
Expressive Description Logic Reasoning Using

First-Order Resolution

Zsolt Zombori

Budapest University of Technology and Economics,
Department of Computer Science and Information Theory, Hungary

Tel: 36-70-2651891

zombori@cs.bme.hu

Abstract. Description Logic languages are being used more and more
frequently for knowledge representation. This creates an increasing de-
mand for efficient automated DL reasoning. Although several DL rea-
soners are available, they typically do not scale well with the increase of
data. In this paper we present a resolution based approach: we show how
to transform description logic axioms to a set of function-free clauses of
first-order logic. These axioms can afterwards be used for a well scaling,
query oriented data reasoning. The transformation is given for the SHIQ
DL language, but we show how to extend the result to a RIQ DL knowl-
edge base. The method described has been implemented in a module of
the DLog reasoner openly available on SourceForge to download.

Keywords: Description Logic, ABox reasoning, resolution, SHIQ, RIQ,
DLog

Introduction

Description Logics (DL) is a family of languages designed for conve-
niently describing domain specific knowledge of various applications. To-
day it is commonly used hence there is an increasing demand for efficient
reasoning in DL. Existing implementations are mostly based on the so
called tableau method ([1], [2]) which works just fine for deducing new
rules from existing ones, but it can be rather slow when it comes to deal-
ing with large amount of data. In practice, however, the latter situation
is becoming more and more typical.
We present a resolution based reasoning algorithm for the SHIQ DL lan-
guage. Afterwards we show how to exponentially encode a RIQ knowl-
edge base into a ALCHIQ knowledge base, which is SHIQ without
transitivity axioms.
We have developed the DLog system, a DL reasoner which answers large
data queries efficiently. This program is prepared for situations in which
the relevant data is too much to be loaded into main memory and hence
can only be accessed through direct database queries.
The DLog approach breaks the reasoning task into two parts: the first
phase works only with the terminology part of the knowledge base and
the second phase constitutes the data reasoning. The present paper deals

with the first phase. Although our algorithm is tailored to fit in the
DLog reasoner, we argue that the results presented here can be used
indepdentently by any other DL data reasoner.
Section 1 gives a brief summary of description logics and first-order reso-
lution as well as a resolution based approach from [3] for theorem proving
in SHIQ DL. Section 2 constitutes our first result: it presents the first
phase of DLog, i.e., how to transform the rules of a SHIQ DL knowledge
base into a function-free set of clauses which can be used subsequently
for efficient query driven data reasoning. This is achieved by a modifi-
cation to the algorithm in [3]. Our modified calculus has already been
presented at WCC2008 ([4]). Section 3 contains our second result: we
show how to transform a RIQ knowledge base into an equisatisfiable
ALCHIQ knowledge base. Section 4 gives a brief overview of the DLog
system which is described in detail in [5]. Finally, in Section 5 we mention
some of the work that is still ahead of us.

1 Background

This section gives a recollection of some notions necessary to understand
the paper and gives references to relevant sources.

1.1 Description Logics

Description Logics (DLs) [6] is family of logic languages designed to be
a convenient means of knowledge representation. They can be embedded
into first-order logic, but – contrary to the latter – they are mostly de-
cidable which gives them a great practical applicability. A DL knowledge
base consists of two parts: the TBox (terminology box) and the ABox
(assertion box). The TBox contains rules that hold in a specific domain.
The ABox stores knowledge about individuals.
The main building blocks of a DL knowledge base are concepts, that
represent sets of individials and roles that represent binary relations,
i.e., sets of pairs of individuals. Complex concepts and roles can be built
from simpler ones using concept and role constructors: the set of avail-
able constructors determines the expressitity of the language and natu-
rally defines a language family. We introduce three languages: SHIQ,
ALCHIQ, RIQ.

SHIQ The DL language that is probably the best known is SHIQ.
It contains expressive language elements, while preserving satisfiability,
hence it is a good compromise between expressivity and complexity.

Definition 1. Let C be a set of concept names and R a set of role names.
The set of roles is R ⊔

{

R− | R ∈ R
}

. We define the function Inv on
roles such that Inv(R) = R− if R is a role name and Inv(R−) = R.
A role inclusion axiom (RIA) is an expression of the form R ⊑ S,
where R,S are roles. A transitivity axiom is of the form Trans(R)
where R is a role. A SHIQ-role hierarchy is a set of role inclusion

2

axioms together with a set of transitivity axioms. For a role hierar-
chy R we define ⊑∗ to be a transitive-reflexive closure of ⊑ over R ∪
{Inv(R) ⊑ Inv(S)|R ⊑ S ∈ R}. Role S is called a sub-role of R if S ⊑∗

R. A role is simple if it has no sub-role S such that Trans(S) ∈ R.
The set of SHIQ-concepts is the smallest set such that 1) every concept
name is a concept, 2) ⊤ and ⊥ are concepts and 3) if C,D are concepts,
R is a role, S is a simple role and n is a nonnegative integer, then C⊔D,
C ⊓D, ¬C, ∀R.C, ∃R.C, ≤ nS.C and ≥ nS.C are also concepts.
A general concept inclusion axiom (GCI) is an expression of the form
C ⊑ D for two SHIQ-concepts C,D. A SHIQ-terminology is a set of
GCIs.
Let I = {a, b, c, . . . } be a set of individual names. An assertion is of the
form C(a), R(a, b), a = b or a 6= b for a, b ∈ I, a role R and SHIQ-
concept C. An ABox is a set of assertions.
A SHIQ knowledge base KB can be broken into three parts: a terminol-
ogy (KBT), a role hierarchy (KBR) and an ABox (KBA).

The semantics of SHIQ is defined as follows:

Definition 2. An interpretation I = (∆I , fI) consists of a set ∆I called
the domain of I and a valuation fI which maps every concept to a subset
of ∆I , every role to a subset of ∆I ×∆I and every individual name to a
member of ∆I such that, for all concepts C,D roles R,S and nonnegative
integers n, the following equations hold, where ♯S denotes the cardinality
of a set S:

(R−)I =
{

(x, y) | (y, x) ∈ RI
}

⊤I = ∆I

⊥I = ∅

(¬C)I = ∆I \ CI

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∀R.C)I =
{

x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI
}

(∃R.C)I =
{

x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI
}

(≤ nR.C)I =
{

x | ♯
{

y | 〈x, y〉 ∈ RI ∧ y ∈ CI
}

≤ n
}

(≥ nR.C)I =
{

x | ♯
{

y | 〈x, y〉 ∈ RI ∧ y ∈ CI
}

≥ n
}

An interpretation I satisfies
– terminology T if and only if CI ⊆ DI for each C ⊑ D ∈ T . In this

case we say that I is a model of T .
– role hierarhcy R if and only if SI ⊆ RI for each S ⊑ R ∈ R and RI

is transitive for each Trans(R) ∈ R. In this case we say that I is a
model of R.

– ABox A if and only if aI ∈ CI for each C(a) ∈ A and 〈aI , bI〉 ∈ RI

for each R(a, b) ∈ A, aI = bI for each a = b ∈ A and aI 6= bI for
each a 6= b ∈ A. In this case we say that I is a model of A.

3

A knowledge base KB is said to be satisfiable in case there exists an
interpretation I which is a model ofKBT ,KBR andKBA. In this paper,
we are interested in the following reasoning task: given a DL knowledge
base KB and a query expression Q possibly containing variables. We
would like to decide whether Q is a logical consequence of KB, i.e.,
every model I of KB is also a model of Q. If Q contains no variables we
expect a yes/no answer. If variables appear in the query, we would like
to obtain the complete list of individual names that, when substituted
for the variables, result in assertions that follow from KB. This task is
equivalent to checking ifKB∪{¬Q} is satisfiable. Hence, in the following,
we will only address satisfiability checking.

ALCHIQ The following sublanguage of SHIQ will be important in
the rest of the paper:

Definition 3. An ALCHIQ knowledge base is a SHIQ knowledge base
that contains no transitivity axioms.

RIQ In SHIQ we only allowed RIAs of the form S ⊑ R for (possibly
inverse) roles R and S. Besides, we could declare that some roles are
transitive. With transitivity, we can make statements like: The firend of
a friend is a friend or that If A is located in B and B is located in C
then A is located in C. However, often it would also be convenient to be
able to say things like The wife of a friend is a friend as well or that If
A is located in B and B is a subdivision of C, then A is located in C. It
might also be useful in an ontology of family relations to say that The
mother of a spouse is a mother-in-low. Motivated by these examples, we
introduce generalised RIAs:

Definition 4. A generalised role inclusion axiom (RIA) is of the form
w ⊑ R where R is an atomic role name and w = S1 ◦ S2 ◦ . . . Sn, i.e., w
is obtained by composing n roles. A generalised role hierarchy is a set of
generalised RIAs.

In the following, when it leads to no ambiguity, we will indicate com-
position of roles by simply writing them after each other, i.e., instead
of S1 ◦ S2 we will write S1S2. Restricting R to atomic roles, is no real
restriction and is only meant to make the syntax simpler. Note that the
axiom w ⊑ R is equivalent to Inv(w) ⊑ Inv(R), hence we can always
choose the one in which the right hand side is an atomic role name. In
the presence of generalised RIAs, there is no need for transitivity axioms,
since the RIA RR ⊑ R captures the transitivity of R.
Introducing generalised RIAs to SHIQ leads to undecidability in general
([7]). However, we will focus on an important decidable subcase, when
the role hierarchy is regular :

Definition 5. Let ≺ be a strict partial order on roles. A generalised RIA
of the form w ⊑ R is ≺-regular if
– w = RR or
– w = R− or

4

– w = S1S2 . . . Sn and Si ≺ R for i ∈ {1 . . . n} or

– w = RS1S2 . . . Sn and Si ≺ R for i ∈ {1 . . . n} or

– w = S1S2 . . . SnR and Si ≺ R for i ∈ {1 . . . n}

A generalised role hierarchy is regular is there exists a strict partial order
≺ such that each RIA is ≺-regular. The semantics is defined analogously
to SHIQ, i.e., a model I satisfies a RIA w ⊑ R if wI ⊆ RI. The De-
scription Logic RIQ is obtained from SHIQ by replacing role hierarchies
and transitivity axioms with regular role hierarchies.

With the change of the role hierarchy, the definition of simple roles
changes as well:

– Every role name that does not occur on the right hand side of a RIA
is simple.

– A role name R is simple if, for each RIA w ⊑ R,w = S for some
simple role S.

– An inverse role S− is simple if S is simple.

1.2 Resolution

Resolution [8] is a complete method for proving satisfiability of first-order
clauses. Its two inference rules are summarised in Figure 1 where σ is
the most general unifier of B and C (σ = MGU(B,C)).

A∨B ¬C∨D
Aσ∨Dσ

A∨B∨C
Aσ∨Cσ

Fig. 1. Binary Resolution and Positive Factoring

Ordered resolution [9] refines this technique by imposing an order in
which the literals of a clause have to be resolved. This reduces the search
space while preserving completeness. It is parametrised with an admis-
sible ordering (≻) on literals and a selection function.

Basic superposition [10] is an extension of ordered resolution which has
explicit inference rules for handling equality. The rules are summarised
in Figure 2, where E |p is a subexpression of E in position p, E[t]p is
the expression obtained by replacing E|p in E with t, C and D denote
clauses, A and B denote literals without equality and E is an arbitrary
literal. The necessary conditions for the applicability of each rule are
given in the following list:

Hyperresolution: (i) σ is the most general unifier such that Aiσ =
Biσ, (ii) each Aiσ is maximal in Ciσ, and there is no selected literal
in (Ci∨Ai)σ, (iii) either every ¬Bi is selected, or n = 1 and nothing
is selected and ¬B1σ is maximal in Dσ.

Positive factoring: (i) σ = MGU(A,B), (ii) Aσ is maximal in Cσ
and nothing is selected in Aσ ∨Bσ ∨ Cσ.

Equality factoring: (i) σ = MGU(s, s′), (ii) tσ 6≻ sσ, (iii) t′σ 6≻
s′σ, (iv) (s = t)σ is maximal in (C∨s′ = t′)σ and nothing is selected
in (C ∨ s = t ∨ s′ = t′)σ.

5

Hyperresolution (C1∨A1)...(Cn∨An) (D∨¬B1∨···∨¬Bn)
(C1∨···∨Cn∨D)σ

Positive factoring A∨B∨C
Aσ∨Cσ

Equality factoring C∨s=t∨s′=t′

(C∨t 6=t′∨s′=t′)σ

Reflexivity resolution C∨s6=t

Cσ

Superposition (C∨s=t) (D∨E)
(C∨D∨E[t]p)σ

Fig. 2. Inference rules of Basic Superposition

Reflexivity resolution: (i) σ = MGU(s, t), (ii) in (C ∨ s 6= t)σ
either (s 6= t)σ is selected or nothing is selected and (s 6= t)σ is
maximal in Cσ.
Superposition: (i) σ = MGU(s,E |p), (ii) tσ 6≻ sσ, (iii) if E =
′w = v′ and E|p is in w then vσ 6≻ wσ and (sσ = tσ) 6≻ (wσ = vσ),
(iv) (s = t)σ is maximal in Cσ and nothing is selected in (C∨s = t)σ,
(v) in (D ∨E)σ either Eσ is selected or nothing is selected and Eσ
is maximal, (vi) E|p is not a variable position.

An important feature of basic superposition is that it remains complete
even if we do not allow superposition into variables or terms substi-
tuted for variables. For this reason we keep track of such positions, by
surrounding them with ’[]’ and refer to them as variable positions or
marked positions. So, for instance, applying substitution σ = {x/g(y)}
to clause C = R(x, y) ∨ P (x) results in Cσ = R([g(y)], y), P ([g(y)]).

1.3 Resolution Based Reasoning for DL

In [3] a resolution based theorem proving algorithm for the SHIQ DL
language is presented. In the first step, transitivity axioms are elimi-
nated, at the expense of adding some new GCIs. The obtained ALCHIQ
knowledge base is not logically equivalent to the original one, however
[3] proves that the two knowledge bases are equisatisfiable.
In the following definition, NNF(C) denotes the negation normal form
of C, i.e., negation is pushed inwards to atomic concepts.

Definition 6. For a SHIQ knowledge base KB, clos(KB) denotes the
smallest set of concepts that satisfies the following conditions:
– if C ⊑ D ∈ KB, then NNF(¬C ⊔D) ∈ clos(KB);
– if C ≡ D ∈ KB, then NNF(¬C ⊔ D) ∈ clos(KB) and NNF(¬D ⊔

C) ∈ clos(KB);
– if C(a) ∈ KB then NNF(C) ∈ clos(KB);
– if C ∈ clos(KB) and D is a subconcept of C then D ∈ clos(KB);
– if ≤ nR.C ∈ clos(KB) then NNF(¬C) ∈ clos(KB);
– if ∀R.C ∈ clos(KB), S ⊑∗ R, and Trans(S) ∈ KBR, then ∀S.C ∈

clos(KB).

6

We call clos(KB) the concept closure of KB.

Definition 7. For any SHIQ DL knowledge base KB, Ω(KB) is an
ALCHIQ knowledge base constructed as follows:
– Ω(KB)R is obtained from KBR by removing all axioms Trans(R);
– Ω(KB)T is obtained by adding to KBT for each concept ∀R.C ∈

clos(KB) and role S such that S ⊑∗ R and Trans(S) ∈ KBR the
axiom ∀R.C ⊑ ∀S.(∀S.C);

– Ω(KB)A = KBA

Proposition 1. KB is satisfiable if and only if Ω(KB) is satisfiable.

Proof. See [3]. ⊓⊔

After eliminating transitivity axioms, the knowledge base, together with
the negation of the query is transformed into a set of first-order clauses
with a characteristic structure. These are referred to as ALCHIQ clauses
and are summarised in Figure 3, where:
– P(t) is a possibly empty disjunction (¬)P1(t)∨· · ·∨(¬)Pn(t) of unary

literals;
– P(f(x)): is a possibly empty disjunction P1(f1(x))∨· · ·∨Pn(fn(x));
– t is a term that is surely not marked;
– [t] is a term that is surely marked;
– <t> is a term that may or may not be marked;
– # ∈ {=, 6=};

Fig. 3. ALCHIQ clauses

¬R(x, y) ∨ S(y, x) (1)

¬R(x, y) ∨ S(x, y) (2)

P(x) ∨R(x,< f(x) >) (3)

P(x) ∨R([f(x)], x) (4)

P1(x) ∨P2(< f(x) >) ∨
∨

(< fi(x) > # < fj(x) >) (5)

P1(x) ∨P2([g(x)]) ∨P3(< f([g(x)]) >)
∨

(< ti > # < tj >) (6)

where ti and tj are of the form f([g(x)]) or of the form x

P1(x) ∨
n
∨

i=1

(¬R(x, yi) ∨
n
∨

i=1

P2(yi) ∨
n×n
∨

i,j=1

(yi = yj) (7)

R(< a >,< b >) ∨P(< t >) ∨
∨

(< ti > # < tj >) (8)

where t, ti and tj are either a constant or a term fi([a])

The reasoning task is reduced to deciding whether the obtained first-
order clauses are satisfiable. This is answered using basic superposition

7

extended with a method called decomposition. [3] shows that the set of
ALCHIQ clauses is bounded and that any inference with premises taken
from a subset N of ALCHIQ results in either (i) an ALCHIQ clause or
(ii) a clause redundant in N1 or (iii) a clause that can be decomposed
to, i.e., substituted with two ALCHIQ clauses without affecting satisfi-
ability. These results guarantee that the saturation of an ALCHIQ set
terminates.

1.4 Separating TBox and ABox Reasoning

The drawback of the resolution algorithm outlined above is that it can
be painfully slow. In general, resolution with saturation is a bottom-up
strategy and computes all logical consequences of the clause set, many
of which are irrelevant to deciding our question. It would be nice to be
able to use some more efficient, query oriented, top-down mechanism.
Unfortunately, such mechanisms are available only for more restrictive
languages, such as Horn Clauses. One can get around this problem by
breaking the reasoning into two tasks: first perform a saturation based
preprocessing to deduce whatever could not be deduced otherwise and
then use a fast top-down reasoner.
Note that complex reasoning is required because of the rules (TBox) of
the knowledge base and that in a typical real life situation there is a
relatively small TBox and a large ABox. Furthermore, the rules in the
TBox are likely to remain the same over time while the ABox data can
change continuously. Hence we would like to move forward all inferences
involving the TBox only, perform them separately and then let the fast
reasoner (whatever that will be) do the data related steps when a query
arrives.
In the framework of basic superposition, when more than one inference
steps are applicable, we are free to choose an order of execution, provid-
ing a means to achieve the desired separation. Elements from the ABox
appear only in clauses of type (8). [3] gives two important results about
the role of ABox axioms in the saturation process:

Proposition 2. An inference from ALCHIQ clauses results in a con-
clusion of type (8) if and only if there is a premise of type (8).

Proposition 3. A clause of type (8) cannot participate in an inference
with a clause of type (4) or (6).

In light of Proposition 2, we can move forward ABox independent rea-
soning by first performing all inference steps involving only clauses of
type (1) – (7). [3] calls this phase the saturation of the TBox. After-
wards, Proposition 3 allows us to eliminate clauses of type (4) and (6).
Besides making the clause set smaller, this elimination is crucial because
in the remaining clauses there can be no function symbol embedded into
another (this only occurred in clauses of type (6)). The importance of
this result comes out in the second phase of the reasoning, because the

1 A redundant clause is a special case of other clauses in N and can be removed.

8

available top down mechanisms are rather sensitive to the presence of
function symbols.
By the end of the first phase DL reasoning has been reduced to deciding
the satisfiability of first-order clauses of type (1) - (3), (5), (7) and (8),
where every further inference involves at least one premise of type (8).
For the second phase, i.e., data reasoning, [3] uses a datalog engine which
requires function-free clauses. Therefore (unary) functional relations are
transformed to new binary predicates and new constant names are added:
for each constant a and each function f the new constant af is introduced
to represent f(a). Note that this transformation requires processing the
whole ABox.

2 Towards Pure Two-Phase Reasoning

In this section we introduce modifications to the course of basic superpo-
sition saturation of ALCHIQ clauses. We do this to be able to perform
more inferences before accessing the ABox. This is not just a mere re-
grouping of tasks, we will see that the algorithm produces a crucially
simpler input for the second phase with a huge impact on its perfor-
mance efficiency and on the available data reasoning algorithms. The im-
provement is achieved by eliminating function symbols from the clauses
derived from the TBox.

2.1 Where Do Functions Come From?

The SHIQ DL knowledge base that we started from contained no func-
tions. Then, after translating TBox axioms to first-order logic we had
to eliminate existential quantifiers using skolemisation which introduced
new function symbols. The ABox remained function-free, hence every-
thing that is to know about the functions is contained in the TBox. This
means we should be able to perform all function-related reasoning before
accessing the ABox.

2.2 The Modified Calculus

We modify basic superposition presented in Subsection 1.2 by altering
the necessary conditions to apply each rule. The new conditions are given
below, with the newly added conditions underlined:

HyperresolutionTBox: (i) σ is the most general unifier such that
Aiσ = Biσ, (ii) each Aiσ is maximal in Ciσ, and either there is no
selected literal in (Ci ∨Ai)σ or Ai contains a function symbol, (iii)
either every ¬Bi is selected, or n = 1 and ¬B1σ is maximal in Dσ
(iv) none of the premises contain constants.
HyperresolutionABox: (i) σ is the most general unifier such that
Aiσ = Biσ, (ii) each Aiσ is maximal in Ciσ, and there is no selected
literal in (Ci ∨Ai)σ, (iii) either every ¬Bi is selected, or n = 1 and
nothing is selected and ¬B1σ is maximal in Dσ, (iv) each Ai is
ground, (v) Dσ is function-free.

9

Positive factoring: (i) σ = MGU(A,B), (ii) Aσ is maximal in
Cσ and either nothing is selected in Aσ ∨Bσ ∨ Cσ or A contains a
function symbol.

Equality factoring: (i) σ = MGU(s, s′), (ii) tσ 6≻ sσ, (iii) t′σ 6≻
s′σ, (iv) (s = t)σ is maximal in (C ∨ s′ = t′)σ and either nothing is
selected in Cσ or s = t ∨ s′ = t′ contains a function symbol.

Reflexivity resolution: (i) σ = MGU(s, t), (ii) in (C ∨ s 6= t)σ
either (s 6= t)σ is selected or s 6= t contains a function symbol or
nothing is selected and (s 6= t)σ is maximal in Cσ.

Superposition: (i) σ = MGU(s,E |p), (ii) tσ 6≻ sσ, (iii) if E =
′w = v′ and E|p= w|p′ then vσ 6≻ wσ and (sσ = tσ) 6≻ (wσ = vσ),
(iv) (s = t)σ is maximal in Cσ and either nothing is selected in
(C ∨ s = t)σ or s = t contains a function symbol, (v) in (D ∨ E)σ
either Eσ is selected or nothing is selected and Eσ is maximal, (vi)
E|p is not a variable position.

Note that hyperresolution is broken into two rules (HyperresolutionTBox
and HyperresolutionABox) which differ only in the necessary conditions.
In the following by original calculus we refer to the basic superposition
presented in Subsection 1.2 and by modified calculus we mean the rules
of basic superposition with the restrictions listed above. We will prove
that the new calculus can be used to solve the reasoning task.

Proposition 4. The modified calculus remains correct and complete.

Proof. The inference rules of basic superposition are all valid even if we
do not impose any restrictions on their applicability. Since in the new
calculus only the conditions are altered, it remains correct.

The modifications that weaken the requirements to apply a rule only
extend the deducible set of clauses, so they do not affect completeness.

In case of hyperresolution, let us first consider only the new condition
(iv) and disregard condition (v) on HyperresolutionABox. A hyperres-
olution step in its original form has a main premise of type (7), some
(possibly zero) side premises of type (3) – (4) and some (possibly zero)
side premises of type (8). This one step can be broken into two by first
resolving the main premise with all side premises of type (3) and (4) (by
one HyperresolutionTBox inference step) and then resolving the rest of
selected literals with side premises of type (8) (applying a Hyperresolu-
tionABox step). A hyperresolution step in the original calculus can be
replaced by two steps in the modified one, so completeness is preserved.

All that remains to be proved is that condition (v) on Hyperresolution-
ABox does not prevent completeness. For this, let us consider a refuta-
tion in the original calculus that uses a hyperresolution step. If all side
premises are of type (3) and (4) then it can be substituted with a Hy-
perresolutionTBox step. Similarly, if all side premises are of type (8),
then we can change it to HyperresolutionABox, as clauses of type (7)
are function-free, satisfying condition (v). The only other option is that
there are both some premises of type (3) and of type (8)2. The result of

2 It is shown in [3] that clauses of type (8) and (4) participating in an inference result
in a redundant clause so we need not consider this case.

10

such step is a clause of the following type:

P1(x) ∨
∨

P2(ai) ∨
∨

P2([fi(x)])∨

∨
∨

(ai = aj) ∨
∨

([fi(x)] = [fj(x)]) ∨
∨

([fi(x)] = aj)

At some point each function symbol is eliminated from the clause (by the
time we reach the empty clause everything gets eliminated). In the mod-
ified calculus we will be able to build an equivalent refutation by alter-
ing the order of the inference steps: we first apply HyperresolutionTBox
which introduces all the function symbols, but none of the constants, then
we bring forward the inference steps that eliminate function symbols and
finally we apply HyperresolutionABox. The intermediary steps between
HyperresolutionTBox and HyperresolutionABox are made possible by
the weakening of the corresponding necessary conditions. Notice, that
by the time HyperresolutionABox is applied, functions are eliminated so
condition (v) is satisfied.
We conclude that for any proof tree in the original calculus we can con-
struct a proof tree in the modified calculus, so the latter is complete. ⊓⊔

Proposition 5. Saturation of a set of ALCHIQ clauses using the mod-
ified calculus terminates.

Proof. (sketch) We build on the results in [3], that a SHIQ knowledge
base can be transformed into first-order clauses of type (1) – (8) and that
clauses of type (8) are of the form C(a), R(a, b),¬S(a, b), a = b or a 6= b,
i.e., initially they do not contain any function symbols. We will also use
the fact that in the original calculus any inference with premises taken
from a subset N of ALCHIQ results in either (i) an ALCHIQ clause
or (ii) a clause redundant in N or (iii) a clause that can be substituted
with two ALCHIQ clauses via decomposition.
All modifications (apart from breaking hyperresolution into two) affect
clauses having both function symbols and selected literals, in that we can
resolve with the literal containing the function symbol before eliminating
all selected literals. Such a clause can only arise as a descendant of a
HyperresolutionTBox step. After applying HyperresolutionTBox, we can
obtain the following clauses:

P1(x) ∨
∨

(¬R(x, yi)) ∨
∨

P2(yi) ∨
∨

P2([fi(x)])∨ (9)

∨
∨

(yi = yj) ∨
∨

([fi(x)] = [fj(x)]) ∨
∨

([fi(x)] = yj)

In the following, it will be comfortable for us to consider a clause set that
is somewhat broader than (9), in which function symbols can appear in
inequalities as well. This set is:

P1(x) ∨
∨

(¬R(x, yi)) ∨
∨

P2(yi) ∨
∨

P2([fi(x)])∨ (10)

∨
∨

(yi = yj) ∨
∨

(< fi(x) > # < fj(x) >) ∨
∨

(< fi(x) > # yj)

where # ∈ {=, 6=}. Of course, every clause of type (9) is of type (10) as
well.

11

Let us see what kind of inferences can involve clauses of type (10). First,
it can be a superposition with a clause of type (3) or (5). In the case of
(3) the conclusion is decomposed (in terms of [3]) into clauses of type (3)
and (10), while in the case of (5) we obtain a clause of type (10). Second,
we can resolve clauses of type (10) with clauses of type (10) or (5). The
conclusion is of type (10). Finally, we can apply HyperresolutionABox
with some side premises of the form R(a, bi), but notice that only if the
literals with function symbols are missing. The result is of type (8). This
means that during saturation, we will only produce clauses of type (1) –
(8) and (10).
It is easy to see that there can only be a limited number of clauses of
type (10) over a finite signature. Hence the modified calculus will only
generate clauses from a finite set, so the saturation will terminate. ⊓⊔

2.3 Implementing Two-Phase Reasoning

We will use the modified calculus to solve the reasoning task in two
phases. Our separation differs from that of [3] in that function symbols
are eliminated during the first phase, without any recourse to the ABox.
Our method is summarised in Algorithm 1, where steps (1) - (3) consti-
tute the first phase of the reasoning and step (4) is the second phase,
i.e., the data reasoning.

Algorithm 1 SHIQ reasoning

1. We transform the SHIQ knowledge base to a set of clauses of types (1) - (8),
where clauses of type (8) are function-free.

2. We saturate the TBox clauses (types (1) - (7)) with the modified calculus. The
obtained clauses are of type (1) - (7) and (10).

3. We eliminate all clauses containing function symbols.
4. We add the ABox clauses (type (8)) and saturate the set.

To show that our method is adequate, we first formulate the following
proposition:

Proposition 6. A function-free ground clause can only be resolved with
function-free clauses. Furthermore, the resolvent is ground and function-
free.

Proof. It follows simply from the fact that a constant a cannot be unified
with a term f(x) and from condition (v) on HyperresolutionABox. ⊓⊔

We are now ready to state our main claim:

Theorem 1. Algorithm 1 is a correct, complete and finite SHIQ DL
theorem prover.

Proof. We know from Proposition 5 that saturation with the modified
calculus terminates. After saturating the TBox, every further inference

12

will have at least one premise of type (8), because the conclusions inferred
after this point are of type (8) (Proposition 6). From this follows, (using
Proposition 6) that clauses with function symbols will not participate
in any further steps, hence they can be removed. In light of this and
taking into account that the modified calculus is correct and complete
(Proposition 4), so is Algorithm 1. ⊓⊔

By the end of the first phase of reasoning, we obtain clauses of the
following types:

¬R(x, y) ∨ S(y, x) (11)

¬R(x, y) ∨ S(x, y) (12)

P(x) (13)

P1(x) ∨
∨

i

(¬R(x, yi)) ∨
∨

i

P2(yi) ∨
∨

i,j

(yi = yj) (14)

(¬)R(a, b) (15)

C(a) (16)

a = b (17)

a 6= b (18)

We have completely eliminated function symbols and are now ready to
start the data reasoning.

2.4 Benefits of Eliminating Functions

The following list gives some advantages of eliminating function symbols
before accessing the ABox.

1. It is more efficient. Whatever ABox independent reasoning we per-
form after having accessed the data will have to be repeated for every
possible substitution of variables.

2. It is safer. A top-down reasoner that has to be prepared for argu-
ments containing function symbols is very prone to fall into infinite
loops. Special attention needs to be paid to ensure the reasoner does
not generate goals with ever increasing number of function symbols.

3. We get equality handling for free. In the resulting TBox only
clauses of type (14) contain equality that can be eliminated by a
mere check whether two constants from the ABox refer to the same
object which is usually well known by the creators of the database.
Note that equality treatment in general makes the reasoning task
much more complex. This is why we had to use basic superposition.

4. ABox reasoning without functions is qualitatively easier. Some
algorithms, such as those for datalog reasoning, are not available
in the presence of function symbols. We have seen in Section 1.4
that [3] solves this problem by syntactically eliminating functions,
but this has two drawbacks: first, equality reasoning is required (an
introduced constant might be equal to an ABox constant) and sec-
ond, this transformation requires scanning through the whole ABox,
which might not be feasible when we have a lot of data.

13

2.5 Summary of the modified calculus

In this section we have presented a saturation algorithm that can be
used to transform a SHIQ TBox to a set of function-free clauses. The
transformation is independent of the ABox, and hence of the size of the
ABox. It can be seen as a preprocessing for ABox reasoning and hence
any resolution based ABox reasoning algorithm can make use of it. The
main benefit is that without functions the ABox reasoning can be more
focused, i.e., less sensitive to the size of the ABox.

3 Transforming RIQ to ALCHIQ

In this section we examine RIQ, i.e., the extension of SHIQ with regu-
lar role inclusion axioms (RIAs) and show that such RIAs can be trans-
formed into equisatisfiable ALCHIQ concepts. Most of the definitions
that will be introduced are based on ([7]), which gives a tableau proce-
dure for deciding RIQ.

For each role R, the authors define a non-deterministic finite automaton
(NFA) that captures the role paths that are subsumed by R. These au-
tomata are used during the construction of a tableau, to “keep track”
of role paths. In the remaining of this section we show that the au-
tomata can be used to transform the initial RIQ knowledge base to an
equisatisfiable ALCHIQ knowledge base. The main benefit is that the
treatment of the role hierarchy becomes independent of the tableau algo-
rithm. Hence, any algorithm that decides satisfiability for an ALCHIQ
knowledge base can be used for satisfiability checking of a RIQ knowl-
edge base. In particular, the resolution calculus presented in Section 2.2
is applicable. This result extends the input language of the DLog reasoner
from SHIQ to RIQ.

3.1 Building automata to represent RIAs

In this subsection we define a scheme for constructing finite automata
to represent regular role hierarchies. We use the same construction as
presented in [7].

Definition 8. Let R be a regular role hierarchy. For each role name R
occurring in R, the NFA AR is defined as follows: AR contains a single

initial state iR and a single final state fR with the transition iR
R
−→ fR.

Moreover, for each w ⊑ R ∈ R, AR contains the following transitions:

1. if w = RR, then AR contains fR
ǫ
−→ iR,

2. if w = S1 . . . Sn and S1 6= R 6= Sn, then AR contains iR
ǫ
−→ iw

S1−−→

f1
w

S2−−→ f2
w . . .

Sn−−→ fn
w

ǫ
−→ fR

3. if w = RS1 . . . Sn then AR contains fR
ǫ
−→ iw

S1−−→ f1
w

S2−−→ f2
w . . .

Sn−−→
fn
w

ǫ
−→ fR

4. if w = S1 . . . SnR then AR contains iR
ǫ
−→ iw

S1−−→ f1
w

S2−−→ f2
w . . .

Sn−−→
fn
w

ǫ
−→ iR

14

where all f i
w, iw are assumed to be distinct.

Next, we introduce mirrored copies of automata, where all transitions go
backwards and the initial and final states are switched. Formally, in the
mirrored copy of an NFA we carry out the following modifications:

– final states are made non-final but intial
– initial states are made non-initial but final

– each transition p
S
−→ q is replaced with transition q

Inv(S)
−−−−→ p

– each transition p
ǫ
−→ q is replaced with transition q

ǫ
−→ p.

We define NFAs ÂR as follows:

– if R− ⊑ R 6∈ R then ÂR := AR.
– if R− ⊑ R ∈ R then ÂR is obtained as follows: first, take the disjoint

union of AR with a mirrored copy of AR. Second, make iR the only
initial state, fR the only final state. Finally, for f ′

R the copy of fR
and i′R the copy of iR, add transitions iR

ǫ
−→ f ′

R, f
′
R

ǫ
−→ iR, i

′
R

ǫ
−→ fR

and fR
ǫ
−→ i′R.

Afterwards, the NFAs BR are defined inductively over ≺:

– if R is minimal w.r.t. ≺, then we set BR := ÂR.
– otherwise, BR is the disjoint union of ÂR with a copy B′

S of BS for

each transition p
S
−→ q in ÂR with S 6= R. Moreover, for each such

transition, we add ǫ-transitions from p to the intial state in B′
S and

from the final state of B′
S to q, and we make iR the only initial state

and fR the only final state in BR.

Finally, the automaton BR− is a mirrored copy of BR.

Proposition 7. For each role R ∈ R the size of BR is bounded expo-
nentially in the size of R.

Proof. See [7]. ⊓⊔

Definition 9. We denote by BR(q, ∗) the automaton that differs from
BR only in its initial state, which is q. Analogously, BR(∗, q) differs from
BR only in its final state, which is q.

Proposition 8. For a regular role hierarchy R and interpretation I, I
is a model of R if and only if, for each (possibly inverse) role S occurring
in R, each word w ∈ L(BS) and each 〈x, y〉 ∈ wI, we have 〈x, y〉 ∈ SI.

Proof. See [7]. ⊓⊔

Proposition 8 states that two individuals are S-connected exactly when
there is a role path w between them accepted by BS . This result gives
us a key to handle value restrictions. Suppose individual x satisfies some
S-restriction. If this is a maximum restriction (≤ kS.C), then S must be
a simple role and the restriction effects only the immediate neighbours
of x. This case is already treated in SHIQ. If it is a minimum restriction
(≥ kS.C), the restriction can be made true by adding some S-successors
to x. The only problematic case is universal restriction (∀S.C), because
finding all S-successors might be rather difficult. However, Proposition 8
tells us that it is the role paths described by BS that we need to check
to look for S-successors.

15

3.2 A Motivating Example

Before formally defining the transformation of automata generated from
the role hierarchy into axioms, we try to give an intuition through a small
example. Suppose the role hierarchy of a knowledge base consists of the
single axiom

PQ ⊑ R

where R,P,Q are role names. One of the things that this axiom tells us
is that in case an individual x satisfies ∀R.C for some concept C, then
the individuals connected to x through a P ◦ Q chain have to be in C.
This consequence can be described easily by the following GCI:

∀R.C ⊑ ∀P.∀Q.C

or equivalently, we can introduce new concept names to avoid too much
nesting of complex concepts:

∀R.C ⊑ X1

X1 ⊑ ∀P.X2

X2 ⊑ ∀Q.C

Of course, these axioms only provide for the correct propagation of con-
cept C and a new set of similar axioms is required for all other concepts.
However, we only need to consider the universal restrictions that appear
as subconcepts of some axiom in the knowledge base. These concepts
can be determined by a quick scan of the initial knowledge base. For
example, if the TBox contains the following GCIs:

D ⊑ ∀R.C

⊤ ⊑ ∀R.D

then, only concepts C and D appear in the scope of a universal R-
restriction. Let us add a copy of the above CGIs for both C and D and
eliminate the role hierarchy. We obtain the following TBox:

D ⊑ ∀R.C ⊤ ⊑ ∀R.D

∀R.C ⊑ X1 ∀R.D ⊑ Y1

X1 ⊑ ∀P.X2 Y1 ⊑ ∀P.Y2

X2 ⊑ ∀Q.C Y2 ⊑ ∀Q.D

The two knowledge bases have different signatures and hence have dif-
ferent models, however they are equisatisfiable. We will prove this by
showing that one can construct from the model of one knowledge base a
model of the other.

16

3.3 Translating automata to concept inclusion axioms

In this subsection we formally define the transformation of a regular role
hierarchy into GCIs. In the end we obtain from a RIQ knowledge base
an ALCHIQ knowledge base. We make use of the notion of concept
closure (clos(KB)) provided in Definition 6. The transformation itself
is analogous to how transitivity axioms were eliminated from SHIQ
(Definition 7). Here, the situation is more complex as we have to take
into consideration more sophisticated role paths.
For each concept ∀R.C ∈ clos(KB) and each automaton state s of
BR, we intoduce a new concept name X(s,R,C). The concepts associ-
ated with the initial and final states of BR are denoted with X(start,R,C)

and X(stop,R,C), respectively.

Definition 10. For any RIQ DL knowledge base KB, Ω(KB) is an
ALCHIQ knowledge base constructed as follows:
– Ω(KB)R is obtained from KBR by removing all RIAs w ⊑ R such

that R is not simple;
– Ω(KB)T is obtained by adding to KBT for each concept ∀R.C ∈

clos(KB) the following axioms:
1. ∀R.C ⊑ X(start,R,C)

2. X(p,R,C) ⊑ X(q,R,C) for each p
ǫ
−→ q ∈ BR

3. X(p,R,C) ⊑ ∀S.X(q,R,C) for each p
S
−→ q ∈ BR

4. X(stop,R,C) ⊑ C
– Ω(KB)A = KBA

Proposition 9. The size of Ω(KB) is bounded exponentially in the size
of KB.

Proof. We know from Proposition 7 that the size of each BR is bounded
exponentially in the size of KBR and consequently in the size of KB. So
for each concept ∀R.C ∈ clos(KB) we intoduce at most exponentially
many new GCIs of type 1-4. The size of clos(KB) is linear in KB, so
the total number of GCIs introduced is at most exponential in the size
of KB. ⊓⊔

The following proposition will be useful for proving that KB and Ω(KB)
are equisatisfiable.

Proposition 10. Let KB be some RIQ knowledge base and I be a
model of Ω(KB). Assume that α ∈ (∀R.C)I and there is some β and
role path w ∈ L(BR) such that 〈α, β〉 ∈ wI . Then β ∈ CI .

Proof. Let w = S1S2 . . . Sn, where Si is possibly an ǫ transition. Let
start = b0, b1, . . . bn = stop be states of BR along the w path. Since
〈α, β〉 ∈ wI , there are individuals α = a0, a1, . . . an = β such that
〈ai−1, ai〉 ∈ SI . Note that in case Si = ǫ then ai−1 = ai.
We show inductively that ai ∈ XI

(bi,R,C) for all 0 ≤ i ≤ n. For this we use
the axioms added in the construction of Ω(KB). The axiom of type 1
ensures that the base case holds: α ∈ XI

(start,R,C), i.e., a0 ∈ XI
(b0,R,C).

For the inductive step, suppose first that Si is an ǫ transition. Then

17

ai = ai−1. By the inductive hypothesis ai−1 ∈ XI
(bi−1 ,R,C), and the

corresponding axiom of type 2 ensures that ai ∈ XI
(bi,R,C). In the other

case, when Si is not an ǫ transition, the same argument referring to a
corresponding axiom of type 3 ensures that ai ∈ XI

(bi,R,C).

Hence we know that an ∈ XI
(bn,R,C), i.e., β ∈ XI

(stop,R,C). This, together

with the axiom of type 4 ensures that β ∈ CI . ⊓⊔

We are ready to formulate the main claim of this section:

Theorem 2. KB is satisfiable if and only if Ω(KB) is satisfiable.

Proof. (⇒) Let I be a model of KB. We extend this model to an inter-
pretation I ′ of Ω(KB). I ′ differs from I only in the interpretation of the
new concepts X(s,R,C):

XI′

(s,R,C) =
{

y | ∃x(x ∈ (∀R.C)I ∧ (∃w ∈ L(BR(∗, s))(〈x, y〉 ∈ wI)))
}

We prove that I ′ is a model of Ω(KB), by showing that the axioms
added in the definition of Ω(KB) are true. We consider the four cases
separately:

1. ∀R.C ⊑ X(start,R,C)

Suppose y ∈ (∀R.C)I
′

. Then, by choosing x = y and w = ǫ, we can

apply the above definition to show that y ∈ XI′

(start,R,C).
2. X(p,R,C) ⊑ X(q,R,C)

Suppose y ∈ XI′

(p,R,C). Then, there is some x ∈ (∀R.C)I
′

and some

w ∈ L(BR(∗, p)) such that 〈x, y〉 ∈ wI′

. Since p
ǫ
−→ q ∈ BR, it also

holds that w ∈ L(BR(∗, q)). Hence, the same x and w testify that

y ∈ XI′

(q,R,C).
3. X(p,R,C) ⊑ ∀S.X(q,R,C)

Suppose y ∈ XI′

(p,R,C). Then, there is some x ∈ (∀R.C)I
′

and some

w ∈ L(BR(∗, p)) such that 〈x, y〉 ∈ wI′

. Let z be some SI′ -successor

of y, i.e., 〈y, z〉 ∈ SI′

. Since p
S
−→ q ∈ BR, it also holds that wS ∈

L(BR(∗, q)). Hence, x and wS testify that z ∈ XI′

(q,R,C). This holds

for all SI′ -successors of y, hence y ∈ ∀S.XI′

(q,R,C).
4. X(stop,R,C) ⊑ C

Suppose y ∈ XI′

(stop,R,C). Then, there is some x ∈ (∀R.C)I
′

and some

w ∈ L(BR) such that 〈x, y〉 ∈ wI′

. Since I and I ′ only differ in the
extension of new concepts, we also have x ∈ (∀R.C)I and 〈x, y〉 ∈ wI .
From the latter, we infer using Proposition 8 that 〈x, y〉 ∈ RI . Since
x ∈ (∀R.C)I , it follows that y ∈ CI and from that we conclude that

y ∈ CI′ .

(⇐) Let I be a model of Ω(KB) and I ′ an interpretation constructed
from I as follows:

– ∆I′ = ∆I ;
– For each individual a, aI′ = aI ;
– For each atomic concept A ∈ clos(KB), AI′ = AI ;

– For each role R, RI′ =
{

〈x, y〉 | ∃w ∈ L(BR)(〈x, y〉 ∈ wI)
}

18

By construction and referring to Proposition 8, I ′ satisfies the role hier-
archy KBR. Since R ∈ L(BR), we have RI ⊆ RI′ . Furthermore, if R is

simple then RI = RI′ .

For concepts in clos(KB), we define the strict partial order ⊳: C ⊳ D
if and only if C or NNF(C) occur in D. We will use induction on ⊳ to

show that for each D ∈ clos(KB), DI ⊆ DI′ . For the base case, i.e.,
when D is an atomic concept or a negated atomic concept, this follows
immediately from the definition of I ′. We now turn to the inductive step:

– For D = C1 ⊓ C2, assume that α ∈ (C1 ⊓ C2)
I for some α. Then,

α ∈ CI
1 and α ∈ CI

2 . By the inductive hypothesis, α ∈ CI′

1 and
α ∈ CI′

2 , so α ∈ (C1 ⊓ C2)
I′ .

– For D = C1 ⊔C2, assume that α ∈ (C1⊔C2)
I for some α. If α ∈ CI

1 ,

then by induction we also have α ∈ CI′

1 ; if α ∈ CI
2 , then by induction

we also have α ∈ CI′

2 . Either way, α ∈ (C1 ⊔ C2)
I′ .

– For D = ∃R.C, assume that α ∈ (∃R.C)I . Then, β exists such that

〈α, β〉 ∈ RI and β ∈ CI . By induction, β ∈ CI′ . Since RI ⊆ RI′ , we

have 〈α, β〉 ∈ RI′ , so α ∈ (∃R.C)I
′

.

– For D = (≥ nR.C), assume that α ∈ (≥ nR.C)I . Then, there are at
least n distinct domain elements βi such that 〈α, βi〉 ∈ RI and βi ∈

CI . By induction, βi ∈ CI′ . Since RI ⊆ RI′ , we have 〈α, βi〉 ∈ RI′ ,

so α ∈ (≥ nR.C)I
′

.

– For D = (≤ nR.C), we have RI = RI′ since R is simple. Let E =

NNF(¬C). Assume that α ∈ (≥ nR.C)I , but α 6∈ (≥ nR.C)I
′

. Then,

there exists β such that 〈α, β〉 ∈ RI , β 6∈ CI , β ∈ CI′ , i.e., β ∈ EI

and β 6∈ EI′ . However, since E ∈ clos(KB), by induction we have

β ∈ EI′ , which is a contradiction. Hence, α ∈ (≤ nR.C)I
′

.

– For D = ∀R.C, assume that α ∈ (∀R.C)I , but α 6∈ (∀R.C)I
′

. Then

some β exists such that 〈α, β〉 ∈ RI′ and β 6∈ CI′ . By the defini-

tion of RI′ there is some w ∈ L(BR) such that 〈α, β〉 ∈ wI . Using

Proposition 10, it follows that β ∈ CI . By induction, CI ⊆ CI′ , so
β ∈ CI′ , which is a contradiction. Hence α ∈ (∀R.C)I

′

.

⊓⊔

3.4 Summary of the RIQ to ALCHIQ transformation

In this section we defined a transformation Ω that maps an arbitrary
RIQ knowledge base to an ALCHIQ knowledge base. Theorem 2 states
that the transformation preserves satisfiability. We also showed that the
transformation increases the size of the TBox with at most an exponen-
tial factor (Proposition 9). This is assymptotically optimal: ALCHIQ
is known to be ExpTime-hard while RIQ is 2ExpTime-hard ([11]), so
RIQ is indeed exponentially harder than ALCHIQ.

Using this result, any algorithm that decides satisfiability for ALCHIQ
can decide satisfiability for RIQ. In particular, the modified calculus
persented in Subsection 2.2 is applicable.

19

4 The DLog System

The DLog system is a DL data reasoner, written in the Prolog language,
which implements a two-phase reasoning algorithm, based on first-order
resolution.

In the first phase the TBox of the input knowledge base is transformed
into a set of clauses of type (11) – (14). The transformation uses the
saturation algorithm described in [3] and Section 2.2, hence it fully sup-
ports the SHIQ language. We are in the process of extending DLog
from SHIQ to RIQ by implementing the transformation Ω descibed in
Section 3.

The clauses obtained from the TBox after the first phase are used to
build a Prolog program. It is the execution of this program – run with an
adequate query – that performs the second phase, i.e., the data reasoning.
The second phase is focused in that it starts out from the query and only
accesses parts of the ABox that are relevant to answering the query. The
relevant part is determined by the clauses derived from the TBox. Hence,
the performance of DLog is not affected by the presence of irrelevant
data. Futhermore, the ABox can be accessed through direct database
queries and needs not be stored in memory. To our best knowledge,
DLog is the only DL reasoner which does not need to scan through the
whole ABox. Thanks to this, DLog can be used to reason over really
large amounts of data stored in external databases.

The transformation to Prolog uses the PTTP approach ([12]), a com-
plete theorem prover technology for first-order logic. Details about the
obtained Prolog program and the architecture of the DLog system can
be found in [5].

The program is in exerimental stage. We implemented all the reasoning
algorithms and we have prototype implementations for various futher
features, such as support for ABoxes stored in database. In the near fu-
ture we plan to incorporate all our results in a reasoner that proves useful
for the DL community. An earlier, stable version of DLog that supports
SHIQ is available at http://dlog-reasoner.sourceforge.net.

5 Future Work

As noted in the previous section, while all important reasoning algo-
rithms are implemented, the DLog is not yet ready to use. One of the
most urgent tasks is providing the system with an adequate interface.
Currently, we only support the DIG ([13]) format for the input knowledge
base and query. We would like to provide the system with an OWL inter-
face (see [14] and [15]). Moreover, we would like to incorporate database
support into the reasoner. Once these tasks are done, we need to do
thorough testing to evaluate the DLog with respect to other DL resoners
such as RacerPro, Pellet, Hermit, KAON2.

On the theoretical side, we are curious to see how far we can extend the
expressivity of DLog beyond RIQ, approximating, as much as possible
SROIQ(D), the language behind OWL2 ([15]). Our efforts to include

20

nominals, i.e., concepts that hold a single individual, have not been suc-
cessful. Nominals blur the distinction between TBox and ABox (in the
extreme, the whole ABox can be represented as TBox axioms when nom-
inals are allowed), so it is unlikely that we could break the reasoning into
two phases such that the first phase is independent of the ABox. Other
extensions, such as concrete domains, are still mostly unexplored.

Summary

This paper has two contributions. First, we showed how to extend the
results in [3] to transform a SHIQ TBox into a set of first-order clauses.
The obtained clauses are of a rather simple structure, namely they are
function-free. This paves the way for fast, query oriented inference al-
gorithms to perform data reasoning tasks originally formulated in DL.
Second, we described a transformation that maps RIQ knowledge bases
into equisatifiable ALCHIQ knowledge bases. The two results put to-
gether provide a preprocessing phase for efficient RIQ data reasoning.
The DLog system implements the algorithms described in the paper.
However, the transformations are not “DLog specific” and we believe
that our results can be useful for other DL reasoners as well.

Acknowledgements

The work reported in the paper has been developed in the framework
of the project ”Talent care and cultivation in the scientific workshops of
BME” project. This project is supported by the grant TÁMOP - 4.2.2.B-
10/1–2010-0009

References

1. Hladik, J., Model, J., Theory, C.F.A., Dresden, T.: Tableau systems
for SHIO and SHIQ

2. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for
the description logic SHIQ (2000)

3. Motik, B.: Reasoning in Description Logics using Resolution and
Deductive Databases. PhD thesis, Univesität Karlsruhe (TH), Karl-
sruhe, Germany (January 2006)

4. Zombori, Z.: Efficient two-phase data reasoning for description log-
ics. In Bramer, M., ed.: IFIP AI. Volume 276 of IFIP., Springer
(2008) 393–402

5. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Pro-
log: the DLog system. Theory and Practice of Logic Programming
09(03) (May 2009) 343–414

6. Horrocks, I.: Reasoning with expressive description logics : Theory
and practice. Language (2002) 1–15

7. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role
inclusion axioms. In Gottlob, G., Walsh, T., eds.: IJCAI, Morgan
Kaufmann (2003) 343–348

21

8. Robinson, J.A.: A machine-oriented logic based on the resolution
principle. J. ACM 12(1) (1965) 23–41

9. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In Robin-
son, J.A., Voronkov, A., eds.: Handbook of Automated Reasoning.
Elsevier and MIT Press (2001) 19–99

10. Bachmair, L., Ganzinger, H.: Strict basic superposition. Lecture
Notes in Computer Science 1421 (1998) 160–174

11. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: In Proc.
KR08. (2008)

12. Stickel, M.E.: A Prolog Technology Theorem Prover: A New Expo-
sition and Implementation in Prolog. Theor. Comput. Sci. 104(1)
(1992) 109–128

13. Bechhofer, S.: The DIG Description Logic Interface: DIG/1.1.
In: Proceedings of the 2003 Description Logic Workshop. (2003)
http://dl-web.man.uk/dig/2003/02/interface.pdf.

14. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ
and RDF to OWL: the making of a web ontology language. Web
Semantics: Science, Services and Agents on the World Wide Web
1(1) (2003) 7 – 26

15. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.,
Sattler, U.: OWL 2: The next step for OWL. Web Semant. 6 (Novem-
ber 2008) 309–322

22

