 1 +
∑j

i=1 ai vertices and maximum degree j. The only vertex of degree at least 3 is the center of the
spider, the maximal paths starting at the center are the legs of the spider. Mn denotes the matching on
n vertices (so if n is odd, then an isolated vertex and ⌊n2 ⌋ isolated edges).

For graphs H and G, their join is denoted by H +G, their disjoint union is denoted by H ∪G. For a
graph H and a positive integer k, kH denotes the pairwise vertex-disjoint union of k copies of H.

The values of exc(n, Pk+1) were determined by Theorem 2, and for k ≥ 3, the statement exc(n, Sk) =

⌊n(k−1)
2 ⌋ follows from Proposition 4 (3) and that the degree-sum of an Sk-free graph is at most n(k− 1).

So in the next theorem, we only list those trees that are neither paths nor stars. In particular, all trees
have 5 or 6 vertices.

Theorem 6 For non-star, non-path trees with 5 or 6 vertices, the following exact results are valid.

1. For any T = S2,1,...,1 we have exc(n, T) = ⌊n(∆(T)−1)
2 ⌋ if n ≥ |T |. In particular, exc(n, S2,1,1) = n

if n ≥ 5 and exc(n, S2,1,1,1) = ⌊ 3n2 ⌋ if n ≥ 6.

2. We have exc(n,D2,2) = 2n− 4 if n ≥ 6.

3. We have exc(n, S3,1,1) = ⌊ 3(n−1)
2 ⌋ if n ≥ 7 and ex(6, S3,1,1) = 9.

4. We have exc(n, S2,2,1) = 2n− 3 if n ≥ 6.

401

Number of vertices Tree exc(n, T) Construction
4 P4 n− 1 Sn−1

S3 n Cn

5 P5 n K1 + (K2 ∪ En−3)
S4 ⌊ 3n2 ⌋ (nearly) 3-regular
S2,1,1 n Cn

6 P6 2n− 3 K2 + En−2

S5 2n 4-regular
S2,1,1,1 ⌊ 3n2 ⌋ (nearly) 3-regular
S2,2,1 2n− 3 K2 + En−2

S3,1,1 ⌊ 3(n−1)
2 ⌋ K1 +Mn−1

D2,2 2n− 4 K2,n−2

Table 1: The value of exc(n, T) for all trees up to 6 vertices

Tree exc(n, T) Construction Tree exc(n, T) Construction
S6 ⌊ 5n2 ⌋ (nearly) 5-regular P7 2n− 2 K2 + (En−4 ∪K2)
S4,1,1 ≥ 2n− 3 K2 + En−2 S3,2,1 2n− 3 K2 + En−2

S3,1,1,1 ⌊ 3n2 ⌋ (nearly) 3-regular S2,1,1,1,1 2n 4-regular
S2,2,2 2n− 2 K2 + (En−4 ∪K2) S2,2,1,1 ≥ 2n− 3 K2 + En−2

D∗
2,2 2n− 3 K2 + En−2 D2,3 ≥ 2n− 4 K2,n−2

SD2,2 ≥ 13n
7 −O(1) Prop. 4 (2) D2,3 ≥ 2n− 2 if 6|n− 1 Prop 4 (5)

Table 2: Exact values and lower bounds on exc(n, T) for trees with 7 vertices

Let D∗
2,2 be the tree obtained from D2,2 by attaching a leaf to one leaf of D2,2.

Theorem 7 We have exc(D
∗
2,2) = 2n− 3 for all n ≥ 7, and exc(D

∗
2,2) =

(
n
2

)
for 1 ≤ n ≤ 6.

Theorem 8 We have exc(S2,2,2) = 2n− 2 for all n ≥ 7, and exc(S2,2,2) =
(
n
2

)
for 1 ≤ n ≤ 6.

Theorem 9 We have exc(S3,2,1) = 2n− 3 for all n ≥ 7, and exc(S3,2,1) =
(
n
2

)
for 1 ≤ n ≤ 6.

Theorem 10 For any T = S3,1,...,1 with ∆(T) ≥ 4, we have exc(n, T) = ⌊ (∆(T)−1)n
2 ⌋ if n is large

enough.

For a better overview, we include tables with previous results, our results and open cases for trees up
to 7 vertices. SD2,2 denotes the tree on 7 vertices obtained from the double star D2,2 by subdividing the
edge connecting its two centers.

References

[1] P.N. Balister, E, Győri, J. Lehel, R.H. Schelp, Connected graphs without long paths,
Discrete Mathematics, 308(19) (2008), 4487–4494.

[2] N. Bougard, G. Joret, Turán’s theorem and k-connected graphs. Journal of Graph Theory,
58(1) (2008), 1–13.

[3] N. Bushaw, N. Kettle, Turán numbers of multiple paths and equibipartite forests. Combinatorics,
Probability & Computing, 20(6) (2011), 837–853.

[4] P. Erdős, Extremal problems in graph theory. In Theory of graphs and its applications, Proc.
Sympos. Smolenice (1964), 29–36.

402

[5] P. Erdős, M. Simonovits, A limit theorem in graph theory. Studia Sci. Math. Hungar., 1 (1966),
51–57.

[6] P. Erdős, A.H. Stone, On the structure of linear graphs. Bull. Amer. Math. Soc. 52 (1946),
1087–1091.

[7] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems, In
Erdős Centennial, Bolyai Soc. Math. Stud., 25, János Bolyai Math. Soc., Budapest (2013), 169–264.

[8] G.N. Kopylov, On maximal paths and cycles in a graph.Doklady Akademii Nauk SSSR, 234(1)
(1977), 19–21.

[9] Y. Lan, T. Li, Y. Shi, J. Tu, The Turán number of star forests. Applied Mathematics and
Computation, 348 (2019), 270–274.

[10] B. Lidický, H. Liu, C. Palmer, On the Turán number of forests. The Electronic Journal of
Combinatorics, 20(2) (2013), #P62.

[11] M. Stein, Tree containment and degree conditions. In: Raigorodskii, A.M., Rassias, M.T. (eds)
Discrete Mathematics and Applications. Springer Optimization and Its Applications, vol. 165 (2020),
459–486. Springer, Cham.

[12] L.T. Yuan, X.D. Zhang, The Turán number of disjoint copies of paths. Discrete Mathematics,
340(2) (2017), 132–139.

[13] L.P. Zhang, L. Wang, The Turán numbers of special forests. Graphs and Combinatorics, 38(3)
(2022), #84.

403

404

On a matrix representation
of a sequence of chordal graphs

Dániel Pfeifer

Department of Differential Equations
Budapest University of

Technology and Economics, Hungary
pfeiferd@math.bme.hu

Edith Alice Kovács

Department of Differential Equations
Budapest University of

Technology and Economics, Hungary
kovacsea@math.bme.hu

Abstract: Chordal graphs have useful applications in various fields. A special case of them,
the cherry tree graphs are applied in probability theory in order to define the so-called cherry
tree distributions. For discrete probability distributions, the cherry tree graph is sufficient
for their definition. In the continuous case, the so-called vine structure is needed, which
can be defined as a sequence of so-called regular cherry trees. In this paper, we give a
matrix representation of such a sequence of cherry trees and highlight the advantages of this
representation.

Keywords: Chordal graphs, Junction trees, Cherry trees, Matrix representation

1 Introduction

The cherry tree graph structure is a basic concept in estimating best fitting probability distributions,
based on given order marginals [1] [2]. In this paper we discuss problems with regard to their graph
structures and their encoding into a matrix.

In the continuous setting, to obtain a formula for the multivariate probability density approximations,
one can use the concept of copulas, and an even more flexible type of multidimensional copulas, the vine
copulas [3]. The formula of a vine copula corresponds to a so-called vine graph structure. In this paper
we give an overview on how a vine graph structure is connected to chordal graphs, and also give an
algorithm, for encoding these structures (sequence of chordal graphs) into a matrix.

The paper is structured as follows: In the preliminary part we introduce cherry trees starting from
the well known definitions in graph theory. This part also contains a brief introduction of the original
vine structure representation. The third part highlights how special cherry trees are used to build trees
of the vine structure, how the vine structure is related to chordal graphs, and why cherry trees are more
general than the cluster trees used in the vine structures.

In the fourth part an algorithm is given for the encoding of a vine structure into a matrix. Here we
emphasize the advantages of the method presented.

2 Preliminaries

In this part firstly we introduce junction trees, and how they relate to chordal graphs. Then as a special
case of them, we define cherry trees which are a central concept of our research. In the second subsection,
we give the definition of vine structure, which we express with a sequence of cherry trees.

2.1 Graph structures

Consider a graph G = G(V,E) with the set of vertices V = {v1, . . . , vn} and the set of undirected edges
E.

405

Definition 1 A graph G (V,E) is said to be chordal when every cycle of length 4 or more has a chord
(an edge joining two non-consecutive vertices of the cycle). (See the leftmost graph on Figure 1.)

Definition 2 Given a graph G = (V,E) and a node v ∈ V , the neighbourhood of v is defined as

Ne(v) = {w ∈ V |(v, w) ∈ E}
or all the nodes in G that connect to v.

Definition 3 The perfect elimination ordering of a graph G(V,E) is an ordering r1, . . . , rn of its vertices
v1, . . . , vn such that for all i ∈ {1, . . . , n} : Ne(ri) ∩ {ri+1, . . . , rn} is a clique in the remaining subgraph
of G(ri+1, . . . , rn).

Not all graphs G have a perfect elimination ordering. The following theorem gives a necessary and
sufficient condition for this property.

Theorem 4 G is chordal if and only if G has a perfect elimination ordering. [4]

Basic concepts and properties of chordal graphs can be found in [5] and [6].
We need the following basic definition.

Definition 5 A maximal clique of a graph G is a clique which is not a subgraph of any other clique of
G. We will call these clusters.

We introduce now the general concept of intersection graph. [7]
Consider a family of non-empty sets.

Definition 6 The intersection graph of this family is obtained by representing each set by a vertex, two
vertices are connected by an edge if and only if the corresponding sets intersect. (See the central graph
on Figure 1.)

The problem of characterizing the intersection graph of a family of sets having a defined topological
pattern is of great interest in different domains (for example interval graphs).

Let us suppose we have a graph G. We denote the set of clusters (maximal cliques) by µ(G) and the
set of clusters which contain the vertex v ∈ V by µv(G).

Theorem 7 A graph G(V) is a subtree graph if and only if there exists a tree T whose set of vertices is
µ(G), so that, for every v ∈ V ,T (µv(G)) is connected. [7]

Theorem 8 G is a subtree graph if and only if it is chordal graph. [7]

The next result was inspired by a definition given in [8].

Definition 9 The weighted cluster-intersection graph of a chordal graph is an intersection graph with
the set of vertices defined by µ(G), whose edges connect the non-disjoint clusters. The weight of the edges
is given by the cardinality of the elements of the intersection of the clusters it connects.

Theorem 10 A maximum weighted spanning tree of the weighted cluster-intersection graph determines
the chordal graph G.

Definition 11 Every maximum-weight spanning tree of the cluster-intersection graph of G is called a
cluster tree of G. (See the rightmost graph on Figure 1.)

We can define a junction tree in the following way:

406

Figure 1: Example for the construction of chordal to junction (cherry) tree. On the left, the maximal
clusters (here, of size 3) are denoted by different colors. In the middle, we changed to the cluster notation.
The intersections (separators) are shown in squares. If each edge is weighted by the cardinality of its
separator, then a maximal weight spanning tree becomes a junction (cherry) tree. One potential outcome
is on the right.

Definition 12 A junction tree is obtained when the clusters are the maximal cliques of a chordal graph,
and the edges, called separators, are given by the set of elements in the intersection of the endpoint clusters
of the given edge.

For any junction tree the following property, called running intersection property holds.

Theorem 13 If an element is contained in two different clusters of a junction tree, then it is contained
in all separators and clusters on the path between the two clusters.

This theorem follows straightforward from Theorem 8.
Now we can define the k-th order cherry tree, introduced in (Szántai-Bukszar, Kovacs-Szántai) [2] in

a constructive way, as a special junction tree.

Definition 14 A k-order cherry tree is a special junction tree, in which all clusters consist of k elements,
and all separators consist of k − 1 elements. (See the rightmost graph on Figure 1.)

2.2 Connection between chordal graphs and probabilistic graphical models

In this section we give a brief insight into how junction trees are related to probabilistic graphical models.
Let us consider a random vector X = (X1, . . . , Xn)T with probability distribution P (X) and let us

denote the set of indices by V = {1, . . . , n}.
Let us now define a junction tree over the set of indices and let us denote the set of clusters by C and

the set of separators S.
The following formula gives a valid probability distribution:

PJ-Tree (X) =

∏
C∈C

P (XC)

∏
S∈S

[P (XS)]
(vS−1)

(1)

where we use the notation P (XA) for a marginal probability distribution of X, having indices in A ⊂ V ,
and vS denotes how many times S is a separator between two clusters.

The following question arises naturally. How can we find a good approximation of form (1) for P (X).
It is proved in [9] that the best approximation of P (X) by a k-width junction tree probability dis-

tribution (largest cluster is of size k) over V is given by the best fitting k-width cherry tree probability
distribution.

407

In the discrete case, the problem can be approached in a greedy way (without a guarantee of opti-
mality). In the continuous case, we need to use the concept of vine copulas. In [1] [2] it is proved, that
the vine structure can be expressed as a sequence of special cherry trees. The vine copula approach is
appealing from multiple viewpoints: copula makes it possible to model the dependence structure and the
marginal probability distributions separately. This is why we are concerned with encoding these cherry
trees into a matrix. The next sections will deal with problems related to this scope.

2.3 Vine structures

In 2001, Bedford T. and R. M. Cooke showed that a multidimensional copula can be split into a special
product, whose elements are pair-copulas and conditional pair-copula p.d.f.’s [10]. This formula was
assigned to a specific graph structure, made up of a sequence of trees. Bedford T. and R.M. Cooke called
this special structure a ”vine”, which was explained in detail in their 2002 paper [11]. We will refer to
this vine structure as the classical vine structure. The vine structure is a special sequence of cluster trees.
For an informative look at vines with applications, see [3].

The first cluster tree is an ordinary tree, whose vertices are the indices of the variables (1, . . . , n). The
graph structure on n variables contains a total of n− 1 so-called ”cluster trees”.

We denote the k’th cluster tree in the sequence by Tk. These cluster trees are defined by using the
following rules:

• T1 is any spanning tree on vertices 1, . . . , n.

• The Tk cluster tree is defined by n − k + 1 sets (clusters). Each cluster in Tk contains exactly k
elements: {a1, . . . , ak}. To keep it simple, when drawing the tree, we will omit the set notation.

• If A = a1 . . . ak and B = b1 . . . bk are two connected clusters, then the label of the edge running
between them should be D|S, where D = (A∪B)\ (A∩B), also known as the symmetric difference
of sets A and B, and S = A∩B, or the intersection of sets A and B. (For example if A = 235 and
B = 236, then D|S = 56|23. If S = ∅, then we omit S, and also omit the line in front of it.)

• The clusters of Tk+1, k ≥ 1 contain exactly the same elements as the edge labels of Tk. (For example
if the edge labels of T3 are 14|23 and 25|34, then the clusters of T4 are 1423 and 2534.)

• Two clusters (A and B) can only be connected if |(A ∪ B) \ (A ∩ B)| = 2. Because of this, in the
label of the connecting edge D|S, D will contain exactly 2 elements.

Figure 2: Example of a
classical represented vine
structure on 5 variables

Any Tk tree defined by the previous rules is a cluster tree, however for
simplicity, and if it does not cause confusion, we will sometimes refer to them
as trees.

Vine structures can be drawn easily (see Figure 2). We start from a span-
ning tree, and then we build every consecutive tree from the previous one,
by copying the edge indices of Tk into the clusters of Tk+1, and connecting
up the resulting clusters so that they form a cluster tree. We also have to
make sure to only connect clusters where the size of the symmetric difference
of the labels is exactly 2.

Therefore all clusters of the k’th tree will contain k+1 elements, and each
edge will contain 2 elements before the condition line and k−1 elements after.

3 Vine representations

In this part, we show how a vine structure can be expressed in a more
compact way by using a sequence of special cherry trees, then we discuss
their connection to chordal graphs.

408

3.1 Vine structure representation using a cherry tree sequence

We will now show how the cherry tree sequence, introduced by Edith Kovács and Tamás Szántai [12] [1]
can be used in the description of a vine structure.

Now we will show how a cluster tree of a vine structure corresponds to a cherry tree:

• The clusters of the cherry tree correspond to the clusters of the vine cluster tree. We will not
separate the part before and after the condition here.

• The indices behind the separation on the edges of the classical vine, correspond to the intersection
of two connected clusters, and are assigned to the separators of the cherry tree, and are denoted in
a rectangle.

• In order to define uniquely the cherry tree assigned to the cluster tree, each separator has to be
represented in the cherry tree, even if it appears multiple times.

It is important to highlight that cherry trees are more general structures than cluster trees defining
the vines. There exist cherry trees which cannot be assigned to a tree in a vine.

Therefore we introduce the following important definition:

Definition 15 A k’th order cherry tree with the property that all its separators form a cherry tree of
order k − 1 is called regular cherry tree.

Figure 3: Creating a regular cherry tree from a cluster
tree of a vine structure

As for an example, refer to the tree on
Figure 3. Here, the sets 123 and 236 are the
separators, but there are three clusters that
join to 123, since in the original graph these
three clusters each have a connecting edge
with a conditioning set of 123.

The construction from a vine to a regular
cherry tree sequence is unique forwards and
backwards.

Theorem 16 (Running intersection property)
For all cluster trees in the vine structure, if A and B are different clusters in the same tree, containing an
element s (before or after the condition), then s appears in all clusters and all edges on the path between
A and B.

Proof: The proof is straightforward, because of the correspondence to cherry tree which is a special
type of junction tree, and therefore the running intersection property holds. □

On Figure 4, one can see a cherry tree which is not regular. (No matter how we try to form a cherry
tree out of the clusters 123, 124 and 134, the running intersection property will fail.)

Figure 4: A 3rd order cherry tree which is not a regular cherry tree.

Cherry trees in vines are regular cherry trees. This is a consequence of the way they are built.

409

3.2 Vine structure representation using a chordal graph sequence

Chordal graph representations can also be used to represent a vine. This section will serve as the basis
of Algorithm 1, where the perfect elimination ordering property of chordal graphs will be used heavily.
We will show how a chordal graph sequence can be constructed from a cherry tree sequence (which is a
characterization of a vine structure).

Figure 5: The chordal
graph representation of
two connected clusters.
The separator, 123 forms
a complete graph (de-
noted by thicker lines),
while the clusters 1234
and 1235 also form com-
plete graphs.

Based on Definition 12 we know that cherry trees are special junction
trees, therefore the clusters are maximal cliques.

So the separator (intersection) of two clusters of size k is a size k − 1
clique. (See Figure 5 for an example with k = 4.)

Theorem 17 Given a vine on n variables with cluster trees T1, . . . , Tn−1 in
chordal graph representation; there exists an ordering of its variables 1, . . . , n,
such that it is a perfect elimination ordering for every tree in T1, . . . , Tn−1.

Proof: We will give a constructive proof to find this perfect elimination
ordering.

Observation: Once an index became apart of a separator, it will remain
in a separator in all subsequent cluster trees. This follows from the definition
of vine structures.

Starting from Tn−1, the first two elements of the perfect elimination order-
ing should be the symmetric difference of the two clusters. Their neighbour-
hood is the separator of the two clusters, which forms a clique. According to
the Observation, these elements could not have been in a separator in any
previous cluster tree, so their neighborhood was always a separator of two
clusters, which again forms a clique.

Moving on to Tn−2. If there are more indices that are not part of a sep-
arator, add them to the perfect elimination ordering. Once again, according
to the Observation, they could not have come from a separator, so their
neighborhood in any previous tree is an intersection of two clusters, which
forms a clique.

And so on, moving backwards, add all indices in any order that are not part of a separator. According
to the previous argument, this will always fulfil the conditions of a perfect elimination ordering.

After finishing, add all the remaining indices in any order. These have always formed a clique in
every cluster tree, so any ordering of their indices is a valid perfect elimination ordering, thus the graph
is chordal. □

We will conclude this section with an important Definition that will be necessary for Section 4:

Definition 18 We call perfect elimination ordering of a vine structure any perfect elimination ordering
of all of its cluster trees. According to Theorem 17., such an ordering always exists.

In this section we have shown that the vine structure can be represented as a sequence of cherry trees
and a sequence of chordal graphs. We have also proved an important theorem regarding to the perfect
elimination ordering, which will be used in the next section.

4 Matrix representation of a vine structure

In this section we give an algorithm which encodes a vine structure given by a sequence of regular cherry
trees into a matrix. The vine matrix building algorithm described in the O. M. Nápoles et al paper
[13] encodes a vine structure into a lower diagonal matrix column by column. O. M. Nápoles’ algorithm
can be used only in cases where the vine structure contains all trees starting from the regular tree to

410

the complete graph. This algorithm is not able to encode the structure if the input is a regular cherry
tree of a given level and cannot be used if the vine structure is constructed tree by tree based on some
optimization criteria.

In the first subsection we give the algorithm of the matrix encoding of a vine structure defined by
regular cherry trees. In the second subsection we show, how a given regular cherry tree can be achieved
as a sequence of trees which can be encoded in a matrix.

4.1 Cherry tree based vine structure encoding matrix

The algorithm which we present here encodes a vine structure given by a sequence of regular cherry trees
into lower triangulated matrix. This algorithm builds the matrix row by row. This enables us to encode
also truncated vine structures.

Algorithm 1 Row-wise vine matrix building method using a cherry tree sequence

Input: The trees in the vine structure with an adjacency list

Let r1, . . . , rn be one of the vine’s perfect elimination orderings defined in Definition 18. ▷ Remark 19
for j = n to 1 do

mj,j := rj
mn,j := The node in T1, where rj connects to one of {rj+1, . . . , rn} ▷ Theorem 20

end for
for i = n− 1 to 2 do

for j = i− 1 to 1 do
for k = j + 1 to i do

A := {mk,k} ∪ {mi+1,k, . . . ,mn,k}
B := {mj,j} ∪ {mi+1,j , . . . ,mn,j}
if the clusters A and B are connected in Tn−i+1 then ▷ Theorem 21

mi,j = The single element of A \B ▷ Theorem 21
end if

end for
end for

end for
All other elements of M are 0.

Output: The M matrix

Remark 19 Firstly let us examine why the perfect elimination order is needed here. We will once again
work with the vine structure shown on Figure 2, and assume that this is where we currently are in the
algorithm:

4

1

2

□ 5 3

3 2 3 5 5

↑ ↑ ↑
B A A

Where the upcoming element to fill is □. For it to be unique, A\B has to contain exactly one element.
Here B = {1, 2} and for A, we have the following two options: {2, 3} and {3, 5}. Clearly, A \ B has
exactly one element if A = {2, 3}, and then A \B = {3}, so the new element is □ = 3.

411

The only way we can guarantee that the difference of these sets contains exactly one element is if
the clusters A and B are connected in their cluster tree. We can only connect them if the symmetric
difference of A and B contains 2 elements, meaning they differ in one/one elements, A \ B and B \ A.
Looking at the vine structure it is easy to read that 12 is not connected to 35 in T2, but it is connected to
23:

With the perfect elimination ordering of the vine; we get a reordeing of the indices 1, . . . , n so that
this holds true. For every tree Tk, and every index in the perfect elimination ordering rj, Ne(rj) ∩
{rj+1, . . . , rn−k+1} forms a complete graph, so rj is definitely connected to at least one cluster in Tk
containing at least one of {rj+1, . . . , rn−k+1}. This way, there is at least one cluster A for every cluster
B such that A \B contains exactly one element.

For now it may be unclear why such clusters even appear in the trees of the vine structure. This will
be proven in Theorem 21.

Theorem 20 In Algorithm 1, in the construction of the main diagonal and the bottom row (in the first
for-loop), rj connects to exactly one element out of {rj+1, . . . , rn} in T1.

Proof: It connects to at least one node, since applying the perfect elimination ordering the same way as
in 19 for k = 1, we get that rj connects to at least one node out of {rj+1, . . . , rn−k+1} = {rj+1, . . . , rn}.

But it cannot connect to any more, since if it did (say it connects to both rx and ry), then there
would exist an rjrx...ryrj cycle. (Since the remaining portion of the graph is connected, there exists a
path between rx to ry.)

And if |{rj+1, . . . , rn−k+1}| = 1, for example {rj+1, . . . , rn−k+1} = {rx}, then rx has to once again
connect to exactly one element in the remaining portion of the tree, since the tree is connected. □

Theorem 21 The clusters A := {mk,k} ∪ {mi+1,k, . . . ,mn,k} and B := {mj,j} ∪ {mi+1,j , . . . ,mn,j}
appear in Tn−i+1, and if they are connected, then A \B contains exactly one element.

Proof: Let us start with i = n− 1, just as Algorithm 1 does. Then, since all mj,j = rj elements appear
in T1, and we chose mn,j to be the element that connects to mj,j in T1, the edge label between the two
nodes in T1 is mj,jmn,j . These are exactly the elements that appear in the clusters of T2, so the first half
of the theorem is true for i = n− 1.

Using induction, let us now decrease the value of i in every step, and prove the theorem for Tn−i+1

using what we have proven for Tn−i. (For i = n − 1, we have proven the theorem for T2 using T1, now
we will prove it in order from T3, T4, . . . , etc. using the previous tree in each case.)

Tn−i contains clusters of size i, so using the induction hypothesis we have shown that the clusters of
form A′ = {mk,k} ∪ {mi+2,k, . . . ,mn,k}, where k ∈ {j + 1, . . . , i} all appear in Tn−i. Let A′ be one of the
previous sets for a fixed k, and B′ := {mj,j} ∪ {mi+2,j , . . . ,mn,j}, which also appears in Tn−i using the
induction hypothesis. In order for the algorithm to deal with these sets, they have to be connected. But
then, using the properties of the vine structure, they have to differ in exactly one/one element. So let us
now rewrite them as A′ = {s, p1, . . . , pn−i−1} and B′ = {t, p1, . . . , pn−i−1}. Then the label of the edge
running between them is st|p1 . . . pn−i−1, so in the following tree, Tn−i+1, the cluster {s, t, p1, . . . , pn−i−1}
will definitely appear. Let us call this cluster C ∈ Tn−i+1.

Now let us examine, what we would insert into the matrix M into position mi+1,j . According to
Algorithm 1, A′ \B′ would be inserted there. This element, according to the above expansion, is s.

412

With this, we now actually know what the original B set was. Since

B = {mj,j} ∪ {mi+1,j , . . . ,mn,j} = {mj,j} ∪ {s,mi+2,j , . . . ,mn,j} =

= {s} ∪ ({mj,j} ∪ {mi+2,j . . . ,mn,j}) = {s} ∪B′ = {s} ∪ {t, p1, . . . , pn−i−1} = C

So the set B, as a cluster, indeed appears in the original tree, it will be the cluster of Tn−i+1 that was
obtained from the edge between A′ and B′ in Tn−i.

Since set A is a special B-type set, which was obtained by taken a different column into account (the
j’th instead of the k’th), the theorem is also true for A, no matter what value k takes.

Because of induction, the theorem will be true for all j indices, so the sets A and B, which were
obtained from the matrix, indeed appear in the original vine structure as clusters.

The second statement of the theorem is that the set A \ B contains exactly one element. However,
this is almost trivial, since we can only get to this branch of the Algorithm is A and B are connected
in Tn−i+1. As always, the label of the edge running between them is s1s2|t1 . . . tn−i−1, where A and B
differ in exactly one/one element, s1 and s2. So A \B is either {s1} or {s2}, definitely a one-element set.
□

4.2 Achieving a k’th order cherry tree with a cherry tree sequence

The problem to be solved can be split into two subproblems, the regular and irregular case.
Given a k’th order cherry tree (Tk), if it is regular, then we can find a sequence of regular cherry trees

starting from a T1 tree with clusters of size 1, using vine steps (outlined in Section 3.1, moving from Tj
to Tj+1) so that the end result is the given k’th order cherry tree.

In the regular case, we refer to the constructive algorithm introduced by E. Kovács and T. Szántai
in [1]. The input of the algorithm is a regular cherry tree, and its output is a vine structure, with the
highest level being the regular cherry tree structure. This result is easily encoded in a matrix.

For cases in which the k’th cherry tree does not satisfy the regularity condition, we make a vine step
(outlined in Section 3.1) and obtain a k+1’st order cherry tree which is regular [1]. Then a vine structure
can be found corresponding to this, like earlier, which can be encoded in a matrix.

From a graph point of view, this single vine step adds a couple more edges to the input cherry tree
(exactly as many as there are separators in tree Tk) and obtain a k + 1’st order regular cherry tree.

5 Conclusion

The paper presents how vine structures are related to chordal graphs an cherry trees, without detailing
the probabilistic background which inspired this approach. By using cherry trees we gave a method for
encoding a vine structure into a matrix. The matrix filled in this way is able to describe a vine structure
with a given regular cherry tree as the highest tree. In our opinion these representations can be used for
a variety of optimization problems.

References

[1] Edith Kovács and Tamás Szántai On the connection between cherry-tree copulas and truncated
R-vine copulas, Kybernetika 53 (3), Pages 437–460 (2017)

[2] Edith Kovács and Tamás Szántai, Hypergraphs in the characterization of regular vine copula
structures, Proc. 13th International Conference on Mathematics and its Applications, Timisoara
(arXiv:1604.02652) , Pages 335–344 (2012)

[3] Aas, Kjersti and Czado, Claudia and Frigessi, Arnoldo and Bakken, Henrik, Pair-
copula constructions of multiple dependence, Insurance: Mathematics and economics 44 (2), Pages
182–198 (2009)

413

[4] Rose, Donald J, Triangulated graphs and the elimination process, Journal of Mathematical
Analysis and Applications 32 (3), Pages 597–609 (1970)

[5] Golumbic, Martin Charles, Algorithmic graph theory and perfect graphs (2004)

[6] Blair, Jean RS and Peyton, Barry, An introduction to chordal graphs and clique trees, Graph
theory and sparse matrix computation, Pages 1–29 (1993)

[7] Gavril, Fǎnicǎ, The intersection graphs of subtrees in trees are exactly the chordal graphs, Journal
of Combinatorial Theory, Series B 16 (1), Pages 47–56 (1974)

[8] Thomas, Alun and Green, Peter J, Enumerating the junction trees of a decomposable graph,
Journal of Computational and Graphical Statistics 18 (4), Pages 930–940 (2009)

[9] Tamás Szántai and Edith Kovács, Hypergraphs as a mean of discovering the dependence
structure of a discrete multivariate probability distribution., Annals of Operations Research 193
(2012), Pages 71-90

[10] Bedford, T. and Cooke, R.M., Probability density decomposition for conditionally dependent
random variables modeled by vines, Annals of Mathematics and Atrificial Intelligence 32, Pages
245–268 (2001)

[11] Bedford, T. and Cooke, R.M., Vines—a new graphical model for dependent random variables,
Annals of Statistics 30 (4), Pages 1031–1068 (2002)

[12] Edith Kovács and Tamás Szántai, On the approximation of a discrete multivariate probability
distribution using the new concept of t-cherry junction tree, Coping with Uncertainty, Pages 39–56
(2010)

[13] Nápoles, O Morales, Bayesian belief nets and vines in aviation safety and other applications,
Delft: TU (2009)

414

Color-avoiding connected spanning subgraphs with
minimum number of edges

József Pintér1

Department of Stochastics
Budapest University of Technology and

Economics,
ELKH-BME Stochastics Research Group

Budapest, Hungary
pinterj@math.bme.hu

Kitti Varga2

ELKH-ELTE Egerváry Research Group,
MTA-ELTE Matroid Optimization Research

Group
Budapest, Hungary
vkitti@math.bme.hu

Abstract: We call a (not necessarily properly) edge-colored graph edge-color-avoiding con-
nected if after the removal of edges of any single color, the graph remains connected. In this
article, we investigate the problem of determining the maximum number of edges that can
be removed such that the graph remains edge-color-avoiding connected. First, we prove that
this problem is NP-hard, then we give a polynomial-time approximation algorithm for it. To
analyze the approximation factor of the algorithm, we determine the minimum number of
edges of edge-color-avoiding connected graphs on a given number of vertices and with a given
number of colors. Furthermore, we also consider a generalization of this problem to matroids.

Keywords: approximation algorithms, color-avoiding connectivity, complexity,
matroids, spanning subgraphs

1 Introduction

The robustness of networks against random errors and targeted attacks has attracted a great deal of re-
search interest. The robustness of a network refers to its capacity to maintain some degree of connectivity
after the removal of some edges or vertices of the network.

Although the standard frameworks of error or attack tolerance in complex networks can be really useful
in industrial practices, we can develop a more efficient framework if we take into account that some parts
of the network might share some vulnerabilities. A characteristic example is the case of public transport
networks, where the edges of the underlying graph are colored according to the mode of transportation
such as rail, road, ship or air transport. Experience shows that excessive snowing has a greater impact on
the railway than on underground transportation. In extreme cases, these weather conditions might even
paralyze the whole railway traffic, which we can think of (from a network theoretical point of view) that
all the edges corresponding to railway transportation disappear from the network. Thus it is useful to
know which vertices in the network are available from each other without using any edges corresponding
to the railway transportation. In this manner, we can consider the network reliable if even after the
elimination of any single mode of transportation, the whole or a significant part of the network remains
connected. Another example is the case of communication networks where the vertices represent routers,
which are colored according to which country the corresponding router is registered to. If, for safety
reasons, we want to ensure that no country can intercept our message, then we need multiple paths in

1Research is supported by Ministry of Culture and Innovation and the National Research, Development and Innovation
Office within the framework of the Artificial Intelligence National Laboratory Programme.

2Research is supported by the Hungarian National Research, Development and Innovation Office – NKFIH, grant number
FK128673.

415

the network between the sender and the receiver such that each country is avoided in at least one of these
paths, and send our message divided into many parts through these paths.

These concepts were introduced as color-avoiding connectivity, first for vertex-colored graphs by
Krause et al. [9] in 2016 with the motivation to develop a framework which can treat the heterogeneity
of multiple vulnerable classes of vertices, and they demonstrated how this can be exploited to main-
tain functionality of a complex network by utilizing multiple paths, mostly on communication networks.
Krause et al. extended this original theory in [10]. They analyzed how the color frequencies affect the
robustness of the networks. For unequal color frequencies, they found that the colors with the largest
frequencies control vastly the robustness of the network, and colors of small frequency only play a little
role. In [7], color-avoiding connectivity was further extended from vertex-colored graphs to edge-colored
ones.

Giusfredi and Bagnoli investigated color-avoiding percolation in diluted lattices [5] and also showed
that color-avoiding connectivity can be formulated as a self-organized critical problem, in which the
asymptotic phase space can be obtained in one simulation [4]. Ráth et al. [17] investigated the color-
avoiding bond percolation of edge-colored Erdős–Rényi random graphs. They analyzed the fraction of
vertices contained in the giant edge-color-avoiding connected component and proved that its limit can
be expressed in terms of probabilities associated to edge-colored branching process trees. The work [13]
of Lichev and Schapira includes some simplification and generalization of these results as well as some
finer results on the size of the largest edge-color-avoiding connected component. Lichev also described
the phase transition of the largest edge-color-avoiding connected component between the supercritical
and the intermediate regime [12].

Molontay and Varga [14] investigated the computational complexity of finding the color-avoiding
connected components of a graph. They also generalized the concept of color-avoiding connectivity by
making the vertices or edges more vulnerable by assigning a list of colors to them.

A similar concept called courteous edge-coloring was studied by DeVos et al. [1] in 2006. Graphs with
1-courteous edge-colorings are exactly the edge-color-avoiding connected graphs. In that article, they
gave interesting upper bounds on the number of colors needed to courteously color an arbitrary graph.

When operating a network, we might want to reduce the maintenance cost while retaining some
desired properties of the network. In this work, we investigate the problem of finding edge-color-avoiding
connected spanning subgraphs with minimum number of edges in an edge-color-avoiding connected graph.
We also generalize this problem to matroids. First, we prove that these problems are NP-hard, then we
present polynomial-time approximation algorithms for them.

2 Edge-color-avoiding connected graphs and courteously col-
ored matroids

In this article, we study edge-color-avoiding connected graphs and courteously colored matroids. First,
we recall some important definitions and notation.

The set of positive integers is denoted by Z+. For two sets X and Y , the set difference of X and Y
is denoted by X − Y . Given a graph G = (V,E) and a subset of edges E′ ⊆ E, let G − E′ denote the
graph that is obtained from G by deleting the edges of E′ from it. If E′ = {e} for some edge e of G, then
G− {e} is abbreviated by G− e.

A matroid M = (S, I) is a pair formed by a finite (possibly empty) ground set S and a family of
subsets I ⊆ 2S called independent sets satisfying the independence axioms:

(I1) ∅ ∈ I,

(I2) for any X,Y ⊆ S with X ⊆ Y , if Y ∈ I, then X ∈ I,

(I3) for any X,Y ∈ I with |X| < |Y |, there exists e ∈ Y −X such that X ∪ {e} ∈ I.

The maximal independent subsets of S are called bases. The rank of a set X ⊆ S in the matroid,
denoted by r(X), is the maximum size of an independent subset of X. The rank of the matroid is the

416

rank of its ground set. If M is a matroid on the ground set S and T ⊆ S, then the restriction of M to
T , or in other words, the deletion of S − T from M, is the matroid M

∣∣
T

:= (T, I ′), or also denoted by

M \ (S − T) := (T, I ′), where I ′ := {X ⊆ T | X ∈ I}. Furthermore, if the rank of M
∣∣
T

equals that

of M, i.e. r(T) = r(S), then we say that M
∣∣
T

is a rank-preserving restriction of M. A coloring of a
matroid is an arbitrary assignment of colors to the elements of its ground set. A graphic matroid is a
matroid whose independent sets can be represented as the edge sets of forests of a graph.

Since the number of independent sets can be exponential in the size of the ground set, the usual
requirement for a matroid algorithm to be polynomial is to be polynomial in the size of the ground set
and not in the size of the input matroid. For this, it is assumed that the input matroid is given by an
oracle – in our case, by an independence oracle, and with an independence oracle call we can determine
whether a subset of the ground set is independent in the matroid – and when analyzing the complexity
of the matroid algorithm, the oracle calls are counted as single steps.

Definition 1 We say that a (not necessarily properly) edge-colored graph G is edge-color-avoiding con-
nected if after the removal of the edges of any single color from G, the remaining graph is connected.

For two small examples on the definition of edge-color-avoiding connectivity, see Figure 1.

Figure 1: An example for an edge-color-avoiding connected graph (left) – after the removal of edges of any
single color, there remains a Hamiltonian path –, and an example for a not edge-color-avoiding connected
graph (right) – after the removal of the blue (denoted by squares) edges, the bottom right vertex becomes
isolated.

Clearly, an edge-colored graph is edge-color-avoiding connected if and only if after the removal of
the edges of any single color, there exists a spanning tree in the remaining graph. This motivates the
introduction of the following definition for matroids, which we call, after DeVos et al. [1], courteously
colored matroids.

Definition 2 LetM be a matroid, whose ground set is colored. We say thatM is a courteously colored
matroid if after the deletion of the elements of any single color fromM, the rank of the matroid does not
change.

Thus a matroid is courteously colored if and only if after the deletion of the elements of any single
color from the ground set, at least one basis remains intact. In particular, a graphic matroid is courte-
ously colored if and only if each component of the corresponding graph is edge-color-avoiding connected.
Another simple example is the case of uniform matroids. The ground set of a uniform matroid Un,k is
of size n, and its independent sets are those subsets of the ground set whose cardinality is at most k for
some integer 0 ≤ k ≤ n. We note that Un,k is graphic if and only if k ∈ {0, 1, n− 1, n}. It is not difficult
to see that the uniform matroid Un,k is courteously colored if and only if there exists no color which is
assigned to at least n− k + 1 elements.

For convenience, let us introduce the following notation.

Notation 3 Given an edge-colored graph G and a color c, we denote by Gc the graph which can be
obtained from G by removing the edges of color c from it.

Given a matroid M whose ground set is colored and given a color c, we denote by Mc the matroid
which can be obtained fromM by deleting the elements of color c from it.

417

3 Courteously colored rank-preserving restrictions of a matroid

In this section, we study the problem of finding edge-color-avoiding connected spanning subgraphs with
minimum number of edges in edge-color-avoiding connected graphs, or in general, finding courteously
colored rank-preserving restrictions to a set of minimum size in courteously colored matroids.

It is not difficult to see that an edge-colored graph G has an edge-color-avoiding connected spanning
subgraph if and only if G is edge-color-avoiding connected, and similarly, a colored matroid M has a
courteously colored rank-preserving restriction if and only if M is courteously colored.

Theorem 4 Given a matroid M = (S, I) whose ground set is colored and given a positive integer m,
it is NP-complete to decide whether M has a courteously colored rank-preserving restriction to a subset
T ⊆ S of size at most m.

Furthermore, this problem remains NP-complete even for graphic matroids.

Proof: The problem is clearly in NP. Now we show that the problem is NP-hard even for graphic
matroids. As we observed earlier, a graphic matroid is courteously colored if and only if each component
of the corresponding graph is edge-color-avoiding connected. In addition, note that if every edge has a
different color, then a component of the graph is edge-color-avoiding connected if and only if it is 2-edge-
connected. Thus for those connected graphs in which every edge has a different color and for the choice
of m =

∣∣V (G)
∣∣, our problem is equivalent to deciding whether the graph contains a Hamiltonian cycle,

which is known to be NP-complete [3]. □

Corollary 5 Given an edge-colored graph G = (V,E) and a positive integer m, it is NP-complete to
decide whether G has an edge-color-avoiding connected spanning subgraph with at most m edges.

As is clear from the proof of Theorem 4, in the case of connected graphs whose edges are all of different
colors, we want to find a 2-edge-connected spanning subgraph with minimum number of edges, which is an
NP-hard problem. However, there exists approximation algorithms for this latter problem. Khuller and
Vishkin [8] provided a 3/2-approximation algorithm for it: they modified the depth-first search algorithm
so that it does not just find a spanning tree, but a minimally 2-edge-connected1 spanning subgraph.
Gabow et al. [2] presented a

(
1 + 2

k

)
-approximation algorithm for finding a k-edge-connected spanning

subgraph with minimum number of edges with the use of linear programming. Currently, the best known
approximation factor for finding a 2-edge-connected spanning subgraph with minimum number of edges
is 4

3 by Hunkenschröder et al. [6], but there exist better performing algorithms if the input graph satisfies
some additional conditions – for example, see [11, 15].

In the following, we present a polynomial-time approximation algorithm for finding a courteously
colored rank-preserving restriction of a matroid to a set of minimum size. To shorten the description of
the algorithm, let us define the following subroutine.

Subroutine IncreaseRank

Input: a matroid M = (S, I) and a subset T ⊆ S.
Output: a set T ′ ⊆ S for which r(T ′) = r(S) and T ⊆ T ′.
T ′ ← T
for s ∈ S do

if r(T ′) < r
(
T ′ ∪ {s}

)
then

T ′ ← T ′ ∪ {s}
return T ′

Now we are ready to present the algorithm.

1A graph is called minimally k-edge-connected if it is k-edge-connected but after the removal of any of its edges, the
obtained graph is not k-edge-connected.

418

Algorithm 1 Finding courteously colored rank-preserving restrictions

Input: a courteously colored matroid M = (S, I) with S ̸= ∅, colored with a color set C.
Output: a courteously colored rank-preserving restriction of M.
T ← a basis of M
for c ∈ C do

Tc ← {s ∈ T | s is not of color c}
if r(Tc) < r(S) then

T ← T ∪ IncreaseRank(Mc, Tc)

for s ∈ T do
if
(
M
∣∣
T

)
\ {s} is a courteously colored rank-preserving restriction of M then

T ← T − {s}
returnM

∣∣
T

Remark 6 Note that if the rank of the input matroid M is zero, then for any color c, the rank of Mc

is also zero and the only basis of M is the empty set. Thus the algorithm selects the empty set at the
first step and does not add any elements to it later, so the output is T = ∅. This is clearly the optimal
solution.

To analyze the case when the rank of the input matroid is at least one, first we prove the following
theorem.

Theorem 7 Let M = (S, I) be a courteously colored matroid, colored with exactly k ∈ Z+ colors, and
let r = r(S). If r ≥ 1, then k ≥ 2 and |S| ≥

⌈
k·r
k−1

⌉
, and these lower bounds are tight.

Proof: Suppose to the contrary that there exists a courteously colored matroid M colored with k = 1
color c, and with rank r ≥ 1. Then by the definition of courteous colorings,Mc has rank r. On the other
hand, the ground set of Mc is the empty set, which is a contradiction.

Now consider the case k ≥ 2. LetM be a courteously colored matroid with rank r, where the elements
of the ground set are colored with exactly k colors. Then for any of these k colors c, the matroidMc has
rank r, thus its ground set has at least r elements. That sums up to at least k · r elements, where every
element is counted exactly k − 1 times, so the number of elements is at least

⌈
k·r
k−1

⌉
.

To show that these lower bounds are tight, we construct courteously colored graphic matroids of rank r
on
⌈

k·r
k−1

⌉
elements which are colored with exactly k colors for any k ≥ 2. More precisely, we construct

an edge-color-avoiding connected graph G = (V,E) on r+ 1 vertices and with r+
⌈

r
k−1

⌉
=
⌈

k·r
k−1

⌉
edges,

where the edges are colored with exactly k colors. Let

C := {0, 1, . . . , k − 1}

be the color set, let
V := {v0, . . . , vr}

with r ≥ k − 1, and let

Ei :=
{
vjvj+1

∣∣ j ∈ {0, 1, . . . , r − 1} and j ≡ i (mod k − 1)
}

be the set of edges of color i for any i ∈ {0, 1, . . . , k − 2}, and let

Ek−1 :=
{
vjvmax(j+k−1,r)

∣∣ j ∈ {0, . . . , r − 1} and j ≡ 0 (mod k − 1)
}

be the set of edges of color k − 1. Note that G might have a pair of parallel edges between the vertices
vr−1 and vr; for an example see Figure 2.

It is not difficult to show that G is edge-color-avoiding connected and has r +
⌈

r
k−1

⌉
=
⌈

k·r
k−1

⌉
edges.

□
In the following theorem, we analyze Algorithm 1.

419

Figure 2: An edge-color-avoiding connected graph on 8 vertices and with minimum number of edges
colored with exactly 4 colors.

Theorem 8 Algorithm 1 is a polynomial-time 2(k−1)
k -approximation algorithm for finding a courteously

colored rank-preserving restriction of a courteously colored matroid – given by an independence oracle –
whose elements are colored with exactly k ∈ Z+ colors to a set of minimum size.

Moreover, there exist inputs for which the approximation ratio is exactly 2(k−1)
k .

Proof: Let M = (S, I) be the input matroid whose ground set is courteously colored with exactly
k ∈ Z+ colors and let r := r(S). If k = 1, then by Theorem 7, r = 0 must hold, and by Remark 6,
Algorithm 1 finds an optimal solution in this case.

Now assume k ≥ 2. In the first step, we simply select a basis of M. Note that this step already
guarantees the rank-preserving property of the output.

Now we show that in the second phase, the algorithm selects some additional elements of the ground
set to ensure that the output is courteously colored. Since M is courteously colored, Mc has the same
rank as M, namely r, thus we can select some additional elements from the ground set of Mc so that
the obtained set of selected elements has rank r as well. Therefore, at the end of the second phase, the
restriction of M to the so far selected elements is indeed courteously colored.

In the third phase, the algorithm deselects some elements while maintaining the desired properties
of the output. Therefore, the algorithm finds an appropriate subset of the ground set. Note that the
elements of the output are not necessarily colored with exactly k colors.

Now we prove that the ground set of the output contains at most 2k−1
k · k·r

k−1 = 2r elements, which

is, by Theorem 7, at most 2k−1
k times as many as the minimum number of elements of a courteously

colored matroid whose elements are colored with at most k colors, implying that Algorithm 1 is a 2k−1
k -

approximation algorithm.
In the first step, the algorithm selects a basis B of M, which clearly consists of r elements.
In the second phase, for each color c, if the deletion of the elements of color c decreases the rank

of the set of the so far selected elements, then the algorithm selects some additional elements of some
colors different from c to avoid this happening. More precisely, if the deletion of the elements of color c
decreases the rank of the set of the so far selected elements by xc, then the algorithm selects xc new
elements of some colors different from c. For any color c, let yc denote the number of elements of color c
in the basis B found in the first step. Since B is a basis, the deletion of yc elements from B decreases its
rank by exactly yc. However, there might be some additional selected elements of colors different from c,
thus the algorithm selects at most yc elements for every color c in the second phase. Therefore, at the
end of the second phase, at most

r +
∑

c∈C

yc = r + |B| = 2r

elements are selected.
In the third phase, the algorithm only deselects some elements, thus the ground set of the output

indeed contains at most 2r elements.

Next we prove that the algorithm runs in polynomial time if M is given by an independence oracle.
The first step is selecting a basis which can be done in O

(
|S|
)

time with the greedy algorithm.
In the second phase, for every color c ∈ C, we remove the elements of color c from the set of the so far

selected elements – which can be done in O
(
|S|
)

time –, then we select some additional elements with the

420

use of Subroutine IncreaseRank – which can be done in O
(
|S|
)

time as well. Thus the algorithm takes

O
(
|C| · |S|

)
steps in the second phase.

In the third phase, the algorithm checks for every selected element s whether for any color c ∈ C, the
deletion of s and all the selected elements of color c decreases the rank of the set of the so far selected
elements. For a given selected element s and a given color c, this can be done in O

(
|S|
)

time with the

greedy algorithm. Thus the algorithm takes O
(
|C| · |S|2

)
steps in the third phase.

Therefore, the algorithm runs in O
(
|C| · |S|2

)
, i.e. in polynomial time.

Finally, we present some courteously colored matroids, more precisely, some edge-color-avoiding con-

nected graphs, for which the approximation ratio is exactly 2(k−1)
k .

Let us define the edge-colored graph G = (V,E) as follows. Let

C := {0, 1, . . . , k − 1}

be the color set, let
V := {v0, . . . , vn−1}

with k − 1 | n− 1, and let

Ei :=
{
vjvj+1

∣∣ j ∈ {0, 1, . . . , n− 2} and j ≡ i (mod k − 1)
}

and
E′

i :=
{
vjvj+1

∣∣ j ∈ {0, 1, . . . , n− 2} and j + 1 ≡ i (mod k − 1)
}

be the sets of edges of color i for any i ∈ {0, 1, . . . , k − 2}, and let

Ek−1 :=
{
vjvj+k−1

∣∣ j ∈ {0, . . . , n− 2} and j ≡ 0 (mod k − 1)
}

be the set of edges of color k − 1. For an example, see Figure 3.

By Theorem 7, the subgraph
(
V,∪i∈CEi) is an optimal solution with k·(n−1)

k−1 edges. However, the

output of the algorithm can also be the subgraph
(
V,∪i∈C\{k−1} (Ei ∪ E′

i)
)
. To see this, first note that

the edges of both ∪i∈C\{k−1}Ei and of ∪i∈C\{k−1}E′
i form Hamiltonian paths v0v1 . . . vn−1, which are

disjoint with each other. Thus the algorithm can select the edges of ∪i∈C\{k−1}Ei in the first step (these
edges obviously form a spanning tree), then it can select all the edges of ∪i∈C\{k−1}E′

i in the second phase
(all the so far selected edges clearly form an edge-color-avoiding connected graph), and then it does not
deselect any edges in the third phase. Clearly, this output has 2n− 1 edges, therefore the approximation

ratio in this case is 2(k−1)
k . □

Figure 3: An edge-color-avoiding connected graph colored with k = 3 colors and on n = 7 vertices, which
contains an edge-color-avoiding connected spanning subgraph with k·n−1

k−1 = 9 edges – for example, such
a subgraph is spanned by the green (denoted by rhombi) edges and the lower red (denoted by triangles)
and blue (denoted by squares) edges – and an edge-color-avoiding connected spanning subgraph with
2(n − 1) = 12 edges – that subgraph is spanned by the red and blue edges. The output of Algorithm 1

can be this latter subgraph, resulting in an approximation ratio of exactly 2(k−1)
k .

As a consequence, we also obtained the following result.

Corollary 9 Let M = (S, I) be a courteously colored matroid with rank r such that M \ {s} is not
courteously colored for all s ∈ S. Then |S| ≤ 2r and this upper bound is sharp.

421

For a construction of a courteously colored matroid (more precisely, of an edge-color-avoiding con-
nected graph) of rank r, which has maximum number of elements (edges) for the property that none of
the elements can be deleted such that the matroid remains courteously colored, see Figure 4.

Figure 4: An edge-color-avoiding connected graph on n = 8 vertices and with 2(n−1) = 14 edges colored
with exactly k = 4 colors, and having the property that none of the edges can be removed such that the
graph remains edge-color-avoiding connected.

Remark 10 Using Theorem 7 and Corollary 9, one can design a simpler (but for large networks, less

efficient) polynomial-time 2(k−1)
k -approximation algorithm for finding courteously colored rank-preserving

restrictions of a matroid M to a set of minimum size: one by one greedily delete those elements of the
ground set from M after whose deletion the obtained matroid is courteously colored and has the same
rank as M. By the same reasoning as that for Algorithm 1, we get that there exist inputs for which the

approximation ratio of this greedy algorithm is exactly 2(k−1)
k .

As we observed before, the underlying graph of a courteously colored graphic matroid is not necessarily
edge-color-avoiding connected, thus we also present a separate polynomial-time approximation algorithm
for finding edge-color-avoiding connected spanning subgraphs with minimum number of edges. (Note
that by Corollary 5, this problem is NP-hard.)

To simplify the description of the algorithm, we introduce the following simple subroutines. The sub-
routine Graph(V,E) creates a graph with vertex set V and edge set E, the subroutine SpanningTree(G)
returns the edges of a spanning tree of a connected graph G, the subroutine ConnectedComponents(G)
returns the family of the vertex sets of the connected components of G. Finally, the subroutine Con-
tractVertices(G,W), whose inputs are a graph G and a partition W of its vertex set, returns a graph
which can be obtained from G by contracting the vertices of each set W ∈ W into a single vertex. Fi-
nally, the subroutine BeforeContraction(G,H,E′), whose inputs are a graph G, and a graph H that is
obtained from G by contracting some of its vertices, and an edge set E′ ⊆ E(H), returns a set of edges
in G corresponding to E′.

Algorithm 2 Finding edge-color-avoiding connected spanning subgraphs

Input: an edge-color-avoiding connected graph G = (V,E) colored with a color set C.
Output: an edge-color-avoiding connected spanning subgraph G′ of G.
E′ ← SpanningTree(G)
G′ ← Graph(V,E′)
for c ∈ C do

if G′
c is not connected then
W ← ConnectedComponents(G′

c)
H ← ContractVertices(Gc,W)
E′ ← E′ ∪ BeforeContraction

(
G, H, SpanningTree(H)

)

G′ ← Graph(V,E′)

for e ∈ E′ do
if G′ − e is edge-color-avoiding connected then

G′ ← G′ − e
return G′

Analogously to Theorem 4, it can be proved that Algorithm 2 is a 2(k−1)
k -approximation algorithm of

running time O
(
|C| · |V |2

)
for the problem of finding an edge-color-avoiding connected spanning subgraph

422

with minimum number of edges of a given graph G = (V,E) colored with a color set C (for a detailed
proof, see [16]).

For (not necessarily properly) vertex-colored graphs, we give two definitions of color-avoiding con-
nectivity describing slightly different phenomena. We say that two vertices u and v of a vertex-colored
graph are internally vertex-c-avoiding connected for some color c if there exists a u-v path containing
no internal vertices of color c. We say that two vertices u and v of a vertex-colored graph are vertex-c-
avoiding connected for some color c if they are internally vertex-c-avoiding connected, or there exists a
u-v path and at least one of the vertices u and v is of color c. If any two vertices of a vertex-colored graph
are vertex- or internally vertex-c-avoiding connected for any color c, then the graph is called vertex- or
internally vertex-color-avoiding connected, respectively.

The problems of finding a vertex- or an internally vertex-color-avoiding connected spanning subgraph
with minimum number of edges of a given graph are also NP-hard problems by the same reasoning as
that for edge-color-avoiding connectivity in Theorem 4. Similar polynomial-time approximation algo-
rithms to Algorithm 2 can be developed for vertex- and internally vertex-color-avoiding connectivity with
approximation factors of 2 and slightly better than 3, respectively [16].

Acknowledgement. The authors would like to express their gratitude to Roland Molontay for useful
conversations and for his support during the research process.

References

[1] M. DeVos, T. Johnson, and P. Seymour, Cut coloring and circuit covering, https://web.

math.princeton.edu/~pds/papers/cutcolouring/paper.pdf (2006)

[2] H. N. Gabow, M. X. Goemans, É. Tardos, and D. P. Williamson, Approximating the
smallest k-edge connected spanning subgraph by LP-rounding, Networks 53(4), 345–357 (2009)

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company (1979)

[4] M. Giusfredi and F. Bagnoli, A self-organized criticality method for the study of color-avoiding
percolation, In Proceedings of the Internet Science: 6th International Conference (INSCI 2019),
217–226 (2019)

[5] M. Giusfredi and F. Bagnoli, From color-avoiding to color-favored percolation in diluted lattices,
Future Internet 12(8), 139 (2020)

[6] C. Hunkenschröder, S. Vempala, and A. Vetta, A 4/3-approximation algorithm for the
minimum 2-edge connected subgraph problem, ACM Transactions on Algorithms 15(4), 55 (2019)

[7] A. Kadović, S. M. Krause, G. Caldarelli, and V. Zlatić, Bond and site color-avoiding
percolation in scale free networks, Physical Review E 98(6), 062308 (2018)

[8] S. Khuller and U. Vishkin, Biconnectivity approximations and graph carvings, Journal of the
ACM 41(2), 214–235 (1994)

[9] S. M. Krause, M. M. Danziger and V. Zlatić, Hidden connectivity in networks with vulnerable
classes of nodes, Physical Review X 6(4), 041022 (2016)

[10] S. M. Krause, M. M. Danziger and V. Zlatić, Color-avoiding percolation, Physical Review E
96(2), 022313 (2017)

[11] P. Krysta and V. S. A. Kumar, Approximation algorithms for minimum size 2-connectivity
problems, STACS 2001: Proceedings of the 18th Annual Symposium on Theoretical Aspects of
Computer Science, 431–442 (2001)

423

[12] L. Lichev, Color-avoiding percolation of random graphs: between the subcritical and the interme-
diate regime, https://arxiv.org/abs/2301.09910 (2023)

[13] L. Lichev and B. Schapira, Color-avoiding percolation on the Erdős-Rényi random graph, https:
//arxiv.org/abs/2211.16086 (2022)

[14] R. Molontay and K. Varga, On the complexity of color-avoiding site and bond percolation,
SOFSEM 2019: Theory and Practice of Computer Science, 354–367 (2019)

[15] V. V. Narayan, A 17/12-approximation algorithm for 2-vertex-connected spanning subgraphs on
graphs with minimum degree at least 3, https://arxiv.org/abs/1612.04790 (2016)

[16] J. Pintér, Extremal problems of color-avoiding connectivity, Master’s Thesis, Budapest University
of Technology and Economics (2022)

[17] B. Ráth, K. Varga, P. T. Fekete, and R. Molontay, Color-avoiding percolation in edge-
colored Erdős–Rényi graphs, https://arxiv.org/abs/2208.12727 (2022)

424

Generalized solution for the Herman Protocol
Conjecture

Endre Csóka1

Alfréd Rényi Institute of Mathematics
csoka.endre@renyi.hu

Szabolcs Mészáros2

Department of Mathematics
Central European University
szabolcs.thai@gmail.com

András Pongrácz

Alfréd Rényi Institute of Mathematics
pongracz.andras@renyi.hu

Abstract: Herman’s classical self-stabilizing algorithm is a process where an odd number of
tokens is placed on some of N fixed positions along a circle. In every step, we move each token
to the clockwise neighboring position or leave it in its current position with equal probability,
independently for all tokens. Colliding tokens are removed, and the process ends when only
one token remains. The Herman Protocol Conjecture states that the expected time E(T) of
Herman’s algorithm is at most 4

27N
2. We prove the conjecture in its standard unbiased and

also in a biased form for discrete processes, and extend the result to further variants where
the tokens move via certain Lévy processes. Moreover, we derive a bound on the expected
value of E(αT) for all 1 ≤ α ≤ (1 − ε)−1 with a specific ε > 0. Subject to the correctness
of an optimization result that can be demonstrated empirically, all these estimations attain
their maximum on the initial state with three tokens distributed equidistantly on the ring
of N processes. Such a relation is the symptom of the fact that both E(T) and E(αT) are
weighted sums of the probabilities P(T ≥ t).

Keywords: Stochastic processes, Discrete optimization, Random algorithms, Stochas-
tic optimization.

1 Introduction
The simplified setup of Herman’s self-stabilizing algorithm consists of a directed circular graph of N
elements and K tokens put on K different nodes of the graph. The vertices represent identical processes
connected along the edges. Ideally, if the system is in a legitimate state, only one process holds a token
in the configuration. However, errors may occur when the system enters into a multiple token state.
Herman’s algorithm is a randomized protocol to reach a one-token state after an error, hence the name
self-stabilizing; cf. [4, 5].

The method of the algorithm is the following: in every step of the discretely treated time, if a process
holds a token then it keeps it with probability 1

2 or passes it to its clockwise neighbor with probability
1
2 , independently of the other token-passes. If a process kept its token in a step but also receives one,
then both tokens disappear. By the implementation of the processes, we can guarantee that Herman’s
algorithm starts at a configuration where there is an odd number of tokens, hence the mentioned algorithm
will eventually yield a one-token state with probability 1. We note that it is just as reasonable from a

1Research is supported by the NRDI grant KKP 138270 and by the European Research Council (grant agreement
no.~306493).

2Research is supported by the NRDI grant KKP 138270.

425

mathematical point of view to start with an even number of tokens and run the process until all tokens
disappear. Interestingly, this setup is much easier to handle, and was solved in [6].

Several questions arise naturally about the distribution of the execution time of self-stabilization, i.e.,
the hitting time T of a one-state configuration [12]. Since the complete description of the distribution
P(T ≥ t) did not turn out to be an accessible problem, the analysis focused mainly on the derived
quantity E(T). The denominator, Herman, proved the upper bound 1

2N
2 logN on E(T) in the original

paper [10], which was improved to O(N2) by multiple authors independently [6, 8, 13, 14].
To find a tight bound, it is reasonable to search for the extremum of E(T) as a function of the

initial configuration of the tokens. Assuming that the stabilization process starts with three tokens, the
maximum of E(T) is realized on the equidistant starting position of the tokens (or the closest configuration
to that, if N is not divisible by 3). This is a consequence of the description of E(T) given by [13] for
all the initial configurations with three tokens. They found an explicit formula for E(T) in terms of the
“distances” of the tokens, where by distance of the tokens X1 and X2 we mean the length of the arc
connecting X1 and X2 avoiding the third token X3. Given these distances a, b, c ∈ N of the tokens
(where necessarily a+ b+ c = N by definition), the expectation of T can be expressed as

E(T) =
4abc

N

This expression clearly has the maximum at the states where a, b, c are the nearest integers around N
3

summing up to N . In particular, a = b = c = N
3 if N is divisible by 3. In [13], it was also conjectured to

be the only maximum of E(T) considering all possible initial configurations, not necessarily with three
tokens.

We give a proof to this conjecture by using a method that can be generalized in many directions. In
the original phrasing of the conjecture, in every round of the discrete process, each token either keeps its
current position or makes a move in the positive direction, and both events occur with equal probability
p = 1

2 . We treat the unbiased version where all tokens make a move independently with the same
probability p; cf. [7, 16]. The argument is not purely combinatorial in its intrinsic nature. Hence, it can
be generalized to the case when the movement of each token is described by a Poisson process or when
the circular graph is replaced by a continuous circle on which the tokens move by independent Brownian
motions with the same parameters.

Moreover, we show that in the (unbiased) discrete version of the protocol with parameters p,N , and

for ε = 4p(1−p) sin2
(
π

2N

)
, we have E

((
1

1−ε

)T)
≤ 3

2 , with equality if and only if we start from the three-

token equidistant configuration. Furthermore, subject to the the correctness of an optimization result that
we tested by computer, the maximum of E

(
αT
)
is attained at the three-token equidistant configuration

for all 1 ≤ α ≤ 1
1−ε . All the evidence point towards the potential result that P(T ≥ t) is maximized

by the equidistant three-token configuration for all t. Indeed, E
(
αT
)
is also a linear combination of the

P(T ≥ t) just like E(T), but with weights αt − αt−1 rather than 1’s, as in the case of E(T). In [12], a
formula was established to P(T ≥ t) assuming that there are three tokens. As a consequence, they have
shown that the maximum of P(T ≥ t) is indeed attained at the equidistant three-token starting state
when we consider the three-token initial states. The next step could be to obtain this theorem with no
restriction on the number of tokens.

This paper is an extended and improved version of the manuscript [3], which proved the Herman
Protocol Conjecture parallelly with and independently of [1].

2 Main results

2.1 Basic setup and three-token states
We implement a somewhat modified viewpoint on the described processes. Since the arguments require
some symmetry, for our purposes it is better to rotate the base space by 2π

2N after every step counter-
clockwise, where N stands for the number of nodes. This slight notational modification have the effect

426

that the number of nodes gets doubled, but half of them is necessarily avoided by the tokens in every
step. At least this is the case in the classical, discrete version of the protocol, but not necessarily in
the other variants we consider in this paper. In the sequel we refer to 2N as the number of nodes.
Moreover, the tokens now move in a symmetrized way. In the standard Herman protocol, they either
move to the clockwise neighboring new node with probability 1

2 or move in the opposite direction to the
counter-clockwise neighbor with probability 1

2 , all independently.
We now generalize this setup by choosing another parameter (besides N).

Definition 1 Given a p ∈]0, 1[, the discrete Herman protocol with parameters p,N is the process where
a number of tokens are moved independently along a circle with 2N nodes, such that each token moves to
its counter-clockwise neighboring node with probability p, and to the other neighbor with probability 1− p,
all independently. In other words, tokens are taking independent biased random walks (mod 2N).

Using this reformulation, it is natural to consider further variants. We define two more setups that
we can handle in essentially the same way as the classical discrete version. In these new variants, the
movement of each token is a continuous time process, in fact, a Lévy process. It is vital in some arguments
that the tokens cannot jump over one another. Hence, if we intend to preserve the symmetry between
the tokens in the sense that the processes describing their movements are independent copies of the same
Lévy process, only the following two special types can be considered.

Definition 2 In the exponential clock (or Poisson) variant, the tokens are still positioned on the 2N
nodes along the circle, and steps are discrete. Each token moves to its neighbor in the positive direction
with probability p, and to the other one with probability 1− p. However, the timeline is continuous, and
each token has a corresponding exponential clock with mean 1: whenever it goes off, the token takes a
step.

Definition 3 The Brownian (or Wiener) variant is continuous, making the nodes irrelevant. The tokens
can be positioned anywhere around the circle with perimeter 2N , and they each independently move via
a Brownian motion with variance 1. In this setup, N need not be an integer.

If one were only interested in the Brownian variant, a somewhat more natural parametrization could
be chosen. However, in order to be consistent with the other variants, and to easily compare the three
situations, we use this one.

0

1

2

3
45

6

7

8

9

10

11

12

13 14
15

16

17

=X(1)

=X(2)

X(3)=

a=2

b=3

c=4

0

1

2

3
45

6

7

8

9

10

11

12

13 14
15

16

17

=X(1)

=X(2)

X(3)=

C

Figure 1: Illustration of a three-token configuration with N = 9. On the left, the distances between the
tokens are indicated. On the right, the same configuration is placed in the complex plane.

427

The three-token states play a crucial role in the argument, thus we first determine the expected time
to absorption from such initial states. The formula in the unbiased discrete setup (p = 1

2) was shown
in [15]. In the standard discrete protocol, a three-token state was usually represented by three numbers
a, b, c, the distances between the three pairs of tokens, i.e. the number of nodes on the arcs connecting
two tokens while avoiding the third. Then the expected runtime of the process is 4abc

N according to [15].
Note that in our modified setup with the circle having perimeter 2N rather than N , we require a slight
adjustment to get the same formula: the distances a, b, c are now half the arc lengths connecting each pair
of tokens, as the nodes are doubled. So in order to obtain abc

27 for the expected runtime for three-token
states, in our formulation with the 2N nodes and each arc between neighboring nodes having length 1,
the actual arc lengths between the tokens are 2a, 2b, 2c, respectively. In order to keep the consistency,
we still refer to the distances as a, b, c; see the left hand side of Figure 2.1. This is a common feature
for all three variants considered in the paper. Throughout the paper, we make several references to the
equidistant three-token configuration without elaborating on the cases where 2N is not divisible by 3.

The following lemma is essentially first-step analysis.

Lemma 4 Let x be an initial three-token state with distances a, b, c between the three pairs of tokens.
Then the Herman protocol is expected to terminate in E(T(x)) = µabcN steps, where

• µ = 1
p(1−p) for the discrete version with parameters p, N ;

• µ = 4 for the exponential clock variant with parameters p, N ;

• µ = 4 for the Brownian process with parameter N .

In particular, we have the upper bound E(T(x)) ≤ µN2

27 for all three-token states x, with equality if
and only x is the equidistant three-token configuration. Moreover, E(T) is finite for all three variants and
arbitrary initial states.

The main goal of the paper is to generalize the upper bound E(T(x)) ≤ µN
2

27 to all possible initial
states x for all three variants of the protocol.

Theorem 5 Let T(x) denote the hitting time of the one-token state starting from the initial state x for
any of the three variants of the Herman protocol. Then E(T(x)) ≤ µN2

27 , with equality if and only if x
is the equidistant three-token configuration, where µ = 1

p(1−p) for the discrete variant, and µ = 4 for the
exponential clock version and for the Brownian process.

To verify the bound in Theorem 5, it seems natural not only to keep count on when the process is
terminated, but to have a way to measure “how far” we are from the end in expectation. Then the goal
becomes to show that this measure is the worst (i.e. the highest) throughout the whole process if and only
if the initial state is the equidistant three-token configuration. To this end, we define two “potentials”
that are expected to grow, and that start off and end up in [0, 1]. The first such potential is Φ, see
Definition 6. It is only relevant for three-token states; it assigns to a three-token state x the expected
value of the remaining time until the process terminates starting from x, rescaled into [0, 1]. Note that
Lemma 4 guarantees that Φ is indeed between 0 and 1.

Definition 6 Let x be an initial three-token state with distances a, b, c between the three pairs of tokens.
Then for all three variants of the Herman process we define Φ(x) = 1− E(T(x))/

(
µN

2

27

)
= 1− 27abc

N3 .

2.2 The other potential
The following arguments are explained for the discrete variant of the process, but it is easy to see that
everything generalizes to the other versions, as well. The only relevant nontrivial property that we make
use of is that the tokens have a circular order that cannot change without a collision of tokens. That is,

428

tokens cannot jump through one another without first occupying the same position; this was exactly the
property that we focused on when defining the three variants.

To define the non-trivial potential, the core idea of the paper, we number the nodes by 0, 1, 2, . . . ,
2N − 1. The location of the j-th token at time t ∈ N≥0 is described by the random variable Xt(j)
where j = 1, 2, . . . , Kt and Kt stands for the number of tokens at time t, where the tokens are numbered
compatible to their ordering on the circle (but the beginning of the enumeration is arbitrary). Generalizing
the notation Kt we will write Kt(x) for the (random) number of tokens at time t for the process starting
at the initial state x. In particular, K(x) := K0(x) denotes the number of tokens at state x. As before,
T := T(x) := min{t | Kt(x) = 1} is the hitting time of a one-token state, i.e. the execution time of the
self-stabilizing algorithm. Note that this notion is not affected by the symmetrization of the process we
implemented in the previous chapter. Also, we need a notation for the hitting time of a three-token state,
as it turns out to be a crucial point in the evolution of the process, so we put τ := min{t | Kt(x) = 3}.

Just like Φ(x), the new potential x 7→ Ψ(x) ∈ [0, 1] also measures how far our state is from the
final state in expectation. The growth speed of Ψ can be estimated without trying to compute the first
potential Φ for all configurations with an arbitrary number of tokens, a seemingly impossible challenge.
However, we can show that the two potentials are reasonably close to each other on three-token states;
see Lemma 11.

In the definition of Ψ, we use the complex exponential function k 7→ e
2πi
2N k = e

πi
N k. This notation

also implicitly contains an identification of the circle with the complex unit circle (the identification was
essentially chosen when we numbered the nodes); see the right side of Figure 2.1. This arbitrary choice
could in principle cause some trouble. But as we will soon see, the potential Ψ is invariant under rotation
of the circle (i.e., the choice of the node with number 0), solving the issue; see Proposition 8.

Definition 7 Let x be an arbitrary state and assume that 0 ≤ x(1) < x(2) < · · · < x(K) ≤ 2N −1 where
x(j) is the position of the j’th token of the state x using counter-clockwise enumeration of the tokens
starting at the direction 1 ∈ C (the node with number 0); see the right side of Figure 2.1. Then the
potential Ψ is

Ψ(x) :=
∣∣∣
K(x)∑

j=1

e
πi
N

1
2x(j)(−1)j

∣∣∣
2

Geometrically, x 7→ Ψ(x) can be described as summing up the (directed) angle bisectors of the vectors
e
πi
N x(j) and the fixed unit vector 1 with an extra twist. Namely, for odd j we reflect the resulting angle

bisector vector to the origin. Informally, this reflection is applied to stabilize the quantity under the
disappearance of two colliding tokens. Formally, it means that if x(j) = x(j + 1) then deleting these two
tokens from the vector x does not change the value of Ψ(x). Also the alternating sign is responsible for
the independence of Ψ from the choice of the direction, i.e., the identification of the circle with the unit
circle in the complex plane.

Proposition 8 For any state x we have

1. The choice made at the identification of the plane with C does not affect Ψ(x). That is, Ψ(x) is
invariant under the simultaneous translation of the x(j), even if during the translation, a token
jumps over 1 ∈ C.

2. The disappearance of two colliding tokens does not affect Ψ(x).

3. Ψ(x) ≤ 1, with equality if and only if there is only one token at state x.

4. Ψ(x) ≥ 0, with equality if and only if x is an equidistant configuration with at least three tokens.

Now, we fix the initial state x of the process t 7→ Xt. Let us denote by Yt = Ψ(Xt) the value of the
potential defined above on the random process at time t. As usual, Ft := σ(Xt(j) | s ≤ t, j ≤ K0) is the
standard filtration of the process, and the number of tokens Kt = Kt(x) at time t was defined earlier.

The evolution of Yt is described by the following lemma.

429

Lemma 9

• Given the discrete version of the Herman protocol with parameters p,N , let ε = 4p(1−p) sin2
(
π

2N

)
.

Then for any t ∈ N we have
E(Yt+1 − Yt | Ft) = ε(Kt − Yt)

• In the exponential clock variant, let ε = 4 sin2
(
π

4N

)
. Then lim

∆t→0

1
∆tE(Yt+∆t−Yt | Ft) = ε(Kt−Yt).

• In the Brownian version, let ε = π2

4N2 . Then lim
∆t→0

1
∆tE(Yt+∆t − Yt | Ft) = ε(Kt − Yt).

Corollary 10 For all three versions of the Herman protocol we have E(Yτ) ≥ 4εE(τ) + Y0.

Proof: Observe that Lemma 9, item 3. of Proposition 8, and the fact that in a state with more than
three tokens there are at least five tokens imply

E(Yt+∆t − Yt|Ft) ≥ ε∆t(5− 1) = 4ε∆t

whenever t < τ . Here, ∆t = 1 for the discrete variant and an infinitesimally small amount of time in the
other two versions. Hence, the process

Zt =

{
Yt − 4εt if t < τ

Yτ − 4ετ if t ≥ τ
is a submartingale. To show that Zt is indeed integrable, first note that |Yt| ≤ 1 yields the trivial

bound |Zt| ≤ 1 + 4εt. In particular, if t/E(τ) ≤ 1 then E|Zt| ≤ 1 + 4ε · E(τ); note that E(τ) is finite
according to Lemma 4. If t/E(τ) = C > 1 then we can apply the Law of Total Expectation and the
Markov inequality to obtain

E|Zt| = P(t < τ) · E (|Zt| | t < τ) + P(t ≥ τ) · E (|Zt| | t ≥ τ) ≤ 1

C
(1 + 4εC · E(τ)) + 1 · E|Yτ − 4ετ | ≤

≤ 1

C
(1 + 4εC · E(τ)) + E(1 + 4ετ) ≤ 1

C
+ 4ε · E(τ) + 1 + 4ε · E(τ) ≤ 2 + 8ε · E(τ)

Hence, according to the Optional Stopping Theorem E(Zτ) ≥ E(Z0), and consequently, E(Yτ)−4εE(τ) ≥
Y0.

�
Informally, this corollary means that the potential Ψ grows fast enough until we hit a three-token

state. After time τ however, it slows down, as we can only guarantee a 2ε ·∆t growth under a (small)
time period of length ∆t by the same argument as in the proof of Corollary 10. Fortunately, we have
an exact formula to the other potential Φ for three-token states, see Definition 6. As we will see, it is
easy to find an exact formula for Ψ on three-token states, as well. So the vague idea is to estimate the
growth of the potential Ψ before the hitting time τ of three-token states by Corollary 10, and then switch
to the other potential Φ. In order to show that this switch can be carried out without a major loss in
expectation, we need to compare the two potentials on three-token states.

Lemma 11 For any state x with three tokens Φ(x) ≥ 0.87 ·Ψ(x).

We are ready to prove the main result of the paper.

Proof: (of Theorem 5) First, let’s investigate what happens to the potential Φ at the moment of the
potential interchange:

Φ(Xτ) = 1− E(T(x))|x=Xτ

µN
2

27

= 1− 27

µN2
E
(
T(Xτ) |Xτ

)
= 1− 27

µN2
E
(
T− τ |Xτ

)

430

Hence, taking expectation yields

E
(
Φ(Xτ)

)
= 1− 27

µN2
E(T− τ)

So now, we can estimate E(T) as:

E(T) = E(τ) + E(T− τ) = E(τ) +
µN2

27
·
(

1− E
(
Φ(Xτ)

))
≤

where we can apply Lemma 11:

≤ E(τ) +
µN2

27
·
(

1− 0.87 · E
(
Ψ(Xτ)

))
= E(τ) +

µN2

27
·
(

1− 0.87 · E(Yτ)
)
≤

So we can use the estimation of Yτ proved in Corollary 10:

≤ E(τ) +
µN2

27
·
(

1− 0.87 ·
(
4εE(τ) + Y0

))
=
µN2

27
+

(
1− 1.16

9
µεN2

)
E(τ)− 0.29

9
µN2Y0

To finish the proof, it suffices to show that the second term is negative, or equivalently, 1− 1.16
9 µεN2 <

0. In the discrete version µε = 4 sin2
(
π

2N

)
, in the Poisson variant µε = 16 sin2

(
π

4N

)
, and in the Brownian

version µε = π2

N2 . Thus µεN2 is roughly π2 ≈ 9.87 in all three cases. To be more accurate, this is exactly
the case for the Brownian version. In the other two variants, the worst constant is obtained for N = 3:
4 sin2

(
π

2·3
)
· 32 = 9 and 16 sin2

(
π

4·3
)
· 32 ≈ 9.65, making the coefficient 1− 1.16

9 µεN2 negative. To see the
case of equality, note that in the last inequality we estimated from below E(τ) by zero and Y0 by zero as
well. If we did not lose anything here, then E(τ) = 0, thus we start from a three-token state. Moreover,
Y0 = 0 hence we started from the equidistant configuration by item 4. of Proposition 8. �

3 More general estimates
We note that the last proof provides a somewhat stronger statement than the conjecture in all three

variants. In the right hand side of the inequality E(T) ≤ µN2

27 +

(
1− 1.16

9 µεN2

)
E(τ)− 0.29

9 µN2Y0, the

coefficient 1 − 1.16
9 µεN2 is at most −0.23 (assuming that N ≥ 5, as otherwise E(τ) = 0), so we obtain

E(T) + 0.23E(τ) ≤ µN2

27 − 0.29
9 µN2Y0. In fact, Corollary 10 can be slightly improved by noticing that

the speed of the expected elevation of Ψ is at least 2kε∆t in states with K = 2` − 1 tokens. Putting
τk := min{t | Kt(x) = 2`− 1}, this yields the refined estimate

E(T) + 0.23E(τ) +

(`0+1)/2∑

`=3

0.61E(τ`) ≤
µN2

27
− 0.29

9
µN2Y0

Informally, this means that even if we reward the process for being in states with more than three
tokens by making the contribution of such a step a linear function of ` (roughly 0.61` rather than 1, as
in the computation of the runtime T), the maximum of the expected total contribution is still attained
at the three-token equilibrium state.

We now focus on the discrete variant of the process, and show that the presented method can yield
further estimates to the distribution of the runtime. We can view the process as an absorbing Markov
chain; cf. [11] for an introduction. As usual, the transition matrix is given in a canonical form: that is,
indices corresponding to absorbing states (those with one token) are at the end, making the transition

matrix a block matrix of the form P =

(
Q R
0 I

)
. Moreover, if the states are clustered according to

431

the number of tokens in them, then Q is also a block matrix, all of whose diagonal blocks are non-
negative irreducible matrices. The spectral radius % of Q carries an important probabilistic meaning:
clearly, the supremum of those α ≥ 1 such that E(αT) is finite is %−1. Moreover, the vector u′ of values
E(αT) assigned to all non-absorbing states is the restriction of the unique solution to the system of linear

equations
(
αQ αR
0 I

)
u = u, where the coordinates of u corresponding to absorbing states are all 1.

Equivalently,
(
Q R
0 I

)
u = v, where components of v corresponding to absorbing states are still 1, and

the rest is filled with 1/α times the values E(αT), that is v′ = (1/α)u′. As we are interested in such
expected values, we compute the spectral radius % of Q, and provide a formula to E(αT) for three-token
initial states. By using the above and the min-max Collatz-Wielandt formula [2], one can verify the
following formula.

Lemma 12 Given the discrete version of the protocol with parameters p, N and ε = 4p(1−p) sin2
(
π

2N

)
.

Then the spectral radius of Q is % = 1 − 4p(1 − p) sin2
(
π
N

)
. In particular, % ≈ 1 − 4ε, and we have the

precise bounds 1− 4ε ≤ % ≤ 1− 3ε. Moreover, given an α ≥ 1, the expected value E(αT) is finite if and
only if α < %−1, and then for three-token states with distances a, b, c between the tokens it is E(αT) =
βa−βN−a+βb−βN−b+βc−βN−c

1−βN , where β is any of the two solutions of the equation β + β−1 = α−1−1
p(1−p) + 2.

Using a slightly rephrased form of Lemma 9 yields the following lemma.

Lemma 13 Given the discrete version of the protocol with parameters p, N and ε = 4p(1−p) sin2
(
π

2N

)
.

Let 1 ≤ α ≤ (1− ε)−1. Then

• εαE
(
ατ−1
α−1 (5− Yτ)

)
≤ E(Yτ)− Y0, and

• 2εαE
(
αT−1
α−1

)
≤ 1− Y0.

We note that the second item provides a quadratic upper bound for E(T) by putting α → 1. Indeed,
the left hand side converges to 2εE (T) as α → 1, thus 2εE (T) ≤ 1, and consequently E (T) ≤ 1

2ε ≈
2N2

π2 ≈ 0.203N2. This bound is never tight, as we demonstrated in Theorem 5: the tight bound is
4
27N

2 ≈ 0.148N2. This is the reason we had to cut the process in two: we first estimate the parameters
until a three-token state is reached, and then use the precise formulas to the parameters for three-token
initial states. However, for one particular choice of α, the second item of the above lemma can yield a
tight bound.

Corollary 14 Given the discrete version of the protocol with parameters p, N and ε = 4p(1−p) sin2
(
π

2N

)
,

we have
E
((1

1− ε
)T)

≤ 3

2

with equality if and only if we start from the equidistant three-token configuration.

Note that this statement provides a tight bound to a linear combination of the P(T ≥ t)’s with the
weights (1− ε)−t − (1− ε)−(t−1) = ε(1− ε)−t.
Proof: By applying the second item of Lemma 13 for α = (1− ε)−1, we have

1 ≥ 1− Y0 ≥ 2ε(1− ε)−1E
(

(1− ε)−T − 1

(1− ε)−1 − 1

)
= 2εE

(
(1− ε)−T − 1

1− (1− ε)

)
= 2E

(
(1− ε)−T − 1

)

The case of equality holds exactly if we did not lose anything in the estimations. Those in Lemma 13
that were used in the second item are tight if and only if K0 = 3. (Note that the constant (1−ε)α−1 = 0
if α = (1−ε)−1.) Equality in 1 ≥ 1−Y0 holds if and only if Y0 = 0, which is equivalent to the assumption
that the tokens are distributed equidistantly by item 4. of Lemma 8. �

432

Corollary 15 Given the discrete version of the protocol with parameters p, N and ε = 4p(1−p) sin2
(
π

2N

)
,

we have
E
(

5− Yτ
(1− ε)τ

)
≤ 5

with equality if and only if we start from the equidistant three-token configuration.

Proof: By applying the first item of Lemma 13 for α = (1− ε)−1, we have

E(Yτ) ≥ E(Yτ)− Y0 ≥ ε(1− ε)−1E
(

(1− ε)−τ − 1

(1− ε)−1 − 1
(5− Yτ)

)
= ε(1− ε)−1E

(
(1− ε)−τ − 1

ε(1− ε)−1
(5− Yτ)

)
=

E
(
((1− ε)−τ − 1)(5− Yτ)

)
= E

(
5− Yτ

(1− ε)τ
)
− 5 + E(Yτ)

�

Theorem 16 Given the discrete version of the protocol with parameters p, N and ε = 4p(1−p) sin2
(
π

2N

)
.

Let 1 ≤ α < (1 − ε)−1, and let γ = − log1−ε α. For a three-token state x, let g(x) be the expected value
of αT with initial position x; cf. Lemma 12 for the precise formula.

Then sup
K(x)=3

g(x)
(1−Ψ(x)/5)γ is an upper estimate for E

(
αT
)
with arbitrary initial state. In particular, if

the function g(x)
(1−Ψ(x)/5)γ defined on all three-token states attains its maximum at the three-token equidis-

tant state, then so does E
(
αT
)
.

We remark that by plotting the function g(x)
(1−Ψ(x)/5)γ it seems evident that the maximum is indeed

attained at the three-token equidistant state. However, we do not have a rigorous verification similar to
the proof Lemma 11, due to the fact that the current function is more complicated to analyze.

Proof: Given any initial state, consider the probability distribution of the set of pairs {(x, t) | K(x) =
3, t ∈ N0} induced by the process: namely, the probability that t = τ and xτ = x, that is, we hit the set
of three-token states at time t and in the particular state x. Then

E
(
αT
)

= E(αtg(x)) ≤
(

sup
K(x)=3

g(x)

(5−Ψ(x))γ

)
·E
(
αt(5−Ψ(x))γ

)
=

(
sup

K(x)=3

g(x)

(5−Ψ(x))γ

)
·E
((

5−Ψ(x)

(1− ε)t
)γ)

By using Jensen’s inequality here, and then later Corollary 15, we obtain

E
(
αT
)
≤
(

sup
K(x)=3

g(x)

(5−Ψ(x))γ

)
·E
(

5−Ψ(x)

(1− ε)t
)γ
≤
(

sup
K(x)=3

g(x)

(5−Ψ(x))γ

)
· 5γ = sup

K(x)=3

g(x)

(1−Ψ(x)/5)γ

As for the second assertion of the theorem, if the maximum is attained at the three-token equidistant
state x0, then in that state we have Ψ(x0) = 0, thus g(x0)

(1−Ψ(x0)/5)γ = g(x0) is exactly the expected value
of E

(
αT
)
with the three-token equidistant state as the initial state. �

Another natural problem is to study E(T) for initial states where there is a token in every original
position, i.e., the essentially unique equidistant N -token state (for odd N). Surprisingly, it is useful to
combine the two completely different methods in the present paper and in [1].

Proposition 17 Given an odd integer N ≥ 3 and p = 1/2. Let T be the runtime of the (unbiased)
discrete version of the process from the equidistant N -token state. Then for large enough N we have
CN2 < E(T), where C ≈ 0.072.

433

References
[1] Maria Bruna, Radu Grigore, Stefan Kiefer, Joël Ouaknine, and James Worrell. Proving the Herman-

Protocol Conjecture. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Da-
vide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 104:1–
104:12, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[2] Lothar Collatz. Einschließungssatz für die charakteristischen zahlen von matrizen. Math. Z., 48:221–
226, 1942.

[3] Endre Csóka and Szabolcs Mészáros. Generalized solution for the Herman Protocol Conjecture,
2015. https://arxiv.org/pdf/1504.06963v3.pdf.

[4] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, nov 1974.

[5] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[6] Yuan Feng and Lijun Zhang. A nearly optimal upper bound for the self-stabilization time in Herman’s
algorithm. Distrib. Comput., 28(4):233–244, 2015.

[7] Michael E. Fisher. Walks, walls, wetting, and melting. J. Stat. Phys., 34(5–6):667–729, March 1984.

[8] Laurent Fribourg, Stéphane Messika, and Claudine Picaronny. Coupling and self-stabilization. Dis-
trib. Comput., 18(3):221–232, 2006.

[9] Matthias Hammer, Marcel Ortgiese, and Florian Völlering. Entrance laws for annihilating Brownian
motions and the continuous-space voter model. Stochastic Process. Appl., 134:240–264, 2021.

[10] Ted Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.

[11] John G Kemeny and James Laurie Snell. Finite Markov chains. Springer-Verlag, 1976.

[12] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James Worrell. Three
tokens in Herman’s algorithm. Formal Aspects Comput., 24(4-6):671–678, 2012.

[13] Annabelle McIver and Carroll Morgan. An elementary proof that Herman’s Ring is θ(n2). Inf.
Process. Lett., 94(2):79–84, 2005.

[14] Annabelle McIver and Carroll Morgan. On the expected time for Herman’s probabilistic self-
stabilizing algorithm. Theoret. Comput. Sci., 349(3):475–483, 2005.

[15] Andrzej S. Murawski and Joël Ouaknine. On probabilistic program equivalence and refinement. In
CONCUR, volume 3653 of Lecture Notes in Computer Science, pages 156–170. Springer, 2005.

[16] Joachim Rambeau and Grégory Schehr. Distribution of the time at which n vicious walkers reach
their maximal height. Phys. Rev. E, Statistical, nonlinear, and soft matter physics, 83:061146, 06
2011.

434

Genericity and maps of matroids

Andras Recski1

Department of Computer Science and
Information Theory

Faculty of Electrical Engineering and
Informatics

Budapest University of Technology and
Economics

Műegyetem rkp 3, H-1111 Budapest, Hungary
recski@cs.bme.hu

Abstract: Maps of matroids have been studied for half a century. If two matroids are
related by a rank-preserving weak map then their representability properties are often similar.
Motivated by electric engineering applications, relations of these questions to the genericity
of the entries of the representing matrices are studied.

Keywords: matroid, weak map, strong map, genericity, electric networks

1 Introduction

If a physical system is described by linear conditions then the column space matroid of the coefficient
matrix contains many qualitative information about the system (like unique solvability of electric net-
works, or infinitesimal rigidity of bar and joint frameworks). If a condition is relaxed, the new matroid
will be less free than the old one.

Example 1. An infinitesimally rigid planar framework becomes a mechanism if a rod is removed,
see Figure 1. The original framework was described by five equations of form (xj − xk)(uj − uk) +
(yj − yk)(ij − ik) = 0 where xj and yj denote the coordinates of joint j and uj and ij denote their
respective time derivatives (this is quite an unusual notation but its reason will become clear soon)
where j, k refer to two adjacent joints. The column space matroid of this 5×8 matrix on the underlying
set {u1, u2, u3, u4, i1, i2, i3, i4} has rank five and every 5-tuple is independent except those containing
{u1, u2, u3, u4} or {i1, i2, i3, i4}. If we remove the rod between joints 1 and 3, the column space ma-
troid of the resulting 4×8 matrix will be less free: four further 4-tuples will become dependent, namely
{u1, u2, i1, i2}, {u2, u3, i2, i3}, {u3, u4, i3, i4} and {u4, u1, i4, i1}. The 3-dimensional affine representation
of this latter matroid is shown on Figure 2 while, in case of the first matroid, the sets {u1, u2, u3, u4}
and {i1, i2, i3, i4} are coplanar but otherwise in generic positions within the respective planes, while these
planes are in generic position in the 4-dimensional affine space.

Example 2. Consider a 2-port given by the equations u1 = R11i1 + R12i2 and u2 = R21i1 + R22i2.
If both ports are terminated by current sources then the resulting network is uniquely solvable for any
values of the Rjk parameters. However, if the ports are terminated by voltage sources then the network
is uniquely solvable if and only if R11R22 − R12R21 ̸= 0. The rank of the 2×4 coefficient matrix does
not change if R11R22 − R12R21 = 0 but the column space matroid of the matrix changes from the rank
2 uniform matroid to the one where the set {i1, i2} is dependent.

1The research reported in this paper and carried out at the Budapest University of Technology and Economics was
supported by the TKP2020, National Challenges Program of the National Research Development and Innovation Office
(BME NC TKP2020) and by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame
of the Artificial Intelligence research area of the Budapest University of Technology and Economics (BME FIKP-MI/SC).

Useful remarks of Dávid Szeszlér and Áron Vékássy are also greatly appreciated.

435

Figure 1: The two planar frameworks of Example 1

Observe that the less free matroid has the same rank as the other in Example 2 and it has lower rank
in Example 1. Recall that two matroids A,B on the same underlying set S are in strong map relation
A ⇒ B if every closed set of B is closed in A as well and they are in weak map relation A → B if every
independent set of B is independent in A as well. The two matroids of Example 1 are in strong (and also
in weak) map relation while those of Example 2 are in weak map relation only.

The following properties of these maps are well known:
(P1) The strong map relation implies the weak one.
(P2) If a matrix A represents a matroid A over a field F and the matrix B = TA represents the

matroid B over F , where T is any matrix of appropriate size over F , then A ⇒ B .
(P3) If A ̸= B then A ⇒ B implies that the rank of B is smaller than the rank of A but A → B may

hold between matroids of the same rank as well.
(P4) If A ≠ B then A ⇒ B implies B∗ ⇒ A∗ for their duals. On the other hand, A → B implies

A∗ → B∗ in case of rank preserving weak maps while A∗ and B∗ can be incomparable if the rank of B is
smaller than the rank of A.

Figure 2: The affine representation of the second matroid of Example 1

2 An example for rank preserving weak maps

In order to illustrate the rich variety of maps consider a 2×4 matrix of rank 2. Due to the applications in
electric network theory (see below) let its columns be denoted by u1, u2, i1, i2. Without loss of generality
we may suppose that the first two columns are linearly independent like in Example 2, that is, let the

matrix be

(
−1 0 a b
0 −1 c d

)
. The four quantities a, b, c, d may have “generic” values (say, they are

algebraically independent transcendentals over the field of the rationals), then the column space matroid
of the matrix is the uniform matroid of rank 2. This is the freest possible case (Case 1 in Table 1 below).
If they are not algebraically independent then, among the infinitely many possible algebraic relations

436

among these four numbers, there are 16 further cases leading to distinct matroids, see the following table,
where the meaning of columns 3 . . . 8 will be explained later.

case algebraic relation No. of bases * rec ISD φ∗ ESD

1 none 6 1 - + 1 +
2 a = 0 5 5 ? 1 +
3 b = 0 5 4 - 4
4 c = 0 5 3 - 3
5 d = 0 5 2 ? 5 +
6 ad− bc = 0 5 ? 6 +
7 a = d = 0 4 7 ? + 7 +
8 b = c = 0 4 8 + + 8 +
9 a = b = 0 3 - 11
10 c = d = 0 3 - 12
11 a = c = 0 3 - 9
12 b = d = 0 3 - 10
13 a = b = c = 0 2 + 13 +
14 a = b = d = 0 2 - 15
15 a = c = d = 0 2 - 14
16 b = c = d = 0 2 + 16 +
17 a = b = c = d = 0 1 + 17 +

Table 1

The Hasse diagram of Figure 3 shows the set of these 17 matroids ordered by the rank preserving
weak map relation. The number of the bases in these matroids, as shown in Column 3 of Table 1, helps
to visualize this diagram.

Figure 3: The relations among the 17 matroids given in Table 1

All these matroids except the one on the top are graphic. This phenomenon illustrates an old theorem
of Lucas[7]: If A → B is a rank-preserving weak map and A is graphic then so is B.

437

3 Relation to electric network theory

A system of linear equations of form Au + Bi = 0 describes an abstract object called n-port, like in
Example 2. The columns of the matrix M = (A | B) are denoted by u1, u2, u3, . . . , un, i1, i2, i3, . . . , in
and can be interpreted as the voltages and the currents of the respective ports of a physical device.
Let the number of the rows of M be k and we may suppose that these rows are linearly independent,
that is, r(M) = k. An n-port is ordinary if k = n. If C is a nonsingular k × k matrix then (A | B)
and (CA | CB) describe the same n-port, hence the two matrices are called equivalent and denoted by
(A | B) ≈ (CA | CB).

Let two n-ports be defined by A1u+B1i = 0 and by A2u+B2i = 0, respectively. They are called the
negative of each other if (A1 | B1) ≈ (A2 | −B2) and the inverse of each other if (A1 | B1) ≈ (B2 | A2).
They are called the dual of each other if r(A1 | B1)+r(A2 | B2) = 2n, and uT

1 u2 + iT1 i2 = 0 holds for any
pairs (u1, i1) and (u2, i2) satisfying A1u1 +B1i1 = 0 and A2u2 +B2i2 = 0 (where T denotes transpose).

If M = (A | B) is a matrix description of an n-port then its column space matroid on the set
S = {u1, u2, u3, . . . , un, i1, i2, i3, . . . , in} is denoted by M(M). Observe that equivalent n-ports have
identical matroids and the matroids of dual n-ports (if duality is defined as above) are dual to each other.
Hence every ordinary n-port has a dual. However, Table 1 contains only those 2-ports where {u1, u2} is
independent, hence their dual appears in seven cases only; see Column 4 of the table.

An n-port is reciprocal if its dual equals to its negative inverse. If A = E then an n-port given by
M = (A | B) is reciprocal if and only if B is symmetric. Clearly, this condition is usually not reflected by
the column space matroid of M, hence reciprocity cannot always be determined from the zero-nonzero
pattern of B. Column 5 of Table 1 indicates if the 2-ports of the respective cases are

(1) always (+) reciprocal (since b = c),
(2) sometimes (?) reciprocal, or
(3) never (–) reciprocal (since either b = 0 and c ̸= 0, or c = 0 and b ̸= 0, or they have generic values).
Recall that a matroid M with the underlying set S is called self-dual if there exists a permutation

π of S satisfying π(M) =M∗. If this permutation is the identity then the matroid is called identically
self-dual (ISD). Column 6 of Table 1 indicates that three of the 17 matroids are ISD.

Let φ denote the permutation of the set S = {u1, u2, u3, . . . , un, i1, i2, i3, . . . , in} satisfying φ(uk) = ik
and φ(ik) = uk for every k. If two n-ports M1 and M2 are the inverse of each other then φ(M1) =M2.
Hence, we obtain:

Statement: If an n-port given by M = (A | B) is reciprocal then its matroid M satisfies φ(M) =
M∗.

However, φ(M) =M∗ does not guarantee the reciprocity of the n-port. Column 7 of Table 1 shows
the effect of taking the permutation φ and duality thereafter: There are 9 cases satisfying φ(M) =M∗

but only 4 of them guarantees reciprocity.
Matroids satisfying φ(M) =M∗ are called electrically self-dual (ESD), see [10]. Column 8 of Table

1 shows that eight of the 17 matroids are ESD. n-ports with ESD matroids are called qualitatively
reciprocal, they have applications in electric network synthesis [9].

The recently introduced concept of potentially reciprocal multiports [11] justify the study of the strong
maps of ESD-matroids.

4 A problem on representability

The examples of Table 1 suggest that if A → B is a rank-preserving weak map and A is represented by
a matrix A over a field then the representation of B can be obtained by imposing some extra algebraic
relations among the nonzero entries of A. However, this is not true in general. For example, F− → F
satisfies the above condition (where F− and F denote the anti-Fano and the Fano matroid, respectively),
but they cannot be represented over a common field.

On the other hand, we conjecture a slightly weaker statement:

438

Conjecture Let A → B be a rank-preserving weak map between two different matroids and suppose
that both are representable over the field of the reals. Then there exists a matrix A representing A so
that a representation of B can be obtained by imposing some extra algebraic relations among the nonzero
entries of A.

In fact, we present an algorithm and conjecture that it always gives the right construction. At first
we illustrate the idea by an example referring to the seven matroids shown in Figure 4. Each matroid is
given by its affine representation (left) and by its graphic representation, if it exists (right).

Figure 4: The matroids of the example

Most people would represent matroid M2 over the field of the reals by the matrix

0 −1 1 1 0 0
1 0 −1 0 1 0
−1 1 0 0 0 1

(where the columns are denoted by u1, u2, u3, i1, i2, i3, respectively), but then changing a nonzero entry
to zero need not necessarily lead to a weak map. For example, if we change the last or the first nonzero

439

entry of the third row to zero, we obtain the matroidsM3 andM4, respectively. One can easily see that
M2 → M3 holds but M2 → M4 does not hold. If we replace all the nonzero entries of the first three
columns of the above matrix to generic values then the obtained matrix

0 c e 1 0 0
a 0 f 0 1 0
b d 0 0 0 1

will represent M1 rather than M2, since the relation ade+ bcf = 0 is not valid for generic values. If we
wish to find weak maps of M2 with a = 0, then b, c or f must also be set to 0, leading to M5, M6 and
to M7, respectively (if the other two values are kept generic). The Hasse diagram of Figure 5 shows the
set of these 7 matroids ordered by the rank preserving weak map relation.

Figure 5: Relations among the seven matroids of the example

This example shows that if A → B is a rank-preserving weak map (say, M2 →M3) then the entries
of the matrix A representing A should be set at first to “as close to generic as possible”.

Algorithm
Step 1. Let B be a base of B (and hence a base of A as well) and let k = |B| be the common rank

of the two matroids. Let A′ be a matrix representing A. We may suppose, without loss of generality,
that A′ is of form (E|A′′) where E is the unity matrix and their columns correspond to the elements of
B. Replace all the nonzero elements of A′′ by “generic” variables, that is, by real numbers which are
algebraically independent over the field of the rationals. This matrix TB(A) represents a (fundamental
transversal) matroid TB(A). Clearly, this is at least as free as A, that is, TB(A)→ A.

Step 2. For each ℓ ≤ k consider every ℓ-element subset X of the underlying set S of the matroids.
If X is independent in A or if it is dependent in TB(A) then do nothing. Otherwise consider the k × ℓ
submatrix of TB(A) determined by the columns of X. Since these columns are linearly independent,
this submatrix has some nonsingular ℓ× ℓ submatrices D. For each such submatrix consider the algebraic
equation detD = 0. Let C[TB(A) → A] denote the collection of all these equations (obtained for every
choice of X). Clearly, if all these equations are met by the variables appearing as entries of TB(A) then
the obtained matrix A represents A.

Step 3. Similarly construct the collection C[A → B] of equations. If all these equations are met by
the variables appearing as entries of A then the obtained matrix B0 represents a matroid B0.

Clearly, B → B0. The example A = U7,3 and B = F shows that equality need not necessarily hold.
But so far we applied the representability of A only. We conjecture that if B is also representable over
the field of the reals then B = B0.

Obviously, this algorithm for finding these algebraic relations is not efficient, since the number of
nonsingular ℓ× ℓ submatrices to be considered may be superpolynomial.

References

[1] T. Brylawski, Constructions, in N. White (Ed.) Theory of Matroids, Cambridge University Press,
Cambridge (1986) 127-223

[2] J. Geelen, J. Oxley, D. Vertigan and G. Whittle, Weak Maps and Stabilizers of Classes of
Matroids, Adv. Appl. Math. 21 (1998) 305-241

440

[3] M. Iri and A. Recski, What Does Duality Really Mean? Int. J. Circuit Theory Appl. 8 (1980)
317-324

[4] M. Iri and A. Recski, Duality and reciprocity – a qualitative approach, Proc. IEEE Internat.
Symp. Circuits and Systems, Rome (1982) 415-418

[5] J. P. S. Kung, Strong Maps, in N. White (Ed.) Theory of Matroids, Cambridge University Press,
Cambridge (1986) 224-253

[6] J. P. S. Kung and H. Q. Nguyen, Weak Maps, in N. White (Ed.) Theory of Matroids, Cambridge
University Press, Cambridge (1986) 254-271

[7] D. Lucas, Properties of Rank Preserving Weak Maps, Bull. Amer. Math. Soc. 80 (1974) 127-131

[8] J. Oxley and G. Whittle, On Weak Maps of Ternary Matroids, European J. Combinatorics 19
(1998) 377-389

[9] A. Recski, Matroids and Network Synthesis, Proc. European Conf. on Circuit Theory and Design,
Warsaw (1980) 192-197

[10] A. Recski, Some Problems of Self-Dual Matroids, Coll. Math. Soc. János Bolyai 37 (1981) 635-648

[11] A. Recski and Á. Vékássy, Interconnection, Reciprocity and a Hierarchical Classification of
Generalized Multiports, IEEE Trans. Circuits Syst, I – Regular Papers 68 (2021) 3682-3692

441

442

Optimal cutting arrangements in 1D

Bowen Li1

Carleton College
lib2@carleton.edu

Attila Sali2

Alfréd Rényi Institute of Mathematics
and Department of Computer Science

Budapest University of Technology and
Economics

sali.attila@renyi.hu

Abstract: Mathematical model of an industrial application is investigated. Orders with
given tolerances must be fit on a warehouse of steel rods so that the number of cuts needed
to satisfy the orders is minimized. It is shown that the problem of feasibility and if the orders
can be satisfied, then finding the minimum number of cuts needed are both NP-complete.
Two practical solution methods are introduced: one is based on dynamic programming and
maximum clique search in graphs, the other one uses 0− 1-linear programming. Simulations
show that the latter one is much more effective.

NP-completeness, Dynamic programming, MaxClique, 0− 1-linear programming

1 Introduction

In the present paper the following industrial problem [?], introduced in the framework of a Slovenian–
Hungarian applied mathematics joint project, is treated. We are given a warehouse of steel rods of
(maybe) different lengths. Orders of pieces of rods come in and they need to be served. However, cutting
the rods is costly, so the number of cuts needs to be minimized. The way to do that is finding exact fits,
that is collection of orders that fit on some rod of the warehouse and also exhaust that rod totally. In
each exact fit case one cut can be saved, as “the remaining piece of the rod” need not be cut off.

The input is given as the status of the warehouse, i.e., the lengths of the available steel rods, which is
a multiset:

W = {w1, w2, . . . , wn},
furthermore the orders are given as pairs (a, b), also forming a multiset:

N = {(a1, b1), . . . , (am, bm)}.

The pair (a, b) means that some tolerance is allowed, that is we can cut a rod of any length in the
interval [a, b]. We need to find a partition P = {P1, P2, . . . , Pk} of the multiset N and find a valid cutting
assignment

π : P →W

such that: ∀Pi ∈ P :
∑

(a,b)∈Pi
a ≤ π(Pi). That is, the the orders that belong to the partition class Pi

are assigned to be cut from rod π(Pi). Amongst these valid cutting assignments we look for one that
minimizes the number of cuts needed. Define the exact fit for w ∈ W be the case when π(Pi) = w and∑

(a,b)∈Pi
a ≤ π(Pi) ≤

∑
(a,b)∈Pi

b.

1Research was done in Undergraduate Research Course at Budapest Semesters In Mathematics
2Research is partially supported by the National Research, Development and Innovation Office (NKFIH) grants K–

116769 and SNN–135643. This work was also supported by the BME- Artificial Intelligence FIKP grant of EMMI (BME
FIKP-MI/SC) and by the Ministry of Innovation and Technology and the National Research, Development and Innovation
Office within the Artificial Intelligence National Laboratory of Hungary.

443

Fact 1 If a valid cutting assignment exists then the number of cuts is minimized iff the number of exact
fits are maximized.

However, if a valid cutting assignment is infeasible, then it has to be decided what are the priorities, such
as the largest possible number of orders satisfied and within that the minimum number of cuts, or having
the minimum number of cuts so that the remaining pieces of rods do not allow any unsatisfied order to
be satisfied. These two are clearly different problems, for example if the warehouse is W = {1} and the
multiset of orders is {(0.3, 0.31), (0.3, 0.31), (0.3, 0.31), (0.49, 0, 51), (0.49, 0, 51)}, then we can maximize
the number of satisfied orders with three cuts, on the other hand using one cut we can exhaust the whole
warehouse. Having this in mind we tacitly assume that the inputs allow valid cutting assignments.

2 Theoretical results

In this section we treat the complexity of minimizing the number of cuts. Let us define the following two
decision problems.

Definition 2 The CutFeasibility problem is as follows.

Input A warehouse multiset W = {w1, w2, . . . , wn} and an orders multiset N = {(a1, b1), . . . , (am, bm)}.

Question Is there a valid cutting assignment?

In the other problem it is assumed that a valid cutting assignment exists.

Definition 3 The MaxExactFit problem is as follows.

Input A warehouse multiset W = {w1, w2, . . . , wn} and an orders multiset N = {(a1, b1), . . . , (am, bm)}
such that a valid cutting assignment for W and N exists, furthermore a natural number k.

Question Is there a valid cutting assignment with at least k exact fits?

For both of these problems it is clear that they are in NP, since a valid cutting assignment or one with
the desired property is a good witness.

Proposition 4 CutFeasibility is NP-complete.

In fact, BinPacking is a special case of CutFeasibility.

Theorem 5 MaxExactFit is also NP-complete.

Although BinPacking is closely related to MaxExactFit, their optima may be attained in different
cases-

Proposition 6 There are examples of set of weights s1, s2, . . . , sm such that optimal solution for Bin-
Packing uses less bins of capacity one, than the optimal solution for MaxExactFit in case of unit
length rods in the warehouse and ai = bi = si for all 1 ≤ i ≤ m.

In fact the difference in the Proposition above can be arbitrary large. We have to be careful how the
problem is formulated. It is important that we want to minimize the number of cuts, that is maximize
the number of exact fits in a valid cutting assignment.

Proposition 7 Maximum number of exact fits are not necessarily given by a valid cutting assignment,
even if such an assignment exists.

444

3 Practical approaches

3.1 Dynamic programming and clique search

Definition 8 Let P be a set of orders and w be an element from the warehouse. Define

fit(P,w) =

{
1 if

∑
(ai,bi)∈P ai ≤ w ≤

∑
(ai,bi)∈P bi

0 otherwise

Define a compatibility graph G for order sets and warehouse sets as the following

V (G) = {(P,w) : fit(P,w) = 1}
E(G) = {{(Pi, wi), (Pj , wj)} : Pi ∩ Pj = ∅ and wi ̸= wj}

1. Identify all subsets of orders that match a certain rod exactly, taking into account the tolerances
using dynamic programming.

2. Construct the compatibility graph and find the largest compatible set of sets that is a largest clique
in G.

This method is ineffective, the size of the compatibility graph becomes too large even for moderate sized
inputs.

3.2 0− 1-linear programming

Define indicator variables xji by

xji =

{
1 π(aj , bj) = wi

0 otherwise

Then we have the following set of constraints:

(i) ∀i : ∑j ajxji ≤ wi,

(ii) ∀i : ∑j bjxji ≥ λiwi,

(iii) ∀j :
∑

i xji = 1,

where xji, λi ∈ {0, 1}. Condition (i) states that the orders assigned to rod i fit to that rod, (ii) means
that if λi = 1 then we have an exact fit, while (iii) is to assure that the cutting assignment is valid, that
is every order is assigned to exactly one rod. We want to maximize

∑
i λi. We used the Gurobi Solver [?]

to solve test cases. We found that it is much more effective than the compatibility graph method. Some
test run data is shown in Table 1.

3.3 Hierarchical optimization

Since usually the minimum cutting assignment is not unique, there is a possibility for another optimiza-
tion. Our goal is to achieve longer pieces of leftovers from the rods cut as they are better usable, than
short ones. In order to do so we set as secondary goal to maximize

∑
i(wi −

∑
j ajxji)

2(1 − λi), which
is the sum of the squares of lengths of the leftover pieces, as λi = 1 iff there is an exact fit on rod i.
However, only linear goal functions are allowed in hierarchical optimization by Gurobi, so this function
must be “linearized”. We have terms x2ji, xjixki, xjiλi, xjixkiλi that are not linear. We use that our

variables can only take values from {0, 1} so x2ji is replaced by xji, and new variables xjki = xji ∧ xki
and Ljki = xji ∧xki ∧λi are introduced for the other products. These new variable definitions are added
as constraints for the optimization, since Gurobi has the logical AND function built in.

445

Table 1: Test run data using Gurobi Solver
warehouse size order size time (s)
12 21 0.0369
14 25 0.0316
16 28 0.0903
18 32 0.1203
20 36 0.1326
24 43 0.2744
26 46 0.1269
28 50 0.2750
32 57 0.5966
34 61 0.7091
36 64 1.3148
38 68 1.5359
40 72 2.4816
42 75 1.0035
44 79 1.0154
46 82 4.7756

References

[1] U. Čibej, Personal communication,

[2] https://www.gurobi.com/

446

Partitioning into common independent sets
via relaxing strongly base orderability

Kristóf Bérczi1

MTA-ELTE Matroid Optimization
Research Group

ELKH-ELTE Egerváry Research Group
Department of Operations Research

Eötvös Loránd University
Budapest, Hungary

kristof.berczi@ttk.elte.hu

Tamás Schwarcz12

MTA-ELTE Matroid Optimization
Research Group

Department of Operations Research
Eötvös Loránd University

Budapest, Hungary
tamas.schwarcz@ttk.elte.hu

Abstract: The problem of covering the ground set of two matroids by a minimum number
of common independent sets is notoriously hard even in very restricted settings, i.e. when the
goal is to decide if two common independent sets suffice or not. Nevertheless, as the problem
generalizes several long-standing open questions, identifying tractable cases is of particular
interest. Strongly base orderable matroids form a class for which a basis-exchange condition
that is much stronger than the standard axiom is met. As a result, several problems that are
open for arbitrary matroids can be solved for this class. In particular, Davies and McDiarmid
showed that if both matroids are strongly base orderable, then the covering number of their
intersection coincides with the maximum of their covering numbers.

Motivated by their result, we propose relaxations of strongly base orderability in two direc-
tions. First we weaken the basis-exchange condition, which leads to the definition of a new,
complete class of matroids with distinguished algorithmic properties. Second, we introduce
the notion of covering the circuits of a matroid by a graph, and consider the cases when
the graph is ought to be 2-regular or a path. We give an extensive list of results explaining
how the proposed relaxations compare to existing conjectures and theorems on coverings by
common independent sets.

Keywords: Coverings, Excluded minors, Matroid intersection, Matroidally k-colorability,
Strongly base orderable matroids

1 Introduction

For basic definitions and notation of matroid theory, the interested reader is referred to [21]. Throughout
the paper, we denote the ground set of a matroid M by E with |E| = n, while the sets of independent sets,
bases and circuits are denoted by I, B and C, respectively. The covering number β(M) of a matroid
M is the minimum number of independent sets needed to cover its ground set. A matroid is then called
k-coverable if β(M) ≤ k. Whenever investigating the covering number, we assume the matroid to be
loopless as otherwise the ground set obviously cannot be covered by independent sets. The value of β(M)
can be determined using the rank formula of the union of matroids due to Edmonds and Fulkerson [10].

1The work was supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021 and by the Hungarian National Research, Development and Innovation Office – NKFIH, grant numbers FK128673
and TKP2020-NKA-06.

2Tamás Schwarcz was supported by the ÚNKP-22-3 New National Excellence Program of the Ministry for Culture and
Innovation from the source of the National Research, Development and Innovation Fund.

447

It is quite natural to consider an analogous notion for the intersection of two matroids. Given two
matroidsM1 andM2 on the same ground set, the covering number β(M1∩M2) of their intersection is
the minimum number of common independent sets needed to cover the common ground set. Determining
the exact value of β(M1 ∩M2) has been the center of attention for a long time since it generalizes a wide
list of fundamental questions from both graph and matroid theory, including Woodall’s conjecture [26]
on the maximum number of pairwise disjoint dijoins in directed graphs, or Rota’s basis conjecture [15]
on packing transversal bases. Nevertheless, apart from partial results such as Kőnig’s 1-factorization
theorem [18] or Edmonds’ disjoint arborescences theorem [9], the problem remained open until recently,
when the authors settled the complexity of the problem by showing hardness under the rank oracle
model [4].

As determining the exact value of β(M1 ∩ M2) is hard in general, the need for good lower and
upper bounds arises. A lower bound is easy to give as β(M1 ∩M2) ≥ min{β(M1), β(M2)} always holds.
Nevertheless, the equality β(M1 ∩ M2) = max{β(M1), β(M2)} does not necessarily hold for general
matroids, as shown by the well-known example where M1 is the graphic matroid of a complete graph on
four vertices and M2 is the partition matroid1 defined by the partition of its edges into three matchings,
see [23] for details. As for the upper bound, Aharoni and Berger [2] showed by using techniques from
topology that β(M1 ∩ M2) ≤ 2 max{β(M1), β(M2)}. Furthermore, they verified the slightly stronger
statement that β(M1∩M2) ≤ β(M1)+β(M2) holds whenever one of β(M1) and β(M2) divides the other.
Nevertheless, no example is known for which the true value would be close to the upper bound. In fact,
Aharoni and Berger [3] conjectured the following, originally attributed to [2].

Conjecture 1 (Aharoni and Berger) Let M1 and M2 be matroids on the same ground set.

(1) If β(M1) ̸= β(M2), then β(M1 ∩M2) = max{β(M1), β(M2)}.
(2) If β(M1) = β(M2), then β(M1 ∩M2) ≤ max{β(M1), β(M2)}+ 1.

The conjecture was verified only for β(M1) = β(M2) = 2 by Aharoni, Berger and Ziv [3]. In the same
paper, the authors also showed that if β(M1) = 2 and β(M2) = 3, then β(M1 ∩M2) ≤ 4 holds. For
β(M1) = 2 and β(M2) = k ≥ 4, the current best bound follows from the result of Aharoni and Berger [2]
mentioned above: β(M1 ∩M2) ≤ k + 2 if k is even, and β(M1 ∩M2) ≤ k + 3 if k is odd.

Among the results related to Conjecture 1, the probably most important one is due to Davies and
McDiarmid [7], who studied the class of strongly base orderable matroids. A matroid is called strongly
base orderable if

(SBO) for any pair A,B of bases, there exists a bijection φ : A \B → B \ A such that (A \X) ∪ φ(X)
is a basis for every X ⊆ A \B.

It is worth mentioning that this implies (B ∪X) \ φ(X) being a basis as well. Strongly base orderable
matroids are interesting and important because we have a fairly good global understanding of their
structure, while frustratingly little is known about the general case. In particular, Davies and McDiarmid
showed that the covering number of the intersection of two strongly base orderable matroids coincides
with the obvious lower bound.

Theorem 2 (Davies and McDiarmid) Let M1 and M2 be strongly base orderable matroids on the same
ground set. Then β(M1 ∩M2) = max{β(M1), β(M2)}.

As many matroid classes that naturally appear in combinatorial and graph optimization problems,
e.g. gammoids, are strongly base orderable, Theorem 2 was a milestone result in the research on packing
common independent sets. Recently, the theorem received a renewed interest when Abdi, Cornuéjols and
Zlatin [1] successfully attacked special cases of Woodall’s conjecture with its help. However, there are
basic matroid classes that do not satisfy strongly base orderability, e.g. graphic or paving matroids.

1All partition matroids considered in the paper have all-ones upper bounds on the partition classes without explicitly
mentioning it.

448

Our contribution. Our research was motivated by the following question: can strongly base orderabil-
ity in Theorem 2 replaced with some weaker assumption so that the statement remains true? Or more
generally, can we verify Conjecture 1 for some reasonably broad class of matroids? As partial answers
to these problems, we propose two relaxations of strongly base orderability that weaken the original
definition in different aspects.

First, in Section 2 we omit the condition for the bijection to go between A \ B and B \ A, and
allow repartitioning the multiset A ∪ B into two new bases A′ and B′ satisfying A′ ∩ B′ = A ∩ B and
A′ ∪ B′ = A ∪ B. We show that matroids satisfying the relaxed condition form a complete class. We
also prove that Theorem 2 remains true when both matroids are from the proposed class, and thus we
identify new scenarios when packing problems are tractable. Finally, we explain how the new class fits
in the hierarchy of existing matroid classes.

Second, in Section 3 we relax the condition of finding a bijection between A \B and B \A. Instead,
we seek for a graph whose vertex set coincides with the symmetric difference A△B of the bases, and the
graph represents the matroid locally in the sense that every stable set in it corresponds to an independent
set of the original matroid. In particular, we prove that the the graph in question can be chosen to be
a path for graphic and paving matroids. We conjecture that an analogous statement hold for arbitrary
matroids, and discuss a series of corollaries that would follows from such a result.

Due to space constraints, some proofs, details and further results are deferred to the full version of
this paper.

2 Relaxing the fixed bases: strongly base reorderable matroids

When considering the extendability of Theorem 2 to a broader class of matroids, some natural candidates
are immediate. A matroid is called base orderable if

(BO) for any pair A,B of bases, there exists a bijection φ : A \B → B \A such that A− x+φ(x) and
B + x− φ(x) are bases for every x ∈ A \B.

Clearly, strongly base orderable matroids are also base orderable since the bijection appearing in (SBO)
satisfies (BO) as well. It is known that M(K4), the graphic matroid of a complete graph on four vertices
is a forbidden minor for base orderability. Hence every base orderable matroid is contained in the
class Ex(M(K4)) of M(K4)-minor-free matroids. In fact, these inclusions are known to be strict, hence
SBO ⊊ BO ⊊ Ex(M(K4)) hold.

Davies and McDiarmid [7] posed the problem of whether Theorem 2 remains true if strongly base
orderability is replaced with the weaker assumption that both matroids are base orderable. Though this
specific question remains open, the following example shows that both matroids being in Ex(M(K4))
does not suffice. The examples uses J , a self-dual rank-4 matroid introduced by Oxley [22].

Remark 3 We show that there exists a partition matroid M for which β(J) = β(M) = 2 and β(J∩M) =
3. Consider the geometric representation of the matroid J on Figure 1; for the definition, see also [21, page
650]. Let M be the partition matroid defined by partition classes {a, h}, {b, g}, {c, e}, {d, f}, implying
β(J) = β(M) = 2.

To see that β(J ∩M) > 2, suppose to the contrary that E = B1 ∪ B2 is a decomposition into two
common bases of J and M . Without loss of generality, we may assume that h ∈ B1. As B1 is a common
basis, it contains exactly one element from each of the pairs {b, g}, {c, e}, {d, f} and at most one element
from each of the pairs {b, c}, {d, g}, {e, f}, hence B1 = {b, d, e, h} or B1 = {c, f, g, h}. In either case,
B2 is not a basis of J , a contradiction. Therefore β(J ∩M) > 2, and so β(J ∩M) = 3 by the result of
Aharoni, Berger and Ziv mentioned earlier.

Motivated by the proof of Theorem 2, we call a matroid strongly base reorderable (or SBRO for
short) if

(SBRO) for any pair A,B of bases, there exists bases A′, B′ and a bijection φ : A′ \ B′ → B′ \ A′ such
that A′ ∩B′ = A ∩B, A′ ∪B′ = A ∪B, and (A′ \X) ∪ φ(X) is a basis for every X ⊆ A′ \B′.

449

a
b

c

d

e
f

g h

Figure 1: Geometric representation of the matroid J : bases are the sets of size four which do not lie on a
plane. If M1 := J and M2 is the partition matroid defined by partition classes {a, h}, {b, g}, {c, e}, {d, f}
with upper bounds one, then β(M1) = β(M2) = 2 and β(M1 ∩M2) = 3.

In other words, (SBRO) differs from (SBO) in that it allows the repartitioning of the multiunion of the
bases before asking for the bijection φ. It immediately follows from the definition that strongly base
orderable matroids are strongly base reorderable as well.

Ingleton [17] defined a class of matroids to be complete if it is closed under taking minors, duals,
direct sums, truncations and induction by directed graphs. A complete class is also closed under many
other matroid operations, such as series and parallel connections, 2-sums, unions and principal extensions,
see e.g. [5]. It was already noted by Ingleton [17] that the classes of base orderable and strongly base
orderable matroids are complete, while Sims [24] verified that Ex(M(K4)) is complete as well. Bonin and
Savitsky [5] showed that a class of matroids is complete if it is closed under minors, duals, direct sums
and principal extensions, and they used this fact to verify that the class of so-called k-base-orderable
matroids is complete for any fixed k ≥ 1. The next theorem shows that SBRO matroids also form a
complete class.

Theorem 4 SBRO is a complete class. □

With the help of Theorem 4, one can verify the next theorem using an analogous proof to that of
Theorem 2 appearing in [23, Theorem 42.13].

Theorem 5 Let M1 and M2 be strongly base reorderable matroids on the same ground set. Then β(M1∩
M2) = max{β(M1), β(M2)}. □

In general, knowing the excluded minors for a minor-closed matroid class provides a powerful tool
that then can be used in various applications. Based on the characterization of M(K4)-minor-free bi-
nary matroids by Brylawski [6] and of M(K4)-minor-free ternary matroids by Oxley [22], we give a
characterization of binary and of ternary SBRO matroids.

Theorem 6 The matroids M(K4) and J are excluded minors for SBRO. Furthermore,

(a) a binary matroid is SBRO if and only if it does not contain M(K4) as a minor, and

(b) a ternary matroid is SBRO if and only if it does not contain M(K4) or J as a minor.

Proof: First we show that neither M(K4) nor J is SBRO. This follows from Theorem 5 as each
M1 ∈ {M(K4), J} is 2-coverable and there exists a 2-coverable partition matroid M2 on the same ground
set such that β(M1 ∩M2) = 3. Indeed, for M1 = M(K4), let the three partition classes defining M2 be
the matchings of size two of K4, see [23]. For M1 = J , the statement follows by Remark 3.

450

1 2

34

5 6

78

Figure 2: The rank-4 matroid AG(3, 2) in which each set of size three is independent, and the dependent
sets of size four are the six faces of the cube, the six diagonal planes and the two twisted planes {1, 3, 6, 8}
and {2, 4, 5, 7}.

M(K4)-minor-free binary matroids are SBRO, as they coincide with the graphic matroids of series-
parallel graphs [6] which are strongly base orderable, see also [25]. As M(K4) is not SBRO, it follows
that M(K4) is the unique binary excluded minor for SBRO.

Finally, we show that if M is a ternary excluded minor of SBRO distinct from M(K4), then M is
isomorphic to J . As SBRO is closed under direct sums and 2-sums by Theorem 4, it follows that M
is 3-connected. Oxley [22] showed that a 3-connected M(K4)-minor-free ternary matroid is isomorphic
either to the rank-r whirl Wr for some r ≥ 2, to J , or to a minor of the matroid S(5, 6, 12). Since Wr

is a transversal matroid, it is strongly base orderable. The proof that S(5, 6, 12) is SBRO is deferred to
the full version of the paper. Therefore, M is isomorphic to J . As J is not SBRO and does not contain
M(K4) as a minor, it follows that J is the unique ternary excluded minor for SBRO apart from M(K4).
□

As M(K4) is the only binary, and M(K4) and J are the only ternary excluded minors for base
orderability, Theorem 6 immediately implies the following.

Corollary 7 A binary or ternary matroid is SBRO if and only if it is base orderable.

Let us return to the open problem of Davies and McDiarmid on replacing strongly base orderability
with base orderability in Theorem 2. Theorem 5 and Corollary 7 together imply an affirmative answer in
the special case when the matroids are ternary – for binary matroids, this was already known as the classes
of base orderable binary matroids and strongly base orderable binary matroids coincide. Motivated by
this observation, it is natural to ask whether all base orderable matroids are SBRO. Unfortunately, the
next example shows that this is not the case.

Remark 8 We construct a rank-5 matroid X10 on 10 elements that is base orderable but not SBRO.
Recall the construction of the the binary affine cube AG(3, 2) from [21, page 645] using faces, diagonal
planes and twisted planes, see Figure 2. We define X10 on the ground set {1, 2, . . . , 8} ∪ {a, b} such that
each set of size four is independent, and the family of dependent sets of size five is

H := {F ∪ {a} | F is a face} ∪ {F ∪ {b} | F is a diagonal plane or a twisted plane} .

By the construction of paving matroids, see e.g. [14, Theorem 5.3.5], X10 is a paving matroid of rank 5 as
|H1∩H2| ≤ 3 for each H1, H2 ∈ H, H1 ̸= H2. It is not difficult to check that X10 does not contain M(K4)
as a minor, hence it is base orderable since M(K4)-minor-free paving matroids are base orderable [5].
The proof that X10 is not SBRO is deferred to the full version of the paper.

3 Relaxing the bijection: covering the circuits by a 2-factor

In this section, we propose another relaxation of strongly base orderability. In order to do so, first we
give a new interpretation of property (SBO). Consider a matroid M = (E, C) on ground set E with set

451

of circuits C. Furthermore, assume that G = (E,F) is a graph with vertex set E and edge set F . For a
subset X ⊆ E, let C[X] denote the set of circuits of M that lie in X, that is, C[X] := {C ∈ C | C ⊆ X},
and let F [X] denote the set of edges of G induced by X. We say that G covers a subset C′ ⊆ C of circuits
if F [C] ̸= ∅ for every C ∈ C′. In other words, every stable subset of E in G is such that it contains no
circuit from C′.

Using this terminology, (SBO) is equivalent to saying that for any pair A,B of bases of a strongly
base orderable matroid M = (E, C), there exists a graph G consisting of a matching between the elements
of A \ B and B \ A that covers C[A ∪ B]. Similarly, property (SBRO) discussed in Section 2 translates
into the existence of a matching on A△B that covers C[A ∪B]. Observe the small but crucial difference
between the two definitions: while the former asks for matching edges going between the elements of A
and B, the latter allows the end vertices of any matching edge to fall in the same set, i.e. A or B.

We conjecture that a similar statement holds for arbitrary matroids where G is a 2-regular graph or
a path instead of a matching, where a graph is 2-regular if each vertex has degree exactly two. More
precisely, we propose four relaxations of different strengths, and say that a matroid M = (E, C) has
property

(R) if for any pair A,B of bases, there exists a 2-regular graph on A△B that covers C[A ∪B],

(R+) if for any pair A,B of bases, there exists a 2-regular graph that consists of cycles alternating
between A \B and B \A and covers C[A ∪B] ,

(P) if for any pair A,B of bases, there exists a path on A△B that covers C[A ∪B],

(P+) if for any pair A,B of bases, there exists a path that alternates between A \ B and B \ A and
covers C[A ∪B].

In all cases, the condition that the graph in question covers C[A ∪ B] is equivalent to requiring that the
union of A ∩B and any stable set in the graph is independent in M .

Since any path can be extended to a single cycle by adding an edge between its end vertices, property
(P+) implies all the others, while property (R) is a special case of any of them. As for properties (R+)
and (P), we could not show any connection between them. As a matching between A \B and B \A can
always be extended to an alternating path between them, strongly base orderable matroids satisfy (P+),
and an analogous reasoning shows that SBRO matroids satisfy (P).

3.1 Covering fundamental circuits

Observe that in all of properties (R) – (P+), the number of edges used to cover the circuits in question
is bounded by |A△B|. At this point, it is not even clear why those circuits could be covered by a small
number of graph edges. As a first step towards understanding the general case, instead of covering every
circuit, we concentrate on covering fundamental circuits only. Given a basis B of a matroid and an
element a outside of B, we denote by CB(a) the fundamental circuit of a with respect to B, that is,
the unique circuit in B + a. We extend this notation to sets as well, that is, for a set X disjoint from B
we use CB(X) := {CB(x) | x ∈ X}.

Theorem 9 Let A,B be bases of a matroid M .

(a) There exists a 2-regular graph that consists of cycles alternating between A\B and B \A and covers
CA(B) ∪ CB(A).

(b) There exists a tree that consists of edges between A \B and B \A and covers CA(B) ∪ CB(A).

Proof: The basis exchange axiom implies that there exists a bijection φA : A \ B → B \ A such that
A−a+φA(a) is a basis for each a ∈ A \B, or equivalently, a ∈ CA(φA(a)) (see e.g. [14, Theorem 5.3.4]).
Similarly, there exists a bijection φB : B \A→ A\B such that B−b+φB(b) is a basis for each b ∈ B \A,
or equivalently, b ∈ CB(φB(b)). Therefore the graph consisting of edges {aφA(a) | a ∈ A \B}∪ {bφB(b) |
b ∈ B \A} is a 2-regular graph that covers CA(B) ∪ CB(A), proving (a).

452

By the symmetric exchange axiom, there exists a mapping – not necessarily a bijection – ϕA : A\B →
B\A such that both A−a+ϕA(a) and B+a−ϕA(a) are bases for each a ∈ A\B, or equivalently, the edge
aϕA(a) covers both CA(ϕA(a)) and CB(a). Similarly, there exists a mapping ϕB : B\A→ A\B such that
bothB−b+ϕB(b) andA+b−ϕB(b) are bases for each b ∈ B\A, or equivalently, the edge bϕB(b) covers both
CB(ϕB(b)) and CA(b). Consider the graph consisting of edges {aϕA(a) | a ∈ A\B}∪{bϕB(b) | b ∈ B\A}.
Note that the graph may not be connected, but each vertex in A△B has degree at least one in it. Hence
any maximum forest in this graph covers CA(B) ∪ CB(A). As extending the forest to a tree by adding
edges connecting the components maintains this property, (b) follows. □

Theorem 9 shows that the fundamental circuits corresponding to the basis pair can be covered by
a 2-regular graph. However, the same question remains open when the graph is required to be a path,
and this seemingly simple task already appears to be highly non-trivial. The essence of part (b) of the
theorem is that, instead of a path, the covering can always be realized by a tree.

3.2 Graphic and paving matroids

We could not identify any matroid for which (P+) would fail, hence we propose the following, probably
overly optimistic conjecture.

Conjecture 10 Let A,B be bases of a matroid M . Then there exists a path that alternates between A\B
and B \A and covers C[A ∪B].

To validate the conjecture somewhat, we show that the statement holds for graphic and paving
matroids. We start with a technical lemma.

Lemma 11 Let M be a minor-closed class of matroids and (X) ∈ {(R), (R+), (P), (P+)}. To verify
that (X) holds for each M ∈ M, it suffices to show that the property holds when the ground set is the
disjoint union of A and B.

Proof: Let A and B be bases of the matroid M = (E, C) where M ∈ M. If A ∩ B ̸= ∅ or A ∪ B ̸= E,
then define A′ := A \ B, B′ := B \ A, E′ := A′ ∪ B′, and let M ′ = (E′, C′) denote the matroid obtained
from M by deleting E \ (A ∪ B) and contracting A ∩ B. Note that A′ and B′ are disjoint bases of M ′

whose union is E′. Furthermore, for any circuit C ∈ C[A∪B], there exists a circuit C ′ ∈ C′[A′ ∪B′] such
that C ′ ⊆ C. Therefore, any graph proving (X) for the pair A′, B′ in M ′ also proves (X) for the pair
A,B in M . □

With the help of Lemma 11, we first verify the graphic case. It may be confusing that (P+) states the
existence of a certain path and we are working with graphs, so let us emphasize that the path is defined
on the elements of the ground set, i.e. the edges of the underlying graph, and it does not appear in the
graph itself in any sense.

Theorem 12 Graphic matroids have property (P+).

Proof: Let G = (V,E) be a graph with graphic matroid M(G). We prove the theorem by induction
on |E|. Note that (P+) clearly holds when E = ∅. Take a pair of bases A,B. As the class of graphic
matroids is closed under taking minors, Lemma 11 applies, hence we may assume that E is the disjoint
union of A and B. Furthermore, we may assume that G is connected as otherwise we can pick a vertex in
each connected component and identify those, thus obtaining a connected graph with the same graphic
matroid as the original one.

By the above, we have |E| = |A|+ |B| = 2(|V | − 1), hence G has a vertex v of degree at most three.
If v has degree two, then G has an edge a ∈ A and an edge b ∈ B incident to v. Since G′ := G− v is the
union of disjoint spanning trees A − a and B − b, there exists a path P ′ covering the circuits of M(G′)
by the induction hypothesis. As every cycle of G passing through v uses the edges a and b, adding an

453

extra edge to P ′ ∪ {ab} between a and the endpoint of P ′ in B results in an alternating path between A
and B covering the circuits of M(G).

If v has degree three, then we may assume that edges a1, a2 ∈ A and b ∈ B are incident to v. Consider
the graph G′ obtained by contracting a2 and deleting b, let A′ denote the spanning tree of G′ obtained
from A by contracting a2, and define B′ := B − b. By the induction hypothesis, there exists a path P ′

alternating between A′ and B′ that covers the circuits of M(G′). Let c be a neighbour of a1 in P ′ and
consider the path P := (P ′ − a1c) ∪ {a1b, ba2, a2c}. We claim that P covers every circuit C of M(G).
If C corresponds to a cycle of G that does not pass through v, then it is also a circuit of M(G′), and
therefore it is covered by P ′ − a1c. If b ∈ C, then either a1 ∈ C or a2 ∈ C, hence C is covered either
by a1b or ba2. The only remaining case is when a1, a2 ∈ C. Let C ′ denote the cycle of G′ obtained by
contracting a2 in C. Then C ′ is covered by an edge of P ′. If c ̸∈ C, then this is an edge of P ′ − a1c as
well, otherwise C is covered by the edge a2c. This proves that P covers all circuits of M(G). □

Remark 13 The fact that the path in (P+) is defined on the edges of the graph might be confusing,
hence let us rephrase Theorem 12 using graph terminology as it might be of independent combinatorial
interest. The theorem is equivalent to the following: For any graph that is the union of two spanning
trees A and B, its edges can be ordered in such a way that the elements of A and B appear alternately,
and every cycle of G contains two consecutive elements.

A rank-r matroid is called paving if each set of size at most r− 1 is independent, or in other words,
each circuit has size r or r + 1.

Theorem 14 Paving matroids have property (P+).

Proof: We prove the theorem by induction on |E|. Note that (P+) clearly holds when E = ∅. Take a
pair of bases A,B. As the class of graphic matroids is closed under taking minors, Lemma 11 applies,
hence we may assume that E is the disjoint union of A and B.

Let ar ∈ A and br ∈ B such that A−ar +br is a basis. Then A−ar and B−br are bases of the paving
matroid M ′ obtained from M by contracting br and deleting ar. By the induction hypothesis, there exist
orderings a1, . . . , ar−1 of A− ar and b1, . . . , br−1 of B − br such that the path P ′ = a1, b1, . . . , ar−1, br−1

covers the circuits of M ′. We claim that the path P = a1, b1, . . . , ar, br covers each circuit of M . Since
M is paving, we only need to consider circuits C of size r as circuits of size r + 1 are clearly covered. If
ar ̸∈ C, then C − br contains a circuit of M ′ which is covered by P ′. If ar ∈ C, then C is covered by P
as A is the only stable set of size r containing ar. Therefore, P covers every circuit of M . □

3.3 Applications for covering problems

Motivated by a conjecture of Du, Hsu and Hwang [8], Erdős [11] popularized the so-called cycle plus
triangles problem which asked whether every 4-regular graph that is the edge-disjoint union of a Hamil-
tonian cycle and pairwise vertex-disjoint triangles is 3-colorable. Fleischner and Stiebitz [12] answered
this question in the affirmative. In the past decades, their work was followed by a series of papers that
studied related problems, summarized below.

Theorem 15 (Fleischner and Stiebitz, McDonald and Puleo, Haxell)

(a) If a graph G is the edge-disjoint union of a Hamiltonian cycle and some pairwise vertex-disjoint
triangles, then G is 3-colorable.

(b) If k ≥ 4 and a graph G is the edge-disjoint union of a Hamiltonian cycle and some pairwise vertex-
disjoint complete subgraphs each on at most k vertices, then G is k-colorable.

(c) If k ≥ 4 and a graph G is the edge-disjoint union of a 2-regular bipartite graph and some pairwise
disjoint cliques each on at most k vertices, then G is k-colorable.

454

(d) If k ≥ 5 and a graph G is the edge-disjoint union of a 2-regular graph and some pairwise vertex-
disjoint complete subgraphs each on at most k vertices, then G is k-colorable.

Statement (b) was proven by Fleischner and Stiebitz [13]. McDonald and Puleo [20] verified for k ≥ 4
that if a graph is decomposable into cliques on exactly k vertices and a 2-regular graph with at most one
odd cycle of length exceeding three, then it is k-colorable. This implies statement (c), as we can extend
the cliques having less than k vertices and the 2-regular bipartite graph by adding extra vertices and
edges to ensure that each clique has exactly k vertices. Finally, statement (d) follows from the result of
Haxell [16] that a graph is k-colorable if it is decomposable into cliques on k vertices and a graph H such
that k ≥ 3∆(H) − 1. Note that the complete graph on four vertices shows that statements (b) and (c)
do not hold for k = 3, while it is open whether (d) holds for k = 4.

Theorem 16 Let M1 = (E, I1) be a 2-coverable matroid and M2 = (E, I2) be a k-coverable partition
matroid.

(a) If k ≥ 3 and M1 satisfies (P), then β(M1 ∩M2) ≤ k.
(b) If k ≥ 4 and M1 satisfies (R+), then β(M1 ∩M2) ≤ k.
(c) If k ≥ 5 and M1 satisfies (R), then β(M1 ∩M2) ≤ k.

Proof: To prove (a), let E = A ∪ B be a decomposition of M1 into two bases and P be a path on
A△B covering the circuits of M1. Let E1, . . . , Eq denote the partition classes of M2 and let Q denote the
graph obtained by taking the union of complete graphs on Ei for i = 1, . . . , q. We claim that the graph
G := P ∪Q is k-colorable. Indeed, if k = 3, then G is a subgraph of a graph appearing in Theorem 15(a),
while for k ≥ 4 we can apply Theorem 15(b) after adding an extra edge to G between the end vertices
of P . As each stable set of P is independent in M1 and each stable set of Q is independent in M2, the
k-colorability of G implies that β(M1 ∩M2) ≤ k.

Parts (b) and (c) can be proven analogously by applying Theorem 15(c) and (d), respectively. □
One of the main consequences of the results discussed so far is that we confirm Conjecture 1 for

instances that were not settled before.

Corollary 17 Conjecture 1 holds if M1 is either a graphic matroid or a paving matroid with β(M1) = 2,
and M2 is a partition matroid.

Proof: The conjecture was settled for k ≤ 2 in [3]. For k ≥ 3, the statement follows by combining
Theorems 12–14 and Theorem 16(a). □

Kotlar and Ziv [19] defined an element e of a matroid M to be (k + 1)-spanned if there exist k + 1
pairwise disjoint sets such that e is spanned by each of them in M . This condition is equivalent to the
existence of k pairwise disjoint sets not containing e but spanning it, as one of the sets can be chosen to
be {e}. If a matroid does not contain any (k + 1)-spanned element, then it is not difficult to show that
it is k-coverable. Kotlar and Ziv conjectured that if no element is (k + 1)-spanned in either M1 or M2,
then β(M1 ∩M2) ≤ k. They verified the conjecture if k = 2 or the ground set decomposes into k bases in
each of M1 and M2. Next we show how the absence of (k + 1)-spanned elements can be combined with
(R) or (P).

Theorem 18 Let M1 = (E, I1) be a 2-coverable matroid and M2 = (E, I2) be a matroid with no (k+1)-
spanned elements.

(a) If M1 satisfies (P), then β(M1 ∩M2) ≤ k + 1.

(b) If M1 satisfies (R), then β(M1 ∩M2) ≤ k + 2.

455

Proof: To prove (a), let E = {e1, . . . , en} be such that every stable set of the path defined by the ordering
e1, . . . , en is independent in M1. Color the elements in the order e1, . . . , en greedily with positive integers
such that an element ei receives the smallest color c which is distinct from the color of ei−1, and the set
of elements already having color c does not span ei in M2. This procedure results in a coloring such that
each color class is independent in M2 and form a stable set of the path, thus it is independent in M1

as well. As M2 contains no (k + 1)-spanned elements, the number of colors used is at most k + 1. This
proves that β(M1 ∩M2) ≤ k + 1.

Statement (b) follows by a similar greedy argument. □
Aharoni and Berger [2] defined a graph G to be matroidally k-colorable if for every k-coverable

matroid M on the vertex set of G, the ground set can be decomposed into k stable sets of G which are
independent in M . The following facts are not difficult to show for matroidally k-colorable graphs.

Lemma 19

(a) A subgraph of a matroidally k-colorable graph is matroidally k-colorable.

(b) A matroidally k-colorable graph is matroidally (k + 1)-colorable.

Proof: The proof of (a) is straightforward. To prove (b), let G be a matroidally k-colorable graph on
vertex set V and M be a (k + 1)-coverable matroid on V . Let V = I1 ∪ · · · ∪ Ik+1 be a partition of V
into independent sets of M . As the graph G[I1 ∪ . . . Ik] is matroidally k-coverable by (a) and M \ Ik+1 is
a k-coverable matroid on its vertex set, there exist stable sets S1, . . . , Sk of G which are independent in
M \ Ik+1 such that S1∪ · · ·∪Sk = I1∪ · · ·∪ Ik. Since G[S2∪ · · ·∪Sk ∪ Ik+1] is matroidally k-coverable by
(a) and M \ S1 is a k-coverable matroid on its vertex set, there exist stable sets S′

2, . . . , S
′
k+1 of G which

are independent in M \S1 such that S′
2 ∪ · · · ∪S′

k+1 = S2 ∪ · · · ∪Sk ∪ Ik+1. Then V = S1 ∪S′
2 ∪ · · · ∪S′

k+1

is a partition of V into stable sets of G which are independent in M . □
As a generalization of Theorem 15(a), Aharoni and Berger [2] conjectured that the cycle C3ℓ is

matroidally 3-colorable for every ℓ ≥ 1. Their conjecture, when combined with Lemma 19(a), would
imply the following.

Conjecture 20 Every path is matroidally 3-colorable.

Remark 21 It is reasonable to ask whether there is a connection between Conjectures 1 and 20. It turns
out that the latter implies the former when M1 is 2-coverable matroid satisfying (P).

Indeed, let P be a path on vertex set E such that every stable set of P is independent in M1, and let
M2 = (E, I2) be an arbitrary k-coverable matroid. If k = 2, then β(M1 ∩M2) ≤ 3 holds by the results
of Aharoni, Berger and Ziv [3]. If k ≥ 3 and Conjecture 20 holds, then P is matroidally k-colorable by
Lemma 19(b), hence E can be decomposed into k stable sets of P which are independent set in M2. This
gives a decomposition of E into k common independent sets of M1 and M2.

By the above reasoning, Conjectures 10 and 20 together would imply Conjecture 1 when M1 is 2-
coverable.

Finally, let us mention an interesting result on the intersection of q matroids satisfying (R). Let
M1, . . . ,Mq be 2-coverable matroids over the same ground set. In general, not much is known about the
minimum number of common independent sets β(M1 ∩ . . . ,∩Mq) needed to cover their ground set. An
obvious upper bound is the product of their individual covering numbers, that is, β(M1 ∩ · · · ∩Mq) ≤∏q

i=1 β(Mi) = 2q. Nevertheless, a much stronger upper bound follows if each Mi satisfies (R).

Theorem 22 Let M1, . . . ,Mq be 2-coverable matroids satisfying (R). Then β(M1 ∩ · · · ∩Mq) ≤ 2q + 1.

Proof: Let Gi be a 2-regular graph covering the circuits of Mi for 1 ≤ i ≤ q. Since the graph
G := G1 ∪ · · · ∪Gq has maximum degree at most 2q, it is (2q+ 1)-colorable. Since every stable set of G is
stable in each Gi, this coloring gives a decomposition of the ground set into 2q+ 1 common independent
sets of the matroids. □

456

References

[1] A. Abdi, G. Cornuéjols, and M. Zlatin. On packing dijoins in digraphs and weighted digraphs. arXiv
preprint arXiv:2202.00392, 2022.

[2] R. Aharoni and E. Berger. The intersection of a matroid and a simplicial complex. Transactions of
the American Mathematical Society, 358(11):4895–4917, 2006.

[3] R. Aharoni, E. Berger, and R. Ziv. The edge covering number of the intersection of two matroids.
Discrete Mathematics, 312(1):81–85, 2012.

[4] K. Bérczi and T. Schwarcz. Complexity of packing common bases in matroids. Mathematical Pro-
gramming, 188(1):1–18, 2021.

[5] J. E. Bonin and T. J. Savitsky. An infinite family of excluded minors for strong base-orderability.
Linear Algebra and its Applications, 488:396–429, 2016.

[6] T. H. Brylawski. A combinatorial model for series-parallel networks. Transactions of the American
Mathematical Society, 154:1–22, 1971.

[7] J. Davies and C. McDiarmid. Disjoint common transversals and exchange structures. Journal of the
London Mathematical Society, 2(1):55–62, 1976.

[8] D. Du, D. Hsu, and F. Hwang. The Hamiltonian property of consecutive-d digraphs. Mathematical
and Computer Modelling, 17(11):61–63, 1993.

[9] J. Edmonds. Edge-disjoint branchings. In Combinatorial Algorithms. Academic Press, New York,
1973.

[10] J. Edmonds and D. R. Fulkerson. Transversals and matroid partition. Journal of Research of the
National Bureau of Standards (B), 69:147–153, 1965.

[11] P. Erdős. On some of my favourite problems in graph theory and block designs. Le Matematiche,
45(1):61–74, 1990.

[12] H. Fleischner and M. Stiebitz. A solution to a colouring problem of P. Erdős. Discrete Mathematics,
101(1-3):39–48, 1992.

[13] H. Fleischner and M. Stiebitz. Some remarks on the cycle plus triangles problem. In The Mathematics
of Paul Erdös II, pages 136–142. Springer, Berlin, 1997.

[14] A. Frank. Connections in Combinatorial Optimization, volume 38 of Oxford Lecture Series in Math-
ematics and its Applications. Oxford University Press, Oxford, 2011.

[15] J. Geelen and K. Webb. On Rota’s basis conjecture. SIAM Journal on Discrete Mathematics,
21(3):802–804, 2007.

[16] P. E. Haxell. On the strong chromatic number. Combinatorics, Probability and Computing,
13(6):857–865, 2004.

[17] A. W. Ingleton. Transversal matroids and related structures. In Higher Combinatorics, pages 117–
131. Springer Netherlands, 1977.

[18] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Mathe-
matische Annalen, 77(4):453–465, 1916.

[19] D. Kotlar and R. Ziv. On partitioning two matroids into common independent subsets. Discrete
Mathematics, 300(1-3):239–244, 2005.

[20] J. McDonald and G. J. Puleo. Strong coloring 2-regular graphs: Cycle restrictions and partial
colorings. Journal of Graph Theory, 100(4):653–670, 2022.

[21] J. Oxley. Matroid Theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University
Press, Oxford, second edition, 2011.

[22] J. G. Oxley. A characterization of the ternary matroids with no M(K4)-minor. Journal of Combi-
natorial Theory, Series B, 42(2):212–249, 1987.

[23] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin, 2003.
[24] J. A. Sims. A complete class of matroids. The Quartefrly Journal of Mathematics, 28(4):449–451,

1977.
[25] D. J. A. Welsh. Matroid Theory. Academic Press, London, 1976.
[26] D. R. Woodall. Menger and Kőnig systems. In Theory and Applications of Graphs, pages 620–635.

Springer, Berlin, 1978.

457

458

Jump-systems of T -paths

Mouna Sadli

Institute for Higher Education in Morocco
Avenue Mohamed VI, Km 4.2

(Route des Zaërs) Souissi, Rabat, Morocco
msadli@iihem.ac.ma

András Sebő

Combinatorial Optimization
Univ. Grenoble-Alpes, CNRS, G-SCOP

46 Avenue Félix Viallet, 38240 Grenoble, France
Andras.Sebo@cnrs.fr

Abstract: Jump systems are sets of integer vectors satisfying a simple axiom, generalizing
matroids, also delta-matroids, and well-kown combinatorial examples such as degree sequences
of subgraphs of a graph. It is useful to know if a set of vectors defined from combinatorial
structures is a jump system: this has consequences for optimizing on the set, or on some
derived sets of vectors. In this note we are mainly concerned in telling our proof of the
following more than two decades old fact and its original, elementary proof for an example
different from degree sequences:

Given an udirected graph G = (V,E) and T ⊆ V , the vectors m indexed by T for which there
exist a set of openly disjoint T -paths so that each t ∈ T is the endpoint of exactly m(t) paths
forms a jump system. The same holds for edge-disjoint T -paths.

We are also exhibiting the context and some consequences of this fact, with some pointers to
recent developments, among them another proof by Iwata and Yokoi in this volume, and to
some open problems.

Keywords: routing, disjoint paths, Mader’s theorem, jump systems, bisubmodu-
lar polyhedra

1 Introduction

For basic notations and terminology we refer to Schrijver [20]. Given an undirected graph, G = (V,E),
and T ⊆ V , a T -path is a path P such that V (P) ∩ T consists of the two endpoints of P . Two T -paths,
P , Q are openly disjoint, if V (P)∩V (Q) ⊆ T , and they are edge-disjoint if E(P)∩E(Q) = ∅. An integer
vector m ∈ Zn is called vertex-feasible or edge-feasible (for (G,T)) if there exists a set of openly vertex-,
resp. edge-disjoint T -paths so that each t ∈ T is the endpoint of m(t) of them. Edge-feasible vectors are
also called node-demands, and have been studied in [7], based on which the convex hull of edge-feasible
vectors can be determined. We define jump systems on T :

A set J ⊆ ZT is a jump system, if for each pair x, y ∈ J and any step x′ from x to y, either x′ ∈ J , or
there exists a step x′′ from x′ to y so that x′′ ∈ J . A step x′ from x to y is x′ := x if x = y, or x′ := x+es
for some s ∈ T such that xs < ys, or x′ := x − es for some s ∈ {1, . . . , n} such that xs > ys. The unit
vector es ∈ {0, 1}T is defined by es(s) = 1 and es(t) = 0 if t ∈ T \ {s}.

This simple notion has been defined by Bouchet and Cunningham [2], generalizing the delta-matroid-
axioms defined earlier by Bouchet [1], themselves generalizing matroid axioms. Besides (delta-)matroids
– the 0−1 special case –, one of the best-known examples of jump-systems presented in [2] are the degree
sequences of graphs. Another example occurred to us in 1999-2000 [19]: feasible vectors for sets of openly
vertex- or edge-disjoint T - paths.

Then under the impact of Schrijver’s simple proof [21] of Mader’s theorem [16] and following his proof
of the matroid property of (inclusionwise) maximal feasible vectors in a slightly different, but equivalent,
0− 1 context – presented at the winter-school “New Methods in Discrete Mathematics” in Alpes d’Huez,
March 2000 –, we have proved that sets of vertex- and edge-feasible vectors form actually jump systems.

459

The publication of our proof now was encouraged by some renewed interest and deep results concerning
jump systems and their intersections. First, related to T -paths, by Iwata and Yokoi [9], and actually a
draft of their proof of the jump-system property in it, in February 2022, that follows Lovász’s method
for proving Mader’s theorem [16] which is thus very different from our proof following Schrijver proof;
second, by Dudycz and Paluch’s results [6] concerning weighted general graph factors, generalized by [11]
to optimize on some particular weighted jump system intersections. These make worth summarizing some
new and old connections in Section 3, with pointers to graph factors to analogous results for T -paths,
and to common generalizations. Since our proof of the jump system property of T -paths is not easy to
access (the only public access were lectures [19] and then a French thesis [18]) we decided to make it
available in this note: it is in Section 2. Some of the not completely recent corollaries and the conjecture
of Section 3 also keep the actuality of the subject with enhanced connections, until today.

2 The jump system of feasible vectors

Denote by Jvertex(G,T) and Jedge(G,T) the set of all vertex-feasible and edge-feasible vectors respectively.
Schrijver [20, Theorem 73.5, page 1292] considered the matroid property of (inclusionwise) maximal

feasible vectors. The authors were lucky enough to hear this result and Schrijver’s simple proof [21], [20,
Theorem 73.2] of Mader’s theorems [15], [16] – reducing them to a result of Gallai [8], itself shortly proved
from Tutte’s theorem on maximum matchings – and its corollaries, ahead of time, at the winter-school
“New Methods in Discrete Mathematics” in Alpes d’Huez, March 2000. They were strongly interested,
since in 1999 they have proved weaker results [19] in the same direction, first about the convex hull of
Jedge(G,T). We will discuss some still useful connections of these results in Section 3, with a related
open problem.

Mader’s theorem on the maximum number of edge-disjoint T -paths [15] is a straightforward conse-
quence of the vertex-version [16] by taking the line graph, but no easy reduction is known in the other
direction. For proving the matroid property or the jump-system property there is no need of neither
theorems though, and there is no essential difference between the proof of the vertex- or edge-version.
The proof of these jump-system properties is much simpler than that of Mader’s theorems, and each of
the vertex- or edge-versions can be obtained by mimicking the other.

Schrijver chooses the vertex-version for the proof of his matroid-property. We choose the edge version
for a difference, for the sake of introducing the possibly useful idea of “edge-transitions” for edge-disjoint
paths, and also because the theory of edge-disjoint paths has been much further developped than that of
vertex-disjoint paths [10], [17], [4], [13], [12], [7]: capacities can then be put on edges, and T -paths can
be generalized, the linear constraints for the “node demand polyhedron” of edge-disjoint paths have been
determined, so there is more to say about the edge-version. (Similar weighted generalizations involving
node-capacities are in principle possible though for the vertex-versions as well, but the corresponding
decision problems are NP-hard, and no natural analogue of the parity condition is known to ensure
tractability.)

An edge-transition is an (unordered) pair of incident edges (equivalently, an edge of the line graph),
or a pair (t, e), where t ∈ T and e = tv (v ∈ V), i.e. e is an edge incident to t. If P is a set of paths,
the union of the edge-transitions of the paths in P will be denoted by P̂. If P consists of edge-disjoint
paths, each edge-transition is contained in at most one path. The following theorem and proof have been
exposed in lectures [19], and appear in [18]. For the proof we introduce one more notation: the subpath
of a path P between two of its points u, v is denoted by P (u, v).

Theorem 1 Let G = (V,E) be a graph, T ⊆ V . Then Jvertex(G,T), Jedge(G,T) are jump systems.

Proof: As explained above, the proof for Jvertex(G,T) and the one for Jedge(G,T) can be obtained by
mimicking one another: the most essential difference between the two is that the vertices in the former
are becoming edges of the latter, and edges of the former become edge-transitions in the latter. We detail
the full proof for Jedge(G,T).

460

𝑢 𝑣
e

𝑠 𝑡

P
Q

𝑞

𝑢 𝑣
e

𝑠 𝑡

P
Q

𝑞
𝑟

Figure 1: Explanation

Let m1 and m2 be two integer feasible vectors, and P1,P2 be a set of paths realizing them respectively.
We use induction with respect to |P̂1 \ P̂2| to prove that the 2-step axiom holds for m1 and m2.

Case 1: The first step is −es, where s ∈ T , m1(s) > m2(s).
We show then the 2-step axiom for −es as first step. If there exists an (s, t)-path P ∈ P1, so that

m1(t) > m2(t), then −et is a correct second step that is realized by deleting P from P1. If such a path
does not exist, we delete a path having s as an endpoint anyway, in the following way, keeping in mind
that now m1(t) ≤ m2(t) holds for the other endpoint of such a path:

By m1(s) > m2(s) there exists a path P ∈ P1 whose first edge is incident to s and is not contained in
any path of P2. Therefore, deleting P from P1, |P̂1 \ P̂2| decreases, enabling us to apply the 2-step axiom
by induction. Recalling m1(t) ≤ m2(t), since after the deletion of the P , we get the feasible integer vector
m′

1 = m1 − es − et, m′
1(t) < m2(t). Therefore we can apply the 2-step axiom: for et as first step there

exists a feasible second step δ. In other words m′′
1 := m′

1 + et + δ = m1 − es − et + et + δ = m1 − es + δ
is still a feasible integer vector, m′′

1(t) = m1(t), so δ is the second step we were looking for.

Case 2: The first step is es, where s ∈ T , m1(s) < m2(s).
We show then the 2-step axiom for es as first step. If there exists t ∈ T along with an (s, t)-path

P ∈ P2 such that P is edge-disjoint from all paths in P1, then

- either m1(t) < m2(t) and then et is a correct second step realized by adding P to P1.

- or m1(t) ≥ m2(t), and then we show that there exists Q ∈ P1 with endpoint t, and that we can
apply the induction hypothesis to (P1 \ {Q}) ∪ {P} to finish the proof.

Indeed, since P ∈ P2 is edge-disjoint from all paths in P1, strictly less than m1(t) edges incident to t are
used by both P1 and P2, so there exists Q ∈ P1 whose edge incident to t is not used by any path of P2.
The number of transitions of (P1 \ {Q}) ∪ {P} not contained in P2 is smaller than |P̂1 \ P̂2|, because P
is in P2 so the union with P does not add anything, and by the choice of Q, the deletion of Q deletes at
least one transition. Moreover, P1 \ {Q} ∪ {P} realizes the integer vector m′

1 := m1 + es − eq, where q is
the other endpoint of Q, so

- if m1(q) ≤ m2(q), then m′
1(q) < m2(q) and we can apply the induction hypothesis for m′

1, m2 and
eq as first step.

With the second step δ, m′
1 + eq + δ = m1 + es + δ is then a feasible integer vector so δ is a good

second step for m1 and m2 and es as first step,

- if m1(q) > m2(q), then the feasibility of m′
1 means that −eq is a good second step.

461

We finally suppose, still under the condition of Case 2, that there is no path with endpoint s in P2, which
is edge-disjoint from all paths in P1. Since m1(s) < m2(s), there exists P ∈ P2 with an edge incident to
s not used by any path of P1. By our assumption, there exists an edge e = uv of P also contained in a
path Q ∈ P1, which is thus not incident to s, and suppose that starting from s on P , e is the first such
edge we meet, and that we meet u before v. Thus neither u nor v are in T .

Let q ∈ T be the endpoint of Q so that Q(u, q) contains e (Figure 1 left), unless this endpoint
is s, in which case define q to be the other endpoint of Q (Figure 1 right). So q ̸= s anyway, and
Q′ := P (s, u) ∪ Q(u, q) is a T -path disjoint from all paths of P1 \ {Q}. Now similarly to our repeated
arguments, (P1 \ {Q}) ∪ {Q′} shows that m′

1 := m1 + es − er is a feasible integer vector, where r is the
other endpoint of Q. So −er is a correct second step, provided m1(r) > m2(r); on the other hand, if
m1(r) ≤ m2(r), then m′

1(r) < m2(r), and we try to apply the 2-step axiom with er as first step. For this,
it is sufficient to prove the Claim below, because that allows us to apply the induction hypothesis.

We will then be done, since for m′
1,m2, with a first step er and second step δ we have that m1 +

es − er + er + δ = m1 + es + δ is a feasible integer vector, finishing the verification of the 2-step axiom
for Case 2, and therewith of our theorem. Indeed, then in our last case we can conclude the first step es
with the second step δ. So the following Claim finishes the proof of the theorem:

Claim: |(P̂1 \ Q̂) ∪ Q̂′) \ P̂2| < |P̂1 \ P̂2|.
To prove this claim note first that all edge-transitions of the path P (s, u) are contained both in Q′

and P ∈ P2, so they are not counted in |(P̂1 \ Q̂) ∪ Q̂′) \ P̂2|; therefore there is no difference in the set
of transitions of P (s, u) and Q(u, q) ⊆ Q between Q and Q′. Therefore it is sufficient to examine the
transitions through vertex u.

Note that the edge-transitions through u decrease the induction parameter |(P̂1 \ Q̂) ∪ Q̂′) \ P̂2| by
1 when Q is replaced by Q′, if and only if Q′ uses the same edge-transition in u as P , that is, if and
only if e ∈ Q′ (Figure 1 left), and then we are done by the induction hypothesis. On the other hand, by
our choice, e /∈ Q′ happens only if r = s (Figure 1 right), and then the edge-transition of Q in v, which
contains e is counted in |P̂1\P̂2| unless v is an endpoint of Q, and is no more contained |(P̂1\Q̂)∪Q̂′)\P̂2|.
But v is indeed, not an endpoint of Q, since e has been chosen not to be incident to s. □

3 Context and Consequences

The consequences of Mader’s theorems [15], [16] for capacitated cases (that can be deduced by parallel
edges or replications) are well-known, and Hu’s [10], Rothchild and Whinston’s [17], [12], . . ., and also later
generalizations concern arbitrary capacities. These raise new algorithmic questions though, beyond the
size and ambitions of the present work. We therefore continue to restrict ourselves to the uncapacitated
case knowing that from the viewpoint of theorems and structure the capacitated case is equivalent: for
instance an integer edge-capacity can be simulated by the same number of parallel edges.

Let G = (V,E) be a graph, and T ⊆ V . Definitions of feasible vectors replacing sets of openly
vertex-disjoint T -paths by entirely vertex-disjoint paths joining different classes of a partition T of T
are also easily seen to lead to equivalent feasibility problems. (In terms of combinatrial structure, while
algorithmically, with binary encoding, this needs more explanations.) We will call such paths T -paths.
If a path is both a T1- and T2-path for partitions T1, T2 of T , it will be said to be a T1-T2-path. The
set of vertex- or edge-feasible vectors for T1 − T2 is defined analogously to that for T , leading to the
study of some particular jump system intersections. Vertex-feasible vectors for T or for T1−T2 are 0− 1
vectors and Schrijver proved that the maximal ones among them form the bases of a matroid; Theorem 1
sharpens this to the fact that the vertex-feasible vectors for T form a delta-matroid. In the rest of this
article we focus on edge-feasible vectors.

We can also define relaxed-feasibility for T -paths or for T1-T2-paths by extending the definition to not
necessarily integer vectors in RT with the existence of (not necessarily integer) coefficients for each path
so that the sum of coefficients containing each e ∈ E is at most 1. We state here some preliminaries
to Theorem 1 from [19], [18] without proof details, but point at connections and open problems related

462

to these. The presentation of jump-systems by these early results is weaker than Theorem 1: taking all
integer vectors in the convex hull of Jedge(G,T), or the assumption of a parity condition are essential
weakenings. However, further facts, an intersection theorem and an intriguing conjecture can be exhibited
for these restricted jump systems, with interesting, also algorithmic consequences on edge-disjoint T -
paths.

Theorem 2 Given the graph G = (V,E), T ⊆ V , and a partition T of T , the vertices of the polytope

Q(G, T) := {m ∈ R+
T : m(X ∩ T ′)−m(X ∩ T \ T ′) ≤ d(X) for all X ⊆ V , T ′ ∈ T }

are integer, its integer points form a jump sytem, and Q(G, T) is the set of relaxed-feasible vectors.

It is easy to check that the inequalities defining Q(G, T) are satisfied by any relaxed-feasible vector.
Attention! The encouraging facts stated in the theorem do not imply that integer points in Q(G, T)

are feasible. Actually not all of them are, even though the membership oracle for Jedge(G,T) can be
straightforwardly reduced to Mader’s theorem. The situation is more difficult for the intersection of such
jump systems, as we try to show with the following results and conjecture.

The linear inequalities describing Q(G, T) are from [7, Theorem 6.1], where it is also proved that the
integer vectors m ∈ Q(G, T) for which m + dG is even (in this sum m is defined to be 0 on V \ T) for
all v ∈ V , are feasible. Furthermore, the same is true for m ∈ Q(G, T1) ∩Q(G, T2), where T1, T2 are two
partitions of T , (and actually even more generally). This is in the line of multiflow maximization results
of Hu [10], Rothschild and Whinston [17], Cherkasskĭı and Lovász [4], [13], Karzanov and Lomonosov
[12] under parity constraints on the degrees, and if the parity constraint is not supposed, only a half-
integer solution can be stated. (Such a half-integer solution thus exists for all relaxed feasible vectors.)
A merit of [7] is to introduce vectors on T (“node-demands”) as an intermediate tool. Then the goal of
maximization can be achieved using matroid intersection, implying the minmax theorems corresponding
to all the mentioned results.

A bisubmodular polyhedron is a polyhedron of the form

Q(b) := {x ∈ R : x(A)− x(B) ≤ b(A,B), x ≥ 0},

where b is defined on pairs of disjoint sets and has values in N, moreover it is bisubmodular, that is:

f(A,B) + f(A′, B′) ≥ f(A ∩A′, B ∩B′) + f((A ∪A′) \ (B ∪B′), (B ∪B′) \ (A ∪A′)).

Denote by conv(X) the convex hull of the set X ⊆ Rn.

Corollary 3 If G is an arbitrary unirected graph and T ⊆ V , conv(Jvertex(G,T)) and conv(Jedge(G,T))
are bisubmodular polyhedra.

This shows one of the utilities of J being a jump system, having the consequence that linear objective
function can be optimized with a natural greedy algorithm in an appropriate oracle context [2] satisfied
by the combinatorial examples we know about.

Proof: By Theorem 1 Jvertex(G,T) and Jedge(G,T) are jump systems, and Bouchet, Cunningham [2]
proved that the convex hull of each jump system is a bisubmodular polyhedron. □

Theorem 4 Q(G, T) is a bisubmodular polyhedron. If all degrees of G are even, then for any two
partitions T1, T2 of T , Q(G, T1)∩Q(G, T2) has integer vertices, and the maximum of the sum of coordinates
on this intersection is achieved on a feasible vector computable in polynomial time.

Proof: For checking fact that Q(G, T) is a bisubmodular polyhedron note first that it is defined by a
±1 constraint matrix. Then the bisubmodular inequality can be verified directly [19], we omit the details
here, they are included in [18].

463

If all degrees are even, the bisubmodular function defining Q(G, T) has only even values. According
to Cunningham [5] the intersection of bisubmodular polyhedra is half-integer. The original proof of this
used polyhedral arguments, and was not more difficult than apparently the only proof that appeared
publicly, in [24]. It is deduced there from a more general conjecture of Cunningham for jump systems,
and then Cunningham’s conjecture is settled using results in [14].

If all degrees of G are even, then both bisubmodular functions b1 and b2 defining T1 and T2 are even,
so bi/2 (i = 1, 2) are integer bisubmodular functions. Applying the already established half-integrality
for the intersection of the polytopes defined by bi/2 (i = 1, 2), we get that Q(G, T1) ∩ Q(G, T2) is an
integer polyhedron. The last statement neecessitates a completely different proof method, it is proved in
[7, page 165 Proof of Theorem 4.3]. □

The proof of the first statement of Theorem 4 is easier than that of Theorem 1, which has been proved
almost a year later. The latter does not easily imply though the former: integer vectors of Q(G, T) are
not necessarily edge-feasible without the parity condition (Mader’s odd cuts also play then a role for
feasibility). Accordingly, integer vectors of Q(G, T) are not necessarily equal to conv(Jedge(G,T)).

However, if the degree of every vertex of G is even, the bisubmodular functions defining Q(G, T) are
even, the optimum m on Q(G, T) is an even vector for any objective function, and then [7, Theorem 6.1]
explicitly establishes the feasibility of m. It actually does so for all even vectors m ∈ Q(G, T1)∩Q(G, T2).
(For the T = T1 = T2 special case that we need here, an easy reduction to [13], [4] is actually sufficient
and can be realized by adding a copy t′ of each terminal, and m(t) paralel tt′ edges. The same reduction
works for testing membership in the jump systems Jedge(G,T), Jvertex(G,T) in polynomial time using
any algorithm for maximizing T -paths.)

For T1 − T2-paths in graphs whose degrees are not all even, we would need to generalize Mader’s
theorem to T1 − T2-paths, and such a generalization does not exist since the 2-flow problem is already
NP -hard. Now m ∈ Q(G, T1)∩Q(G, T2) is not even any more so [7] cannot be applied (see [7] for further
explanations and examples). Nevertheless, for maximixing the sum of coordinates [7] presents a patch,
expressed in the last statement of Theorem 4, and suggesting that the same may also be true for all
vertices of the polytope Q(G, T1) ∩Q(G, T2), making possible the optimization of any objective function
on T1 − T2-feasible vectors if the following conjecture holds:

Conjecture 5 If all degrees of G are even, then for any two partitions T1, T2 of T , the vertices of
Q(G, T1) ∩ Q(G, T2) are T1 − T2-feasible, i.e. Q(G, T1) ∩ Q(G, T2) is the convex hull of T1 − T2-feasible
vectors.

If true, the assertion of this conjecture would immediately imply the polynomial computability of
optimal feasible vectors for arbitrary weights on T . Surprisingly, this seems to be doable, without
knowing whether the conjecture is true, in a general context containing both graph factors and paths
(see below).

Another use of knowing that a set is a jump-system is that one can sometimes decide feasibility
or optimize on the intersection with some other jump-systems. A recent breakthrough by Dudycz and
Paluch’s [6] on graph factors has been simplified and extended by Kobayashi [11] to the abstract level
of jump systems. Feasible sets defined above from disjoint paths problems can be easily proved to
satisfy Kobayashi’s conditions – by pursuing Schrijver’s reduction [21] to Gallai’s theorem [8] where for
the appropriate generalization “general factors” may be used instead of matchings – to conclude with
weighted optimization without confirming Conjecture 5.

Kobayashi’s conditions [11, Theorem 5.1] can potentially handle multiflow theorems with various
kinds of weightings. For jump systems in general, the simple algorithm reducing the feasibility of general
factors of graphs to parity constrained factors [22] (explained briefly in [3]), works for the intersection of
some jump systems [23], making possible to compute the oracle required in [11, C ′

1, C ′
3], and enabling

the use of [11, Theorem 1.4], under generalized conditions.
Results on deciding the emptiness or finding an element of some jump-system-intersections are being

explored in more details in a forthcoming article.

464

Acknowledgment: The authors are indebted to Satoru Iwata and Yu Yokoi for several relevant correc-
tion/update turns.

References

[1] A. Bouchet, Greedy algorithm and symmetric matroids Mathematical Programming, 38 (1987),
pp. 147–159.

[2] A. Bouchet and W. Cunningham, Delta-matroids, Jump-systems and Bisubmodular polyhedra,
SIAM J. Discrete Mathematics, Series 8 (1995), pp. 17-32.

[3] G. Cornuéjols, General Factors of Graphs, Journal of Combinatorial Theory, B 45 (1988), pp.
185–198.

[4] B. V. Cherkasskĭı, A solution of a problem of multicommodity flows in a network, Èkonomika i
Matematicheskie Metody, 13, 1977, 143–151

[5] W. H. Cunningham, private communication (1994), a proof from a generalization appeared in [24].

[6] S. Dudycz, K. Paluch, Optimal General Matchings, (May 2021)

http://arxiv.org/abs/1706.07418

[7] A. Frank, A. Karzanov, A. Sebő, On integer multiflow maximisation, SIAM J. Discrete Math-
ematics, 10 (1), (1997), 158–170.

[8] T. Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Mathe-
matica Academiae Scientiarum Hungaricae 12 (1961), 131–173.

[9] S. Iwata, Y. Yokoi, Openly Disjoint Paths, Jump Systems, and Discrete Convexity, Proceedings
of the 12th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, 2023.

[10] T. C. Hu, Multi-commodity network flows,, Operations Research, 9, (1963), 344–360.

[11] Y. Kobayashi , Optimal General Factor Problem and Jump System Intersection,

https://arxiv.org/abs/2209.00779, October 2022.

[12] M.V. Lomonosov, Combinatorial Approaches to Multiflow Problems, Discrete Applied Mathemat-
ics, 11, (1) (1985), 1–93

[13] L. Lovász, On some connectivity properties of Eulerian graphs, Acta Acad. Sci. Hung., 28 (1976),
129–138.

[14] L. Lovász, The Membership Problem in Jump Systems, Journal of Combinatorial Theory, Series
B, 70 (1997), 45–66.

[15] W. Mader Über die Maximalzahl kantendisjunkter A-Wege, Arch. Math., 30 (1978) 325–336.

[16] W. Mader Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math., 31 (1978) 387–402

[17] B. Rothschild and A.Whinston Feasibility of two-commodity network flows, Oper. Res. 14
(1966) 1121–1129.

[18] M. Sadli, Généralisations de matröıdes et chemins disjoints, thèse pour obtenir le grade de Docteur
de L’Institut National Polytechnique de Grenoble, June 26, 2000 (in French).

[19] M. Sadli, A. Sebő,Paths and Jumps, Notes and lectures, (1999-2000), Grenoble–Waterloo–Alpes
d’Huez–Meylan.

465

[20] A. Schrijver. Combinatorial Optimization, Springer-Verlag Berlin Heidelberg, 2003.

[21] A. Schrijver A short proof of Mader’s S-paths theorem, Journal of Combinatorial Theory, Series
B,82 (2001), 319–321.

[22] A. Sebő, Gráfok faktorai: struktúrák és algoritmusok, kandidátusi értekezés, 1987 augusztus.

[23] A. Sebő,General factors and Jump System Intersections, Lecture at Workshop on ”Matroids, Match-
ings and Extensions”, (December 1999), Special Year on Graph Theory and Combinatorial Opti-
mization.

http://www.fields.utoronto.ca/programs/scientific/99-00/graph_theory/matroids_

matching/

[24] A. Sebő, Gaps and Jumps, Third Annual DONET meeting, 1996), M. Klazar ed.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

ee2689dacab3d9c89806eb84827d9560dae341a9

466

Characterization and Algorithm for
Bivariate Multi-Unit Assignment Valuations

Takafumi Otsuka

Department of Industrial Engineering
and Economics,

Tokyo Institute of Technology,
Tokyo 152-8550, Japan

Akiyoshi Shioura2

Department of Industrial Engineering
and Economics,

Tokyo Institute of Technology,
Tokyo 152-8550, Japan

shioura.a.aa@m.titech.ac.jp

Abstract: Amulti-unit assignment valuation is a function represented by a weighted bipartite
graph. In this paper, we provide a characterization of such a function in terms of maximizer
sets of purturbed functions. We then present an algorithm that checks whether a given
bivariate function is a multi-unit assignment valuation, and if the answer is “yes,” computes
a weighted bipartite graph representing the function.

Keywords: algorithm, discrete convex function, auction, assignment valuation

1 Introduction

A valuation function is a function that for a given set of goods, returns the value of the set. This paper
deals with multi-unit valuation functions defined on non-negative integral vectors Zn

+, in which a vector
x ∈ Zn

+ represents a multiset of n discrete goods. We consider a class of multi-unit valuation functions that
are represented by weighted bipartite graphs, which are referred to as multi-unit assignment valuation
functions.

Given a complete bipartite graph G = (V,N ;V × N) with a weight function w : V × N → R and a
supply function φ : V → Z++, a multi-unit assignment valuation function f : TΦ → R is defined by

f(x) = max

{ ∑

(i,j)∈V×N

w(i, j)y(i, j)

∣∣∣∣
∑

i∈V

y(i, j) = x(j) (j ∈ N),
∑

j∈N

y(i, j) ≤ φ(i) (i ∈ V),

y(i, j) ∈ Z+ (i ∈ V, j ∈ N)

}
(x ∈ TΦ),

where
N = {1, 2, . . . , n}, Φ =

∑

i∈V

φ(i), TΦ = {x ∈ Zn
+

∣∣∣
∑

j∈N

x(j) ≤ Φ}.

In the case where the effective domain TΦ is restricted to zero-one vectors, function f is nothing but an
assignment valuation [16], which often appears in the literature of auction theory. In the following, we
simply refer to function f as an assignment valuation when no confusion arises.

It is known that the class of assignment valuations is a proper subclass of strong-substitutes valuations
(see, e.g., [13, 14, 17]). The strong-substitutes condition for a multi-unit valuation [10] is a natural
generalization of the gross-substitutes condition for a single-unit valuation due to Kelso and Crawford
[8] (see also Gul and Stacchetti [6, 7]), and the former condition inherits various nice properties of the
latter condition. In particular, strong-substitutes condition for bidders’ valuations implies the existence

2This work is supported by JSPS KAKENHI Grant Numbers 18K11177.

467

of Walrasian equilibrium in the auction market with multiple units of indivisible goods. Also, strong-
substitutes valuations are known to be equivalent to M♮-concave functions in discrete convex analysis
[4, 15] (see also [13, 14, 17]). This fact implies that an assignment valuation also enjoys nice properties
as a discrete concave function.

We are interested in a special case of assignment valuations with N = {1, 2}, motivated by the
“product-mix” auction used in Bank of England [9]. The auction in Bank of England deals with two
kinds of multiple discrete goods. Each bidder of the auction expresses its demand to the goods by using a
set of “weighted bid vectors;” a weighted bid vector is a pair (b, ω) of a bidding price vector b ∈ R2 and its
weight ω ∈ Z++. It turns out that sets of weighted bid vectors have a natural one-to-one correspondence
with assignment valuations, and the demand information represented by a set of weighted bid vectors is
the same as the one represented by the corresponding assignment valuation; see Remark 4.1 in Section 3
for more details on this relationship.

Suppose that a bidder wants to participate the product-mix auction with its own valuation function.
In such a situation a bidder wants to know whether its valuation can be represented as an assignment
valuation, and if it is an assignment valuation, the bidder also wants to know the representation by a
weighted bipartite graph. This motivates us to consider the following Bivariate Assignment Valuation
Checking Problem (BAVCP):

given a bivariate valuation function f : TΦ → R with some positive integer Φ, which is not
necessarily an assignment valuation, answer whether f is an assignment valuation, and if the
answer is “yes,” then find a weighted bipartite graph representing f .

Our goal in this paper is to propose an efficient algorithm for solving this problem.
To develop an algorithm for the problem (BAVCP), we first provide a characterization of assignment

valuations in terms of maximizer sets. For a bivariate function f : TΦ → R and a vector p ∈ R2, we define
a set

Df (p) = {x ∈ TΦ | f(x)− p⊤x ≥ f(y)− p⊤y (y ∈ TΦ)},
which is called a maximizer set (also called a demand set). As mentioned above, every assignment
valuation is an M♮-concave function, for which the following characterization in terms of maximizer sets
is known; definitions of M♮-concave function and M♮-convex set will be given in Section 2.

Theorem 1.1 (cf. [11, 12]). A bivariate function f : TΦ → R+ is M♮-concave if and only if for every
p ∈ R2 the maximizer set Df (p) is an M♮-convex set.

Since an assignment valuation is an M♮-concave function, its maximizer set is an M♮-convex set, which
is (the set of integral vectors in) a hexagon. We classify M♮-convex sets into three types based on the
length of six edges: positive-type, zero-type, and negative-type (see Section 2.2 for precise definitions),
and show that an assignment valuation can be characterized by a stronger property for maximizer sets.

Theorem 1.2. A bivariate function f : TΦ → R with f(0, 0) = 0 is an assignment valuation if and only
if for every p ∈ R2 the maximizer set Df (p) is an M♮-convex set of positive-type or zero-type.

We will also show that for an assignment valuation f , the information about its representation can
be obtained from maximizer sets of f that are M♮-convex sets of positive-type. Based on the results, we
propose an algorithm for the problem (BAVCP) that runs in O(Φ2) time, under the assumption that the
value oracle for f is available; given a vector x, the value oracle returns the value f(x).

Finally, we note that a closely related problem is discussed by Goldberg, Lock, and Marmolejo-
Cosśıo [5]. In our terminology, their problem is described as follows: the input is an n-variate multi-unit
assignment valuation f : TΦ → R, represented by a demand oracle, and the output is a weighted bipartite
graph representing f ; given a vector p ∈ Rn, the demand oracle returns a vector in the maximizer set
Df (p). The algorithm proposed in [5] runs in O(n|V | logW) time with W = max{w(i, j) | i ∈ V, j ∈ N}.
It is known (see, e.g., [13]) that a demand oracle can be realized by using a value oracle in O(n3 log(Φ/n))
time. Hence, if the value oracle is available, then the algorithm in [5] runs in O(n4|V | logW log(Φ/n))
time. In particular, if n = 2 (i.e., f is a bivariate function), then the algorithm runs in O(|V | logW log Φ)

468

time, which is incomparable to the running time O(Φ2) of our algorithm since |V | ≤ Φ and the parameter
W does not appear in ours. Also, it should be noted that our algorithm checks whether a given function
is an assignment valuation or not, while the algorithm in [5] does not.

2 Preliminaries

2.1 Multi-unit Assignment Valuation and M♮-concave Function

A bivariate assignment valuation f : TΦ → R is defined as follows by using a complete bipartite graph
G = (V, {1, 2};V × {1, 2}) with weight function w : V × {1, 2} → R and supply function s : V → Z++:

f(x) = max

{∑

i∈V

(w(i, 1)y(i, 1) + w(i, 2)y(i, 2))

∣∣∣∣
∑

i∈V

y(i, j) = x(j) (j = 1, 2),

y(i, 1) + y(i, 2) ≤ φ(i) (i ∈ V),

y(i, j) ∈ Z+ (i ∈ V, j = 1, 2)

}
(x ∈ TΦ), (2.1)

where Φ =
∑

i∈V φ(i) and TΦ = {x ∈ Z2
+ | x(1)+x(2) ≤ Φ}. We may assume, without loss of generality,

that
∀i, i′ ∈ V with i ̸= i′, w(i, 1) ̸= (i′, 1) or w(i, 2) ̸= w(i′, 2) (or both); (2.2)

if there exist distinct i, i′ ∈ V with w(i, 1) = (i′, 1) and w(i, 2) = w(i′, 2), then we can replace φ(i) with
φ(i) + φ(i′) and delete the vertex i′, which results in the same assignment valuation.

It is known that a (not necessarily bivariate) assignment valuation has a nice discrete structure called
M♮-concavity (see, e,g., [13]).

Proposition 2.1. A (bivariate) assignment valuation is an M♮-concave function.

A bivariate function f : TΦ → R is said to be M♮-concave if it satisfies the following exchange property
for every x, y ∈ TΦ:

(M♮-EXC) for each i ∈ N = {1, 2} with x(i) > y(i), we have either (i), (ii), or both:
(i) y(N) < Φ and f(x) + f(y) ≤ f(x− χi) + f(y + χi),
(ii) there exists some i′ ∈ N with x(i′) < y(i′) such that

f(x) + f(y) ≤ f(x− χi + χi′) + f(y + χi − χi′),

where χi ∈ {0, 1}N denotes the characteristic vector of i ∈ N , i.e., χ1 = (1, 0) and χ2 = (0, 1). Note that
x− χi, y + χi ∈ TΦ holds in the case of (i), and x− χi + χi′ , y + χi − χi′ ∈ TΦ holds in the case of (ii).

M♮-concave functions can be characterized by a local exchange property: f is M♮-concave if and only
if (M♮-EXC) holds for every x, y ∈ TΦ with ∥x−y∥1 ≤ 4. This local exchange property can be specialized
for bivariate functions f as follows:

f(k, h) + f(k + 1, h+ 1) ≤ f(k + 1, h) + f(k, h+ 1) ((k, h) ∈ Z2
+, k + h+ 2 ≤ Φ), (2.3)

f(k, h+ 1) + f(k + 2, h) ≤ f(k + 1, h+ 1) + f(k + 1, h) ((k, h) ∈ Z2
+, k + h+ 2 ≤ Φ), (2.4)

f(k + 1, h) + f(k, h+ 2) ≤ f(k + 1, h+ 1) + f(k, h+ 1) ((k, h) ∈ Z2
+, k + h+ 2 ≤ Φ). (2.5)

Proposition 2.2. A bivariate function f : TΦ → R is M♮-concave if and only if it satisfies the conditions
(2.3), (2.4), and (2.5).

469

The conditions (2.3), (2.4), and (2.5) can be understood in terms of “triangles.” For k, h ∈ Z, we
define an upper-right triangle Tur(k, h) ⊆ Z2 and a lower-left triangle Tll(k, h) ⊆ Z2 by

Tur(k, h) = {(k, h), (k − 1, h), (k, h− 1)}, Tll(k, h) = {(k, h), (k + 1, h), (k, h+ 1)}.
The condition (2.3) means that the function f bends upward on Tur(k + 1, h + 1) ∪ Tll(k, h). Similarly,
(2.4) (resp., (2.5)) means that that f bends upward on Tur(k+1, h+1)∪Tll(k, h+1) (resp. Tur(k+1, h+
1) ∪ Tll(k + 1, h)).

2.2 M♮-convex Set and Its Properties

We also define M♮-convexity for a set S ⊆ Z2 as follows. For a non-empty set S ⊆ Z2, we say that S is
an M♮-convex set if it satisfies the following exchange property for every x, y ∈ S:

for each i ∈ N = {1, 2} with x(i) > y(i), at least one of (i) and (ii) holds:
(i) x− χi, y + χi ∈ S, (ii) x− χi + χi′ , y + χi − χi′ ∈ S for some i′ ∈ N with x(i′) < y(i′).

We present some properties on polyhedral structure of M♮-convex sets in Z2. M♮-convex sets can be
described by simple inequalities.

Proposition 2.3. A bounded set S ⊆ Z2 is an M♮-convex set if and only if it can be represented by the
following system of inequalities:

S = {(x(1), x(2)) ∈ Z2 | λ1 ≤ x(1) ≤ µ1, λ2 ≤ x(2) ≤ µ2, λ0 ≤ x(1) + x(2) ≤ µ0}. (2.6)

We may assume that all inequalities in (2.6) are tight, i.e., it holds that

λi = min{x(i) | x ∈ S}, µi = max{x(i) | x ∈ S} (i = 1, 2),

λ0 = min{x(1) + x(2) | x ∈ S}, µ0 = max{x(1) + x(2) | x ∈ S}.

We see from the representation (2.6) that every bounded two-dimensional (2-d, for short) M♮-convex
set S can be represented as a union of upper-right triangles Tur(k, h) and lower-left triangles Tll(k, h).

Let S ⊆ Z2 be a bounded 2-d M♮-convex set. We denote by S ⊆ R2 the convex hull of S. Proposi-
tion 2.3 implies that the convex hull S is represented by the same set of inequalities in (2.6), and the six
vertices of S are given (in clockwise order) as

(λ1, µ2), (µ0 − µ2, µ2), (µ1, µ0 − µ1), (µ1, λ2), (λ0 − λ2, λ2), (λ1, λ0 − λ1); (2.7)

all of these vertices are integral and therefore contained in S. We also have S ∩ Z2 = S.
This observation shows that an M♮-convex set S can be identified with its convex hull S. Hence, we

can define an edge of S as the set of integral vectors in an edge of S. In particular, the convex hull S is a
hexagon with six edges, and therefore we can define upper-horizontal (UH) edge, lower-horizontal (LH)
edge, left-vertical (LV) edge, right-vertical (RV) edge, upper-right-diagonal (URD) edge, and lower-left-
diagonal (LLD) edge.

We also define the length of an edge in an M♮-convex set S by the length of the corresponding edge
in the convex hull S. We denote by

ℓUH(S), ℓLH(S), ℓLV(S), ℓRV(S), ℓURD(S), ℓLLD(S)

the length of UH-edge, LH-edge, LV-edge, RV-edge, URD-edge, and LLD-edge; it is possible that some
edges may have length zero.

By using six vertices in (2.7), the length of six edges are given as

ℓUH(S) = (µ0 − µ2)− λ1, ℓLH(S) = µ1 − (λ0 − λ2),
ℓLV(S) = µ2 − (λ0 − λ1), ℓRV(S) = (µ0 − µ1)− λ2,

ℓURD(S) =
√
2(µ1 − (µ0 − µ2)) =

√
2(µ2 − (µ0 − µ1)),

ℓLLD(S) =
√
2((λ0 − λ2)− λ1) =

√
2((λ0 − λ1)− λ2).

(2.8)

This immediately implies the following relations for the six edge lengths.

470

Proposition 2.4. For a two-dimensional M♮-convex set D ⊆ Z2, it holds that

ℓLH(D)− ℓUH(D) = ℓLV(D)− ℓRV(D) = (ℓURD(D)− ℓLLD(D))/
√
2.

Using the edge length, we classify bounded 2-d M♮-convex sets. We say that a bounded M♮-convex
set D ⊆ Z2 is positive-type (resp., negative-type) if ℓLH(D)− ℓUH(D) > 0 (resp. ℓLH(D)− ℓUH(D) < 0),
and zero-type otherwise (i.e., D is not two-dimensional or satisfies ℓLH(D)− ℓUH(D) = 0).

2.3 Properties of M♮-concave Functions

We present some properties of M♮-concave functions used in this paper. See [13] for more accounts on
M♮-concave functions.

For a bivariate function f : TΦ → R and a vector p ∈ R2, the maximizer set Df (p) ⊆ TΦ is defined as

Df (p) = {x ∈ TΦ | f(x)− p⊤x ≥ f(y)− p⊤y (y ∈ TΦ)};

Df (p) is often referred to as a demand set in the context of auction, where f is regarded as a valuation
for multisets of goods. If D ⊆ TΦ is a two-dimensional maximizer set, then there exists a unique p ∈ R2

such that D = Df (p); we call such p the slope vector of D.
M♮-concavity of a function can be characterized in terms of maximizer sets.

Proposition 2.5. A bivariate function f : TΦ → R is M♮-concave if and only if Df (p) is an M♮-convex
set for every p ∈ R2.

An M♮-concave function can be extended to a polyhedral concave function. For a function f : TΦ → R,
the concave closure f̄ : TΦ → R is defined as

f̄(y) = inf{p⊤y + η | p ∈ R2, η ∈ R, p⊤x+ η ≥ f(x) (x ∈ TΦ)} (y ∈ TΦ).

By definition, f̄ is a polyhedral concave function satisfying f̄(x) ≥ f(x) for all x ∈ TΦ.

Proposition 2.6. For an M♮-concave function f : TΦ → R, f̄(x) = f(x) holds for every x ∈ TΦ.

Let f : TΦ → R be a bivariate M♮-concave function. It follows from Proposition 2.6 that for every
p ∈ R2, the convex hull Df (p) of the maximizer set of f coincides with a maximizer set {x ∈ TΦ |
f̄(x) − p⊤x ≥ f̄(y) − p⊤y (y ∈ TΦ)} of the concave closure f̄ . It is also known that a polyhedral
subdivision of the polytope TΦ can be obtained from the family {Df (p) | p ∈ R2} of convex hulls of
maximizer sets. These facts imply that the information about the set of 2-d maximizer sets uniquely
determines the function values of f . For two 2-d maximizer sets D and D′ of f , we say that D and D′

are adjacent if they share an edge of positive length.

Proposition 2.7. Let f : TΦ → R be a bivariate M♮-concave function with f(0, 0) = 0. Then, the
function values f(x) (x ∈ TΦ) are uniquely determined by the following information:

• the family D = {Di | i ∈ V } of two-dimensional maximizer sets of f , where V is an appropriately
chosen index set.

• the adjacency relation among maximizer sets in D,

• the slope vector pi ∈ R2 of Di for i ∈ V ,

• lengths ℓLH(Di), ℓUH(Di), ℓLV(Di), ℓRV(Di), ℓURD(Di), ℓLLD(Di) of six edges for i ∈ V .

471

3 Characterization of Multi-Unit Assignment Valuations and
Algorithm

Main results of this paper are presented in this section. We first provide a characterization of bivariate
assignment valuations by using the following condition for maximizer sets:

(MS≥) every maximizer set of f is an M♮-convex set of positive-type or zero-type;

recall that every maximizer set of an M♮-concave function f is an M♮-convex set. In the following, we may
simply say that a maximizer set of a bivariate M♮-concave function is of positive-type (resp. zero-type) if
it is a M♮-convex set of positive-type (resp., zero-type).

We denote by M the family of bivariate M♮-concave functions f : TΦ → R with f(0, 0) = 0 satisfying
the condition (MS≥). We denote by A the family of bivariate assignment valuations defined on TΦ. That
is,

M = {f : TΦ → R | f(0, 0) = 0, f is an M♮-concave function satisfying (MS≥)},
A = {f : TΦ → R | f is an assignment valuation in (2.1)}.

We show that every bivariate assignment valuation satisfies the condition (MS≥), i.e., A ⊆ M holds.

Theorem 3.1 (necessity condition). Let f : TΦ → R be an assignment valuation in (2.1), and assume
that weight function w satisfies the condition (2.2). For every vector p ∈ R2, the maximizer set Df (p) is
an M♮-convex set of positive-type or zero-type.

Theorem 3.1 follows immediately from the following properties of assignment valuations. It should
be noted that the condition (2.2) for the weight function w implies that if a vector p ∈ R2 satisfies
p = (w(i, 1), w(i, 2)) for some i ∈ V , then such i is uniquely determined.

Lemma 3.2. Let f : TΦ → R be an assignment valuation in (2.1), and assume that weight function
w satisfies the condition (2.2). Also, let p ∈ R2 be a vector such that the maximizer set Df (p) is two-
dimensional.
(i) If p ̸= (w(i, 1), w(i, 2)) for all i ∈ V , then Df (p) is of zero-type.
(ii) If p = (w(i, 1), w(i, 2)) holds for some i ∈ V , then Df (p) is of positive-type and satisfies ℓLH(Df (p))−
ℓUH(Df (p)) = φ(ip) with the (unique) vertex ip ∈ V such that p = (w(ip, 1), w(ip, 2)).

Proof of Lemma 3.2 is given in Section 4.
We then show that the inclusion A ⊆ M holds with equality. For f ∈ M, denote by D+(f) the family

of positive-type maximizer sets of f , and by P+(f) the set of slope vectors for maximizer sets in D+(f).
The definitions imply the equation D+(f) = {Df (p) | p ∈ P+(f)}.
Theorem 3.3 (sufficiency condition). Let f : TΦ → R+ be an M♮-concave function with f(0, 0) = 0
satisfying the condition (MS≥). Then, f is an assignment valuation. Moreover, if P+(f) is given as
{pi | i ∈ V } with an appropriately chosen index set V , then f is represented by the complete bipartite
graph with vertex set V ∪{1, 2}, weight function w : V ×{1, 2} → R, and capacity function φ : V → Z++

given by

w(i, j) = pi(j) (i ∈ V, j = 1, 2), (3.9)

φ(i) = ℓLH(Df (pi))− ℓUH(Df (pi)) (> 0) (i ∈ V). (3.10)

Note that the weight function w given by (3.9) satisfies the condition (2.2) since slope vectors in P+(f)
are all different.

Theorem 3.3 is proved by using the following key lemma, stating that every function f ∈ M is
uniquely determined by the information about positive-type maximizer sets of f .

Lemma 3.4. For functions f, g ∈ M, we have f = g if the following conditions hold:

P+(f) = P+(g), ℓLH(Df (p))− ℓUH(Df (p)) = ℓLH(Dg(p))− ℓUH(Dg(p)) (p ∈ P+(f)).

472

Proof of Lemma 3.4 is omitted due to the page limitation.

Proof of Theorem 3.3. Given a function f ∈ M, let us consider the assignment valuation g represented
by the weighted complete bipartite graph in the latter statement of Theorem 3.3, i.e., the assignment
valuation g : TΦ → R is obtained from the complete bipartite graph with vertex set V ∪ {1, 2}, weight
function w : V × {1, 2} → R in (3.9), and capacity function φ : V → Z++ in (3.10). By Lemma 3.2
applied to g and the definition of g and w, we have P+(g) = {pi | i ∈ V } = P+(f). It follows from
Lemma 3.2 (ii) that

ℓLH(Dg(pi))− ℓUH(Dg(pi)) = φ(i) = ℓLH(Df (pi))− ℓUH(Df (pi)) (i ∈ V).

Hence, we have f = g by Lemma 3.4.

The following characterization of bivariate assignment valuations can be obtained immediately from
Theorems 3.1 and 3.3.

Corollary 3.5. An M♮-concave function f : TΦ → R with f(0, 0) = 0 is an assignment valuation if and
only if it satisfies the condition (MS≥).

Based on the characterization of assignment valuations (Theorem 3.3, in particular), we propose an
algorithm that determines whether a given function f : TΦ → R is an assignment valuation or not, and
if the answer is “yes,” computes its representation.

Algorithm for Checking Assignment Valuation

Step 1: [Check M♮-concavity] Check whether f satisfies f(0, 0) = 0 and the conditions (2.3), (2.4), and
(2.5). If f satisfies these conditions, then go to Step 2; otherwise, assert that f is not an assignment
valuation.

Step 2: [Check assignment valuation] For each 2-d maximizer set D of f , compute the length of edges
ℓLH(D) and ℓUH(D). If there exists some D with ℓLH(D) < ℓUH(D), (i.e., D is of negative-type),
then assert that f is not an assignment valuation; otherwise, go to Step 3.

Step 3: [Compute a weighted bipartite graph] Let {pi | i ∈ V } be the set of slope vectors for positive-
type maximizer sets of f with an appropriately chosen index set V . Output the complete bipartite
graph with vertex sets V ∪ {1, 2}, weight function w : V × {1, 2} → R given by (3.9), and capacity
function u : V → Z++ given by (3.10).

We analyze the running time of the algorithm. Checking the conditions (2.3), (2.4), and (2.5) in Step
1 can be done in O(Φ2) time by using the value oracle for f . For a bivariate M♮-concave function f , all
2-d maximizer sets and their slope vectors can be computed in O(Φ2) time, as explained below. Once
we obtain all 2-d maximizer sets, it is not difficult to compute their edge lengths in O(Φ2) time. Hence,
Step 2 requires O(Φ2) time. It is easy to see that Step 3 can be done in O(V) = O(Φ2) time. Therefore,
our algorithm runs in O(Φ2) time in total.

Theorem 3.6. Given a bivariate function f : TΦ → R, we can determine whether f is an assignment
valuation or not in O(Φ2) time. Moreover, if f is an assignment valuation, we can compute the complete
bipartite graph with vertex sets V ∪ {1, 2}, weight function w : V × {1, 2} → R, and capacity function
u : V → Z++ representing f in O(Φ2) time.

We explain how to compute in O(Φ2) time all 2-d maximizer sets and their slope vectors of a bivariate
M♮-concave function f , where we use the fact that every 2-d M♮-convex set is given as the union of triangles
Tur(k, h) and Tll(k, h).

Algorithm for Computing All 2-d Maximizer Sets

473

Step 1: Let T be the set of triangles contained in TΦ, i.e.,

T := {Tur(k, h) | k ≥ 1, h ≥ 1, k + h ≤ Φ} ∪ {Tll(k, h) | k ≥ 0, h ≥ 0, k + h ≤ Φ− 1}.
For each T ∈ T , set its slope vector pT ∈ R2 by

pT =

{
(f(k, h)− f(k − 1, h), f(k, h)− f(k, h− 1)) if T = Tur(k, h),

(f(k + 1, h)− f(k, h), f(k, h+ 1)− f(k, h)) if T = Tll(k, h).

Step 2: If there exists no distinct T, T ′ ∈ T with pT = pT ′ , then stop. Otherwise, go to Step 3.

Step 3: Select any distinct T, T ′ ∈ T with pT = pT ′ , delete T and T ′ from T , and insert T ∪ T ′, where
we set pT∪T ′ = pT . Go to Step 3.

Step 1 can be done in O(Φ2) time. Since a bivariate M♮-concave function can be extended to a
polyhedral concave function, any two triangles contained in TΦ with the same slope vectors are adjacent.
By using this fact, Steps 2 and 3 can be also done in O(Φ2) time.

4 Proof of Lemma 3.2

We give a proof of Lemma 3.2. Let f : TΦ → R be an assignment valuation in (2.1), and assume that
weight function w satisfies the condition (2.2). Also, let p ∈ R2 be a vector such that the maximizer set
Df (p) is two-dimensional.

By the formula (2.1) for f , the value max{f(k, h)−p(1)k−p(2)h | (k, h) ∈ TΦ} is equal to the optimal
value of the following optimization problem:

(P) Maximize
∑

i∈V

(w(i, 1)− p(1))y(i, 1) +
∑

i∈V

(w(i, 2)− p(2))y(i, 2)

subject to y(i, 1) + y(i, 2) ≤ φ(i) (i ∈ V),
y(i, j) ∈ Z+ (i ∈ V, j = 1, 2),

and the set Df (p) is represented by using optimal solutions of (P) as follows:

Df (p) =

{
x ∈ Z2

+

∣∣∣∣ x(j) =
∑

(i,j)∈V

y(i, j) (j = 1, 2), y is an optimal solution of (P)

}
. (4.11)

The problem (P) can be decomposed into |V | independent problems (Pi) (i ∈ V) given as

(Pi) Maximize wp(i, 1)y(i, 1) + wp(i, 2)y(i, 2)
subject to y(i, 1) + y(i, 2) ≤ φ(i), y(i, j) ∈ Z+ (j = 1, 2)

with wp(i, j) = w(i, j) − p(j) (j = 1, 2). Denote by Y ∗
i ⊆ Z2

+ the set of optimal solutions of (Pi), which
is given as

Y ∗
i =

x ∈ Z2

+

∣∣∣∣∣∣∣∣

x(1) + x(2) ≤ φ(i),
x(1) + x(2) = φ(i) if 0 < max(wp(i, 1), wp(i, 2)),
x(1) = 0 if wp(i, 1) < max(0, wp(i, 2)),
x(2) = 0 if wp(i, 2) < max(0, wp(i, 1))

. (4.12)

That is, Y ∗
i is the set of vectors x ∈ Z2

+ satisfying

x(1) = φ(i), x(2) = 0 if i ∈ V+1 ≡ {i′ ∈ V | wp(i′, 1) > max(0, wp(i′, 2))},
x(1) = 0, x(2) = φ(i) if i ∈ V+2 ≡ {i′ ∈ V | wp(i′, 2) > max(0, wp(i′, 1))},
x(1) + x(2) = φ(i) if i ∈ V+= ≡ {i′ ∈ V | wp(i′, 1) = wp(i′, 2) > 0},
x(1) + x(2) ≤ φ(i) if i ∈ V00 ≡ {i′ ∈ V | wp(i′, 1) = wp(i′, 2) = 0},
x(1) = 0, x(2) ≤ φ(i) if i ∈ V−0 ≡ {i′ ∈ V | wp(i′, 1) < 0, wp(i′, 2) = 0},
x(1) ≤ φ(i), x(2) = 0 if i ∈ V0− ≡ {i′ ∈ V | wp(i′, 1) = 0, wp(i′, 2) < 0},
x(1) = x(2) = 0 if i ∈ V−− ≡ {i′ ∈ V | wp(i′, 1) < 0, wp(i′, 2) < 0}.

474

We see that y is an optimal solutions of (P) if and only if (y(i, 1), y(i, 2)) ∈ Y ∗
i holds for every i ∈ V .

This relation and (4.11) imply that the set Df (p) is given as the Minkowski sum of Y ∗
i as follows:

Df (p) =

{
x ∈ Z2

+

∣∣∣∣ x(j) =
∑

(i,j)∈V

y(i, j) (j = 1, 2), (y(i, 1), y(i, 2)) ∈ Y ∗
i (i ∈ V)

}
=

∑

i∈V

Y ∗
i

= {(x(1), x(2)) ∈ Z2 | λ1 ≤ x(1) ≤ µ1, λ2 ≤ x(2) ≤ µ2, λ0 ≤ x(1) + x(2) ≤ µ0} (4.13)

with

λ1 = φ(V+1), µ1 = φ(V+1 ∪ V+= ∪ V00 ∪ V0−),

λ2 = φ(V+2), µ2 = φ(V+2 ∪ V+= ∪ V00 ∪ V−0),

λ0 = φ(V+1 ∪ V+2 ∪ V+=), µ0 = φ(V \ V−−).

Here, we denote φ(V ′) =
∑

i∈V ′ φ(i) for V ′ ⊆ V .
It follows from (2.8) that

ℓLH(Df (p))− ℓUH(Df (p)) = µ1 + µ2 − µ0 + λ1 + λ2 − λ0

= φ(V+1 ∪ V+= ∪ V00 ∪ V0−) + φ(V+2 ∪ V+= ∪ V00 ∪ V−0)− φ(V \ V−−)

+ φ(V+1) + φ(V+2)− φ(V+1 ∪ V+2 ∪ V+=)

= φ(V+= ∪ V00)− φ(V+=) = φ(V00). (4.14)

Suppose that p ̸= (w(i, 1), w(i, 2)) for all i ∈ V . Then, we have V00 = ∅, which, together with (4.14),
implies ℓLH(Df (p))− ℓUH(Df (p)) = 0, i.e., Df (p) is of zero-type.

We then suppose that p = (w(i, 1), w(i, 2)) holds for some i ∈ V . Then, such i = ip ∈ V is uniquely
determined by the condition (2.2) for the weight function w. Hence, we have V00 = {ip}, which, together
with (4.14), implies ℓLH(Df (p))− ℓUH(Df (p)) = φ(ip) > 0, i.e., Df (p) is of positive-type. This concludes
the proof of Lemma 3.2.

Remark 4.1. As mentioned in Introduction, the demand information of a bidder in the product-mix
auction in Bank of England is represented by a set of weighted bid vectors [9]. We observe below that
sets of weighted bid vectors and assignment valuations can represent the same sets of bidders’ demand
information. Moreover, we show that sets of weighted bid vectors and assignment valuations have a
natural one-to-one correspondence.

A weighted bid vector is a pair (b, ω) of a bid b ∈ R2 and its weight ω ∈ Z++. With a weighted bid
vector (b, ω), a demand set D(p; b, ω) is defined as

D(p; b, ω) =

x ∈ Z2

+

∣∣∣∣∣∣∣∣

x(1) + x(2) ≤ ω,
x(1) + y(2) = ω if 0 < max(b(1)− p(1), b(2)− p(1)),
x(1) = 0 if b(1)− p(1) < max(0, b(2)− p(1)),
x(2) = 0 if b(2)− p(2) < max(0, b(1)− p(1))

. (4.15)

Using a set of weighted bid vectors B = {(bi, ω(i)) | i ∈ V } with an appropriately chosen index set V , we
represent a demand set DB(p) given as the Minkowski sum of D(p; bi, ω(i)):

DB(p) =
∑

i∈V

D(p; bi, ω(i)). (4.16)

We see from (4.12), (4.13), (4.15), and (4.16) that sets of weighted bid vectors can represent the same
sets of bidders’ demand information as assignment valuations. Indeed, for a set of weighted bid vectors
B = {(bi, ω(i)) | i ∈ V }, define a complete bipartite graph G = (V, {1, 2};V ×{1, 2}) with weight function
w : V × {1, 2} → R and supply function φ : V → Z++ given as

w(i, j) = bi(j) (i ∈ V, j = 1, 2), φ(i) = ω(i) (i ∈ V),

475

and let f : TΦ → R be the associated assignment valuation. Then, it follows from (4.12), (4.13), (4.15),
and (4.16) that DB(p) = Df (p) for every p ∈ R2. This shows that sets of weighted bid vectors have
a natural one-to-one correspondence with weighted complete bipartite graphs representing assignment
valuations.

References

[1] Baldwin, E., Klemperer, P.: Proof that the product-mix auction bidding language can represent any
substitutes preferences. Working Paper 2021–W05. Nuffield College (2021)

[2] Baldwin, E., Bichler, M., Fichtl, M., Klemperer, P.: Strong substitutes: Structural properties, and
a new algorithm for competitive equilibrium prices. Mathematical Programming, published online
(2022)

[3] Baldwin, E., Goldberg, P.W., Klemperer, P., Lock, E.: Solving strong-substitutes product-mix
auctions. arXiv preprint arXiv:1909.07313 (2019)

[4] Fujishige, S., Yang, Z.: A note on Kelso and Crawford’s gross substitutes condition. Mathematics of
Operations Research 28, 463–469 (2003)

[5] Goldberg, P.W., Lock, E., Marmolejo-Cosśıo, F.: Learning strong substitutes demand via queries.
Proceedings of International Conference on Web and Internet Economics, 401–415 (2020)

[6] Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. Journal of Economic Theory
87. 95–124 (1999)

[7] Gul, F., Stacchetti, E.: The English auction with differentiated commodities. Journal of Economic
Theory 92, 66–95 (2000).

[8] Kelso, A.S., Crawford, V.P.: Job matching, coalition formation and gross substitutes. Econometrica
50, 1483–1504 (1982)

[9] Klemperer, P.: The product-mix auction: A new auction design for differentiated goods. Journal of
the European Economic Association 8, 526–536 (2010)

[10] Milgrom, P., Strulovici, B.: Substitute goods, auctions, and equilibrium. Journal of Economic Theory
144, 212–247 (2009)

[11] Murota, K.: Convexity and Steinitz’s exchange property. Advances in Mathematics 124, 272–311
(1996)

[12] Murota, K.: Discrete convex analysis. Mathematical Programming 83, 313–371 (1998)

[13] Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)

[14] Murota, K.: Discrete convex analysis: A tool for economics and game theory. Journal of Mechanism
and Institution Design 1, 151–273 (2016)

[15] Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Mathematics of Operations
Research 24, 95–105 (1999)

[16] Shapley, L.: Complements and substitutes in the optimal assignment problem. Naval Research Lo-
gistics Quarterly 9, 45–48 (1962)

[17] Shioura, A., Tamura, A.: Gross substitutes condition and discrete concavity for multi-unit valuations:
A survey. Journal of the Operations Research Society of Japan 58, 61–103 (2015)

476

On vertex-coloring {a,b}-edge-weightings of graphs

Péter Madarasi

Department of Operations Research, ELTE
Eötvös Loránd University, and the ELKH-ELTE

Egerváry Research Group on Combinatorial
Optimization, Eötvös Loránd Research Network

(ELKH), Pázmány Péter sétány 1/C, 1117
Budapest, Hungary.

madarasip@staff.elte.hu

Máté Simon

Department of Operations Research
ELTE Eötvös Loránd University, and the

MTA-ELTE Momentum Matroid Optimization
Research Group, Pázmány Péter sétány 1/C,

1117 Budapest, Hungary
matesimon@student.elte.hu

Abstract: For a given graph G = (V,E), an {a, b}-edge-weighting is an assignment w : E →
{a, b}, which is called proper if the induced labeling z : V → Z is a proper vertex coloring of
G, where a and b are distinct integers, and z(v) =

∑
e∈∆(v) w(e).

Thomassen, Wu and Zhang gave a polynomial-time algorithm for deciding whether a given
bipartite graph has a proper {1, 2}-edge-weighting. We consider the natural generalization
of this problem when a partial edge-weighting is to be extended, which is proven to be NP-
complete for any distinct integers a and b. For trees, however, the problem is shown to be
solvable in polynomial time, which implies an alternative polynomial-time algorithm for the
so-called antifactor problem and also for deciding whether a tree has a {0, 1}-edge-weighting.

Dudek and Wajc proved that deciding whether a given graph G has a proper {1, 2}-edge-
weighting is NP-complete. Strengthening their result, we show that the problem is NP-
complete for any distinct integers a and b.

Keywords: 1-2-3 conjecture, {a, b}-edge-weighting, NP-completeness, Irregular
graphs, Graph coloring

1 Introduction

Throughout this paper, G = (V,E) denotes a simple, finite, undirected graph. A {1, . . . , k}-edge-weighting
is an assignment w which assigns numbers from the set {1, . . . , k} to the edges of G. We say that an
edge-weighting is proper or feasible if the induced vertex coloring z : V → Z, where z(v) =

∑
e∈∆(v) w(e),

is a proper coloring, that is z(u) 6= z(v) holds for every edge uv ∈ E. If G has a proper {1, 2, 3}-edge-
weighting, then we say that G has the 1-2-3 property, which can be defined similarly for any other weight
set as well.

Karoński, Luczak and Thomason formulated the so-called 1-2-3 conjecture in 2004 [15], which states
that every simple graph without isolated edges has the 1-2-3 property. This conjecture fostered several
new interesting questions. The focus of the present paper is on one of these questions, the existence of
{a, b}-edge-weightings. For a more detailed treatment of these results, the reader is referred to the full
version of the paper [19].

In 2016, Thomassen, Wu and Zhang [23] proved that a bipartite graph has the 1-2 property if and only
if it is not a so-called odd multi-cactus, which implies that one can decide in polynomial time whether

1The work was supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021, and the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation
Fund, financed under the ELTE TKP 2021-NKTA-62 funding scheme. The research was supported by the Ministry of
Innovation and Technology NRDI Office within the framework of the Artificial Intelligence National Laboratory Program.

477

a bipartite graph has the 1-2 property. In fact, their approach also extends to {a, b}-edge-weightings
provided that a < b, a is odd and b is even. Recently, Lyngise showed that exactly the odd multi-cacti
have no proper edge-weightings for 2-connected bipartite graphs when a is odd and b = a+2 [5], and also
for bridgeless bipartite graphs when a = 0 and b = 1 [18]. Based on these positive results, we investigate
whether a partial edge-weighting can be extended to a proper edge-weighting. In Section 2, we show
that this more general problem is NP-complete even for bipartite graphs, however, it is polynomial-time
solvable for trees. The latter statement will be proven by giving an efficient dynamic programming
algorithm. As a special case, this implies an alternative polynomial-time algorithm for the so-called
antifactor problem [16] and also for deciding whether a tree has the 0-1 property, which was first solved
in [18].

Furthermore, in 2011, Dudek and Wajc [11] proved that deciding whether a given graph has the 1-2
property is NP-complete. To the best of our knowledge, the more general problem, when we ask if a
feasible {a, b}-edge-weighting exists, remained open thus far. Section 3 investigates an extension of the
results of Dudek and Wajc, we show that their statement also holds for arbitrary a and b.

The next section gives a brief overview of some further problems and results related to the 1-2-3
conjecture.

1.1 Motivation and previous results

The question of the existence of {a, b}-edge-weightings was inspired by the 1-2-3 conjecture, which itself
comes from the study of graph irregularity. By simple graph-theoretic observations, one can easily show
that there exists no “opposite” of a simple regular graph, that is, a simple graph with all-different degrees.
Chartrand et al. [6] investigated the smallest value k such that by replacing each edge with at most k
parallel edges, the resulting multigraph G′ becomes irregular (that is each node has a different degree).
The minimum value of k is called the irregularity strength of G. For further information on this topic
see [12], [4] and [20]. Another possible approach is when we do not require that all nodes in the resulting
multigraph have different degrees, but only that the degrees of the adjacent nodes are different. Notice
that instead of edge multiplication, we can look for a proper {1, . . . , k}-edge-weighting. Exchanging the
weight set {1, . . . , k} to {a, b}, we obtain the {a, b}-edge-weighting problem.

Early articles and results, such as in which the 1-2-3 conjecture was first introduced [15], focus on
the relationship between χ(G) and χ∑(G), where χ∑(G) is the smallest integer k for which a proper

{1, . . . , k}-edge-weighting exists in G. One of the first results from [15] states that if (Γ,+) is a finite
abelian group of odd order, and G is a |Γ|-colorable graph without isolated edges, then there exists an
edge-weighting of G with the elements of Γ such that the induced vertex coloring is proper.

Further results in connection with the chromatic number: If G is 2-connected and χ(G) ≥ 3, then
χ∑(G) ≤ χ(G) [22]. Moreover, for every integer k ≥ 3 and any graph G without isolated edges, the

following hold: 1) If G is k-colorable for odd k, then χ∑(G) ≤ k [15]. 2) If G is k-colorable for k ≡ 0

(mod 4), then χ∑(G) ≤ k [10]. 3) If G is k-colorable, 2-connected and has minimum degree at least k+1

for k ≡ 2 (mod 4), then χ∑(G) ≤ k [17].

The first general upper bound for χ∑(G) was given by Addario-Berry, Dalal, McDiarmid, Reed and

Thomason [1], who proved that χ∑(G) ≤ 30. Their method is based on the investigation of the so-called

degree-constrained subgraph problem, which was further refined by Addario-Berry, Dalal and Reed [2],
who managed to improve this upper bound to 16, then Wang and Yu [24] further improved it to 13. The
best known upper bound is due to Kalkowski, Karoński and Pfender [14], who proved that χ∑(G) ≤ 5
holds. In other words, every graph without isolated edges has the 1-2-3-4-5 property.
Moreover, it is also known that the 1-2-3 conjecture holds if G is large and dense enough: there exists
a constant n′ such that every graph G = (V,E) with at least n′ nodes has the 1-2-3 property if the
degree of every node is at least 0.099985|V | [25]. Furthermore, it is known that if G is a random graph
(according to the Erdős-Rényi model), then it has the 1-2 property asymptotically almost surely, see [2].
If we restrict ourselves to regular graphs, then Jakob Przybylo achieved the most significant progress [21],
namely, every regular graph has the 1-2-3-4 property, and the 1-2-3 conjecture holds if d ≥ 108 and G is

478

d-regular. On the other hand, Dudek and Wajc [11] showed that deciding whether a given graph has the
1-2 property is NP-complete. For bipartite graphs, however, this problem can be solved in polynomial
time based on the result of Thomassen, Wu and Zhang [23].

One might also define other kinds of weightings. For example, in the node-weighting problem, we
want to assign weights to the nodes (instead of the edges) and the labels of the nodes are defined as
the sum of the weights of their neighbors. It was shown in [3] that deciding whether a graph G has a
proper node-weighting from the set {1, . . . , k} is NP-complete for any k ≥ 2. This result holds even if
we restrict ourselves to 3-colorable planar graphs and k = 2. Furthermore, it is also NP-complete for
3-regular graphs in case of k = 2 [9].

Similar problems can be obtained by modifying the definition of the labels of the nodes. For example,
one can take the product of the weights instead of their sum. This way, we obtain the problems called
edge-weighting by product and node-weighting by product. Let us briefly summarize some of the hardness
results related to these problems. It is NP-complete to decide whether a given 3-regular planar graph
has a proper edge-weighting by product from the set {1, 2} [8]. It was shown in [8] that deciding the
existence of {1, 2}-node-weighting by product is NP-complete for 3-colorable planar graphs. Moreover, if
we omit the planarity and colorability conditions but the weights can be chosen from the set {1, . . . , k}
for some k ≥ 3, then we still get an NP-complete problem.

2 Extending partial edge-weightings

Thomassen, Wu and Zhang [23] proved in 2016 that deciding whether a given bipartite graph has the 1-2
property is possible in polynomial time, while the same problem for arbitrary graphs is NP-complete [11].
Motivated by the former statement, this section investigates whether a partial {a, b}-edge-weighting can
be extended on bipartite graphs, where by a partial {a, b}-edge-weighting we mean that on a subset of
the edges we fix the labels in advance. First of all, let us outline the basic problem, which has not been
addressed in the literature yet, as far as we know.

Problem 1 Given a graph G with some of its edges already weighted from set {a, b}, where a and b are
two distinct rational numbers. The question is if we can assign weights from {a, b} to the uninitialized
edges such that the induced coloring is proper.

Theorem 2 Problem 1 is NP-complete for bipartite graphs.

This theorem can be proven by a reduction from the NP-complete degree-prescribed subgraph problem.
In this problem, the goal is to find a subgraph H = (V,E′) of a given graph G = (V,E) such that the
degree of every node v in H is from a predefined degree set Fv ⊆ {0, . . . , dG(v)}, that is, dH(v) ∈ Fv for
every v in V . For a given graph G and degree prescription F , we create a graph G′ along with a partial
edge-weighting such that the remaining edges can be weighted properly if and only if the given instance
is solvable.

2.1 Extendability on trees

Theorem 2 shows that Problem 1 is NP-complete on bipartite graphs. In this section, we investigate the
same problem on trees, and we give a polynomial-time algorithm which, for a given tree and integers a
and b, either completes a given partial {a, b}-edge-weighting or concludes that no such weighting exists.
As a special case, one obtains a new method to decide whether a tree has the 0-1 property, which was
first shown to be polynomial-time solvable in [18].

Theorem 3 Problem 1 can be solved in polynomial time on trees for any distinct integers a and b.

Proof: We give a dynamic programming algorithm which either extends the partial {a, b}-edge-weighting
into a feasible one or concludes that it cannot be extended. Let us appoint one of the leaf nodes as the

479

root of the tree and let Tv denote the subtree beneath v for every node v ∈ V . For every edge uv, let
Luv ⊆ {a, b} denote the set of the allowed weights for uv based on the partially initialized edge-weighting.
We want to decide whether Tv can be extended feasibly such that we fix the weight of uv and the sum
of the weights on the edges incident to v, where u is closer to the root than v is. Formally, for every
edge uv, we define a subproblem f(uv) as the set of those pairs (k, l) ∈ Z× {a, b} for which there exists
a weighting of Tv such that w(uv) = l ∈ Luv and z(v) = k − l.

For a given edge uv, let ei denote the edge between v and its children v′i for i = 1, . . . , d(v)−1. Notice
that (k, l) ∈ f(uv) if and only if the following two conditions hold:

1. For every i = 1, . . . , d(v) − 1, there exists a weight li ∈ Lei and label ki ∈ Z\{k} such that
(ki, li) ∈ f(ei), and

2.
∑
li = k − l,

which gives a way to recursively compute f(uv) in polynomial time, because these conditions can be
checked efficiently as follows. There exist unique integers α and β for which

a · α+ b · β = k − l
α+ β = d(v)− 1

(1)

hold, because (k, l) ∈ f(uv). That is, exactly α out of e1, . . . , ed(v)−1 have weight a, and β are weighted

b. Let Lk
ei ⊆ Lei denote the possible weights of ei if z(v′i) 6= k, and observe that (k, l) ∈ f(uv) if and only

if Lk
ei 6= ∅, |{i : a ∈ Lk

ei}| ≥ α and |{i : b ∈ Lk
ei}| ≥ β hold for every i = 1, . . . , d(v)− 1. For any ei and k,

Lk
ei can be computed easily by iterating through f(ei), therefore we obtain an algorithm for computing

f(uv) running in O(n2) steps, provided that the subproblems are computed in increasing order by the
depth of the subtrees Tv.

For the base case of the recursion, if subtree Tv consists of a single node for uv, then f(uv) = {(l, l) :
l ∈ Luv} by definition.

Once f(uv) is computed for all uv ∈ E, there exists a feasible extension of the partial edge-weighting
if and only if there exists (k, l) ∈ f(e) such that k 6= l, where e is the leaf edge incident to the root.
This means that the labels of the two endpoints of e are different in the weighting provided by the fact
that (k, l) ∈ f(e). Otherwise, if k = l for all (k, l) ∈ f(e), then f(e) is either empty or the endpoints of
e have the same label in each feasible weighting, which means that no feasible extension of the partial
edge-weighting exists. Computing a subproblem f(uv) takes O(n2) steps, hence the total running time
of the algorithm is O(n3). �

Note that Theorem 3 easily extends to the minimum-cost version of the problem in which each weight-
edge assignment has an associated cost, and the total cost of the {a, b}-edge-weighting is to be minimized.

2.1.1 A special case — the antifactor problem

This section investigates a variant of the degree prescribed subgraph problem, the so-called antifactor
problem, where exactly one degree is prohibited at every node. That is, given a connected graph G and
an assignment f : V → Z+, we look for a subgraph H of G, such that dH(v) 6= f(v) for all v ∈ V . This
problem was solved by Lovász [16] and it was further generalized in [7] and [13]. It is easy to show that
the problem is always solvable when the graph has a cycle, therefore, we can assume that G is a tree.

We prove that the antifactor problem for trees can be solved by the dynamic programming algorithm
given in the proof of Theorem 3, meaning that we get an alternative polynomial-time algorithm for the
antifactor problem.

Theorem 4 The antifactor problem for trees can be reduced to the problem of deciding whether a given
tree has a proper {0, 1}-edge-weighting.

480

Figure 1: Illustration of the construction described in the proof of Theorem 4.

Proof: Let us take an instance of the antifactor problem, that is, we are given a tree G and an assignment
f : V → Z+. We construct a tree G′ in polynomial time which has a proper {0, 1}-edge-weighting if and
only if the given instance of the antifactor problem is solvable.

We start by taking a copy of G, then, for every vi ∈ V , we modify G′ as follows. Add iM new leaf
nodes connected only to vi, where M = n+ 1. Let Di denote the set of these newly added vertices. Let
u denote one of the nodes in Di, and add (iM + f(vi) − 1) new path of length 2 connected to u, and
add a leaf edge to each node in Di other than u. Figure 1 illustrates the construction for vi. Clearly, one
can construct G′ in polynomial time. In the rest of this proof, we show that the antifactor problem for
G and f can be solved if and only if G′ has a proper {0, 1}-edge-weighting.

First, assume that the antifactor problem for G and f is solvable, and let H denote a feasible solution.
To create a feasible {0, 1}-edge-weighting of G′, set the labels of the edges of G′ in the following fashion:
for each edge e ∈ EG, if H contains e, then let w(e) be 1, otherwise 0. Weight all the remaining edges —
which are exactly the newly added edges — with 1. We show that this {0, 1}-edge-weighting is proper.
In G′, there cannot be a collision between two vertices of the original graph, because the induced color
of any two nodes of the original graph are different: Since the contribution of the newly added edges
is exactly iM and that of the edges in the original graph is at most (n − 1), the largest possible label
of vi is Ui = iM + n − 1 = (i + 1)n + i − 1. The smallest possible label of vi+1, on the other hand, is
Li+1 = (i+1)M = (i+1)n+ i+1, which can be shown using a similar argument. We can see that Li+1 is
strictly greater than Ui, that is, zvi+1 > zvi in any proper {0, 1}-edge-weighting for all i ∈ {1, . . . , n− 1},
since Li+1 ≤ zvi+1

and Ui ≥ zvi .
Observe that there is no collision between vi and the nodes in Di either, because H was a feasible

solution to the antifactor problem, thus the number of edges incident to vi with weight 1 inside the
original graph G cannot be equal to f(vi) by the setting of the weights. One can easily see that collisions
along the rest of the newly added edges are impossible as well.

Second, assume that G′ has a proper {0, 1}-edge-weighting. Then let H be the subgraph of G con-
sisting of the edges with weight 1. We prove that H is a feasible solution to the antifactor problem for G
and f . Each edge e between vi and Di \ {u} must be weighted with 1, because each node in Di \ {u} has
an incident leaf edge, along which a collision would occur if the weight of e would be 0. Similar argument
shows that all edges in ∆(u)\{viu} must have weight 1. Therefore, z(vi) = dH(vi)+ |Di \{u}|+w(viu) =
dH(vi)+iM−1+w(viu) and z(u) = |∆(u)\{viu}|+w(viu) = iM+f(vi)−1+w(viu), and by z(vi) 6= z(u),

481

we have that dH(vi) 6= f(vi), which completes the proof. �
The tree obtained by the construction given in the proof of Theorem 4 has a {0, 1}-edge-weighting

if and only if the corresponding antifactor problem has a feasible solution. As Lovász gave an elegant
characterisation for the latter, we also have a characterisation of the trees obtained by the construction
with the 0-1 property. We leave it open whether this generalizes to a simple characterisation for trees in
general.

3 {a, b}-edge-weightings in general graphs

In 2011, Dudek and Wajc [11] proved that deciding whether a given graph G has the 1-2 property is
NP-complete. In this section, we consider a generalization of this problem, when we change the weight
set from {1, 2} to {a, b} for arbitrary distinct a and b.

The following claim shows that we can restrict ourselves to the case when a and b are integers and
relative primes.

Claim 5 Let a, b be a rational pair. Then for every d 6= 0, there is one-to-one correspondence between
proper {a, b}-edge-weightings and proper {ad, bd}-edge-weightings.

This simple claim holds, since multiplication by d 6= 0 on all edges does not change the feasibility of
an edge-weighting. We say that a and b are relevant if they are integers, relative primes, at most one of
them is negative, a 6= b and |b| ≥ |a|. By Claim 5, we can assume without loss of generality that a, b are
relevant whenever we consider {a, b}-edge-weightings.

One of the main theorems we have proven in [19] is the following:

Theorem 6 Let a and b be relevant numbers, and let G be an arbitrary simple graph. Then, it is
NP-complete to decide whether a proper {a, b}-edge-weighting exists.

The proof of this theorem consists of two parts, which we state in the next two theorems.

Theorem 7 Let a and b be relevant numbers such that a 6= −1 and b 6= 1 holds. Then, it is NP-complete
to decide whether a proper {a, b}-edge-weighting exists for simple graphs.

This theorem can be proven by a reduction from the NP-complete 3-COLOR problem, similarly to
the original proof of Dudek and Wajc. The key idea is to construct a so called a-forcing gadget, which is
a graph that has a leaf edge which must be weighted with a in every proper {a, b}-edge-weighting. Using
this gadget, for a graph G, one can construct another graph G′ such that the induced label of any node
in any proper {a, b}-weighting is one of three possible labels — defining a proper vertex coloring on the
original graph G and vice-versa. The other step in the proof of Theorem 6 is as follows.

Theorem 8 Let G = (V,E) be a simple graph. It is NP-complete to decide whether G has a {−1, 1}-
edge-weighting.

For this theorem, a fundamentally different reduction can be given from the NP-complete NAE3-SAT3
problem, since some of the gadgets given in the proof of Theorem 7 were meaningless in this case.

4 Concluding remarks

This paper presented some progress in terms of the hardness of finding {a, b}-edge-weightings, and pro-
posed the question of the extendability of a partial edge-weighting in bipartite graphs.

Generalizing the result of Dudek and Wajc [11], we proved that it is NP-complete to decide whether
a graph has a proper {a, b}-edge-weighting. As a generalization of the {a, b}-edge-weighting problem on
bipartite graphs, we asked whether a partial {a, b}-edge-weighting of a bipartite graph can be extended.
This problem was shown to be NP-complete, and a polynomial-time algorithm was given for trees. As a

482

special case, this implies an alternative polynomial-time algorithm for the so-called antifactor problem [16]
and also for deciding whether a tree has the 0-1 property [18].

Another interesting question is whether the dynamic programming algorithm given in Section 2.1
extends to graphs of bounded tree-width or for other types of labelings, for example when the label of a
node is defined as the product of the weights written on the incident edges.

It remains open whether the connection of the {0, 1}-property and the antifactor problem generalizes
to a nice characterisation for the trees with the {0, 1}-property.

When a < b, a is odd and b is even, Thomassen, Wu and Zhang [23] proved that a bipartite graph
has the a-b property if and only if it is an odd multi-cactus. Lyngise showed that the same holds for
2-connected bipartite graphs when a is odd and b = a + 2 [5], and also for bridgeless bipartite graphs
when a = 0 and b = 1 [18]. The general case, however, remains open. Based on computer testing all
bipartite graphs with at most 14 nodes, we conjecture that exactly the odd multi-cacti have no proper
{a, b}-edge-weightings whenever 0 < a < b.

References

[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed, and A. Thomason. Vertex-colouring edge-
weightings. Combinatorica, 27(1):1–12, 2007.

[2] L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. Electron. Notes Discret.
Math., 19:257–263, 2005.

[3] A. Ahadi, A. Dehghan, M.-R. Kazemi, and E. Mollaahmadi. Computation of lucky number of planar
graphs is NP-hard. Information processing letters, 112(4):109–112, 2012.

[4] M. Aigner and E. Triesch. Irregular assignments of trees and forests. SIAM Journal on Discrete
Mathematics, 3(4):439–449, 1990.

[5] J. Bensmail, F. Mc Inerney, and K. S. Lyngsie. On {a, b}-edge-weightings of bipartite graphs with
odd a, b. Discussiones Mathematicae Graph Theory, 42(1):159–185, 2022.

[6] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, and F. Saba. Irregular networks.
Congr. Numer, 64(197-210):250th, 1988.

[7] G. Cornuéjols. General factors of graphs. J. Comb. Theory Ser. B, 45(2):185–198, aug 1988.

[8] A. Dehghan, M.-R. Sadeghi, and A. Ahadi. Algorithmic complexity of proper labeling problems.
Theoretical Computer Science, 495:25–36, 2013.

[9] A. Dehghan, M.-R. Sadeghi, and A. Ahadi. The complexity of the sigma chromatic number of cubic
graphs. arXiv preprint arXiv:1403.6288, 2014.

[10] Y. Duan, H. Lu, and Q. Yu. L-factors and adjacent vertex-distinguishing edge-weighting. East Asian
Journal on Applied Mathematics, 2(2):83–93, 2012.

[11] A. Dudek and D. Wajc. On the complexity of vertex-coloring edge-weightings. Discrete Mathematics
and Theoretical Computer Science, 13(3):45–50, 2011.

[12] R. Faudree and J. Lehel. Bound on the irregularity strength of regular graphs. In Colloq Math Soc
Janos Bolyai, volume 52, pages 247–256, 1987.

[13] A. Frank, L. Chi Lau, and J. Szabó. A note on degree-constrained subgraphs. Discrete Mathematics,
308(12):2647–2648, 2008.

[14] M. Kalkowski, M. Karoński, and F. Pfender. Vertex-coloring edge-weightings: towards the 1-2-3-
conjecture. Journal of Combinatorial Theory, Series B, 100(3):347–349, 2010.

483

[15] M. Karoński, T. Luczak, and A. Thomason. Edge weights and vertex colours. Journal of Combina-
torial Theory Series B, 91(1):151–157, 2004.

[16] L. Lovász. Antifactors of graphs. Periodica Mathematica Hungarica, 4(2-3):121–123, 1973.

[17] H. Lu, X. Yang, and Q. Yu. On vertex-coloring edge-weighting of graphs. Frontiers of Mathematics
in China, 4(2):325–334, 2009.

[18] K. S. Lyngsie. On neighbour sum-distinguishing {0, 1}-edge-weightings of bipartite graphs. Discrete
Mathematics & Theoretical Computer Science, 20, 2018.

[19] P. Madarasi and M. Simon. On vertex-coloring {a, b}-edge-weightings of graphs. Technical Report
TR-2022-06, Egerváry Research Group, Budapest, 2022. egres.elte.hu.

[20] T. Nierhoff. A tight bound on the irregularity strength of graphs. SIAM Journal on Discrete
Mathematics, 13(3):313–323, 2000.

[21] J. Przyby lo. The 1–2–3 conjecture almost holds for regular graphs. Journal of Combinatorial Theory,
Series B, 147:183–200, 2021.

[22] B. Seamone. The 1-2-3 conjecture and related problems: a survey. arXiv preprint arXiv:1211.5122,
2012.

[23] C. Thomassen, Y. Wu, and C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the 1-2-3-
conjecture. Journal of Combinatorial Theory, Series B, 121:308–325, 2016.

[24] T. Wang and Q. Yu. On vertex-coloring 13-edge-weighting. Frontiers of Mathematics in China,
3(4):581–587, 2008.

[25] L. Zhong. The 1-2-3-conjecture holds for dense graphs. Journal of Graph Theory, 90(4):561–564,
2019.

484

On the generalized Mycielskian of complements of
odd cycles

Anna Gujgiczer1

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

and
MTA-BME Lendület Arithmetic Combinatorics

Research Group, ELKH, Budapest, Hungary
gujgicza@cs.bme.hu

Gábor Simonyi2

Alfréd Rényi Institute of Mathematics,
Budapest, Hungary

and
Department of Computer Science and

Information Theory
Budapest University of Technology and

Economics
simonyi@renyi.hu

Gábor Tardos

Alfréd Rényi Institute of Mathematics,
Budapest, Hungary
tardos@renyi.hu

Abstract: The main goal of this talk is to popularize a (special case of a) result of Pan
and Zhu according to which whether the generalized Mycielski construction applied to the
complement C2k+1 of an odd cycle makes the chromatic number increase or not depends on
the residue of 2k + 1 modulo 4. This surprizing phenomenon is explained by the topological
properties of the circular complete graphs Kp/q and the trivial observation that C2k+1 is
isomorphic to K(2k+1)/2.

Keywords: Mycielsky construction, circular coloring, topological method

1 Introduction

The Mycielski construction is one of the best-known constructions that from any graph G creates a graph
M(G) with the same clique number and larger chromatic number. Formally, denoting the chromatic
number of a graph F by χ(F) and its clique number by ω(F), we have

χ(M(G)) = χ(G) + 1, while ω(M(G)) = ω(G).

The generalized Mycielski construction has a further integer parameter r (describing the number of
“levels” in the construction) and it creates the graph Mr(G) from a given graph G as follows.

Definition 1 For a graph G and positive integer r the generalized Mycielskian Mr(G) of G is defined by

V (Mr(G)) = {(i, v) : 0 ≤ i ≤ r − 1, v ∈ V (G)} ∪ {z};
1Research is partially supported by the National Research, Development and Innovation Office (NKFIH) grant K–120706

of NKFIH Hungary.
2Research is partially supported by the National Research, Development and Innovation Office (NKFIH) grants K–

120706, K–132696 and SNN-135643 of NKFIH Hungary.
3Research is partially supported by the National Research, Development and Innovation Office (NKFIH) grants K–132696

and SNN-135643 of NKFIH Hungary.

485

E(Mr(G)) = {{(i, u), (j, v)} : {u, v} ∈ E(G) and (i = j = 0 or |i− j| = 1)} ∪ {{z, (r− 1, v)} : v ∈ V (G)}.
The (usual) Mycielskian of graph G is the special case of r = 2, i.e., M(G) = M2(G).

It is easy to see that we always have χ(Mr(G)) ≤ χ(G) + 1, but unlike in the cases r ≤ 2 when this
inequality always holds with equality, for r ≥ 3 we can have χ(Mr(G)) = χ(G) as well. For example, for
the complementary graph C7 of the 7-cycle we have

χ(M3(C7)) = 4 = χ(C7).

This example appears, for example, in Tardif’s paper [11] and this is even used in an essential way in his
more recent paper [12], where the author gave new counterexamples to the famous Hedetniemi conjecture
for much smaller chromatic numbers than it was done before and he used the above phenomenon to
improve his construction a little further. (Since then this record was yet further improved first by
Wrochna [14] and then by Tardif [13] where he achieved the best possible such value. The latter ones did
not use the generalized Mycielski construction.)

On the other hand, it was proved by Stiebitz [10] that if we apply the generalized Mycielski construc-
tion iteratively starting with an odd cycle (in fact, one can also start with a single edge and then obtain
an odd cycle after the first iteration), then the chromatic number increases at every step. Since [10] is
not easily available, this result is given with proof also in [1], cf. also [5].

Recently we observed that for the complementary graph C2k+1 of an odd cycle of length at least 5
and large enough r whether we have

χ(Mr(C2k+1)) = k + 1 = χ(C2k+1)

or
χ(Mr(C2k+1)) = k + 2 = χ(C2k+1) + 1

seems to depend on the residue of the length of the complementary odd cycle modulo 4. With some
effort we managed to verify that this is indeed the case but later realized that we have just rediscovered
a special case of a more general result due to Pan and Zhu [7]. This made us feel that this result is not
known well enough, and especially not in the (by our opinion) both very appealing and surprising form
of this special case. This is why we would like to popularize it.

2 Complements of odd cycles, circular chromatic number and
topology

Although they do not state it in this special form, let us state the above mentioned special case of Pan
and Zhu’s result formally.

Theorem 2 (Pan and Zhu [7]) For every even value of k > 0 and r ≥ 1 we have

χ(Mr(C2k+1)) = k + 2 = χ(C2k+1) + 1,

while for every odd k > 1 and large enough r we have

χ(Mr(C2k+1)) = k + 1 = χ(C2k+1).

The proof of Stiebitz’s result in [1] gives more than just the chromatic number of the iterated gener-
alized Mycielskian of odd cycles. It is based on the topological method to bound the chromatic number
from below introduced by Lovász in his seminal paper [4]. The proof in [1] is based on a lemma (Lemma
3.1 in [1], see also as Theorem 5.9.6 in [5]) which implies that if the topological lower bound on the
chromatic number provided by Lovász’s method is t for a graph G then it is t + 1 for Mr(G) for every
r. This means that whenever this lower bound is tight for G, then we must have χ(Mr(G)) ≥ χ(G) + 1
that can hold only with equality (implying that t+ 1 will also be a tight lower bound for χ(Mr(G))).

486

Graphs for which (a certain version of) the topological lower bound on their chromatic number is t
are called topologically t-chromatic in [8]. The observation mentioned in the Introduction and the facts
mentioned in the previous paragraph suggested that we should be able to prove that the graph C2k+1 is
topologically (k+ 1)-chromatic if and only if k is even. Towards proving this the main observation was a
trivial one: C2k+1 (for k ≥ 2) is isomorphic to the circular (also called rational, cf. [2]) complete graph
K(2k+1)/2 that we define next.

Definition 3 The circular complete graph Kp/q is defined for positive integers p ≥ 2q as follows.

V (Kp/q) = {0, 1, . . . , p− 1};

E(Kp/q) = {{i, j} : q ≤ |i− j| ≤ p− q}.

The name circular complete graph refers to the popular coloring parameter called circular chromatic
number that can be defined as

χc(G) := inf

{
p

q
: G→ Kp/q

}
,

where F → H denotes the existence of a graph homomorphism from F to H (that is an edge-preserving
map from V (F) to V (H)). It is well-known that

χ(G)− 1 < χc(G) ≤ χ(G)

holds for any graph G, in particular, χ(Kp/q) =
⌈
p
q

⌉
. For more about graph homomorphisms and the

circular chromatic number we refer to [2, 15, 16].
In Subsection 3.3.4 of [9] the last two authors already listed the odd-chromatic circular complete

graphs Kp/q among those graphs G that are topologically χ(G)-chromatic. As also explained there,
this follows from the monotonicity of the topological lower bound of the chromatic number for graph
homomorphism and the fact that the circular chromatic number of certain odd-chromatic topologically
χ(G)-chromatic graphs can be arbitrarily close to the lower bound χ(G)− 1. The first example found for
such a family was that of generalized Mycielskians of complete graphs by Lam, Lin, Gu and Song [3]. On
the other hand, if χ(G) is even, then topologically χ(G)-chromatic graphs G always have χc(G) = χ(G)
as shown in [8] (and independently for the important special case of Schrijver graphs also by Meunier in
[6]). This latter fact implies that even-chromatic circular complete graphs Kp/q with non-integral p/q will
not have equality between their chromatic number and its topological lower bound. Indeed, if there was
equality for such p/q then χc(Kp/q) = χ(Kp/q) = dp/qe > p/q would follow, an obvious contradiction.

The proof of the first statement in Theorem 2 already follows from the above: If k > 0 is even
then

⌈
2k+1

2

⌉
= k + 1 is odd implying that C2k+1

∼= K(2k+1)/2 is odd-chromatic therefore topologically t-

chromatic with t = k+1 = χ(C2k+1). This implies (by Stiebitz’s result) that χ(Mr(C2k+1)) = χ(C2k+1)+
1 = k + 2.

The proof of the second statement can be checked by finding the corresponding coloring that is not
too difficult.

Once one realizes the above relations it is quite natural to ask, whether χ(Mr(Kp/q)) = χ(Kp/q)

always holds when r is sufficiently large and χ(Kp/q) =
⌈
p
q

⌉
is even (and p/q non-integral). It is not

hard to check that the answer is yes. The result of Pan and Zhu [7] also covers this, but it is even more
general (since they also consider multicolorings) but we do not state it in its full generality. What we
really wanted to emphasize and make better known is the special case we stated as Theorem 2.

3 Acknowledgement

We thank a referee for spotting a small but disturbing mistake in the original version of this extended
abstract.

487

References

[1] András Gyárfás, Tommy Jensen, Michael Stiebitz, On graphs with strongly independent
color classes, J. Graph Theory 46 (2004), 1–14.

[2] Pavol Hell, Jaroslav Nešetřil, Graphs and Homomorphisms, Oxford University Press, New
York, 2004.

[3] Peter Che Bor Lam, Wensong Lin, Guohua Gu, Zengmin Song , Circular chromatic number
and a generalization of the construction of Mycielski, J. Combin. Theory Ser. B, 89 (2003), 195–205.

[4] László Lovász, Chromatic number, Kneser’s conjecture and homotopy, J. Combin. Theory Ser.
A 25 (1978), 319–324.

[5] Jiř́ı Matoušek, Using the Borsuk-Ulam Theorem, Lectures on Topological Methods in Combina-
torics and Geometry, 2nd corrected prining, Springer-Verlag, Berlin, Heidelberg, 2008.

[6] Frédéric Meunier, A topological lower bound for the circular chromatic number of Schrijver
graphs, J. Graph Theory 49 (2005), 257–261.

[7] Zishi Pan and Xuding Zhu, Multiple coloring of cone graphs, SIAM J. Discrete Math. 24 (2010),
1515–1526.

[8] Gábor Simonyi and Gábor Tardos, Local chromatic number, Ky Fan’s theorem, and circular
colorings, Combinatorica 26 (2006), 587–626.

[9] Gábor Simonyi and Gábor Tardos, Colorful subgraphs in Kneser-like graphs, European J.
Combin. 28 (2007), 2188–2200.

[10] Michael Stiebitz, Beiträge zur Theorie der färbungskritischen Graphen, Habilitation, TH Ilmenau
(1985)

[11] Claude Tardif, Fractional chromatic numbers of cones over graphs, J. Graph Theory 38 (2001),
87–94.

[12] Claude Tardif, The chromatic number of the product of 14-chromatic graphs can be 13, Combi-
natorica 42 (2022), 301–308.

[13] Claude Tardif, The chromatic number of the product of 5-chromatic graphs can be 4, manuscript,
available at https://www.researchgate.net/publication/365650263 THE CHROMATIC NUMBER

OF THE PRODUCT OF 5-CHROMATIC GRAPHS CAN BE 4

[14] Marcin Wrochna, Smaller counterexamples to Hedetniemi’s conjecture, arXiv:2012.13558
[math.CO].

[15] Xuding Zhu, Circular chromatic number: a survey, Discrete Math. 229 (2001), 371–410.

[16] Xuding Zhu, Recent Developments in Circular Colouring of Graphs, in: Topics in Discrete
Mathematics, (Martin Klazar, Jan Kratochv́ıl, Martin Loebl, Jǐŕı Matoušek, Pavel Valtr, Robin
Thomas eds.), Algorithms and Combinatorics, vol. 26 (2006), 497–550.

488

Connecting Multicut and Multiway Cut
using the Complement of the Demand Graph

Tamás Király1

Department of Operations Research
ELKH-ELTE Egerváry Research Group

Eötvös Loránd University
Budapest, Hungary

tamas.kiraly@ttk.elte.hu

Daniel P. Szabo

Department of Operations Research
Eötvös Loránd University

Budapest, Hungary
dszabo2@wisc.edu

Abstract: The Multiway Cut (MWC) problem asks for a minimum cut separating any two
terminals from a given terminal set, while the Multicut (MC) problem requires terminal
pairs specified by a demand graph H to be separated. Accurate approximation algorithms
exist for MWC, while MC cannot be approximated to within a constant factor assuming the
Unique Games Conjecture (UGC). We exhibit some characteristics of H̄, the complement
of the demand graph, where Multicut is equivalent to some Multiway Cut problem. One
application we present concerns the solvability of MC on graphs of bounded treewidth tw(·).
In particular, MC is APX-hard even when tw(G \ V (H)) and tw(H̄) are bounded, yet fixed
parameter tractable (FPT) in tw(G) when the size of the maximum complete graph in H̄ is
bounded.

Keywords: graph connectivity; multicut; FPT; treewidth

1 Introduction

Graph cut problems have a long history in combinatorial optimization, with applications in network
reliability, chip design, and image processing. The multiway cut problem asks, given an input graph
G = (V,E) and a terminal set S = {s1, . . . sk} ⊆ V , for the minimum cut C ⊆ E that separates each
si ∈ S into different components. As cuts can be viewed as partitions, this is equivalent to a node coloring
of G with k colors such that each terminal si is colored with color i. We then seek to minimize the total
weight of bichromatic edges.

The multicut problem involves, in addition to a terminal set, a demand graph H on the set of
terminal nodes, and asks for a minimum weight cut that disconnects each pair of nodes in E(H). We
assume that H contains no isolated nodes. A similar problem is multi-multiway cut, where we are
given a set of (not necessarily disjoint) terminal sets S1, S2, . . . , Sc and seek to separate each pair s, s′ ∈ Si

with s ̸= s′ for i = 1 . . . c. This generalizes multiway cut when c = 1, and multicut when each terminal
set corresponds to an edge of H. The reverse can be said for multicuts, as multi-multiway cut can
be represented with a demand graph that is the union of c complete graphs. The key difference is in the
parameters the problems are given.

The multiway cut problem is NP-hard even for k = 3 [7]. Nonetheless, approximating multiway cut
has seen a lot of progress in the last decade, with improved analysis of the CKR relaxation [6] to achieve
an approximation factor of 1.2965 [11], with the best known lower bound being slightly above 1.2 [3].
The multiway cut problem can sometimes be solved exactly, depending on G. If G is a tree, a simple
dynamic programming algorithm can compute the optimal multiway cut [9]. This extends to when G

1Research is supported by supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number
LP2021-1/2021, and by the National Research, Development and Innovation Fund of Hungary, financed under the ELTE
TKP 2021-NKTA-62 funding scheme (project K10602/21).

489

has bounded treewidth tw(G), for which [8] gives an FPT algorithm for multi-multiway cut when c
is constant.

The multicut problem encodes multiway cut when H is a complete graph, and thus is at least
as difficult. It admits an O(log |E(H)|) approximation algorithm, and is super constant-hard under the
Unique Games Conjecture (UGC) [4]. Nonetheless there are some conditions on G and H which make
the problem tractable. As we saw, multicut is even hard for general G when H is a triangle, which
leaves little hope for conditions on H. One direction is when G is planar. Although it is still NP-hard,
there is a polynomial time approximation scheme (PTAS) [1] for multiway cut, and constant factor
approximation algorithms for multicut [12]. Another direction is to focus on when G resembles a tree.
We already mentioned multiway cut can be computed exactly when tw(G \ S) is bounded. Directed
multicut can also be computed exactly when G is a tree, but it is hard for undirected trees. The next
step is to look at fixed parameter tractability. When tw(G + H) is bounded, where G + H is just the
union of the edges of G and H, the problem can be solved in polynomial time [10]. It is shown in [2]
that if only tw(G) and tw(H) are separately bounded, then multicut remains NP-hard. This is because
multicut in stars is equivalent to multicut in trees of height 2 with H composed only having vertex
disjoint edges. They also show it is FPT in tw(G+ H̄) using a dynamic programming algorithm, where
H̄ is the complement graph of H. One of our motivating questions is what the complexity of multicut
is when tw(G) and tw(H̄) are separately bounded. We will show that the problem remains hard when
only tw(H̄) and tw(G \V (H)) is bounded, as in the Erdős-Székely result for multiway cut [9], but can
be solved in polynomial time if tw(G) itself is bounded as well.

A powerful result on approximability based on the properties of H is given by Chekuri and Madan
[5]. They give a 2-approximation when H excludes an induced matching of size t for constant t. This
is equivalent to all H̄ that do not have an induced near complete Kt \ tK2, which is true for any H̄
with bounded degree. They go on to ask what role the demand graph plays in the approximability of
multicut, and when the approximation factors of multiway cut can be used in this setting.

We give hardness results for the case where the treewidth of H̄ is bounded and G \ S is a forest. We
also give algorithms FPT in tw(G \ S) when H̄ is the disjoint union of complete graphs, or |E(H̄)| is
bounded, or H̄ is the disjoint union of complete graphs along with a constant number of additional edges.
We also give an FPT algorithm in tw(G) when the size of the maximum stable set in H is bounded.
These results are summarized in Table 1.

Parameters Constraints Complexity

tw(G+ H̄) bounded P (Theorem 12 in [2])

tw(G \ V (H)), tw(H̄) APX-hard (Theorem 7)

tw(G \ V (H)) H̄ =
⊔

iKni FPT (Theorem 1)

tw(G \ V (H)), |E(H)| FPT (Theorem 3)

tw(G \ V (H)), |E(H ′)| H̄ =
⊔

iKni
+H ′ FPT (Theorem 4)

tw(G) α(H) bounded FPT(Theorem 6)

Table 1: A summary of the results on the complexity of MC using H̄. Here ⊔ is the disjoint set union,
and α(H) is the size of the maximum stable set in H, and H ′ is an arbitrary graph. All of the parameters
include the graph G and the demand graph H.

Our main tool is the simple fact that any multicut solution creates some partition of V (G), and in any
component the terminals that appear must induce a complete graph in H̄. This works in both directions,
as any covering of the vertices of H̄ by complete graphs corresponds to a multiway cut instance. Thus,
if we can grasp the possible partitions into complete graphs of H̄, we can reduce the complexity to the
multiway cut problem.

490

2 Tractable Cases

2.1 Treewidth

We first define a tree decomposition of a graphG. A tree decomposition ofG = (V,E) is a pair ({Xi}i∈I , T)
of bags Xi indexed by I and a tree T with vertex set I that satisfies the following properties:

•
⋃

i∈I Xi = V .

• Each edge u, v in E is contained in some Xi.

• For each triple i, j, ℓ ∈ I, if j lies on the path between i and ℓ, then Xi ∩Xℓ ⊆ Xj .

The width of a given tree decomposition is maxi∈I |Xi| − 1. The treewidth tw(G) is the minimum
width of any tree decomposition, and can be thought of as a measure of how close G is to a tree.

2.2 Basic Applications

We begin by going through some of the connections between multicut and multiway cut when we
can enumerate all possible vertex clique covers of H̄. A vertex clique cover is a partition of the vertices
of H̄ such that each partition induces a complete subgraph.

Theorem 1 The multicut problem is FPT in tw(G \ V (H)) when H̄ is the disjoint union of complete
graphs.

Proof: Let (G,H) be a multicut instance with H̄ =
⊔k

i=1Kni . Create an instance (G′, S) for
multiway cut where G′ is formed by merging Kni

into one vertex si for each i, and S = {s1, . . . , sk}.
We can solve multiway cut in polynomial time on bounded tw(G′ \ S) [8]. When tw(G \ V (H)) is
bounded, so is tw(G′ \ S), and the solution to the multiway cut instance is the same as that of the
multicut instance. □

Theorem 2 The multicut problem is FPT in tw(G \ V (H)) and |E(H̄)|.

Proof: Consider any clique cover of H̄ by disjoint complete subgraphs. By Theorem 1, we can solve
multicut in polynomial time on the instance where the complement of the demand graph is this clique
covering. The number of possible such decompositions is no greater than the number of ways to partition
the edge set, which is a function of |E(H̄)|. Thus we can look at each partition, and take the minimum
multiway cut as our solution. □

A useful corollary is that multicut can be solved using multiway cut even when |E(H)| is bounded.
The reason is simply that |E(H̄)| is bounded by a function of |E(H)| since we assumed that no terminal
node is isolated in H. Specifically |E(H̄)| ≤ |V (H)|2 ≤ (2|E(H)|)2, since we assumed that no terminal
node is isolated in H.

Corollary 3 The multicut problem is FPT in tw(G \ V (H)) and |E(H)|.

Finally we combine Theorems 1 and 2.

Theorem 4 The multicut problem is FPT in tw(G \ V (H)) and |E(H ′)| when H̄ =
⊔

iKni +H ′.

Proof: We can use the proof method of Theorem 2 to bound the number of vertex clique covers. The
decomposition from Theorem 1 is one such cover, and any other decomposition would include a partition
of some nonempty subset of H ′. Furthermore, this partition and subset determines the cliques in the

491

cover. Thus, the number of clique covers is no greater than the total number of possible partitions of
subsets of E(H ′), which is still bounded by a function of |E(H ′)|. □

Finally we mention that all of the above results, as well as Theorem 6, reduce the multicut instance
to a multiway cut instance, and therefore can be approximated well [11]. We summarize this in the
following corollary:

Corollary 5 There is a 1.2965-approximation algorithm for multicut when H satisfies any of the
following:

• H̄ =
⊔

iKni
+H ′ for some H ′ with a constant number of edges.

• The size of the maximum stable set α(H) is bounded.

2.3 Dynamic Programming Algorithm when G is a Tree

In this section we give an FPT algorithm in tw(G) when α(H) is bounded, where α(·) denotes the size of
the maximum independent set. The maximum independent set in H corresponds to the largest complete
graph in H̄. If the size of the largest complete graph in H̄ is bounded, the number of ways to put
terminals in a single component is polynomial in n, and we can build these components up as we traverse
the tree bottom-up.

In this article, we describe the algorithm only for the case when G is a tree, but it can be generalized
to bounded treewidth via the usual methods.

Define n = |V (G)|, let S = V (H) be the terminal set, and let α(H) = k. Root G at an arbitrary
vertex r. We can assume each terminal s is a leaf in G, and no other nodes are leaves. Indeed, any
terminal s can be made a degree 1 node in G by adding a dummy vertex v to replace s, and an edge
(v, s) of arbitrary large weight, and any nonterminal leaf can be removed without changing the problem.
Define the set of all possible subsets of the terminals that can be in a single component (all complete
graphs in H̄) as K. Note that |K| ≤

(
n
k

)
. For a nonleaf node u in G, the subproblem TreeCut(u, T) is

parameterized by some terminals T ∈ K and stores the optimal cut for the subtree under u given that
the terminals in T are in the component of u. If u has children v1, . . . , vl this can be calculated as

TreeCut(u, T) =
l∑

j=1

min

{
min

T ′∈K:T ′∩T=∅
TreeCut(vj , T

′) + w(u, vj),TreeCut(vj , T)

}
.

The output is then the minimum value at the root, namely minT∈K TreeCut(r, T). This is written
explicitly in Algorithm 1. Although the algorithm as written here only finds the value of the minimum
multicut, backtracing can give the edges as well.

Theorem 6 Algorithm 1 outputs the cost minimum multicut in polynomial time.

Proof: Correctness follows from induction on the depth of u. Each leaf node is a terminal vertex that
only has a value less than ∞ when it is in it’s own component. For a given nonleaf node u with children
v1, . . . , vl and some T ∈ K that can be in a single component of a valid cut, if u is in the same component
as the terminals in T , each child vj is either in this component as well or in some other one. If vj is in
another component T ′, T ′ cannot have any of the same terminals as T and the edge (u, vj) must be cut.
The optimal cost is then just the sum of the minimum of these independent choices for each vj . Note
that these choices are only independent because G itself is a tree, rather than just G \ S.

The running time of a näıve implementation of the algorithm is O(n|K|2), which is O(n2k+1) and
polynomial time when k is bounded. □

When G only has bounded treewidth, we can generalize this algorithm by adding another dimension
for how a bag is partitioned, and what terminals are in the same component as each part of the partition.
This would add, for some exponential unary function f and polynomial (for fixed α(H)) binary function
g, an additional factor of f(tw(G)) · g(n, tw(G)) to the running time. We omit the details for brevity.

492

Algorithm 1 A dynamic programming algorithm for multicut when G is a tree and H has a maximal
independent set of bounded size

Require: G a tree rooted at r, α(H) bounded.
n← |V |, k ← α(H), K ← {T ⊆ S : |T | ≤ k, T induces a complete graph in H̄}.
for all s ∈ S, T ∈ K do

TreeCut(s, T)←
{

0 if s ∈ T
∞ otherwise

end for
Let u1, u2, . . . , um be a bottom up traversal of the interior nodes of T .
for i = 1 to m do

Let {v1, . . . , vl} be the children of ui.
for all T ∈ K do

TreeCut(u, T)←∑l
j=1 min

{
min

T ′∈K:T ′∩T=∅
TreeCut(vj , T

′) + w(u, vj)

TreeCut(vj , T)
end for

end for
return minT∈K TreeCut(r, T).

3 Hardness of Bounded tw(H̄), tw(G \ V (H))

We reduce the vertex cover problem to our problem. We will use a demand graph where H̄ is a set of
disjoint 2-paths. In this case, cuts in the constructed graph G′ correspond to matchings in H̄ (the pairs of
non-separated terminals), of which there are exponentially many. These will correspond to vertex covers
of G, with weights chosen such that the minimum weight multicut is the same as the minimum weight
vertex cover.

Theorem 7 The multicut problem is APX-hard with bounded tw(H̄) and G \ V (H) a forest.

Proof: Let G = (V,E) be an input to Vertex-Cover. Let H, the demand graph of the multicut in-
stance, have vertices corresponding to 3 copies of V : V1, V2, and V3. Let H̄ have edge set {(v1, v2), (v1, v3) :
v ∈ V }. Construct the multicut instance (G′, H) by replacing each edge in G with the gadget shown in
Figure 1, with weights as shown for some λ > 1 arbitrarily large. For each vertex v ∈ V there is only one
weight 1 edge going to v3, but there may be multiple instances of v2, one for each edge. This is achieved
by adding an extra vertex for each repeated instance of v2 with an edge of infinite weight connected to
the true terminal node v2. An example for the triangle graph is given in Figure 2.

Thus G \ V (H) consists only of isolated vertices, and has treewidth zero. Any multicut of G′ must
cut at least two of the edges adjacent to any nonterminal node. Any minimum multicut of G′ cuts at
most three of these edges.

The mapping between multicuts of G′ and vertex covers of G covers v ∈ V whenever v1 and v2 are in
the same component. In this case, each nonterminal edge neighboring v in G′ only needs 2 edges cut. For
λ large, any minimum multicut will cut 2 edges in G′ for each edge in G, plus a cover C of E, incurring
a cost of 2λ|E| + |C|. This is minimal if and only if C is a minimum vertex cover C∗, so the minimal
multicut of G′ corresponds the minimal vertex cover of G. □

References

[1] MH. Bateni, MT. Hajiaghayi, P. Klein, M. Claire, A Polynomial-time Approximation
Scheme for Planar Multiway Cut, Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (2012) 639–655

493

u1

v2 u2

v1

u3 v3

λ

λ λ

λ

1 1

u1

u2

u3

v1

v2

v3

Figure 1: The gadget used to connect multicuts to vertex covers. On the left is the graph G, and on the
right the complement of the demand graph H̄.

λ

λ λ

λ
1 1

λ

λ

λ
λ

λ

λ

λ
λ

1

Figure 2: An example of the reduction on a triangle graph

[2] C. Bentz, P. Le Bodic, Complexity of the multicut problem, in its vanilla, partial and generalized
versions, in graphs of bounded treewidth, Theoretical Computer Science 809 (2020) 239–249

[3] K. Bérczi, K. Chandrasekaran, T. Király, V. Madan, Improving the integrality gap for
multiway cut, Mathematical Programming 183 (2020) 171–193

[4] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, D. Sivakumar, On the hardness of
approximating multicut and sparsest-cut, Comput. Complex. 15 (2006) 94–114

[5] C. Chekuri, V. Madan, Approximating multicut and the demand graph, Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (2017) 855–874

[6] G. Călinescu, H. Karloff, Y. Rabani, An Improved Approximation Algorithm for MULTIWAY
CUT, Journal of Computer and System Sciences 60 (2000) 564–574

[7] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, M. Yannakakis, The
Complexity of Multiterminal Cuts, SIAM Journal on Computing 23 (1994) 864–894

[8] X. Deng, B. Lin, C. Zhang, Multi-Multiway Cut Problem on Graphs of Bounded Branch Width,
Frontiers in Algorithmics and Algorithmic Aspects in Information and Management (2013) 315–324

[9] P.L. Erdős, A. Frank, L. Székely, Minimum multiway cuts in trees, Discrete Applied Mathe-
matics 87 (1998) 67–75

[10] G. Gottlob, S.T. Lee, A logical approach to multicut problems, Information Processing Letters
103 (2007) 136–141

494

[11] A. Sharma, J. Vondrák, Multiway cut, pairwise realizable distributions, and descending thresh-
olds, Proceedings of the forty-sixth annual ACM symposium on Theory of computing (2014) 724–733

[12] E. Tardos, V.V. Vazirani, Improved bounds for the max-flow min-multicut ratio for planar and
Kr,r-free graphs, Information Processing Letters 47 (1993) 77–80

495

496

Submodular flows with minimal spread1

Alpár Jüttner

Department of Operations Research
Eötvös Loránd University

Pázmány Péter stny. 1/C, Budapest, Hungary
alpar.juttner@gmail.com

Eszter Szabó

Department of Operations Research
Eötvös Loránd University

Pázmány Péter stny. 1/C, Budapest, Hungary
szeti97@gmail.com

Abstract: Balanced optimization problems aim to find the most equitable distribution of
resources. This paper examines the Balanced Submodular Flow Problem, that is the problem
of finding a feasible submodular flow minimizing the difference between flow values along the
arcs. An algorithm is presented to solve it with O(m4) submodular function minimizations.
We also show a strongly polynomial algorithm for the weighted case.

Keywords: submodular flow, balanced optimization, Handler-Zang Method

1 Introduction

In balanced optimization problems, the aim is to find the most equitable distribution of resources. Several
problems have been analysed in the literature such as the balanced spanning tree problem which has
been studied by Longshu Wu [9]. Another example is the balanced assignment problem by Martello[7].
Ahuja proposed a parametric simplex method for the general balanced linear programming problem [8].
Punnen et al. introduced a strongly NP-hard problem, which is called the quadratic balanced optimization
problem, and showed some algorithms in a special case.

Scutella investigated Balanced Network Flow Problem [1],[10]. The problem is to find a feasible
flow minimizing the difference between the maximum and minimum flow values along the arcs, i.e.
maxe∈A f(e) − mine∈A f(e). Scutella presented an algorithm using Newton’s approach by performing
O(n2 log3(n)) max-flow computations, where n is the number of the nodes.

This paper examines a similar problem with submodular flows. The problem aims to find a feasible
submodular flow minimizing the difference between flow values along the arcs. A strongly polynomial
algorithm is presented to solve Balanced Submodular Flow Problem with O(m4) submodular function
minimizations, where m is the number of edges in the input graph. In section 4, the Balanced Integral
Submodular Flow Problem is introduced and the optimal integral solution is given using the fractional
optimum. Finally, section 5 describes the Weighted Balanced Submodular Flow problem, that is the
problem of finding a feasible submodular flow minimizing the difference between the maximum and
minimum weighted flow values along the arcs. For a given graph G = (V,A) and any c : A −→ R+, the
problem aim to find a feasible submodular flow f minimizing maxe∈A c(e)f(e) − mine∈A c(e)f(e). We
show that the Handler-Zang method solves this problem in O(n4m6 log6(m)) number of iterations.

2 Preliminaries

Definition 1 For an underlying set V , the set functions b, p : P(V) −→ R are called submodular and
supermodular if

b(X) + b(Y) ≥ b(X ∪ Y) + b(X ∩ Y) (1)

1Supported by ELKH-ELTE Egerváry Research Group and MTA-ELTE Momentum Matroid Optimization Research
Group

497

and
p(X) + p(Y) ≤ p(X ∪ Y) + p(X ∩ Y) (2)

holds for each subsets X,Y ⊆ V , respectively. A functions is called modular if it is both sub- and
supermodular.

Theorem 2 (Orlin [5]) Assuming that the value of a submodular function b can be computed for any
X ⊆ V in time T , then min{b(X) : X ⊆ V } can be computed in time O(n5T + n6)

Definition 3 For a directed graph G = (V,A) and a subset of vertices X ⊆ V , let ϱ̃(X) and δ̃(X) denote
the set of arcs entering X and leaving X, respectively. For a vector x ∈ RA, let

ϱx(X) :=
∑

e∈ϱ̃(X)

x(e), δx(X) :=
∑

e∈δ̃(X)

x(e) and ∂x(X) := ϱx(X)− δx(X). (3)

Furthermore, let ϱ(X), δ(X) and ∂(X) denote the number of edges entering X, leaving X, and their
difference, respectively.

A G is called Eulerian if ∂(v) = 0 for all v ∈ V . Note that G is not required to be connected.

It is straightforward to check that ϱx(X) and δx(X) are submodular functions for any nonnegative
vector x. If l, u ∈ RA and l ≤ u, then ϱu(X)− δl(X) is submodular and ϱl(X)− δu(X) is supermodular.

Definition 4 Let us given a directed graph G = (V,A) and a submodular function b : P(V) −→ R. A
vector x ∈ RA is called a submodular flow if

ϱx(X)− δx(X) ≤ b(X) (4)

holds for each X ⊆ V .
For vectors l, u ∈ RA, a submodular flow x is called (l, u)-bounded if l ≤ x ≤ u.

Theorem 5 For lower and upper bounds l, u ∈ RA, there exists an (l, u)-bounded submodular flow if and
only if l ≤ u and

ϱl(X)− δu(X) ≤ b(X) (5)

hold for each X ⊆ V .

Theorem 6 (Frank, [3]) Assuming that the value of a submodular function b can be computed for any
X ⊆ V in time T , then a feasible submodular flow can be found in O(n5T) time.

3 Balanced Submodular Flows

Definition 7 The spread σ(x) of a vector x ∈ RA is the value

max
a∈A

x(a)−min
a∈A

x(a)

The Balanced Submodular Flow Problem is to find a submodular flow of minimum spread.

Problem 8 For a given directed graph G = (V,A) and a submodular function b : P(V) −→ Z, the aim
is to find a submodular flow of minimum spread, i.e find

σ∗ := min {σ(x) : ϱx(X)− δx(X) ≤ b(X) ∀X ⊆ V } (6)

along with a minimizing vector x∗.

Definition 9 For an arbitrary real value κ ∈ R, let s(κ) denote the minimal value σ for which there
exists a (κ1, (κ+ σ)1)-bounded submodular flow x.

498

With this notation
σ∗ := min

κ∈R
s(κ) (7)

From Theorem 5 it follows that

s(κ) = min {σ ≥ 0 : 0 ≤ b(X) + σδ(X)− κ∂(X) ∀X ⊆ V } (8)

Claim 10 s(κ) is a convex function.

Proof: For any κ1, κ2 ∈ R, let x1 and x2 be submodular flows such that κi1 ≤ xi ≤ (κi + s(κi))1, and
let 0 ≤ λ ≤ 1. Then x′ := λx1 + (1 − λ)x2 is also a submodular flow and [λκ1 + (1 − λ)κ2]1 ≤ x′ ≤
[λ(κ1 + s(κ1)) + (1− λ)(κ2 + s(κ2))]1, therefore

s(λκ1 + (1− λ)κ2) ≤ λs(κ1) + (1− λ)s(κ2) (9)

□
In the following, a dual characterization of the value of the minimum spread and algorithms for the

Balanced Submodular Flow Problem will be given. For some technical reasons, the case of Eulerian and
non-Eulerian graphs are treated separately.

3.1 Eulerian graphs

Clearly, if G is Eulerain and x ∈ RA is a submodular flow, then x + c1 is also a submodular flow for
any c ∈ R. Therefore the Balanced Submodular Flow problem reduces to the problem of finding the
minimum value σ∗ for which there exists a submodular flow 0 ≤ x∗ ≤ σ∗

1. Applying Theorem 5, σ∗ is
the smallest value for which b(X) + σ∗δ(X) ≥ 0 holds for all X ⊆ V . In other words, we are looking for
the root of the function

f(σ) := min{b(X) + σδ(X) : X ⊆ V } (10)

This immediately gives the following dual characterization of the minimum spread submodular flows.

Theorem 11 Assume that G is Eulerian. Then

σ∗ = max

{−b(X)

δ(X)
: X ⊆ V, δ(X) > 0

}
(11)

Therefore the problem reduces to a fractional optimization problem, the optimum of which can be
calculated using the standard Newton-Dinkelbach procedure[12], which is outlined in Algorithm 1. It is
straightforward to see that δ(Xi) is strictly decreasing in every iteration and a standard argument shows

that the final set Xi indeed maximizes the value −b(X)
δ(X) , thus

Theorem 12 Algorithm 1 finds the value σ∗ of the minimum spread and the corresponding dual X after
at most m iterations.

3.2 Non-Eulerian Graphs

Theorem 13 Assume that G is not Eulerian. Then

σ∗ = max

{
b(X)∂(Y)− b(Y)∂(X)

δ(Y)∂(X)− δ(X)∂(Y)
: X,Y ⊆ V, ∂(X) ≥ 0, ∂(Y) < 0

}
, (12)

and σ∗ along with the maximizing sets X and Y can be calculated in O(m4T) time, where T denotes the
time complexity of a submodular function minimization.

499

Algorithm 1 Minimum spread calculation in Eulerian graphs

1: Let σ1 := 0
2: i := 1
3: loop
4: Let Xi := arg min{b(X) + σiδ(X) : X ⊆ V }
5: if b(Xi) + σiδ(Xi) ≥ 0 then
6: RETURN σi, Xi

7: else if δ(Xi) = 0 then
8: RETURN “INFEASIBE”
9: else

10: σi+1 := −b(Xi)
δ(Xi)

11: end if
12: i←− i+ 1
13: end loop

In order to prove the theorem above, we first show that the expression above constitutes a lower
bound of σ∗ for any pairs of sets X and Y , then give an algorithm for finding X∗ and Y ∗ for which the
equality holds.

Lemma 14 Let X,Y ⊆ V such that ∂(X) ≥ 0 and ∂(Y) < 0 then

σ∗ ≥ b(X)∂(Y)− b(Y)∂(X)

δ(Y)∂(X)− δ(X)∂(Y)
(13)

Proof: By definition of x∗, there exists a real value κ such that κ1 ≤ x∗ ≤ (κ+σ∗)1. Using Theorem 5
with l := κ1 and u := (κ+ σ∗)1 we get that

κ∂(X)− σ∗δ(X) ≤ b(X) (14)

and
κ∂(Y)− σ∗δ(Y) ≤ b(Y). (15)

From which we get that

b(X)∂(Y) + σ∗δ(X)∂(Y) ≤ κ∂(X)∂(Y) ≤ b(Y)∂(X) + σ∗δ(Y)∂(X) (16)

therefore
σ∗(δ(Y)∂(X)− δ(X)∂(Y)

)
≥ b(X)∂(Y)− b(Y)∂(X) (17)

□
In order to finish the proof of Theorem 13, we give an algorithm that actually finds the pairs of sets

X and Y for which 13 holds with equality. The procedure is outlined in Algorithm 2.
Computing C in line 6 involves in the minimizations of the submodular function b(X) + σiδ(X) −

κi∂(X). If the algorithm exits at line 8, then κi∂(X)− σiδ(X) ≤ b(X) holds for all X ⊆ V , therefore —
by Theorem 5 — there exists a submodular flow κi1 ≤ x ≤ (κi + σi)1. On the other hand, Theorem 14
ensures that the spread of any submodular flow is at least σi. If the algorithm exits at line 10, then both
ϱ(C) and δ(C) is zero, but b(C) < 0, thus the submodular flow problem has no feasible solution at all.

Note, that ∂(Yi) < 0 in every iteration, thus σi and κi are valid, i. e. their denominator can’t be zero.
It is straightforward to see that the value σi strictly instreases at each iteration, therefor the algorithms

terminates after a finite number of iterations.

500

Algorithm 2 Minimum spread calculation in non-Eulerian graphs

1: Choose X1, Y1 ⊆ V such that ∂(X1) > 0 and ∂(Y1) < 0
2: i := 1
3: loop

4: σi :=
b(Xi)∂(Yi)− b(Yi)∂(Xi)

δ(Yi)∂(Xi)− δ(Xi)∂(Yi)

5: κi :=
b(Xi)δ(Yi)− b(Yi)δ(Xi)

δ(Yi)∂(Xi)− δ(Xi)∂(Yi)
6: C := arg min{b(X) + σiδ(X)− κi∂(X) : X ⊆ V }
7: if b(C) + σiδ(C)− κi∂(C) ≥ 0 then
8: RETURN κi, σi, Xi, Yi
9: else if ∂(C) = 0 and δ(C) = 0 then

10: RETURN “INFEASIBE”
11: else if ∂(C) ≥ 0 then
12: Xi+1 := C
13: Yi+1 := Yi
14: else
15: Xi+1 := Xi

16: Yi+1 := C
17: end if
18: i←− i+ 1
19: end loop

3.2.1 Running time of the algorithm

In the following, it will be shown that not only Algorithm 2 is finite, but in fact it runs in a strongly
polynomial time.

Let us consider two sets Z1, Z2 ⊆ V of the same type if δ(Z1) = δ(Z2), ρ(Z1) = ρ(Z2) and b(Z1) =
b(Z2).

Theorem 15 The algorithm can find at most m2 +m sets of different type.

Proof: First, observe that if δ(Xi) > 0, Equation 6 can be rewritten as follows

arg min{b(X) + σiδ(X)− κi∂(X)} = arg max

{
δ(x)

(κi∂(X)− b(X)

δ(X)
− σi

)}
(18)

Let us consider the subsets Xi1 , Xi2 , . . . , Xik found by the algorithm, such that

∂(Xi1)

δ(Xi1)
=
∂(Xi2)

δ(Xi2)
= · · · = ∂(Xik)

δ(Xik)

where δ(Xij) > 0. Let us assume that
−b(Xi1

)

δ(Xi1)
<

−b(Xi2
)

δ(Xi2)
< · · · < −b(Xik

)

δ(Xik
) . Note that if X,X ′ are found

by the algorithm and ∂(X)
δ(X) = ∂(X′)

δ(X′) and −b(X)
δ(X) = −b(X′)

δ(X′) , then δ(X) = δ(X ′) must hold and they can be

considered equivalent. For any κ, σ, we have that

κ∂(Xi1)− b(Xi1)

δ(Xi1)
− σ ≤ κ∂(Xi2)− b(Xi2)

δ(Xi2)
− σ ≤ · · · ≤ κ∂(Xik)− b(Xik)

δ(Xik)
− σ

Because Xi1 maximizes the right hand side of Equation 18 for κi1 , σi1 , therefore δ(Xi1) > δ(Xi2). By
the same token, we get that δ(Xi1) > δ(Xi2) > · · · > δ(Xik). Thus, ∂(X) and ∂(Y) must be different
for any pair of subsets X,Y such that δ(X) = δ(Y). So, the algorithm finds at most m subsets with a

501

particular value of δ(X). Since there are at most m different values of δ(X), the algorithm finds at most
m2 different sets, such that δ(X) > 0.

Now, let Xj1 , Xj2 , . . . , Xjl be the sets found by the algorithm such that δ(Xi) = 0. We can assume

that
b(Xj1

)

ρ(Xj1)
>

b(Xj2
)

ρ(Xj2)
> · · · > b(Xjl

)

ρ(Xjl
) . Similarly to the above argument, weget that ρ(Xj1) < ρ(Xj2) <

· · · < ρ(Xjl), which means that there are at most m different subsets with δ(X) = 0. Therefore, the
algorithm finds at most m2 +m different sets. □

In order to estimate the number of iterations of the algorithm, we give an upper bound on how
many times a particular set C (or another one of the same type) can repeatedly appear in the sequences
X1, X2, . . . and Y1, Y2,

Lemma 16 Let C be a set, that is found by the algorithm. Then C can be found at most (δ(C)+ρ(C))m
times during iterations.

Proof: Let i1 − 1, i2 − 1, ..., ik − 1 be the iterations, where the algorithm found C.

Then σij =
κij

∂(C)−b(C)

δ(C) . By step 6, the following holds true:

b(Cij) + σijδ(Cij)− κij+1∂(Cij+1) ≤ b(Cij+1
) + σijδ(Cij+1

)− κij∂(Cij+1
)

b(Cij+1
) + σij+1

δ(Cij+1
)− κij+1

∂(Cij+1
) ≤ b(Cij) + σij+1+1δ(Cij)− κij+1

∂(Cij)

This means that

(σij+1 − σij)δ(Cij+1) + (κij − κij+1)∂(Cij+1) ≤ (σij+1 − σij)δ(Cij) + (κij − κij+1)∂(Cij)

δ(Cij+1
)− δ(C)

∂(C)
∂(Cij+1

) ≤ δ(Cij)− δ(C)

∂(C)
∂(Cij)

Therefore
ρ(C)δ(Cij+1

)− δ(C)ρ(Cij+1
) ≤ ρ(C)δ(Cij)− δ(C)ρ(Cij) (19)

Finally, the expression of ρ(C)δ(Cij)− δ(C)ρ(Cij) is in the interval [ρ(C)m,−δ(C)m] and it is decreased
every time when C is found. This proves the lemma. □

In summary, the algorithm can find at most one set with particular values of δ(C), ρ(C) and it can be
found at most (ρ(C)+δ(C))m times. Then the total number of iterations is at most

∑m
δ=0

∑n
ρ=0(δ+ρ)m =

m3(m+ 1).

Theorem 17 Algorithm 2 terminates after at most O(m4) iterations.

The running time of an iteration is dominated by the submodular function minimization, that is every
iteration takes O(n5T + n6) time [5].

To sum up, we get that

Theorem 18 Running time of Algorithm 2 is O(m4T) = O(m4n5T +m4n6).

Note, the algorithm above can be improved by using the sets that are found in a previous iteration.
With this technique, the algorithm runs at most O(m2) iterations. The running time of an iteration is still
dominated by the submodular function minimization, that is every iteration takes O(n5T + n6) time [5].
Therefore these algorithms solve the Balanced Submodular Flow problem inO(m2T) = O(m2n5T+m2n6)
time.

502

4 Balanced integral submodular flows

The simple example of a graph having two nodes and two parallel edges shows that the minimum spread
solution is not always possible to be chosen to be integral, even in case of the simple network flows with
integer supply vector. This section shows how an integral flow of minimum spread can be found.

From now on, let us assume that b is integral.

Definition 19 For an arbitrary integer value κ ∈ Z, let sI(κ) denote the minimal value σ for which
there exists an integral (κ1, (κ+ σ)1)-bounded submodular flow x ∈ ZA.

Claim 20 For any κ ∈ Z, sI(κ) = ⌈s(κ)⌉.

Proof: Clearly, sI(κ) ≥ s(κ). On the other hand, the definition of s(κ) implies the existence of a
(κ1, (κ+ s(κ))1)-bounded submodular flow x. This flow is also bounded by the integer vectors κ1 and
(κ+ ⌈s(κ)⌉)1, therefore an integer submodular flow must also exist between these bounds.[4] □

The claim above and the convexity of s(κ) immediately gives the following.

Claim 21 SI(p) = min {sI(⌊σ∗⌋), sI(⌈σ∗⌉)} = min {⌈s(⌊σ∗⌋)⌉, ⌈s(⌈σ∗⌉)⌉}

5 Weighted Balanced Submodular Flows

In this section, the Weighted Balanced Submodular Flows Problem is introduced, and then a natu-
ral approach to minimize a single variable convex function is described, that is used for the Weighted
Submodular Flow Problem.

Definition 22 Given an edge weight c : A −→ R+, the weighted spread σ(cx) of a vector x ∈ RA is the
value

max
a∈A

c(a)x(a)−min
a∈A

c(a)x(a)

The Balanced Submodular Flow Problem is stated as follows.

Problem 23 For a given directed graph G = (V,A), an edge weight c : A −→ R+ and a submodular
function b : P(V) −→ Z, the aim is to find a submodular flow of minimum weighted spread, i.e find

σ∗ := min
{
σ(cx) : x ∈ RA, ϱx(X)− δx(X) ≤ b(X) ∀X ⊆ V

}
(20)

along with a minimizing vector x.

We will use the following notations:

n := |V |, m := |A|, ϱ 1
c
(X) :=

∑

e∈ϱ(X)

1

c(e)

δ 1
c
(X) :=

∑

e∈δ(X)

1

c(e)
, ∂ 1

c
(X) := ϱ 1

c
(X)− δ 1

c
(X)

Definition 24 For an arbitrary real value κ ∈ R, let s(κ) denote the minimal value σ for which there
exists a

(
κ 1

c , (κ+ σ) 1
c

)
-bounded submodular flow x.

From Theorem 5 it follows that

s(κ) = min
{
σ ≥ 0 : κ∂ 1

c
(X)− b(X) ≤ σδ 1

c
(X) ∀X ⊆ V

}
(21)

503

5.1 Handler-Zang Method for Convex Function Minimization

In case of piecewise linear functions, it is able to find the exact optimum in finite number of iteration,
which makes it a useful tool for solving certain parametric combinatorial optimization problems. Its first
use in this scenario is probably due to Handler and Zang[2].

Let f : R −→ R be a convex function, and let us consider Algorithm 3.

Algorithm 3 Handler-Zang method

1: Let a1, b1 ∈ R such that a1 ≤ arg min f ≤ b1
2: Let α1 ∈ ∂f(a1) and β1 ∈ ∂f(b1)
3: i := 1
4: loop

5: Let ci := f(bi)−f(ai)+αiai−βibi
αi−βi

6: Let σi := αif(bi)−βif(ai)+αiβi(ai−bi)
αi−βi

7: if f(ci) = σi then RETURN ci
8: end if
9: Let γi be a subgradient of f at ci

10: if γi < 0 then
11: ai+1 := ci, αi+1 := γi,
12: bi+1 := bi, βi+1 := βi
13: else
14: ai+1 := ai, αi+1 := αi,
15: bi+1 := ci, βi+1 := γi
16: end if
17: i←− i+ 1
18: end loop

Claim 25 The following statements are true

• a1 ≤ a2 ≤ a3 ≤ · · · and b1 ≥ b2 ≥ b3 ≥ · · ·

• α1 ≤ α2 ≤ α3 ≤ · · · and β1 ≤ β2 ≤ β3 ≤ · · ·

• For each iteration i either of the following holds

1. ai < ai+1 and αi < αi+1

2. bi > bi+1 and βi > βi+1

• The subgradients γi (i = 1, 2, . . .) computed during the execution are all different.

Claim 26 If f is a piecewise linear convex function, then Algorithm 3 finds the minimum of f in finite
number of steps, and the number of iterations are at most the number of linear segments of f .

In order to be able to start this algorithm, we need to find an initial interval [a1, b1] including the
optimum. Assuming that f ≥ 0, this can be done by starting with and arbitrary value and iterating the
usual Newton-Dinkelbach steps until either we find a value the with a subgradient of the opposite sign
— or one with subgradient equal to 0 meaning that the minimum is already found. The number of these
iterations are also limited by the number of linear segments of f .

Note that even when the function has exponentially many linear segment, strongly polynomial bound
on the number of iteration can be proven for certain classes convex functions, see [6].

504

5.2 Handler-Zang method for Weighted Submodular Balanced Flow Problem

Theorem 27 Assume that there exist a set X ⊆ V such that ∂ 1
c
(X) > 0 then

σ∗ = max

{
−b(X)∂ 1

c
(Y) + b(Y)∂ 1

c
(X)

δ 1
c
(X)∂ 1

c
(Y)− δ 1

c
(Y)∂ 1

c
(X)

| ∂ 1
c
(X) ≥ 0, ∂ 1

c
(Y) < 0

}

and σ∗ along with the maximizing sets X,Y ⊆ V and it can be computed with O(n4m8 log6(m)) submod-
ular function minimization problems.

Note that in case ∂ 1
c
(X) = 0 holds for all X ⊆ V , s(κ) is a constant function. We get that

σ∗ = max
∂ 1

c
(X)=0

{
−b(X)

δ 1
c
(C)

| b(X) < 0

}

and σ∗ along with the maximizing set X ⊆ V can be computed is O(m2) submodular function mini-
mization problems. If there exist X ⊆ V such that b(X) < 0 and δ 1

c
(X) = 0, the problem must be

infeasible.
The expression in the above theorem is a lower bound for σ∗ can be proven in a similar as in the

non-weighted case. Furthermore, the maximizing sets X,Y can be chosen to satisfy X ⊂ Y or Y ⊂ X.
To prove the theorem, it is sufficient to give an algorithm for finding X∗, Y ∗ for which the equality holds.

By definition of s(κ) and claim 10, σ∗ is equal to the minimum of s(κ). Handler-Zang method can be
used for finding this minimum. First, an initial interval is needed that contains the optimum κ∗. Due to
Theorem 5

κ∗ ≤ b(X)

ϱ 1
c
(X)

for all X ⊆ V such that δ 1
c
(X) = 0 and ϱ 1

c
(X) > 0. Let us consider the following minimum:

κ′ = min

{
b(X)

ϱ 1
c
(X)

| δ 1
c
(X) = 0, ϱ 1

c
(X) > 0

}

It can be computed with O(m2) submodular function minimization, as a consequence of the next
theorem proved by M. X. Goemans at all. [11]:

Theorem 28 Let b be a submodular function on V and a(S) =
∑

s∈S as a linear function, where |V | = n
and a ∈ Rn. We define δ∗ as follows:

δ∗ = max

{
δ | min

S⊂V
b(S)− δa(S) ≥ 0

}
= min

S⊂V

{
b(S)

a(S)
| a(S) > 0

}
(22)

Then δ∗ can be computed using the discrete Newton’s algorithm and it takes O(n2) iterations.

The initial interval can be found by starting with κ′ and applying the same technique as with the Handler-
Zang method. Since the considered κ is less than κ′, s(κ) is unrelated to sets such that δ 1

c
(X) = 0. At

this point, 21 can be rewritten as follows:

s(κ) = max

{
κ∂ 1

c
(X)− b(X)

δ 1
c
(X)

| δ 1
c
(X) > 0

}

In other words, s(κ) is a maximum of the linear functions

κ
∂ 1

c
(X)

δ 1
c
(X)

− b(X)

δ 1
c
(X)

505

Thus, it is a piecewise linear function and for any κ and
∂ 1

c
(X)

δ 1
c
(X) is a subgradient of s(κ). Since b(X) −

κ∂ 1
c
(X) is submodular and δ 1

c
(X) is linear, s(κ) can be computed with the discrete Newton’s method

with O(2) iterations by Theorem 28.
To prove the equation in Theorem 27, the minimum of s(κ) is required and the Handler-Zang method

can be used. Let κ∗ be the point at which the value of s(κ) is minimal. Let κ∗ be the point at which the
value of s(κ) is minimal. Let us define s(κ) = s(κ) − s(κ∗). Then the number of iterations required to
find the minimum point of s(κ) is less than twice the iteration number to find the root of s(κ). Hence,
it’s enough to estimate the number of steps to find this root. The following theorem can be proven:

Theorem 29 The minimum of s(κ) can be computed using the Handler-Zang method with at most
O(n4m6 log6(m)) iterations. The maximizing sets X,Y in Theorem 27 are the endpoints of the interval
in the last iteration.

Acknowledgement

The authors would like to acknowledge the valuable suggestions of András Frank.

References

[1] M. G. Scutellà, A Strongly Polynomial Algorithm for the Uniform Balanced Network Flow
Problem, Discret. Appl. Math. 81 (1998)

[2] Handler, Gabriel Y. and Zang, Israel, A dual algorithm for the constrained shortest path
problem, Networks 10 (1980)

[3] András Frank, Finding feasible vectors of Edmonds-Giles polyhedra, Journal of Combinatorial
Theory, Series B 36 (1984)

[4] P.L. Hammer and E.L. Johnson and B.H. Korte and G.L. Nemhauser, A Min-Max Relation
for Submodular Functions on Graphs, Annals of Discrete Mathematics 1 (1977)

[5] Orlin, James, A Faster Strongly Polynomial Time Algorithm for Submodular Function Minimiza-
tion, Mathematical Programming 118 (2007)

[6] Alpár Jüttner, On Resource Constrained Optimization Problems, 4th Japanese-Hungarian Sym-
posium on Discrete Mathematics and Its Applications (2005)

[7] S Martello and W.R Pulleyblank and P Toth and D de Werra, Balanced optimization
problems, Operations Research Letters 3 (1984)

[8] Ravindra K. Ahuja, The balanced linear programming problem, European Journal of Operational
Research 101 (1997)

[9] Wu, Longshu, An Efficient Algorithm for the Most Balanced Spanning Tree Problems, Advanced
Science Letters 11 (2012)

[10] Klinz Bettina, Maria Grazia Scutellà, A Strongly Polynomial Algorithm for the Balanced
Network Flow Problem, (2000)

[11] Goemans, Michel X. and Gupta, Swati and Jaillet, Patrick, Discrete Newton’s Algo-
rithm for Parametric Submodular Function Minimization, Integer Programming and Combinatorial
Optimization (2017)

[12] Tomasz Radzik, Fractional combinatorial optimization”, Handbook of Combinatorial Optimization
(1998)

506

The GRAPH of graphs of optimal subsets of pairwise
comparisons

Zsombor Szádoczki

Research Laboratory on Engineering &
Management Intelligence

Institute for Computer Science and Control
(SZTAKI),

Eötvös Loránd Research Network (ELKH)
1111 Kende u. 13-17., Budapest, Hungary;
Department of Operations Research and

Actuarial Sciences
Corvinus University of Budapest

1093 Fővám tér 8., Budapest, Hungary
szadoczki.zsombor@sztaki.hu

Sándor Bozóki

Research Laboratory on Engineering &
Management Intelligence

Institute for Computer Science and Control
(SZTAKI),

Eötvös Loránd Research Network (ELKH)
1111 Kende u. 13-17., Budapest, Hungary;
Department of Operations Research and

Actuarial Sciences
Corvinus University of Budapest

1093 Fővám tér 8., Budapest, Hungary
bozoki.sandor@sztaki.hu

Abstract: Pairwise comparisons form the corner stone of ranking, preference modelling and
multi-attribute decision making. We are focusing on incomplete pairwise comparison matrices
using their graph representation. In this paper the optimal subsets of comparisons – i.e., the
ones that provide the closest logarithmic least squares weight vectors to the vectors calculated
from the complete case – are determined for the given numbers of items to compare and
comparisons. Simulations are used to find the optimal subsets, which result in a GRAPH
of graphs for a given number of alternatives. Regularity and bipartiteness are the most
important properties of the optimal graphs, which can often be reached from each other by
adding (deleting) exactly one comparison. The sequences of comparisons gained this way can
be particularly useful in those problems, when the number of comparisons provided by the
decision maker is uncertain (e.g., online questionnaires).

Keywords: multi-attribute decision making, pairwise comparison, incomplete
pairwise comparison matrix, representing graph, GRAPH of graphs

1 Introduction

Pairwise comparisons are fundamental in ranking, preference modelling, multi-attribute decision making
(MADM), and even in sports. We focus on the incomplete case of pairwise comparison matrices (PCMs),
which are frequently used in the popular decision making methodology, the Analytic Hierarchy Process
(AHP) [7]. Incompleteness means that some comparisons are missing. We can still determine a prior-
itization vector (if some general condition hold) of the alternatives in this case, however, the number
of known comparisons (e) and their arrangement has a crucial effect on the outcomes. The subset of
the known comparisons for a given n number of alternatives is often represented by graphs [1], where
the vertices correspond to the items to be compared, and there is an edge between two vertices, if the
appropriate comparison is known.

In this study, we determine the optimal subsets of pairwise comparisons, namely, the ones that on
average provide the closest logarithmic least squares weight vectors to the ones computed from the
complete case for a given number of alternatives (n) and a given number of comparisons (e). We also rely
on the graph representation of the pairwise comparisons, and apply a GRAPH of graphs to visualize our
findings. VERTICEs of a GRAPH are graphs, and there is an EDGE between two VERTICEs (=graphs)

507

if the associated graphs are in a specified relation, e.g., as in our case, they can be drawn from each other
by adding or deleting exactly one edge.

Depending on the specification of the relation, several GRAPHs of graphs have been investigated.
Bondy and Lovász (see [5, Theorem 2]) showed that the GRAPH of graphs is connected, where GRAPH
is defined as follows: let G be a 2-connected graph on n nodes, v is a node of G; NODEs are the spanning
trees of G, and two NODEs are connected by an EDGE if the corresponding spanning trees have a
common subtree on n− 1 nodes including v.

Another remarkable GRAPH of graphs is the Petersen family of seven graphs, including the Petersen
graph itself. Two graphs are connected by an EDGE if they can be transformed from each other by
replacing a triangle by a 3-star (including the addition of its center), see e.g. [3, page 2].

The GRAPH of graphs by [6] is motivated by the evolution of graphs in a dynamic system.
It is worth noting that the term ‘neighbouring graphs’ in [5] is used synonymously for ‘there is an

EDGE between two graphs’. Analogously, ‘reachable’ in [6] means that there is a PATH between two
graphs. We use the concept of GRAPH of graphs to visualize our results throughout the paper.

The optimal subsets for the investigated (n, e) pairs are important results on their own, but in addition,
using that some of them are reachable from each other, by adding (deleting) exactly one comparison, one
can also create optimal sequences of comparisons. This can be crucial in order to estimate the decision
makers’ preferences the best way, when the number of comparisons provided is a priori uncertain (for
instance in online questionnaires).

2 Main results

We apply extensive numerical simulations with a sample size of 1 million random pairwise comparison
matrices to compare all the possible different subsets of comparisons for given pairs of (n, e). The used
simulation approach has been applied for some special cases in [8]. The computed weight vectors are
compared to the vectors gained from the complete matrix (complete set of comparisons) with the Kendall’s
rank correlation coefficient and the Euclidean distance measures. We mainly focus on the logarithmic least
squares weight calculation technique, when a logarithmic least squares objective function is minimized
based on the known comparisons. Some calculations have also been carried out for the eigenvector
method, but the optimal graphs were always identical.

If the system of comparisons does not contain any contradiction, then every weight calculation tech-
nique provides the same proiritization vector. However, when a decision maker compare the possible
alternatives, it often occurs that A is 2 times as good as B, while B is 3 times as good as C, but A is
not 6 times as good as C. There is an inconsistency in the system that affects the calculated weights. In
our simulations we use three different inconsistency levels to account for this.

It turns out that the different metrics (Kendall’s tau or Euclidean distance) and inconsistency levels
provide the same results, namely the best subset of comparisons for a given (n, e) pair is practically
always the same. This way the optimal graphs (subsets) are determined for all the possible (n, e) pairs
in case of n ≤ 6. It is also important to note that [8] used several different metrics on the special cases
examined by them – e.g. the dice [10], and cosine similarity [4] measures – and found that the results are
not depending on the chosen measures. The findings of [9] also suggest that even the standard deviations
of the different metrics provide the same ranking of the competing patterns (graphs). Moreover, [2]
find that our results are also relevant outside of the domain of pairwise comparison matrices, as exactly
the same graphs are the optimal ones for every (n, e) pair examined here in the case of other paired
comparison-based models, e.g., the Bradley-Terry and the Thurstone models.

Many of the found optimal subsets are reachable from each other resulting in optimal sequences of
comparisons that can be presented in a GRAPH of graphs.

For the sake of brevity, we only include a smaller portion of the optimal graphs with different param-
eters. The GRAPH of graphs for n = 5 can be seen in Figure 1 focusing on the connected cases. The
optimal graphs as well as the optimal sequences are highlighted by green color.

508

e = 4

e = 5

e = 6

e = 7

e = 8

e = 9

e = 10

Figure 1: The GRAPH of graphs for n = 5, optimal graphs and sequences are highlighted by green

509

e = 5

e = 6

e = 7

e = 8

e = 9

e = 10

e = 11

e = 12

e = 13

e = 14

e = 15

Figure 2: The GRAPH of graphs for n = 6

510

n = 6, e = 5 n = 6, e = 6 n = 6, e = 7

n = 6, e = 8 n = 6, e = 9 n = 6, e = 10 n = 6, e = 11

n = 6, e = 12 n = 6, e = 13 n = 6, e = 14 n = 6, e = 15

Figure 3: The optimal graphs for n = 6, corresponding to the green hexagonal NODES in Figure 2

The GRAPH of graphs for n = 6 containing all the possible subsets of pairwise comparisons in the
case of connected representing graphs can be seen in Figure 2. To keep the visibility of the figure, the
small graphs are only represented by nodes, while the optimal cases are highlighted by green color, and
they are also detailed in Figure 3, where the newly added comparison is highlighted by blue color in
every step when possible.

As one can see, all the optimal graphs are generally not reachable from each other, however, one can

511

determine a sequence of comparisons that contain as many optimal graphs as possible, and the remaining
cases are also close to the optimal ones. These latter comparisons are highlighted by orange in Figure
2. Interestingly, k-regular graphs are always optimal for (n, e = k · n/2) parameters, but regularity is a
key property in general: the degree of vertices is always as close to each other as possible. On the other
hand, the optimal representing graphs are also always close to bipartite ones. It is worth noting that star
graphs are always optimal among spanning trees.

Our findings are instantly applicable in real problems, and an optimal sequence of comparisons can
guarantee that we estimate the prioritization vector of decision makers in an optimal way whenever they
stop answering the questions determining the comparisons. Moreover, the results seem to be more general
considering different kinds of measures and models based on pairwise comparisons [8, 2].

3 Conclusion and future research

We used numerical simulations to determine the optimal subsets of pairwise comparisons for a given
number of items to be compared and comparisons. Some of the optimal subsets are reachable from each
other by adding (deleting) exactly one comparison. The most important properties of the optimal graphs
are regularity and bipartiteness, while star graphs are always optimal among spanning trees. The results
are visualized with the help of GRAPHs of graphs, and they can be applied in real problems instantly
without any difficulty. The findings can be especially useful in case of online questionnaires, when the
decision makers tend to abandon the problem, and the number of provided comparisons is uncertain.

Here we focused on incomplete pairwise comparison matrices, however, the optimality of the found
subsets seem to be more general, it applies in other models, such as the Bradley-Terry and the Thurstone
models as well [2].

The indirect connections between the different graphs, namely, whether we can reach a graph from
another one by adding a given number of comparisons in one step can be an interesting research direction,
as well as accounting for a priori information, i.e., labeling the different vertices.

References

[1] Gass, S.I., Tournaments, transitivity and pairwise comparison matrices, Journal of the Operational
Research Society, 49(6):616–624. (1998)

[2] Gyarmati, L., Orbán-Mihálykó, É., Mihálykó, Cs., Bozóki, S., and Szádoczki, Zs., The
incomplete Analytic Hierarchy Process and Bradley-Terry model: (in)consistency and information
retrieval, arXiv: https://doi.org/10.48550/arxiv.2210.03700, (2022)

[3] Hashimoto, H. and Nikkuni, R., On Conway–Gordon type theorems for graphs in the Petersen
family, Journal of Knot Theory and Its Ramifications, 22(9):1350048. (2013)

[4] Kou, G. and Lin, C., A cosine maximization method for the priority vector derivation in AHP,
European Journal of Operational Research, 235(1):225–232. (2014)

[5] Lovász, L., A homology theory for spanning trees of a graph, Acta Mathematica Academiae
Scientiarum Hungaricae, 30(3-4):241-251. (1977)

[6] Mesbahi, M., On a dynamic extension of the theory of graphs, Proceedings of the 2002 American
Control Conference (IEEE Cat. No.CH37301), 2:1234-1239. (2002)

[7] Saaty, T.L., A scaling method for priorities in hierarchical structures, Journal of Mathematical
Psychology, 15(3):234-281. (1977)

[8] Szádoczki, Zs., Bozóki, S., Juhász, P., Kadenko, S. V., and Tsyganok, V., Incomplete
pairwise comparison matrices based on graphs with average degree approximately 3, Annals of
Operations Research, (2022)

512

[9] Szádoczki, Zs., Bozóki, S., and Tekile, H. A., Filling in pattern designs for incomplete pairwise
comparison matrices: (Quasi-)regular graphs with minimal diameter, Omega, 107(C):102557.
(2022)

[10] Ye, J., Multicriteria decision-making method using the dice similarity measure based on the reduct
intuitionistic fuzzy sets of interval-valued intuitionistic fuzzy sets, Applied Mathematical Modelling,
36(9):4466–4472.(2012)

513

514

Packing mixed hyperarborescences

Zoltán Szigeti1

Laboratory G-SCOP, University Grenoble Alpes
Grenoble, France

zoltan.szigeti@grenoble-inp.fr

Abstract: The aim of this paper is twofold. We first provide a new orientation theorem
which gives a natural and simple proof of a result of Gao, Yang [11] on matroid-reachability-
based packing of mixed arborescences in mixed graphs by reducing it to the corresponding
theorem of Cs. Király [16] on directed graphs. Moreover, we extend another result of Gao,
Yang [12] by providing a new theorem on mixed hypergraphs having a packing of mixed
hyperarborescences such that their number is at least ℓ and at most ℓ′, each vertex belongs
to exactly k of them, and each vertex v is the root of least f(v) and at most g(v) of them.

Keywords: arborescence, mixed hypergraph, packing

1 Introduction

This paper is not a survey on packing arborescences. Such a survey is in preparation, see [19]. We only
present here those theorems of the topic that are closely related to the new results of this paper.

Edmonds [5] characterized digraphs having a packing of spanning arborescences with fixed roots.
Frank [7] extended it for a packing of spanning arborescences whose roots are not fixed. The result of
Frank [7], and independently Cai [3], answers the question when a digraph has an (f, g)-bounded packing
of spanning arborescences, that is when each vertex v can be the root of at least f(v) and at most g(v)
arborescences in the packing. Bérczi-Frank [2] entends it for an (f, g)-bounded, k-regular, (ℓ, ℓ′)-limited
packing of not necessarily spanning arborescences, where k-regular means that each vertex belongs to
exactly k arborescences in the packing and (ℓ, ℓ′)-limited means that the number of arborescences in
the packing is at least ℓ and at most ℓ′. Kamiyama, Katoh, Takizawa [15] provided a different type of
generalization of Edmonds’ theorem in which they wanted to pack reachability arborescences, that is
each arborescence in the packing must contain all the vertices that can be reached from its root in the
digraph. Durand de Gevigney, Nguyen, Szigeti [4] gave a generalization of Edmonds theorem where a
matroid constraint was added for the packing. More precisely, given a matroid M on a multiset of vertices
of a digraph D, they wanted to have a matroid-based packing of arborescences, that is for every vertex v
of D, the set of roots of the arborescences in the packing containing v must form a basis of M. Cs. Király
[16] proposed a common generalization of the previous two results. He characterized pairs (D,M) of a
digraph and a matroid that have a matroid-reachability-based packing of arborescences, that is for every
vertex v of D, the set of roots of the arborescences in the packing containing v must form a basis of the
subset of the elements of M from which v is reachably in D.

All of these results hold for dypergraphs, see [10], [13], [19], [1], [6], and for mixed graphs, see [7],
[11], [19], [18], [6], [12]. In fact, all of these results, except the one of Bérczi-Frank [2], are known to hold
for mixed hypergraphs, see [6], [13], [14]. The present paper will fill in this gap by showing that this
result also holds for mixed hypergraphs. More precisely, we will characterize mixed hypergraphs having
an (f, g)-bounded, k-regular, (ℓ, ℓ′)-limited packing of mixed hyperarborescences. Our result naturally
generalizes a result of Gao, Yang [12] on (f, g)-bounded packing of k spanning mixed arborescences.
The other aim of this paper is to provide a new proof of another result of Gao, Yang [11] on matroid-
reachability-based packing of mixed arborescences. Our approach is to reduce the result to the result of
Cs. Király [16] on matroid-reachability-based packing of arborescences via a new orientation theorem.

515

2 Definitions

A multiset of V may contain multiple occurrences of elements. For a multiset S of V and a subset X of
V , SX denotes the multiset consisting of the elements of X with the same multiplicities as in S.

Let D = (V,A) be a directed graph, shortly digraph. For a subset X of V, the set of arcs in A entering

X is denoted by ρA(X) and the in-degree of X is d−
A(X) = |ρA(X)|. For a subset X of V, we denote

by PX
D (QX

D) the set of vertices from (to) which there exists a path to (from, respectively) at least one
vertex of X . We say that D is an arborescence with root s, shortly s-arborescence, if s ∈ V and there
exists a unique path from s to v for every v ∈ V ; or equivalently, if D contains no circuit and every vertex
in V − s has in-degree 1. A subgraph of D is called a spanning (resp. reachability) s-arborescence if it
is an s-arborescence and its vertex set is V (resp. Qs

D). By a packing of subgraphs in D, we mean a set
of subgraphs that are arc-disjoint. A packing of subgraphs is called k-regular if every vertex belongs to
exactly k subgraphs in the packing. For two functions f, g : V → Z+, a packing of arborescences is called
(f, g)-bounded if the number of v-arborescences in the packing is at least f(v) and at most g(v) for every
v ∈ V . For ℓ, ℓ′ ∈ Z+, a packing of arborescences is called (ℓ, ℓ′)-limited if the number of arborescences
in the packing is at least ℓ and at most ℓ′. For a multiset S of V and a matroid M on S, a packing of
arborescences in D is called matroid-based (resp. matroid-reachability-based) if every s ∈ S is the root
of at most one arborescence in the packing and for every v ∈ V , the multiset of roots of arborescences
containing v in the packing forms a basis of S (resp. SPv

D
) in M.

Let F = (V,E ∪ A) be a mixed graph, where E is a set of edges and A is a set of arcs. A mixed
subgraph F ′ of F is a mixed path if the edges in F ′ can be oriented in such a way that we obtain a
directed path. For a subset X of V, we denote by PX

F (QX
F) the set of vertices from (to) which there

exists a mixed path to (from, respectively) at least one vertex of X . We say that F is strongly connected
if there exists a mixed path from s to t for all (s, t) ∈ V 2. The maximal strongly connected subgraphs of
F are called the strongly connected components of F . A mixed s-arborescence is a mixed graph that has
an orientation that is an s-arborescence. A mixed subgraph of F is called a spanning (resp. reachability)
mixed s-arborescence if it is a mixed s-arborescence and its vertex set is V (resp. Qs

F). By a packing of
subgraphs in F , we mean a set of subgraphs that are edge- and arc-disjoint. All the packing problems
considered in digraphs can also be considered in mixed graphs.

Let D = (V,A) be a directed hypergraph, shortly dypergraph, where A is the set of dyperedges of
D. A dyperedge e is an ordered pair (Z, z), where z ∈ V is the head and ∅ 6= Z ⊆ V − z is the set of
tails of e. For X ⊆ V, a dyperedge (Z, z) enters X if z ∈ X and Z ∩ X 6= ∅. The set of dyperedges

in A entering X is denoted by ρA(X) and the in-degree of X is d−
A(X) = |ρA(X)|. By trimming a

dyperedge e = (Z, z), we mean the operation that replaces e by an arc yz where y ∈ Z. We say that D is
a hyperarborescence with root s, shortly s-hyperarborescence, if D can be trimmed to an s-arborescence.
A packing of subdypergraphs in D is a set of subdypergraphs that are dyperedge-disjoint. We say that
D has a matroid-based/(f, g)-bounded/k-regular/(ℓ, ℓ′)-limited packing of hyperarborescences if D can
be trimmed to a digraph that has a matroid-based/(f, g)-bounded/k-regular/(ℓ, ℓ′)-limited packing of
arborescences.

Let F = (V, E ∪ A) be a mixed hypergraph, where E is the set of hyperedges and A is the set of
dyperedges of F . A hyperedge is a subset of V of size at least two. A hyperedge e enters a subset Y of V
if e ∩ Y 6= ∅ 6= e ∩ Y. By orienting a hyperedge e, we mean the operation that replaces the hyperedge e
by a dyperedge (e − x, x) for some x ∈ e. For ~Z ⊆ A, Z denotes the set of underlying hyperedges of ~Z.
For Z ⊆ E and X ⊆ V , we denote by V (Z) the set of vertices that belong to at least one hyperedge in
Z and by Z(X) the set of hyperedges in Z that are contained in X. A mixed s-hyperarborescence is a
mixed hypergraph that has an orientation that is an s-hyperarborescence. A mixed s-hyperarborescence
is called spanning in F if its vertex set is V. For a family P of subsets of V , we denote by eE∪A(P)
the number of hyperedges in E and dyperedges in A that enter some member of P . For X ⊆ V , we
use eE∪A(X) for eE∪A({X}). A packing of mixed subhypergraphs in F is a set of mixed subhypergraphs
that are hyperedge- and dyperedge-disjoint. We say that F has an (f, g)-bounded/k-regular/(ℓ, ℓ′)-limited

packing of mixed hyperarborescences if E has an orientation ~E such that the dypergraph (V, ~E ∪ A) has
an (f, g)-bounded/k-regular/(ℓ, ℓ′)-limited packing of hyperarborescences.

516

3 Known results

In this section we list the results on packing arborescences that are related to the new results. We start
with the fundamental result of Edmonds [5] on packing spanning arborescences with fixed roots.

Theorem 1 (Edmonds [5]) Let D = (V,A) be a digraph and S a multiset of V. There exists a packing
of spanning s-arborescences (s ∈ S) in D if and only if d−A(X) ≥ |SV −X | for every ∅ 6= X ⊆ V.

Theorem 1 was extended for the case when the roots of the arborescences are not fixed but the number
of arborescences in the packing rooted at any vertex is bounded. For a subpartition P of V , ∪P denotes
the set of elements of V that belong to some member of P .

Theorem 2 (Frank [7], Cai [3]) Let D = (V,A) be a digraph, f, g : V → Z+ functions and k ∈ Z+.
There exists an (f, g)-bounded packing of k spanning arborescences in D if and only if

g(v) ≥ f(v) for every v ∈ V, (1)

eA(P) ≥ k|P| −min{k − f(∪P), g(∪P)} for every subpartition P of V. (2)

If f(v) = g(v) = |Sv| for every v ∈ V − s, then Theorem 2 reduces to Theorem 1.

Theorem 2 can be generalized for the case when the arborescences are not necessarily spanning but
every vertex must belong to the same number of arborescences in the packing. For g : V → Z+ and
k ∈ Z+, let gk(v) = min{k, g(v)} for every v ∈ V. For convenience, we present not the original version of
the result of [2] which is about packing branchings but one that fits better to our framework.

Theorem 3 (Bérczi-Frank [2]) Let D = (V,A) be a digraph, f, g : V → Z+ functions and k, ℓ, ℓ′ ∈ Z+.
There exists an (f, g)-bounded k-regular (ℓ, ℓ′)-limited packing of arborescences in D if and only if

gk(v) ≥ f(v) for every v ∈ V, (3)

min{gk(V), ℓ′} ≥ ℓ (4)

eA(P) ≥ k|P| −min{ℓ′ − f(∪P), g(∪P)} for every subpartition P of V. (5)

For k = ℓ = ℓ′, Theorem 3 reduces to Theorem 2.

An elegant extention of Theorem 1 for packing reachability arborescences was provided in [15].

Theorem 4 (Kamiyama, Katoh, Takizawa [15]) Let D = (V,A) be a digraph and S a multiset
of V. There exists a packing of reachability s-arborescences (s ∈ S) in D if and only if d−A(X) ≥
|SPX

D −X | for every X ⊆ V.

When each vertex is reachable from every vertex of S, Theorem 4 reduces to Theorem 1. Theorem 4
can be proved by induction and using Edmonds’ result on packing branchings, see Hörsch-Szigeti [14].

Another type of generalizations of Theorem 1 was obtained by adding a matroid constraint.

Theorem 5 (Durand de Gevigney, Nguyen, Szigeti [4]) Let D = (V,A) be a digraph, S a multiset
of V and M = (S, rM) a matroid. There exists a M-based packing of arborescences in D if and only if
rM(SX) + d−A(X) ≥ rM(S) for every ∅ 6= X ⊆ V.

For the free matroid M, Theorem 5 reduces to Theorem 1.

A common generalization of Theorems 4 and 5 was found by Cs. Király [16].

Theorem 6 (Cs. Király [16]) Let D = (V,A) be a digraph, S a multiset of V and M = (S, rM) a
matroid. There exists a matroid-reachability-based packing of arborescences in D if and only if

rM(SX) + d−A(X) ≥ rM(SPX
D
) for every X ⊆ V. (6)

517

For the free matroid M, Theorem 6 reduces to Theorem 4. When each vertex is reachable from a basis
of M, Theorem 6 reduces to Theorem 5.

Gao, Yang [11] provided another characterization of the existence of a matroid-reachability-based
packing of arborescences.

Theorem 7 (Gao, Yang [11]) Let D = (V,A) be a digraph, S a multiset of V and M = (S, rM) a
matroid. There exists a matroid-reachability-based packing of arborescences in D if and only if for every
strongly connected component C of D and every X ⊆ PC

D such that X ∩ C 6= ∅ and d−A(X − C) = 0,
d−A(X) ≥ rM(SPC

D
)− rM(SX).

Theorems 6 and 7 are equivalent. One implication is shown in [11], the other one in [19].

For dypergraphs we present a generalization of Theorem 5 that will be applied in the proof of the
main result of this paper.

Theorem 8 (Fortier, Cs. Király, Léonard, Szigeti, Talon [6]) Let D = (V,A) be a dypergraph, S
a multiset of V and M = (S, IM) a matroid with rank function rM. There exists a M-based packing of
hyperarborescences in D if and only if

rM(SX) + d−A(X) ≥ rM(S) for every ∅ 6= X ⊆ V. (7)

Furthermore, if we want S to be the root set of the arborescences in the packing then (8) must also hold

Sv ∈ IM for every v ∈ V. (8)

Theorem 2 was generalized for mixed graphs as follows.

Theorem 9 (Gao, Yang [12]) Let F = (V,E ∪ A) be a mixed graph, f, g : V → Z+ functions, and
k ∈ Z+. There exists an (f, g)-bounded packing of k spanning mixed arborescences in F if and only if (1)
holds and eE∪A(P) ≥ k|P| −min{k − f(∪P), g(∪P)} for every subpartition P of V.

If F is a digraph, then Theorem 9 reduces to Theorem 2.

Theorem 9 can be generalized for mixed hypergraphs.

Theorem 10 (Hörsch, Szigeti [13]) Let F = (V, E ∪ A) be a mixed hypergraph, f, g : V → Z+ func-
tions, and k ∈ Z+. There exists an (f, g)-bounded packing of k spanning mixed hyperarborescences in F
if and only if (1) holds and eE∪A(P) ≥ k|P| −min{k − f(∪P), g(∪P)} for every subpartition P of V.

If F is a mixed graph then Theorem 10 reduces to Theorem 9. Theorem 10 is derived from matroid
intersection in [13]. One of the main contribution of this paper is to provide a generalization of Theorem
10 in Subsection 4.2. The new result will be obtained from the theory of generalized polymatroids.

Now a generalization of Theorem 4 for mixed graphs follows. For convenience, we present not the
original version of the result but one due to Gao, Yang [11] that fits better to our framework.

Theorem 11 (Matsuoka, Tanigawa [18]) Let F = (V,E∪A) be a mixed graph and S a multiset of V.
There exists a packing of reachability mixed s-arborescences (s ∈ S) in F if and only if for every strongly
connected component C of F and every set P of subsets of PC

F such that Z ∩C 6= ∅ and eE∪A(Z−C) = 0
for every Z ∈ P and Z ∩ Z ′ ∩ C = ∅ for every Z,Z ′ ∈ P, eE∪A(P) ≥ |SPC

F
||P| −∑

Z∈P |SZ |.

A common generalization of Theorems 7 and 11 was provided by Gao, Yang [11].

Theorem 12 (Gao, Yang [11]) Let F = (V,E∪A) be a mixed graph, S a multiset of V and M = (S, rM)
a matroid. There exists a matroid-reachability-based packing of mixed arborescences in F if and only if
for every strongly connected component C of F and every set P of subsets of PC

F such that Z ∩ C 6= ∅
and eE∪A(Z − C) = 0 for every Z ∈ P and Z ∩ Z ′ ∩C = ∅ for every Z,Z ′ ∈ P,

eE∪A(P) ≥ rM(SPC
F
)|P| −

∑

Z∈P
rM(SZ). (9)

518

For E = ∅, Theorem 12 reduces to Theorem 7. For the free matroid M, Theorem 12 reduces to
Theorem 11. Hörsch, Szigeti [14] pointed out that Theorem 12 holds for mixed hypergraphs. That
more general result was proved in [14] by induction using a result on matroid-based packing of mixed
hyperbranchings in mixed hypergraphs from [6]. Here we propose another approach to prove Theorem
12. It will be derived from Theorem 15, a new orientation result.

We need a matroid construction for hypergraphs and one for mixed hypergraphs. Given a hypergraph
H = (V, E), let IH = {Z ⊆ E : |V (Z ′)| > |Z ′| for all ∅ 6= Z ′ ⊆ Z}. Lorea [17] showed that IH is the set
of independent sets of a matroid MH on E , called the hypergraphic matroid of the hypergraph H. We
also need the k-hypergraphic matroid Mk

H of H which is the k-sum matroid of MH, that is the matroid on
ground set E in which a subset of E is independent if it can be partitioned into k independent sets of MH.
Hörsch-Szigeti [13] extend the previous construction to mixed hypergraphs. Let F = (V,A∪E) be a mixed
hypergraph. For a subpartition P of V, A(P) and E(P) denote the set of dyperedges and the set of
hyperedges that enter some member of P . Let HF = (V, EA∪E) the underlying hypergraph of F and DF
= (V,A∪AE) the directed extension of F where AE =

⋃
e∈E Ae and for e ∈ E , Ae= {(e− x, x) : x ∈ e}.

The extended k-hypergraphic matroid Mk
F of F on A∪AE is obtained from Mk

HF by replacing every e ∈ E
by |e| parallel copies of itself, associating these elements to the dyperedges in Ae and associating every
hyperedge of EA to the corresponding dyperedge in A. It is shown in [13] that the rank function of the
extended k-hypergraphic matroid Mk

F satisfies for all Z ⊆ A∪AE ,

rMk
F
(Z) = min{|Z ∩ A(P)|+ |{e ∈ E(P) : Z ∩Ae 6= ∅}|+ k(|V | − |P|) : P partition of V }. (10)

Generalized polymatroids were introduced by Frank [8]. For a pair (p, b) of set functions on S for
which p(∅) = b(∅) = 0, p is supermodular, b is submodular, and b(X)− p(Y) ≥ b(X − Y)− p(Y −X) for
all X,Y ⊆ S, the polyhedron Q(p, b) = {x ∈ RS : p(Z) ≤ x(Z) ≤ b(Z) ∀Z ⊆ S} is called a generalized-
polymatroid, shortly g-polymatroid. The Minkowski sum of the n g-polymatroids Q(pi, bi) is denoted by∑n

1 Q(pi, bi). For α, β ∈ R, the polyhedron K(α, β) = {x ∈ RS : α ≤ x(S) ≤ β} is called a plank. For
more details on generalized polymatroids see [9]. We will need the following results on g-polymatroids.

Theorem 13 (Frank [9]) The following hold:

1. Let Q(p, b) be a g-polymatroid, K(α, β) a plank and M = Q(p, b) ∩K(α, β).

(i) M 6= ∅ if and only if p ≤ b, α ≤ β, β ≥ p(S) and α ≤ b(S).

(ii) M is a g-polymatroid.

(iii) If M 6= ∅, then M = Q(pαβ , b
α
β) with

pα
β(Z) = max{p(Z), α− b(S − Z)}, bαβ (Z) = min{b(Z), β − p(S − Z)}. (11)

2. Let Q(p1, b1) and Q(p2, b2) be two non-empty g-polymatroids and M = Q(p1, b1) ∩Q(p2, b2).

(i) M 6= ∅ if and only if p1 ≤ b2 and p2 ≤ b1.

(ii) If p1, b1, p2, b2 are integral and M 6= ∅, then M contains an integral element.

3. Let Q(pi, bi) be n non-empty g-polymatroids. Then
∑n

1 Q(pi, bi) = Q(
∑n

1 pi,
∑n

1 bi).

4 Main results

4.1 A new orientation result

To prove the new orientation result, Theorem 15, we need a result of Frank, see Theorem 15.4.13 in [9].

519

Theorem 14 (Frank [9]) Let G = (V,E) be a graph and h an integer-valued, intersecting supermodular

function such that h(V) = 0. There exists an orientation ~G = (V, ~E) of G such that d−~E(X) ≥ h(X) for
every X ⊆ V if and only if

eE(P) ≥
∑

X∈P
h(X) for every subpartition P of V. (12)

We can now extend an orientation theorem which is implicitly contained in Gao, Yang [11] as follows.

Theorem 15 Let F = (V,E ∪ A) be a mixed graph and b a submodular function on V. There exists an

orientation ~E of E such that in ~F = (V, ~E ∪A)

d−~E∪A
(X) ≥ b(PX

F)− b(X) for every X ⊆ V (13)

if and only if for every strongly connected component C of F and every set P of subsets of PC
F such that

Z ∩ C 6= ∅ and eE∪A(Z − C) = 0 for every Z ∈ P and Z ∩ Z ′ ∩C = ∅ for every Z,Z ′ ∈ P,

eE∪A(P) ≥ b(PC
F)|P| −

∑

Z∈P
b(Z). (14)

Proof: Let (F = (V , E ∪A), b) be a minimum counterexample for Theorem 15. Let C be a strongly
connected component of F such that eE∪A(C) = 0. Let F ′ = (C, E′∪A′) be the subgraph of F induced
by C and (F ′′ = (V ′′, E′′ ∪ A′′), b′′) be the instance obtained from (F, b) by deleting the elements in
C. As eE∪A(C) = 0, we have eE′′∪A′′(X) = eE∪A(X), PX

F ′′ = PX
F and b′′(X) = b(X) for every X ⊆ V ′′.

Then, since (F, b) satisfies (14), so does (F ′′, b′′). Hence, by the minimality of (F, b), there exists an

orientation ~E′′ of E′′ such that

b(X) + d−~E′′∪A′′(X) ≥ b(PX
F) for every X ⊆ V ′′. (15)

Let b′(X) = min{b(Y) + d−A(Y) : Y ⊆ PC
F , Y ∩ C = X, eE∪A(Y − C) = 0} for every X ⊆ C. For any set

Xi ⊆ C, let Yi be a set that provides b′(Xi). Gao, Yang [11] proved that b′ is submodular. Indeed, for
X1, X2 ⊆ C, let X3 = X1 ∩X2, X4 = X1 ∪X2, Y3 = Y1 ∩ Y2 and Y4 = Y1 ∪ Y2. Then, for i = 3, 4, we
have Yi ⊆ PC

F , Yi ∩ C = Xi and eE∪A(Yi − C) = 0. Then, since b and d−A are submodular, so is b′.
Let h be defined by h(X) = b(PC

F)− b′(X) for every X ⊆ C. By the previous claim, h is intersecting
supermodular. Let P = {X1, . . . , Xt} be a subpartition of C. Let P ′ = {Yi : Xi ∈ P}. Then P ′ is a
set of subsets of PC

F such that Yi ∩ C 6= ∅ and eE∪A(Yi − C) = 0 for 1 ≤ i ≤ t and Yi ∩ Yj ∩ C = ∅ for

1 ≤ i < j ≤ t. It follows, by (14), that eE′(P) = eE∪A(P ′)−eA(P) ≥ b(PC
F)|P ′|−∑t

1 b(Yi)−
∑t

1 d
−
A(Xi) =∑t

1(b(P
C
F)− b(Yi)−d−A(Yi)) =

∑t
1 h(Xi). Thus the graph (C,E′) satisfies (12). In particular, we get that

0 = eE′(C) ≥ h(C). Moreover, h(C) = b(PC
F) − b′(C) ≥ b(PC

F) − b(PC
F) = 0. Hence h(C) = 0. Then, by

Theorem 14, there exists an orientation ~E′ of E′ such that d−~E′(X) ≥ h(X) = b(PC
F) − b′(X) for every

X ⊆ C. It follows that for every Y ⊆ PC
F with Y ∩ C 6= ∅ and eE∪A(Y − C) = 0, we have

d−~E′(Y) = d−~E′(Y ∩ C) ≥ b(PC
F)− b(Y)− d−A(Y). (16)

Let ~F = (V, ~E∪A), where ~E = ~E′∪ ~E′′. To finish the proof we show that ~F satisfies (13). If X ⊆ V ′′,
then, by (15), (13) holds. Otherwise, X ∩C 6= ∅. Let Z = PX−C

F , Y = Z ∩ PC
F and W = Y ∪ (X ∩ C).

Then X ∩ Z = X − C,PC
F ∩ (X ∪ Z) = W and PC

F ∪ (X ∪ Z) = PX
F , eE∪A(Y) = 0. Thus, by (15)

for X − C, (16) for W and the submodularity of b, we have d−~E∪A
(X) ≥ d−~E′′∪A

(X − C) + d−~E′∪A
(W) ≥

(b(Z)− b(X −C)) + (b(PC
F)− b(W)) ≥ (b(X ∪Z)− b(X))+ (b(PX

F)− b(X ∪Z)) ≥ b(PX
F)− b(X), so (13)

holds. �

Theorem 12 easily follows from Theorems 6 and 15. Let (F, S,M) be an instance of Theorem 12

that satisfies (9). Then, by Theorems 15 applied for b(X) = rM(SX), there exists an orientation ~E of E

520

such that in ~F = (V, ~E ∪ A) (13) holds. Let X ⊆ V. Since PX
~F

⊆ PX
F and rM is non-decreasing, we have

rM(SPX
~F

) ≤ rM(SPX
F
). By (13) applied for PX

~F
, we have rM(SPX

~F

) ≥ rM(SPX
F
). Hence rM(SPX

~F

) = rM(SPX
F
).

Thus (13) implies that (6) holds in (~F , S,M). Then, by Theorems 6, there exists a matroid-reachability-

based packing of arborescences in (~F , S,M). Since rM(SPX
~F
) = rM(SPX

F
), by replacing the arcs in ~E by

the edges in E, we obtain a matroid-reachability-based packing of mixed arborescences in (F, S,M).

4.2 A new result on packing mixed hyperarborescences

The main contribution of the present paper is a common generalization of Theorems 3 and 10.

Theorem 16 Let F = (V, E ∪A) be a mixed hypergraph, f, g : V → Z+ functions, and k, ℓ, ℓ′ ∈ Z+−{0}.
There exists an (f, g)-bounded k-regular (ℓ, ℓ′)-limited packing of mixed hyperarborescences in F if and
only if (3) and (4) hold and

eE∪A(P) ≥ k|P| −min{ℓ′ − f(∪P), gk(∪P)} for every subpartition P of V. (17)

If F is a digraph, then Theorem 16 reduces to Theorem 3. If k = ℓ = ℓ′, then Theorem 16 reduces to
Theorem 10. Theorem 16 will follow from Theorem 17.

Theorem 17 Let F = (V, E ∪A) be a mixed hypergraph, f, g : V → Z+ functions, and k, ℓ, ℓ′ ∈ Z+−{0}.
Let Mv = (ρA∪AE (v), rv) be the free matroid for all v ∈ V and Mk

F the extended k-hypergraphic matroid
of F on A∪AE . Let T = (

∑
v∈V (Q(0, rv)∩K(k− gk(v), k− f(v))))∩K(k|V | − ℓ′, k|V | − ℓ)∩Q(0, rMk

F
).

(a) The characteristic vectors of the dyperedge sets of the (f, g)-bounded k-regular (ℓ, ℓ′)-limited packings
of hyperarborescences in orientations of F are exactly the integer points of T.

(b) T 6= ∅ if and only if (3) and (4) hold and for every Z ⊆ A ∪AE ,

∑

v∈V

max{0, k − gk(v)− d−Z(v)} ≤ rMk
F
(Z), (18)

k|V | − ℓ′ −
∑

v∈V

min{d−Z(v), k − f(v)} ≤ rMk
F
(Z). (19)

(c) (18) and (19) are equivalent to (17).

Proof: (a) To prove the necessity, let B1, . . . ,Bℓ∗ be an (f, g)-bounded k-regular packing of hyperar-

borescences in an orientation ~F of F , where ℓ ≤ ℓ∗ ≤ ℓ′. Let S be the root set of the hyperarborescences
in the packing. Note that |S| = ℓ∗. Let Z be the dyperedge set of the packing. Since the packing is
k-regular, we have k = d−Z(v) + |Sv| for all v ∈ V . Then k|V | = |Z| + |S|. Since the packing is (f, g)-
bounded, we have f(v) ≤ |Sv| ≤ gk(v) for all v ∈ V . Let m be the characteristic vector of Z and mv the
restriction of m on ρA∪AE (v) for all v ∈ V . Then mv is a characteristic vector, so mv ∈ Q(0, rv) for all
v ∈ V . Since for all v ∈ V , d−Z(v) = mv(ρA∪AE (v)), we have mv ∈ K(k− gk(v), k − f(v)). It follows that
m ∈ ∑

v∈V (Q(0, rv)∩K(k− gk(v), k− f(v))). Since ℓ ≤ |S| ≤ ℓ′, k|V | = |Z|+ |S| and |Z| = m(A∪AE),
we have m ∈ K(k|V | − ℓ′, k|V | − ℓ).

To prove the sufficiency, let m = (mv)v∈V be an integer point of T, that is mv ∈ Q(0, rv) ∩K(k −
gk(v), k − f(v)) for all v ∈ V and m ∈ K(k|V | − ℓ′, k|V | − ℓ)∩Q(0, rMk

F
). Since mv is an integer point in

Q(0, rv), mv is the characteristic vector of a subset ~Zv of ρA∪AE (v). Since mv ∈ K(k − gk(v), k − f(v)),

we have k − gk(v) ≤ mv(ρA∪AE (v)) = | ~Zv| = mv(ρA∪AE (v)) ≤ k − f(v). Let ~Z =
⋃

v∈V
~Zv. Note

that d−~Z(v) = | ~Zv| for all v ∈ V. Then, by f ≥ 0, we have k − d−~Z(v) ≥ f(v) ≥ 0 for all v ∈ V. Since

m ∈ K(k|V | − ℓ′, k|V | − ℓ), we have k|V | − ℓ′ ≤ m(A ∪AE) = | ~Z| = m(A ∪AE) ≤ k|V | − ℓ. Since

m ∈ Q(0, rMk
F
), we get that ~Z is independent in Mk

F . It follows that ~Z is a subset of the dyperedge set

521

of an orientation ~F of F and for all X ⊆ V, |Z(X)| ≤ rMk
H
(Z(X)) ≤ k(|X | − 1) for the hypergraph

H = (V, EA ∪ E). Let S be the multiset of V where every vertex v is chosen k − d ~Z(v) times, that is
|Sv| = k−d−~Z(v) for all v ∈ V. Since d−~Z ≥ 0, (8) holds for the matroid M on S where the independent sets

are the sets of size at most k of S. Since d−~Z(X) =
∑

v∈X d−~Z(v)− | ~Z(X)| = ∑
v∈X(k − |Sv|)− |Z(X)| ≥

k|X | − |SX | − k(|X | − 1) = k − |SX |, (7) holds for ~F ′ = (V, ~Z) and M. Then, by Theorem 8, there

exists a k-regular packing of s-hyperarborescences (s ∈ S) in ~F ′ and hence in ~F . Since the number of

dyperedges in the packing is k|V | − |S| = ∑
v∈V (k − |Sv|) =

∑
v∈V d−~Z(v) = | ~Z|, the dyperedge set of

the packing is ~Z. Since f(v) ≤ k − | ~Zv| = k − d−~Z(v) = |Sv| = k − d−~Z(v) = k − | ~Zv| ≤ gk(v) ≤ g(v) for

all v ∈ V, the packing is (f, g)-bounded. Since ℓ ≤ k|V | − | ~Z| = |S| = k|V | − | ~Z| ≤ ℓ′, the number of

hyperarborescences in the packing is at least ℓ and at most ℓ′. Finally, since ~F is an orientation of F , the
proof is complete.

(b) By Theorem 13.1, for all v ∈ V , Q(0, rv)∩K(k−gk(v), k−f(v)) 6= ∅ if and only if k−gk(v) ≤ k−f(v)
that is (3) holds and 0 ≤ k − f(v) (that holds by the previous inequality) and k − gk(v) ≤ d−A∪AE

(v).
Then Q(0, rv) ∩K(k − gk(v), k − f(v)) = Q(pv, bv) where, by (11), we have for all Z ⊆ A ∪AE ,

pv(Zv) = max{0, k − gk(v)− d−Zv
(v)}, bv(Zv) = min{d−Zv

(v), k − f(v)}. (20)

By Theorem 13.3,
∑

v∈V Q(pv, bv) = Q(pΣ, bΣ) where pΣ =
∑

v∈V pv, bΣ =
∑

v∈V bv. By Theorem 13.1,
Q(pΣ, bΣ) ∩ K(k|V | − ℓ′, k|V | − ℓ) 6= ∅ if and only if Q(pv, bv) 6= ∅ for all v ∈ V , k|V | − ℓ′ ≤ k|V | − ℓ
(which is equivalent to one of the conditions in (4)), pΣ(A ∪ AE) ≤ k|V | − ℓ (which is equivalent to the
other condition in (4)) and bΣ(A ∪ AE) ≥ k|V | − ℓ′. Then the intersection is equal to Q(p, b) where, by
(11), (20), pΣ =

∑
v∈V pv, and bΣ =

∑
v∈V bv, we have for all Z ⊆ A∪AE ,

p(Z) = max

{∑

v∈V

max{0, k − gk(v)− d−Zv
(v)}, k|V | − ℓ′ −

∑

v∈V

min{d−Zv
(v), k − f(v)}

}
, (21)

b(Z) = min

{∑

v∈V

min{d−Zv
(v), k − f(v)}, k|V | − ℓ−

∑

v∈V

max{0, k − gk(v)− d−Zv
(v)}

}
. (22)

By Theorem 13.2, Q(p, b)∩Q(0, rMk
F
) 6= ∅ if and only if Q(p, b) 6= ∅, p ≤ rMk

F
which, by (21), is equivalent

to (18) and (19), and b ≥ 0 (which holds by b ≥ p ≥ 0). Note that k − gk(v) ≤ d−A∪AE (v) for all v ∈ V
and bΣ(A ∪AE) ≥ k|V | − ℓ′ follow from p ≤ rMk

F
applied for Z = ∅ and the proof is complete.

(c) We note that (18) is equivalent to

k|V | − gk(V)−
∑

v∈V

min{d−Z(v), k − gk(v)} ≤ rMk
F
(Z). (23)

First we show that (18) and (19) imply (17). Let P be a subpartition of V. Let Z =
⋃

v∈∪P ρA(v) ∪⋃
e∈E(F(∪P)) Ae and P ′ = P ∪ {v}v∈∪P . Note that d−Z(v) = 0 for all v ∈ ∪P ,

∑

v∈V

min{d−Z(v), k − h(v)} ≤ k|∪P| − h(∪P) for h ∈ {gk, f}, (24)

P ′ is a partition of V , and, by (10),

rMk
F
(Z) ≤ |Z∩A(P ′)|+ |{e ∈ E(P ′) : Z∩Ae 6= ∅}|+k(|V |−|P ′|) = eA∪AE (P)+k(|V |−|P|−|∪P|). (25)

Then (23), (24) applied for h = gk and (25) imply eE∪A(P) ≥ k|P|−gk(∪P). Similarly, (19), (24) applied
for h = f and (25) imply eE∪A(P) ≥ k|P| − ℓ′ + f(∪P). Hence (17) follows.

We now show that (17) implies (19) and (23) and hence (18). Let Z ⊆ A∪AE . By (10), there exists
a partition P of V such that for K = {e ∈ E(P) : Z ∩Ae 6= ∅}, we have

522

rMk
F
(Z) = |Z ∩ A(P)|+ |K|+ k(|V | − |P|). (26)

For h ∈ {gk, f}, let Ph = {X ∈ P : d−Z(v) ≤ k− h(v) for all v ∈ X}. Note that Ph is a subpartition of V
and for every X ∈ P −Ph, there exists a vertex vX ∈ X such that d−Z(vX) > k−h(vX). By the definition
of K, we have

AE(Ph)−K ⊆ Z ∩AE(Ph). (27)

Then, by (26), the definition of Ph, the definition of vX , d−Z ≥ 0, k − h ≥ 0, (27), and h ≥ 0, we have

rMk
F
(Z) +

∑

v∈V

min{d−Z(v), k − h(v)}

= |Z ∩ A(P)|+ |K|+ k(|V | − |P|) +
∑

v∈∪Ph

min{d−Z(v), k − h(v)}+
∑

v∈∪Ph

min{d−Z(v), k − h(v)}

≥ |Z ∩ A(Ph)|+
∑

v∈∪Ph

d−Z(v) +
∑

X∈P−Ph

∑

v∈X

min{d−Z(v), k − h(v)}+ |K|+ k(|V | − |P|)

≥ |Z ∩ A(Ph)|+ |Z ∩ A(Ph)|+ |Z ∩ AE(Ph)|+
∑

X∈P−Ph

(k − h(vX)) + |K| + k(|V | − |P|)

≥ |A(Ph)|+ |AE(Ph)−K|+
∑

X∈P−Ph

(k − h(X)) + |K|+ k(|V | − |P|)

≥ eE∪A(Ph)− |K|+ k(|P| − |Ph|)− h(∪Ph) + |K|+ k(|V | − |P|)
≥ eE∪A(Ph)− k|Ph| − h(∪Ph) + k|V |.

The above inequality applied for h = f and (17) provide that rMk
F
(Z) +

∑
v∈V min{d−Z(v), k − h(v)} ≥

k|V | − ℓ′, so (19) holds. Similarly, the above inequality applied for h = gk and (17) provide that
rMk

F
(Z) +

∑
v∈V min{d−Z(v), k − h(v)} ≥ k|V | − gk(V), so (23) holds. The proof of the theorem is

complete. �
We finish the paper by showing that Theorems 13 and 17 imply Theorem 16. Let (F = (V, E ∪

A), f, g, k, ℓ, ℓ′) be an instance of Theorem 16 that satisfies (3), (4) and (17). Since (17) holds, by
Theorem 17(c), (18) and (19) hold. Since (3) and (4) also hold, by Theorem 17(b), the polyhedron T,
defined in Theorem 17, is not empty. Then, by Theorem 13.2(ii), T contains an integral element x. By
Theorem 17(b), x is the characteristic vector of the dyperedge set of an (f, g)-bounded k-regular (ℓ, ℓ′)-
limited packing of hyperarborescences in an orientation ~F = (V, ~E ∪ A) of F . By replacing the arcs in ~E
by the hyperedges in E , we obtain the required packing.

5 Acknowledgements

I thank an anonymous referee for his valuable suggestions that improved the presentation of the paper.
I also thank Pierre Hoppenot for his very careful reading of the paper.

References

[1] K. Bérczi, A. Frank, Variations for Lovász’ submodular ideas, in Building Bridges, Springer,
(2008) 137–164.

[2] K. Bérczi, A. Frank, Supermodularity in Unweighted Graph Optimization I: Branchings and
Matchings, Math. Oper. Res. 43(3) (2018) 726–753.

[3] M. C. Cai, Arc-disjoint arborescences of digraphs, J. Graph Theory 7 (1983) 235–240.

523

[4] O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti, Matroid-Based Packing of Arborescences,
SIAM J. Discret. Math. 27(1) (2013) 567–574.

[5] J. Edmonds, Edge-disjoint branchings, Combinatorial Algorithms, B. Rustin ed., Academic Press,
New York, (1973) 91–96.

[6] Q. Fortier, Cs. Király, M. Léonard, Z. Szigeti, A. Talon, Old and new results on packing
arborescences, Discret. Appl. Math. 242 (2018) 26–33.

[7] A. Frank, On disjoint trees and arborescences, In Algebraic Methods in Graph Theory, 25, Colloquia
Mathematica Soc. J. Bolyai, Norh-Holland, (1978) 59–169.

[8] A. Frank, Generalized polymatroids, in: A. Hajnal et. al. eds. Finite and infinite sets, North-
Holland, Amsterdam-New York (1984) 285–294.

[9] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, 2011.

[10] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs, Discret. Appl.
Math. 131(2) (2003) 385–400.

[11] H. Gao, D. Yang, Packing of maximal independent mixed arborescences, Discret. Appl. Math.
289 (2021) 313–319.

[12] H. Gao, D. Yang, Packing of spanning mixed arborescences, J. Graph Theory, 98(2) (2021)
367–377.

[13] F. Hörsch, Z. Szigeti, Packing of mixed hyperarborescences with flexible roots via matroid
intersection, Electronic Journal of Combinatorics, 28 (3) (2021) P3.29.

[14] F. Hörsch, Z. Szigeti, Reachability in arborescence packings, Discret. Appl. Math. 320 (2022)
170–183.

[15] N. Kamiyama, N. Katoh, A. Takizawa, Arc-disjoint in-trees in directed graphs, Comb. 29
(2009) 197–214.

[16] Cs. Király, On maximal independent arborescence packing, SIAM J. Discret. Math. 30(4) (2016)
2107–2114.

[17] M. Lorea, Hypergraphes et matroides, Cahiers Centre Etudes Rech. Oper. 17 (1975) 289-291.

[18] T. Matsuoka, S. Tanigawa, On Reachability Mixed Arborescences Packing, Discret. Optim. 32
(2019) 1–10.

[19] Z. Szigeti, A survey on packing arborescences, in preparation

524

Quantum-Relaxation Based Optimization
Algorithms: Theoretical Extensions

Kosei Teramoto

Department of Computer Science,
The University of Tokyo

teramoto@is.s.u-tokyo.ac.jp

Rudy Raymond

IBM Quantum, IBM Japan
Dept. of Computer Science, The Univ. of Tokyo

Quantum Computing Center, Keio University
rudyhar@jp.ibm.com

Eyuri Wakakuwa

Department of Computer Science,
The University of Tokyo

eyuriwakakuwa@is.s.u-tokyo.ac.jp

Hiroshi Imai

Department of Computer Science,
The University of Tokyo

imai@is.s.u-tokyo.ac.jp

Abstract: Quantum Random Access Optimizer (QRAO) is a quantum-relaxation based op-
timization algorithm proposed by Fuller et al. that utilizes Quantum Random Access Code
(QRAC) to encode multiple variables of binary optimization in a single qubit. The approx-
imation ratio bound of QRAO for the maximum cut problem is 0.555 if the bit-to-qubit
compression ratio is 3x, while it is 0.625 if the compression ratio is 2x, thus demonstrat-
ing a trade-off between space efficiency and approximability. In this research, we extend
the quantum-relaxation by using another QRAC which encodes three classical bits into two
qubits (the bit-to-qubit compression ratio is 1.5x) and obtain its approximation ratio for the
maximum cut problem as 0.722. Also, we design a novel quantum-relaxation that always
guarantees a 2x bit-to-qubit compression ratio which is unlike the original quantum relax-
ation of Fuller et al. We analyze the condition when it has a non-trivial approximation ratio
bound

(
> 1

2

)
. We hope that our results lead to the analysis of the quantum approximability

and practical efficiency of the quantum-relaxation based approaches.

Keywords: Quantum-Relaxation, Quantum Random Access Codes, Quantum
State Rounding, Maximum Cut Problem, Quantum Approximability

1 Introduction

1.1 Backgrounds

Solving optimization problems is one of the most important tasks for which quantum computation is
expected to be useful. Various quantum algorithms have been devised for NP-hard optimization problems
such as QAOA (Quantum Approximate Optimization Algorithms) [3] proposed by Farhi, Goldstone, and
Gutmann, and VQE (Variational Quantum Eigensolver) [13] proposed by Peruzzo et al. Although QAOA
and VQE are classical-quantum hybrid algorithms designed for near-term devices capable of running only
shallow circuits, there are some critical issues. The first issue is scalability. Because QAOA and VQE
encode one classical bit into one qubit and the number of qubits of near-term quantum devices is at most
several hundred qubits, the problem instance sizes are highly limited. The second issue is that we do
not know if quantumness (i.e. quantum entanglement) of constant-depth QAOA and VQE can give rise
to a better result than the classical optimization algorithms, as indicated in [12]. In other words, for
combinatorial optimization, QAOA and VQE may not be attractive to be run on a quantum computer
in the first place.

525

Recently, a new classical-quantum hybrid optimization algorithm, QRAO (Quantum Random Access
Optimization) [4] was proposed by Fuller et al. to address the above issues. Specifically, the QRAO
encodes multiple classical bits (less than or equal to three) into one qubit using the (3, 1)-QRAC (Quantum
Random Access Code) [1, 6]. Here, (m,n)-QRAC means the quantum random access codes which encode
m classical bits into n qubits. Due to this constant-factor improvement in scalability, Fuller et al.
were able to perform experiments with QRAO on superconducting quantum devices to solve the largest
instances of a maximum cut problem (up to 40 nodes using only 15 qubits). Also, since QRAO searches
for quantum states that correspond to solutions to the relaxation problem rather than classical solutions,
the quantum state that is eventually discovered is an entangled state that cannot be directly interpreted
as a classical solution. Because of this, the methods like QRAO are called quantum-relaxation and have
been extended for more general quadratic programs [17]. To obtain the classical solution, quantum state
rounding of the relaxed solution must be performed. Therefore, compared to standard VQE methods,
QRAO may benefit from quantum entanglement if the entangled states result in better relaxed values.
In other words, QRAO is inherently different from standard quantum-classical hybrid algorithms like
QAOA and may benefit from quantum mechanical properties. In fact, there exists an experimental result
that there are some instances for which entanglement helps QRAO find optimal solutions [14].

The quantum state rounding algorithm (magic state rounding) used in QRAO is inspired by Goemans
and Williamson’s approximation algorithm for the maximum cut problem with an approximation ratio
of 0.879 [5]. It randomly chooses the pair of two-bit-inverted relationships and decodes the encoded bits
into one of the two candidates by performing the corresponding quantum measurement. By quantum
information theoretic analysis, it is proved that the approximation ratio of quantum-relaxation using
(3, 1)-QRAC is 0.555 and that of quantum-relaxation using (2, 1)-QRAC is 0.625 [4]. While the optimality
of standard QAOA or VQE is often assumed when the obtained quantum state is the ground state, the
approximation ratios of QRAO are obtained regardless of the reachability of the ground state. Namely,
the ratios are guaranteed as long as the relaxed value of the obtained quantum state exceeds that of the
classical optimal value. This is crucial as finding the exact ground state can be extremely hard [9].

The approximation ratios of (3, 1)- and (2, 1)-QRAC imply that the higher the space compression ratio
the lower the approximation ratio is. There is a trade-off between space efficiency and approximability.
The approximation ratio bound of QRAO is much lower than Goemans and Williamson’s 0.879 [5] which
is proved to be optimal under the UGC (Unique Game Conjecture) [10]. This is because the success
probability of decoding each bit of the QRACs used in QRAO is not high. The success probability of
decoding each encoded bit is 1

2 + 1
2
√
2
≈ 0.85 for (2, 1)-QRAC and 1

2 + 1
2
√
3
≈ 0.79 for (3, 1)-QRAC [1, 6].

1.2 Our Results

In this research, we extend the quantum-relaxation in two ways: (i) we introduce the use of (3, 2)-QRAC to
obtain a better approximation ratio with a slightly lower bit-to-qubit compression ratio, and (ii) we design
a novel quantum-relaxation that always guarantees 2x bit-to-qubit compression ratio which is unlike the
original quantum relaxation of Fuller et al. For (i), we will show the formulation of the (3, 2)-QRAC which
encodes three classical bits into two qubits obtained by numerical calculation [8]. The success probability
of decoding each encoded bit is 1

2 + 1√
6
≈ 0.908, and it is optimal among all (3, 2)-QRACs based on

the bound by Manvčinska and Storgaard [11]. Also, we extended the quantum-relaxation by using this
(3, 2)-QRAC. The instance of the problem is encoded into the problem Hamiltonian, and the maximum
eigenstate of the Hamiltonian is explored. By performing the quantum state rounding algorithm, we
obtain the classical binary solution to the problem. Furthermore, we proved the approximation ratio
bound of the above quantum-relaxation based optimization algorithm for the MaxCut problem as 13

18 ≈
0.722. The only assumption of the proof of the approximation ratio is the same as the one using (3, 1)-
or (2, 1)-QRACs, that is, the energy of the found candidate quantum state for the maximum eigenstate
of the problem Hamiltonian exceeds the optimum value of the original problem instance. Although the
space compression ratio of our quantum relaxation is 3

2 = 1.5 and is lower than the one using (3, 1)-
or (2, 1)-QRACs, the approximation ratio bound is better. Our result is consistent with the trade-off
between the space compression ratio and the approximability of the maximum cut problem. Though the

526

obtained approximation ratio bound 0.722 is lower than that of Goemans and Williamson, the practical
feasibility of quantum-relaxation based approaches is enhanced.

To always guarantee the bit-to-qubit compression ratio of QRAO using (3, 1)-QRAC is essential as
in the original QRAO the ratio becomes lower as the density of the graph instance increases. This is
because there is a constraint that the endpoints of each edge must be associated with different qubits.
For example, if the graph instance is the complete graph, then the number of qubits needed to run
QRAO is the same as the number of vertices. In such cases, the quantum-relaxation based optimizer
has no space advantage against standard QAOA and VQE algorithms. In this research, for (ii), we
propose new types of encoding which encode up to two classical bits into a single-qubit by using the
(3, 1)-QRAC. The third encoded bit’s position in (3, 1)-QRAC corresponds to the parity of the two bits.
This modification allows us to remove the constraint that the endpoints of each edge have to be assigned
to different qubits. The space compression ratio of the algorithm is always 2x which is independent of
the density of the graph instances. Unfortunately, non-trivial approximation ratio bound

(
> 1

2

)
does not

exist generally. We calculate the approximation ratio of this new algorithm by using two parameters ϵ

and λ as max
{

3−2λ+2ϵ
3+6ϵ , 9−2

√
3+2

√
3λ+2ϵ

9+18ϵ

}
. The parameter ϵ is defined by the equation OPT =

(
1
2 + ϵ

)
|E|

where OPT is the optimal cut value, and therefore ϵ quantifies the so-called MaxCutGain [2]. The
parameter λ is the ratio of the edges whose endpoints are assigned to different qubits. By using the
approximation ratio bound, we analyze the condition of the graph instance that our algorithm gives a
non-obvious approximation ratio bound for the maximum cut problem.

In this paper, we briefly summarize our results. To address more detailed contents, please refer to the
paper [15].

2 Preliminaries

2.1 Quantum Random Access Codes

The n qubits are represented by a vector in C2n and seem to have much more information than the
classical n bits. However, it is known that n qubits are needed to transfer n-bit classical information
without error by Holevo bound [7]. On the other hand, if we admit some errors, we can encode multiple
classical bits into a single qubit by using (n, 1, p)-QRA codes [1].

Definition 1 ((n, 1, p)-QRA codes [1]) An (n, 1, p)-QRA coding is a function that maps n-bit strings
x ∈ {0, 1}n to 1-qubit states ρx satisfying the following conditions that for every i ∈ {1, 2, ..., n}, there
exists a POVM

Ei = {Ei
0, E

i
1}

such that
Tr(Ei

xi
ρx) ≥ p

for all x ∈ {0, 1}n, where xi is the i-the bit of x.

The POVM Ei corresponds to the decoding process. By measuring the encoded state ρx with the POVM
Ei, we can decode the i-th encoded bits xi with probability p. We noted that (n, 1, p)-QRA codes is
meaningless if p ≤ 1

2 because p = 1
2 is equivalent to randomly choosing binary bits. (n,m, p)-QRA coding

for m ≥ 2 can also be defined in the same way. There exists (2, 1, 0.85)- and (3, 1, 0.79)-QRA codings [1]
which are used in QRAO [4]. The (2, 1, 0.85)-QRA coding is visualized as vertices of the square on the
x-z plane in the Bloch sphere as shown in Figure 1a. The (3, 1, 0.79)-QRA coding is visualized as vertices
of the cube inscribed in the Bloch sphere as shown in Figure 1b.

527

(a) (2, 1, 0.85)-QRA coding (b) (3, 1, 0.79)-QRA coding

Figure 1: The (n, 1, p)-QRA coding in Bloch sphere representation

2.2 Quantum Relaxation Based Optimization Algorithms

The following explanation is based on the QRAO paper [4]. We explain the quantum-relaxation based
optimization algorithm by using the MaxCut problem formulated as

max
{+1,−1}|V (G)|

1

2

∑

ei,j∈E(G)

(1− xixj) (1)

In the typical quantum-classical hybrid approach using variational methods such as VQE [13] or QAOA [3],
each classical binary variable xi is mapped to i-th qubit using the Pauli Z operator. Then the MaxCut
problem is reduced to the problem to find the maximum eigenstate of the Hamiltonian:

H =
1

2

∑

ei,j∈E(G)

(I − ZiZj). (2)

On the other hand, in the quantum-relaxation based optimization algorithms such as QRAO [4], multiple
classical bits are encoded into a smaller number of qubits using QRACs explained in Section 2.1. For
example, if we use (3, 1)-QRAC, three classical binary variables x1, x2, and x3 are mapped to a single
qubit using the Pauli X, Y , and Z operators respectively. Compared with QAOA or VQE, QRAO has
the constant-factor space complexity advantage. The goal is, as well as the typical methods, to reduce the
MaxCut problem to the procedure to explore the maximum eigenstate of the Hamiltonian called relaxed
Hamiltonian Hrelax. To construct a relaxed Hamiltonian, we make the mapping from classical binary
variables into qubits. First we perform a coloring of the instance graph G by using, for example, LDF
(large-degree-first) method [16] whose time complexity is O(|V (G)| log |V (G)| + deg(G)|V (G)|) where
deg(G) is the maximum degree of the graph G. After performing the LDF algorithm, the vertices are
partitioned into the set {Vc} associated with the color c ∈ C. We note that there is a constraint: for each

edge, its endpoints must be assigned to different qubits. Next, we associate
⌈
|Vc|
3

⌉
qubits for each color

c ∈ C. Now up to three vertices are assigned to a single qubit. We greedily order these three vertices
and assign the Pauli operators X, Y , and Z respectively. If we use the (2, 1)-QRAC, then we associate⌈
|Vc|
2

⌉
qubits for each color and assign the Pauli X and Z for the up to two vertices assigned to the same

single qubit instead. Finally, we obtained a relaxed Hamiltonian instead of the normal Hamiltonian in
Equation (2) as below:

Hrelax =
1

2

∑

ei,j∈E(G)

(I − 3PiPj), (3)

where Pi is the Pauli operator associated with the vertex vi. We explore the maximum eigenstate of
Hrelax by using variational methods such as VQE. The relaxed Hamiltonian Hrelax is no longer diagonal
and it contains the non-classical states (with superposition and entanglement) as the maximal eigenstates.
It means that the found eigenstate for the relaxed Hamiltonian cannot be associated with the classical
solution directly. Because of the construction of the Hamiltonian, the found state should be a quantum
state that corresponds to the relaxed solution to the MaxCut problem. A relaxed solution means the
solution of the MaxCut problem without the constraint that the solution must be a binary vector. We

528

(a) µ±
1 (b) µ±

2 (c) µ±
3 (d) µ±

4

Figure 2: The intuition of the quantum measurements performed in magic state rounding algorithm

denote the found eigenstate in quantum-relaxation based optimization algorithm as ρrelax and called
it relaxed state. To retrieve the classical solution for the MaxCut problem, we perform quantum state
rounding algorithms. There are two types of rounding algorithms proposed by Fuller et al. [4].

The first rounding algorithm is Pauli rounding which decodes the encoded three classical bits in each
qubit one by one. Because the Pauli rounding algorithm does not consider the correlation between qubits,
if the relaxed state is very entangled, there is no guarantee that the Pauli rounding works well. By using
the second rounding algorithm, magic state rounding, we can avoid the above problem and can obtain
the approximation ratio bound for the MaxCut problem. The idea of the magic state rounding algorithm
is to decode three classical variables at once from a single qubit. Consider the single qubit magic state:

µ± :=
1

2

(
I ± 1√

3
(X + Y + Z)

)
, (4)

and set
µ±
1 := µ±, µ±

2 := Xµ±X,µ±
3 := Y µ±Y, µ±

4 := Zµ±Z. (5)

In the magic state rounding algorithm, one of the measurement basis {µ+
i , µ

−
i } is selected from i ∈ [4]

for each qubit. After choosing the bases for all qubits, then a relaxed state ρrelax is measured on those
bases. Three classical binary variables are decoded according to the measurement outcome for each qubit.
Figure 2 shows the intuition of the magic state rounding algorithm. Each measurement µ±

i decodes one of
the pair of three bits located at opposite angles on the cube (e.g. 000 or 111 in the case of µ±

1). By using
this simultaneous decoding of the encoded three bits, the magic state rounding algorithm extracts the
solution of the MaxCut for every iteration. The magic state rounding algorithm repeats this procedure
enough times and outputs the best solution. Unlike the case using the Pauli rounding algorithm, there is
an approximation ratio bound for the MaxCut problem when using the magic state rounding algorithm.

Theorem 2 ([4]) Given access to an oracle Orelax producing relaxed state ρrelax s.t. Tr[Hrelaxρrelax] ≥
OPT , the magic state rounding algorithm produces a solution to the MaxCut problem with expected
approximation ratio E[γ] ≥ 5

9 ≈ 0.555.

The expected approximation ratio for the QRAO using (2, 1)-QRAC is proved to be 5
8 = 0.625. In the

case of using (1, 1)-QRAC, the approximation ratio is obtained as 1.0. However, it is meaningless because
the existence of the oracle Orelax in the assumption of the proof implies that the oracle can prepare the
optimal solution. It is obvious that given the optimum solution, the approximation ratio is 1.0. There is
a trade-off between the space compression ratio and the approximation ratio.

3 Theoretical Extensions of Quantum Relaxations

3.1 (3, 2)-QRA Coding

(3, 2)-QRA coding is one of the quantum random access codes which encodes three classical bits into two
qubits. The concrete formulation of the (3, 2)-QRAC is obtained in the numerical calculation [8] like the
following:

529

Theorem 3 Consider the map from three bits (x1, x2, x3) ∈ {0, 1}3 to a two-qubit quantum state ρ′x1,x2,x3

defined by the following equations:

• If b1 ⊕ b2 ⊕ b3 = 0,

ρ′x1,x2,x3
:=

1

4
I1I2 +

1

4
((−1)x1Z1I2 + (−1)x2I1Z2 + (−1)x3Z1Z2). (6)

• Else if b1 ⊕ b2 ⊕ b3 = 1,

ρ′x1,x2,x3
:=

1

4
I1I2 + (−1)x1

(
1

12
Z1I2 +

1

6
X1X2 +

1

6
X1Z2

)

+(−1)x2

(
1

6
I1X2 +

1

12
I1Z2 +

1

6
Y1Y2

)
+ (−1)x3

(
1

12
Z1Z2 −

1

6
X1I2 −

1

6
Z1X2

) (7)

For every pair of (x1, x2, x3), ρ′x1,x2,x3
is a pure state. Then, this map is a (3, 2, 0.908)-QRA coding with

the POVMs (projective measurements, in fact):

F 1 =

{
1

2
I1I2 ±

1√
6

(
1

2
X1X2 +

1

2
X1Z2 + Z1I2

)}
, (8)

F 2 =

{
1

2
I1I2 ±

1√
6

(
1

2
Y1Y2 +

1

2
I1X2 + I1Z2

)}
, (9)

F 3 =

{
1

2
I1I2 +

1√
6

(
Z1Z2 −

1

2
X1I2 −

1

2
Z1X2

)}
. (10)

(3, 2)-QRAC has two kinds of encoded state form in Equations (6) and (7), and which to use depends on
the parity of the encoded three bits. It holds that for each parity, four encoded states are orthogonal, i.e.
for each x1, x2, x3 ∈ {0, 1}3 and x′1, x

′
2, x

′
3 ∈ {0, 1}3 ((x1, x2, x3) ̸= (x′1, x

′
2, x

′
3)) satisfying x1 ⊕ x2 ⊕ x3 =

x′1⊕x′2⊕x′3, ⟨ψ′(x1, x2, x3)|ψ′(x′1, x
′
2, x

′
3)⟩ = 0. It implies that if we know the parity of the encoded classical

bits in advance, we can decode the encoded three bits by using the 4-outcome quantum measurement.
This characteristic is used when we formulate the rounding algorithm corresponding to the magic state
rounding algorithm of the quantum relaxation using (3, 1)- or (2, 1)-QRACs. The POVMs in Equations (8)
to (10) are used when we’d like to decode the encoded bits one by one (e.g. the Pauli rounding algorithm).
The success probability of the decoding is 1

2 + 1√
6
≈ 0.908, and it is proved to be optimal by using the

bound by Mančinska and Storgaard [11]. While the space compression ratio of (3, 2)-QRAC is less than
(3, 1)- or (2, 1)-QRACs, the success probability of decryption is better than theirs.

3.2 Quantum Relaxation Using (3, 2)-QRAC

As we see in Section 2.2, we have to extend the problem Hamiltonian Hrelax for (3, 2)-QRAC. Fortunately,
we can achieve this step by just substituting the Pauli X, Y , and Z operators that appeared in Hrelax

by the two-qubit operators X ′, Y ′, and Z ′ respectively and changing the coefficient of the 2-local Pauli
operators to 1. The definitions of X ′, Y ′, and Z ′ are given in the following equations:

X ′ :=
1

2
X1X2 +

1

2
X1Z2 + Z1I2, (11)

Y ′ :=
1

2
I1X2 + I1Z2 +

1

2
Y1Y2, (12)

Z ′ := Z1Z2 −
1

2
X1I2 −

1

2
Z1X2. (13)

The algorithms are almost the same as QRAO using (3, 1)-QRAC. The first step of the algorithm is to
color the vertices of the graph. After that, we make pairs of two qubits and assign a single pair to up to

530

3 vertices for which the same color is assigned in graph coloring. For each vertex assigned to the same
pair of two qubits, X ′, Y ′, and Z ′ is assigned in order instead of the Pauli X, Y , and Z operators. Now,
all vertices of the graph are associated with one of the operators X ′, Y ′, and Z ′ acting on the same or
distinct pair of two qubits. Then, the problem Hamiltonian of the quantum relaxation using (3, 2)-QRAC
denoted by H ′

relax is defined like the following:

H ′
relax :=

1

2

∑

ei,j∈E(G)

(I − P ′
iP

′
j) (14)

where P ′
i is one of the operators {X ′, Y ′, Z ′} associated with the vertex vi. The next step is to find

a maximum eigenstate of the relaxed Hamiltonian H ′
relax by variational methods such as VQE. Once

we obtained the quantum states corresponding to the relaxed solution to the MaxCut problem, the
quantum state rounding algorithm is performed to extract the classical solution. By using the POVMs
in Equations (8) to (10), we can define the rounding algorithm which decodes the encoded bits one
by one like the Pauli rounding algorithm of QRAO. On the other hand, to obtain the approximation
ratio bound, we need the other rounding algorithm which decodes the configuration of the graph cut
by one-shot measurement like the magic state rounding algorithm of QRAO because the Pauli rounding
type algorithms do not take the correlation between qubits into account. The key to constructing the
rounding algorithm for approximation ratio is to design the quantum measurement which decodes encoded
three bits for each qubit at once. We name the algorithm simultaneous rounding and define it like the
following. In the case of (3, 1)- or (2, 1)-QRACs, decoding was performed for each pair of two bit-inverted
relationships by using the magic state basis measurements. In the case of (3, 2)-QRAC, the measurement
performed is a two-qubits measurement. There will be up to four different measurement results meaning
that up to four different bit patterns can be decoded simultaneously. As we mentioned in Section 3.1, if
we know the parity of the encoded bits, then we can decode the encoded three bits by using the 4-outcome
quantum measurement defined below up to the parity 0 or 1.

{ρ′x1,x2,x3
}x1⊕x2⊕x3=0, or {ρ′x1,x2,x3

}x1⊕x2⊕x3=1. (15)

In the simultaneous rounding algorithm, one of the parity is chosen randomly for each qubit, and one
of the corresponding measurements in Equation (15) is performed to the relaxed state ρ′relax. These
measurements are performed for all qubits at once and decode one solution to the MaxCut problem.
By repeating this procedure sufficient times and taking the best solution, the simultaneous rounding
algorithm for the quantum relaxation using (3, 2)-QRAC finds a classical solution. In this paper, we
obtained the approximation ratio bound of the quantum-relaxation based optimizer using (3, 2)-QRAC
for the MaxCut problem under the premise that the found relaxed state’s energy is larger than the energy
of the quantum state associated with the optimum solution:

Theorem 4 Consider an oracle O′
relax which prepares the relaxed state ρ′relax for the quantum relaxation

using (3, 2)-QRAC satisfying the condition Tr[H ′
relaxρ

′
relax] ≥ OPT where OPT is the optimum value.

Given access to O′
relax, the simultaneous rounding algorithm produces a solution to the MaxCut problem

with an expected approximation ratio E[γ] ≥ 13
18 ≈ 0.722.

Table 1 shows our result for the quantum relaxation using (3, 2)-QRAC (denoted by (3, 2)-QRAO) and
the previous results by Fuller et al. for QRAOs. Our result is consistent with the trade-off between the
bit-to-qubit compression ratio and the approximability of quantum-relaxation based optimizers.

3.3 Space Compression Ratio Preserving Quantum Relaxation

Though QRAO using (3, 1)- or (2, 1)-QRACs have a constant-factor space advantage against typical
quantum optimizers, the bit-to-qubit compression ratio becomes lower as the density of the graph instance
increases. This is because there is a constraint that the endpoints of each edge must be associated with
different qubits. In such cases, the quantum-relaxation based optimizer has no space advantage against

531

Table 1: The relationship between the approximation ratio for the maximum cut problem and the space com-
pression ratio of quantum-relaxation based optimization algorithms

Algorithm
space compression
ratio

approximation
ratio

(1, 1)-QRAO [4] (≈ QAOA [3]) 1.0 (1.0)
(2, 1)-QRAO [4] 2.0 0.625
(3, 1)-QRAO [4] 3.0 0.555
(3, 2)-QRAO 1.5 0.722 (our result)

(a) (3, 1)-QRAC (b) Encoding of Equation (16)

Figure 3: The Bloch sphere representation of (3, 1)-QRAC and the encoding of Equation (16)

standard QAOA and VQE algorithms. In this section, we propose new types of encoding which encode
up to two classical bits into a single qubit by using (3, 1)-QRAC. Concretely, we encode the parity of the
two bits to the third bit’s position in (3, 1)-QRAC formulation like the following:

(x1, x2) 7→ ρ̃x1,x2
:=

1

2

(
I +

1√
3

((−1)x1X + (−1)x2Y + (−1)x1⊕x2Z)

)
. (16)

Figure 3 shows the Bloch sphere representation of (3, 1)-QRAC and the encoding of Equation (16).
Equation (16) encodes the two classical bits into one of the four vertices of the tetrahedron visualized in
Figure 3b. These four vertices correspond to the four of eight vertices of the cube in the case of (3, 1)-
QRAC in Figure 3a. Let us formulate the quantum relaxation based on the encoding in Equation (16).
In the QRAO by Fuller et al., a graph coloring algorithm is performed as preprocessing to satisfy the
constraint that the endpoints of each edge must be assigned to different qubits. On the contrary, in
our new space compression ratio preserving quantum relaxation, such preprocessing is unnecessary. We

just partition the vertices into |V (G)|
2 pairs of two vertices and assign the Pauli X or Y to the two

vertices respectively. Then, we construct the relaxed Hamiltonian from the instance graph. For each
edge (i, j) ∈ E(G), if the endpoints of it are assigned to different qubits, we encode the edge as the term
PiPj where Pi ∈ {X,Y } are the Pauli operators associated with the vertex of index i. If the endpoints of
the edge are assigned to the same qubit, we use the Pauli Z operator acting on the qubit. Let Q idx(i)
be the index of the qubit associated with the i-th vertex. Formally, the relaxed Hamiltonian for our
quantum relaxation H̃relax is defined like the following:

H̃relax :=
1

2

∑

e:=(i,j)∈E(G)

(I −Oe) (17)

where

Oe :=

{
3PiPj if Q idx(i) ̸= Q idx(j),√

3Zk if Q idx(i) = Q idx(j) = k.
(18)

We note that Pi and Pj in Equation (18) are X or Y acting on the different qubits Q idx(i) and Q idx(j).

As well as the other quantum relaxations, we explore the maximum eigenstate of H̃relax and find the
candidate relaxed state ρ̃relax. The next step is to define the quantum state rounding algorithm. The
Pauli rounding is the same as that for (3, 1)-QRAO but disregards the third encoded bit. The magic state

532

(a) µ±
1 (b) µ±

2 (c) µ±
3 (d) µ±

4

Figure 4: The intuition of the quantum measurements performed in magic state rounding algorithm performed
in space compression ratio preserving quantum relaxation

rounding algorithm for our quantum relaxation is also the same as that for (3, 1)-QRAO but the decoding
rule is different. By the magic bases µ±

1 , µ
±
2 , µ

±
3 , µ

±
4 , the four encoded patterns 00, 01, 10, 11 are divided

into 2 groups containing 1 and 3 patterns. The intuition of the magic state measurement is described in
Figure 4. For instance, µ±

1 divides the patterns into {00} and {01, 10, 11}. If the measurement outcome
of µ±

1 is 0, then the encoded bits are decided to be 00. Otherwise, the probabilities that the encoded bits
are 01, 10, and 11 are the same

(
1
3

)
. From the above discussions, we define the decoding rule for µ±

1 as

0 7→ 00,

1 7→ 01 or 10 or 11 with the same probabilities.

We define the decoding rules in the same way for µ±
2 , µ

±
3 , µ

±
4 . Our interest is the approximation ratio

bound of our space compression ratio preserving quantum relaxation. Unfortunately, we didn’t obtain the
constant expected approximation ratio for it. Instead, we have the approximation ratio bound dependent
on the ratio of the edges whose endpoints are associated with different qubit denoted by λ ∈ [0, 1] and
the parameter ϵ ∈

[
0, 12

]
defined by the equation: OPT =

(
1
2 + ϵ

)
|E(G)|. We note that ϵ is called the

gain, and the problem to calculate the value ϵ is called MaxCutGain [2].

Theorem 5 Let λ ∈ [0, 1] be the ratio of the edges whose endpoints are associated with different qubits.
Let ϵ ∈ [0, 12] be the gain. Consider an oracle Õrelax which prepares the relaxed state for the space com-
pression ratio preserving quantum relaxation using the encoding in Equation (16) satisfying the condition
Tr[H̃relaxρ̃relax] ≥ OPT where OPT is the optimum value. Given access to Õrelax, the magic state
rounding algorithm defined in this section produces a solution to the MaxCut problem with an expected
approximation ratio

E[γ] ≥ max

{
3− 2λ+ 2ϵ

3 + 6ϵ
,

9− 2
√

3 + 2
√

3λ+ 2ϵ

9 + 18ϵ

}
.

Consider the condition of λ and ϵ when our quantum relaxation has non-obvious approximation ratio.

E[γ] >
1

2
⇐⇒

{
0 ≤ λ ≤ 1 if ϵ < 9−

√
3

14+2
√
3
≈ 0.416

0 ≤ λ < 3−2ϵ
4 ,− 9

4
√
3

+ 1 + 7
2
√
3
ϵ < λ ≤ 1 if 0.416 ≈ 9−

√
3

14+2
√
3
≤ ϵ ≤ 1

2

(19)

If the graph instance has a relatively small MaxCut value (i.e. the gain ϵ < 0.416), the space compression
ratio preserving quantum relaxation has a non-trivial approximation ratio bound for arbitrary lambda.
It means that we do not have to care about anything when assigning vertices to the qubits in the
preprocessing.

4 Future Directions

We consider the information-theoretic analysis of the trade-off between the approximation ratio and the
space compression ratio of the quantum relaxation, which seems to contribute to revealing the theoretical

533

limitation of the quantum-relaxation based approaches. From the result of QRAO [4] and our result
of the quantum relaxation using (3, 2)-QRAC, we conjectured the approximation ratio of the quantum-
relaxation using a QRAC with the bit-to-qubit compression ratio r as 1

2

(
1 + r−2

)
. Our space compression

ratio preserving quantum relaxation is not included in the quantum relaxations mentioned in the above
conjecture because it does not use the formulation of (3, 1)-QRAC directly. The difficulty of the proof
of this conjecture lies in the point that the concrete formulations of QRACs for general m and n are not
known. The (3, 2)-QRAC is obtained by numerical calculations, and it is hard to extend the rule of the
construction of the QRAC to general m and n. By combining the results of the approximation ratio for
the problem to find a maximum eigenstate of the Hamiltonians with the above conjecture, the quantum
approximability without assumptions for the MaxCut problem can be obtained.

References

[1] Andris Ambainis, Ashwin Nayak, Amnon Ta-Shma, and Umesh Vazirani. Dense quantum coding
and quantum finite automata. Journal of the ACM (JACM), 49(4):496–511, 2002.

[2] M. Charikar and A. Wirth. Maximizing quadratic programs: extending Grothendieck’s inequality.
In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 54–60, 2004.

[3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028, 2014.

[4] Bryce Fuller, Charles Hadfield, Jennifer R Glick, Takashi Imamichi, Toshinari Itoko, Richard J
Thompson, Yang Jiao, Marna M Kagele, Adriana W Blom-Schieber, Rudy Raymond, et al. Approx-
imate solutions of combinatorial problems via quantum relaxations. arXiv preprint arXiv:2111.03167,
2021.

[5] Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995.

[6] Masahito Hayashi, Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and Shigeru Yamashita.
(4, 1)-quantum random access coding does not exist—one qubit is not enough to recover one of four
bits. New Journal of Physics, 8(8):129, 2006.

[7] Alexander Semenovich Holevo. On capacity of a quantum communications channel. Problemy
Peredachi Informatsii, 15(4):3–11, 1979.

[8] Takashi Imamichi and Rudy Raymond. Constructions of quantum random access codes. In Asian
Quantum Information Symposium (AQIS), volume 66, 2018.

[9] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local Hamiltonian problem.
SIAM Journal on Computing, 35(5):1070–1097, 2006.

[10] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing, 37(1):319–357,
2007.

[11] Laura Mančinska and Sigurd AL Storgaard. The geometry of Bloch space in the context of quantum
random access codes. Quantum Information Processing, 21(4):1–16, 2022.

[12] Giacomo Nannicini. Performance of hybrid quantum-classical variational heuristics for combinatorial
optimization. Physical Review E, 99(1):013304, 2019.

534

[13] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love,
Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quantum
processor. Nature communications, 5(1):1–7, 2014.

[14] Kosei Teramoto, Rudy Raymond, and Hiroshi Imai. The role of entanglement in quantum-relaxation
based optimization algorithms. arXiv preprint arXiv:2302.00429, 2023.

[15] Kosei Teramoto, Rudy Raymond, Eyuri Wakakuwa, and Hiroshi Imai. Quantum-relaxation based
optimization algorithms: Theoretical extensions. arXiv preprint arXiv:2302.09481, 2023.

[16] Dominic JA Welsh and Martin B Powell. An upper bound for the chromatic number of a graph and
its application to timetabling problems. The Computer Journal, 10(1):85–86, 1967.

[17] Andrew Zhao and Nicholas C. Rubin. Quantum relaxation for quadratic programs over orthogonal
matrices, 2023.

535

536

Absence of percolation in graphs based on stationary
point processes with degrees bounded by two

Benedikt Jahnel

Weierstrass Institute Berlin
Mohrenstraße 39, 10117 Berlin, Germany,
and Technische Universität Braunschweig,

Institute of Mathematical Stochastics,
Universitätsplatz 2, 38106 Braunschweig,

Germany
jahnel@wias-berlin.de

András Tóbiás

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

Műegyetem rakpart 11., 1111 Budapest,
Hungary,

and Alfréd Rényi Institute of Mathematics,
Reáltanoda utca 13–15., 1053 Budapest,

Hungary
tobias@cs.bme.hu

Abstract: We consider the bidirectional k-nearest neighbor graph based on a stationary
point process, where one connects two points of the point process by an edge if and only if
they are mutually among the k nearest neighbors of each other. For a large class of stationary
point processes in arbitrary dimensions, we show that for k = 2, the arising graph has no
infinite connected component, almost surely. In the particular case of the two-dimensional
homogeneous Poisson point process, this verifies a conjecture by Balister and Bollobás.

Keywords: Continuum percolation, stationary point processes, degree bounds, bidirectional
k-nearest neighbor graph, edge-preserving property, deletion-tolerance.

1 Introduction

This entire document is an extended abstract of the paper [10]. For all the proofs and discussions that we
are omitting here, as well as for the acknowledgements and the references not mentioned in this abstract,
see the full paper.

Continuum percolation was introduced by Gilbert [7] in order to model connectivity in large telecom-
munication networks. In his graph model, the vertices form a homogeneous Poisson point process (PPP)
of (spatial) intensity λ > 0 in R2, that is, the number of points in a measurable subset of R2 is Poisson
distributed with parameter equal to λ times the Lebesgue measure of the subset, and the numbers of
points in disjoint subsets are independent. Now, two points are connected by an edge whenever their
distance is less than a fixed connection radius r > 0. He showed that this model undergoes a phase tran-
sition: λ is sufficiently small, then the graph consists of finite components only, almost surely, whereas for
large enough λ, the graph percolates, i.e., it has an unbounded connected component, also almost surely.

This model has been widely extended, for instance to the case of random connection radii and for
various point processes (see [10, Section 1] for further references). The homogeneous Poisson point
process in R2 (or in Rd in general, defined analogously) represents a fully random set of points with
total independence among the numbers of points in disjoint subsets. This independence property in
fact already implies that the number of points in a given measurable subset of Rd has to be Poisson
distributed, see [K93, Section 1.4]. The homogeneous PPP is a natural toy model for the set of users in a
spatial telecommunication network. On the other hand, it does not capture e.g. spatial inhomogeneities
due to geographic reasons, correlations among the numbers of users in different areas, or the fact that
users are mainly situated along streets, but other point processes can be chosen in order to make the

537

modelling more realistic. Our basic assumption will be that the point process under consideration is
stationary, i.e., its distribution is shift-invariant.

A drawback of Gilbert’s model is that it allows for an arbitrarily large degree of the vertices, whereas
for many applications, it is a reasonable assumption that the vertices should have bounded degree.
Incorporating this property, Häggström and Meester [8] studied percolation in the so-called undirected
k-nearest neighbor (U-kNN) graph, based on a stationary PPP in Rd, d ≥ 1. Here, all points of the
point process are connected to their k-nearest neighbors, for some fixed k ∈ N. This results in a graph
that is the undirected variant of a directed graph with out-degrees bounded by k, which itself also has
degrees larger than k. Let us write kU,d for the minimum of all k ∈ N such that the U-kNN-graph of
the stationary PPP in Rd percolates with positive probability. It was shown in [8] that kU,d > 1 for all
d ∈ N, however, kU,d <∞ for all d ≥ 2 and kU,d = 2 for all sufficiently large d.

Balister and Bollobás [1] studied the case d = 2. They also introduced another undirected graph,
which is contained in the U-kNN graph, called the bidirectional k-nearest neighbor (B-kNN) graph. Here,
one connects two points of the point process if and only if they are mutually among the k nearest neighbors
of each other. This graph has in fact degrees bounded by k, which immediately implies that there is
no percolation for k = 1, whatever the vertex set is. The critical out-degree kB,d is defined analogously
to kU,d but with U replaced by B. It was shown in [1] that kU,2 ≤ 11 and kB,2 ≤ 15. Further, ‘high-
confidence results’ of [1] indicate kU,2 = 3 and kB,2 = 5. By ‘high-confidence results’, the authors of that
paper meant that these assertions follow once one shows that a certain deterministic integral exceeds
a certain deterministic value, however, the integrals were only evaluated via Monte–Carlo methods so
far. Hence, from a mathematical point of view, these are still open conjectures, but there is very strong
numerical evidence that they are true (see Figure 1 below for an illustration).

In the present work, we focus on the B-kNN graph in arbitrary dimension for k = 2 and we verify that
it does not percolate under the general assumption that the underlying stationary point process is deletion-
tolerant in the sense of [9]. In general, if in an undirected graph all degrees are bounded by k = 2, all
infinite connected components must be path graphs (no cycles, no branchings), infinite in one or two
directions. This makes the graph similar to a one-dimensional continuum percolation model, indicating
that, under rather general conditions, there should be no infinite connected component. Certainly, there
are deterministic point processes where percolation is possible, but a little bit of randomness can be
expected to suffice for non-percolation. In our recent paper [11], we showed that in so-called signal-
to-interference ratio (SINR) graphs based on general stationary Cox point processes in any dimension,
under rather general choices of the parameters resulting in degrees bounded by 2, there is no percolation.
SINR graphs are a popular model for modelling connectivity in wireless networks [4, 5, 13, 11], being
proper subgraphs of the B-kNN graph (in certain cases, this is only true with a slight modification of
the definition of the B-kNN graph). Hence, the lack of percolation in the SINR graph does not imply
the same in the B-kNN graph. Nevertheless, the proof of absence of percolation in SINR graphs with
degrees bounded by 2 can be extended in order to disprove percolation in the B-2NN graph, even for
general deletion-tolerant stationary point processes, and this includes the case of stationary Cox point
processes and in particular also of the homogeneous PPP.

Thus, our results imply that kB,2 ≥ 3, which provides a partial verification of the high-confidence
results of [1]. Let us also note that in [10] we do not only verify the absence of percolation for the B-kNN
graph, but for a generalization called the f -kNN graph. This makes it possible to consider an arbitrary
norm on Rd instead of the Euclidean norm, and the notion of being k-nearest neighbors in the graph
does not only depend on distances (w.r.t. this norm) but also possibly on random marks associated with
the points of the point process via a function f . In particular, any SINR graph is a proper subgraph of
an f -kNN graph. This general setting hardly requires changes in the proofs, and hence we omit it from
the present abstract for brevity.

538

2 Model definition and main result

Our setting is as follows. Let d ∈ N, and let ∥ · ∥ be the Euclidean norm on Rd. Next, let X = {Xi}i∈I

be a a stationary point process in Rd with finite intensity λ = E[X([0, 1]d)], that is nonequidistant. This
means that for all i, j, k, l ∈ I, ∥Xi − Xj∥ = ∥Xk − Xl∥ > 0 implies {i, j} = {k, l} and ∥Xi∥ = ∥Xj∥
implies i = j, almost surely. Clearly, this property implies that the point process X is simple, i.e.,
P(Xi ̸= Xj ,∀i, j ∈ I with i ̸= j) = 1. For illustration, note that the randomly shifted lattice Zd + U ,
where U is a uniform random variable in [0, 1]d, is a simple, stationary, but not nonequidistant point
process on Rd.

Thus, if x = {xi}i∈I is a deterministic, locally finite, infinite and nonequidistant set of points in
Rd (for some countable index set I) and vo ∈ x, we can represent x as x = {vn(vo, x)}n∈N0

, where
v0(vo, x) = vo, and vn(vo, x) is the n-th nearest neighbor of vo in x with respect to the Euclidean distance
for any n ∈ N0. As already indicated, for k ∈ N, the bidirectional k-nearest neighbor (B-kNN) graph is
the random undirected graph gB,k(X) having vertex set X and for all i ∈ I and n ∈ {1, . . . , k} an edge
between Xi and vn(Xi, X) whenever Xi ∈ {v1(vn(Xi, X), X), . . . , vk(vn(Xi, X), X)} (see Figure 1).

Figure 1: Different kNN graphs based on the same realization of a two-dimensional homogeneous PPP.
From left to right: U-kNN graphs for k = 2, 3 and B-kNN graphs for k = 4, 5.

Apart from the basic requirement of being nonequidistant, the property of deletion-tolerance intro-
duced in [9] is the most important requirement on the point process. An X-point is an Rd-valued random
variable Z, defined on the same probability space as X, such that Z ∈ X a.s., and one says that X is
deletion-tolerant if for any X-point Z, the distribution of X \ {Z} is absolutely continuous with respect
to the one of X. See [9, Theorem 1.1] for equivalent formulations of this property. Equipped with the
above definitions, we are now able to state our main result.

Theorem 1 Let the deletion-tolerant point process X be stationary, nonequidistant and of a finite in-
tensity. Then, P(gB,2(X) percolates) = 0.

The proof of this theorem is sketched in Section 3. In the rest of this section, let us mention some examples,
counterexamples and consequences, whose proofs can only be found in [10]. Immediate extensions of our
method require that the stationary undirected graph with degrees bounded by 2 is edge-preserving, which
is a property that we will explain in the sketch of the proof of the theorem below. This way, the proof can
be applied, e.g., to the graph where we connect each vertex to its two furthest neighbors in a bidirectional
sense within a ball of fixed radius around the vertex (whenever they exist), but not to the graph where we
connect each vertex to its k1-th and k2-th nearest neighbours in a bidirectional sense if {k1, k2} ≠ {1, 2}.

Note that many point processes are deletion-tolerant, e.g., all stationary Cox point processes (and
thus in particular all homogeneous PPPs) and a large class of Gibbs point processes (see [10, Proposition
2.6]). The class of deletion-tolerant Gibbs point processes is very rich and in particular includes the
classical examples of superstable Hamiltonians, see [3] and references therein. Moreover, let us mention
some well-known point processes that are not deletion-tolerant. As introduced in [6, 12], we say that

539

the point process X is number rigid if for any K ⊂ Rd compact, there exists a deterministic measurable
function hK such that,

#(X ∩ K) = hK(X \ K),

almost surely, i.e., X outside K determines the number of points of X in K.

Proposition 2 If the point process X is stationary and number rigid with positive intensity, then X is
not deletion-tolerant.

This proposition follows immediately from results of [9]. Important examples of point processes in R2

satisfying the condition of Proposition 2 are the Ginibre example and the Gaussian zero process, see [6].
Although the proof of Theorem 1 is not applicable for these point processes, we conjecture that they
satisfy the assertion of the theorem.

3 Sketch of proof of Theorem 1

A cluster in gB,2(X) is a maximal connected component. The proof of Theorem 1 proceeds along the
following line of arguments.

Step 1 : We show that with probability 1, gB,2(X) contains no degree-1 point included in an infinite
cluster.
Main tool : Mass-transport principle.

This claim was already proven in our previous paper (see [11, Lemma 5.4]), and in fact it holds for
any stationary random graph based on a nonequidistant point process X with degrees bounded by 2.
The proof is a certain variant of the mass-transport principle (see [2, Section 4.2] for instance). Vaguely
speaking, the argument is the following. By stationarity, if there exists a degree-1 point in an infinite
cluster, then such points must have a positive density. However, since degrees are bounded by 2, any
infinite cluster contains at most one degree-1 point and infinitely many degree-2 points, which implies
that the aforementioned density must be zero.

Step 2 : Conditioning on having an infinite cluster, removing a finite set of points and obtaining a set of
points whose B-2NN graph has a degree-1 point included in an infinite cluster.
Main tool : Edge-preserving property.

For the rest of the proof, we assume for a contradiction that gB,2(X) percolates with positive prob-
ability. Then, by Step 1, there also exists an infinite cluster consisting only of degree-2 points with
positive probability. Conditional on the latter event, let z(X) denote the closest point of X to the origin
that is contained in such an infinite cluster. Then, by construction, z(X) is connected to both of its
two nearest neighbors v1(z(X), X) and v2(z(X), X) by an edge. Let τ(X) denote the (random) smallest
number i ≥ 3 such that vτ(X)(z(X), X) is included in the infinite cluster of z(X) (necessarily, there exists
such i because the cluster containing z(X) is infinite). Now, at least one of the two nearest neighbors
v1(z(X), X) and v2(z(X), X) of z(X) in X is not connected to vτ(X)(z(X), X) by an edge because other-
wise we would obtain a cycle in the infinite cluster containing z(X), which is impossible because degrees
are bounded by 2. Let us denote this neighbor by m(X); if none of v1(z(X), X) and v2(z(X), X) are
connected to vτ(X)(z(X), X) by an edge, let us put m(X) = v1(z(X), X). Let n(X) denote the element
of {v1(z(X), X), v2(z(X), X)} unequal to m(X).

A key property of the B-kNN graph is that it is edge-preserving. That is, after removing a subset
of vertices and redrawing the graph based on the remaining vertices according to the same rules, edges
between remaining vertices are preserved. Hence, if we now remove Y := {m(X), v3(X), . . . , vτ(X)−1(X)}
from the vertex set X, in the B-2NN graph gB,2(X \Y) of the remaining vertex set, z(X) is still included
in an infinite cluster. This is true because we have only removed the edge between z(X) and m(X) from
the cluster, so that the infinite path starting from z(X) with the edge towards n(X) is still completely
preserved. However, z(X) has degree 1 in this cluster. Indeed, by construction, z(X) can only be
connected by an edge to its two nearest neighbors in the new graph gB,2(X \ Y). The first nearest
neighbor of z(X) is now n(X) since m(X) has been removed from the graph, and the second z(X) is

540

now vτ(X)(z(X), X) because Y has been removed. However, since vτ(X)(z(X), X) originally had degree 2
within the infinite cluster of z(X) and none of these neighbors was equal to an element of Y , in gB,2(X\Y)
it is still connected to the same two vertices, none of which is equal to z(X), and thus it has no free
degrees left that z(X) could use. We encourage the reader to consult [10, Figure 2] for an illustration of
the simplest case τ(X) = 3.

We conclude that after removing the aforementioned vertices, in gB,2(X \ Y), z(X) is in an infinite
cluster and has degree 1. Extend the definition of Y via putting Y = ∅ on the event that there exists no
infinite cluster in gB,2(X) or all infinite clusters contain a degree-1 point.

Step 3 : Obtaining a contradiction.
Main tool : An equivalent characterization of deletion-tolerance via finite subprocesses.

According to Step 1, starting from realizations of gB,2(X) having an infinite cluster consisting only of
degree-2 points, via the procedure described in Step 2 we obtain realizations of X \Y that are altogether
included in a set of probability zero with respect to the distribution of gB,2(X). We now want to conclude
that this implies that the initial realizations (and thus also the set of all realizations of gB,2(X) having an
infinite cluster) are included in a nullset w.r.t. the same distribution. But (using Step 1 once more) this
contradicts the assumption that gB,2(X) has an infinite cluster with positive probability, which finishes
the proof of the theorem.

This is the part of the proof where deletion-tolerance plays an important role. We say that a point
process Z is a finite subprocess of X if Z is defined on the same probability space as X, satisfies #Z <∞
and Z ⊂ X almost surely. Then it was shown in [9, Theorem 1.1] that if X is deletion-tolerant, then, for
any finite subprocess Z of X, the law of X \Z is absolutely continuous with respect to the one of X. For
example, Y is a finite subprocess of X.

Using this assertion and the result of Step 2, it is straightforward derive the aforementioned contra-
diction. However, the notation needed for a full proof is somewhat extensive, and therefore we refrain
from presenting further details in this abstract; see [10, Section 3].

References

[1] P. Balister and B. Bollobás, Percolation in the k-nearest neighbor graph, In Recent Results
in Designs and Graphs: a Tribute to Lucia Gionfriddo, Quaderni di Matematica, 28, Editors: M.
Buratti and C. Lindner and F. Mazzocca and N. Melone (2013)

[2] D. Coupier, D. Dereudre and S. Le Stum, Absence of percolation for Poisson outdegree-one
graphs, Ann. Inst. Henri Poincaré Probab. Stat., 56:2 (2020)

[3] D. Dereudre, Introduction to the theory of Gibbs point processes, In Stochastic Geometry, Springer
(2019)

[4] O. Dousse, F. Baccelli and P. Thiran, Impact of interferences on connectivity in ad hoc net-
works, IEEE/ACM Trans. Networking, 1 (2005)

[5] O. Dousse, M. Franceschetti, N. Macris, R. Meester, and P. Thiran, Percolation in the
signal to interference ratio graph, J. Appl. Probab., 43 (2006)

[6] S. Ghosh and Y. Peres, Rigidity and tolerance in point processes: Gaussian zeroes and Ginibre
eigenvalues, Duke Math. J., 166:10 (2017)

[7] E.N. Gilbert, Random plane networks, J. Soc. Indust. Appl. Math., 9 (1961)

[8] O. Häggström and R. Meester, Nearest neighbor and hard sphere models in continuum perco-
lation, Random Structures and Algorithms, 9 (1996)

[9] A.E. Holroyd and T. Soo, Insertion and deletion tolerance of point processes, Electron. J. Probab.,
18, paper no. 74 (2013)

541

[10] B. Jahnel and A. Tóbiás, Absence of percolation in graphs based on stationary point processes
with degrees bounded by two, Random Structures and Algorithms, 62:1 (2022)

[11] B. Jahnel and A. Tóbiás, SINR percolation for Cox point processes with random powers, Adv.
Appl. Probab., 54:1 (2022)

[K93] J.F.C. Kingman, Poisson Processes, Oxford University Press, New York (1993)

[12] M.A. Klatt and G. Last, On strongly rigid hyperfluctuating random measures, J. Appl. Probab.,
59:4 (2022)

[13] A. Tóbiás, Signal to interference ratio percolation for Cox point processes,
Lat. Am. J. Probab. Math. Stat., 17 (2020)

542

Geodesic Diameter in Polygons with Holes

Adrian Dumitrescu

Algoresearch L.L.C.
Milwaukee, WI 53217, USA

ad.dumitrescu@algoresearch.org

Csaba D. Tóth

Department of Mathematics
California State University Northridge

Los Angeles, CA 91330, USA
csaba.toth@csun.edu

Abstract: For a polygon P with holes in the plane, we denote by %(P) the ratio between the
geodesic and the Euclidean diameters of P . It is shown that over all convex polygons with
h convex holes, the supremum of %(P) is between Ω(h1/3) and O(h1/2). However, if all holes
are fat convex polygons, then %(P) = O(1).

Keywords: combinatorial geometry, diameter, distortion, escape path, polygon
with holes

1 Introduction

Determining the maximum distortion between two metrics on the same ground sets is a fundamental
problem in metric geometry. In this paper, we study the maximum ratio between the geodesic (i.e.,
shortest path) diameter and the Euclidean diameter over polygons with holes. A polygon P with h holes
(also known as a polygonal domain) is defined as follows. Let P0 be a simple polygon, and let P1, . . . , Ph

be pairwise disjoint simple polygons in the interior of P0. Then P = P0 \
(⋃h

i=1 Pi

)
.

For any two points s, t ∈ P , the Euclidean distance is |st| = ‖s − t‖2, and the shortest path dis-
tance geod(s, t) is the Euclidean length of the shortest polygonal path between s and t contained in
P . The Euclidean diameter of P is diam2(P) = sups,t∈P |st| and its geodesic diameter is diamg(P) =
sups,t∈P geod(s, t). By definition, we have |st| ≤ geod(s, t) for any two points s, t ∈ P , hence diam2(P) ≤
diamg(P). We are interested in the distortion

%(P) =
diamg(P)

diam2(P)
.

Note that, without further restrictions, %(P) is unbounded, even for simple polygons. Indeed, if P is a zig-
zag polygon with n vertices, lying in a disk of unit diameter, then diam2(P) ≤ 1 and diamg(P) = Ω(n),
hence %(P) ≥ Ω(n). It is not difficult to see that this bound is the best possible.

In this paper, we consider convex polygons with convex holes. Specifically, let C(h) denote the family

of polygonal domains P = P0 \
(⋃h

i=1 Pi

)
, where P0, P1, . . . , Ph are convex polygons; and let

g(h) = sup
P∈C(h)

%(P)

It is clear that if h = 0, then geod(s, t) = |st| for all s, t ∈ P , which implies g(0) = 1. Or main result is
the following.

Theorem 1 For every h ∈ N, we have Ω(h1/3) ≤ g(h) ≤ O(h1/2).

However, if we further restrict the holes to be fat convex polygons, we can show that %(h) is bounded
by a constant for all h ∈ N. In fact for every s, t ∈ P , the distortion geod(s, t)/|st| is also bounded by a
constant.

543

Informally, a convex body is fat if its width is comparable with its diameter. The width a convex
body C is the minimum width of a slab bounded by parallel lines enclosing C. For 0 ≤ λ ≤ 1, a convex
body C is λ-fat if the ratio of its width to its diameter is at least λ, that is, width(C)/diam2(C) ≥ λ;
and C is fat if the inequality holds for a constant λ. For instance, a disk is 1-fat, a 3×4 rectangle is 3

5 -fat

and a line segment is 0-fat. Let Fλ(h) be the family of polygonal domain P = P0 \
(⋃h

i=1 Pi

)
, where

P0, P1, . . . , Ph are λ-fat convex polygons; and let Fλ =
⋃∞
h=0 Fλ(h).

Proposition 2 For every P ∈ Fλ, we have %(P) ≤ O(λ−1).

Related work. The geodesic distance in polygons with or without holes have been studied extensively
from the algorithmic perspective; see [14] for a comprehensive survey. In a simple polygon P with n
vertices, one can compute the geodesic distance between two given points in O(n) time [12], trade-offs
are also available between time and workspace [8]. A shortest-path data structure can report the geodesic
distance between any two query points in O(log n) time after O(n) preprocessing time [7]. In O(n) time,
one can also compute the geodesic diameter [9] and radius [1].

For polygons with holes, much more involved techniques are needed. Let P be a polygon with h holes,
and a total of n vertices. For any s, t ∈ P , one can compute geod(s, t) in O(n + h log h) time and O(n)
space [17], improving earlier bounds in [10, 11, 13, 18]. A shortest-path data structure can report the
geodesic distance between two query points in O(log n) query time using O(n11) space; or in O(h log n)
query time with O(n+ h5) space [4]. The geodesic radius can be computed in O(n11 log n) time [3, 16],
and the geodesic diameter in O(n7.73) or O(n7(log n+h)) time [2]. One can find an (1+ε)-approximation
in O((n/ε2 + n2/ε) log n) time [2, 3]. The geodesic diameter may be attained by a point pair s, t ∈ P ,
where both s and t lie in the interior or P ; in which case it is known [2] that there are at least five
different geodesic paths between s and t.

2 Convex Polygons with Convex Holes

In section, we prove Theorem 1. The upper bound is established in Lemma 3 and and a lower bound
construction is presented in Lemma 5.

Upper Bound. Let P ∈ C(h) for some h ∈ N and let s ∈ P . For every hole Pi, let `i and ri be points

on the boundary of Pi such that
−→
s`i and −→sri are tangent to Pi, and Pi lies on the left (resp., right) side

of the ray
−→
s`i (resp., −→sri).

P0

P1

P2

P3

P4

P5 P6

P7
s

p1
q1

p2

q2
p3

q3 t

s

q

r

p

p′

Figure 1: Left: A polygon P ∈ C(7) with 7 convex holes, a point s ∈ P , and a path greedyP (s) from s to
a point t on the outer boundary of P . Right: A boundary arc p̂q, where |p̂q| ≤ |pr|+ |rq|.

544

We construct a path greedyP (s) from s to some point t in the outer boundary of P by the following
recursive algorithm; refer to Fig. 1 (left): Start from s along an arbitrary ray emanating from s until
reaching the boundary of P at some point p. If p ∈ ∂P0, then let t = q and the path greedyP (s) terminates
at t. Otherwise p ∈ ∂Pi, 1 ≤ i ≤ h, and γ follows ∂Pi to the point `i or ri such that the distance from s

monotonically increases; and then continues along the ray
−→
s`i or −→sri until hits the boundary of P again.

Lemma 3 For every P ∈ C(h) and every point s ∈ P , we have |greedyP (s)| ≤ O(h1/2) · diam2(P).

Proof: Let P be a polygonal domain with a convex outer polygon P0 and h convex holes. We may
assume w.l.o.g. that diam2(P) = 1. For a point s ∈ P , consider the path greedyP (s). By construction,
the distance from s monotonically increases along greedyP (s), and so the path has no self-intersections.
It it composed of radial segments that lie along rays emanating from s, and boundary arcs that lie on
the boundaries of holes. By monotonicity, the total length of all radial segments is at most diam2(P).
Since every boundary arc ends at a point of tangency `i or ri, for some i ∈ {1, . . . , h}, then greedyP (s)
contains at most two boundary arcs along each hole, thus number of boundary arcs is at most 2h. Let A
denote the set of all boundary arcs along greedyP (s); then |A| ≤ 2h.

Along each boundary arc p̂q ∈ A, from p to q, the distance from s increases by ∆pq = |sq| − |sp|. By
monotonicity, we have ∑

p̂q∈A
∆pq ≤ diam2(P).

We now give an upper bound for the length of p̂q. Let p′ be a point in sq such that |sp| = |sp′|, and let
r be the intersection of sq with a line orthogonal to sp passing through p; see Fig. 1 (right). Note that
|sp| < |sr|. Since the distance from s monotonically increases along the arc p̂q, then q is in the closed
halfplane bounded by pr that does not contain s. Combined with |sp| < |sr|, this implies that r lies
between p′ and q on the line sq, consequently |p′r| < |p′q| = ∆pq and |rq| < |p′q| = ∆pq. By the triangle
inequality and the Pythagorean theorem, these estimates give an upper bound

|p̂q| ≤ |pr|+ |rq| =
√
|sr|2 − |sp|2 + |rq| ≤

√
(|sp′|+ |p′r|)2 − |sp|2 + |rq|

≤
√

(|sp|+ ∆pq)2 − |sp|2 + ∆pq ≤ O
(√
|sp|∆pq + ∆pq

)

≤ O
(√

diam2(P) ·∆pq + ∆pq

)
.

Summation over all boundary arcs, using Jensen’s inequality, yields

∑

p̂q∈A
|p̂q| ≤

∑

p̂q∈A
O

(√
diam2(P) ·∆pq + ∆pq

)

≤
√

diam2(P) ·O

∑

p̂q∈A

√
∆pq

+O

∑

p̂q∈A
∆pq

≤
√

diam2(P) ·O

|A| ·

√
1

|A|
∑

p̂q∈A
∆pq

+O(diam2(P))

≤
√

diam2(P) ·O
(√
|A| · diam2(P)

)
+O(diam2(P))

≤ O
(√
|A|
)
· diam2(P) ≤ O

(√
h
)
· diam2(P),

as claimed. �

Corollary 4 For every h ∈ N and every polygon P ∈ C(h), we have diamg(P) ≤ O(h1/2) · diam2(P).

545

Proof: Let P ∈ C(h) and s1, s2 ∈ P . By Lemma 3, there exist points t1, t2 ∈ ∂P0 such that geod(s1, t1) ≤
O(h1/2) · diam2(P) and geod(s2, t2) ≤ O(h1/2) · diam2(P). There is a path between t1 and t2 along the
perimeter of P0, hence geod(t1, t2) ≤ O(diam2(P)). The concatenation of these three paths yields a path
in P connecting s1 and s2, of length geod(s1, s2) ≤ O(h1/2) · diam2(P), as required. �

Lower Bound. The lower bound in Theorem 1 is based on the following construction.

Lemma 5 For every h ∈ N, there exists a polygon P ∈ C(h) such that g(P) ≥ Ω(h1/3).

Proof: We may assume w.l.o.g. that h = k3 for some integer k ≥ 3. We construct a polygon P with h
holes, where the outer polygon P0 is a regular k-gon of unit diameter, hence diam2(P) = diam2(P0) = 1.
Let Q0, Q1, . . . , Qk2 be a sequence of k2 + 1 regular k-gons with a common center such that Q0 = P0,
and for every i ∈ {1, . . . , k2}, Qi is inscribed in Qi−1 such that the vertices of Qi are the midpoints of the
edges of Qi−1; see Fig. 2. Enumerate the k3 edges of Q1, . . . , Qk2 as e1, . . . , ek3 . For every j = 1, . . . , k3,
we construct a hole as follows: Let Pj be an (|e| − 2ε)× ε

2 rectangle with symmetry axis e that contains
e with the exception of the ε-neighborhoods of its endpoints. Then P1, . . . , Pk3 are pairwise disjoint.

Finally, let P = P0 \
⋃k3
j=1 Pj .

π/k

π/k

s

s

Q0

Q0
Q1

Q2

Q3

P0
P1

P2

P3

P4
P5

P6

P7

t

γ

c1

c2

c3

Figure 2: Left: hexagons Q0, . . . , Q3 for k = 6. Right: The 18 holes corresponding to the edges of
Q1, . . . , Q3.

Assume, w.l.o.g., that ei is an edge of Qi for i ∈ {0, 1, . . . , k2}. As P0 = Q0 is a regular k-gon of unit
diameter, then |e0| ≥ Ω(1/k). Let us compare the edge lengths in two consecutive k-gons. Since Qi+1 is
inscribed in Qi, we have

|ei+1| = |ei| cos
π

k
≥ |ei|

(
1− π2

2k2

)

using the Taylor estimate cosx ≥ 1− x2/2. Consequently, for every i ∈ {0, 1 . . . , k2},

|ei| ≥ |e0| ·
(

1− π2

2k2

)k2
≥ |e0| · Ω(1) ≥ Ω

(
1

k

)
.

It remains to show that diamg(P) ≥ Ω(k). Let s be the center of P0 and t and arbitrary vertex
of P0. Consider an st-path γ in P , and for any two points a, b along γ, let γ(a, b) denote the subpath
of γ between a and b. Let ci be the first point where γ crosses the boundary of Qi for i ∈ {1, . . . k2}.
By construction, ci must be in an ε-neighborhood of a vertex of Qi. Since the vertices of Qi+1 are at
the midpoints of the edges of Qi, then |γ(ci, ci+1)| ≥ 1

2 |ei| − 2ε ≥ Ω(|ei|) ≥ Ω(1/k). Summation over

i = 0, . . . , k2 − 1 yields |γ| ≥∑k2−1
i=0 |γ(ci, ci+1)| ≥ k2 · Ω(1/k) ≥ Ω(k) = Ω(h1/3), as required. �

546

3 Convex Polygons with Fat Convex Holes

In this section, we show that in a polygonal domain P with fat convex holes, the distortion geod(s, t)/|st|
is bounded by a constant for all s, t ∈ P , and prove Proposition 2.

Let C be a convex body C in the plane, and let P = R2 \ C be its complement. For any two points
s, t ∈ ∂C, we compare the Euclidean distance |s, t| with the geodesic distance geod(s, t), which is the

shortest st-path along the boundary of C. The geometric dilation of C is δ(C) = sups,t∈∂C
geod(s,t)
|st| .

Lemma 6 Let C be a λ-fat convex body. Then δ(C) ≤ min{πλ−1, 2(λ−1 + 1)} = O(λ−1).

Proof: It is known [6, Lemma 11] that δ(C) = |∂C|
2h , where h = h(C) is the minimum halving distance of

C (i.e., the minimum distance between two points on C that divide the length of C in two equal parts). It

is also known [5, Thm. 8] that h ≥ width(C)/2. Putting these together one deduces that δ(C) ≤ |C|
width(C) .

The isoperimetric inequality |∂C| ≤ diam2(C)π and the obvious inequality |∂C| ≤ 2diam2(C)+2width(C)

lead to the following dilation bounds δ(C) ≤ π diam2(C)
width(C) and δ(C) ≤ 2

(
diam2(C)
width(C) + 1

)
; see also [5, 15].

Since C is λ-fat, direct substitution yields the two bounds given in the lemma. Note that the latter bound
is better for small λ. �

Corollary 7 Let P = P0 \
(⋃h

i=1 Pi

)
be a polygonal domain, where P0, P1, . . . , Ph are λ-fat convex

polygons. Then for any s, t ∈ P , we have geod(s, t) ≤ O(λ−1|st|).

Proof: If the line segment st is contained in P , then geod(s, t) = |st|, and the proof is complete.
Otherwise, segment st is the concatenation of line segments contained in P and line segments piqi ⊂ Pi
with pi, qi ∈ ∂Pi, for some indices i ∈ {1, . . . , h}. By replacing each segment piqi with the shortest path
on the boundary of the hole Pi, we obtain an st-path γ in P . Since each hole is λ-fat, we replaced each
line segment piqi with a path of length O(|piqi|/λ) by Lemma 6. Overall, we have |γ| ≤ O(|st|/λ), as
required. �

Corollary 8 If P = P0\
(⋃h

i=1 Pi

)
be a polygonal domain, where P0, P1, . . . , Ph are λ-fat convex polygons

for some 0 < λ ≤ 1, then diamg(P) ≤ O(λ−1diam2(P)), hence %(P) ≤ O(λ−1).

4 Conclusion

We have shown that in a convex polygonal domain P with h convex holes, the distortion of the polygon,

%(P) =
diamg(P)
diam2(P) , is always O(h1/2) and sometimes Ω(h1/3). The following version of the question studied

here may be more attractive to the escape community. Given n pairwise disjoint convex obstacles in a
convex polygon of diameter O(1) (e.g., the unit square), what is the maximum length of a (shortest)
escape route from any given point in the polyon to the polygon’s boundary? According to our results, it
is always O(n1/2) and sometimes Ω(n1/3).

Closing the gap between the upper and lower bounds is work in progress. Generalizations to d-
dimensional Euclidean spaces for d ≥ 3 are left for future research. It would also be interesting to
improve the running time of algorithms for computing the geodesic diameter or radius of a polygon with
h holes when all holes as well as the outer polygon are convex.

References

[1] Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman,
and Eunjin Oh, A linear-time algorithm for the geodesic center of a simple polygon. Discrete &
Computational Geometry, 56:836–859, 2016. doi:10.1007/s00454-016-9796-0.

547

[2] Sang Won Bae, Matias Korman, and Yoshio Okamoto, The geodesic diameter of
polygonal domains. Discrete & Computational Geometry, 50(2):306–329, 2013. doi:10.1007/

s00454-013-9527-8.

[3] Sang Won Bae, Matias Korman, and Yoshio Okamoto. Computing the geodesic centers of
a polygonal domain. Comput. Geom., 77:3–9, 2019. doi:10.1016/j.comgeo.2015.10.009.

[4] Yi-Jen Chiang and Joseph S. B. Mitchell, Two-point Euclidean shortest path queries in the
plane. In Proc. 10th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 215–224, 1999.
URL: https://dl.acm.org/doi/10.5555/314500.314560.

[5] Adrian Dumitrescu, Annette Ebbers-Baumann, Ansgar Grüne, Rolf Klein, and
Günter Rote, On the geometric dilation of closed curves, graphs, and point sets. Comput.
Geom., 36(1):16–38, 2007. doi:10.1016/j.comgeo.2005.07.004.

[6] Annette Ebbers-Baumann, Ansgar Grüne, and Rolf Klein, Geometric dilation of closed
planar curves: New lower bounds. Comput. Geom., 37(3):188–208, 2007. doi:10.1016/j.comgeo.

2004.12.009.

[7] Leonidas J. Guibas and John Hershberger, Optimal shortest path queries in a simple polygon.
J. Comput. Syst. Sci., 39:126–152, 1989. doi:10.1016/0022-0000(89)90041-X.

[8] Sariel Har-Peled, Shortest path in a polygon using sublinear space. J. Comput. Geom., 7:19–45,
2015. doi:10.20382/jocg.v7i2a3.

[9] John Hershberger and Subhash Suri, Matrix searching with the shortest-path metric. SIAM
J. Computing, 26(6):1612–1634, 1997. doi:10.1137/S0097539793253577.

[10] John Hershberger and Subhash Suri, An optimal algorithm for Euclidean shortest paths in
the plane. SIAM J. Computing, 28(6):2215–2256, 1999. doi:10.1137/S0097539795289604.

[11] Sunjiv Kapoor, Shachindra N. Maheshwari, and Joeseph S. B. Mitchell, An efficient
algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discrete & Compu-
tational Geometry, 18:377–383, 1997. doi:10.1007/PL00009323.

[12] Der-Tsai Lee and Franco P. Preparata, Euclidean shortest paths in the presence of rectilinear
barriers. Networks, 14:393–410, 1984. doi:10.1002/net.3230140304.

[13] Joseph S. B. Mitchell, Shortest paths among obstacles in the plane. Int. J. Comput. Geom.
Appl., 6(3):309–332, 1996. doi:10.1142/S0218195996000216.

[14] Joseph S.B. Mitchell, Shortest paths and networks. In Handbook of Discrete and Computational
Geometry, chapter 31. CRC Press, Boca Raton, FL, 3 edition, 2017. doi:10.1201/9781315119601.

[15] Paul R. Scott and Poh Wah Awyong, Inequalities for convex sets. Journal of Inequalities in
Pure and Applied Mathematics, 1:article 6, 2000.

[16] Haitao Wang, On the geodesic centers of polygonal domains. J. Comput. Geom., 9(1):131–190,
2018. doi:10.20382/jocg.v9i1a5.

[17] Haitao Wang, A new algorithm for Euclidean shortest paths in the plane. In Proc. 53rd ACM Sym-
posium on Theory of Computing (STOC), pages 975–988, 2021. doi:10.1145/3406325.3451037.

[18] Haitao Wang, Shortest paths among obstacles in the plane revisited. In Proc. 32nd ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 810–821, 2021. doi:10.1137/1.9781611976465.
51.

548

Helly-type theorems for hypergraphs

Csaba Biró

Department of Mathematics
University of Louisville,

Louisville, KY 40292, USA
csaba.biro@louisville.edu

Jenő Lehel

Department of Mathematics
University of Louisville,

Louisville, KY 40292, USA
jeno.lehel@louisville.edu

Géza Tóth1

Rényi Institute of Mathematics and
Budapest University of Technology and

Economics, SZIT, Hungary
geza@renyi.hu

Abstract: Let H be a complete r-uniform hypergraph such that two vertices are marked
in each edge as its ‘boundary’ vertices. A linear ordering of the vertex set of H is called an
agreeing linear order, provided all vertices of each edge of H lie between its two boundary
vertices. We prove the following Helly-type theorem: if there is an agreeing linear order on the
vertex set of every subhypergraph of H with at most 2r−2 vertices, then there is an agreeing
linear order on the vertex set of H. We also show that the constant 2r− 2 cannot be reduced
in the theorem. The case r = 3 of the theorem has particular interest in the axiomatic theory
of betweenness. Similar results are obtained for further r-uniform hypergraphs (r ≥ 3), where
one or two vertices are marked in each edge, and the linear orders need to satisfy various rules
of agreement. In one of the cases we prove that no such Helly-type statement holds.

Keywords: Helly-type theorem, r-uniform clique, agreeing linear order

An ordered hypergraph is a hypergraph together with a linear ordering of its vertex set. These combi-
natorial structures emerge in various contexts, from the study of matrices with forbidden submatrices [1],
to the modeling combinatorial geometry problems [5]. Here we are dealing with combinatorial problems
on ordered hypergraphs originated in the study of betweenness of convex bodies in the plane [3].

Let H be a complete uniform hypergraph with no repeated edges, that is a clique. If every edge
e ∈ E(H) has a set of two ‘marked’ vertices, denoted ∂e, then H is called here a 2-extreme marked clique.
A linear order L on V (H) is called an agreeing linear order of H, if for every e ∈ E(H) the set of the
L-minimal and the L-maximal elements in e is equal to ∂e. Similarly, for a set of vertices U ⊆ V (H), a
linear order L on U is called an agreeing linear order of U , if for every e ∈ E(H), e ⊆ U , the L-minimal
and the L-maximal elements in e is equal to ∂e.

We might say that a 2-extreme marked clique is an ordered hypergraph with a vertex set ordered
according to an agreeing linear order. We prove here a Helly-type theorem on the existence of an agreeing
linear order for 2-extreme marked cliques as follows.

Theorem 1 Let H be a 2-extreme marked r-uniform clique on at least 2r − 2 vertices (r ≥ 3). If every
subset of 2r − 2 vertices of V (H) has an agreeing linear order, then H has an agreeing linear order.
Furthermore, there exists a clique H such that every set of 2r − 3 vertices of H has an agreeing linear
order, but H does not.

1Supported by National Research, Development and Innovation Office, NKFIH, K-131529 and ERC Advanced Grant
“GeoScape,” No. 882971.

549

In Section 1, we prove Theorem 1 by using two different approaches. Section 1.1 proves the case
r = 3 separately (Theorem 4); we could not find a convenient extension of this ‘direct’ proof for r ≥ 4.
Section 1.2 contains a proof for r ≥ 4 (Theorem 10 through Lemmas 5 and 7); this approach does not
work for r = 3 without making the proof of Lemma 7 much less transparent.

Actually, a 3-uniform 2-extreme marked clique H can be considered as ‘one-marked’ by marking the
‘middle’ vertex ê = e \ ∂e for every e ∈ E(H); and an agreeing linear order requires that ê be positioned
between the two vertices of ∂e, for every e ∈ E(H). In Sections 2, 3, and 4 we extend the concept of
ordered hypergraphs, where one or two vertices are marked in each edge, and the marked vertices agree
with particular rules in the linear ordering of the vertex set.

Given an r-uniform clique with edges containing one or two marked vertices, our main interest consists
in finding Helly-type theorems guaranteeing the existence of an agreeing linear order for the hypergraph.
We supply a table of content of the paper that may help the reader familiarize the non-standard notions.

clique marked agreeing lin. ord. Helly-number

2-extreme marked ∂e ∂e has the min. and max. of e 2r − 2 Section 1
min-marked A(e) A(e) is the min. in e r + 1 Section 2

1-extreme marked ê ê is the min. or max. in e — Section 3
min&max-marked {A(e), B(e)} A(e) is min. B(e) is max. in e 2r − 2 Section 4

In Section 2, we consider r-uniform min-marked cliques, with one vertex A(e) marked in each edge e,
and in an agreeing linear order A(e) is minimal among the vertices of e. We obtain a Helly-type theorem
whose proof reveals a characterization of min-marked ordered hypergraphs H that have an agreeing linear
order, in general, in terms of a forbidden 2× 2 submatrix in the incidence matrix of H (Theorem 11).

Theorem 2 Let H be a min-marked r-uniform clique on at least r + 1 vertices (r ≥ 3). Then the
vertices of H have an agreeing linear order if and only if each subhypergraph of H with r+1 vertices has
an agreeing linear order.

In Section 3 the agreeing linear order of a 1-extreme marked hypergraph is investigated that requires
the marked vertex ê be either the minimal or the maximal among the vertices in each edge e. A straight-
forward characterization (Proposition 12) leads to the unexpected fact that there is no Helly-type theorem
for the existence of an agreeing linear order for 1-extreme marked cliques (Proposition 13).

Another Helly-type result concludes the paper by characterizing those min&max-marked cliques which
admit an agreeing linear order where both the minimum and the maximum vertices are prescribed in
each edge.

Theorem 3 Let H be a min&max-marked r-uniform clique with at least 2r − 2 vertices (r ≥ 3). Then
H has an agreeing linear order if and only if each subhypergraph of H with 2r−2 vertices has an agreeing
linear order.

Theorem 3 can be deduced as a corollary of Theorem 1; an independent graph theory proof is also
given in Section 4.

1 2-extreme marked cliques

Let H be an r-uniform clique. If every edge of H has two marked vertices, then H is called here a
2-extreme marked clique. The name ‘2-extreme marked’ indicates that the marked vertices of an edge
should become the maximum and the minimum among the vertices of each edge in an agreeing linear
order. The set of the two marked vertices of an edge e is denoted by ∂e.

Let U ⊆ V (H) and let L be a linear ordering on U . We say that an edge {v1, . . . , vr} ⊂ U agrees
with L, provided v1 <L v2 <L · · · <L vr and ∂e = {v1, vr}; furthermore, L is called an agreeing linear
order on U , if every edge entirely in U agrees with L.

550

In the next sections we prove Theorem 1, a Helly-type theorem on the existence of an agreeing linear
order for 2-extreme marked cliques. The special case r = 3 is proved separately in Section 1.1. It is worth
noting that we could not find a convenient extension of the ‘direct’ proof of this special case for r ≥ 4.
The proof of the general case in Section 1.2 uses a different approach.

1.1 The case r = 3

Here we prove the special case r = 3 of Theorem 1.

Theorem 4 Let H be a 2-extreme marked 3-uniform clique. If every set of 4 vertices of H has an
agreeing linear order, then H has an agreeing linear order.

Proof: Let x ∈ V (H). We define a binary relation ∼ = ∼x on V (H) \ {x} with respect to x: let u ∼ v
if u = v or u 6= v and ∂{x, u, v} 6= {u, v}. We show that the relation ∼ is an equivalence relation.

Only transitivity is nontrivial. Let u ∼ v and v ∼ w. Suppose for a contradiction that ∂{x, u, w} =
{u,w}. The set {x, u, v, w} has an agreeing linear order L. In L, we have x between u and w; due to
symmetry we may assume u <L x <L w. So where is v? Since u ∼ v, we must have v <L x, but since
v ∼ w, we must have v >L x, a contradiction.

We claim that there are at most two equivalence classes of the relation ∼. We will prove this by
showing that u 6∼ v and v 6∼ w imply u ∼ w. Suppose this is not true, and chose vertices with u 6∼ v,
v 6∼ w, and u 6∼ w. The set {x, u, v, w} has an agreeing linear order L. Similarly as above, we may
assume u <L x <L w. This time, u 6∼ v implies v >L x, and v 6∼ w implies v <L x in L, a contradiction.
Note also that if x is not in the boundary of some edge, say x 6∈ ∂{x, u, v}, then there are exactly two
equivalence classes, since ∂{x, u, v} = {u, v} implies u 6∼ v.

The proof of the theorem proceeds by induction on |V (H)|. If |V (H)| = 2, the statement is trivial.
Let |V (H)| ≥ 3, and chose a vertex x that is not in the boundary of some edge. Let the two equivalence
classes with respect to x be A1 and A2. By the hypothesis, Ai ∪ {x} has an agreeing linear order Li for
i = 1, 2.

Observe that x is the greatest or the least element of L1 and L2. Indeed, if u, v ∈ Ai was such that
u < x < v in Li, then ∂{x, u, v} = {u, v}, so u 6∼ v contradicting u, v ∈ Ai. After possibly taking duals,
we may assume that x is the greatest element of L1 and the least element of L2. Concatenate L1 and L2

by adding every relation A1 < A2 to form the linear order L on V (H).
We conclude the proof by showing that L is an agreeing linear order. Let e ∈ E(H). If e ⊆ Ai ∪ {x}

for some i, then e agrees with L. If e = {u, x, v} with u ∈ A1 and v ∈ A2, then u 6∼ v exactly means
∂{u, x, v} = {u, v}, so e agrees with L.

The remaining case (up to symmetry) is e = {u, v, w}, u, v ∈ A1, u < v in L1, and w ∈ A2. The set
{u, v, w, x} has an agreeing linear order L′. Since u 6∼ w, we may assume (up to duality) that u < x < w
in L′. Since v 6∼ w, we have v < x in L′. Note that u < v < x in L1 implies ∂{u, v, x} = {u, x}, so in
L′, we must have u < v < x < w. Since L′ is agreeing, this shows ∂{u, v, w} = {u,w}, and thus e agrees
with L. �

1.2 The case r ≥ 4

Here we restate Theorem 1 and prove it for r ≥ 4. The proof uses two lemmas.

Lemma 5 Let r ≥ 4, and assume that L is an agreeing linear order for the 2-extreme marked r-uniform
clique H with n vertices. Then L is unique (up to duality) if and only if n ≥ 2r − 3.

Proof: Let (u1, . . . , un) be an agreeing linear order of the vertices of H. If n ≤ 2r − 4 and r ≥ 4, then
u⌊n/2⌋ and u⌊n/2⌋+1 are not boundary vertices in any edge. Therefore, they can be swapped to obtain
another agreeing linear order. Because the agreeing linear order is not unique, n ≥ 2r − 3 follows.

Let n ≥ 2r − 3. Let L1 = (u1, . . . , un) and L2 be agreeing linear orders of H.

551

Claim 6 There are no vertices ui, uj with i < j such that

– if u1 <L2
un then ui >L2

uj;

– if u1 >L2
un then ui <L2

uj.

Proof: Suppose such vertices exist. We may assume that i 6= 1 and j 6= n, otherwise the statement is
trivial, since every ui, uj /∈ {u1, un} is between u1 and un in L2. Observe that because (j− 1)+ (n− i) ≥
n ≥ 2r − 3, we have

j ≥ r or i ≤ n− r + 1. (1)

Assume first u1 <L2
un. Let A = {v1, . . . , vr−4} be a (possibly empty) subset of V (H) such that

u1, ui, uj , un 6∈ A, and let e = A ∪ {u1, ui, uj , un}. Since ∂e = {u1, un}, we have that ui and uj are both
between u1 and un in L2, so specifically,

u1 <L2
uj <L2

ui <L2
un. (2)

Recalling (1), suppose first that j ≥ r. This means that there exists an edge f ⊆ {u1, . . . , uj} such
that {u1, ui, uj} ⊆ f . Since ∂f = {u1, uj}, it follows that ui is between u1 and uj in L2, contradicting
(2). Now suppose that i ≤ n− r+1. Then there exists g ⊆ {ui, . . . , un} such that {ui, uj , un} ⊆ g. Since
∂g = {ui, un}, it follows that uj is between ui and un in L2, contradicting (2).

Following a similar argument for u1 >L2
un, equation (2) turns into

un <L2
ui <L2

uj <L2
u1,

and a similar argument to the one above leads to a contradiction. �
It is now easy to see how this technical claim implies the Lemma. If u1 <L2

un, then every pair of
vertices is ordered the same in L2 as in L1, so L1 = L2. If u1 >L2

un, then every pair of vertices is
ordered the opposite in L2 as in L1, so L2 = Ld

1. �
A vertex ℓ ∈ V (H) is an extremal vertex of a 2-extreme marked clique H, if every e ∈ E(H) containing

ℓ satisfies ℓ ∈ ∂e. Note that H has at most two extremal vertices.

Lemma 7 For r ≥ 4, let H be a 2-extreme marked r-uniform clique with |V (H)| ≥ 2r − 2. If every set
of 2r − 2 vertices of H has an agreeing linear order, then H has exactly two extremal vertices.

Proof: We proceed by induction on the number n of vertices. If n = 2r − 2, then H has an agreeing
linear order L. The least element ℓ1 and the greatest element ℓ2 of L are clearly extremal vertices of H.

Now let n > 2r − 2, and suppose that the lemma is true for n− 1. Let x ∈ V (H) be a non-extremal
vertex of H, and let H ′ = H − x. We apply the hypothesis to find extremal vertices ℓ1 and ℓ2 in H ′.
Next consider the edge set

F = {{x, ℓ1, ℓ2, v1, . . . , vr−3} : v1, . . . , vr−3 ∈ V (H) \ {x, ℓ1, ℓ2}}.

Claim 8 For some f ∈ F we have x 6∈ ∂f .

Proof: Since x is not extremal in H, we have x 6∈ ∂e for some e ∈ E. Let S ⊂ V (H) be a set containing
e ∪ {ℓ1, ℓ2} such that r + 1 ≤ |S| ≤ r + 2 ≤ 2r − 2. Then S has an agreeing linear order L. Because
x 6∈ ∂e, vertex x is not the minimal or maximal element in S.

Suppose that some a 6∈ {x, ℓ1, ℓ2} is the minimal or maximal element of S. Take a subset g ⊆ S,
|g| = r, x 6∈ g. Since L is an agreeing linear order on g, one of the extremal vertices of g is a, which is a
contradiction, since a ∈ g ⊂ V (H) \ {x} is between ℓ1 and ℓ2, the extremal vertices of g. Therefore, ℓ1
and ℓ2 are the minimal and maximal elements of S, so we have x 6∈ ∂f for some f ∈ F . �

552

Claim 9 For every f ∈ F we have x 6∈ ∂f .

Proof: By Claim 8, x ∈ ∂f for some f ∈ F . Assume for a contradiction that x 6∈ ∂f ′ for some f ′ ∈ F .
Let these edges be

f = {x, ℓ1, ℓ2, v1, . . . , vr−3}, f ′ = {x, ℓ1, ℓ2, v′1, . . . , v′r−3}.

Notice that this step assumes r ≥ 4. Since |f ∪ f ′| ≤ 2r− 3, we have an agreeing linear order L on f ∪ f ′.
Let W be any r − 2-element subset of V = {v1, . . . , vr−3, v

′
1, . . . , v

′
r−3}. Then, by the hypothesis,

∂(W ∪{ℓ1, ℓ2}) = {ℓ1, ℓ2}. This means that in L, every element of V is between ℓ1, and ℓ2. On the other
hand, due to x ∈ ∂f ′, we have that x is not between ℓ1 and ℓ2. So up to symmetry and the possible
exchange of ℓ1 and ℓ2, we obtain

ℓ1 <L V <L ℓ2 <L x

Then f ⊂ V ∪ {x, ℓ1, ℓ2} implies x ∈ ∂f , a contradiction. �
We show that both ℓ1 and ℓ2 are extremal in V (H). It is enough to show the statement for ℓ1; the

proof for ℓ2 is similar. If ℓ1 is not extremal, there exists an edge f = {ℓ1, x, v1, . . . , vr−2} for which
ℓ1 6∈ ∂f . By induction, the set {x, ℓ1, ℓ2, v1, . . . , vr−2} has an agreeing linear order L.

Let V = {v1, . . . , vr−2}, and let W be any r− 3-element subset of V . Since ∂(V ∪{ℓ1, ℓ2}) = {ℓ1, ℓ2},
we have that every element of V is between ℓ1 and ℓ2 in L. From the fact that ℓ1 6∈ ∂f , some vi and x
must surround ℓ1 in L. So up to symmetry,

x <L ℓ1 <L V <L ℓ2

Since e = W ∪ {x, ℓ1, ℓ2} ∈ F , this contradicts x 6∈ ∂e proved in Claim 9. �

Theorem 10 For r ≥ 4, let H be a 2-extreme marked r-uniform clique with at least 2r − 2 vertices.
Then H has an agreeing linear order if and only if every subhypergraph of H on 2r − 2 vertices has an
agreeing linear order. Furthermore, the constant 2r − 2 cannot be replaced by a smaller value.

Proof: Necessity in the first claim is obvious, we prove the sufficiency by induction on the order of
H = (V,E). The claim is true for |V | = 2r − 2, by the condition. Let |V | = n + 1, n ≥ 2r − 2, and
assume that the claim is true for n vertices. We may assume, by Lemma 7, that v0, vn are the extremal
vertices of H. By induction, there is an agreeing linear order L for H−v0. Up to duality, we may assume
that L = (v1, . . . , vn), and this order is unique by Lemma 5. We claim that (v0, v1, . . . , vn) is an agreeing
linear order for H.

Let e = {v0, vi1 , vi2 , . . . , vir−1
}, 1 ≤ i1 < . . . < ir−1 ≤ n, be an arbitrary edge of H. Consider a

(2r − 2)-element set U including e and containing vn. By induction and due to Lemma 5, U has an
agreeing linear order L′ = (v0, . . . , vn) which is unique as well. Notice that |U ∩ (V \ {v0})| = 2r− 3 > r;
the union of L and L′ yields the required agreeing linear order for H, and ∂e = {v0, vir−1

} follows.
To see the second claim of the theorem we present a hypergraph H on n = 2r − 2 vertices, for every

r ≥ 4, such that the vertex set of each subhypergraph of H with 2r − 3 has an agreeing linear order but
V (H) does not. Let V (H) = {v1, v2, . . . , v2r−2}; for e0 = {v1, . . . , vr−1, vr} define ∂e0 = {v1, vr−1}, and
for every e = {vi1 , vi2 , . . . , vir}, 1 ≤ i1 < i2 < . . . ir ≤ 2r − 2, different from e0 define ∂e = {vi1 , vir}. Let
e1 = {vr−1, vr, . . . , v2r−2}.

Observe that the extremal vertices of H are v1 and v2r−2. In any agreeing linear order L =
(v1, . . . , v2r−2) the first element of e1 precedes the last element of e0, that is vr−1 <L vr−1, a con-
tradiction. Therefore an agreeing linear order can not exist.

Observe that L1 = (v1, . . . , vr−1, vr, . . . , v2r−2) agrees with all edges of H but e0, and L0 = (v1, . . . , vr,
vr−1, . . . , v2r−2) agrees with all edges of H but e1. Because e0 ∪ e1 = V (H), no subhypergraph H − vi
contains both e0 and e1; therefore, either L0 − vi or L1 − vi is an agreeing linear order of V (H) \ {vi},
for every 1 ≤ i ≤ 2r − 2. �

553

2 Min-marked hypergraphs

Let H be an r-uniform hypergraph (not necessarily a clique), and let A(e) ∈ e be the vertex marked in
each e ∈ E(H). This hypergraph will be called a min-marked hypergraph indicating that A(e) should
become the minimum among the vertices of each e in an agreeing linear order. A linear order L of H is
called an agreeing linear order, provided A(e) <L v, for every e ∈ E(H) and v ∈ e \ {A(e)}.

LetM(H) denote the incidence matrix ofH, that is, rows correspond to the edges, columns correspond
to the vertices, and for any e ∈ E(H) and α ∈ V (H)

m(e, α) =

0 if α /∈ e
−1 if α = A(e)
1 if α ∈ e \ {A(e)}

The matrix F =
-1 1
1 -1

and its permutation will be called a forbidden 2 × 2. If L is an agreeing

linear order of the min-marked hypergraph H, then the incidence matrix M(H) contains no submatrix
equivalent to a forbidden 2× 2.

Theorem 2 is a direct consequence of the following characterication. Its proof is omitted in this
extended abstract.

Theorem 11 For a min-marked r-uniform clique H with at least r + 1 vertices (r ≥ 3) the following
statements are equivalent

(i) M(H) contains no forbidden 2× 2,

(ii) There is an agreeing linear order on every (r + 1)-element subset of V (H).

(iii) H has an agreeing linear order.

3 1-extreme marked hypergraphs

Let H be an r-uniform hypergraph (not necessarily a clique), and let ê ∈ e be a dedicated vertex in each
edge e ∈ E(H). This hypergraph will be called a 1-extreme marked hypergraph. The name ‘1-extreme
marked’ indicates that the marked vertex of an edge should become either minimum or maximum among
the vertices of each edge in an agreeing linear order. A linear order L of a set U ⊆ V (H) is an agreeing
linear order on U provided ê is either L-minimal or L-maximal among the vertices of e for every edge
e ⊆ U . An agreeing linear order on V (H) is also called an agreeing linear order of H.

The edge/vertex incidence matrix M(H) is defined for every e ∈ E(H) and α ∈ V (H) by the entries

m(e, α) =

0 if α /∈ e
−1 if α = ê
1 if α ∈ e \ {ê}

3.1 Auxiliary graphs

Let H be a 1-extreme marked hypergraph, and let L be an agreeing linear order of H. A 2×2 submatrix

of M(H) equal to
-1 1
1 -1

or its permutation is called an F -matrix; a 2× 2 submatrix of M(H) equal

to
1 -1
1 -1

or its permutation is called an S-matrix. The two vertices corresponding to the columns of

an F -matrix are extremes of different types, one is the L-minimal, the other is the L-maximal element
of the edges corresponding to the rows. Meanwhile, the column containing −1 of an S-matrix is either
L-minimal or L-maximal element in both edges.

554

We associate a graph SF (H) to H in two steps as follows. First let G be a graph with V (G) = E(H)
and for e, f ∈ E(H) let ef be an edge in G labeled with S or F if and only if there exists an S-matrix or
an F -matrix with rows e and f , respectively. Now SF (H) is obtained from G by contracting all S-edges,
then eliminating multiple F -edges and S-loops.

H χ α β γ ξ

e 0 -1 1 1 0
f 0 1 -1 0 1
g 0 0 -1 1 1
h 1 0 1 -1 0
j 1 1 0 -1 0

Table 1:

As an example consider the hypergraph H with vertex set V = {α, β, γ, χ, ξ} including the edges
e, f, g, h and j marked as in Table 1. Then SF (H) is a triangle on the compound vertices {f, g}, {h, j}
and {e}.

An agreeing linear order L of H defines a natural 2-coloring of the edges of H: color A or B will
be assigned to e ∈ E(H) if ê is L-minimal or L-maximal in e, respectively. In other words, E(H) =
EA ∪EB , where EA are edges of a min-marked subhypergraph of H and EB are edges of a ‘max-marked’
subhypergraph of H, which is equivalent to a min-marked hypergraph.

To obtain a characterization similar to the one in Theorem 11 for min-marked hypergraphs, assume
that SF (H) is two-colorable (bipartite), we consider any proper two-coloring with A and B, and we
associate to this A,B-coloring an auxiliary directed graph AB(H) on vertex set V (H) as follows. Each
compound vertex represents a class of ‘S-equivalent edges’ ofH; assign the color of a compound vertex γ of
SF (H) to all edges belonging to the class represented by γ. Thus we obtain a partition E(H) = EA∪EB ,
where EA = {e ∈ E(H) : if e is colored with A} and EB = {e ∈ E(H) : if e is colored with B}. For
every e ∈ E(H) and α, β ∈ e, α → β is an arc, if either e ∈ EA and ê = α, or e ∈ EB and ê = β.

On the analogy of Theorem 11 we obtain a straightforward specification of 1-extreme marked hyper-
graphs in terms of auxiliary graphs.

Proposition 12 A 1-extreme marked hypergraph H has an agreeing linear order if and only if SF (H)
contains no odd cycle and there is an AB(H) graph associated with some proper two-coloring of SF (H)
that contains no directed cycle.

Proof: Let L be an agreeing linear order of H. As described earlier, L defines a two-coloring, that is,
a partition E(H) = EA ∪ EB , where EA = {e ∈ E(H) : ê is L-minimal in e} and EB = {e ∈ E(H) :
ê is L-maximal in e}. Notice that the color is the same for all edges represented by any given compound
vertex γ of SF (H), therefore SF (H) is a bipartite graph (and contains no odd cycle as required). Consider
the AB(H) graph associated with this two-coloring. Let α, β ∈ e, for some e ∈ E(H). If α → β is an arc
in AB(H), then α <L β, because L agrees with e. Therefore, AB(H) contains no directed cycle.

Next we prove that the requirements on the auxiliary graphs are sufficient for the existence of an
agreeing linear order. Since SF (H) is bipartite, its vertices have a proper two-coloring. Since AB(H)
associated with some A,B-coloring of SF (H), it has no directed cycle, there is a linear ordering L on
V (H) such that α → β implies α <L β. Observe that if e ∈ EA then for every β ∈ e\{ê} we have ê → β,
that is ê is L-minimal in e. Similarly, if e ∈ EB then for every α ∈ e \ {ê} we have α → ê, hence ê is
L-maximal in e. �

3.2 1-extreme marked cliques

We will see here that the characterization of 1-extreme marked hypergraphs in Proposition 12 leads to

555

the somewhat unexpected outcome that no Helly-type theorem exists for 1-extreme marked cliques.

Proposition 13 For every r ≥ 3 and n ≥ r+1 such that n− r is even, there exists a 1-extreme marked
r-uniform clique H on n vertices such that any subhypergraph of H on n − 1 vertices has an agreeing
linear order but H does not.

Proof: We provide a construction for the case r = 3, which will be extended for every r ≥ 4.
Case r = 3. Let V (H) = {1, 2, . . . , n}, and let ei = {i, i + 1, i + 2} be edges with marked vertex

êi = i + 1, for i = 1, 2, . . . , n, (modulo n). For each 3-set f = {α1, α2, α3} ⊂ V , with α1 < α2 < α3,

different from all ei, i = 1, 2, . . . , n, let f̂ = α1.
Suppose an agreeing linear order L exists. Let C be the (odd) cycle on the vertex set V (H) with

edges {i, i + 1} (cyclically) for each i. The linear order L induces a 2-coloring on the edges as follows:
{i, i+1} is red, if i >L i+1, and blue if i <L i+1. The condition êi = i+1 implies that this is a proper
edge coloring of an odd cycle with 2 colors, a contradiction.

Now let ξ ∈ V (H), and let H ′ = H − ξ. Organize the vertices of H ′ along a polygonal path, as shown
below. (In this picture ξ is even. If ξ is odd, the only difference is the up/down position of the first and
last point.)

ξ + 1

ξ + 2

. . .

. . .

n

1

2

. . .

. . .

ξ − 1

Then list the lower elements on the picture in increasing order, and list the upper elements in de-
creasing order, i.e. L = {1, 3, . . . , ξ − 1, ξ + 2, ξ + 4, . . . , n− 1, n, n− 2, . . . , ξ + 1, ξ − 2, . . . , 4, 2).

The linear order L clearly agrees with the edges ei ∈ E(H ′). For any other edge, if the marked vertex
(i.e. lowest indexed vertex) is downstairs, it will be least in L; if it is upstairs, it will be greatest in L.

Case r ≥ 4. We define a 1-extreme marked r-regular clique satisfying the requirements as follows.
Notice that the condition n− r ≡ 0 (mod 2) implies that n0 = n− r + 3 is odd. Let V0 = {1, 2 . . . , n0},
and let V = V0 ∪ W , where W is an (r − 3)-set disjoint from V0. Use the construction with vertex set
{1, 2 . . . , n0} as described above for the case r = 3 to obtain a 1-extreme marked 3-regular clique H0 on
vertex set V0 with no agreeing linear order.

For every 3-set f0 ∈ E(H0) define the r-set f = f0 ∪W with marked vertex f̂ = f̂0. For any other
r-set e ⊂ V we have |e∩ V0| ≥ 4; define ê to be the smallest value in e∩ V0. Thus we obtain a 1-extreme
marked r-uniform clique H.

Edges that contain 3 elements of V0 prevent an agreeing linear order by a similar argument as above.
If ξ ∈ W thenH−ξ becomes a min-marked hypergraph such that the ordering of the values 1, 2, . . . , n0

followed by the elements of W in arbitrary order is an agreeing linear order of H − ξ.
For 1 ≤ ξ ≤ n0 an agreeing linear order for H − ξ is obtained by using an agreeing linear order L0 of

H0 − ξ, and by inserting the elements of W between n0 − 1 and n0 in any order. Equivalently, though
less rigorously, W is inserted between the “downstairs” and the “upstairs” vertices of V0. �

4 min&max-marked cliques

Let H be an r-uniform clique such that for every e ∈ E(H) two distinct vertices are marked as a
min-vertex and a max-vertex, denoted A(e) and B(e), respectively. This hypergraph will be called a
min&max-marked clique.

A linear order L of the vertex set of a min&max-marked clique H is called an agreeing linear order,
provided A(e) <L v <L B(e), for every e ∈ E(H) and v ∈ e \ {A(e), B(e)}. We prove Theorem 3 in the
following form.

556

Theorem 14 For r ≥ 3 an r-uniform min&max-marked clique H with n ≥ 2r − 2 vertices has an
agreeing linear order if and only if there is an agreeing linear order on every (2r − 2)-element subset of
V (H). Furthermore, the number 2r − 2 in the statement cannot be lowered.

Proof: For the second statement we adopt the construction in Theorem 10 to present a min&max-
marked clique H on n = 2r− 2 vertices such that the vertex set of each subhypergraph of H with 2r− 3
vertices has an agreeing linear order but H does not.

Let V (H) = {v1, v2, . . . , v2r−2}; for e0 = {v1, . . . , vr−1, vr} define A(e0) = v1, B(e0) = vr−1, and for
every e = {vi1 , vi2 , . . . , vir}, 1 ≤ i1 < i2 < . . . ir ≤ 2r − 2, different from e0 define A(e) = vi1 , B(e) = vir .
Let e1 = {vr−1, vr, . . . , v2r−2}.

In an agreeing linear order L of V (H) we have vr <L B(e0) = vr−1 = A(e1) <L vr, a contra-
diction. Observe next that L1 = (v1, . . . , vr−1, vr, . . . , v2r−2) agrees with all edges of H − e0, and
L0 = (v1, . . . , vr, vr−1, . . . , v2r−2) agrees with all edges of H − e1. Because e0 ∪ e1 = V (H), no sub-
hypergraph H − vi contains both e0 and e1. Therefore, either L0 − vi or L1 − vi is an agreeing linear
order of V (H) \ {vi}, for every 1 ≤ i ≤ 2r − 2.

To prove the first part of the theorem define a directed graph G on V = V (H) with an edge (x, y)
from x to y if either x = A(e) or y = B(e), for some e ∈ E(H), x, y ∈ e. Now H has an agreeing
linear order if and only if the vertices of G have a labeling v1, v2, . . . , vn such that each arc (vi, vj) of
G implies i < j. This labeling of V exists if and only if G has no directed cycle. Assume now that H
satisfies the Helly-condition. Observe that G has no directed 2-cycle, because if it exists and is induced
by e, f ∈ E(H), then |e ∪ f | ≤ 2r − 2, contradicting the condition that on every (2r − 2)-element subset
of V (H) there is an agreeing linear order.

Assume to the contrary that G contains a directed cycle, let C = (a1, a2, . . . , ak) be a shortest directed
cycle of G, k ≥ 3.

Let the arc (a1, a2) of G be induced by some e ∈ E(H); w.l.o.g. we assume that a1 = A(e). A shortest
directed cycle has no chord, thus e ∩ C = {a1, a2}. For the same reason, C contains no r-tuple, hence
k ≤ r − 1 and |e ∪ C| = (r + k)− 2 ≥ r + 2.

Let f ⊂ e ∪ C be an r-tuple containing C and let a = A(f). If a ∈ e \ C, then (a, a1) is a directed
2-cycle; if a = ai, i = 1, . . . , k, then (a, ai−1) is a directed 2-cycle (with a0 = ak), a contradiction. �

In addition to the direct proof of Theorem 3 (see Theorem 14 above) we show how Theorem 3 follows
as a corollary of Theorem 1. Proof:[Second proof of Theorem 14]

Let H be an r-uniform min&max-marked clique with at least 2r − 2 vertices, and assume that there
is an agreeing linear order on every (2r− 2)-element subset of V (H). Construct H ′, a 2-extreme marked
clique from H by making the marked vertices undistinguished, and apply Theorem 1 to get an agreeing
linear order L, in the sense of Theorem 1.

Every edge e ∈ E(H) has the property that the smallest and the largest vertex of e in L form the set
{A(e), B(e)}. Call e “good”, if the smallest vertex of e in L is A(e), and the largest vertex is B(e), and
call it “bad” if it is the other way around. If every edge is good, then L is an agreeing linear order in
the sense of Theorem 14, so we are done. If every edge is bad, then the dual of L will work, and we are
done. So we just have to settle the case when there is a good edge g, and a bad edge b.

Recall that the Johnson graph is defined on the r-element subsets of {1, . . . , n}, as vertices, and two
of these vertices (r-sets) e and f are adjacent, if |e ∩ f | = r − 1. An immediate observation is that the
Johnson graph is connected.

On the path in the Johnson graph from the good edge g to the bad edge b (which are vertices of the
Johnson graph), there are two elements e, f ∈ E(H) such that |e∩ f | = r−1, and e is good and f is bad.
Since |e ∪ f | = r + 1 ≤ 2r − 2, there is an agreeing linear order L′ on e ∪ f .

Note that |{A(e), B(e)} ∩ {A(f), B(f)}| ≥ 1. Without loss of generality, either A(e) = B(f), or
A(e) = A(f). In the former case

A(f) <L′ B(f) = A(e) <L′ B(e),

557

while in the latter,
B(f) <L A(f) = A(e) <L B(e).

In both cases, every element of e ∩ f should be both between A(f) and B(f), and A(e) and B(e),
contradiction.

�

5 Concluding remarks

In this paper we established Helly-type results for the existence of an agreeing linear order, for complete r-
uniform hypergraphs, in four versions. For 2-extreme marked, min-marked and min&max marked cliques
we found Helly-type theorems and the Helly numbers. For 1-extreme marked cliques we showed that
there is no such theorem.

As a possible generalization of the questions discussed in the paper, D. Pálvölgyi (personal commu-
nication) proposed the question of investigating Helly-type properties of cliques, such that a poset is
specified for each edge as “marks”. An edge e agrees with a linear order L, if L|e is a linear extension of
the poset corresponding to e, and an agreeing linear order, as before, is a linear order on the vertex set
that agrees with every edge.

Similarly to the proof of Theorem 14, it can be shown that if none of the posets are antichains, and
every set of 2r2 vertices has an agreeing order, then there is an agreeing linear order of the vertices.
However, determining the Helly-numbers (based on the posets) is wide open.

Thinking of 2-extreme marked 3-uniform hypergraphs, it is a basic assumption (see [6, 7]) defining
the betweenness relation for all triples with prescribed ‘boundaries’. However, it is natural to ask, what
is the situation for not necessarily complete hypergraphs. It is not hard to see that in this general case
there is no Helly-type theorem in any of the four versions. u1, . . . , um cannot be ordered in a desired
way. But then, it is an interesting problem to find conditions on the original hypergraph that would still
guarantee a Helly-type theorem. In the 2-extreme marked, min-marked and min&max marked cases, is
it enough to assume that the original r-uniform hypergraph is dense (that is, the hypergraph has Ω(nr)
hyperedges)?

References

[1] R.P. Anstee, A survey of forbidden configuration results, in: Dynamic Surveys, Electron. J. Comb.
(2013).

[2] S. Azimipour and P. Naumov, Axiomatic theory of betweenness. arXiv:1902.00847v2

[3] C. Biró, J. Lehel and G. Tóth, Betweenness of convex bodies in the plane. In preparation.

[4] P.C. Fishburn, Betweenness, orders and interval graphs. J. Pure Appl. Algebra 1 (1971), no. 2,
159–178.

[5] Z. Füredi, J. Tao, A. Kostochka, D. Mubayi, and J. Verstraëte, Extremal problems for convex
geometric hypergraphs and ordered hypergraphs. Canadian Journal of Mathematics 73, no. 6 (2021):
1648–1666.

[6] E.V. Huntington, A new set of postulates for betweenness, with proof of complete independence.
Trans. Amer. Math. Soc. 26 (1924), no. 2, 257–282.

[7] E.V. Huntington and J.R. Kline, Sets of independent postulates for betweenness. Trans. Amer. Math.
Soc. 18 (1917), no. 3, 301–325.

558

Degrees of interior polynomials
and parking function enumerators

Tamás Kálmán1

Department of Mathematics, Tokyo Institute
of Technology and International Institute

for Sustainability with Knotted Chiral Meta
Matter, Hiroshima University, Japan

H-214, 2-12-1 Ookayama, Meguro-ku, Tokyo
152-8551, Japan

kalman@math.titech.ac.jp

Lilla Tóthmérész 2

Eötvös Loránd University and
ELKH-ELTE Egerváry Research Group

1117, Pázmány Péter sétány 1/C, Budapest,
Hungary

lilla.tothmeresz@ttk.elte.hu

Abstract: The interior polynomial, associated to a directed graph via Ehrhart theory, dis-
plays several attractive properties. We express its degree for all so-called semi-balanced di-
graphs in terms of the minimum cardinality of a directed join. We present a natural extension
of this result to oriented regular matroids. By duality, this implies a formula for the degree
of the parking function enumerator of an Eulerian directed graph. We extend that result to
obtain the degree of the parking function enumerator of an arbitrary rooted directed graph
in terms of the minimum cardinality of a certain type of feedback arc set.

Keywords: graph polynomial, greedoid, Ehrhart theory, dijoin

1 Introduction

In this paper we compute the degrees of two interrelated (in fact, in an appropriate sense, dual) graph and
matroid polynomials. In particular, we show that they can be expressed using common graph/matroid
theoretic notions.

The first type of polynomial we deal with is the interior polynomial of a semi-balanced directed graph
[10]. (A semi-balanced digraph is a directed graph with a layering of the vertices so that each edge goes
exactly one level up. Such structures can be thought of as a generalization of hypergraphs.) It is defined
as the h∗-vector of the root polytope associated to the digraph; see Section 2 for detailed definitions.
The interior polynomial turns out to be a noteworthy graph invariant. It was first defined in [7] (in a
somewhat more restricted setting). It satisfies product and recursion formulas, moreover, it generalizes
the specialization T (x, 1) of the Tutte polynomial, as well as the greedoid polynomial of a planar Eulerian
branching greedoid, see [10, 14]. In this paper we point out that the degree of the interior polynomial
also has a meaningful connection to the graph structure.

A cut in a digraph is directed if each of its edges points toward the same shore. An edge set in a
digraph is called a directed join, or dijoin for short, if it intersects each directed cut.

Theorem 1. Let G be a connected semi-balanced digraph. Then the degree of the interior polynomial of
G is equal to |V (G)| − 1− ν(G), where ν(G) = min{|K| | K ⊆ E is a dijoin of G}.

1TK was supported by a Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research C (no.
17K05244).

2LT was supported by the National Research, Development and Innovation Office of Hungary – NKFIH, grant no. 132488,
by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by the ÚNKP-22-5 New National
Excellence Program of the Ministry for Innovation and Technology, Hungary. This work was also partially supported by
the Counting in Sparse Graphs Lendület Research Group of the Alfréd Rényi Institute of Mathematics.

559

Recall that by a theorem of Lucchesi and Younger [12], the quantity ν(G) above is also the maximal
number of edge-disjoint directed cuts in G. Also, if the underlying undirected graph of G is 2-edge con-
nected, then ν(G) is the minimal number of edges whose reversal yields a strongly connected orientation
of G [6, Proposition 9.7.1].

Remark 2. For semi-balanced digraphs with only two layers, that is, bipartite graphs G in which edges
are consistently oriented between the partite classes U and W , there is an obvious inequality

ν(G) ≥ max{|U |, |W |}. (1)

On the other hand, the theory of the interior polynomial IG of a semi-balanced digraph G grew out of the
first author’s notion of the interior polynomial of a hypergraph [7]. Indeed, by a result of Kálmán and
Postnikov [8], the interior polynomial of a hypergraph is equivalent to that of a semi-balanced digraph
with only two layers. That case already generalizes T (x, 1) (where T (x, y) is the Tutte polynomial) from
graphs to hypergraphs. More to the point, the hypergraphical setup easily yields the inequality

deg IG ≤ min{|U |, |W |} − 1 (2)

[7, Proposition 6.1]. Now it is easy to see that Theorem 1, in its two-layered special case, is the statement
that the discrepancies of (1) and (2) coincide. This realization, made jointly with András Frank, predates
Theorem 1 and was subsumed by it later. Regrettably, neither (1) nor (2) seem to have generalizations
to all semi-balanced digraphs.

We note that interior polynomials of hypergraphs have another, rather different extension, this time
to polymatroids instead of semi-balanced digraphs (see [7], as well as [2] for a two-variable version). As
far as we know, the connection to h∗-polynomials does not extend to the polymatroid case. We do not
touch on polymatroids in this paper.

Extending Theorem 1, we also compute the degree of the interior polynomial of a co-Eulerian regular
oriented matroid. (For definitions, see Section 3.) This is a direct generalization of the graphical case,
and we get the analogous answer.

Theorem 3. Let M be a co-Eulerian regular oriented matroid of rank r. Then the degree of the interior
polynomial of M is equal to r − ν(M), where ν(M) = min{|K| | K is a dijoin of M}.

The proof of Theorem 1 readily generalizes to give a proof of Theorem 3. Hence, even though the
latter theorem is more general, we give the proof for the graph case for the convenience of those readers
who are less interested in oriented matroids.

We also address the question of which semi-balanced orientations of a bipartite graph minimize the
degree of the interior polynomial. Note here that each semi-balanced graph is necessarily bipartite. In
[10], we conjectured that for an undirected bipartite graph, the orientation of Remark 2 (which we also call
a standard orientation) minimizes the degree of the interior polynomial among semi-balanced orientations
of the graph. Here, we prove this conjecture. It remains an open question to characterize all the degree-
minimizing semi-balanced orientations. Also, the analogous problem is unresolved for matroids, where
we do not even have a candidate for a degree-minimizing orientation.

The other polynomial we deal with is the enumerator of graph parking functions (also commonly called
G-parking functions or generalized parking functions) for rooted directed graphs [13]. This polynomial is
equivalent to the greedoid polynomial of the branching greedoid of the rooted digraph [5]. The relationship
between the two polynomials is such that the degree of the parking function enumerator corresponds to
the number of zeros at the end of the greedoid polynomial.

For Eulerian digraphs, the parking function enumerator agrees with the interior polynomial of its
cographic (oriented) matroid [14]. Hence we obtain the following corollary of Theorem 3.

Theorem 4. The degree of the parking function enumerator of a connected Eulerian digraph G (with
any root) is equal to |E(G)| − |V (G)|+ 1−minfas(G), where minfas(G) denotes the minimal cardinality
of a feedback arc set in G. Equivalently, the coefficient of xi in the greedoid polynomial of the branching
greedoid of G (with any root) is zero for i = 0, . . . ,minfas(G)− 1, and nonzero for xminfas(G).

560

We generalize Theorem 4 to obtain a formula for the degree of the parking function enumerator of
an arbitrary rooted directed graph. This setting does not correspond to an interior polynomial anymore.
For the general theorem, we define the following rooted variant of a feedback arc set:

Definition 5. Let G be a root connected digraph with root s. We say that a set of edges F ⊂ E is an
s-connected feedback arc set, if G[E − F] is an s-connected acyclic digraph. We denote by minfas(G, s)
the minimum cardinality of an s-connected feedback arc set of G.

Our formula is as follows.

Theorem 6. Let G = (V,E) be a root-connected digraph with root r. Then the degree of the parking
function enumerator of G, rooted at r, is equal to |E| − |V |+ 1−minfas(G, r).

Equivalently, for the greedoid polynomial of the branching greedoid of G rooted at r, the coefficients
of x0, . . . , xk−1 are zero, and the coefficient of xminfas(G,r) is nonzero.

Remark 7. Björner, Korte and Lovász show that the constant term of the greedoid polynomial of a (root-
connected) rooted digraph G is zero if and only if G contains a directed cycle [4, Theorem 6.10]. Theorem
6 strengthens this statement. Indeed, (for an s-root-connected digraph G) we have minfas(G, s) > 0 if
and only if G contains a directed cycle.

Acknowledgement We are greatful to András Frank for fruitful discussions, and for pointing out to
us Theorem 9.6.12 of [6].

2 The interior polynomial of a semi-balanced digraph

2.1 The degree for a given orientation

Let G = (V,E) be a directed graph. To an edge e =
−→
th ∈ E, let us associate the vector xe = 1h−1t ∈ RV .

(Here t, h ∈ V and 1t,1h ∈ RV are the corresponding generators.)

Definition 8. The root polytope of a directed graph G = (V,E) is the convex hull

QG = Conv{xe | e ∈ E } ⊂ RV .

If G is connected, then the dimension of this polytope is either |V | − 1 or |V | − 2. The dimension is
|V | − 2 if and only if G satisfies the following condition [10].

Definition 9 (Semi-balanced digraph). In a directed graph, we say that a cycle is semi-balanced if it
has the same number of edges going in the two directions around the cycle. We call a directed graph
semi-balanced if all of its cycles are semi-balanced.

Beside the above definition, we will also use another characterization of semi-balanced digraphs.

Proposition 10. [10] A directed graph G is semi-balanced if and only if there is a function ` : V → Z
such that we have `(h)− `(t) = 1 for each edge

−→
th of G.

When it exists, we call the function ` above a layering of G. In this section, we will examine root
polytopes of semi-balanced digraphs. In particular, we will focus on their h∗-polynomials. Let us first
recall the definition of this notion.

For any d-dimensional polytope Q ⊂ Rn with vertices in Zn, its h∗-polynomial
∑d
i=0 h

∗
i t
i, also com-

monly called its h∗-vector, is defined by Ehrhart’s identity

d∑

i=0

h∗i t
i = (1− t)d+1EhrQ(t), where EhrQ(t) =

∞∑

k=0

|(k ·Q) ∩ Zn| tk (3)

561

is known as the Ehrhart series of Q. We note that h∗0 = 1 whenever d ≥ 0, i.e., whenever Q is non-empty.
The h∗-polynomial can be thought of as a refinement of volume. Indeed, h∗(1) is equal to the normalized
volume of the polytope, where by normalized we mean that the volume of a d-dimensional unimodular
simplex is 1.

Now we are in a position to introduce our object of study for this section.

Definition 11 (Interior polynomial, [7, 8, 10]). For a semi-balanced digraph G, we call the h∗-polynomial
of the root polytope QG the interior polynomial of G and denote it by IG.

Theorem 1. Let G be a connected semi-balanced digraph. The degree of the interior polynomial of G is
equal to |V (G)| − 1− ν(G), where

ν(G) = min{|K| | K ⊆ E is a dijoin of G}.

Now let us start preparing to prove Theorem 1. One ingredient will be the following corollary of
Ehrhart–Macdonald reciprocity.

Theorem 12. [1, Theorem 4.5] Let P ⊂ Rn be a d-dimensional (d ≥ 0) lattice polytope with h∗-
polynomial hdx

d + · · ·+ h1x+ 1. Then hd = · · · = hk+1 = 0 and hk 6= 0 if and only if (d− k+ 1)P is the
smallest integer dilate of P that contains a lattice point in its relative interior.

Notice here that (d+1)P certainly contains an interior lattice point. The degree of the h∗-polynomial
of P tells us exactly ‘how much sooner’ such a point occurs.

In our cases, QG is a (|V | − 2)-dimensional polytope. Thus if we show that ν(G) · QG is the smallest
integer dilate of the root polytope that contains a lattice point in its interior, then by Theorem 12, it
follows that the degree of IG is indeed |V | − 1− ν(G).

For our new quest, a description of QG by half-planes will be useful.

Definition 13. Let C∗ be a cut in the graph G with shores V0 and V1. Let fC∗ be the functional with
fC∗(1v) = 1 when v ∈ V1 and fC∗(1v) = 0 when v ∈ V0. If G is directed and C∗ is a directed cut, we will
always suppose that V1 is the shore containing the heads of the edges in the cut. We will refer to fC∗ as
the functional induced by the cut C∗.

Let ` be a layering of G. We may think of ` as a vector (or covector) in RV . This turns out to be
useful for the facet description of the root polytope, that we next give.

Proposition 14. For any connected semi-balanced graph G with a layering `, we have

QG =

x ∈ RV

∣∣∣∣∣∣

fC∗(x) ≥ 0 for all elementary directed cuts C∗ of G
1 · x = 0
` · x = 1

 .

Here 1 =
∑
v∈V 1v ∈ RV ; the description does not depend on the choice of ` because different choices

differ by a multiple of 1.

Proof. The proof that we give is a direct generalization of the proof of [8, Proposition 3.6], which is a
special case of this statement.

It is clear that 1 ·xe = 0 and ` ·xe = 1 hold for each e ∈ E(G). Similarly, if we let C∗ be an elementary
directed cut of G, then e /∈ C∗ clearly implies fC∗(xe) = 0, whereas when e ∈ C∗, then by the convention
of Definition 13, we have fC∗(xe) = 1. Hence fC∗(xe) ≥ 0 for each e ∈ E(G). Since each vertex of QG
satisfies the conditions of the Proposition, so does the entire root polytope.

Conversely, let x be a vector that belongs to the right hand side of our formula and consider an
arbitrary facet F of QG. This needs to contain |V | − 2 affine independent vertices, and we fix such a set.
The corresponding edges of G form a forest (cf. [10, Proposition 3.1]) of |V |− 2 edges, i.e., this is a forest
with two connected components. Take the unique elementary cut C∗ in the complement of the forest. If
C∗ was not a directed cut, then there would be edges e both with fC∗(xe) > 0 and with fC∗(xe) < 0.

562

This is not possible because fC∗ is linear and F is a facet with fC∗
∣∣
F

= 0. Hence C∗ is directed, which
implies fC∗(x) ≥ 0; in particular, x is on the same side of F as QG. Since this holds for every facet, we
obtain that x ∈ QG. �

We saw in the previous proof that each facet of QG is part of a supporting hyperplane that is described
by the condition fC∗(x) = 0, where C∗ is an elementary directed cut. We may add that whenever C∗ is
an elementary directed cut, we can select spanning trees of both shores of C∗, thereby obtaining a forest
of size |V | − 2 with edges from E − C∗. The corresponding vectors form a (|V | − 3)-dimensional affine
independent set that fC∗ sends to zero. Hence C∗ defines a facet.

Proposition 15. A point p ∈ QG is in the relative interior of QG if and only if there exists a dijoin K
of G such that p =

∑
e∈K λexe, where λe > 0 for each e ∈ K and

∑
e∈K λe = 1.

Proof. By Proposition 14, a point p ∈ QG is in the interior of QG if and only if fC∗(p) > 0 for each
directed cut C∗. Recall that the functional induced by C∗ satisfies fC∗(xe) = 0 whenever e /∈ C∗, and
fC∗(xe) = 1 for each e ∈ C∗.

Suppose that p =
∑
e∈K λexe with λe > 0 for each e ∈ K, where K is a dijoin. Then for any directed

cut C∗, we have fC∗(p) =
∑
e∈C∗∩K λe > 0, since the intersection is nonempty (by the definition of a

dijoin), and the summands are all positive. In other words, in this case p is in the interior of QG.
In the other direction, take any convex combination p =

∑
e∈S λexe with λe > 0 for all e ∈ S. As

QG is the convex hull of vectors of the form xe, we can always find such a formula (usually more than
one). We claim that if p is in the interior, then S is necessarily a dijoin (for any S that arises this way,
that is, for any S ⊂ E so that the convex hull of the corresponding vectors contains an interior point of
QG). Indeed, suppose that S is disjoint from a directed cut C∗. Then fC∗(p) =

∑
e∈S λe · fC∗(xe) = 0,

which would contradict p being an interior point of QG. �
The following Lemma is equivalent to the well-known fact that QF is a unimodular simplex for any

forest F . See, e.g., [10, Corollary 3.6] for a proof.

Lemma 16. For a forest F and any positive integer s, a point p ∈ s · QF is a lattice point if and only
if p =

∑
e∈F µexe, where each µe is integer.

Proof of Theorem 1. Let K be a dijoin of G with cardinality ν(G). Then p =
∑
e∈K xe is a point of

ν(G) ·QG, moreover, it clearly has integer coordinates. Now by Proposition 15 we have that q = 1
ν(G)p =∑

e∈K
1

ν(G)xe is an interior point of QG, which implies that p is also an interior point of ν(G) · QG.

We also need to prove that for s < ν(G), there is no interior lattice point in s ·QG. Suppose that there
is an interior lattice point p ∈ s ·QG for some s ∈ Z>0 and consider q = 1

sp, which is an interior point of
QG. Then by Proposition 15 there is a dijoin K such that q =

∑
e∈K λexe, where λe > 0 for each e ∈ K

and
∑
e∈K λe = 1. If K contains any cycle, then we can use the basic affine relation associated to the

cycle (see, e.g., [10, Lemma 3.3]) to modify the linear combination giving q so as to make the coefficient
of an edge e of the cycle 0. I.e., we obtain q as a linear combination of elements of K − e. Moreover,
K − e is also a dijoin because each cut needs to intersect a cycle in at least 2 edges. In conclusion, we
may suppose that K contains no cycle, that is, that K is a forest. Now we may apply Lemma 16 to s,
K, and p =

∑
e∈K sλexe. This tells us that for p to be an integer vector, sλe needs to be an integer for

each e ∈ K. Hence altogether, we have s =
∑
e∈K sλe ≥ |K| ≥ ν(G). �

2.2 Degree-minimizing orientations of bipartite graphs

Let G be an undirected bipartite graph with partite classes U and W . In this section, we look at a
conjecture from [9] about the degrees of the interior polynomials of different semi-balanced orientations
of G.

Any bipartite graph G has some (typically, many) semi-balanced orientations, but there are two special
ones among them: The one where each edge is oriented from U to W , and the one where each edge is
oriented from W to U . It is easy to see that these orientations are indeed semi-balanced. We call them

563

the standard orientations of G. The root polytopes of the two standard orientations are isometric, as
they are reflections of each other. In particular, their interior polynomials coincide.

In [9] we conjectured that among all semi-balanced orientations of G, the standard orientations min-
imize every coefficient of the interior polynomial. See [10, Example 6.5] for some concrete instances of
this phenomenon. With Theorem 1 in hand, we are able to prove a weakened version of the conjecture.

Theorem 17. Let G be a connected, undirected bipartite graph with partite classes U and W . Then
among the semi-balanced orientations of G, the degree of the interior polynomial is minimized by the
standard orientations.

Proof. Let G be an arbitrary semi-balanced orientation of G. By the Lucchesi–Younger theorem, the
maximal number of disjoint directed cuts in G is equal to ν(G), the minimal cardinality of a dijoin in G.

As the degree of IG is equal to |V (G)|−1−ν(G), the degree of IG is minimized for those semi-balanced
orientations of G that maximize the number of disjoint directed cuts.

Let c(G) denote the maximal number of disjoint cuts in G. Clearly, for any semi-balanced orientation
G of G, we have ν(G) ≤ c(G), since if we take ν(G) disjoint directed cuts in G, those correspond to
disjoint cuts in G.

On the other hand, [6, Theorem 9.6.12] claims that the standard orientations have c(G) disjoint
directed cuts. Hence they maximize ν among all orientations (in particular, among all semi-balanced
orientations) of G. �

Concrete examples (e.g., [10, Example 6.5]) show that typically, there are some non-standard ori-
entations that also minimize the degree of the interior polynomial. It would be interesting to give a
characterization for all the other semi-balanced orientations that attain the minimal degree.

3 A generalization to regular matroids

It turns out that many properties of the root polytopes of digraphs extend word-by-word to regular
oriented matroids, moreover, in some applications, one needs this more general case (see, for example,
Section 4 or [14]). Here we only sketch how the root polytope and the interior polynomial can be
defined for regular oriented matroids, and state the results. The proofs can be obtained by a natural
generalization of the arguments of the previous section. We do not properly introduce matroids here.
For precise definitions, see for example [3].

From among the many equivalent characterizations of the class of regular matroids, we use the follow-
ing: A matroid is regular if it can be represented by the column vectors of a totally unimodular matrix.
Here a matrix is totally unimodular if each of its subdeterminants is either 0, −1, or 1. An orientation
of a matroid means that the circuits, and the cocircuits are partitioned into positive and negative parts
satisfying certain axioms. We denote C = C+ t C−, C∗ = (C∗)+ t (C∗)−. If a matroid is defined using
a totally unimodular matrix, then the matrix also yields an orientation.

We call a regular oriented matroid co-Eulerian if |C+| = |C−| for each circuit C. To a directed graph,
one can always associate a regular oriented matroid using its (directed) vertex-edge incidence matrix.
The obtained matroid will be co-Eulerian if and only if the orientation of the graph is semi-balanced.

A cocircuit is called directed if either (C∗)+ or (C∗)− is empty. A set K is called a dijoin if it intersects
each directed cocircuit.

If A is a totally unimodular matrix with columns a1, . . . ,am, then the root polytope QA is defined as
QA = Conv{a1, . . . ,am}. It turns out that if A and A′ are two totally unimodular matrices representing
the same oriented matroid M , then the h∗-polynomials of QA and QA′ are the same [14]. Hence this
h∗-polynomial is an invariant of the regular oriented matroid M , which we call the interior polynomial
and denote by IM . Note that the orientation of the matroid matters: if we keep the (unoriented) matroid
structure, but change the orientation, then the interior polynomial might change. (This is true even for
graphs, cf. [10, Example 6.5].)

For the dimension of the root polytope, the situation is analogous to the graph case: The dimension
of QA is the rank of A if the corresponding oriented matroid is not co-Eulerian, and dim(QA) is one less

564

than the rank of the matroid if its orientation is co-Eulerian [14]. We will only be interested it the latter
case. Then, we have the same formula for the degree of IM as in the graph case.

Theorem 3. Let M be a co-Eulerian regular oriented matroid of rank r. Then the degree of IM is equal
to r − ν(M), where

ν(M) = min{|K| | K is a dijoin of M}.

The proof proceeds through the same steps as in the graph case. One can also ask the analogous
question to Theorem 17.

Problem 18. Given a regular matroid in which each cocircuit has even size, which co-Eulerian orienta-
tion has the interior polynomial of smallest degree? Is there any co-Eulerian orientation whose interior
polynomial is coordinatewise minimal among the co-Eulerian orientations?

4 Parking function enumerators and greedoid polynomials

In [14] it is proved that the parking function enumerator of an Eulerian digraph can be expressed as
the interior polynomial of the cographic matroid. (Previously, [10] settled the planar case.) Hence the
results of the previous section give us information on the degree of the parking function enumerator of
an Eulerian digraph, and on the number of zeros at the end of the greedoid polynomial. It turns out,
however, that similar results hold for all directed graphs.

In this section we recall the definition of greedoids and the relationship between parking function
enumerators and interior polynomials, then we show how to generalize the result on the degree of the
parking function enumerator to all directed graphs.

4.1 Preliminaries on greedoids and parking functions

Greedoids were introduced by Korte and Lovász as a generalization of matroids where the greedy algo-
rithm works.

Definition 19 (Greedoid [11]). A set system F on a finite ground set E is called a greedoid if it satisfies
the following axioms

(1) ∅ ∈ F ,

(2) for all X ∈ F − {∅} there exists x ∈ X such that X − x ∈ F ,

(3) if X,Y ∈ F and |X| = |Y |+ 1, then there exist an x ∈ X − Y such that Y ∪ x ∈ F .

Elements of F are called accessible sets, and maximal accessible sets are called bases.

For example, matroids are a special class of greedoids, but greedoids are able to express connectivity
properties that matroids cannot. It follows from the axioms that bases have the same cardinality r, which
is called the rank of the greedoid.

An interesting subclass of greedoids is the class of directed branching greedoids: For a digraph G, the
branching greedoid of G rooted at s is the set system consisting of arborescences of G rooted at s. The
bases of the greedoid are the maximal arborescences. (It is easy to check that this is indeed a greedoid.)

The greedoid polynomial was introduced by Björner, Korte and Lovász [4], and it can be defined in
many ways (see [4]). Here we recall the definition using activities with respect to a fixed ordering of the
edges.

For a basis B ∈ F of a greedoid, an ordering B = {b1, . . . , br} is called feasible if {b1, . . . , bi} ∈ F for
each i = 1, . . . , r. Note that the axioms guarantee the existence of at least one feasible ordering for each
basis. Let us fix an ordering of the groundset E. Now for any basis B of the greedoid, one can associate
the lexicographically minimal feasible ordering.

565

s

0

0

0 s

0

1

0 s

0

0

1 s

0

1

1

Figure 1: A rooted digraph, and its set of parking functions.

Definition 20 (External activity for greedoids [4]). Fix an ordering of E. For a basis B, an element
e /∈ B is externally active in B if for any f ∈ B such that B − f + e ∈ F , the lexicographically minimal
feasible ordering of B is lexicographically smaller than the lexicographically minimal feasible ordering of
B − f + e. The external activity of a basis B is the number of externally active elements in B, and it is
denoted by e(B).

Definition 21 (Greedoid polynomial, [4]).

λ(t) =
∑

B basis

te(B)

We note that this is indeed well-defined, that is, independent of the ordering of the edges used to
define the activities.

Swee Hong Chan proves [5] that the greedoid polynomial of a branching greedoid is a simple trans-
formation of the enumerator of graph parking functions. Let us recall these notions, too.

Definition 22 (Graph parking function). For a directed graph G and a fixed root vertex s, a graph
parking function rooted at s is a function p ∈ ZV−s≥0 such that for each S ⊆ V − s, there is at least one
vertex u ∈ S with p(u) < d(V −S, u), where d(V −S, u) denotes the number of directed edges leading from
V −S to u. Let us denote the set of these functions by Park(G, s). For a parking function p ∈ Park(G, s),
let us put |p| = ∑v∈V−s p(v).

Definition 23 (Parking function enumerator). For a directed graph G = (V,E) and a fixed root vertex
s, the parking function enumerator is the polynomial

parkG,s(x) =
∑

p∈Park(G,s)
x|p|.

Example 24. Figure 4.1 shows a rooted digraph and each one of its parking functions. Altogether, the
parking funtion enumerator is x2 + 2x+ 1.

The relationship of the greedoid polynomial and the parking function enumerator is the following.

Theorem 25. [5, Theorem 1.3] λG,s(x) = x|E|−|V |+1parkG,s(x
−1)

We have previously observed the following connection.

Theorem 26. [14] Let G be a connected Eulerian digraph, s an arbitrary vertex, and let M be the directed
dual matroid of G. Then

λG,s(x) = x|E(G)|−|V (G)|+1IM (x−1) and parkG,s(x) = IM (x).

Hence if G is Eulerian, we can use Theorem 3 to obtain a formula for the degree of the parking
enumerator, or equivalently, a formula for the number of zeros at the end of the greedoid polynomial.

Proof of Theorem 4. For the (directed) cographic matroid M of G, a dijoin of M (that is, a set of edges
intersecting each directed cocircuit) corresponds to an edge set of G that intersects each directed cycle.
Hence dijoins of M correspond to feedback arc sets of G. Now Theorems 26 and 3 imply the statement
of Theorem 4. �

Next, we show how to generalize Theorem 4 to any rooted digraph. For this, we first give a formula
for the number of zeros at the end of the greedoid polynomial for an arbitrary greedoid.

566

4.2 General greedoids

Let us make two easy observations, whose (simple) proofs we leave to the readers.

Definition 27. Let X = (E,F) be a greedoid, and let S ⊆ E. We define X|S as the pair (S,F|S) where
F|S = {A ∈ F | A ⊆ S}, and call it the restriction of X to S.

Claim 28. X|S is a greedoid.

Claim 29. Let X = (E,F) be a greedoid and S ⊆ E. Fix an ordering of the elements of E, and its
restriction to S. Suppose that F is a basis of both X and X|S. An element e /∈ F is externally active in
F for X|S (for the above mentioned ordering) if and only if e is externally active in F for X.

Theorem 30. Let X = {E,F} be a greedoid of rank r and define k = min{|S| | rank(X|E−S) =
r and λX|E−S

(0) 6= 0}. Then for the greedoid polynomial of X, the coefficient of xi is zero for i =

0, . . . , k − 1, and the coefficient of xk is nonzero.

Proof. Take an arbitrary basis B of X, and let P be the set of elements of E − B that are externally
passive for B. We claim that B ∪ P is a set such that rank(X|B∪P) = r and λX|B∪B (0) 6= 0. The claim
rank(X|B∪P) = r follows immediately since B is a basis of X. On the other hand, since elements of P
were all externally passive for B in X, this remains so for X|B∪P , thus, in X|B∪P there are no externally
active elements for B. Hence k ≤ |E − B − P |. As the external activity of B is eX(B) = |E − B − P |,
this shows that if the coefficient of xi is positive, then i ≥ k.

It remains to show that the coefficient of xk is positive. Take a set S ⊆ E with |S| = k such that
rank(X|E−S) = r and λX|E−S(0) 6= 0. We show that there exist a basis B such that eX(B) ≤ |S|. As
we already proved that we cannot have eX(B) < k, this will finish the proof.

As rank(X|E−S) = r, each basis of X|E−S is a basis of X. Since λX|E−S
(0) 6= 0, the greedoid X|E−S

has a basis B such that eX|E−S
(B) = 0. That is, all elements of E − S − B are externally passive in B.

Hence, in X, only the elements of S can be externally active for B, thus indeed, eX(B) ≤ |S| = k. �

4.3 Arbitrary directed graphs

In this section we use the result of the previous section to generalize Theorem 4 to arbitrary digraphs.
Let G be a digraph, and s be an arbitrary fixed vertex of G.

First, note that we can suppose that G is root connected, that is, that each vertex of G is reachable
on a directed path from s. (This property is equivalent to G having a spanning arborescence rooted at s.)
Indeed, if G is not root connected, then the bases for the branching greedoid of G rooted at s will be the
same as the bases for the branching greedoid of G′ rooted at s, where G′ is the subgraph of G spanned by
vertices reachable on a directed path from s. The edges of G−G′ will be externally active for any basis,
and any edge ordering, hence in this case, parkG(x) = parkG′(x), and λG(x) = x|E(G)|−|E(G′)|λG′(x).

Theorem 6. Let G = (V,E) be a root connected digraph. The degree of the parking function enumerator
of G rooted at s is equal to |E| − |V |+ 1−minfas(G, s).

Equivalently, for the greedoid polynomial of the branching greedoid of G rooted at s, the coefficients
of x0, . . . , xk−1 are zero, and the coefficient of xk is nonzero for k = minfas(G, s).

Recall that minfas(G, s) is the minimal cardinality of an edge set whose removal leaves a root-
connected acyclic digraph (Definition 5). It follows from Theorems 4 and 6 that for a connected Eulerian
digraph and an arbitrary vertex s, minfas(G) = minfas(G, s). It is also not very hard to prove this di-
rectly. For general digraphs, minfas(G) and minfas(G, s) might differ. For example if G has two vertices,
s and v, with one edge from s to v, and two edges from v to s, then minfas(G) = 1 but minfas(G, s) = 2.

Remark 31. For the interior polynomial (consequently, also for the parking function enumerator of
Eulerian digraphs), we had a definition using Ehrhart theory. For the parking function enumerator of
general digraphs we are unaware of such a definition.

567

We build upon the following result of Björner, Korte and Lovász [4].

Theorem 32. [4] Let G be a root-connected digraph rooted at s. The greedoid polynomial λG,s has
nonzero constant term if and only if G is acyclic.

Proof of Theorem 6. We apply Theorem 30. If G is root-connected, then the rank of the branching
greedoid rooted at s is equal to |V (G)| − 1. For an edge set S, the rank of the branching greedoid of
G[E − S] remains |V (G)| − 1 if and only if G[E − S] is root-connected. On the other hand, Theorem 32
tells us that λG[E−S],s(0) = 0 is equivalent to G[E − S] being acyclic. Hence the condition of Theorem
30 indeed gives the condition of Theorem 6 for branching greedoids of root-connected digraphs. �

References

[1] Matthias Beck and Sinai Robins. Computing the continuous discretely. Undergraduate Texts in
Mathematics. Springer, New York, second edition, 2015. Integer-point enumeration in polyhedra,
With illustrations by David Austin.

[2] Olivier Bernardi, Tamás Kálmán, and Alexander Postnikov. Universal Tutte polynomial. Adv.
Math., 402:Paper No. 108355, 74, 2022.

[3] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler. Oriented
matroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, second edition, 1999.

[4] Anders Björner, Bernhard Korte, and László Lovász. Homotopy properties of greedoids. Advances
in Applied Mathematics, 6(4):447 – 494, 1985.

[5] Swee Hong Chan. Abelian sandpile model and biggs–merino polynomial for directed graphs. Journal
of Combinatorial Theory, Series A, 154:145 – 171, 2018.

[6] András Frank. Connections in combinatorial optimization, volume 38 of Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, Oxford, 2011.

[7] Tamás Kálmán. A version of Tutte’s polynomial for hypergraphs. Adv. Math., 244:823–873, 2013.

[8] Tamás Kálmán and Alexander Postnikov. Root polytopes, Tutte polynomials, and a duality theorem
for bipartite graphs. Proc. Lond. Math. Soc. (3), 114(3):561–588, 2017.

[9] Tamás Kálmán and Lilla Tóthmérész. Ehrhart theory of symmetric edge polytopes via ribbon
structures. arXiv:2201.10501, 2022.

[10] Tamás Kálmán and Lilla Tóthmérész. Root polytopes and Jaeger-type dissections for directed
graphs. Mathematika, 68(4):1176–1220, 2022.

[11] Bernhard Korte and László Lovász. Mathematical structures underlying greedy algorithms. In
Fundamentals of computation theory (Szeged, 1981), volume 117 of Lecture Notes in Comput. Sci.,
pages 205–209. Springer, Berlin-New York, 1981.

[12] Claudio L. Lucchesi and Daniel H. Younger. A minimax theorem for directed graphs. J. London
Math. Soc. (2), 17(3):369–374, 1978.

[13] Alexander Postnikov and Boris Shapiro. Trees, parking functions, syzygies, and deformations of
monomial ideals. Trans. Amer. Math. Soc., 356(8):3109–3142, 2004.

[14] Lilla Tóthmérész. A geometric proof for the root-independence of the greedoid polynomial of Eulerian
branching greedoids. arXiv:2204.12419, 2022.

568

Faster Algorithm for Enumerating Maximal Sets of
Close Line Segments

Balázs Vass

Department of Telecommunications and Media
Informatics, Budapest University of Technology

and Economics, Budapest, Hungary
balazs.vass@tmit.bme.hu

Abstract: In this study, as a generalization of the line segment intersection problem, we
tackle the enumeration of those maximal link sets, in which each pair of links are at most 2r
apart from one another (for some given r ≥ 0). We call these link sets as maximal circular
disk failures. Specifically, we give a formal problem definition, and briefly present some basic
observations and key components of a prior algorithm for determining the set of maximal
circular disk failures. We also give some practical parameters of the input to better estimate
the number and computing time of maximal circular disk failures. Finally, we give an improved
algorithm, that, under practical assumptions, has a running time near linear in the number
of line segments.

Keywords: computational geometry, line segment intersection, close line seg-
ments, telecommunication networks, disaster resilience, shared risk link groups

1 Introduction

In this Section, we first present the line segment intersection problem, then, as its generalization, the
problem of enumerating the maximal sets of close line segments. Since our study is partially motivated
by the disaster resilience of telecommunication networks, in the paper, sometimes we think of the circular
disks (of a given radius r) as disasters. Moreover, a set of close line segments is sometimes referred to as
a Shared Rish Link Group (SRLG).

1.1 Line segment intersection problem

In the case of a set E of m line segments in the Euclidean plane, the task of listing all line segment
intersections is called the line segment intersection problem [2]. This problem has many practical appli-
cations like the task of overlaying multiple maps among others [2]. Trivially, reporting all edge pairs that
intersect, can be done in O(m2). However, many times, the number of intersections k is much less than
Θ(m2). Thus, the question arises whether there is an input-sensitive algorithm that, in the case of ‘few’
intersections (k � m), runs in a sub-squared time, and if so, what is the lowest possible complexity for
it. The following proposition given by Chazelle et al. gives an answer to this:

Proposition 1 (Theorem 5 of [1]) All k pairwise intersections among m segments in the plane can
be computed in O(m logm+k) time. The running time is optimal. The storage requirement is O(m+k).
If so desired, the algorithm will compute the vertical map of the set of segments within the same time and
space bounds.

We note that, based on this proposition, the fastest algorithm deciding whether there exists any line
segment intersection runs in Θ(m logm). A drawback of the algorithm presented in [1] though is that it is
relatively complicated. For this, we also mention a former and simpler algorithm called Bentley-Ottmann
[2], which also solves the problem. It has the following complexity.

569

Proposition 2 (Theorem 2.4 of [2]) All intersection points of E, together with the segments giving
the intersection, can be reported in O((m + I) logm) time and O(m) space, where I is the number of
intersection points.

We note that in this latter Prop. 2, in each intersecting point, an arbitrary number of line segments
can intersect each other. Another observation is that the output of Prop. 2 is more succinct compared
to the output provided by Prop. 1.

1.2 Maximal sets of close line segments

Informally speaking, in the current study, as a generalization of the line segment intersection problem,
we aim to determine those links that are at most 2r apart from one another (for some given r ≥ 0). More
concretely, we are interested in listing all the maximal link sets that can be hit by a circular disk of radius
r. We call these link sets as maximal circular disk failures. Our output can be seen as a generalization
of the output of Prop. 2.

In fact, our article [9] focusing on modeling the effect of a regional disaster hitting a communication
network already gave a polynomial algorithm for solving this problem, using the following parameters.

ρr is the link density of the network which is measured as the maximal number of links that could be hit
by a circular disk shaped disaster of radius r.

x is the number of link crossings.

x′ is the number of link crossings in E′, where all the edges are extended by 3
√

2r in both directions.

µ is the square mean of numbers ve for all e ∈ E, where ve is the number of w ∈ V ∪ X such that
d(w, e) ≤ 3r.

These parameters are polynomially bounded in m, and considered to be small in the case of real-life
communication backbone networks and disasters, that is in the center of [9]. Denoting by n the number
of edge end points, the complexity of the algorithm given therein is:

Proposition 3 (Theorem 7 of [9]) The maximal circular disk failures with a radius of exactly r can
be computed in time O((n+ x)(log n+ µρ5r) + x′ log n) and this is tight in n.

2 Main result

The main result resented in this paper is eliminating the additive term (x′ log n) from the complexity
estimation of Prop. 3. This also means that parameter x′ disappears from the estimation. The improved
theorem we will prove is the following.

Theorem 1 The maximal circular disk failures with radius exactly r can be computed in time O((n +
x)(log n+ µρ5r)) and this is tight in n.

We note that an intuitive meaning of parameter x′ is difficult to capture, at least for telecommunication
networks. The elimination of parameter x′ from the estimation makes it easier to argue besides the
practicality of our algorithm. The key enabler of getting rid of x′ is Thm. 5 and related Lemmas.

3 Problem Definition and Basic Results

In the following, based on [9], we give a more thorough formal problem definition, and briefly present
some observations and key components of our algorithm for determining the set of maximal circular disk
failures. At the end of the paper, as an incremental improvement of former results, we present the proof
of Theorems 5 and 1.

570

e1 e2 e3

Figure 1: In the figure above, the solid circular disks are disasters with radius r, d(e1, e2) = d(e2, e3) = 2r,
while d(e1, e3) = 4r. The set of regional failures is Fr = {{e1}, {e2}, {e3}, {e1, e2}, {e2, e3}}. The set of
maximal regional failures is Mr = {{e1, e2}, {e2, e3}}.

The input is a real number r ≥ 0 and an undirected connected graph G = (V,E) embedded in the 2D
plane, where V denotes the set of nodes and E the set of edges (which are also called links). Let n := |V |
and m := |E|. We assume n ≥ 3. The edges of G are embedded as line segments, which we call intervals
in the geometric proofs1. A disk with center point p hits an edge e if its distance to p is at most r.

Definition 4 A regional failure F is a non-empty subset of E, for which there exists a disk with radius
r hitting every edge in F .2

Note that the failure of node v is modeled as the failure of all edges incident to node v. Therefore listing
the failed nodes beside listing failed edges would not give us additional information from the viewpoint
of connectivity.

Definition 5 Let Fr be the set of regional failures of a network for a given radius r.

According to Def. 4, a subset of a regional failure is also a regional failure. Thus, Fr is a downward
closed set minus the empty set.

The network can recover if an SRLG or a subset of links (and nodes) in the SRLG fail simultaneously.
In other words, if a regional failure F is listed as an SRLG, then there is no need to list any subset of the
links F ′ (F as a new SRLG. The goal is to define a set of SRLGs which covers every possible regional
failure and which is of minimal size.

Definition 6 Let Mr ⊆ 2E denote the set of SRLGs, for which

Mr = {F is a regional failure and there is no regional failure F ′ such that F ′) F} . (1)

In other words, the set of SRLGs Mr is a set of failures caused by disks with radius at most r in which
none of the failures is contained in another. Figure 1 illustrates Definitions 4-6. Note that Fr is the set
of regional failures, which is the downward closed extension of Mr minus the empty set. A family of sets
from the power set of E in which none of the sets is contained in another is called an antichain (in the
inclusion lattice over 2E). This antichain is also sometimes called a Sperner system, independent system
or a clutter. Note that, Mr is an antichain. Due to the minimality of SRLGs, the following holds.

Proposition 7 For each SRLG F ∈ Mr, F ⊆ E, there is a circular disk c of radius r such that F is
exactly the set of edges hit by c.

Let r be a tiny positive number. In this case, the list of possible regional failures consists of every
single link or node failure and link crossings. In other words, this model is a generalization of the ‘best
practice.’ The corresponding antichain can be the set of single node failures, i.e., |Mr| = n+ x, where x

1The case, when edges are considered to be embedded as polygonal chains between their endpoints consisting of at most
a constant number of line segments, can also be handled in polynomial time based on the presented results via splitting the
polygonal chains up into line segments, running the presented proposed algorithm (sketched in Table 2) for the resulting
problem instance, merging the line segments of each polygonal chain, and finally, filtering out the non-maximal sets.

2Thus, what we call a regional failure is the worst-case outcome of a disaster damaging an area. F can be seen as a
compact representation of all of its subsets.

571

Table 1: Table of symbols

Notation Meaning
General

G(V,E) the network modeled as an undirected connected geometric graph
n, m number of nodes |V | ≥ 3 and edges |E|, respectively
r disaster range (r ≥ 0)

F
regional failure, i.e.is a non-empty subset of E, for which there exists a disk with radius r hitting every
edge in F

Fr set of regional failures of a network for a given radius r
Mr F is in Mr if it is is a regional failure and there is no regional failure F ′ such that F ′) F

cF
smallest hitting disk of F , where a disk c is smaller than disk c′, if c has a smaller radius than c′, or if
they have equal radius and the center point of c is lexicographically smaller than the center point of c′

X set of points p which are not in V and there exist at least 2 non-parallel edges crossing each other in p

Ew
:= {e ∈ E| d(w, e) ≤ 3r}; the edges in Ew are in sorted order with respect to the lexicographic ordering
of their endpoints

Ve := {w ∈ V ∪X| d(e, w) ≤ 3r}

Cr,w

The set of the following disks: for e, f ∈ Ew, disks c of radius r (if exist) according to Thm. 2: either
case a) applies if e and f are not parallel, and c intersects them in two different points, or case b) when c
intersects e and f in two different points, one being an endpoint of e, or case c) when c touches e at an
endpoint; moreover we require that formerly computed disks c have centers not farther than 2r from w.

Lr,w list of set of edges hit by an element of disk set Cr,w
Parameter

ρr
link density of the network, which is measured as the maximal number of links that could be hit by a
circular disk shaped disaster of radius r

x number of link crossings of the network G
µ square mean of numbers ve for all e ∈ E, where ve is the number of w ∈ V ∪X such that d(w, e) ≤ 3r
φr maximum number of nodes in the 3r-neighborhood of a link of the input graph G

(a) (b) (c)

P1

P2

(d) N(e, r) of an
edge e

Figure 2: Case (a),(b) and (c) of Thm. 2 and the neighbourhood N(e, r) of an edge e.

is the number of edge crossings. Informally speaking, protecting node failures is sufficient to protect link
failures as well.

In the following, the aim is to determine the set Mr. At first glance, it is not clear that the cardinality
of Mr is ‘small.’ We will prove polynomial upper bounds on |Mr|.

To estimate the size of the SRLG list, let ρr denote the maximum number of edges a disk with radius
r can hit in the plane, i.e., for every failure F caused by a disk with radius r, |F | ≤ ρr. An observation is
that if ρr = O(log n) then there is a polynomial blowup when switching from Mr to Fr, as |Fr| ≤ |Mr|2ρr .
Mr can be treated as a compact representation for Fr. It is also immediate that from Fr one can obtain
Mr by O(|Fr|2) comparisons of subsets of E.

We say a disk c hits a set of edges Ec if it hits all the edges in Ec. Note that several disks can hit the
same set of edges.

First, a slight variant of Lemma 9 from [3] is given. This study’s assumptions allow somewhat
more general topologies with more than 2 collinear points. The segments e ∈ H are assumed to be
nondegenerate.

Theorem 2 (Theorem 1 of [9], see Fig. 2) Let r be a positive real, and H be a nonempty set of
intervals (i.e., edges) from R2 which is hit by a circular disk of radius r. Then there is a disk c of radius
r which hits the intervals of H such that at least one of the following holds (see Fig. 2 for illustrations).
(a) There are two non-parallel intervals in H such that c intersects both of them in a single point. These
two points are different.

572

f

e

(a) ∀e ∈ E and ∀f ∈ E
v

e

(b) ∀e ∈ E and ∀v ∈ V

e

(c) ∀e ∈ E

Figure 3: The circular disasters examined in Lemma 8

(b) There are two intervals in H such that c intersects both of them in a single point. These two points
are different, and one of them is an endpoint of its interval.
(c) Disk c touches the line of an interval e ∈ H at an endpoint of e.

Lemma 8 Let H ′ be a set of intervals from R2, |H ′| ≤ 2, and r be a positive real number. Then, for
every case of Thm. 2, for H = H ′, a proper circle can be determined in O(1) time.

Proof: Easy elementary geometric discussion of cases (a), (b) and (c) of Thm. 2. See Fig. 3 for
illustration. Note that there can be at most 4 circles that intersect two line segments, as shown in Fig.
3(a), and at most two circles intersecting a line segment and a single point, as shown in Fig. 3(b), and
four circles can touch a line at endpoints, as shown in Fig. 3(c). �

4 Algorithm to Enumerate the Set of SRLGs

Next, we define some practical parameters of the input to better estimate the number of SRLGs and
computing time. Parameter ρr denotes the link density of the network, which is measured as the maximal
number of links that could be hit by a circular disk shaped disaster of radius r. x is the number of link
crossings of the network G. Finally, µ is the square mean of numbers ve for all e ∈ E, where ve is the
number of w ∈ V ∪X such that d(w, e) ≤ 3r. In backbone networks, x is a small number since typically
a network node is also installed at each link crossing [5], while the link density ρr practically should not
depend on the network size. We also know that ρr is at least the maximal nodal degree in the graph.
For simplicity, we assume that edges intersect in at most one point.

Definition 9 Let X be the set of points p that are not in V and there exist at least 2 non-parallel edges
crossing each other in p. Let x = |X|.

As mentioned above, in backbone network topologies, typically x � n. This is because a switch is
usually installed if two cables are crossing each other3. It gives us the intuition that G is “almost” planar,
and thus it has few edges.

Claim 10 The number of edges in G is Ω(n) and O(n+ x).

Proof: Since G is connected, m = Ω(n) is immediate. The upper bound was proved in [9] as follows.
Let G′(V ∪ X,E′) be the planar graph obtained from dividing the edges of G at the crossings. Since
every crossing increases the number of edges by at least two, |E′| ≥ m + 2x. On the other hand,
|E′| ≤ 3(n+ x)− 6 since G′ is planar. Thus m ≤ |E′| − 2x ≤ 3n+ x− 6. �

Here we add a note on the Crossing Lemma [6] giving a lower bound on x in function of n and m.
For a given graph G, let cr(G) be the minimum number of edge crossings over the planar embeddings of

G. Thm. 6. of [6] states that cr(G) ≥ 1
29
m3

n2 − 35
29n, and if m ≥ 6.95n, then cr(G) ≥ 1

29
m3

n2 .

3Recent experimental studies give empirical evidence that real-world road networks typically have Θ(
√
n) edge crossings

[4].

573

K

Figure 4: Illustration to Thm. 3

4.1 Lower Bound on Computing the Maximal Failures

Now we present a straightforward lower bound on the time needed to determine Mr. As it will turn out
(in Cor. 21), in specific circumstances, this lower bound is asymptotically tight.

Corollary 11 The complexity of computing Mr is Ω(n log n).

Proof: By combining Prop. 1 (Lemma 4 of [1]) and Claim 10, we get that reporting that there are no
intersecting line segments takes Ω(n log n). In other words, this means that computing Mr in the special
case of r = 0 takes Ω(n log n) time. �

4.2 Upper Bounds and Algorithm for Computing the Maximal Failures

The set of link intersections X can be computed in near-linear time, for example, with the help of the
Bentley-Ottmann algorithm [2].

Claim 12 X can be reported in O((n+ x) log n) time and O(n+ x) space.

Proof: To easily distinguish nodes and edge intersections geometrically, edges are shortened in both
directions with a tiny fraction of their length. The statement follows by using Proposition 2 (Theorem
2.4 of [2]) and Claim 10 by also noting that O(log(n+ x)) is O(log n). �

The next theorem states, it is enough to process the edge triplets in the neighborhood with radius 3r
of every point in V ∪X.

Theorem 3 (Thm. 4 of [9]) For every failure H ∈ Fr there exists a disk c with radius at most r hitting
H with center point at distance at most 2r from V ∪X.

Theorem 4 (Theorem 5 of [9]) Let r be a positive real number, F ∈Mr be a set of line segments that
can be hit by a disk of radius r. Then there exists a segment e ∈ F and a disk c described in Thm. 2
(disk c has radius r, hits F , intersects e in a single point Q, and (a), or (b), or (c) holds with H = F),
such that the center point of c is at distance at most 2r from either an endpoint of e or a crossing point
(of e and another segment f ∈ F).

Next, we give better upper bounds on the number of SRLGs. As a consequence of Theorem 4, when
considering circular disasters of radius r, then, in a sense, we may ignore the points on the edges e ∈ E
that are more than 3r away from V ∪X. Consider the pairs (e, v) where e ∈ E, v ∈ V ∪X, and v ∈ e.
If we have an SRLG of radius r as in Theorem 4 with edge e such that the distance of c is at most 2r
from v, then the edges of this SRLG must intersect the disk of radius 3r centered at v. This gives at
most 15ρr possibilities for the other edge in addition to e in Theorem 4 (a) or (b) (see Fig. 5, where 15
circular disks of radius r cover a disk of radius 3r). The number of pairs (e, v) can be counted by looking
at the contribution of node v: it will be deg(v), where deg is the degree in the planarized graph. The
sum of the degrees is twice the number of the edges of the latter graph, which is O(n+x). Thus we have
the following bound:

574

1

2

3

4

5

6

10

7

8

9

14

11

12

13

15

Figure 5: A disk with radius 3r can be covered with 15 disks with radius r. Generally, covering a disk
with a radius ε with the fewest possible number of disks with radii 1 is called the disk covering problem [7].

Corollary 13 |Mr| = O((n+ x)ρr) .

This bound is asymptotically tight (see Sec. IV/A of [9]). Next, we discuss the algorithm to generate
the SRLG list.

Table 2: Tasks an respective time complexities of the algorithm for determining Mr and complexity of
its tasks

Task Complexity

1 Determine X O((n+ x) log n)
2 For w ∈ V ∪X determine Ew O((n+ x)(log n+ ρ2r))
3 For e ∈ E determine Ve O((n+ x)(log n+ ρ2r))
4 For w ∈ V ∪X determine Lr,w O((n+ x)ρ3r)
5 For e ∈ E for w1, w2 ∈ Ve com-

pare Lw1
with Lw2

O((n+ x)µρ5r)

6 Merge resulting lists in Mr O(n+ x)

Theorem 4 together with other formerly presented results inspire an improved algorithm with a
running time near linear in n described in Table 2. The main idea is to build up local data structures,
precompute the lists of candidate members of Mr, then merge these lists, all in nearly linear time. With
this aim, we make the following definitions.

Definition 14 For a given r and w ∈ V ∪X, let Ew := {e ∈ E| d(w, e) ≤ 3r}; and let the edges in Ew
be given in sorted order with respect to the lexicographic ordering of their endpoints. For a given e ∈ E,
let Ve := {w ∈ V ∪X| d(e, w) ≤ 3r}.

Theorem 5 All sets Ew for w ∈ V ∪X can be determined in O((n+ x)(log n+ ρ2r)). Similarly, all sets
Ve for e ∈ E can be computed with the same complexity.

To prove Thm. 5, we need the following three simple lemmas.

Lemma 15 Let A = (x, y) be a point in the plane of distance at most 3 from the origin. Then, any line
going through A intersects either the x- or the y-axis not farther than 3

√
2 from the origin.

Proof: Without loss of generality, we can assume A is in the first quadrant of the plane. Let B = (0, 3
√

2)
and C = (3

√
2, 0), respectively. Then line of BC is tangent to the circle centered at the origin O and

having radius 3 (at the point
(

3√
2
, 3√

2

)
, see Fig. 6). Now any line ` passing through A must intersect

a side of the triangle OBC, hence it intersects at least two sides (Pasch’s axiom), therefore ` intersects
either OB or OC. �

Definition 16 Let ρ′ be the maximum number of edges of E′ intersecting a disk with radius 3r.

575

−4−3−2−1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

0
O

A

C

B

Figure 6: Illustration for proof of Lemma 15

Lemma 17 ρ′ is O(ρr).

Proof: For any point p, the number of edges of G′ hit by the disk with radius r and center point p is
less or equal to the number of edges of G hit by the disk with radius (1+3

√
2)r and center point p, which

is O(ρr) since a disk with radius (1 + 3
√

2)r clearly can be covered by a constant number of disks with
radius r. �

Lemma 18 There are O((n+ x)ρ2r) intersecting link pairs in link set E′ resulting from elongating each
edge of E by 3

√
2r in both directions.

Proof: Let {e, f} ∈ E be two links such that only their elongated versions {e′, f ′} ∈ E′ are crossing in a
point z. We claim that this z is on the elongated part of at least one of e′ or f ′, i.e., considering the edges
as geometric intervals, z ∈ e′ \e or z ∈ f ′ \f . Also, for each e′ ∈ E′, there are O(ρr) edges of E′ that cross
e′ \ e, since, for an edge f ′ ∈ E′ to cross e′ \ e, d(e′ \ e, f) has to be ≤ 3

√
2r, and the 3

√
2r neighborhood

of e′ \ e (where e′ \ e stands of two 3
√

2r long intervals) can be covered with a constant number of disks
with radius r. Based on these, and using that |E′| is O(n+ x) (Claim 10), we can deduce that there are
O((n + x)ρr) newly appearing crossing link pairs in E′ in addition to those that are crossing in E in a
point of V ∪X. Regarding to the number of these ‘old crossings’, in each point of V ∪X, there are at
most ρr links of E crossing (and those links of E′ that cross in V ∪X, were already counted), meaning
O((n+ x)ρ2r) crossing link pairs. This means a total of O((n+ x)ρ2r) crossing link pairs in E′. �

With these lemmas in hand, we can present the proof of Thm. 5.

Proof:[Proof of Thm. 5] First, let us concentrate on determining sets Ew for w ∈ V ∪X. Let G′(V,E′)
be the graph resulting from elongating the edges of E by 3

√
2r in both directions. For reporting link

intersections in some slightly modified versions of G′, we shall use the Chazelle algorithm [1] that, out of
m links, reports all the k intersecting pairs in O(m logm+ k) (Prop. 1).

The most important observation is that, based on Lemma 15, if an edge e ∈ E is also part of Ew for a
w = (x, y) ∈ V ∪X, then the corresponding edge e3r in E′ (that was extended in length by 3

√
2r in both

directions) intersects either I
|
w := [(x − 3

√
2r, y), (x + 3

√
2r, y)] or I−w := [(x, y − 3

√
2r), (x, y + 3

√
2r)].

Here we use also the simple fact that the diameter of a square (the length of the longest segment within
the square) of side length 3r is 3

√
2r.

Let G′| be the graph resulting by adding intervals I
|
w to G′ for every w ∈ V ∪X as edges of the graph.

Let E
′|
w denote the set of edges (of E′) intersecting I

|
w. G′−w and E′−w can be defined similarly. It is easy

to see that E
′|
w ∪ E′−w contains all the edges, which in the original graph G are not farther from w than

3r, however, it may contain some outliers. Thus in order to get Ew, one can check the distance of the

original (i.e., not extended) edges from w, which correspond to edges in E
′|
w ∪ E′−w from w.

It is easy to see that G′| has still O(n + x) edges. We count the number of pairwise intersections
in G′| as follows. By Lemma 18, in G′, there are O(n + x)ρ2r link pairs crossing. In addition to these,

576

each of the (n+x) new edges (intervals) in G′| intersect O(ρr) other edges (since the 3
√

2r neighborhood
of each of these 6

√
2r long edges can be covered with a constant number of disks of radius r, and in

case of an e ∈ E elongated as e′ ∈ E′, e′ crossing a | ∈ E′| means d(e, |) ≤ 3
√

2r). This sums up
to O((n + x)ρ2 + (n + x)ρr), that is O((n + x)ρ2r). Thus, by Prop. 1, the intersections of G′| can be
determined in O((n + x) log n + (n + x)ρ2r), that is O((n + x)(log n + ρ2r)) time, alongside with the sets

E
′|
w for w ∈ V ∪X. The same reasoning applies to the sets E′−w .

For any given w ∈ V ∪X, E
′|
w ∪ E′−w contains ≤ 2ρ′ edges, this way based on Lemma 17, Ew can be

determined in O(ρr log ρr) time in such a way that the edges are given in Ew in sorted order with respect
to the lexicographic ordering of their endpoints. This means a total complexity of O((n+x)ρr log ρr) for
this second phase.

The inverse mapping, i.e., sets of nodes Ve for e ∈ E, can be done in the course (or after) the preceding
algorithm. Let Ve be initialized as empty set for all edges e, then, when an Ew is confirmed, w is added
to sets Ve for all e ∈ Ew. Clearly, this also can be done in the proposed complexity. �

Lemma 19 The set of SRLGs for circular disk shaped disasters of radius r can be computed in O((n+
x)(log n+ ρ3r)).

Proof: Based on Claim 12 and Thm. 5, Ew can be determined in the proposed complexity for all
w ∈ V ∪X.

Then for every node w, we compute list Lr,w containing the set of edges hit by an element of disk
set Cr,w defined as follows: for e, f ∈ Ew we compute disks c of radius r (if exist) according to Thm. 2:
either case a) applies if e and f are not parallel, and c intersects them in two different points, or case b)
when c intersects e and f in two different points, one being an endpoint of e, or case c) when c touches
e at an endpoint; moreover we require that formerly computed disks c have centers not farther than 2r
from w. These disks are collected in Cr,w. This takes O((n+ x)ρ3r) time, since there are O(ρ2r) disks c to
determine and store in Cr,w, and for each c ∈ Cr,w the set of edges hit by c can be determined in O(ρr)
time based on Ew. It follows readily from Thm. 4 that for every F ∈Mr there exists a w ∈ V ∪X such
that F is a subset of an element of list Lr,w. �

Please note that lists Lr,w together may contain duplicates and non-maximal sets as well, those will
be eliminated later at a subsequent phase.

As mentioned after Lemma 19, the final task for determining Mr is to merge lists Lr,w by eliminating
duplicates and non-maximal elements. To do this in subquadratic time in n, one must avoid comparing
all pairs of lists Lr,w1

, Lr,w2
.

Definition 20 Let µ be the mean square of numbers |Ve| for all e ∈ E, i.e. µ :=
∑

e∈E |Ve|2
m .

Now we can state the proof of Thm. 1.

Proof: According to Lemma 19, all sets of failures Lr,w can be determined in time O((n+x)(log n+ρ3r)).
We observe that it is enough to compare lists Lr,w1 and Lr,w2 for possible containment or duplicates

only if Ew1
∩ Ew2

6= ∅, or, in other words, there exists an e ∈ E for which {w1, w2} ⊆ Ve. We deduce
that it is enough to compare for all e ∈ E and w1, w2 ∈ Ve list pairs Lr,w1

, Lr,w2
. This means comparing

at most ∑

e∈E

|Ve|(|Ve| − 1)

2
< m

∑
e∈E |Ve|2
m

= mµ
Claim 10

= O((n+ x)µ)

pairs of lists, with each list having O(ρ2r) elements. Taking into consideration that a comparison of two
elements (SRLG candidates) can be done in O(ρr), we obtain a complexity of O((n+ x)µρ5r), confirming
the claim for the total complexity. The lower bound is provided by Corollary 11. �

Table 2 summarizes the steps of our proposed algorithm. Note that parameters ρr, x, and µ are

theoretically upper bounded by m, m(m−1)
2 , and (n + x)2, respectively, meaning that our algorithm for

577

determining Mr is clearly polynomial in n or m. Furthermore, based on Thm. 1 using that x is O(n)
in practice, and that ρr is more or less proportional to 2r

diamm ([8])) in the interval (0, diam/2], where
diam is the geometric diameter of the network, we get a complexity bound of O

(
n(log n+ µ(r

diam)5)
)

for determining Mr. Also, as in practice x = O(n), and for r much smaller than network diameter,
ρr = O(1), and µ = log(n) we can state that:

Corollary 21 If ρr = O(1), µ = O(log n), and x is O(n), Mr can be calculated in O(n log n) optimal
time. These assumptions hold in practice when r is much smaller than the geographical network diameter.

Proof: Combining Thm. 1 and Cor. 11 yields the proof. �
Instead of µ, we may use a more intuitive parameter, namely, φr:

Definition 22 Parameter φr denotes the maximum number of nodes in the 3r-neighborhood of a link of
the input graph G.

Proposition 23 Mp
r can be determined in O

(
(|V |+ x)

(
log |V |+ φ2rρ

5
r

))
.

5 Conclusion

In this paper, we presented an improved polynomial algorithm for enumerating the maximal link sets
that can be simultaneously hit by a circular disk of a given radius r ≥ 0. This problem can be viewed as
a generalization of the line segment intersection problem (where r = 0). In certain practical settings, the
algorithm proposed in this paper has an optimal near-linear time complexity.

Acknowledgements

I thank Dömötör Pálvölgyi and János Tapolcai for the fruitful discussions on this topic.
This research was partially supported by the National Research, Development and Innovation Fund of Hungary

(grant No. 135606). Supported by the ÚNKP-22-4-II-BME-248 New National Excellence Program of the Ministry
for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

References

[1] Chazelle, B. & Edelsbrunner, H. An optimal algorithm for intersecting line segments in the plane. Jurnal
Of The ACM (JACM). (1992)

[2] Berg, M., Cheong, O., Kreveld, M. & Overmars, M. Computational Geometry: Algorithms and Applications.
(Springer Berlin Heidelberg,2008)

[3] Neumayer, S., Zussman, G., Cohen, R. & Modiano, E. Assessing the vulnerability of the fiber infrastructure
to disasters. IEEE/ACM Trans. Netw.. 19, 1610-1623 (2011)

[4] Eppstein, D. & Goodrich, M. Studying (non-planar) road networks through an algorithmic lens. Proceedings
Of The 16th ACM SIGSPATIAL International Conference On Advances In Geographic Information Systems.
pp. 1-10 (2008)

[5] Eppstein, D., Goodrich, M. & Strash, D. Linear-Time Algorithms for Geometric Graphs with Sublinearly
Many Edge Crossings. SIAM Journal On Computing. 39, 3814-3829 (2010)

[6] Ackerman, E. On topological graphs with at most four crossings per edge. Computational Geometry. 85 pp.
101574 (2019), http://www.sciencedirect.com/science/article/pii/S0925772119301154

[7] Kershner, R. The Number of Circles Covering a Set. American Journal Of Mathematics. 61, 665-671 (1939),
http://www.jstor.org/stable/2371320

[8] J. Tapolcai, L. Rónyai, B. Vass, and L. Gyimóthi, “List of Shared Risk Link Groups Representing Regional
Failures with Limited Size”, in Proc. IEEE INFOCOM, Atlanta, GA, USA, 2017

[9] J. Tapolcai, L. Rónyai, B. Vass, and L. Gyimóthi, “Fast Enumeration of Regional Link Failures Caused by
Disasters with Limited Size”, IEEE-ACM Transactions on Networking, 2020

578

The importance of being series-parallel

Dedicated to the memory of Professor Takao Nishizeki,
one of the founders of the series of the Japanese-

Hungarian Symposia on Discrete Mathematics and Its Applications

András Recski1

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

1111 Budapest Műegyetem rkp. 3., Hungary
recski@cs.bme.hu

Áron Vékássy1

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

1111 Budapest Műegyetem rkp. 3., Hungary
aron.vekassy@cs.bme.hu

Abstract: Duffin has characterized series-parallel graphs during his study of 1-ports, his
result has been generalized by Nishizeki and Saito for 3-terminal 2-ports. A graph is series-
parallel if and only if it does not contain K4 or its series extension as a subgraph. Electric
networks with series-parallel topology play an important role in the qualitatively reliable
synthesis of certain devices. In this short note we show that series-parallel graphs arise in
network synthesis in another context as well, and the cycle matroid of K4 turns out to appear
in all the known singular network constructions in which these singularities are caused by
numerical instabilities.

Keywords: n-ports, series-parallel, singularity

1 Introduction

One of the main research areas of Professor Takao Nishizeki (1947-2022) was the theory and applications
of series-parallel graphs. He and his coauthors had several important results showing that certain graph
properties can be recognized in polynomial, sometimes even in linear time if the input is restricted to
series-parallel graphs, see [1], [2], [3], [4], [5], [6], [7], [8], [9]. His initial interest in series-parallel graphs
was motivated by the classical result of Duffin [10], that the complete graph K4 on four vertices (a.
k. a. a Wheatstone-bridge in the context of electric network theory) is the smallest non-series-parallel
graph. In fact, a graph is series-parallel if and only if neither K4 nor its series extensions are contained
in it as a subgraph. One-ports, the simplest building blocks in electric network theory, have two specific
vertices, called terminals, and Duffin’s result is often formulated as a characterization of two-terminal
series-parallel graphs (see [1] for a formal definition). The second simplest building blocks in network
theory are the three-terminal two-ports and, accordingly, the results of Nishizeki and Saito [11] generalized
Duffin’s results for three-terminal graphs.

1The research reported in this paper and carried out at the Budapest University of Technology and Economics was
supported by the TKP2020, National Challenges Program of the National Research Development and Innovation Office
(BME NC TKP2020) and by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame
of the Artificial Intelligence research area of the Budapest University of Technology and Economics (BME FIKP-MI/SC).

579

2 Series-parallel graphs in network synthesis

In electrical network theory, a linear n-port is described by the equation Au + Bi = 0 where u and i
correspond to the voltages and the currents of the ports, respectively and both A and B have n columns.
The matroid M of an n-port is defined as the column space matroid of its matrix M = (A | B). The
rank of an n-port can be defined as follows: r = r(M). If the equation n = r holds true we call the
n-port ordinary. Some particular n-ports mentioned in this paper are described in Table 1.

Name Matrix Rank

Resistor M = (1 −R) 1

Norator M = (0 0) 0

Nullator M =
(
1 0
0 1

)
2

Ideal transformer M =
(−1 k 0 0

0 0 k 1

)
2

Gyrator M =
(
0 −1 R 0
1 0 0 R

)
2

Nullor M =
(
1 0 0 0
0 0 1 0

)
2

3-port circulator M =
(

1 −1 0 1 1 0
0 1 −1 0 1 1
−1 0 1 1 0 1

)
3

4-port circulator M =

(1 −1 0 0 1 1 0 0
0 1 −1 0 0 1 1 0
0 0 1 −1 0 0 1 1
−1 0 0 1 1 0 0 1

)
4

Table 1: Some important network elements

If the n-port is obtained from the interconnection of other n-ports along the graph G then M(M) =
(G ∨A)/(Eu

Int ∪Ei
Int) if the genericity assumption holds whereM(M) is the matroid of the new n-port.

G is the direct sum of the cycle matroid on the set of edges corresponding to currents of G, and the
cocycle matroid on the set of edges corresponding to voltages of G. A is the direct sum of the matroids
of the interconnected multiports and Eu

Int and Ei
Int are the edges corresponding to internal voltages

and currents respectively [12]. Note that G represents the Kirchoff equations obtained from the network
topology and A contains information on the n-ports to be interconnected.

The genericity assumption means that we do not allow cancellations among the nonzero parameters
constituting the matrix of the different n-ports to be interconnected. However if we drop this genericity
assumption there can be particular choices of parameters which result in cancellations that can alter the
resulting matroid of the network. A realization of an n-port by the interconnection of other n-ports is
called qualitatively reliable (QR) if the matroid of the resulting networks remains the same no matter
how these parameters are chosen [13].

This is perhaps best illustrated through an example of [13]. Consider the networks of Figure 1.

Figure 1: A non-QR and a QR synthesis

580

They both synthesize the 2-port with the describing matrix M =
(−1 2 0 0

0 −1 2 1

)
. Notice that in the

general case the 2-port on the right has the matrix M′ =
(−1 k 0 0

0 −G k 1

)
where k is the transfer ratio of the

transformer and G is the conductance of the resistor. Observe that M(M) = M(M′). If, however, we
change the resistance values of the network on the left, the last two columns of its describing matrix will
not be parallel anymore, therefore only the synthesis on the right is QR.

Electric networks with series-parallel topology are known to play an important role in the QR synthesis
of certain devices [13]. For example, using the properties of gammoids one can show that circulators
cannot be synthesized in a qualitatively reliable way from one-ports and two-ports interconnected along
series-parallel topology.

Recently series-parallel graphs arose in network synthesis in another context: We gave a canonical
synthesis of those multiports which are reciprocal and antireciprocal at the same time [14]. For the
undefined concepts of electric network theory the reader is referred to [14].

An n-port has a hybrid description if it has rank n and its equations can be written in the form:

u1

i2

 =

R C

D G

i1

u2

where u1 and i1 are the voltages and currents of a subset of the ports and u2 and i2 are the voltages and
currents of the rest of the ports.

A reciprocal n-port always has a hybrid description, and its hybrid matrix looks like this:

H =

R C

−CT G

where R and G are symmetrical and the parameters within them have dimensions of resistance and
conductance, respectively, while the parameters in the matrix C are without dimension [15]. The sizes of
the matrices R, G and C are p×p, q× q and p× q, respectively. If the reciprocal n-port is antireciprocal
as well then R and G are zero matrices. Based on this observation we show in [14] that all n-ports
that are reciprocal and antireciprocal at the same time can be synthesized using ideal transformers only.
This synthesis is presented on Figure 2, here the transfer ratios of the ideal transformers are simply the
nonzero entries of the matrix C.

Figure 2: Synthesis construction

581

3 Singular networks, “realizing” nullators and/or norators

Since our synthesis solution in the previous section needed series-parallel topologies only, it was natural
to ask what happens if two ideal transformers are interconnected along the interconnection graph K4

to form a new 2-port. In the general case this interconnection (Figure 3) leads to an ordinary ideal
transformer.

Figure 3: Singular interconnection

We have found in [14] that this network is highly singular if either k = 1 and j = −1 or k = −1 and
j = 1. In the first case the 2-port becomes a pair of nullators, while in the second it behaves as a pair of
norators.

In his article Carlin [16] showed that the synthesis of nullators or norators using ordinary n-ports can
only be achieved through such singularities. More specifically, “We [...] expect that any equivalent circuit
which represents these elements has infinite sensitivity. That is if some circuit element in the equivalent
structure for a nullator or norator is changed slightly, the terminal performance will no longer be similar
to that of the nullator or norator.”. In other words, he claimed that there is no QR synthesis for these
1-ports.

A small addition to this is that we showed in [17] that one can construct absurd examples (one is
shown in Figure 4) that realize a nullor in the general case as well, therefore are QR. However in these
networks it is obvious that some “forbidden” interconnections cause the strange behavior as it makes no
sense from an engineering point-of-view to connect a current source and an open circuit in series.

Figure 4: QR synthesis of a nullor

There were some previous examples in the literature for networks “realizing” nullators or norators
as a result of some singularities. Such examples (shown on Figure 5) are the gyrator network of Carlin
and Youla [18] and the 3-port and 4-port circulator networks of Carlin [16]. Note that all three of these

582

examples behave like regular networks in the general case and become nullator or norator realizations in
two singular cases each. Consequently this kind of realization is not QR and is much more interesting
than the QR one, as here it is not clear what exactly causes these networks to show an entirely different
behavior at the points of these singularities. Therefore it might be worth to examine the known networks
that are singular in this sense, in an attempt to characterize aspects of this behavior.

Figure 5: A nullor realization, the 3-port circulator network and the 4-port circulator network

The topology of the first example on Figure 5 is the same K4 as in our example on Figure 3. While
the topology of the two circulator-networks is trivially series-parallel, K4 still arises in an unexpected
way. Recall that the matroidM describing the qualitative properties of the network arises as a minor of
M = G∨A, where G is the direct sum of the cycle and cocycle matroids of the graph of the interconnection
and A describes the algebraic properties of the devices. The matroid A of the 3-port circulator is just the
cycle matroid of K4 [19] and that of the 4-port circulator contains the cycle matroid of K4 as a minor.
This is summarized in Table 2.

Does the cycle matroid of K4 appear... in G? in A?

The realization of a nullator-norator pair using a gyrator [18] Yes No

The realization of a nullator or a norator using a 3-port circulator [16] No Yes

The realization of a nullator-norator pair using a 4-port circulator [16] No Yes

The realization of a pair of nullators or a pair of norators [14] Yes No

Table 2: Appearence of K4 in nullator/norator constructions

Hence we can conclude that, in one way or another, the graph K4 or its cycle matroid appears in all
the known singular network constructions which are not QR.

583

References

[1] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial problems
on series-parallel graphs. J. ACM, 29(3):623–641, 1982.

[2] X. Zhou, H. Suzuki, and T. Nishizeki. A linear algorithm for edge-coloring series–parallel multigraphs.
Journal of Algorithms, 20(1):174–201, 1996.

[3] X. Zhou, H. Suzuki, and T. Nishizeki. An NC parallel algorithm for edge-coloring series–parallel
multigraphs. Journal of Algorithms, 23(2):359–374, 1997.

[4] T. Nishizeki, J. Vygen, and X. Zhou. The edge-disjoint paths problem is NP-complete for se-
ries–parallel graphs. Discrete Applied Mathematics, 115(1):177–186, 2001.

[5] T. Fujino, X. Zhou, and T. Nishizeki. List edge-colorings of series-parallel graphs. IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences, E86A:1034–1045,
05 2003.

[6] X. Zhou and T. Nishizeki. Multicolorings of series-parallel graphs. Algorithmica, 38(2):271–297,
2003.

[7] X. Zhou, Y. Matsuo, and T. Nishizeki. List total colorings of series-parallel graphs. Journal of
Discrete Algorithms, 3(1):47–60, 2005.

[8] Y. Matsuo, X. Zhou, and T. Nishizeki. Sufficient condition and algorithm for list total colorings of
series-parallel graphs. IEICE Transactions, 90-A:907–916, 05 2007.

[9] X. Zhou and T. Nishizeki. Orthogonal drawings of series-parallel graphs with minimum bends. SIAM
Journal on Discrete Mathematics, 22:1570–1604, 01 2008.

[10] R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and Applications,
10(2):303–318, 1965.

[11] T. Nishizeki and N. Saito. Necessary and sufficient condition for a graph to be three-terminal
series-parallel. IEEE Transactions on Circuits and Systems, 22(8):648–653, 1975.

[12] A. Recski. Contributions to the n-port interconnection problem by means of matroids. In A. Hajnal
and V.T. Sós (eds), Combinatorics, Colloquia Mathematica Societatis János Bolyai, volume 18,
pages 877–892, 1978.

[13] A. Recski. Matroids and network synthesis. In Proc. European Conf. on Circuit Theory and Design,
pages 192–197, 1980.

[14] A. Recski and Á. Vékássy. Synthesis of a class of reciprocal n-ports and a highly singular construction.
IEEE Transactions on Circuits and Systems II: Express Briefs, 70(1):3–5, 2023.

[15] L. Chua and Y. Lam. Dimension of N -ports. IEEE Transactions on Circuits and Systems, 21(3):412–
416, 1974.

[16] H. Carlin. Singular network elements. IEEE Transactions on Circuit Theory, 11(1):67–72, 1964.

[17] A. Recski and Á. Vékássy. Interconnection, reciprocity and a hierarchical classification of generalized
multiports. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(9):3682–3692, 2021.

[18] H. J. Carlin and D. C. Youla. Network synthesis with negative resistors. Proceedings of the IRE,
49(5):907–920, 1961.

[19] A. Recski. Unique solvability and order of complexity of linear networks containing memoryless
n-ports. Circuit Theory Appl., 7:31–42, 1979.

584

Fault-tolerance of leaf-guaranteed graphs

Jan Goedgebeur1

Department of Computer Science
KU Leuven Kulak

Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
and

Department of Applied Mathematics, Computer
Science and Statistics

Ghent University
Krijgslaan 281-S9, 9000 Ghent, Belgium

jan.goedgebeur@kuleuven.be

Jarne Renders1

Department of Computer Science
KU Leuven Kulak

Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
jarne.renders@kuleuven.be

Gábor Wiener2

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

Műegyetem rkp. 3., 1111 Budapest, Hungary
wiener@cs.bme.hu

Carol T. Zamfirescu

Department of Applied Mathematics, Computer
Science and Statistics

Ghent University
Krijgslaan 281-S9, 9000 Ghent, Belgium

and
Department of Mathematics

Babeş-Bolyai University
Cluj-Napoca, Roumania
czamfirescu@gmail.com

Abstract: We study fault-tolerance of networks using the minimum leaf number of the
corresponding graph G (that is the minimum number of leaves of the spanning trees of G)
and its vertex-deleted subgraphs. Our main notion is the so-called fault cost, which is based
on the number of vertices that have different degrees in minimum leaf spanning trees of G
and its vertex-deleted subgraphs.

Keywords: hamiltonicity, traceability, spanning tree, minimum leaf number

1 Introduction

This is a shortened, conference version of the paper, containing none of the proofs. We investigate the
fault-tolerance of networks using spanning trees of the corresponding graphs. Optimisation problems
concerning spanning trees occur in various applications, such as querying in computer database systems
and connection routing. Throughout the paper, we assume graphs to be undirected and 2-connected,
unless explicitly stated otherwise. The vertex set and the edge set of a graph G is denoted by V (G) and
E(G), respectively. The subgraph of G induced by X ⊆ V (G) is denoted by G[X] and let G − X :=
G[V (G)\X], G−v := G−{v} for any v ∈ V (G). For a, b ∈ V (G) let G+(a, b) denote the graph obtained
from G by adding (a, b) to E(G). The set of all spanning trees of G is denoted be T (G). Denote by L(T)

1Research is supported by Internal Funds of KU Leuven
2Research is supported by project no. BME-NVA-02, implemented with the support provided by the Ministry of In-

novation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the
TKP2021 funding scheme.

585

the set of leaves of a tree T and put `(T) := |L(T)|. Following [9], the minimum leaf number ml(G) of
G is defined to be 1 if G is hamiltonian and min

T∈T (G)
`(T) otherwise. For further results on trees with a

minimum number of leaves and related problems, we refer to [3, 8, 1, 5].

A graph G is said to be k-leaf-guaranteed if k = ml(G) ≥ ml(G − v) for all v ∈ V (G). We denote
the family of all k-leaf-guaranteed graphs with Lk and call a graph G ∈ ⋃k Lk leaf-guaranteed. It is
easy to show that {ml(G − v)}v∈V (G) ⊂ {k − 1, k} for any k-leaf-guaranteed graph. We write L`

k for
the set of all graphs G ∈ Lk satisfying ml(G − v) = ` for all v ∈ V (G), where ` ∈ {k − 1, k}. (Note
that Lk 6= Lk

k ∪ Lk−1
k , since there exist graphs the vertex-deleted subgraphs of which have non-constant

minimum leaf number.) Leaf-guaranteed graphs offer a common framework for a series of important
graph families. E.g. Lk

k and Lk−1
k are the leaf-stable and leaf-critical graphs defined in [9], respectively.

Leaf-critical graphs are generalisations of both hypohamiltonian and hypotraceable graphs (about which
see the survey of Holton and Sheehan [6, Chapter 7]). The family L1

1 is known as 1-hamiltonian graphs,
a classical notion in hamiltonicity theory [2]. In applications, these graphs are often called 1-vertex
fault-tolerant [7, Chapter 12]. L2 ∪ L2

3 are exactly the so-called platypus graphs [10, 4].

In a graph G, we will call a spanning tree or hamiltonian cycle S with ml(S) = ml(G) an ml-subgraph.
From an application-oriented perspective it is important to point out that when a node drops from the
network, the ml-subgraph used in the fault-free network may require changing equipment (we see vertices
of different degrees as requiring different equipment in the network) in many nodes in order to obtain an
ml-subgraph in the faulty network, which is undesirable. We formalise this by introducing, for a spanning
tree or hamiltonian cycle S of G and a spanning tree or hamiltonian cycle Sv of G−v, the transition cost
from S to Sv as

τ(S, Sv) := |{w ∈ V (G) \ {v} : degS(w) 6= degSv
(w)}|.

Thus, this is the number of vertices in G which need to receive different equipment after the loss of a
node; the lost node is ignored in this process. For a given graph G, denote by Sml(G) the set of all of its
ml-subgraphs. In order to quantify the optimal solution in a worst-case scenario for the network itself,
we introduce for a given graph G and an ml-subgraph S of G the quantity

ϕS(G) := max
v∈V (G)

min
Sv∈Sml(G−v)

τ(S, Sv).

Based on this, we shall consider the fault cost of the graph G representing the network:

ϕ(G) := min
S∈Sml(G)

ϕS(G).

Graphs with fault cost 0 are easy to find: all 1-hamiltonian graphs possess this property. It is not difficult
to prove that actually these are the only such graphs.

Claim 1 A graph has fault cost 0 if and only if it is 1-hamiltonian.

The most natural questions concerning the fault cost are therefore whether it can be arbitrarily high
and whether there exist graphs with fault cost 1. While the answer for the first question is not so
difficult to find, the second one is somewhat more challenging. In what follows we answer these questions
affirmatively and also give a characterization of a certain subfamily of graphs with fault cost 1.

Theorem 2 For every t there exists a graph G with ϕ(G) > t.

When looking for graphs with fault cost 1, the first family to go over is graphs with minimum leaf number
2 (that is, traceable, but not hamiltonian graphs). For traceable fault cost 1 graphs (that must also be
2-leaf-guaranteed, obviously) we will use the shorthand name tfc1 graphs in the sequel.

Claim 3 A 2-leaf-stable graph G has fault cost 1 if and only if there exist vertices a1, a2 ∈ V (G), such
that there exists an a1a2 hamiltonian path in G and for any vertex x ∈ V (G) − a1 − a2 there exists an
a1a2 hamiltonian path in G− x as well.

586

Remark 4 The vertices a1 and a2 do not have to be unique.

An immediate corollary of the previous claim is that tfc1 graphs can have at most 2 vertices of degree
2 (by deleting a neighbour of a vertex x 6∈ {a1, a2} of degree 2, we cannot have an a1a2 hamiltonian
path). On the other hand, a1 and a2 might have degree 2 (and also any degree greater than 1), as we
shall see later. This also means that tfc1 graphs need not be 3-connected. Now we are dealing with tfc1
graphs of connectivity 2, for which we need the following notions. Let X be a 2-cut of a graph G and
let H be one of the components of G − X. Then G[V (H) ∪ X] is called a 2-fragment of G, and X is
called the attachment of H. Let G1 and G2 be graphs, such that there exist two vertices x, y, such that
{x, y} = V (G1)∩ V (G2). Then G1 : G2 denotes the graph obtained by gluing together G1 and G2 at the
vertices x, y, i.e. the graph with vertex set V (G1)∪ V (G2) and edge set E(G1)∪E(G2). The next claim
follows easily from Claim 3.

Claim 5 Let G be a tfc1 graph, a1, a2 as described in Claim 3, and let {x, y} be a cut of G. Then the
following hold.

1. {a1, a2} ∩ {x, y} = ∅

2. There are exactly two different 2-fragments of G with attachment {x, y}, one containing a1 (let’s
call it G1) and the other one containing a2 (let it be G2).

3. There exists an aix hamiltonian path in Gi − y and an aiy hamiltonian path in Gi − x for i = 1, 2.

4. For any v ∈ V (Gi) there exists an aix or aiy hamiltonian path in at least one of the graphs Gi− v,
Gi − x− v, Gi − y − v for i = 1, 2.

5. If (x, y) 6∈ E(G) then G+ (x, y) is also a tfc1 graph.

Remark 6 Point 3 of the claim is actually a special case of point 4, but it is worth mentioning it in its
own right, because of its corollaries.

2 Existence of tfc1 graphs

Naturally, our first aim here is to show that tfc1 graphs exist. In order to do so, let us observe that we
might assume that x and y are neighbours in a 2-fragment of a tfc1 graph, by point 5 of Claim 5. If we
assume this, point 4 of Claim 5 becomes much easier to handle:

Claim 7 Let G1, G2, x, y, a1, a2 be as described in Claim 5, such that (x, y) ∈ E(G). Then there exists
an aix or aiy hamiltonian path in Gi and also in Gi − v for any v ∈ V (Gi)− ai for i = 1, 2.

It seems obvious that a graph fulfilling the property described in Claim 7 is not necessarily a 2-fragment of
some tfc1 graph, we need further properties. Somewhat surprisingly, these properties are easy to describe
and might not even be needed (at least not in both fragments of a tfc1 graph).

Definition 8 Let H be a connected graph, a, x, y ∈ V (H), (x, y) ∈ E(H). Consider the following
properties of the quadruple (H, a, x, y).

(P0) For any v ∈ V (H)− a there exists an ax or ay hamiltonian path in H and also in H − v.

(Q1) There exists no xy hamiltonian path in H.

(Q2) For any v ∈ V (H) there exists no xy hamiltonian path in H − v.

The quadruple (H, a, x, y) is said to be a weak fragment if it fulfills (P0), a medium fragment if it fulfills
(P0) and (Q1), and finally a strong fragment if it fulfills (P0), (Q1), and (Q2).

587

a

x

y y

a x

y

x

a

Figure 1: Examples of weak fragments.

y

x

a

y

x

a
a

y

x

Figure 2: Examples of medium fragments.

For convenience’s sake, a graph H can also be called a weak/medium/strong fragment if there exist
vertices a, x, y ∈ V (H), such that (H, a, x, y) is a weak/medium/strong fragment. By gluing together
such fragments we can obtain tfc1 graphs:

Theorem 9 Let (G1, a1, x, y) and (G2, a2, x, y) be weak fragments. If both of them are also medium or
one of them is also strong, then G1 : G2 is a tfc1 graph.

Weak fragments are easy to find, e.g. any complete graph (of order at least 3) is a weak fragment (and
obviously, by adding an edge to a weak fragment we also obtain a weak fragment), see some examples
in Figure 1. However, weak fragments are not enough to build tfc1 graphs using Theorem 9, we need
at least one medium fragment, which is somewhat harder to find. Some examples based on Petersen’s
graph are shown in Figure 2. Using two (not necessarily different) graphs of Figure 2 and Theorem 9, we
obtain tfc1 graphs, see Figure 3.
Next we would like to find strong fragments, which is obviously even harder than finding medium ones.
First we characterize tfc1 graphs with a cut {x, y}, such that x and y are neighbours. The next theorem
shows that these can only be obtained in the way described in Theorem 9.

Theorem 10 Let G, x, y, a1, a2, G1, G2 be as described in Claim 3 and (x, y) ∈ E(G). Then (G1, a1, x, y)
and (G2, a2, x, y) are weak fragments and either both of them are also medium or one of them is also
strong.

Let us consider now (say) the first tfc1 graph of Figure 3 and its 2-cut X consisting of the neighbours
of a1. By Theorem 10 (which can be used, since the vertices in X are neighbours), the 2-fragments with
attachment X are weak fragments, and it is obvious that K3 (one of the fragments) is not a medium
fragment, therefore the other one (which is just the first graph of the figure with a1 deleted) must be a
strong fragment.

a1 a2 a1 a2

Figure 3: Examples of tfc1 graphs.

588

a

x

y y

a x

y

x

a

Figure 4: Weak (1, 1, 1, 0, 0), (1, 1, 0, 1, 1), (1, 1, 1, 1, 1,) fragments, respectively.

3 Non-neighbouring vertices of the attachment

In the previous section we have assumed that the vertices of attachment are neighbours in a tfc1 2-
fragment, in order to make the construction of tfc1 graphs easier. However, there might be tfc1 2-
fragments without this property, thus the following questions arise naturally. Are there tfc1 graphs with
a 2-cut consisting of non-neighbouring vertices? Are there tfc1 graphs, such that all 2-cuts consist of
non-neighbouring vertices? The first question can be immediately answered in the affirmative: the second
graph of Figure 3 has such a 2-cut. The corresponding (isomorphic) 2-fragments can be seen in Figure 5
(second graph). In order to also answer the second question affirmatively, we need tfc1 graphs that are
not built from fragments defined in the previous section. Let us consider the following properties of a
quadruple (H, a, x, y), where H is a connected, but not necessarily 2-connected graph, a, x, y ∈ V (H).

(R0) For any v ∈ V (H)−a there exists an ax or ay hamiltonian path in at least one of the graphs H− v,
H − x− v, H − y − v.

(R1) For any v ∈ V (H) − a there exists an ax or ay hamiltonian path in H − v or an ax hamiltonian
path in H − y − v.

(R2) For any v ∈ V (H) − a there exists an ax or ay hamiltonian path in H − v or an ay hamiltonian
path in H − x− v.

(R3) For any v ∈ V (H)− a there exists an ax or ay hamiltonian path in H − v.

(R4) There exists an ax hamiltonian path in H.

(R5) There exists an ay hamiltonian path in H.

Definition 11 Let b1, b2, b3, b4, b5 be integers, such that 0 ≤ b1, b2, b3, b4, b5 ≤ 1. A quadruple (H, a, x, y)
is called a (b1, b2, b3, b4, b5) fragment if it fulfills property (R0) and for 1 ≤ i ≤ 5, bi = 1 if and only if it
fulfills property (Ri).

Again, for convenience’s sake, a graph H can also be called a (b1, b2, b3, b4, b5) fragment if there ex-
ist vertices a, x, y ∈ V (H), such that (H, a, x, y) is a (b1, b2, b3, b4, b5) fragment. We also define the
terms medium and strong for these fragments, similarly to Definition 8 and also use the term weak
(b1, b2, b3, b4, b5) fragment for (b1, b2, b3, b4, b5) fragments without any further requirements.

Definition 12 A (b1, b2, b3, b4, b5) fragment H is medium if it fulfills property (Q1) (i.e. there is no xy
hamiltonian path in H) and strong if furthermore fulfills property (Q2) (i.e. for each v ∈ V (H) there is
no xy hamiltonian path in H − v).

Obviously, (R3) implies (R1) and (R2), so if b3 = 1 in a (b1, b2, b3, b4, b5) fragment, then b1 = b2 = 1. It is
easy to see that weak/medium/strong fragments defined in the previous section are weak/medium/strong
(1, 1, 1, 1, 1) fragments, since (R0) and (x, y) ∈ V (H) imply (R1), (R2), (R3), (R4) and (R5).
Weak examples, where x and y are not neighbours are easy to find: the edge deleted complete graphs of
Figure 4 are (1, 1, 1, 0, 0), (1, 1, 0, 1, 1), (1, 1, 1, 1, 1,) fragments, respectively. Some examples of medium
(1, 1, 1, 0, 0), (0, 1, 0, 1, 0), and (1, 1, 1, 1, 1) fragments are shown in Figure 5. Notice that again all of them
are based on Petersen’s graph. This is not so apparent for the last graph, but it is obtained by deleting

589

y

x

a

y

a

x

y

xa

Figure 5: Medium (1, 1, 1, 0, 0), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1) fragments, respectively.

a1 a2 a1

a2

Figure 6: tfc1 graphs of order 14 without a 2-cut of neighbouring vertices.

two neighbouring vertices of Petersen’s graph then adding an edge between two vertices of degree 2 having
a common neighbour.
Now we are ready to generalize Theorem 9 and obtain tfc1 graphs without a 2-cut of neighbouring
vertices.

Theorem 13 Let (G1, a1, x, y) be a (b1, b2, b3, b4, b5) fragment and (G2, a2, x, y) be a (c1, c2, c3, c4, c5)
fragment, such that both of them are medium or at least one of them is strong. If furthermore the
following inequalities hold, then G1 : G2 is a tfc1 graph.

(i) b1 + c5 ≥ 1

(ii) b2 + c4 ≥ 1

(iii) b3 + c4 + c5 ≥ 1

(iv) c1 + b5 ≥ 1

(v) c2 + b4 ≥ 1

(vi) c3 + b4 + b5 ≥ 1

(vii) b4 + b5 + c4 + c5 ≥ 1

Using Theorem 13 and the medium (1, 1, 1, 0, 0) and/or (1, 1, 1, 1, 1) fragments of Figure 5 we can create
tfc1 graphs without a 2-cut consisting of neighbouring vertices. Two of these that are based on two copies
of the medium (1, 1, 1, 1, 1) fragment can be seen in Figure 6. These are the smallest tfc1 graphs we found
(of order 14).
We also generalize Theorem 10 to obtain a characterization of all tfc1 graphs (and not just the ones with
a 2-cut of neigbouring vertices).

Theorem 14 Let G, x, y, a1, a2, G1, G2 be as described in Claim 3. Then (G1, a1, x, y) and (G2, a2, x, y)
are (b1, b2, b3, b4, b5) and (c1, c2, c3, c4, c5) fragments for some bi, ci, 1 ≤ i ≤ 5, such that both of them are
medium or at least one of them is strong and the following inequalities hold.

(i) b1 + c5 ≥ 1

(ii) b2 + c4 ≥ 1

(iii) b3 + c4 + c5 ≥ 1

590

(iv) c1 + b5 ≥ 1

(v) c2 + b4 ≥ 1

(vi) c3 + b4 + b5 ≥ 1

(vii) b4 + b5 + c4 + c5 ≥ 1

Similarly to Theorem 10, Theorem 14 can also be used to find strong (b1, b2, b3, b4, b5) fragments. Let
us consider the tfc1 graphs of Figure 6 and their 2-cuts consisting of the neighbours of a1. By Theorem
G10, the 2-fragments with attachment X are (b1, b2, b3, b4, b5) fragments (for some numbers bi), and it
is obvious that the 3 vertex path (one of the fragments) is not a medium fragment, therefore the other
ones must be strong (b1, b2, b3, b4, b5) fragments. (The actual values are (1, 1, 1, 1, 1) for both fragments.)

4 Open problems

In the previous sections we have found tfc1 graphs and characterized tfc1 graphs of connectivity 2. All our
constructions are based on 2-fragments, thus the resulting tfc1 graphs are all of connectivity 2, therefore
it is natural to ask whether 3-connected tfc1 graphs exist. If they do, is there a characterization for (say)
the connectivity 3 case? Another pretty natural question is whether k-leaf-guaranteed graphs with fault
cost 1 exist for k ≥ 3.

References

[1] D. Binkele-Raible, H. Fernau, S. Gaspers, and M. Liedloff, Exact and Parameterized Algorithms for
Max Internal Spanning Tree, Algorithmica 65 (2013) 95–128.

[2] G. Chartrand, S. F. Kapoor, and D. R. Lick, n-Hamiltonian graphs, J. Combin. Theory, Ser. B. 9
(1970) 308–312.

[3] L. Gargano, M. Hammar, P. Hell, L. Stacho, and U. Vaccaro, Spanning spiders and light-splitting
switches, Discrete Math. 285 (2004) 83–95.

[4] J. Goedgebeur, A. Neyt, and C. T. Zamfirescu, Structural and computational results on platypus
graphs, Appl. Math. Comput. 386 (2020) Article 125491.

[5] J. Goedgebeur, K. Ozeki, N. Van Cleemput, and G. Wiener, On the minimum leaf number of cubic
graphs, Discrete Math. 342 (2019) 3000–3005.

[6] D. A. Holton and J. Sheehan, The Petersen Graph, Cambridge University Press, NY, USA (1993).

[7] L.-H. Hsu and C.-K. Lin, Graph Theory and Interconnection Networks, CRC Press, Boca Raton,
FL, USA (2009).

[8] G. Salamon and G. Wiener, On finding spanning trees with few leaves, Inform. Proc. Lett. 105
(2008) 164–169.

[9] G. Wiener, Leaf-Critical and Leaf-Stable Graphs, J. Graph Theory 84 (2017) 443–459.

[10] C. T. Zamfirescu, On Non-Hamiltonian Graphs for which every Vertex-Deleted Subgraph Is Trace-
able, J. Graph Theory 86 (2017) 223–243.

591

592

On the Number of Maximal Cliques in

Two-Dimensional Random Geometric Graphs:
Euclidean and Hyperbolic

Hodaka Yamaji

Graduate School of Information Science and
Technology

The University of Tokyo
Tokyo 113-8656, Japan

hodakaymj@g.ecc.u-tokyo.ac.jp

Abstract: Maximal clique enumeration appears in various real-world networks, such as social
networks and protein-protein interaction networks for different applications. For general graph
inputs, the number of maximal cliques can be up to 3|V |/3. However, many previous works
suggest that the number is much smaller than that on real-world networks, and polynomial-
delay algorithms enable us to enumerate them in a realistic-time span. To bridge the gap
between the worst case and practice, we consider the number of maximal cliques in two popular
models of real-world networks: Euclidean random geometric graphs and hyperbolic random
graphs. We show that the number of maximal cliques on Euclidean random geometric graphs
is lower and upper bounded by exp(O(|V |1/3)) and exp(Ω(|V |1/3+ϵ)) with high probability
for any ϵ > 0. For a hyperbolic random graph, we give the bounds of exp(O(|V |(3−γ)/2)) and
exp(Ω(|V |(3−γ+ϵ)/6))) where γ is the power-law degree exponent between 2 and 3.

Keywords: Maximal Cliques, Random Geometric Graphs, Real-World Networks

1 Introduction

Detecting all maximal cliques in a graph is a crucial analysis tool for real-world networks from various
fields: social networks, protein-protein interaction networks, and web graphs because cliques correspond
to meaningful components in the networks [22, 21, 3]. Not only does it have many direct applications,
but its algorithms and techniques are used in other clique-related methods such as clique percolation [19]
and k-clique counting [17]. This is because we can detect all cliques by enumerating only the maximal
ones.

For general graph inputs, the number of maximal cliques M can be up to 3|V |/3 [20]. Therefore,
enumerating all of them is NP-hard. However, many studies report that in real-world networks, M is
much smaller than that. Thus, polynomial-delay algorithms, the running time of which is bounded by
poly(|V |) · M, are able to enumerate all maximal cliques in realistic-time span even for networks with
millions of vertices [8]. Also, classic Bron-Kerbosch algorithm [5] (plus graph orientation [7]) is known
to be efficient in many instances [9], although its worst running time is O∗(3|V |/3) and not bounded in
terms of M. Here we strike upon the question: why is the number of maximal cliques small on
real-world networks?

In the study of real-world networks, networks that appear naturally in various fields are considered.
In terms of the graph structure, it seems that networks from different domains are completely different
from each other. However, it is known that they share certain common properties. For example, they
have a power-law degree distribution: the number of nodes with a vertex degree of k is proportional to
k−γ . In many cases, γ is between two and three, and these networks are called scale-free. Additionally,

593

they have the triadic closure property, meaning that if two vertices have common neighbors, they are
likely to be connected. The property is often described with a measure called the clustering coefficient,
and real-world graphs often have a high clustering coefficient. Other common properties include tree-like
structures, small diameter, and small clique number.

One of the most combinatorially studied models of real-world networks is hyperbolic random graphs
[18]. The graph is generated by independently placing vertices according to a particular distribution in a
two-dimensional space with negative curvature and connecting two vertices within a certain distance. It
is not so easy to construct a random graph model which satisfies both power-law degree distribution and
high clustering coefficient with high probability. For example, famous models such as Erdős-Rényi [10],
Wattz-Strogatz [24], Barabási-Albert [2], and Chung-Lu random graphs [1] do not have both properties.
However, hyperbolic random graphs achieve that with their simple generation process. Parameters studied
in this model include: the number of k-cliques, clique number [13], treewidth [4], modularity [6], and
diameter [14].

In this paper, we consider the number of maximal cliques in hyperbolic random graphs. We also
consider the number on two-dimensional Euclidean random geometric graphs, which are the Euclidean
counterpart to hyperbolic random graphs. Euclidean random geometric graphs are also thought to be
good representations of some types of real-world graphs [15, 16], although they do not possess power-law
degree distribution. Our findings are as follows:

Theorem 1 (Main 1) Let r < 1 be a constant. Let M be the number of maximal cliques in a two-
dimensional Euclidean random geometric graph whose connection distance is r. There exists positive
constants C1 and C2 such that for all ϵ > 0,

Pr[exp(C1|V |1/3) ≤ M ≤ exp(C2|V |1/3+ϵ)] → 1

as |V | → ∞.

Theorem 2 (Main 2) Let γ ∈ (2, 3). Let M be the number of maximal cliques in a hyperbolic random
graph whose power-law degree exponent is γ. There exist positive constants C1 and C2 such that for all
ϵ > 0,

Pr[exp(C1|V |(3−γ)/6) ≤ M ≤ exp(C2|V |(3−γ)/6+ϵ)] → 1

as |V | → ∞.

For hyperbolic random graphs, we consider the case when γ ∈ (2, 3). In this case, the graphs are scale-free
and have exp(Ω(|V |(3−γ)/2)) cliques with high probability [13]. In general graphs, the number of maximal
cliques can be up to 3|V |/3, and the bound we obtained is much smaller than that.

To prove the main theorem, we consider what is called an octahedral graph Ot. The definition of
the graph is the following. Let tK2 = (V,E) where V = {1, 2, ..., 2t} and E = {(i, i + t) : 1 ≤ i ≤ t}.
Therefore, tK2 is a graph with t pairwise disjoint edges. An octahedral graph Ot is the complement of
tK2. We have the following theorems from the previous study.

Theorem 3 (Forklore) If the graph has Ot as a vertex-induced subgraph, then the number of maximal
cliques is lower-bounded by 2t.

Theorem 4 (M. Farber, M. Hujter, and Z. Tuza [11]) If |V | ≥ 4t and there exists no Ot+1 as a
vertex-induced subgraph, then the number of maximal cliques is upper-bounded by (|V |/t)2t.

Let τ(G) be the maximum t such that a graph G has Ot as its vertex-induced subgraph. With these
theorems, all that remains is to bound τ . If τ is a constant, then the number of maximal cliques is
polynomial. Unfortunately, this is not the case for the two random geometric graphs. However, our
bounds on τ are much smaller than the obvious O(|V |) bound.

594

Intuitively, τ is small because any pair of unconnected vertices have 2t−2 common neighbors, which is
against the triadic closure property i.e. two vertices with common neighbors are likely to be connected. As
t gets larger, the more severe the violation becomes. This explanation can be mathematically justified on
Euclidean and hyperbolic random geometric graphs. The arguments on the two different random graphs
are basically the same even though the definitions of distance are different, and the parallel postulate
does not hold on a hyperbolic plane.

Our contributions are as follows. Firstly, to the best of our knowledge, this is the first work that
assesses the number of maximal cliques on random geometric graphs. We shed light on the importance
of Ot and develop geometric and probabilistic techniques to determine its size. Those techniques are
applicable to both Euclidean and hyperbolic planes. Secondly, what we have found is yet another result
followed by c-closed graphs [12] supporting that the triadic closure property plays an essential role in
maximal cliques. Lastly, we give an upper bound of τ on real-world graph datasets. It turns out that τ
is often at most 5-20, even on networks with hundreds of thousands of vertices (See Table 1 at the end
of this paper). The upper bound of M given by τ is still far away from the actual value. However, it is
still surprising how small τ is in practice.

We are interested in whether the property of Ot has positive effects on clique enumeration algorithms
on real-world graphs. Also, the generalization to a higher dimensional space is an open question.

The rest of this paper is organized as follows. In Section 2, we define Euclidean random geometric
graphs and prove the main theorem. In Section 3, we define hyperbolic random graphs and discuss how
the proof of the random geometric graphs on a Euclidean plane can be extended to a hyperbolic plane.

2 Euclidean Random Geometric Graphs

Let n ∈ N+, and r ∈ (0, 1). A two-dimensional Euclidean random geometric graph Gn,r is obtained as
below:

� The vertex set is V = {1, 2, ..., n}.

� The vertices are identically and independently distributed on [0, 1]2 according to a probability
density function f(x, y) = 1.

� The edge set E is given by {(u, v) : dist(u, v) ≤ r}

Here, dist(u, v) =
√
(ux − vx)2 + (uy − vy)2 where (ux, uy) and (vx, vy) are the xy-coordinates of u and

v respectively. From here, we often identify a vertex with its position.
Given a region U on [0, 1]2 (where we can perform integration), define F (U) :=

∫
U
f(x, y)dxdy. F (U)

is equal to the probability that a vertex lies on U .

2.1 Lower Bound of the Number of Maximal Cliques

Let k ≥ 4 be an integer. Let o′ = (1/2, 1/2). Consider taking a polar coordinate system whose origin
is o′. Let θ0 := π/(3k). For 1 ≤ i ≤ 2k, Define Ui := {(r, ϕ) : r1 ≤ r ≤ r2, 3iθ0 ≤ ϕ ≤ (3i + 1)θ0}
where r1 := r/

√
2 + 2 cos(θ0/2) and r2 := r/

√
2 + 2 cos(2θ0). With some calculations, we can confirm

the following.

Proposition 5 Let 1 ≤ i ≤ k and 1 ≤ j ≤ 2k. For a vertex v on Ui and a vertex w on Uj,

dist(v, w) > r (j = i+ k)

dist(v, w) ≤ r (j ̸= i+ k)

595

Proof: Let rv and rw be radial coordinates of v and w, respectively. If j = i+ k, then

dist(v, w) = r2v + r2w − 2rvrw cos∠wo′v
≥ r2v + r2w − 2rvrw cos(π − θ0)

≥ 2r21 + 2r21 cos θ0

> r

Otherwise, dist(v, w) ≤ 2r22 + 2r22 cos 2θ0 ≤ r □
Let t be the number of indices 1 ≤ i ≤ k such that both Ui and Ui+k have at least one vertex on

themselves. Then, there exists Ot as a vertex-induced subgraph. We are left to lower bound t.

Proposition 6 F (U1) = Ω(θ30) as θ0 → 0

This is not so hard to prove since F (U1) =
1
2r

2
2θ0 − 1

2r
2
1θ0. By applying the Taylor expansion, we obtain

the proposition. The next proposition states that E[t] = Ω(n1/3) when k is taken properly.

Proposition 7 With sufficiently large n, there exists a positive constant c such that if k = cn1/3, then
E[t] ≥ c

2n
1/3

Proof: Using Proposition 6, we can confirm that if n is sufficiently large, then we have F (U1) ≥ C/(nc3)
for some positive constant C. Let p = Pr[Both U1 and Ut+1 have at least one vertex on themselves].
Clearly, E[t] = pk. p can be lower bounded as p ≥ 1−2Pr[U1 has no vertex]. Also, Pr[U1 has no vertex] =

(1− F (U1))
n ≤ e−nF (U1) ≤ e−C/c3 . Therefore, by setting c small enough, we can achieve p ≥ 1/2. □

By combining the proposition with the Chernoff bound and Theorem 3, we obtain the main theorem
regarding M(Gn,r).

Corollary 8 There exists a positive constant C such that Pr[exp(Cn1/3) ≤ M(Gn,r)] → 1 as n → ∞.

2.2 Upper Bound of the Number of Maximal Cliques

Let vw denote the segment between vertices v and w on a Euclidean plane. Let S := {vw : v, w ∈
G(V), dist(v, w) > r}. Note that S is like a complement of the random graph. Two segments v1v2 and
w1w2 in S are called independent if v1w1, v1w2, v2w1, and v2w2 are not in S. Two or more segments in
S are called independent if any pair of the segments are independent. From the definition, it is obvious
that

There is no Ot+1 as a vertex-induced subgraph
⇔ There is no set of independent segments S ⊆ S whose cardinality is t+ 1.

Therefore, we are left to bound such t on Gn,r. With elementary geometry, we can confirm the following.

Proposition 9 Two independent segments intersect.

Therefore, we can define an angle between two independent segments.
Let s := v1v2 and s′ := w1w2 be independent segments. Suppose that the counter-clockwise order

of four endpoints is v1w1w2v2. Let q be the intersection of two segments. Define a directed angle
∠(s, s′) := ∠w1qv1. For convinience, define ∠(s, s) := 0. It holds that ∠(s, s′) = π − ∠(s′, s). Therefore,
the order of the two segments matters.

From here, we consider conditions that two independent segments must satisfy when the directed
angle between them is known. Again, s = v1v2, s

′ = w1w2 ∈ S be independent segments. Suppose
v1w1v2w2 is the counter-clockwise order of four endpoints. Let m be the midpoint of s. Consider taking
a polar coordinate system whose origin and polar axis are m and −−→mv1. Let (r0, ϕ) be the polar coordinate
of w1. Note that r0 = dist(m,w1) and ϕ = ∠w1mv1. The next proposition states that if the directed
angle ∠(s, s′) is small, then r0 is bounded tight.

596

Proposition 10 Let 0 ≤ θ0 ≤ π/3. If ∠(s, s′) ≤ θ0, then r0 ∈ [r1, r2] where

r1 := (−1/2 + cos θ0)
√
cos θ0

r2 := 3/2− cos θ0

Proof: Let θ := ∠(s, s′). Let q be the intersection of s and s′. Let a := dist(v1, v2), b := dist(w1, w2), c =
dist(v1, q), d = dist(w1, q). Note that a is the length of s and a > r holds. The same thing stands for b.
From the definition of independence of segments,

dist(v1, w2) ≤ r ⇒ c2 + (b− d)2 − 2c(b− d) cos(π − θ) ≤ r2

dist(v2, w1) ≤ r ⇒ (a− c)2 + d2 − 2(a− c)d cos(π − θ) ≤ r2

must hold. For the first inequality, we get

c2 + (b− d)2 − 2c(b− d) cos(π − θ) ≤ r2

⇔ (c+ (b− d) cos(θ))2 + ((b− d) sin(θ))2 ≤ r2

⇒ c+ (b− d) cos(θ) ≤ r

⇒ c− d ≤ r − b cos(θ)

With the same argument, the second inequality yields −(r − a cos(θ)) ≤ c − d. Regardless of how
v1,m, q, v2 are lined up on s, we have r20 = (c− a/2)2 + d2 − 2(c− a/2)d cos(θ). We can upper and lower
bound r0 as below.

r20 = (a/2− c)2 + d2 + 2(a/2− c)d cos(θ)

≤ (a/2− c+ d)2

≤ (a/2 + r − a cos(θ))2

≤ r2(3/2− cos(θ0))
2

r20 = (a/2− c)2 + d2 + 2(a/2− c)d cos(θ)

≥ (a/2− c+ d)2 cos(θ)

≥ (a/2− r + b cos(θ))2 cos(θ)

≥ r2(−1/2 + cos(θ0))
2 cos(θ0)

□
If v1, q,m, v2 are lined up in this order, we can bound ϕ as 0 ≤ ϕ ≤ θ ≤ θ0. By considering the other
case (v1,m, q, v2 is lined up in this order) in the same way, we have the following.

Corollary 11 Let 0 ≤ θ0 ≤ π/3. If ∠(s, s′) ≤ θ0, then either w1 or w2 must lie on a region U1 or a
region U2 where

U1 := {(r0, ϕ) : r1 ≤ r0 ≤ r2, 0 ≤ ϕ ≤ θ0}
U2 := {(r0, ϕ) : r1 ≤ r0 ≤ r2, π ≤ ϕ ≤ π + θ0}

Then we obtain the first important lemma in our work: if the directed angle is bounded small, then the
expected number of independent segments is also small.

Lemma 12 Let s be a segment. For a constant 0 ≤ θ0 ≤ π/3, let X be a number of segments s′ which
is independent from s and ∠(s, s′) ≤ θ0. Then E[X] = nO(θ30) as θ0 → 0.

597

Proof: By the Corollary 11, X is at most the number of vertices in U . Therefore, E[X] ≤ nF (U0 ∪U2).
We are left to prove F (U1) = F (U2) = O(θ30) as θ0 → 0, and this can be proved using the Taylor
expansion. □

To make full use of the Lemma 12, we prove another lemma, which states that if there exists large
Ot, then we can always take a set of segments so that its size is unneglectable, and the directed angles
between them are small.

Lemma 13 Let k be a positive integer. If there exists a set of t independent segments S ⊆ S, then there
exists a segment s′ and a set of segments S′ ⊆ S such that

s′ ∈ S′

|S′| ≥ ⌈t/k⌉
∀s′′ ∈ S′.∠(s′, s′′) ≤ π/k

(1)

Proof: For an integer 1 ≤ i ≤ k, define Si :=
{
s ∈ S : i

kπ ≤ ∠(s0, s) ≤ i+1
k π

}
. Since

∪
1≤i≤k Si = S,

we have
∑k

i=1 |Si| = t. By the pigeonhole principle, there exists an index i such that |Si| ≥ ⌈t/k⌉.
Consider taking the segment s′ in Si so that ∠(s0, s′) = mins′′∈Si ∠(s0, s′′). If we can prove ∠(s′, s′′) ≤
∠(s′′, s0) − ∠(s′, s0), we are done. Let a be the intersection of s0 and s′, b be that of s0 and s′′, and c
be that of s′ and s′′. If a = b, then it obviously holds. We have two other cases: v1, a, b, v2 are lined up
on s0 in this order, and v1, b, a, v2 are lined up on s0 in this order. For the former case, ∠a = ∠(s0, s′),
∠b = π − ∠(s0, s′′) and ∠c = ∠(s′, s′′) where ∠a, ∠b, ∠c are the inner angle of △abc. Therefore,

∠a+ ∠b+ ∠c = π (*)

⇔ ∠(s′, s′′) = π − (∠(s0, s′))− (π − ∠(s0, s′′)) = ∠(s0, s′′)− ∠(s0, s′)

Here, (*) follows from the fact that the sum of the inner angles of a triangle is equal to π.
The latter case can be shown in a similar way. □

We finally combine the two lemmas to upper bound τ . After that, we apply Theorem 4 to get the
upper bound of the number of maximal cliques.

Theorem 14 Let ϵ be a positive constant. Let t = n1/3+ϵ. Then,

Pr[Gn,r has Ot as its vertex-induced subgraph] → 0

as n → ∞.

Proof: Let k := n1/3 and θ0 := π/k. Suppose Gn,r has Ot as its vertex-induced subgraph. Apply
Lemma 13 for t and k. Then there exists a segment s′ and a set of independent segments S′ such that
(1) holds. We claim that for a certain segment s′, the probability that there exists a set of segments S′

such that (1) holds is at most exp(−Ω(nϵ)). By Lemma 12, the expected number of segments which is
possibly in S′ is bounded by O(nθ30) = O(1). However, to satisfy (1), The cardinarity of S′ needs be at
least nϵ. We can apply the Chernoff bound to get the probability bound exp(−Ω(nϵ)).

Finally, we apply a union bound over all segments of which there are at most n(n− 1)/2. We have

Pr[Gn,r has Ot as its vertex-induced subgraph] ≤ n(n− 1)

2
exp(−Ω(nϵ))

This goes to 0 as n → ∞. □

Corollary 15 There exist a positive constant C such that for all ϵ > 0, Pr[M(Gn,r) ≤ exp(Cn1/3+ϵ)] →
1 as n → ∞

598

3 Hyperbolic Random Graphs

Given n ∈ N+, γ ∈ (2,∞), and C ∈ R, let R := 2 log n + C, and α = (γ − 1)/2. A hyperbolic random
graph Gn,γ,C is obtained as below:

� The vertex set is V = {1, 2, ..., n}.

� The vertices are identically and independently distributed on a hyperbolic plane. The probability
density function by a polar coordinate is:

f(r, θ) =

{
1
2π · α sinh(αr)

cosh(αR)−1 (r ≤ R)

0 (r > R)

� The edge set E is given by {(u, v) : dist(u, v) ≤ R}

In our work, we are interested in the case 2 < γ < 3 (1/2 < α < 1) where the generated graph is
“scale-free” with high probability. Let (ru, ϕu) and (rv, ϕv) be polar coordinates of u and v respectively.
Let θ := π − |π − |ϕu − ϕv||. Then, the hyperbolic cosine formula suggests that

cosh(dist(u, v)) = cosh ru cosh rv − sinh ru sinh rv cos θ

Again, define F (U) :=
∫
U
f(r, θ)drdθ. On a hyperbolic plane, the area of U is equal to

∫
sinh rdrdθ =:

µ(U). Let ρ(r, θ) := dF
dµ = f(r,θ)

sinh r . Intuitively, ρ is the the probability that a vertex lies on a single unit

square around (r, θ). By differentiating ρ, we can confirm that it is monotonically decreasing with respect
to r. Thus, the graph is dense near the origin of the plane.

To obtain the lower bound of M(Gn,r,C), we do the same thing as the Euclidean random geometric
graphs i.e. We take regions so that vertices on them form Ot. We obtain the following theorem.

Theorem 16 There exists a positive constant C ′ such that Pr[exp(C ′n(1−α)/3) ≤ M(Gn,r,C)] → 1 as
n → ∞.

Let vw denote the segment (i.e. the shortest geodesic) between vertices v and w on a hyperbolic plane.
Let S := {vw : v, w ∈ G(V), dist(v, w) > R}. We define the independence of segments in the same way
as for the Euclidean case. We can prove that two independent segments intersect. Therefore, we can also
define the angle of segments on a hyperbolic plane.

To upper bound M(Gn,γ,C), we prove the hyperbolic versions of the Lemma 12 and 13. For the proof
of the hyperbolic version of the Lemma 12, we use the hyperbolic cosine formula instead of the Euclidean
one. We obtain the following, which is similar to the Corollary 11.

Corollary 17 Let θ0 ≥ 0. If ∠(s, s′) ≤ θ0, either w1 or w2 must lie on U1 or U2 where

U1 := {(r0, ϕ) : r1 ≤ r0 ≤ r2, 0 ≤ ϕ ≤ θ0}
U2 := {(r0, ϕ) : r1 ≤ r0 ≤ r2, π ≤ ϕ ≤ π + θ0}

Here, r1 and r2 depend on R and θ0, which we will not give explicitly here. As a corollary, we have

Corollary 18 Let s be a segment. Let θ0 ≥ 0 Let X be a number of segments s′ which is independent
from s and ∠(s, s′) ≤ θ0, then

E[X] = sup
(r,θ)∈U

{ρ(r, θ)}O(n2θ30)

as θ0 → 0 and n → ∞

599

The proof of Lemma 13 on a Euclidean plane is also valid on a hyperbolic plane, except the part (*)
where we used the fact that the sum of inner angles of a triangle is equal to π. On a non-Euclidean
plane without the parallel postulate, Saccheri-Legendre theorem [23] can be used. The theorem claims
∠a+ ∠b+ ∠c ≤ π, and we can replace (*) with it.

It is not so hard from here to prove the limited version of the main theorem. The next proposition
states that if vertices of Ot do not fall on a region near the origin, we can bound its size.

Proposition 19 Let V ′ := {v ∈ V (Gn,γ,C) : the radial coordinate of v is greater than R/2}. Let G′
n,γ,C

be a subgraph of Gn,γ,C induced by V ′. Let t = n(1−α)/3+ϵ where ϵ is arbitrary positive constant. Then,

Pr[G′
n,γ,C has Ot as its vertex-induced subgraph] → 0

as n → ∞.

Due to the page limitation, we omit the full proof of the main theorem.

Theorem 20 There exist a positive constant C ′ such that for all ϵ > 0,

Pr[M(Gn,γ,C) ≤ exp(C ′n(1−α)/3+ϵ)] → 1

as n → ∞

References

[1] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In Proceedings of the
32nd Annual ACM Symposium on Theory of Computing, pages 171-180, 2000.

[2] R. Albert, and A. L. Barabási, Statistical mechanics of complex networks. Reviews of Modern
Physics, 74(1):47, 2002.

[3] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algorithms for local trian-
gle counting in massive graphs. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 16-24, 2008

[4] T. Bläsius, T. Friedrich, and A. Krohmer. Hyperbolic random graphs: separators and treewidth. In
Proceedings of the 24th Annual European Symposium on Algorithms, pages 1-16, 2016

[5] C. Bron, and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Communications
of the ACM, 16(9):575-577, 1973

[6] J. Chellig, N. Fountoulakis, and F. Skerman. On the diameter of hyperbolic random graphs. Journal
of Complex Networks, 10(1):cnab051, 2022

[7] N. Chiba, and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on Comput-
ing, 14(1):210-223, 1985

[8] A. Conte, R. Grossi, A. Marino, and L, Versari. Sublinear-space bounded-delay enumeration for mas-
sive network analytics: Maximal cliques. In 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), volume 55, 148:1-148:15, 2016

[9] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in large sparse real-world graphs.
Journal of Experimental Algorithmics, 18:1-3, 2013

[10] P. Erdős, and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17-60, 1960.

600

[11] M. Farber, M. Hujter, and Z. Tuza. An upper bound on the number of cliques in a graph. Networks,
23(3):207-210, 1993

[12] J. Fox, T. Roughgarden, C. Seshadhri, F. Wei, and N. Wein. Finding cliques in social networks: A
new distribution-free model. SIAM journal on computing, 49(2):448-464, 2020

[13] T. Friedrich, and A. Krohmer. Cliques in hyperbolic random graphs. In Proceedings of the 34th
IEEE Conference on Computer Communications, pages 1544-1552, 2015

[14] T. Friedrich, and A. Krohmer. On the diameter of hyperbolic random graphs. SIAM Journal on
Discrete Mathematics, 32(2):1314-1334, 2018

[15] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti. Stochastic geometry and
random graphs for the analysis and design of wireless networks IEEE Journal on Selected Areas in
Communications, 27(7):1029-1046, 2009

[16] D. J. Higham, M. Rašajski, and N. Pržulj. Fitting a geometric graph to a protein–protein interaction
network. Bioinformatics, 24(8):1093-1099, 2008

[17] S. Jain, and C. Seshadhri. The power of pivoting for exact clique counting. In Proceedings of the
13th International Conference on Web Search and Data Mining, pages 268-276, 2020

[18] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguná. Hyperbolic geometry of
complex networks. Physical Review E, 82(3):036106, 2010

[19] J. M. Kumpula, M. Kivelä, K. Kaski, and J. Saramäki. Sequential algorithm for fast clique perco-
lation. Physical Review E, 78(2):026109, 2008

[20] J. W. Moon, and L. Moser. On cliques in graphs. Israel Journal of Mathematics, 3(1):23-28, 1965

[21] T. Nepusz, H. Yu, and A. Paccanaro. Detecting overlapping protein complexes in protein-protein
interaction networks. Nature Methods, 9(5):471-472, 2012

[22] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of
complex networks in nature and society. Nature, 435(7043):814-818, 2005

[23] P. J. Ryan. Euclidean and non-euclidean geometry: an analytic approach. Cambridge University
Press, 1986

[24] D. J. Watts, and S, H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440-442, 1998

Graph |V | |E| τ
amazon0601 403394 2443408 4
as-skitter 1696415 11095298 14
email-EuAll 265214 364481 7
soc-Epinions1 75879 405740 9
web-Google 875713 4322051 4
web-NotreDame 325729 1090108 4
web-Stanford 281903 1992636 4
wiki-Talk 2394385 4659565 12
wiki-topcats 1791489 25444207 9

Table 1: Upper bound of τ (i.e. maximum t such that a graph contains Ot as its vertex-induced subgraph)
on SNAP graph datasets

601

602

Solving the Maximum Popular Matching Problem
with Matroid Constraints

Gergely Csáji1

Eötvös Loránd University
Budapest, Hungary

csaji.gergely@student.elte.hu

Tamás Király2

ELKH-ELTE Egerváry Research Group
Budapest, Hungary

tamas.kiraly@ttk.elte.hu

Yu Yokoi3

National Institute of Informatics
Tokyo, Japan

yokoi@nii.ac.jp

We consider the problem of finding a maximum popular matching in a many-to-many matching
setting with two-sided preferences and matroid constraints. This problem was proposed by
Kamiyama (2020) and solved in the special case where matroids are base orderable. Utilizing
a newly shown matroid exchange property, we show that the problem is tractable for arbitrary
matroids. We further investigate a different notion of popularity, where the agents vote with
respect to lexicographic preferences, and show that both existence and verification problems
become NP-hard, even in the b-matching case.

Keywords: popular matching, stable matching, matroid kernel

1 Introduction

The notion of popular matching is a natural adaptation of the notion of weak Condorcet winner [5] to the
marriage model of Gale and Shapley [10], where agents of a two-sided market have strict preference orders
on admissible agents on the other side. It is a well-known fact (sometimes called the Condercet paradox)
that a weak Condorcet winner does not always exist in the general setting. Remarkably, existence is
guaranteed in the marriage model: Gärdenfors [11] showed that every stable matching is popular. In
fact, stable matchings are the smallest popular matchings, so the notion of popular matching can be
considered as a relaxation of stable matching, where we sacrifice pairwise stability in order to achieve
larger size.

Several years after the results of Gärdenfors, popular matchings came into the focus again in the
2000s due to their interesting algorithmic properties. Huang and Kavitha [13] showed that a maximum
size popular matching in the marriage model can be found in polynomial time. In contrast, recently it
was shown by Gupta et al. [12] that deciding the existence of a popular matching in the roommates (i.e.,
non-bipartite) model is NP-complete.

Just as in the case of the stable marriage problem, the results have been extended to many-to-
many matchings. The concept of Condorcet winner is not so straightforward in this setting, because

1Research was supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021, by the Hungarian National Research, Development and Innovation Office – NKFIH, grant number K143858.

2Research was supported by the Lendület Programme of the Hungarian Academy of Sciences – grant number LP2021-
1/2021, by the Hungarian National Research, Development and Innovation Office – NKFIH, grant numbers TKP2020-NKA-
06 and K143858.

3Research was supported by JST PRESTO Grant Number JPMJPR212B.

603

there are several different ways in which an agent can compare two matchings based on the sets of
partners. Nonetheless, remarkable findings by Brandl and Kavitha [2, 3] show that popular many-to-
many matchings exist under a rather restrictive definition of popularity, and furthermore, the largest such
matching has maximum size even among matchings satisfying a much less restrictive notion of popularity.

Nasre and Rawat [16] introduced a many-to-many model where agents can have classifications in
their preference lists, and classes can have upper quotas. Kamiyama [14] generalized the results further,
extending the laminar nested classification of Nasre and Rawat to a matroid structure. He gave an
algorithm that returns a popular matching, based on Fleiner’s algorithm for finding a matroid kernel
[8, 9], which is a generalization of the notion of stable matching to matroid intersection.

For the maximum size popular matching problem, however, Kamiyama only gave an efficient algorithm
for the special case when the matroids are weakly base orderable. He left open the question whether there
is a polynomial-time algorithm that works for arbitrary matroids.

In this paper, we give an affirmative answer to this question. We show that the maximum popular
matching problem with two-sided preferences and arbitrary matroid constraints can be solved in polynomial
time, by essentially the same algorithm as in [14]. The key tool in extending the proof from weakly base
orderable matroids to arbitrary matroids is a new matroid exchange property that can be formulated in
terms of voting between two independent sets in an ordered matroid (Theorem 3). We prove the theorem
by combining matroid techniques with the duality between weighted bipartite matching and minimum
cover. We also show a property similar to the one by Brandl and Kavitha mentioned above: there always
exists a matching satisfying a remarkably restrictive definition of popularity that has maximum size
among all matchings satisfying weaker popularity properties.

We present our results in the framework of matroid intersection, which is equivalent to Kamiyama’s
model, but involves only two matroids, and allows us to better describe the difference between the more
restrictive and less restrictive popularity notions. It is also closer to the original matroid kernel problem
defined by Fleiner [8].

We also investigate another notion of popularity, called lexicographic popularity. Here, each agent
has only one vote, and the agents compare the different matchings in a lexicographic way. Lexicographic
preferences have been of considerable interest recently, as they arise in many applications. Cechlárová
et al. [4] studied Pareto-optimal matchings in the many-to-many matching problem with lexicographic
one-sided preferences. Biró and Csáji [1] looked at strong core and Pareto optimality with two-sided
lexicographic preferences. Closest to our work is the paper of Paluch [17], which studied popular and
clan-popular matchings in the many-to-one matching problem with one-sided lexicographic preferences.
We show that, in contrast to the previous notion of popularity, a lexicographically popular matching does
not always exist and both the search and verification questions regarding lexicographic popularity are
NP-hard, even in the restricted case of b-matchings with constant degrees and capacities.

The rest of the paper is structured as follows. In Section 2, we describe the matroid kernel problem,
and a matroid exchange property from our previous paper [7], whose generalization is used in our proof. In
Section 3, we define the various notions of voting and popularity that we consider in the popular matroid
intersection problem, and we describe their relationship to the popularity notions used in the literature
on many-to-many matchings. We also present our new result on matroid exchanges, which is proved in
Section 4. In Section 5, we describe the algorithm for the maximum size popular matroid intersection
problem and the proof of its correctness. Finally, in Section 6 we define lexicographic popularity and
provide hardness results for the related search and verification problems.

2 Ordered matroids and matroid kernels

A matroid is a pair (S, I) of a finite set S and a nonempty family I ⊆ 2S satisfying the following two
axioms: (i) A ⊆ B ∈ I implies A ∈ I, and (ii) for any A,B ∈ I with |A| < |B|, there is v ∈ B \ A with
A + v ∈ I. A set in I is called an independent set, and an inclusion-wise maximal one is called a base.
By axiom (ii), all bases have the same size, which is called the rank of the matroid.

A circuit of a matroid is an inclusionwise minimal dependent set. The fundamental circuit of an

604

element x ∈ S \ B for a base B is the unique circuit in B + x. We will use the following well-known
property.

Proposition 1 (Strong circuit axiom) If C,C ′ are circuits, x ∈ C \ C ′, and y ∈ C ∩ C ′, then there
is a circuit C ′′ ⊆ C ∪ C ′ such that x ∈ C ′′ and y /∈ C ′′.

In our proofs in Section 4, we will use the fact that matroids are closed under operations such as
direct sum, restriction, contraction, and truncation. For these operations and other basics on matroids,
we refer the reader to [18].

An ordered matroid is a triple (S, I,≻) such that (S, I) is a matroid and ≻ is a linear order on S.
The linear order determines an optimal base in the following sense: for any weight vector w ∈ RS which
satisfies wx > wy ⇔ x ≻ y, the unique maximum weight base is the same. We call this base A the optimal
base of (S, I,≻); it is characterized by the property that u ≻i v for every u ∈ A and v ∈ S \A for which
A− u+ v ∈ I.

The following theorem was recently shown in [7, Theorem 3]. We provide a generalization of this
result in Section 3 (Theorem 3) which plays a key role in our proofs. For clarity of presentation, we use
the word ‘pairing’ instead of ‘matching’ for a family of disjoint pairs of elements from two given disjoint
subsets A and B. Thus, a pairing between A and B is a matching in the complete bipartite graph with
vertex classes A and B, while a perfect pairing is a perfect matching in the same graph.

Theorem 2 (Csáji, Király, Yokoi [7]) Let M = (S, I,≻) be an ordered matroid of rank r. Let A be
the optimal base and B be a base disjoint from A. Then, there is a perfect pairing aibi (i ∈ [r]) between
A and B such that ai ≻ bi and B + ai − bi ∈ I for every i ∈ [r].

Let M1 = (S, I1,≻1) and M2 = (S, I2,≻2) be ordered matroids on the same ground set S, and let
I ∈ I1 ∩ I2 be a common independent set. We say that an element v ∈ S \ I is dominated by I in Mi

if I + v /∈ Ii and u ≻i v for every u ∈ I for which I − u + v ∈ Ii. We call a common independent set
I ∈ I1 ∩I2 an (M1,M2)-kernel if every v ∈ S \ I is dominated by I in M1 or M2. If an element v ∈ S \ I
is dominated in neither M1 nor M2, we say that v blocks I.

It was shown by Fleiner [8, 9] that matroid kernels always exist and have the same size – in fact, they
have the same span in both matroids. He also gave a matroidal version of the Gale–Shapley algorithm
that finds an (M1,M2)-kernel efficiently, in O(|S|2) time.

To understand the relation between our problem formulation and the formulation of Kamiyama [14], it
is instructive to see the equivalence of the matroid kernel model above and the model of stable matchings
with matroid constraints, as described below. Let G = (V1, V2;E) be a bipartite graph, and for each
v ∈ V1 ∪ V2, let Mv = (δG(v), Iv,≻v) be an ordered matroid, where δG(v) denotes the set of edges
incident to v. An edge set I ⊆ E is called a matching if I ∩ δG(v) ∈ Iv for every v ∈ V1 ∪ V2. A
matching I is stable if for any e = v1v2 ∈ E \ I, either I ∩ δG(v1) is the optimal base of Mv1 restricted
to (I + e) ∩ δG(v1), or I ∩ δG(v2) is the optimal base of Mv2 restricted to (I + e) ∩ δG(v2).

We show that this is actually equivalent to the matroid kernel model. To formulate stable matchings
with matroid constraints as a matroid kernels problem, let M1 be the matroid on ground set E obtained
as the direct sum of the matroids Mv (v ∈ V1), and let ≻1 be obtained by arbitrarily extending the linear
orders ≻v (v ∈ V1) into a linear order on E. We define M2 and ≻2 similarly using V2. It is easy to see
that (M1,M2)-kernels are exactly the stable matchings. Conversely, a matroid kernel problem can be
written as a stable matching problem with matroid constraints, where G consists of two vertices and |S|
parallel edges between them.

We will see in the next section that the correspondence between the two models is somewhat more
complicated in case of popular matchings, because we have to define the voters, which corresponds to
fixing an appropriate partitioning of the ground set in both matroids in the matroid intersection model.

605

3 Voting and popularity in matroid intersection

3.1 Voting in ordered matroids

Consider an ordered matroid M = (S, I,≻). Given an ordered pair of independent sets (I, J), let N be
a pairing between I \ J and J \ I and consider the following two conditions:

(1) I − u+ v ∈ I for every uv ∈ N , where u ∈ I \ J and v ∈ J \ I.

(2) Any element of J \ I spanned by I is covered by N .

We say that N is a weakly feasible pairing for (I, J) if (1)-(2) hold. For two independent sets I and J
and a weakly feasible pairing N for (I, J), we define

vote(I, J,N) = |{uv ∈ N : u ≻ v }| − |{uv ∈ N : u ≺ v }|+ |I| − |J |,
where u ∈ I \ J and v ∈ J \ I. Considering the most adversarial weakly feasible pairing, we define

vote•(I, J) = min{ vote(I, J,N) : N is a weakly feasible pairing for (I, J) }.
The above definition of voting is natural in our model, but it leads to a more restricted notion of

popularity than that of Kamiyama [14], because the conditions on N are weaker. The reason is that
when we construct the matroid M1 from the matroids Mv (v ∈ V1), as described at the end of Section 2,
we lose the information on the individual voters, i.e., the partition of the edge set corresponding to the
vertices of V1. Hence, in order to retrieve the popularity notion in [14], we have to introduce a definition
of voting that uses that extra information, which is given as a fixed partition of S.

Let P = {U1, . . . , Uk} be a fixed partition of S such that each Uj is a union of some connected
components of the matroid M . Given an ordered pair of independent sets (I, J), consider the following
three additional conditions for a pairing N between I \ J and J \ I:

(3) Every uv ∈ N satisfies u, v ∈ Uj for some j ∈ [k].

(4) For every j ∈ [k], the number of pairs of N induced by Uj is min{|Uj ∩ (I \ J)|, |Uj ∩ (J \ I)|}.
(5) Any element of I \ J spanned by J is covered by N .

We say that N is a feasible pairing for (I, J) if (1)-(5) hold. Considering the most adversarial feasible
pairing, we define

vote(I, J) = min{ vote(I, J,N) : N is a feasible pairing for (I, J) }.
It turns out that the following property is crucial for proving the main results.

Theorem 3 vote(I, J) + vote(J, I) ≤ 0.

We present the proof in the next section. The following is an immediate corollary.

Corollary 4 The following sequence of inequalities holds for any pair of independent sets I and J :
vote•(I, J) ≤ vote(I, J) ≤ −vote(J, I) ≤ −vote•(J, I).

Remark 5 Here, we make two remarks about Theorem 3.
First, we see that the statement can be shown easily if the matroid (S, I) is weakly base orderable.

Indeed, the definition of weak base orderability implies the existence of a pairing N that is feasible for both
(I, J) and (J, I), from which we obtain vote(I, J) + vote(I, J) ≤ vote(I, J,N) + vote(J, I,N) = 0. For a
general matroid, however, such a pairing N may not exist, which makes it difficult to extend the proof
arguments in previous works [14, 15] to general matroids. We use Theorem 3 to overcome this difficulty.

Second, Theorem 3 can be regarded as a generalization of Theorem 2. Let I and J be A and B in the
statement of Theorem 2, respectively, and consider the trivial partition P = {S}. By the optimality of A,
we must have vote(A,B) = r, and then Theorem 3 implies vote(B,A) = −r. This shows the existence of
the perfect pairing claimed in Theorem 2.

606

3.2 Popularity in matroid intersection

Let M1 = (S, I1,≻1) and M2 = (S, I2,≻2) be ordered matroids and P1 = {U1
1 , . . . , U

1
k1
} and P2 =

{U2
1 . . . , U

2
k2
} be fixed partitions of S such that each U i

j is a union of connected components of Mi. For
an ordered pair (I, J) of common independent sets and i ∈ {1, 2}, we define votei(I, J) as vote(I, J) with
respect to Mi and Pi. We call a common independent set I ∈ I1∩I2 popular if vote1(I, J)+vote2(I, J) ≥ 0
for every J ∈ I1∩I2. Also, we call I ∈ I1∩I2 defendable if vote1(J, I)+vote2(J, I) ≤ 0 for every J ∈ I1∩I2.

Remark 6 It is important to remember that feasible pairings for (I, J) are not the same as feasible
pairings for (J, I). When considering popularity of I, we compare it to J by taking a feasible pairing for
(I, J) that is worst possible for I. In contrast, defendability of I is determined by considering a feasible
pairing for (J, I) that is best possible for I.

By using vote•i instead of votei, we can define a stronger version of popularity and a weaker version of
defendability, which we call super popularity and weak defendability, respectively. Note that these do not
depend on the partitions P1 and P2. The relation between these notions can be derived from Theorem 3.

Corollary 7 The following implications hold for any I ∈ I1 ∩ I2:

I is super popular⇒ I is popular⇒ I is defendable⇒ I is weakly defendable

Proof: It follows from Corollary 4 that

vote•1(I, J) + vote•2(I, J) ≤ vote1(I, J) + vote2(I, J)

≤ −vote1(J, I)− vote2(J, I) ≤ −vote•1(J, I)− vote•2(J, I)

for any J ∈ I1 ∩ I2. This gives the required implications. □
In Section 4, we prove Theorem 3. In Section 5, we show that an abstract version of Kamiyama’s

algorithm [14] outputs a common independent set that is super popular, and largest among all weakly
defendable common independent sets. This generalizes several results in previous works. In Kamiyama’s
model [14], feasible pairings are defined by conditions (1)-(4). Then, our result shows that the algorithm’s
output is a largest popular common independent set also in his definition. In the partition matroid case
(i.e., b-matching case) studied by Brandl-Kavitha [2], our popularity notion coincides with their popularity
and our defendability coincides with their weak popularity. Therefore, our result generalizes the result
of Brandl-Kavitha [2] that we can efficiently find a popular matching that is largest among all weakly
popular matchings.

4 Proof of Theorem 3

Recall that M = (S, I,≻) is an ordered matroid, and P = {U1, . . . , Uk} is a fixed partition of S such that
each Uj is a union of some connected components of the matroid M . Let I ∈ I and J ∈ I be arbitrary
independent sets. Our aim is to prove that vote(I, J) + vote(J, I) ≤ 0.

For a member Uj of the partition P, let Ij := Uj∩I and Jj := Uj∩J . If |Ij | ≤ |Jj |, then let Aj ⊆ Jj\Ij
be a set satisfying Ij ∪ Aj ∈ I and |Aj | = |Jj | − |Ij |, and set I ′j := Ij \ Jj and J ′

j := Jj \ (Ij ∪ Aj). If
|Ij | > |Jj |, then define I ′j and J ′

j similarly by exchanging the roles of Ij and Jj . In any case, we have
|I ′j | = |J ′

j | = min{|Uj ∩ (I \ J)|, |Uj ∩ (J \ I)|}. Let Mj be the matroid obtained by restricting M to
Ij ∪ Jj , contracting (Ij ∩ Jj)∪Aj , and truncating to the size of |I ′j |. The ground set of Mj is partitioned
into two bases I ′j and J ′

j . Let M ′ = (S′, I ′) be the direct sum of M1, . . . ,Mk. The ground set S′ of M ′

is partitioned into two bases I ′ := I ′1 ∪ · · · ∪ I ′k and J ′ := J ′
1 ∪ · · · ∪ J ′

k.
Let GI = (I ′, J ′;EI) be the bipartite graph with EI = {uv : u ∈ I ′, v ∈ J ′, I ′ − u+ v ∈ I ′ }, and let

GJ = (I ′, J ′;EJ) where EJ = {uv : u ∈ I ′, v ∈ J ′, J ′ + u − v ∈ I ′ }. Since I ′ and J ′ are bases of M ′,
both GI and GJ are perfectly matchable.

607

Claim 8 Any perfect matching of GI is a feasible pairing for (I, J), and any perfect matching of GJ is
a feasible pairing for (J, I).

Proof: By symmetry, it is enough to prove the first statement. Let N be a perfect matching in GI . By
definition, N is a pairing between I \ J and J \ I. We show that N satisfies conditions (1)-(5).

To see (1), consider uv ∈ N such that u ∈ I ′j and v ∈ J ′
j . Then uv ∈ EI implies that I ′j − u + v is

independent in Mj , so (I ∩ Uj)− u+ v is independent in M by the construction of Mj . Since Uj is the
union of some components of M , this implies I − u+ v ∈ I.

To show (2), consider an element v ∈ J \ I not covered by N . Then v ∈ Aj for some j such that
|Jj | > |Ij |. By definition, Aj ∪ Ij is independent in M , so Ij cannot span v. Since Uj is the union of
connected components, I cannot span v either.

Conditions (3) and (4) are satisfied by definition, and the proof of (5) is similar to (2), by exchanging
the role of I and J . □

For uv ∈ EI , let w(uv) = 1 if u ≺ v, and w(uv) = 0 if u ≻ v, and let k be the maximum weight of
a perfect matching in EI . Then vote(I, J) ≤ |I ′| − 2k. By duality, there is an integer function π on S′

such that
∑

v∈S′ π(v) = k and π(u) + π(v) ≥ w(uv) for every uv ∈ EI .
We now consider the same weight function on EJ : let w(uv) = 1 if u ≺ v, and w(uv) = 0 if u ≻ v.

Let E consist of the edges uv ∈ EJ which satisfy π(u) + π(v) ≥ w(uv).

Lemma 9 The bipartite graph G = (I ′, J ′;E) has a perfect matching.

Proof: In the proof, we work with the matroid M ′, so the term ‘circuit’ refers to circuits of M ′. Suppose
for contradiction that there exists a subset X of I ′ such that the set of its neighbors in G, that we denote
by Y , is smaller than X. We introduce a new ordering ≻′ on the elements of S′: a ≻′ b if either
π(a) < π(b), or π(a) = π(b) and a ≻ b (we will only compare pairs inside I ′ or inside J ′). The following
claim is the main ingredient of the proof.

Claim 10 Let C be a circuit of M ′ such that C ∩ I ′ ⊆ X, and let v be the worst element of C ∩ J ′

according to ≻′. Then v ∈ Y .

Proof: Suppose for contradiction that v /∈ Y . There must exist a vertex u ∈ C ∩X such that uv ∈ EJ .
Indeed, otherwise we could eliminate the elements of C ∩ X one by one using the strong circuit axiom
with the fundamental circuits for J ′, while retaining the property that v is in the circuit; in the end, we
would obtain a circuit inside J ′, which is impossible. So, there is a vertex u ∈ C ∩X such that uv ∈ EJ .
Let us call a vertex v′ ∈ J ′ bad if either π(u) + π(v′) < 0, or π(u) + π(v′) = 0 and u ≺ v′. The vertex
v is bad because uv ∈ EJ and v /∈ Y . Since v is the worst element of C ∩ J ′ according to ≻′, we have
that every v′ ∈ C ∩ J ′ is bad. Thus, uv′ /∈ EI holds for every v′ ∈ C ∩ J ′ (since π(u) + π(v′) ≥ w(uv′) if
uv′ ∈ EI). In other words, u is not in the fundamental circuit of v′ for I ′ for any v′ ∈ C ∩ J ′. But then
we could eliminate the elements of C∩J ′ one by one using the strong circuit axiom with the fundamental
circuits for I ′, while retaining the property that u is in the circuit; in the end we would obtain a circuit
inside I ′, which is impossible. This contradiction proves the claim. □ We now show that G has a

perfect matching by getting a contradiction. For each u ∈ X, let Cu be a circuit such that C ∩ I ′ ⊆ X, u
is the worst element of C ∩X according to ≻′, and subject to that, the worst element in C ∩Y according
to ≻′ is best possible. Note that Cu exists, because the fundamental circuit of u for J ′ is a candidate,
and each candidate circuit has an element in C ∩ Y by the previous claim.

Let y(u) denote the worst element in Cu ∩ Y according to ≻′. Since |Y | < |X|, there exist u1 ∈ X
and u2 ∈ X such that y(u1) = y(u2); we may assume u1 ≺′ u2. Let y = y(u1) = y(u2); notice that
y ∈ Cu1

∩ Cu2
and u1 ∈ Cu1

\ Cu2
. By the strong circuit axiom, we can obtain a circuit C such that

C ⊆ Cu1
∪ Cu2

− y, and u1 ∈ C. The existence of this circuit contradicts the choice of Cu1
. □

To prove Theorem 3, consider the perfect matching N given by Lemma 9. Then w(N) ≤∑v∈S′ π(v) =
k, so N has at most k edges uv for which u ≺ v. This means that vote(J, I) ≤ 2k − |I ′|, and therefore
vote(I, J) + vote(J, I) ≤ 0. This completes the proof of the theorem.

608

5 Algorithm

Here we describe Kamiyama’s algorithm [14] in a generalized form. Given a pair of ordered matroids
Mi = (S, Ii,≻i) (i ∈ {1, 2}), we construct an extended instance M∗

i = (S∗, I∗i ,≻∗
i) (i ∈ {1, 2}) obtained

by replacing each element with two parallel copies. Let the extended ground set be S∗ = ∪u∈S{x(u), y(u)}.
The elements x(u) and y(u) are respectively called x-copy of u and y-copy of u. The independent set
families are defined by

I∗i = { I∗ ⊆ S∗ : π(I∗) ∈ Ii, |I∗ ∩ {x(u), y(u)}| ≤ 1 (∀u ∈ S) },

where π(I∗) = {u ∈ S : I∗ ∩ {x(u), y(u)} ≠ ∅ }.
The linear order ≻∗

i on S∗ is defined as follows. In ≻∗
1, the x-copy of any element is preferred over

the y-copy of any element, and the original preferences are preserved for the copies of the same type
(e.g., u ≻1 v ⇔ x(u) ≻∗

1 x(v), y(u) ≻∗
1 y(v)). In ≻∗

2, the roles of x and y are exchanged; the y-copies are
preferred over the x-copies, and the original preferences are preserved for the copies of the same type.
Kamiyama’s algorithm is described as follows:

1. Find an (M∗
1 ,M

∗
2)-kernel I∗.

2. Output I := π(I∗).

Note that we can find a matroid kernel I∗ in the first step efficiently by Fleiner’s algorithm [8, 9].
Let I be the output of the algorithm. We show that I is super popular and largest among all weakly

defendable common independent sets, which implies that I is a maximum popular common independent
set by Corollary 7. To this end, we provide the following lemma.

Lemma 11 For any J ∈ I1 ∩ I2 and any weakly feasible pairings N1 and N2 for (I, J) with respect to
matroids M1 and M2, respectively, we have vote1(I, J,N1) + vote2(I, J,N2) ≥ 0. Moreover, if |J | > |I|,
then vote1(I, J,N1) + vote2(I, J,N2) > 0.

Before providing the proof of this lemma, we show that it easily implies the following theorems, which
are our main results.

Theorem 12 The output I of the algorithm is super popular and is largest among all weakly defendable
common independent sets.

Proof: The first claim of Lemma 11 implies vote•1(I, J) + vote•2(I, J) ≥ 0 for any J ∈ I1 ∩I2, and hence
I is super popular. By Corollary 7, then I is weakly defendable. By the second claim of Lemma 11, any
common independent set J ∈ I1 ∩ I2 larger than I satisfies vote•1(I, J) + vote•2(I, J) > 0, and hence J is
not weakly defendable. Thus, I is a largest weakly defendable common independent set. □

Since we have Corollary 7 and the algorithm runs in polynomial time, the following theorem holds.

Theorem 13 Given two ordered matroids M1 = (S, I1,≻1) and M2 = (S, I2,≻2), one can find a maxi-
mum popular common independent set in polynomial time.

We now provide the proof of Lemma 11. It uses arguments similar to those used in Kavitha [15] and
Kamiyama [14].

Proof of Lemma 11: Since each Ni is a weakly feasible pairing, I − u + v ∈ Ii for any uv ∈ Ni and
I + v ∈ Ii for any v ∈ J \ I not covered by Ni. By the stability of I∗, any element in J \ I is covered by
N1 or N2. Consider the bipartite graph G = (I \ J, J \ I;N1 ∪N2), which is decomposed into alternating
paths, cycles, and isolated vertices in I \ J . For each path/cycle P , define its score as

score(P) = + |{uv ∈ P : uv ∈ Ni, u ≻i v for some i ∈ {1, 2} }|
− |{uv ∈ P : uv ∈ Ni, u ≺i v for some i ∈ {1, 2} }|
+ 2(|P ∩ (I \ J)| − |P ∩ (J \ I)|),

609

where we assume u ∈ I \ J and v ∈ I \ J and identify P with its edge set (resp., its vertex set) in the
first and second terms (resp., in the third term). Note that vote1(I, J,N1) + vote2(I, J,N2) equals the
sum of the scores of all cycles/paths in G plus 2 ·#{isolated vertices of I \ J in G}. Therefore, showing
score(P) ≥ 0 for any path/cycle P completes the proof of the first claim of Lemma 11.

Let u0v1u1v2u2 . . . vkuk be the elements on P appearing in this order where uℓ ∈ I \ J and vℓ ∈ J \ I
for each ℓ, and we set u0 = ∅ if P starts at J \ I, we set uk = ∅ if P ends at J \ I, and let u0 = uk if P is
a cycle. Without loss of generality, we assume uℓ−1vℓ ∈ N1 and uℓvℓ ∈ N2 for each ℓ.

Consider the triple uℓ−1vℓuℓ for ℓ = 1, 2, . . . , k. Since I∗ is stable, each of x(vℓ) and y(vℓ) should be
dominated by I∗ in M∗

1 or M∗
2 . Note that any x-copy (resp., y-copy) is preferred to any y-copy (resp.,

x-copy) in ≻∗
1 (resp., ≻∗

2) and that we have uℓ−1vℓ ∈ N1 and uℓvℓ ∈ N2. Note also that uℓ−1 = ∅ (resp.,
uℓ = ∅) implies that vℓ is uncovered in N1 (resp., in N2), and hence I∗+y(vℓ) ∈ I1 (resp., I∗+x(vℓ) ∈ I2).
From these, we obtain the following conditions. Here, an element u ∈ I \J is called x-type (resp., y-type)
if I∗ ∩ {x(u), y(u)} = x(u) (resp., y(u)).

(a) If uℓ−1 and uℓ are both x-type, then uℓ−1 ≻1 vℓ or uℓ ≻2 vℓ.

(b) If uℓ−1 and uℓ are both y-type, then uℓ−1 ≻1 vℓ or uℓ ≻2 vℓ.

(c) If uℓ−1 and uℓ are y-type and x-type, respectively, then uℓ−1 ≻1 vℓ and uℓ ≻2 vℓ.

(d) If uℓ−1 = ∅, then uℓ ≻2 vℓ and uℓ is y-type.

(e) If uℓ = ∅, then uℓ−1 ≻1 vℓ and uℓ−1 is x-type.

The amount of votes obtained by the comparisons on uℓ−1vℓ ∈ N1 and uℓvℓ ∈ N2 is nonnegative in all of
the above cases, and in particular, it is 2 in case (c). This amount can be −2 only in the unlisted case,
i.e., when uℓ−1 and uℓ are x-type and y-type, respectively. Consider calculating the sum of the first two
terms of score(P) by counting votes along P from u0 to uk. The value increases by 2 when uℓ turns from
y-type to x-type, does not decrease when its type does not change, and decreases at most by 2 when uℓ
turns from x-type to y-type. If P is a cycle, we can immediately obtain score(P) ≥ 0.

We then assume that P is a path. By the above arguments, the sum of the first two terms of score(P)
is at least 2 · (#{uℓ turns from y-type to x-type} −#{uℓ turns from x-type to y-type}). The third term
of score(P), i.e., 2(|P ∩ (I \ J)| − |P ∩ (J \ I)|), is −2/0/2 if both/either/none of u0 and uk is ∅. With
the conditions (d) and (e), these imply score(P) ≥ 0.

Finally, we prove the second claim of the lemma. Suppose |J | > |I|. As we observed before, all elements
in J \ I are covered by N1 ∪ N2. Since |I \ J | < |J \ I|, there exists a path P = u0v1u1v2u2 . . . vkuk in
G that starts and ends at J \ I, i.e., u0 = uk = ∅. Then, the third term of score(P) is −2. By (d) and
(e), we have u1 ≻2 v1 and uk−1 ≻1 vk, from which we obtain 2 votes. From (d) and (e), we also obtain
that u1 is y-type while uk−1 is x-type, and hence #{uℓ turns from y-type to x-type} is strictly larger
than #{uℓ turns from x-type to y-type}. These imply that the sum of the first two terms of score(P) is
at least 4. Thus, score(P) ≥ 2 > 0, and hence vote1(I, J,N1) + vote2(I, J,N2) > 0. □

6 Lexicographic Preferences

In the previous sections, we showed that finding a maximum popular matching in two-sided markets
can be done in polynomial time, even if the two sides have arbitrary matroid constraints. However, our
definition of popularity is not the only possible definition, and we may conceive other natural definitions of
popularity for many-to-many settings. In this section we take a different approach and define popularity
with respect to a much simpler voting rule, where the agents compare the two matchings/independent sets
lexicographically. This means that they care mostly about their best element being as good as possible
and with regard to that, their second best element being as good as possible, etc. This also implies that
each agent has only one vote in the sense that they must choose a vote from the set {−1, 0,+1} depending
on which independent set they like better, similar to the one-to-one matching case. Note also that in this

610

x

u1

u2

u3

u4

v1

v2

1
2

1

2

1

2

2
1

2

1

1
23

4
5

1 2

3
4

5

Figure 1: The instance given in Example 14. The numbers of the edges correspond to the preferences of
the agents (smaller numbers are better).

model a smaller indepent set can be better than a much larger one, if the best element the agent obtains
in the smaller one is better.

To make our proofs easier to follow, in this section we consider only partition matroids. As all our
results are hardness results, they naturally extend to arbitrary matroids. In the case of partition matroids,
where the voters correspond to exactly the connected components of the two matroids, we can model the
instance with a bipartite graph G = (U,W ;E), where the vertices of U ∪W correspond to the agents who
vote and the edge set corresponds to the ground set of the matroids. We assume each agent v ∈ U ∪W
has a capacity b(v) and a strict order ≻v over their adjacent edges, which we denote by E(v).

Next, we define lexicographic popularity formally, for the case of the above b-matching problem.
We call an edge set M ⊂ E a b-matching if |M ∩ E(v)| ≤ b(v) for all v ∈ U ∪ W . Given two b-
matchings M and M ′ in G and a vertex v ∈ U ∪W , we say that M is lexicographically better than M ′

for v, denoted by M ≻v
lex M ′, if (E(v) ∩ (M ∪ M ′)) \ (M ∩ M ′) is non-empty and the best element

of this set according to the order ≻v is in M . (In the context of arbitrary matroids this would be
generalized by saying that common independent set I is lexicographically better than I ′ for partition
class U i

j , i ∈ {1, 2}, if the best element of (U i
j ∩ (I ∪ I ′)) \ (I ∩ I ′) according to the order ≻i is in I).

Let votevlex(M,M ′) ∈ {−1, 0,+1} denote the vote of agent v when comparing M ′ to M , that is, it is
+1 if v lexicographically prefers M to M ′, −1 if v lexicographically prefers M ′ to M , and 0 otherwise.
(Note that a vote can only be zero if E(v) ∩M = E(v) ∩M ′, i.e. v obtains the same set of edges in
both b-matchings). Let votelex(M,M ′) =

∑
v∈U∪W votevlex(M,M ′) denote the sum of votes of all agents.

We say that a b-matching M is lexicographically popular, if for any b-matching M ′ ⊂ E it holds that
votelex(M,M ′) ≥ 0. Otherwise, if votelex(M,M ′) < 0, we say that M ′ dominates M . Clearly, it holds
that votelex(M,M ′) = −votelex(M ′,M) as exchangeability is symmetric for partition matroids.

In the standard one-to-one popular matching problem, lexicographic popularity and popularity co-
incide. However, when capacities can be larger, lexicographic popularity and popularity differ. First,
we observe that in contrast to popular matchings, a lexicographically popular matching does not always
exist.

Example 14 We give an example with no popular matching with respect to lexicographic preferences.
We will also use this example as a gadget later and exploit its properties.

We have 7 agents, x, u1, . . . , u4 on one side of the graph and v1, v2 on the other. The capacities of
agents u1 and u4 are 1, the capacities of u2, u3, v1, v2 are 2 and the capacity of x is some number q ≥ 1.
(We do not fix q, because later in the hardness proofs we will use that no popular matching exists for
any q ≥ 1 in this example). The bipartite graph and the preferences are illustrated in Figure 1.

Suppose there is a lexicographically popular matching M . Then, (u2, v2) and (u3, v1) must be in M .
Indeed, if one of them, say (u2, v2) is not in M , then u2 is not saturated, so both v2 and u2 can improve

611

by adding (u2, v2) to M , and at most one agent gets worse (if v2 is saturated and has to drop an edge).
Agent u4 must be matched in M , because otherwise v1 is either unsaturated or has a worse partner.

So, by adding (u4, v1) to M and deleting the worse edge of v1 if v1 was saturated, we obtain a matching
where v1, u4 both improve, and at most one agent gets worse. If u4 is matched to v2, then one of {x, u1}
has to be totally unmatched in M . So, if agent v2 drops u4 and takes the free one of {x, u1}, then only
u4 gets worse and two agents improve, contradicting the lexicographic popularity of M . So we have that
(u4, v1) ∈M .

We can see that u1 must be matched by a similar argument as above, by replacing u4 by u1 and v1 by
v2 in the argument. As we have already seen that v1 is saturated by u3 and u4, (u1, v2) must be in M .
We obtained that M = {(u1, v2), (u2, v2), (u3, v1), (u4, v1)}. However, M is dominated by the matching
M ′ = {(u1, v1), (u2, v1), (u3, v2), (u4, v2)}, because u1, u2, u3, u4 all improve, and only v1 and v2 get worse.

Hence, we have shown that no lexicographically popular matching exists in this instance if x has
capacity at least 1. However, if we add q dummy agents d1, d2, . . . , dq who are only adjacent to x
and x considers them the best, then there will be a unique lexicographically popular matching, namely
M = {(u1, v1), (u2, v2), (u3, v1), (u4, v2)} ∪ {(x, di) | i ∈ [q]}.

First we show that there can be no other lexicographically popular matching. By the same reasoning
as before, (u2, v2), (u3, v1) must be in M . Also, both u1 and u4 has to be matched. So the only other
possibility for a lexicographically popular matching is {(u1, v2), (u2, v2), (u3, v1), (u4, v1)} ∪ {(x, di) | i ∈
[q]}, but it is dominated by {(u1, v1), (u2, v1), (u3, v2), (u4, v2)} ∪ {(x, di) | i ∈ [q]}.

Next we show that M is lexicographically popular. All agents other than u2, u3, v1, v2 are saturated
and matched to their best partners, hence only these four can improve. AsM is maximal, for any matching
M ′ to dominate M there has to be an agent not from {u2, u3, v1, v2} who gets worse, so the difference
between the number of improving agents and the number of agents getting worse among u2, u3, v1, v2
must be at least 2. Let M ′ be a matching that dominates M . Agents u2 or u3 could only improve if v1 or
v2 gets worse respectively. So, v1 and v2 must both improve, while u2 and u3 must not be worse off. This
is only possible if v1 gets u4 and v2 gets u1. But then u1 and u4 both get worse, so votelex(M,M ′) ≥ 0,
a contradiction.

With a counterexample in hand, we can show that deciding whether a lexicographically popular
b-matching exists and verifying whether a b-matching is lexicographically popular are both hard.

Theorem 15 It is coNP-hard to decide if a given instance (G;≻; b) admits a lexicographically popular
b-matching. It is also coNP-complete to verify whether a given b-matching M is lexicographically popular.
These hold even if each agent has capacity at most 3.

The proof uses a reduction from the NP-complete Exact 3-Cover problem (x3c). Given an instance
I of x3c, we can construct an instance I ′ of the b-matching problem such that I ′ has a unique candidate
for lexicographically popular b-matching, and this candidate is lexicographically popular if and only if
instance I does not have an exact 3-cover. The details of the construction and the proof of correctness
can be found in the full version [6].

Proportional voting One might argue that agents should have voting weights proportional to their
capacities in order to make the voting more fair. However, we can show that both the existence and
verification problems remain hard even if all capacities are the same, using the following lemma. See the
full version [6] for the proof.

Lemma 16 For any instance I = (G;≻; b) with maximum capacity q, we can create an instance I ′,
where every capacity is q, and there is a lexicographically popular b-matching in I ′ if and only if there is
one in I. Furthermore, a b-matching M is lexicographically popular in I, if and only if by adding some
fixed edges, the obtained b-matching M ′ is lexicographically popular in I ′.

612

References

[1] Péter Biró and Gergely Csáji. Strong core and Pareto-optimal solutions for the multiple partners
matching problem under lexicographic preferences. arXiv preprint arXiv:2202.05484, 2022.

[2] Florian Brandl and Telikepalli Kavitha. Popular matchings with multiple partners. In 37th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS), pages 19:1–19:15, 2018.

[3] Florian Brandl and Telikepalli Kavitha. Two problems in max-size popular matchings. Algorithmica,
81(7):2738–2764, 2019.

[4] Kataŕına Cechlárová, Pavlos Eirinakis, Tamás Fleiner, Dimitrios Magos, Ioannis Mourtos, and Eva
Potpinková. Pareto optimality in many-to-many matching problems. Discrete Optimization, 14:160–
169, 2014.

[5] le Marquis de Condorcet, Marie Jean Antoine Nicolas de Caritat. Essai sur l’application de l’analyse
à la probabilité des décisions rendues à la pluralité des voix. de l’Imprimerie Royale, 1785.

[6] Gergely Csáji, Tamás Király, and Yu Yokoi. Solving the Maximum Popular Matching Problem with
Matroid Constraints. arXiv preprint arXiv:2209.02195, 2022.

[7] Gergely Csáji, Tamás Király, and Yu Yokoi. Approximation algorithms for matroidal and cardinal
generalizations of stable matching. In Symposium on Simplicity in Algorithms (SOSA), pages 103–
113, 2023.

[8] Tamás Fleiner. A matroid generalization of the stable matching polytope. In 8th International
Conference on Integer Programming and Combinatorial Optimization (IPCO), pages 105–114, 2001.

[9] Tamás Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics of
Operations research, 28(1):103–126, 2003.

[10] David Gale and Lloyd S Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

[11] Peter Gärdenfors. Match making: assignments based on bilateral preferences. Behavioral Science,
20(3):166–173, 1975.

[12] Sushmita Gupta, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Popular matching in
roommates setting is NP-hard. ACM Transactions on Computation Theory, 13(2):1–20, 2021.

[13] Chien-Chung Huang and Telikepalli Kavitha. Popular matchings in the stable marriage problem.
In International Colloquium on Automata, Languages, and Programming (ICALP), pages 666–677,
2011.

[14] Naoyuki Kamiyama. Popular matchings with two-sided preference lists and matroid constraints.
Theoretical Computer Science, 809:265–276, 2020.

[15] Telikepalli Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on
Computing, 43(1):52–71, 2014.

[16] Meghana Nasre and Amit Rawat. Popularity in the generalized hospital residents setting. In Inter-
national Computer Science Symposium in Russia, pages 245–259, 2017.

[17] Katarzyna Paluch. Popular and clan-popular b-matchings. Theoretical Computer Science, 544:3–13,
2014.

[18] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24. Springer,
2003.

613

