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Abstract

This dissertation is about automated reasoning. We presastning algorithms and ways in which such
algorithms can be useful for knowledge intensive applceti We will discuss two main topics. The
first topic is Description Logic reasoning. Description lagy(DLs) is a family of logic languages, a
knowledge representation formalism that is widely usedbigitding domain ontologies. We developed
various reasoning algorithms that allow for querying DLaagies, as well as checking the consistency
of an ontology. The second topic is type inference for funwi languages. Here, the task is to analyse
an input program and discover as many errors as possiblenpitmtime, to make program development
easier. These topics seem very different at first sight,h®yt &re quite similar at their cores: in both cases
we start out from some initial knowledge (a set of DL axiomgtia first case, an input program and a
set of type restrictions in the second), and we aim to discewme logical properties of the input through
automated reasoning.

The results related to these topics have been implementwbirsoftware systems. We built a DL
data reasoner called DLog and a type inference tool for thar@tional language callegt chk. After
presenting the theoretical foundations and algorithms;gpert on the developed systems as well.
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Chapter 1

Introduction

Reasonings the magic word that binds the chapters of this thesis tegeReasoning is the ability to use
available knowledge to infer something true that has nohIs¢égted explicitly. Today, there are numerous
information based systems that aim to represent knowledgeniachine processable way. For such sys-
tems, automated reasoning support is very important:atelifor discovering hidden knowledge, as well
as hidden errors in the knowledge base. Besides, autonmegtsdmning can be used to answer complex user
gueries.

In this dissertation | will present work related to two maapics. The first topic is Description Logic
reasoning. Description Logics (DLs) is a family of logic tarages, a knowledge representation formalism
that appeared in the early 1990’s and gained wide populdwiting the past two decades. These languages
were designed with the intention to provide a convenientftrdouilding domain ontologies, while having
clear and well defined semantics. DL ontologies form theshathe Semantic Web initiative. They also
play an important role in creating a unified vocabulary fordimel applications. There are several futher
domains, such as software verification and configuratioroafdex systems, where Description Logics
were successfully deployed. For all such knowledge intenapplications, efficient reasoning support
plays a crucial role and the success of DLs is strongly tiethéoavailable reasoning algorithms. We
developed various reasoning algorithms that allow for gingr DL ontologies, as well as checking the
consistency of an ontology.

Our second topic is type inference for functional languagesre, the task is to analyse an input
program and discover as many errors as possible in compike to make program development easier.
Although our methods can be applied for functional languaggneral, we formulate them in the context
of the Q language. Q is a vector processing language thatieggben 2003. It serves as a query language
for kdb+ database. Q allows for extremely fast processingrge arrays of numeric data and has gained
popularity in the financial sector over the past decade. By, several large investment banks (Morgan
Stanley, Goldman Sachs, Deutsche Bank, Zurich Financialigretc.) store and manipulate their data
using Q. Q has a particularly terse syntax that allows forlémgnting complex calculations quickly,
however, it is very challenging to find programming errorsit@dmnatic error detection can hence be greatly
beneficial for the Q programming community.

These topics seem very different at first sight, but they aiitecsimilar at their cores: in both cases
we start out from some initial knowledge (a set of DL axiomgltia first case, an input program and a
set of type restrictions in the second), and we aim to discewme logical properties of the input through
automated reasoning.

In the following, | list the main research objectives. Thigallowed by an overview of the dissertation,
where | also highlight my own results. Afterwards, | list myhgications. A precise formulation of my
theses will be provided at the very end of the dissertation.

1.1 Problem Formulation

This section summarises the main research objectivesdbalted in the dissertation.



Large scale Description Logic reasoning Description Logics is an important and widely used fornralis
for knowledge representation. While existing reasoningpsut for Description Logics is very sensitive
to the size of the available data, there are lots of appticadiomains — such as reasoning over the web
— that has to cope with really huge amounts of data. The godli®fvork is to explore novel reasoning
techniques that are applicable in such situations. Inqadi, it is crucial that the reasoner be not affected
by the size of irrelevant data and to find a way to transformn gseries into direct database queries.

1. The primary goal of my work is to find a tranformation schemfi@®escription Logic axioms into
function-free clauses of first-order logic.

2. This transformation should primarily target tsig/ 1 Q Description Logic language.

3. After a successfu§ # 1 Q transformation, the results should be extended to incatpanore refined
language elements, such as complex role inclusion axioms.

4. The results should be implemented in the DLog data reagayistem.

Optimised PTTP execution The Prolog Technology Theorem Prover (PTTP) is a completedider
theorem prover built on top of Prolog. This technique playsaportant role in the DLog reasoner, hence
any optimisations to this technique have the potential gatly increase the performance of DLog.

1. Some ofthe PTTP implementations use an optimisatioac¢dbp elimination. However, the sound-
ness of this optimisation has not yet been proved. My goal wdnd a rigorous proof of the
soundness of loop elimination.

Static Type Analysis for the Q functional language Q is a dynamically typed functional programming
language with a very terse and irregular syntax. While thgliage is widespread in financial applications,
there is no built-in support for debugging and compile-tidegection of errors, which makes program
maintenance very difficult. The goal of this work is to praxi@ with a tool that discovers static type
errors in compile-time.

1. The first task is to examine the possibility of static typalgsis of Q programs. This task also
involves identifying the type discipline that should bea@wckd on Q programmers.

2. Devise an algorithm to verify the correctness of user i@ type information.

3. Devise an algorithm that discovers as many type errorsssltge, without any input from program-
mers.

4. Implement all the algorithms in a tool that can be deployeohdustrial environment at Morgan
Stanley Business and Technology Centre, Budapest.

1.2 Thesis Overview

Part 1, which consists of Chapters 2-5, presents our work dothe field of Description Logic reasoning.
Part 2 deals with our results related to type analysis andistaof Chapters 6-8.

Chapter 2

This chapter contains all necessary background informatiat will be important for understanding the
first part of the thesis. We first introduce resolution theoproving and logic programming. Afterwards,
we summarise the Description Logic formalism.



Chapter 3

In this chapter we present two reasoning calculi that candeel dor deciding the consistency of a DL
knowledge base. The first calculus, that we will refer to asntiodified calculuss based on first-order
resolution and supports th@LCH 1Q DL language. We show how this calculus can be used for a two-
phase data reasoning, which scales well and allows for néago@ver really large data sets. Using well
known techniques that reducgsd@( I Q knowledge base to an equisatisfialde CH 1Q knowledge base,
we easily extend our results to t&{ I Q language, which is the most widely used DL variant.

Result 1.A: 1 designed the modified calculus. | proved that it is soundhglete and always termi-
nates.

Afterwards, we present a transformation that reduces #keofeconsistency checking of&7 Q knowl-
edge base into that of aiLCH IQ knowledge base. The benefit of this reduction is that theradisk
can be solved using our modified calculus. Our results yielkek scaling reasoning algorithm for the

R 1Q language.

Result 1.B: 1 designed theR 1Q to ALCH I1Q transformation. | showed that the transformation
preserves the satisfiability of the knowledge base.

In the end of this chapter, we introduce a second calculldect#heDL calculus which is defined
directly on DL expressions, without recourse to first-ordegic. The DL calculus decides the consistency
of a S Q terminology.

Result 1.C:1 designed the DL calculus. | proved that it is sound, congpéetd always terminates.

Chapter 4

In this chapter we present an important optimisation temimfor the Prolog Technology Theorem Prover
(PTTP), calledoop elimination This technique allows for avoiding certain kinds of infeniboping in the
reasoning process and is the single most important optiimiséor PTTP. We give a thorough proof of the
soundness of loop elimination.

Result 2: | proved that loop elimination is sound, i.e., that it can bg®yed without missing a
valid solution.

Chapter 5

In this chapter we present the DLog data reasoner systencahdie used to quer® 7Q DL knowledge
bases with really large data sets.

Result 1.D: 1 implemented the TBox saturation module of the DLog systetmich performs the
first phase of reasoning.

Chapter 6

In this chapter we give some background about type inference

Chapter 7

In this chapter we present a reasoning algorithm that weldped to analyse programs written in the Q
programming language for type correctness. We first presé&yyie checker that builds on user provided
type information. Afterwards, we introduce a type infereradgorithm that can detect type errors even
without any user provided information.

Result 3.A: | designed a type checking algorithm for the Q language.

Result 3.B: 1 designed a type inference algorithm for the Q language.



Chapter 8
We present thgt chk type inference tool that analyses Q programs and discoygeserrors.

Result 3.C: 1 implemented both type checking and type inference in tipe tgnalysis module of
theqt chk system.
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Chapter 2

Introducing Resolution and Description
Logics

This chapter contains background information that will bgaortant for understanding the subsequent
chapters. First, in Section 2.1 we present first-order ttgol, its connection to the Prolog programming
language and the Prolog Technology Theorem Prover (PTTHrwards, in Section 2.2 we introduce
the Description Logic language family. In Section 2.3 weeflyi present previous work done in applying
resolution for description logic reasoning.

2.1 Resolution and the Prolog Language

Resolution is one of the first and most widely used methodgr@ring first order theorems. In this section
we briefly introduce resolution and some of its variants. eAftards, we present a logic programming
language called Prolog that is based on resolution. In faetexecution of a Prolog program corresponds
to a resolution proof search for a sublanguage of first-datge that consists of Horn clauses only. Finally,
we present the Prolog Technology Theorem Prover, a full dirder theorem proving technology that is
built on top of Prolog. The definitions in this section will important for understanding Chapter 3, where
we present some resolution calculi specialised for DesorifLogic reasoning and also for understanding
Chapter 4, which discusses an improvement on PTTP.

2.1.1 Resolution Theorem Proving

Resolution [46] is a powerful method for proving first-ordeeorems. Directly, it is used to check the
satisfiability of a set of first-order clauses, i.e., whethere is a model satisfying all the clauses. However,
all common reasoning tasks — such as entailment analysis beceasily reduced to satisfiability checking.

Clausesre first-order formulae satisfying the following propesti all variables are universally quan-
tified, all quantifiers are at the beginning of the formula dinel quantifier-free part is a disjunction of
literals, i.e., possibly negated atomic predicates. It is well knthnat any set of first-order formulae can be
translated into a set of clauses (for example, see [18]yttesterves the satisfiability of the initial formula
set; in other words they argjuisatisfiable Since all variables in clauses are universally quantifiieid,
customary to omit the quantifiers. We will do so in the follogi

Resolution defines two inference rules, calidary Resolutiorand Positive Factoring presented in
Figure 2.1. In the figure, the clauses above the bar are tmeiges of the inference and the clause under
the bar is the conclusiom is themost general unifieof B andC, i.e., a variable substitution to terms that
satisfies two properties: (1) after the substitutibandC are identical, i.e.Bo = Co, and (2)o is a most
general substitution that satisfies (1). In Figure 2.2, \ustitate the application of the the two inference
rules. On the left side the Binary Resolution rule is used@mthe right side the Positive Factoring rule
fires. The most general unifier is the same in both examplagablay is mapped toc and every other
variable is mapped to itself.



AVB -CvD AvBVC
AcvDo AcVvCo

Figure 2.1: Binary Resolution and Positive Factoring

AXVB(X) ~B(y)vD(y) AX)VB(X)VB(y)VD(y)
A(X)VD(x) A(X)VB(x)VD(x)

Figure 2.2: Examples illustrating the Binary Resolutiond &wvsitive Factoring inference rules

Theorem 1. Binary Resolution and Positive Factoring yield a calculbattis soundand complete This
means that a set of clauses is inconsistent if and only iktieea finite series of clauses ©;,...,Cy =0,
where[d denotes the empty clause, such that each clause is eithemdbenef the initial clause set or is
obtained as a conclusion of Binary Resolution or Positivetbeng with premises selected from preceding
clauses.

A proof of Theorem 1 can be found, for example, in [46].

Linear resolution As Theorem 1 indicates, resolution captures logical entilt very well. However,
finding a deduction of the empty clause to show inconsist@acybe rather tedious as we are given no
guidance as to what clauses should be resolved in what drd@ddress this, various selection strategies
have been devised, among thénear resolution

Linear resolution is motivated by the idea that if we add aisato a set of clauses that is considered
consistent, then we only have to check the interactionstfieahew clause can have with the rest. Hence,
in the first step, we resolve the new clause with some othdrireall subsequent steps, one of the premises
will be the conclusion of the preceding step. Unfortunatedyile in linear resolution the number of pos-
sible deductions is greatly decreased, we lose completehiesvever, linear resolution remains complete
for a restricted type of clauses that contain at most ondipediteral, calledHorn clauses Besides, as it
is shown in [34], linear resolution can be extended with &amégue callecancestor resolutioifsee below
in Subsection 2.1.3) which yields a complete calculus fentihole of first-order logic.

Ordered Resolution Ordered resolution [5] refines this technique by imposingader in which the
literals of a clause have to be resolved. This reduces thetsspace while preserving completeness. Itis
parametrised with aadmissible ordering:) on literals and &election function

Basic Superposition Basic superposition [4] is an extension of ordered resmutivhich has explicit
inference rules for handling equality. The rules are sunsadrin Figure 2.3, wheri|, is a subexpression
of E in positionp, E[t], is the expression obtained by replach(, in E with t, C andD denote clauses,
A andB denote literals without equality arfd is an arbitrary literal. The necessary conditions for the
applicability of each rule are given in the following list:

Hyperresolution: (i) o is the most general unifier such thiao = B;o, (ii) eachA;o is maximal
in Cio, and there is no selected literal (€; \V A;)o, (iii) either every-B; is selected, on=1 and
nothing is selected aneB;0 is maximal inDo.

Positive factoring: (i) 0 = MGU(A, B), (ii) Ac is maximal inCo and nothing is selected o Vv
BovCo.

Equality factoring: (i) 0 = MGU(s,S), (ii) ta i so, (iii)) t'c ¥ Sa, (iv) (s=t)o is maximal in
(Cvs =t')o and nothing is selected (CVs=tVvs =t')o.

Reflexivity resolution: (i) 0 = MGU(s,t), (ii) in (CVs#t)o either(s#t)o is selected or nothing
is selected an@s # t)o is maximal inCo.

Superposition (i) 0 = MGU(s,E|p), (i) to 3 so, (iii) if E= 'w=V andE|p is inwthenvo ¥ wo
and(so =to) ¥ (wo =vo), (iv) (s=t)o is maximal inCo and nothing is selected {€Vs=t)o,

10



(C1VA1)...(ChVAL)  (DV=ByV---V=Bp)

Hyperresolution (v VCvD)o

Positive factoring ﬁé@éﬁ

Equality factoring o e

.. . Cvs#t
Reflexivity resolution s

(Cvs=t) (DVE)

Superposition (CVDVE[tp)o

Figure 2.3: Inference rules of Basic Superposition

(v) in (DVE)o eitherEo is selected or nothing is selected aad is maximal,(vi) E|p is not a
variable position.

An important feature of basic superposition is that it remaiomplete even if we do not allow super-
position into variables or terms substituted for variablesr this reason we keep track of such positions,
by surrounding them with ’[ ]’ and refer to them agriable position®r marked positionsSo, for instance,
applying substitutioro = {x/g(y)} to clauseC = R(x,y) V P(X) results inCo = R([g(y)],y) V P([9(¥)]).

2.1.2 Programming in Prolog

Prolog [45] is a declarative programming language equippiéda built-in logical inference mechanism
that corresponds to linear resolution. This mechanism mptete for Horn clauses, which correspond
directly to Prolog rules. A rule has three parts: a head doimigithe only positive literal, the symbdl-’

and a body which is the list of negative literals without nega separated by commas. So, for instance,
the Horn claus®(X) v —=Q1(X) vV =R(X,Y) V =Q2(Y) corresponds to the Prolog rule

P(X): — Q:(X), R(X,Y), Qa(Y).

The semantics of this rule is as follows: if all atoms in thelpare true, then so is the atom in the head. A
Prolog program is a set of rules that can be used to prove § qtem, calledgoal. The program will try

to unify the goal with some rule head, and in case of a suaglagsification, it will recursively try to prove
each statement in the body. If the goal matches more tharubmbead, then the program remembers this
by creating a so calledhoice pointand proceeds with the first matching rule. If we manage toyuhié
goal with a bodiless rule head, then the goal is proved. lfriference fails, because there is no matching
rule head, then we roll back to the last choice point and moedgth the next matching rule. This algorithm
corresponds to linear resolution that starts from the riegatf the query and that is always resolved in
its first literal. This mechanism is very efficient in thattiads out from the goal and examines only those
rules that have a potential to answer it.

2.1.3 Prolog Technology Theorem Proving

The Prolog Technology Theorem Prover approach (PTTP) weala@ed by Mark E. Stickel in the late
1980's [51]. PTTP is a sound and complete first-order thegmaawer, built on top of Prolog. An arbitrary
set of general clauses is transformed into a set of Hornselthat correspond to Prolog rules. Prolog
execution on these rules yields first-order logic reasaning

In PTTP, to each first-order clause we assign a set of Housels the so-callecbntrapositivesThe
first-order clausé; VLoV ---V Ly hasn contrapositives of the formay < —L4, ..., -Lx_1,-Lks1,--.,7Ln,
for each 1< k < n. Having removed double negations, the remaining negatiom&liminated by intro-
ducing new predicate names for negated literals. For eaafiqgate nam® a new predicate nameot P
is introduced, and all occurrences-aP(X) are replaced witmot P(X), both in the head and in the body.
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The link between the separate predic®esdnot P is provided usin@ncestor resolutioysee below. For
example, the claus&(X) v -B(X) vV =R(X,Y) is translated into three Prolog rules, each with differeie r
head:

A(X) - B(X), RXY).
not _B(X) o= not_A(X), RIXY).
not_ R(X, Y) :- not_A(X), B(X).

Thanks to using contrapositives, each literal of a firsteoirause appears in the head of a Horn clause.
This ensures that each literal can participate in a reswigiep, in spite of the restricted selection rule of
Prolog.

Next, let us see how PTTP implements positive factoring. pgsp we want to prove the goaland
during execution we obtain the subgeah. What this means is that by this time we have inferred a rule,
according to which if a series of goals starting with is true, therA follows:

A< not_A, Py, P2,...P,.
The logically equivalent first-order clause is
AVAV-PV-P2V-.. v

from which we see immediately that the two occurrence& o&n be unified, so there is no need to prove
the subgoatot _A. This step is calledncestor resolutiof34], which corresponds to the positive factoring
inference rule. Ancestor resolution is implemented in &gddy building anancestor listwhich contains
openpredicate calls (i.e. goals that we started but have notyishi&d proving).

Ancestor resolution is the inference step that checks ifatheestor list contains a goal which can be
matched with the negation of the current goal. If this is thse; then the current goal succeeds and
the unification with the ancestor element is performed. Nio#t in order to retain completeness, as an
alternative to ancestor resolution, one has to try to progetrrent goal using normal resolution, too. This
is important if the ancestor element contains variablesaadifferent proof can yield a different variable
substitution.

There are two further features in the PTTP approach. Fastyoid infinite loops, iterative deepening
is used instead of the standard depth-first Prolog searategyr. Second, in contrast with most Prolog
systems, PTTP uses occurs check during unification, i;eexample termX and f (X) are not allowed to
be unified because this would result in a term of infinite depth

To sum up, PTTP uses five techniques to build a first-orderrémeqrover on the top of Prolog:
contrapositives, renaming of negated literals, ancessmlution, iterative deepening, and occurs check.

2.2 Description Logics

Description Logics (DLs) [26] is family of logic languagessigned to be a convenient means of knowledge
representation. These languages can be embedded intorflestiogic, but — contrary to the latter — they
are mostly decidable which gives them a great practicaliegdpility. Description Logics provide the
logical background for the Web Ontology Language (OWL [274 ®&WL2 [21]).

A DL knowledge bas& B consists of two parts: the TBox (terminology box) and the ABassertion
box). The TBox contains universal knowledge that holds ipex#ic domain. The ABox stores knowledge
about individuals. We refer to the TBox part of the knowletdigse a&k B and to the ABox a&Bg.

The main building blocks of a DL knowledge base eomceptsthat represent sets of individuals and
rolesthat represent binary relations, i.e., sets of pairs ofviddials. Complex concepts and roles can be
built from simpler ones using concept and role constructtirs set of available constructors determines
the expressivity of the language and naturally defines aulagg family. In the following we introduce the
most important DL languages. These definitions will be intgatrfor understanding Chapter 3, where we
present various calculi to perform Description Logic reasg.

12



2.2.1 TheAL language and its extensions

The 4L language allows for describing simple relationships betweoncepts and roles. In particular,
we can state that two concepts are identical or that one pbika subset of another. These statements
constitute the TBox. Besides, the ABox holds assertiortmgtthat some named individual belongs to the
extension of a concept or that the relationship represdntedrole holds between two named individuals.

The syntax of theq £ language is given with respect to a 3¢t of individual names, a s&t(- of atomic
concept names and a s&f; of atomic role names. From these, we define the set.6fconcepts to be
the smallest set such that 1) every concept name is a coreptand L are concepts, and 3)@,D are
conceptsAis an atomic concept aridis a role, then-A, CM D, YR.C and3R.T are also concepts.

Leta, b be individual name<;, D concept names ariRla role name. Ad L TBox is a list of axioms of
the formC = D (concept equivalence axigmndC C D (concept inclusion axiomAn 4 L ABox contains
axioms of the fornC(a) andR(a,b).

The semantics ofl L is defined as follows:

Definition 1 (interpretation) An interpretation I= (A',-") consists of a set' called thedomainof | and

a valuation-' which maps every concept to a subsef\bf every role to a subset @' x A' and every
individual name to a member & such that, for all concepts @ roles RS and nonnegative integers n,
the following equations hold, whe& denotes the cardinality of a set S:

T = A
1= 0
(-A) = a'\C
(CnD)' = c'nD!
(VRC)' = {x|vy: (xy)eR —yeC'})
(ART) = {x|3y:(xy)eR'}

An interpretation Isatisfies

e terminology7 if and only if C C D' for each CC D € 7 and C = D' for eachC=D € 7. In this
case we say that | is a model Bt

e ABoxA if and only if d € C' for each Qa) € 4 and(a',b') € R for each Ra,b) € 4. In this case
we say that | is a model of.

A knowledge bas&B is said to besatisfiablein case there exists an interpretatiowhich is a model
of KBy andKB.

A concept equivalence axio®= D is logically equivalent to two conceptinclusion axiom®s— D and
D C C. Consequently, without loss of generality, we will somedgitreat the TBox as containing concept
inclusion axioms only.

Let R be a role name ana b individual names. Ifa',b') € R for some interpretatioh, then we say
thatb' is anR-successoof a in that interpretation. When it leads to no misunderstagekia will simply
say that is anR-successor cé.

Several language extensions exist for thé language, which add new concept constructors. Each
extension has a letter associated with it and the name of emaad language is obtained by adding the
corresponding letters to th@ L prefix. So, for exampled L extended withC and Q yields the4LCQ,
language. In the following, we introduce the most importanguage extensions.

C The 4L language only allows negation in front of atomic concept. &&a lift this restriction, by
allowing negation to be applied to any concept. Thus we alitee 4 L C language.

13



U This extension introduces the union constructay, {.e., a concept can be the union of two concepts.
The syntax and semantics of this language extension is:

(CuD)' = c'up'

E The simple existential restrictiordR. T) in 4L allows for describing individuals who appear in the
domain of some relatioRR. With full existential restriction 4R.C), we can also prescribe that tie
successors be in some conc€ptSyntactically, what changes is that we allow arbitraryaapts in place
of theT concept:

(3RC)' = {x|3y: (xy)eR nyeC'}

AL We add unqualified number restrictions of the fdrnR) and(> nR) that define the set of individuals
having at least or at mostR-successors:

(<nR) = {xIt{yl (xy) eR} <n}
(>nR) = {xI#{yl (xy) R} >n}

Q. Qualified number restrictions extend unqualified numbericti®ns. We can provide a concept that
the R-successors have to satisfy:

(<nRC)' = {xIt{ylxy)eRryecC'} <n}
(>nRC)' = {x|#{yl(xy) eRAyeC'} >n}

One can easily show that the expressive power of full negdtid is equivalent to that of the union
constructor (1) and full existential restriction%) using De Morgan like equivalences, hence we have
ALC=ALUE=ALCE=ALCU=ALCUE. AL, ALE andALU are real sublanguages gfLC
and all these languages are extended by\thend Q extensions.

2.2.2 TheSHIQ language

The 4 L language family presented in the previous section is raingple, which makes reasoning rather
straightforward. However, there are many domains that cdy lme described using more sophisticated
language constructs. In this section we introducest€l Q language that is probably the best known DL
variant, thanks to a good compromise between complexityeapdessivity. We define the language as a
series of language extensions, introducing$hg #, S# I andS# 1Q languages.

S This language extends th&L C language with transitivity axioms of the forfirang R) for some role
R. Such an axiom is satisfied by all interpretations wher a transitive role.

SH The #H extension introduces role hierarchies. The knowledge baseontain axioms of the form
SC RwhereSandR are roles, which expresses that the relation represent8asty subset of the relation
represented bR, i.e.,(SCR)' & S CR. Given a knowledge base KB, we will call the set of all role
inclusion axioms th&Box(KBg ). Note that defined this way, the RBox is part of the TBox.

SHI So far, we only saw constructors for concepts, that is, wédodescribe complex concepts, but not
roles. Now, we introduce the inverse role construckr)( This is an important extension since ontology
developers often need to refer to the inverse of some role:

(R)' = {xy) | (%) eR'}
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SHIQ TheSHIQ language is obtained by extendigg{ I with qualified number restriction).
This language has been the most important DL language oathelécade — it also forms the logical basis
of OWL1, the first Web Ontology Language — and only recently atiention shifted towards even more
expressive variants. The subsequent chapters will deaflgreith S 7 I Q reasoning, hence we now repeat
and summarize the definitions that make up this language:

Definition 2 (S#H1Q ). Let A be a set of concept names afg a set of role names. The set of roles is
Ng U{R™ | Re Ng }. We define the function Inv on roles such that Rjv= R~ if R Nrand In(R ™) =
R.

A role inclusion axiom(RIA) is an expression of the formRS, where RS are roles. Aransitivity
axiomis of the form TrangR) where R is a role. AS#H 1Q-role hierarchyalso called as# 1Q RBox, is
a set of role inclusion axioms together with a set of tramgitiaxioms. For an RBo we define=* to be
a transitive-reflexive closure af over R U{Inv(R) C Inv(S)|RC Se R }. Role S is called aub-roleof R
if SC* R. Arole issimpleif it has no sub-role S such that Trai® € R.

The set ofSH T Q-concepts is the smallest set such that 1) every concept isaaneoncept, 2)I and
L are concepts and 3) if © are concepts, R is a role, S is a simple role and n is a noninegatteger,
thenCLD, CrD, -C, YR.C,dR.C, < nSC and> nSC are also concepts.

A general concept inclusion axiom (GCI) is an expressiomefform CC D for two S I Q-concepts
C,D. ASH IQ-terminology also called as# IQ TBox is a set of GCls, extended witts & 1 Q RBox.

LetA; = {a,b,c,...} be a set of individual names. Assertioris of the form Qa), R(a,b), a=b or
a#bforabe Aj, arole RandS#H IQ-concept C. AABoX is a set of assertions.

A SH 1Q knowledge base KB can be broken into two parts: an ABoxg(Kiid a terminology (KB).
The part of the terminology that relates to roles is called thle hierarchy (K& ).

The semantics of # 1 Q is defined as follows:

Definition 3 (interpretation) An interpretation I= (A',-') consists of a seA' called thedomainof | and

a valuation-' which maps every concept to a subsef\bf every role to a subset @' x A' and every
individual name to a member & such that, for all concepts @ roles RS and nonnegative integers n,
the following equations hold, whet& denotes the cardinality of a set S:

(R)' = {xy) | (.0 eR'}

T = A

1= 0

(—|C)| _ AI\CI
(CnbD) = c'nD!
(CuD)' = c'up'
(VRC)' = {x|vy:(xy)eR —yeC'}
(ARC)' = {x|3y: (xy)eR nyecC'}
(<nRC)' = {x|#{y| (xy)eRAyeC'} <n}
(>nRC)' = {x|#{y| xy)eRAyeC'} >n}

An interpretation Isatisfies

o role hierarchy® if and only if $ C R for each SZ Re ® and R is transitive for each Tran®) € %..
In this case we say that | is a model®f

e terminology7 if and only if it satisfies the contained role hierarchy antl D' for each GCI
CLC D e 7. Inthis case we say that | is a modelbf

e ABoxA4 if and only ifd € C' foreachGa) € 4, (a',b') € R for each Ra,b) € 4, & =b' for each
a=be g2andd #b' for each a£ b € 4. In this case we say that | is a model #f

A SHT1Q knowledge basKB is said to besatisfiablen case there exists an interpretatlomhich is a
model ofKB; andKBg.
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2.2.3 TheR 1Q language

In S#H 1Q we only allowed RIAs of the forn$ = R for (possibly inverse) roleR andS. Besides, we could
declare that some roles are transitive. With transitivity,can make statements likehe friend of a friend

is a friendor thatlf A is located in B and B is located in C then A is located irHowever, often it would
also be convenient to be able to say things Tike wife of a friend is a friend as waedt thatlf A is located

in B and B is a subdivision of C, then A is located inlOmight also be useful in an ontology of family
relations to say thathe mother of a spouse is a mother-in-ldMotivated by these examples, we introduce
generalised RIA:

Definition 4 (generalised role inclusion axiomp generalised role inclusion axiom (RIA) is of the form
w LC R where R is an atomic role name and=2n5, 0 S0...5,, i.e., w is obtained by composing n roles. A
generalised role hierarchy is a set of generalised RIAs.

In the following, when it leads to no ambiguity, we will indite. composition of roles by simply writing
them after each other, i.e., insteadSfo S we will write §S,. RestrictingR to atomic roles is no real
restriction and is only meant to make the syntax simpler. eNbat the axionw C R is equivalent to
Inv(w) C Inv(R), hence we can always choose the one in which the right haedssah atomic role name.
In the presence of generalised RIAs, there is no need fasitiaty axioms, since the RIRKRRLC R captures
the transitivity ofR.

Introducing generalised RIAs 4 1Q leads to undecidability in general ([28]). However, we will
focus on an important decidable subcase, when the rolerbigrés regular.

Definition 5 (regular role hierarchy)Let < be a strict partial order on roles. A generalised RIA of the
form wC R is<-regular if

e w=RRor

e W=R"or

e w=5%...S5yand $<Rforie {1...n} or
e Ww=RSS...Syand $<Rforie {1...n} or
e W=5%...5Rand $<Rforie {1...n}

A generalised role hierarchy is regular if there exists acttpartial order < such that each RIA ix-
regular. The semantics is defined analogously#7Q, i.e., a model satisfies a RIAVC R ifw/ C R,
The Description Logie® 7Q* is obtained fron® # I Q by replacing role hierarchies and transitivity axioms
with regular role hierarchies.

With the change of the role hierarchy, the definition of semples changes as well;

e Every role name that does not occur on the right hand side dRaifksimple.
e Arole name R is simple if, for each RIAWR,w = S for some simple role S.

e Aninverse role Sis simple if S is simple.

2.2.4 The reasoning task

We list the most important DL reasoning tasks:
1. Is a set of DL axioms satisfiable? In other words, can onedimebdel that satisfies all the axioms?
2. Is an axiom logically entailed by some set of axioms?

3. Is one concept subsumed by another, i.e., is it true thaihaividual that belongs to the first neces-
sarily belongs to the second?

INote that® I Q is sometimes defined to only allow RIAs where the left hane siohtains at most two roles. Our more general
definition follows [28].
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4. Are two concepts equivalent, i.e., do they have the satemsions in all interpretations?
5. Are two concepts disjoint?
6. Is a concept satisfiable with respect to a TBox?

For sufficiently expressive languages, one can easily shatttiese reasoning tasks can be reduced to each
other. In particular, all reasoning problems can be regtras satisfiability checking.

Theorem 2. For any DL language that contains full negation (frofC C upwards), the following reason-
ing tasks can be reduced to satisfiability checking:

1. Is axiom Q logically entailed by the set of axioms KB?
2. Is concept C subsumed by concept O{D)?

3. Are concepts C and D equivalent?

4. Are concepts C and D disjoint?

5. Is concept C satisfiable with respect to TBOR

Proof. (1) Q is logically entailed byKB exactly wherKBU {—Q} is not satisfiable. (2f is subsumed by
D exactly whenCr1—D) is not satisfiable. (3¢ andD are equivalent exactly when neith@m —D) nor
(DM —C) is satisfiable. (4L andD are disjoint exactly whefiC D) is not satisfiable. (5) Take a roRe
that appears neither i nor inC. Let us consider a new TBoX' = 7 U{T C 3RC}. Given thatRis a
new role name, it is easy to see that the newly added axionowlyl introduce inconsistency to the TBox
if C is unsatisfiableC is satisfiable in the presence of TB@xif and only if 7/ is consistent. O

Thanks to Theorem 2, we can afford to address only satisfiablecking when we build algorithms
for DL reasoning. We will do so in the rest of the dissertation

2.3 Resolution Based Reasoning for Description Logics

In [41] a resolution based theorem proving algorithm for§# 7Q DL language is presented. Our results
presented in Chapter 3 provide various extensions to thaidhm.

In the first step, transitivity axioms are eliminated, at thgpense of adding some new GCls. The
language obtained frod\# I Q by eliminating transitivity is calledd LCH I1Q . The obtainedLCH IQ,
knowledge base is not logically equivalent to the origira chowever [41] proves that the two knowledge
bases are equisatisfiable.

In the following definition,NNF(C) denotes the negation normal form©f i.e., negation is pushed
inwards to atomic concepts.

Definition 6 (concept closure)For a SH 1Q knowledge base KRilos(KB) denotes the smallest set of
concepts that satisfies the following conditions:

e ifC C D € KB, then NNF-CLD) € clogKB);

e ifC =D € KB, then NNF-CLI D) € clogKB) and NNKF-DLIC) € clogKB);
e ifC(a) € KB then NNRC) € clogKB);

e ifC € clogKB) and D is a subconcept of C thendclosKB);

e if (< NRC) € clogKB) then NNK-C) € clogKB);

e if VRC e clogKB), SC* R, and TrangS) € KBy, thenvS.C € clogKB).

We call clogKB) theconcept closure of KB
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Definition 7 (Q(KB)). For anyS# I1Q DL knowledge base KR)(KB) is an4LCH IQ knowledge base
constructed as follows:

e Q(KB)s is obtained from KB by removing all axioms TraiR) and adding for each concept
VR.C € closg(KB) and role S such that §* R and TrangS) € KBy the axiomivR.C C VS.(VS.C);

e Q(KB)4 =KBg
Proposition 1. KB is satisfiable if and only 2(KB) is satisfiable.
Proof. See [41]. O

After eliminating transitivity axioms, the knowledge basegether with the negation of the query
is transformed into a set of first-order clauses with a charestic structure. These are referred to as
ALCHIQ clauses and are summarised in Figure 2.4, where:

e P(t) is a possibly empty disjunctiofi~)Py(t) vV --- V (—)Px(t) of unary literals;

P(f(x)): is a possibly empty disjunctiofy (f1(x)) V-« V Pn(fa(X));

tis aterm that is surely not marked,;

[t] is a term that is surely marked;

<t> is a term that may or may not be marked,;

#e {:’7&};

Figure 2.4:4LCH1Q clauses

_‘R(Xv y) \ S(ya X) (Cl)
_‘R(Xv y) N S(Xv y) (c2)
P(x) VR(x,< f(x) >) (c3)
P(X) VR([f(x)],x) (c4)
P1(X) VP2(< f(x) >) vV /(< fi(x) > # < fj(x) >) (c5)
P1(x) VP2([g(0)]) v Pa(< f([g(9)]) >) /(< ti > #<t; >) (c6)
wheret; andt; are of the formf ([g(x)]) or of the formx

P10V \/ (=R YV \/ P2yi) v \/ (i =Yj) (c7)

i=1 i=1 ij=1
R(<a>,<b>)VP(<t>)V\/(<t>#<tj>) (c8)

wheret,t; andt; are either a constant or a terfat[a])

The reasoning task is reduced to deciding whether the datdirst-order clauses are satisfiable. This
is answered using basic superposition (see Subsectidr) 2xtended with a method calldécomposition
[41] shows that the set o LCH I Q clauses is bounded and that any inference with premises fede
a subset N ofaLCHIQ results in eithei) an ALCHIQ clause or(ii) a clause redundant inNor
(iii) a clause that can be decomposed to, i.e., substituted withab@iC# I Q clauses without affecting
satisfiability. These results guarantee that the saturafian 4 LCH I Q set terminates.

2A redundant clause is a special case of other clauses in Naanbecremoved.
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2.3.1 Separating TBox and ABox Reasoning

The drawback of the resolution algorithm outlined abovéé it can be painfully slow. In general, resolu-
tion with saturation is a bottom-up strategy and computdsgilcal consequences of the clause set, many
of which are irrelevant to deciding our question. It wouldrbee to be able to use some more efficient,
query oriented, top-down mechanism. Unfortunately, sueblanisms are available only for more restric-
tive languages, such as Horn Clauses. One can get arourmtabiem by breaking the reasoning into two
tasks: first perform a saturation based preprocessing tocgeahatever could not be deduced otherwise
and then use a fast top-down reasoner.

Note that complex reasoning is required because of the (liBsx) of the knowledge base and that
in a typical real life situation there is a relatively smaBdx and a large ABox. Furthermore, the rules in
the TBox are likely to remain the same over time while the ABaxa can change continuously. Hence we
would like to move forward all inferences involving the TBorly, perform them separately and then let
the fast reasoner (whatever that will be) do the data rektigas when a query arrives.

In the framework of basic superposition, when more than ofezénce steps are applicable, we are free
to choose an order of execution, providing a means to achiievdesired separation. Elements from the
ABox appear only in clauses of type (c8). [41] gives two intpat results about the role of ABox axioms
in the saturation process:

Proposition 2. An inference fromaLCH IQ clauses results in a conclusion of tyfe) if and only if
there is a premise of type8).

Proposition 3. A clause of typéc8) cannot participate in an inference with a clause of typ4é) or (c6).

In light of Proposition 2, we can move forward ABox indepenteeasoning by first performing all
inference steps involving only clauses of type (c1) — (c#1] calls this phase the saturation of the TBox.
Afterwards, Proposition 3 allows us to eliminate clausetypé (c4) and (c6). Besides making the clause
set smaller, this elimination is crucial because in the ieing clauses there can be no function symbol
embedded into another (this only occurred in clauses of (gfp. The importance of this result comes
out in the second phase of the reasoning, because the dddaldown mechanisms are rather sensitive
to the presence of function symbols.

By the end of the first phase, DL reasoning has been reducedcididg the satisfiability of first-
order clauses of type (c1) - (c3), (c5), (c7) and (c8), wherxefurther inference involves at least one
premise of type (c8). For the second phase, i.e., data regs@hl] uses a Datalog engine which requires
function-free clauses. Therefore (unary) functionaltietes are transformed to new binary predicates and
new constant names are added: for each conatant each functiorf the new constards is introduced
to represent(a). Note that this transformation requires processing thelevABox.
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Chapter 3

Resolution based Methods for
Description Logic Reasoning

In this chapter we present our results related to resoluigsed Description Logic reasoning. After an
overview of related work, we present a resolution calculuSéction 3.2 that is a modified version of
basic superposition. This calculus is specialisedZ@rC# I Q reasoning. In Section 3.3 we extend these
results to theR 1Q language by giving a transformation that maps &¥Q DL knowledge base to an
equisatisfiablea L CH I Q knowledge base. Section 3.4 presents our work that aimspmoie efficiency
by moving the resolution based reasoning from the level sf-tirder clauses to DL axioms, i.e. define a
calculus directly on DL expressions.

3.1 Related work

Description Logic languages are used more and more frelyfenknowledge representation, which cre-
ates an increasing demand for efficient automated DL reagoriihe Tableau Method [2] has long pro-
vided the theoretical background for DL reasoning and myistiag DL reasoners implement some of
its numerous variants. The typical DL reasoning tasks camtheced to consistency checking and this is
exactly what the Tableau Method provides. While the Tablesalf has proven to be very efficient, the
reduction to consistency check is rather costly for somsamiag tasks. In particular, the ABox reasoning
taskinstance retrievatequires running the Tableau Method for every single irdliai that appears in the
knowledge base. Several techniques have been developeaktableau-based reasoning more efficient
on large data sets, (see e.g. [22]), that are used by theddtttte-art DL reasoners, such as RacerPro [23]
or Pellet [50].

Other approaches use first-order resolution for reasonngesolution-based inference algorithm is
described in [30] which is not as sensitive to the increagb®fABox size as the tableau-based methods.
The system KAONZ2 [41] is an implementation of this approgmtoyviding reasoning services over the
description logic languag8€# Q. The algorithm used in KAONZ2 in itself is not any more effidiéor
instance retrieval than the Tableau, but several stepsnalive only the TBox can be performed before
accessing the ABox, after which some axioms can be elimina¢eause they play no further role in the
reasoning. This yields a qualitatively simpler set of axomhich then can be used for an efficient, query
driven data reasoning. For the second phase of reasoning\NlRA@Res a disjunctive datalog engine and
not the original calculus. Thanks to the preprocessingrpgaleswering is very focused, i.e., it accesses as
little part of the ABox as possible. However, in order foistto work, KAONZ2 still needs to go through the
whole ABox once at the end of the first phase.

Reading the whole ABox is not a feasible option in case thexABdigger than the available memory
or the content of the ABox changes so frequently that onflthé&Box access is an utmost necessity.
Typical such scenarios include reasoning on web-scaleing description logic ontologies directly on top
of existing information sources, such as in a DL based infdiom integration system.
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During the past years, we have developed a DL ABox reasomleddalog [39], that can be freely
downloaded fromht t p: // dl og- r easoner. sour cef orge. net, which is built on principles similar to
those of KAON2. We only highlight two main differences. Ejrsstead of a Datalog engine, we use the
reasoning mechanism of the Prolog language [11] to perfoensécond phase (see [37]). Second, we use
a modified resolution calculus (see [57]) that allows us tdgsen more inference steps in the first phase,
thanks to which more axioms can be eliminated, yielding aaneimpler set of axioms to work with in
the second phase. The important difference is that whileaiproach of [41] can only guarantee that
there are no nested functional symbols, our calculus esshat no function symbols remain at all. This
makes the subsequent reasoning easier and we can perfarseéh@uery driven reasoning without any
transformation that would require going through the ABogrewonce.

3.2 Translating an 4LC# IQ TBox to function-free clauses

Following the framework presented in Section 2.3, we bré&kreasoning task into two parts: the first
phase works only with the terminology part (TBox) of the kiesge base and the second phase consti-
tutes the data (ABox) reasoning. Note that complex reagdsirequired due to the complex background
knowledge stored in the TBox, while in a typical real lifeusition there is a relatively small TBox and a
large ABox. Furthermore, the rules in the TBox are likely éonain the same over time while the ABox
data can change continuously. Hence, if we manage to mowafdrall inferences involving the TBox
only and perform them separately, then the slow reasonmagri#thm required by the complexity of the
TBox does not take unacceptably much time due to the potgriiage size of the ABox. Furthermore,
these inferences need only to be performed once, in a pregsing phase. Afterwards, the second phase of
reasoning can be performed by a fast and focused data reaE@ch time queries arrive, only the second
phase is repeated, to reflect the current state of the ABox.

The input of the reasoner is a DL knowledge base and we warddiolel whether the knowledge base
is satisfiable. As we have seen in Theorem 2, this is suffifgrgolving all other DL reasoning tasks. In
the first step we translate the knowledge base into a s@traf # 1 Q clauses, as presented in Section 2.3.
We know that anysH 1 Q knowledge base can be translated imta CH I Q clauses, hence the calculus
to be presented supports g/ 1 Q language.

Instead of the standard basic superposition calculus dfd®e2.3, we introduce a new, slightly mod-
ified calculus, that allows us to perform more inference®ieehccessing the ABox. This is not just a
mere regrouping of tasks, we will see that the algorithm poed a crucially simpler input for the second
phase, allowing for more efficient data reasoning algorithithe improvement is achieved by eliminating
function symbols from the clauses derived from the TBox.

3.2.1 Where Do Functions Come From?

The initial $# 1Q DL knowledge base contains no functiongiowever, after translating TBox axioms
to first-order logic, we have to eliminate existential quférs using skolemisation which introduces new
function symbols. For example, consider the following axiavhich states that rich people have a rich
parent:

RichC (3hasParentRich)
This can be expressed using the following existentiallyngified first-order formula:
Yx(—Rich(x) v 3y(hasParentx, y) A Rich(y)))

Resolution requires that first-order formulae be trandlato clause form, which involves eliminating
existential quantification at the expense of introducimgesta functions. We obtain:

—Rich(x) v hasParentx, f (x))
=Rich(x) v Rich(f(x))

1Altough constants are sometimes treated as nullary funstjmbols, we will not do so. Hence, whenever we refer to fonct
symbols, constant symbols are not considered.
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The ABox remains function-free, hence everything that ikrtow about the functions is contained in the
TBox. This means we should be able to perform all functidateel reasoning before accessing the ABox.

3.2.2 The Modified Calculus

We modify basic superposition presented in Section 2.3 teyia the necessary conditions to apply each
rule. The new conditions are given below, with the newly alidenditions underlined:

HyperresolutionTBox: (i) o is the most general unifier such thigt = B; o, (ii) eachA;o is maximal
in Cio, andeither there is no selected literal {€; vV A))o or A; containsa function symbol, (iii)
either every-B; is selected, on = 1 and—B;0 is maximal inDo (iv) noneof the premisegontain
constants.

HyperresolutionABox: (i) o is the most general unifier such tihab = B;o, (ii) eachAjo is maximal
in Cio, and there is no selected literal (€; \V A;)o, (iii) either every-B; is selected, on=1 and
nothing is selected aneB;0 is maximal inDao, (iv) eachA; is ground,(v) Do is function-free.

Positive factoring: (i) 0 = MGU(A,B), (ii) Ac is maximal inCo andeither nothing is selected in
Ao Vv Bo Vv Co or A containsafunctionsymbol.

Equality factoring: (i) 0 = MGU(s,s), (ii) ta i so, (iii)) t'c »* Sa, (iv) (s=t)o is maximal in
(Cvs =t')o andeither nothing is selected o ors=t v s =t containsafunctionsymbol.

Reflexivity resolution: (i) 0 = MGU(s,t), (ii) in (CVs#t)o either(s#t)o is selectedor s#t
containsafunctionsymbol or nothing is selected afisl+ t)o is maximal inCa.

Superposition (i) 0 = MGU(s,E|p), (i) to # so, (iii) if E= 'w=V andE|p= w|y thenvo ¥ wa
and(so =to) i (wo = vo), (iv) (s=t)o is maximal inCo andeither nothing is selected €V s=
t)o or s=t containsafunctionsymbol,(v) in (D V E)c eitherEg is selected or nothing is selected
andEa is maximal,(vi) E|, is not a variable position.

Note that hyperresolution is broken into two rules (HypsotationTBox and HyperresolutionABox)
which differ only in the necessary conditions. In the follog by original calculuswe refer to the basic
superposition presented in Section 2.3 andrimdified calculusve mean the rules of basic superposition
with the restrictions listed above.

We illustrate the difference between the two calculi usimrgnall example. Suppose we know that
people have at most one child and we also know that everybasiw ltlever child. We have the following
axioms:

T C (< 1hasChildT)
T C (3hasChildClever)

From these we obtain three first-order clauses:
(1)hasChildx, f(x))
(2)Clever(f(x))
(3)—hasChildx,y) V —hasChildx,z) vy =z
For any childb, i.e., for anyhasChild a, b) axiom in the ABox, we can dedu€ever(b) using the original

basic superposition calculus through the following stepe (elevant inference rule is indicated after the
conclusion):

(4)hasChilda,b)
(5)f(a)=b Hyperresolution(3,1,4)
(6)Clever(b) Superposition(5,2)
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What basic superposition cannot deduce is the generahatevery child is clever. This, however, is easy
with the modified calculus:

(7)—-hasChildx,y) vy = f(x) HyperresolutionTBox(3,1)
(8)—hasChildx,y) v Clevely) Superposition(7,2)

From the newly deduced general rule, we can easily obtaicl#iverness olf using HyperresolutionABox
with premises (8) and (4).

The benefit of the modified calculus is that once we deducev@);an dispose of (1), (2) and (7), the
clauses containing function symbols. When we start addieghiBox clauses to the reasoning, the TBox
has reduced to the following axioms:

(3)—hasChildx,y) v —hasChildx,z) vy =z
(8)—hasChildx,y) v Cleveny)

In the following we prove that the new calculus can be usedleshe reasoning task.
Proposition 4. The modified calculus remains sound and complete.

Proof. The inference rules of basic superposition are all valichéf/ee do not impose any restrictions on
their applicability. Since in the new calculus only the citioths are altered, it remains sound.

The modifications that weaken the firing requirements of aouly extend the deducible set of clauses,
so they do not affect completeness.

In case of hyperresolution, let us first consider only the nendition(iv) and disregard conditiofv)
on HyperresolutionABox. A hyperresolution step in its ameg form has a main premise of type (c7),
some (possibly zero) side premises of type (c3) — (c4) anéggpossibly zero) side premises of type (c8).
This one step can be broken into two by first resolving the megmise with all side premises of type (c3)
and (c4) (by one HyperresolutionTBox inference step) aed tiesolving the rest of selected literals with
side premises of type (c8) (applying a HyperresolutionABt@ep). A hyperresolution step in the original
calculus can be replaced by two steps in the modified one,rspleteness is preserved.

All that remains to be proved is that conditiGr) on HyperresolutionABox does not invalidate com-
pleteness. For this, let us consider a refutation in theirmalgcalculus that uses a hyperresolution step.
If all side premises are of type (c3) and (c4) then it can bestwibed with a HyperresolutionTBox step.
Similarly, if all side premises are of type (c8), then we charmge it to HyperresolutionABox, as clauses
of type (c7) are function-free, satisfying conditiGr). The only other option is that there are both some
premises of type (c3) and of type (€8 he result of such step is a clause of the following type:

P19V \/ Pa(a) v \/ Pa([fi(X)]) v
vV =aj)vV([fix]=[f) v V(i) =a)

At some point each function symbol is eliminated from thaisi(by the time we reach the empty clause
everything gets eliminated). In the modified calculus wd td able to build an equivalent refutation
by altering the order of the inference steps: we first applpétgesolutionTBox which introduces all
the function symbols, but none of the constants, then weglddrward the inference steps that eliminate
function symbols and finally we apply HyperresolutionABdxe intermediary steps between Hyperreso-
lutionTBox and HyperresolutionABox are made possible Bmieakening of the corresponding necessary
conditions. Notice, that by the time HyperresolutionABsxapplied, functions are eliminated so condition
(v) is satisfied.

We conclude that for any proof tree in the original calcul@soan construct a proof tree in the modified
calculus, so the latter is complete. O

Proposition 5. Saturation of a set ol LC#H 1Q clauses using the modified calculus terminates.

2It is shown in [41] that clauses of type (c8) and (c4) parttipg in an inference result in a redundant clause so we need n
consider this case.
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Proof. We build on the results in [41], that&# I Q knowledge base can be transformed into first-order
clauses of type (c1) — (c8) and that clauses of type (c8) eteedbrmC(a), R(a,b), -S(a,b),a=bora#b,

i.e., initially they do not contain any function symbols. Wil also use the fact that in the original calculus
any inference with premises taken from a subset M &{C# 1 Q results in eithe(i) an4LCH 1Q clause

or (ii) a clause redundant in N diii) a clause that can be substituted with 8@ C#H 1Q clauses via
decomposition.

All modifications (apart from breaking hyperresolutiondritvo) affect clauses having both function
symbols and selected literals, in that we can resolve wetHitaral containing the function symbol before
eliminating all selected literals. Such a clause can ongeagsis a descendant of a HyperresolutionTBox
step. After applying HyperresolutionTBox, we can obtaia tbllowing clauses:

P19V \/(=R(x.y1) v \/ P2(yi) v \/ Pa([fi (x)])V (c9)
vV =y) vV X)) =[5V ([HK] =)

In the following, it will be comfortable for us to consider lase set that is somewhat broader than (c9),
in which function symbols can appear in inequalities as vildis set is:

P1(x) vV \/ (=RX,Y1)) v \/ Pa(yi) v \/ Pa([fi ()])V (c10)
VV i =yi) vV V(< fi(x) > #< f;(x) >) v \/(< fi(x) > #yj)

where #c {=,#}. Of course, every clause of type (c9) is of type (c10) as well.

Let us see what kind of inferences can involve clauses of (gp@). First, it can be a superposition
with a clause of type (c3) or (c5). In the case of (¢c3) the assioh is decomposed (in terms of [41]) into
clauses of type (c3) and (c10), while in the case of (c5) wainld clause of type (c10). Second, we can
resolve clauses of type (c10) with clauses of type (c10) B). (The conclusion is of type (c10). Finally,
we can apply HyperresolutionABox with some side premisethefformR(a, b;), but notice that only if
the literals with function symbols are missing. The resutifitype (c8). This means that during saturation,
we will only produce clauses of type (c1) — (c8) and (c10).

Itis easy to see that there can only be a limited number okelsof type (c10) over a finite signature.
Hence the modified calculus will only generate clauses frdinite set, so the saturation will terminate.

O

3.2.3 Implementing Two-Phase Reasoning

We will use the modified calculus to solve the reasoning tagkvb phases. Our separation differs from
that of [41] in that function symbols are eliminated duritg ffirst phase, without any recourse to the
ABox. Our method is summarised in Algorithm 1, where steps (B) constitute the first phase of the
reasoning and step (4) is the second phase, i.e., the datmirg. Note that one does not necessarily have
to use the modified calculus for the second phase: any calthéi more effectively exploits the fact that
no function symbols remain is applicable.

Algorithm 1 S#H 1Q reasoning

1. Transformthe&S# 1Q knowledge base to a set of clauses of types (c1) — (c8), whauses of type
(c8) are function-free.

2. Saturate the TBox clauses (types (c1) — (c7)) with the fremtitalculus. The obtained clauses are of
type (cl) — (c7) and (c10).

3. Eliminate all clauses containing function symbols.

4. Add the ABox clauses (type (c8)) and saturate the set.

To show that our method is adequate, we first formulate theviiohg proposition:
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Proposition 6. A function-free ground clause can only be resolved with tionefree clauses. Further-
more, the resolvent is ground and function-free.

Proof. It follows simply from the fact that a constaatcannot be unified with a ternfi(x) and from
condition(v) on HyperresolutionABoOX. O

We are now ready to state our main claim:
Theorem 3. Algorithm 1 is a correct, complete and finigeg/{ I Q DL theorem prover.

Proof. We know from Proposition 5 that saturation with the modifiattalus terminates. After saturating
the TBox, every further inference will have at least one psenof type (c8), because the conclusions
inferred after this point are of type (c8) (Proposition 6)off this follows, (using Proposition 6) that
clauses with function symbols will not participate in anyther steps, hence they can be removed. In light
of this and taking into account that the modified calculusosect and complete (Proposition 4), so is
Algorithm 1. O

By the end of the first phase of reasoning, we obtain claustsedbllowing types:

_'R(X’ y) \ S(yv X) (Cll)
_‘R(Xa y) \ S(Xa y) (C12)
P(x) (c13)
PL() vV (SR VvV Pa(y) vV (v =y)) (c14)
i | ]
(—)R(a,b) (c15)
C(a) (c16)
a=b (c17)
a#£b (c18)

We have completely eliminated function symbols and are reaay to start the data reasoning.

3.2.4 Benefits of Eliminating Functions

The following list gives some advantages of eliminatingdiion symbols before accessing the ABox.

1. It is moreefficient. Whatever ABox independent reasoning we perform afterrftpaccessed the
data will have to be repeated for every possible substitudforariables.

2. Itissafer. A top-down reasoner that has to be prepared for argumentaioong function symbols
is very prone to fall into infinite loops. Special attenticgedls to be paid to ensure the reasoner does
not generate goals with ever increasing number of funcyomb®ls.

3. We getequality handling for free. In the resulting TBox only clauses of type (c14)tzdmequality
that can be eliminated by a mere check whether two constamsthe ABox refer to the same object
which is usually well known by the creators of the databasgteNhat equality treatment in general
makes the reasoning task much more complex. This is why wechask basic superposition.

4. ABox reasoning without functions talitatively easier. Some algorithms, such as those for Dat-
alog reasoning are not available in the presence of funstiarbols. We have seen in Section 2.3.1
that [41] solves this problem by syntactically eliminatifumctions, but this has two drawbacks:
first, equality reasoning is required (an introduced canstaght be equal to an ABox constant) and
second, this transformation requires scanning througlvtise ABox, which might not be feasible
when we have a lot of data.
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3.2.5 Summary

In this section we have presented a saturation algorithnfo 7/ 1Q clauses that can be used to trans-
form aS#H 1Q TBox to a set of function-free clauses. The transformatioimdependent of the ABox,
and hence of the size of the ABox. It can be seen as a prepnogdes ABox reasoning and hence any
resolution based ABox reasoning algorithm can make use @hi main benefit is that without functions
the ABox reasoning can be more focused, i.e., less sengitive size of the ABox.

3.3 Reduction of R 1Q DL reasoning to ALCH IQ DL reasoning

R IQ is a Description Logic language that is obtained by extemdif/ I Q with complex role inclusion
axioms. This extension significantly increases the expreg®wer of the language and is particularly im-
portant in medical ontologies. It is well known that the cdexity of reasoning also increases, namely by
an exponential factor. We designed an algorithm that map®afQ knowledge base into an equisatisfi-
able2£CH IQ knowledge base, which j§# I Q without transitivity axioms. The transformation time is
exponential in the size of the initial knowledge base, hatiseasymptotically optimal. The transformation
provides a means to redugel Q reasoning to1LCH 1 Q reasoning.

Most of the definitions that will be introduced in the follavg are based on [28], which gives a tableau
procedure for decidini® /Q. For each roler, the authors define a non-deterministic finite automaton
(NFA) that captures the role paths that are subsumd®l Bnese automata are used during the construction
of a tableau, to “keep track” of role paths. In the following will show that the automata can be used
to transform the initial 7 Q knowledge base to an equisatisfialdle C# I Q knowledge base. The main
benefit is that the treatment of the role hierarchy becomegspendent of the tableau algorithm. Hence,
any algorithm that decides satisfiability for @&~ CH IQ knowledge base can be used for satisfiability
checking of aR IQ knowledge base. In particular, the two phase reasoningitiigothat we presented
in Section 3.2 is applicable. This result extends the ingngliage of the DLog reasoner fregsti{ 1Q to

RIQ.

3.3.1 Building automata to represent RIAs

In this subsection we define a scheme for constructing finiteraata to represent regular role hierarchies.
We use the same construction as presented in [28].

Definition 8 (Ar, Ar, Br). Let R be a regular role hierarchy. For each role name R occurring®n
the NFA A is defined as follows: Acontains a single initial stateriand a single final staterfwith the

transition ir R fr. Moreover, for each i R € R, Ar contains the following transitions:

1. ifw=RR, then A contains & < ig,

2. ifw=S;...S5and § # R+ Sy, then A& contains k % iw = £ 2 £2... 3 0 & 1o
3. ifw=RS...S then Ak contains & 5 iw 2 £ 2 £2... 3 11 5 fq

W — - NPT Y. S ¢n E
4. ifw=5...§Rthen A containsk = iw — fy = fy... — Ty =ir

where all {, iy are assumed to be distinct.

Next, we introduce mirrored copies of automata, where alhsitions go backwards and the initial and
final states are switched. Formally, in the mirrored copy nfNFA we carry out the following modifica-
tions:

o final states are made non-final but initial

e initial states are made non-initial but final

. . . . Inv(S
e each transition p§> g is replaced with transition qM p
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e each transition p% q is replaced with transition & p.
We define NFASR as follows:
e ifR™ CR¢ R thenAg = Ar.

e fRTCReR then/—\} is obtained as follows: first, take the disjoint union qf with a mirrored
copy of A&. Second, makeithe only initial state, & the only final state. Finally, forgthe copy of

fr and f, the copy of, add transitionsg = ff, fs < ir,ig — frand & = ik
Afterwards, the NFAs Bare defined inductively ovex:
e if R is minimal w.rt.<, then we set B:= Ag.
e otherwise, R is the disjoint union of\r with a copy B of Bs for each transition p§> gin AR with

S# R. Moreover, for each such transition, we agittansitions from p to the initial state ingand
from the final state of Bto ¢, and we makezithe only initial state andg the only final state in B.

Finally, the automaton B- is a mirrored copy of B.
Proposition 7. For each role Re R the size of R is bounded exponentially in the size®f
Proof. See [28]. O

Definition 9 (Br(q,*), Br(*,q)). We denote by Bq,+) the automaton that differs fromgBonly in its
initial state, which is g. AnalogouslygB«,q) differs from B only in its final state, which is g.

Proposition 8. For a regular role hierarchy® and interpretation I, | is a model & _if and only if, for each
(possibly inverse) role S occurring iR, each word we L(Bs) and each(x,y) € w/, we havex,y) € S'.

Proof. See [28]. O

Proposition 8 states that two individuals &eonnected exactly when there is a role pathetween
them accepted bBs. This result gives us a key to handle value restrictions.p8ae individuak satis-
fies someS-restriction. If this is a maximum restriction<(kSC), thenS must be a simple role and the
restriction effects only the immediate neighboursxofThis case is already treated ##/ 7Q. Ifitis a
minimum restriction & kSC), the restriction can be made true by adding s@seccessors . The only
problematic case is universal restrictiorS(C), because finding alb-successors might be rather difficult.
However, Proposition 8 tells us that it is the role paths deed byBgs that we need to check to look for
S-successors.

3.3.2 A Motivating Example

Before formally defining the transformation of automataeyated from the role hierarchy into axioms, we
try to give an intuition through a small example. Supposertie hierarchy of a knowledge base consists
of the single axiom

PQCR

whereR P, Q are role names. One of the things that this axiom tells usistttase an individuadsatisfies
VR.C for some concept, then the individuals connectedxdhrough aP o Q chain have to be i€. This
consequence can be described easily by the following GCI:

VYRCLC VPVQ.C
or equivalently, we can introduce new concept names to aeoighuch nesting of complex concepts:

VRCLC X
X1 E VP X2
Xo CVQ.C
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Of course, these axioms only provide for the correct propagaf concepC and a new set of similar
axioms is required for all other concepts. However, we oelgchto consider the universal restrictions that
appear as subconcepts of some axiom in the knowledge basse €ancepts can be determined by a quick
scan of the initial knowledge base. For example, if the TBaxtains the following GCls:

DCVRC
TCVRD

then, only conceptS andD appear in the scope of a univergatestriction. Let us add a copy of the above
GCls for bothC andD and eliminate the role hierarchy. We obtain the followingokB

DCVRC TCVRD
VR.C C X VRDLCY;,
X1 CVP.Xo Y, CVPY,
X2 CVQ.C Y. CVQ.D

The two knowledge bases have different signatures and Heveedifferent models, however they are
equisatisfiable. We will prove this by showing that a modaioé knowledge base can be constructed from
a model of the other.

3.3.3 Translating automata to concept inclusion axioms

In this subsection we formally define the transformationiagular role hierarchy into GCls. In the end we
obtain an4 LCH 1 Q knowledge base. We make use of the notion of concept closlogKB)) provided
in Definition 6. The transformation itself is analogous tavhimansitivity axioms were eliminated from
SHIQ (Definition 7). Here, the situation is more complex as we havtake into consideration more
sophisticated role paths.

For each conceptR.C € clogKB) and each automaton statef Bg, we introduce a new concept
nameXsrc). The concepts associated with the initial and final stateBgadre denoted witiXsiartrc)
andXstoprc), respectively.

Definition 10 (Q(KB)). For any® I Q DL knowledge base KB (KB) is an4LCH I Q knowledge base
constructed as follows:

e Q(KB) is obtained from KB by removing all RIAs \iC R such that R is not simple and adding for
each conceptR.C € clogKB) the following axioms:

1. VRC C XstartrC)
2. Xpre) C Xqre) for each p% q € Br
3. Xpro) E VS XqRre) for each p> g€ Br
4. Xstoprc) EC
e Q(KB)7 =KBjy
Proposition 9. The size 0f2(KB) is bounded exponentially in the size of KB.

Proof. We know from Proposition 7 that the size of edg&his bounded exponentially in the size KBy
and consequently in the size KB. So for each conceptR.C € clogKB) we introduce at most expo-
nentially many new GCls of type 1-4. The sizeabdsKB) is linear inKB, so the total number of GCls
introduced is at most exponential in the sizeds. O

The following proposition will be useful for proving th&B andQ(KB) are equisatisfiable.

Proposition 10. Let KB be someR IQ knowledge base and | be a model®fKB). Assume thati €
(YRC)" and there is somp and role path we L(BR) such that/a,B) € w'. ThenB € C'.
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Proof. Letw=5$%...S,, whereS is possibly are transition. Letstart = bg, b1, ... b, = stopbe states of
Br along thew path. Sincda, ) € w, there are individuala = ag,as, ...a, = B such thata_1,&) € S.
Note that in cas& = € thena;_; = a;.

We show inductively thay; € X(Ibi,R,C) for all 0 <i < n. For this we use the axioms added in the

construction ofQ(KB). The axiom of type 1 ensures that the base case hukgx('stan RC)’ i.e.,ap €
X('bo rRo): For the inductive step, suppose first tBats ane transition. Therg; = a_1. By the inductive
hypothesis;_1 € X('bi_1 RC)’ and the corresponding axiom of type 2 ensure:sathatx('bi RC)" In the other

case, whel§ is not are transition, the same argument referring to a corresporadiiam of type 3 ensures

. |
thata € X(bi.R,C)'

Hence we know thad, € X('bn RC)’ i.e.,Be X('StOpR o) This, together with the axiom of type 4 ensures
thatB € C'. O

We are ready to formulate the main claim of this section:
Theorem 4. KB is satisfiable if and only ©2(KB) is satisfiable.

Proof. (=) Let| be a model oKB. We extend this model to an interpretatidmf Q(KB). |’ differs from
I only in the interpretation of the new concepigrc):

X(I;,R,C) = {y| Ix(xe (YRC)' A (3w e L(Br(,9)({x,y) e w)))}

We prove thal’ is a model ofQ(KB), by showing that the axioms added in the definitiofyKB) are
true. We consider the four cases separately:

1. VRCC Xstartre)
Suppose € (YRC)". Then, by choosing =y andw = ¢, we can apply the above definition to show
thaty € x(lstart,R,C)'

2. Xpro) EXaro)
Supposy € X', rc)- Then, there is somee (VRC)" and somav & L(Br(+, p)) such thatx,y) €
w!'. Sincep < q € Bg, it also holds thatv € L(Bgr(*,q)). Hence, the same andw testify that
y € Xlare):

3. Xipre) EVSXgRre)
Supposy € X/, rc)- Then, there is somee (VRC)'" and somav & L(Br(+, p)) such thatx,y) €
w!'. Letzbe someS’-successor of, i.e., (y,2) € . Sincep-> g € Bg, it also holds thawSe

L(Br(*,q)). Hencex andwStestify thatz € X<'(; RO)" This holds for allS'-successors of, hence
I/

Y€ VSXire)

4. x(stopR,C) EC
Suppose € X(I;topR,C)' Then, there is somec (VR.C)" and somev € L(Bg) such thatx,y) € w/’.

Sincel andl’ only differ in the extension of new concepts, we also haed YR.C)' and(x,y) € w'.
From the latter, we infer using Proposition 8 tlaty) € R’. Sincex € (VR.C)', it follows thaty € C'
and from that we conclude that C'".

(<) Letl be a model of2(KB) and!’ an interpretation constructed franas follows:
o A =2l

e Foreach individuah, " = a';

e For each atomic concepte clogKB), A" = Al;

e Foreachrol®R R’ = {(x,y) | Iwe L(Br)({x,y) €W)}
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By construction and referring to Propositionl8satisfies the role hierarci¢Bg . SinceR € L(Br), we
haveR' C R'. Furthermore, iRis simple therR =R'".

For concepts irtlosKB), we define the strict partial order: C <D if and only if C or NNF(C) occur
in D. We will use induction on< to show that for each € clogKB), D' C D". For the base case, i.e.,
whenD is an atomic concept or a negated atomic concept, this fellovmediately from the definition of
I”. We now turn to the inductive step:

e ForD = C1MCy, assume that € (C;MCy)' for somea. Then,a € C} anda € Cl. By the inductive
hypothesisg € C anda € C, soa € (C;NCy)"".

e ForD =C; UGy, assume that € (C1UCy)! for somea. If a € C}, then by induction we also have
a e Cl'; if a e Cl, then by induction we also haeee C} . Either way,a e (C1LICy)".

e For D = 3RC, assume thatt € (3RC)'. Then, exists such thata,B) € R' andp € C'. By
induction,p € C". SinceR C R", we have(a,B) € R, soa € (3RC)".

e ForD = (> nRC), assume that € (> nRC)'. Then, there are at leastdistinct domain elements
Bi such that(a,B;) € R andB; € C'. By induction,f; € C"'. SinceR' C R’, we have(a,Bi) € R,
soa € (>nRC)".

e ForD = (< nRC), we haveR =R sinceR is simple. LetE = NNF(-C). Assume thati € (>
nRC)', buta ¢ (> nRC)". Then, there exist such that{a,B) e R ,p¢C'.BeC", ie. pecE
andp} ¢ E". However, sinc& ¢ clogKB), by induction we hav@ E", which is a contradiction.
Hencea e (< nRC)".

e ForD =VRC, assume that € (YRC)', buta ¢ (VRC)". Then some exists such thata, ) €
R’ andp ¢ C"". By the definition ofR’ there is somav € L(Bg) such that(a,B) € w'. Using
Proposition 10, it follows tha € C'. By induction,C' C C", sop € C", which is a contradiction.
Hencea € (VRC)".

O

3.3.4 Summary

In this section we defined a transformati@ithat maps an arbitrar® I Q knowledge base to adLCHIQ,
knowledge base. Theorem 4 states that the transformatsepses satisfiability. We also showed that the
transformation increases the size of the TBox with at mostqonential factor (Proposition 9). This is
asymptotically optimal:ALCH IQ is known to be ExpTime-hard whil& 7Q is 2ExpTime-hard ([33]),
soR IQ is indeed exponentially harder tha.CH Q.

Using this result, any algorithm that decides satisfiabfiitr 2L C% 1Q can decide satisfiability for
R I1Q. In particular, the modified calculus presented in Subse@&i2.2 is applicable.

3.4 A Resolution Based Description Logic Calculus

In this section we present a reasoning algorithm, cdllectalculus which decides the consistency of a
SHQ TBox. The novelty of this calculus is that it is defined ditgan DL axioms. Working on this
high level of abstraction provides an easier to grasp dlgorivith less intermediary transformation steps
and increased efficiency. As we showed in Theorem 2, suchgamitiim can be used for solving all other
TBox reasoning tasks as well.

In Subsection 3.4.1 we present the DL calculus that perfamnsistency check for 84 Q TBox.
Afterwards, in Subsection 3.4.2 we prove termination ofdlgorithm. In Subsection 3.4.3 we prove the
soundness of the DL calculus. In Subsection 3.4.4 we pratdhie calculus is complete. Subsection 3.4.5
discusses the possibility of extending the DL calculus tmABeasoning. Finally, Subsection 3.4.6 con-
cludes by giving a brief summary of our results.

31



3.4.1 DL Calculus

The algorithm can be summarized as follows. We determing afssoncepts that have to be satisfied
by each individual of an interpretation in order for the TBwxbe true. Next, we introduce inference
rules that derive a new concept from two concepts. Usingrtfezénce rules, we saturate the knowledge
base, i.e., we apply the rules as long as possible and adadtisequent to the knowledge base. We also
apply redundancy elimination: whenever a concept extendthar, it can be safely eliminated from the
knowledge base [3]. It can be shown that saturation terregatWe claim that the knowledge base is
inconsistent if and only if the saturated set contains thptgmmoncept ().

Preprocessing

We first eliminate transitivity from the knowledge base, asspnted in Section 2.3. Next, we internalize
the TBox, i.e., we transform all GCls into a set of concepés tave to be satisfied by each individual. For
instance, the axior@ C D is equivalent to the axiom C —C U D, which amounts to saying thaiCLID
has to be satisfied by all individuals.

Internalization is followed by structural transformatiehich eliminates the nesting of composite con-
cepts into each other. %4 Q expression that appears in the TBox can be of arbitrary cexitg) i.e., all
sorts of composite concepts can appear within another ppndéis makes reasoning very difficult. To
solve this problem, we eliminate nesting composite corepd each other by introducing new concept
symbols that serve as names for embedded concepts. Fdsgdstai [41].

Finally, we make a small syntactic transformation: cons&®C and3R.D are replaced with equiva-
lent concept$< OR.—C) and(> 1R D), respectively. As a result, we obtain the following typesafcepts,
whereL is a possibly negated atomic concept & arbitrary role:

LiubloU--- UL
LiU(>kRLp)
LiU(<nRLy)

Notation

Before presenting the inference rules, we define some impbmnbtions. Aliteral concept(typically de-
noted withL) is a possibly negated atomic conceptbdol conceptontains no role expressions (allowing
only negation, union and intersection). We use capitatsfirom the beginning of the alphabatB,C...)

to refer to bool concepts. In the following, we will alwayssame that a bool concept is presented in a
simplest disjunctive normal form, i.e., it is the disjumctiof conjunctions of literal concepts. So for exam-
ple, instead oALIALI (B —-Br1C) we write A, andAr—-Ais replaced withL. To achieve this, we apply
eagerly some simplification rules, see later. When the émfeg rules do not preserve disjunctive normal
form (DNF), we will use the explicitinf operator:

dnf(All_IB)Udnf(Azl_lB) if A=A LA
dnf(AI‘l B) = dnf(AI_I Bl)LIdnf(Al_l Bz) if B=B1UB>
(AMB) otherwise

The dnf operator is defined only for concepts that are the interseaif two concepts. The bool
concepts in the premises are always in DNF and the conclasiatains either the union or the intersection
of such concepts. The union of two DNF concepts is also in DINwesonly need to apply thénf operator
to transform the intersection of two DNF concepts.

Ordering

Let > be a total ordering, called@ecedenceon the set of (atomic concept, atomic role, natural number,
logic) symbols, suchthat-<>-R>=n>=C > —> 1> M> T > L for any atomic concef, atomic role
nameR and natural numbaer; furthermore for any two natural numbetrs> n if and only if ny > ny. We
define a correspondirigxicographic path ordering-|, (see [3]) as follows:
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s= f(s1,...,Sm) =1po 9(t1,...,ta) =t if and only if

1. f > gands>potj, foralli with 1 <i <n; or

2. f =gand, for somg, we have(sy,...,sj_1) = (t1,...,1j-1),Sj >ipo tj, @nds =po tk, for all k
with j <k <n; or

3. §j Zipot, for somej with 1 < j <m.
In order for the above definition to be applicable, we treatospt(> kSA) as >(k,S,A) and concept
(< nRD) as<(n,R,D). If the precedence is total on the symbols of the languag®, the lexicographic

path ordering is total on DL expressions. For simplicity,efen write- instead of-|p, When it does not
lead to confusion. Note a couple properties of our ordetiag will be useful later:

1. A>-conceptis greater than ary-concept or any bool concept.
2. A <-conceptis greater than any bool concept.
3. C1 = (< mRy.Ay) is greater tha, = (< NpRz.A) if and only if:

e Ri>-Roor
e Ri=Ryandn; >nyor
e Ri =Ry, n1=nzandA; = Ay

Definition 11 (maximal concept) Given a set N of concepts, concept®l is maximalin N if C is greater
than any other conceptin N.

Since the ordering-po is total, for any finite sel there is always a unique concépt N that is maximal
in N.
SH Q-concepts

A derivation in the DL calculus generates concepts that aveengeneral than the ones obtained after
preprocessing. We call this broader et Q-conceptsdefined as followsQ, D, E stand for concepts
containing no role expressions):

C (bool concepts
Cu| |(<nRD) (< -max concepts
Cu (|_|(§ nRD)) U (> kSE) (> -max concepts

where bool concept8, D, E are in DNF. Note two important properties 8/ Q -concepts:
1. AS#H Q-conceptis a disjunction that contains at most reoncept.

2. There are no nested concepts containing role expressiena concept embedded intg=aconcept
or a<-conceptis always a bool concept.

According to the ordering defined above, eatltoncept is greater than any bool concept, so the maximal
disjunct in a<-max concept is a-concept. Similarly, any>-concept is greater than any- or bool
concept, so the maximal disjunct inZamax concept is &-concept. This is the rationale for naming
these concepts-max and>-max, respectively. Obviously, any concept obtained gifteprocessing is a
S#H Q-concept:

Proposition 11. For any S# Q knowledge base KB, if we apply the preprocessing transftioms de-
scribed above on KB, we obtain a set®ff Q-concepts.
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Inference Rules

The inference rules are presented in Figure 3.1, wkgi®;, E; are possibly empty bool conceptsy
stands for an arbitrarg + Q-concept that can be empty as well. Some of the rules do neepre the
disjunctive normal form (DNF) of bool concepts. In such casee use theinf operator as defined above.
Note that two disjunctive concepts are resolved along tiesipective maximal disjuncts and the ordering
that we imposed on the concepts yields a selection funct®ince the ordering is total, we can always
select the unique maximal disjunct to perform the inferestep.

Cll_l(Dll_IA) Cu (Dzl_lﬂA)
CLuC,
whereD; MAis maximal inC; LI (D1 M A)
andD, M —Ais maximal inCz LI (D2 —-A)
C  WU(>nRD)
WU (>nRdnf(DME))
whereE is obtained by using Rulel on premisesndD
W L (< nRC) W, LI (> kSD)
WL LWL U (> (k—n)S.dnf(D1—C))
n<k,SC*R, (<nRC) is maximal inWy LI (< nRC)
and(> kSD) is maximal inWs LI (> kSD)
Wi U (< nRC) W, U (> kSD)
WL UWL U (< (n—K)R.dnf(CM—D)) U (> 1S.dnf(DM-C))
n>k SC*R, (< nRC) is maximal inW; LI (< nRC)
and(> kSD) is maximal inW, LI (> kSD)

Rulel

Rule2

Rule3

Rule4

Figure 3.1: TBox inference rules of the DL calculus

Along with the inference rules, we use a further set of rutes tve callsimplification rulesand which
are shown in Figure 3.2. These rules only have one premisehwibiredundant in the presence of the
conclusion and hence can be eliminated. In other words, ithplification rules are used to simplify
concepts and do not deduce new concepts. Simplification ankeapplied not only t6 # Q-concepts, but
also to subconcepts appearingsifif Q -concepts. For example, S1 is used to replace the cofaept | A
with CUA, but also to replacé> nR (CUAUA)) with (> nR(CUA)).

Rulel corresponds to the classical resolution inferendeRarie2 makes this same inference possible
for entities whose existence is required byconcepts. Rule3 and Rule4 are harder to understand. They
address the interaction betweenconcepts andl-concepts. Intuitively, if some entity satisfiessnRC
and also satisfies kSD, then there is a potential for clash if conceftandD are related, more precisely
if D is subsumed b¥. In such case® M —C is not satisfiable, which either leads to contradiction if
n < k (Rule3) or results in a tighter cardinality restriction dve tentity (Rule4). If severat-concepts and
a <-concept are inconsistent together, then eaetoncept is used to deduce<aconcept with smaller
cardinality (Rule4) until the<-concept completely disappears from the conclusion (Rwded we obtain
the empty concept.

Saturation

We saturate the knowledge base, i.e., we apply the rulegur&i3.1 to deduce new concepts as long as
possible. Before adding the consequent to the concept segagerly apply the simplification rules of
Figure 3.2 to make the concept as simple as possible. We thaitithe consequent is alwayss&f Q-
concept.
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CuLu---UL
CulL
CuDU(DME)
CubD
CuDU(-DNE)
CUDUE
cubu-D
—
CU(DMEM-E)
C
WU (>nR1)
W
WU (<nRL1)
——

s1
S2
S3
sS4
S5
S6

S7

Figure 3.2: TBox simplification rules of the DL calculus

Proposition 12. The set ofS# Q-concepts is closed under the inference rules in Figure 8d the sim-
plification rules in Figure 3.2.

Proof. Consider RulelD1MA is maximal inCy U (D1 MA) which is only possible i€; does not contain
any >- or <-concepts. Hence it is a bool concept. Analogously, the ttzat D, 1 —A is maximal in
Co LI (D2M—A) ensures that, is another bool concept. Bool concepts are in DNF. The caimius the
disjunction of two bool concept€( LIC,) which is also in DNF and hence is a bool concept.

Rule2 resolves a bool concept with>amax concept. We have just seen that resoiingnd D by
Rulel yields a bool concept. We take the conjunction of thiscept and another bool concepti{ E)
which is not in DNF, but it yields a bool concept once we appkydnf operator. Hence the conclusion is
a>-max concept.

In Rule3, the maximal disjunct of the first premisg s nRC), so it does not contain any-concept.
The second premise isa-max concept and contains exactly oreconcept, namely> kSD). The
conclusion contains one-concept and is &-max concept. Again, thenf operator is used to ensure that
the bool concept appearing in thedisjunct of the conclusion is in DNF.

In Rule4, the maximal disjunct of the first premise(is NRC), so it is a<-max concept and does
not contain any>-concept. The second premise contains exactly af@ncept, sd\b contains ng>-
concept. Consequently, the conclusion will contain onlg baconcept and all subconcepts insideand
<-concepts are bool concepts. We obtain-max concept.

Simplification rules S1-S5 eliminate some disjuncts or aanfs from bool concepts in DNF. The con-
clusion is always a simpler bool concept in DNF. S6 elimisate unsatisfiable branch from a disjunction,
turning a>-max concept either to a bool concept or tecanax concept. In case of S7, the premise is a
tautology and can be safely eliminated. O

3.4.2 Termination
The following proposition — along with Proposition 12 — eresithat the DL calculus terminates.
Proposition 13. The set of alls# Q-concepts that can be deduced from any finite TBox is finite.

Proof. For any finite TBox, there can only be finitely many distinclerexpressions and bool concepts.
Furthermore, note that each inference rule either leawsarity of a number restriction unaltered or reduces
it. Soin a(< nRC) or (> nRC) expression the number of possible valuesrfoR andC is finite for a
fixed TBox. As allS # Q-concepts are disjunctions of bosl, and>-concepts, we have an upper limit for
the set of deduciblg #/ Q-concepts. O
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DL calculus deduces onlg# Q concepts froms# Q concepts. Since there are finitely masif Q,
concepts, even if we have to deduce every possibifeQ -concept, it still requires finitely many steps, so
the calculus is guaranteed to terminate.

3.4.3 Soundness

Itis straightforward to show that the simplification rulee aound, i.e., if all individuals of an interpretation
satisfy the premise then they also satisfy the conclusioa.le&le this to the reader. The inference rules
are slightly more complex.

Theorem 5. The inference rules of the DL calculus are sound.

Proof. Consider Rulel and suppose theatatisfies both premises. Eitharor —A is true ofx. If A(x) is
true, thenx must satisfyCy, due to the second premise. Analogously,#(x) is true, therk must satisfy
Ci. In either case, the conclusion holds for

We turn to Rule2. Lex be an individual. It satisfies the second premise, so either (> nRD) holds
for x. In the first case the conclusion is satisfiedbin the second casehas at leash R-successors that
satisfyD. These successors also satisfy the first pren@i$arid — given that Rulel is sound — they satisfy
E. If these R-successors satisfy b@landE, then they satisifp M E as well. So it holds fok that it has
at leasin R-successors that satigb/1E, so the conclusion is again satisfied.

For Rule3, letx be an arbitrary individual. Ik satisfies eitheW, orW,, then it satisfies the conclusion.
Otherwise x satisfies(< nRC) and(> kSD), whereSC R. So,x has at leask distinct S-successors that
satisfyD (that are R-successors as well). Of these, at masiccessors can satigdy so there are at least
k — n S-successors that satisiC. From this it follows directly that the conclusion holds for

Finally, let us consider Rule4 and let agaidenote an arbitrary individual. K satisfies eithe¥\y or
Wb, then it satisfies the conclusion. Otherwissatisfies < nRC) and(> kSD), whereSC R. So,x has
at leastk distinct S-successors that sati€dy If any of these successors satis#¢ then the last disjunct
of the conclusion holds. Otherwise, all th&-successors satisy; Given thatx can have no more than
successors that satigBy there cannot be more than- k successors that are not among those satisfping
but they satisfyfC. Hence the second to last disjunct of the conclusion holds.fo O

3.4.4 The Completeness of the DL Calculus

In this subsection we prove that the method presented ineStibe 3.4.1 is complete, i.e., whenever there
is some inconsistency in a TBaK, the empty concept is deduced. We prove completeness byirgjow
that if a saturated s&at; does not contaid. then the axionT C [ |Satr has a model. Instead of building
the model itself, we will prove that th@ L CH Q tableau method can find one such model. In order for the
model to satisfyT C [|Saty, the concepts ifatr are added to the label of every newly created node in
the tableau.

Although the tableau rules are fairly standard, there miigh$mall variations. Hence, to avoid confu-
sion, in Appendix A we provide the definition of the tablealesithat we assume in the following.

Building the Tableau Tree

In the previous sections, we replacédand3-concepts with<- and>-concepts to make the presentation
of the inference rules simpler. As we turn to the tableau,éw@s, the reader might be more familiar with
the correspondiny-rule and3-rule. Hence, in the following, we will treat oy OR.C) and (> 1S.D)
concepts agvR.—C) and(3S.D), respectively.

Whenever we have several applicable tableau rules, wereeting following ordering precedence:
rules,mn-rule, 3-rule, >-rule, V-rule, <-rule and<-rule. When applying thel-rule we proceed with the
branch that adds the minimal possible concept to the label of a n@Gieen that the tableau method is
don’t care non-deterministic with respect to these choitescompleteness of the algorithm is preserved.

3Throughout this paper, “branch” refers to a branch of theartaibleau tree, i.e., one of the tableaux resulting fromagiication
of a non-deterministic rule.
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Whenever a hode contains a disjunctive conceptLIC, the branch wher€ is added to the label of
nis only examined after each disjunct\ivi that is smaller tha® has been proven unsatisfiable.chash
occurs in the tableau tree when an atomic concept name anégtgion both appear in the label of some
node. In this case we roll back and proceed with another brafdinal clashoccurs when there are no
branches left, i.e., the tableau proves the inconsistehat. We show that no final clash can be reached
if Satr does not contairl..

Bool Concepts

Let us first consider the case wh8at; contains only bool concepts.
Theorem 6. If Sat; contains only bool concepts and does not contajthen no final clash is possible.

Proof. To obtain contradiction, suppose that we reach a final claknce, for some atomic concefst
bothA and—A appear in the label of some node. This is only possib&aif- contains concepts

W1=C1|_|(D1I_IA) VVZZCZU(DZH_‘A)

The clash is final, so there are no more branches(Da.;1A) and (D, M —-A) are maximal in\y andW,
respectively, and each disjunct@ andC; leads to clashw, andW, are resolvable using Rulel, Sat,
also contains

W=CuC,

W cannot be empty because we assumed$a#t does not contain_. The simplification rules, and in
particular S1 was eagerly applied @ andW,, so there are no other occurrencegBf M A) in C; and
(D2M—A) in C,. So the maximal disjuncts M4 andW, are strictly maximal. LeX denote the greater
concept of(D1 MA) and(D2M—-A). X is greater than any disjunct in eith@r or C,. This means that the
branches corresponding to all disjuncts/éfwere examined before examining the branch corresponding
to X (due to the ordering imposed on the application ofitheule). But we know that all disjuncts W

lead to clash, so a final clash must have been obtain&u,aven before introducing to the label of the
node, which contradicts our assumption that the final clagblvedX. O

Corollary 1. If Sat; does not contain_, then the set of bool conceptsinis satisfiable.

Notice that only Rulel is used to detect the inconsistendyooll concepts. This observation will be
useful for us later.

Corollary 2. Ifaset N of bool conceptsis unsatisfiable then there is aesgopiof bool conceptg p.. pn =
1 such that for each jp there is an instance of Rulel with premises from o1, pz2... pi—1} whose
conclusion is p We call this sequence a deductionlaf

>-max Concepts
Let us now assume th&at; contains only bool concepts agdmax concepts.

Proposition 14. LetW=CU (> nRD) be a>-max conceptin Sat Then D is satisfiable.

Proof. Suppose thab is unsatisfiable. Since it is in DNF, it is the disjunction @injunctions such that
each conjunction contains some atom together with its imwgatHowever, the simplification rules are
eagerly applied on al§ #{ Q -concepts and due to S5 all disjunctdbivere eliminated. Henc® = 1 and
W =CU(>nR_1). S6 is applicable okV yielding C, soW was removed fron$atr and replaced b¢.
This is a contradiction, sD must be satisfiable. O

Proposition 15. Let W= CU (> nRD) be a>-max concept and B- {B;} a set of bool concepts. If
{D}UB is inconsistent, then there is a deduction of C using RuteflRule2 and the simplification rules.
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Proof. We know from Corollary 2 that there is a deductipn p2... pn = L from {D} UB using Rulel. In
this sequence each concept has a set of premises, eithethfeariginal concept set or from concepts that
were deduced earlier. Let us define tecestorrelation as the transitive closure of the premise relation
and letdescendanbe its inverse relation. For eagh, let A; denote the set of its ancestors that are either
identical toD or are descendants &f. For eachp; such thatA; is not the empty set, replaqe with
CU(>nR(piM[]A)). We obtain a deduction in which each time the conclusion Js-max concept,
Rule2 is used instead of Rulel. In particulps, = L is replaced withCU (> nR (L[ ]An)), where
the >-concept is unsatisfiable, so we can ded@deom this concept using the simplification rules (see
Proposition 14). O

Corollary 3. Let W= CU (> nRD) be a>-max concept in Satand let B= {B;} be the set of bool
concepts in Sat Then{D} UB is consistent.

Proof. Supposg D} UB is inconsistent. Then, from Proposition 1Zat containsC. However,C makes
W redundant, sdV was eliminated fronSat; whenC was added to it. This contradicts our assumption
thatW < Saty. O

Theorem 7. If Sat; contains only bool concepts aetmax concepts and does not contdinthen it is
consistent.

Proof. We know from Corollary 1 that the bool concepts are satisfiaBk of the>-max concepts, at least
one of their disjuncts, namely the-disjunct can be satisfied: in each node we create separtessors

for each>-concept, independent of each other (withestoncepts, these successors never need to be
identified). The label of each successor is satisfiable (sepdBition 14 and Proposition 3), so the
concept in the parent is satisfiable as well. O

<-max Concepts

We now consider a fully general saturatedSat;, that might contain bool concepts;max concepts and
<-max concepts. When we build the tableau tree dfaoncept appears in the label of a node, we possibly
have to add a new concept to the label of a nadeu(e) or identify two nodes<-rule). We show that none

of these rules will lead to final clash.

Each successor node is created with an initial concept labgl: for instance, if a new node is created
due to concept 1R A, then we callA the creator concepbf the node. Whatever other concept appears
in its label (before performing any identification step)isitderived fromAM[]B;, where{B;} is the set
of bool concepts irBatr. If a node with creator concepthas to be identified with another such that the
second node contairsin its label, then identification cannot introduce new ingistency and it can be
seen as simply deleting the first node.

As previously, we are only interested in potential clashieg aire final. This means that the (non-
disjunctive) concepts that are involved in the clash candsemed to be the maximal disjuncts$# Q-
concepts fronBaty.

Proposition 16. Let Salr be a saturated set ¢f # Q -concepts that does not contain the empty concept
L. Let us try to build a model fof C [ |Sat; using the tableau method, observing the restrictions on the
order of rules. Then we never obtain a final clash.

Proof. We know from Theorem 7 that the set of bool concepts antax concepts is consistent. Hence,
a final clash must involve @< nRD) concept. We use induction am the arity of the<-concept to show
that no final clash is possible. We first give a sketch of th@pro

1. Inthe base case of the inductive proof, we assume that veed{aC OR.D) concept in the label of a
node, which is &-concept. We show that no final clash is possible that woutdage occurred in
the absence of thig-concept.

2. In the inductive step, we assume that(alln’R.D) concepts that appear in the label of a node, no
final clash is possible as long as< n. From this we prove that the same holds for(aflnRD)
concepts.

38



A <-max concept can only lead to clash if the same label consaime(> n;S.A;) concepts where
1<i<I1,§C*R We use a second, embedded inductive proof, on the nunafer-max concepts.

(a) In the base case we assume that0 and show that no final clash is possible due to the
(< nRD) concepts, as the examined node has no successors.

(b) In the inductive step, we assume that if a label contHirs| different>-max concepts, then
the successor nodes created due to these concepts can tifgedl@rto some nodes such that
at mostn of them satisfie®. We show that this property holds if the label contdintiferent
>-max concepts.

Now we fill in the details of the proof. The base case of the oimguction is whem = 0, that is,
when we have &-concept in the label of a node. Therule fires and a new concept is added to the label
of some successors. To obtain contradiction, we assumehiisdeads to a final clash. Given a noxle
that has ars-successoy with creator concepA. This means that the label ®fcontains a concept kSA.
Furthermore, the label of also contains &-concept, which is ¢< OR.D) concept in our terminology.
SC R, so thev-rule is applicable and putsD in the label ofy. We assumed that a clash is obtained, so
AM-D is not satisfiable. The=-concept andl-concept in the label o originate from a>-max and a
<-max concept, respectively, Bat, that is,Sat; contains concepts

W = EL (< ORD) V =FLU(>kSA)

where(< OR.D) is maximal inW, (> kSA) is maximal inV and each disjunct ik andF leads to clash.
W andV are resolvable using Rule3 and the conclusion is

ELUF U (> kSdnf(An-D))

AM-Dis not satisfiable, so the DL calculus deduEesF as well (Proposition 15). However, we know that
all disjuncts inE andF lead to clash, so we obtain a final clash withouttheoncept inV. Contradiction.
We now turn to the inductive step. The inductive hypothestbat a<-concept can never lead to final
clash, i.e., d< n'R.D) concept in the label of a node that is derived from the maxaigilinct of a<-max
concept ofSat; can be satisfied for alf’ < n. We show that this also holds far
Let some node in the tableau tree contain conceptsnRD) and (> niS.A;), where 1<i < | and
S C* R Due to the(>> njS.A)) concepts, we have already creald, n successors with creator concepts
A1...A, respectively.D appears in the label of ea&rsuccessor, séy, together with the bool concepts
impliesD. This means thad; M —D is unsatisfiable. Suppose that we have to perform identdicathich
leads to final clashSat; contains concepts

W =EL (< nRD) W=FU(>nSA) L<i<l

where(< nRD) is maximal inW, (> n;S.A) is maximal inW and each disjunct & andF; leads to clash
in X. By the time a<-rule is applied, we have already performed all possikleules, due to which the
label of each§-successor contains eithay or —A; for all j € {1...1}. According to Corollary 3, each
creator concept is satisfiable and hence will remain sdiisfiy taking its conjunction with eithek or
—A.

We use induction oh, the number of>-concepts to show that the assumption thattheoncept gives
rise to final clash leads to contradiction.

The base case (of the second, inner induction) is whef. There are ng>-concepts in the label of
so there are no involved successors to be identified.

We now turn to the inductive step (of the inner induction). Sgsume that if the label of contains
onlyl” < | different>-concepts then the resulting successors can be identified imodes without clash.

1. In casan > nthen Rule3 is applicable dN andW, resulting in:
EURU(> (n—n)S.dnf(A M—-D))

We know that”A; M —D is unsatisfiable, so the DL calculus deduées F (from Proposition 15).
However, all disjuncts o andF lead to clash irx, so we obtain a final clash even before introducing
any <- and>-concept, contrary to our assumption.
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2. If n>ny, then conceptd/ andW are resolvable using Rule4, resulting in
EURU(S (n—n)Rdnf(DM-A))U (> 1S.dnf(A M —D))
Again, we know thaD M —Ay is unsatisfiable, so (from Proposition 15) the DL calculududes
EURU(S (n=n)RdAnf(DMN-A)) (3.1)

Due to thexi-rule, the label of every successor contains eithesr -A;. n—n; < n, so the inductive
hypothesis holds for (3.1), i.e., all the successors whalsel lcontains botb and—A; can be iden-
tified into n— n; nodes by deleting some successors that are not necessetheria this, there are
N, successors with creator concdypt plus somek other successors such that therule putA into
their labels.

(a) If k< n; then we can eliminate; — k nodes from those having, as their creator concept,
leaving exactlyn, successors whose label contafMs Contrary to our assumption, we obtain
no final clash.

(b) If k > n; then each of the nodes whose creator concefit an be eliminated since there are
more therm, other nodes satisfyingy,. All remaining successors originate from theconcepts
in Wi ...W_1. However, according to the inductive hypothesis (of theeininduction), these
successors can be identified imsuccessors without clash.

This concludes the second inductive proof and the first orveedls We have showed that the assumption
that a<-concept introduces inconsistency into the label of a nedds to contradiction. O

Let T be aSH Q TBox. LetSatr be the set of concepts obtained after performing preprocess
7 and then saturating it with the DL calculus. We have showadiffSat- does not contain_ then it is
possible to build a model fof using the tableau algorithm. This concludes the proof ofgleteness for
the DL calculus.

3.4.5 Towards a DL Calculus for ABox Reasoning

The DL calculus imitates the modified calculus that we pressbim Subsection 3.2.2. Recall however,
that the aim of that calculus was not to perform TBox reasgbuit to serve as a preprocessing phase for
the ABox reasoning. The modified calculus was used to perdrimference steps that involve function
symbols. Function symbols are derived via skolemisatioamilue translate--max concepts to first-order
clauses. The question naturally arises if the DL calculus loa used in a similar way to perform all
inferences involving>-max concepts, which then can be eliminated before acaedsinABOX.

Unfortunately, the answer seems to be negative, which wkillugtrate through a small example.
Consider the following knowledge base:

wwn 44 -4
it monon

-X(c)

The ABox satisfies the TBox as long as we neglect the only axiothe TBox that yields &-max
concept:T C (> 1S). In the presence of this axiom, howevierndc have to be identified into a single
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S-successor of, which leads to contradiction becausendc are not identifiable. Now, the question
is: what kind of axiom(s) should the DL calculus derive frame ffBox to ensure that the ABox remains
unsatisfiable even if we eliminate themax concept? In this simple example, one could infer from th
three number restrictions thRf = R, = S, which is sufficient to make the ABox inconsistent. Suppose
however, that the axiom with the-max concept is replaced with the following one:

TCCu(>19

Since(> 1S)(a) cannot be trueC(a) must be true, i.e., if we query the knowledge base for corCefsten

a should be returned. For this, however, we should infer aoraéxpressing thaFor every individual,
either it belongs to C or else all itsjRand R-successors are also S-successolde cannot formulate
this using DL expressiorfsThe modified calculus does not suffer from this problem, beeanuch more
can be expressed using first-order clauses. Indeed, froabihee TBox, the modified calculus infers the
following two clauses:

C(x) V-Ri(x,y) VS(x.y)
C(x) V=R2(x,y) VS(x,y)
which ensure the inconsistency of the ABox, even if we ongtdRkiom with the>-max concept.

It turns out that we need regular expressions on roles inrdodee able to eliminate-max concepts.
In another example, the TBox

is equisatisfiable to the following one:

TE(S2Ry)
TE(L2Ry)
SCR

SC Ry
TLC(<1(RiMN-Ry)
TC (S l(RzI_IﬂRl)

Allowing regular expressions on roles, however, leads ¢autfidecidability of the language in general.
It seems very difficult to extend the DL calculus in this difen. Hence, we conclude that eliminatitg
max concepts before accessing the ABox is not likely to set@gthout recourse to first-order logic. The
DL calculus can be used for TBox reasoning, however, it isadeiguate for the two-phase data reasoning
that we discussed in Section 3.2.

3.4.6 Summary

We have presented the DL calculus, a resolution based #igofor deciding the consistency ofaH Q
TBox. The novelty of this calculus is that it is defined difgoin DL axioms. We showed that the algorithm
is sound, complete and terminates. More work needs to betdalore the real time complexity of the
reasoning, as well as potential optimization techniques.hépe that further research will reveal that the
DL calculus provides a reasonable alternative to the Talliéethod for certain reasoning tasks.

We have not been successful in extending the DL calculus BwxAreasoning in the way the modi-
fied calculus is used. In Subsection 3.4.5 we illustratedufh some examples why we believe that this
extension is not possible at all.

4At least not without a significant increase in the expressivi the DL language.
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Chapter 4

Loop Elimination, a Sound
Optimisation Technique for PTTP
Related Theorem Proving

In Section 2.1 we presented the Prolog Technology TheoreweP(PTTP), which is a complete first-
order theorem proving technique built on top of the Prolawgleage. The DLog system [38] that will
be presented in Chapter 5 is a specialisation of PTTP to ipiser Logic reasoning. DLog performs
a two-phase reasoning, where the first phase is that prelsenfection 3.2 and the second phase uses
PTTP. These systems exploit the backtracking mechanismotddPto search for a proof of the initial goal.
Efficiency is crucial since these systems typically neepdare a huge search space.

Loop elimination is an optimisation technique which can makiremendous impact on the speed of
both of the aforementioned systems. This technique prevegic programs from trying to prove the same
goal over and over again, thus avoiding certain types ofitefloops. My main contribution to this domain
is a rigorous proof of soundness of loop elimination.

Detecting loops to prune the search space for logic progian new, see for example [8]. However,
the systems that we are interested in extend standard Pegagution with a technique callexhcestor
resolution that corresponds to the positive factoring inference. riméhe presence of ancestor resolution,
the considerations that trivially justify loop eliminatiao not hold. It is easy to see that trying to prove a
goal that is identical to some goal that we are already in tbegss of proving yields no useful solution and
the corresponding proof attempt can be aborted. Howevisrfat from trivial that the same holds in case
the two goals are identical onfyodulo ancestor listi.e., they can be different in one of their arguments,
namely in their list of ancestors. In this chapter we provestronger claim. We are not aware of any other
work exploring the interaction between loop eliminatiornl@amcestor resolution.

In Section 4.1 we examine logic programs in terms of ternime&nd identify the sources of infinite
execution. Section 4.2 contains our main contribution: e loop elimination and prove its soundness.
We end the chapter with some concluding remarks in Secti&n 4.

4.1 Termination of Logic Programs
Given that first-order logic is undecidable, it is not susprg that the Prolog Technology Theorem Prover

is not guaranteed to terminate. In this section we reviewugs in which a logic program can fall short
of termination. Afterwards, we compare PTTP and DLog wittpect to termination.

4.1.1 Sources of infinite execution

We identify three sources of infinite execution:
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e If the program containfunction symbols then we might obtain terms of ever increasing depth.
Consider, for example, the following simple program:

p(X) - p(f(X).

If we attempt to prove(a) using the above rule, we will end up reducing it to the proopf(a)),
p(f(f(a))) etc. and the program will never stop.

e A proof attempt might visit infinitely many goals if an unbaled number ohew variablescan be
introduced during the proof. This happens with rules witragable occurring in the clause body,
but not in the head. For example, consider the transitivity:r

r(xYy) - (X2, r(Z,Y).

It is easy to see that a proof attempt for the gdal b) using the above rule will generate infinitely
manyr(a,V) subgoals, always with a fresh variable.

e Even if both the depth of terms and the number of variablesbeahounded, the program might
fall into aloop and attempt to prove the same goal over and over again. Forp&athe program
consisting of the following rule

p(X) - p(X).
will never terminate, even though there are no function syisiand no new variables are introduced.

One can see easily that the above list is exhaustive. If theoeu of variables is bounded and there are
no functions, then the total set of terms is that of the vdemhnd the constants appearing in the program,
i.e., itis finite. Since the set of predicate names is alstefitiiere can be finitely many different goals. If
there are no loops, even if a proof attempt goes though adliplesgoals (the worst case), it will eventually
terminate.

Hence, we conclude that infinite execution is due exactlyted aspects of logic programs: function
symbols, the proliferation of new variables and loops.

4.1.2 Termination in DLog

In light of the preceding subsection, let us reexamine thaticlause set of the second phase of the DLog
data reasoner. We repeat this set here:

_‘R(Xa y) v S(y7 X) (Cll)
_'R(X’ y) \ S(X’ y) (012)
P(x) (c13)
P1() v\ (=R(x%Yi) VvV Payi) v/ (i = ¥j) (c14)
i i i
(—)R(a,b) (c15)
C(a) (c16)
a=b (c17)
a#b (c18)

We see immediately that the absence of function symbolsraites one of the three sources of infinite
execution.

We shall see that new variables are not introduced, either.s€cond nice property of the input clause
set is that the resulting contrapositives only contain aatieg binary literal in the body in case the head
is a negative binary literal. This means that we can only enter negative binary subgoals if the initial
query itself is a negative binary goal. $¥/1Q DL reasoning, however, negative binary queries are
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forbidden, so all contrapositives with a negative binatgréll are unnecessary and can be disposed of.
Consequently, in our logic program binary literals will prappear positively. For proving such binary
goals only contrapositives from clauses of type c1 and c2ea#able:

r(xy) - s(XY).
r(xy) - s(Y, X).

These rules do notintroduce new variables. A proof of a lyigaal consists of applying such rules possibly
several times, until finally we obtain a matching data agwert( a, b) , thanks to which the variables in
the binary goal get instantiated. We know that in all ruleibsedhat contain binary literals every variable
occurs in some binary literal (the third nice property of ayvut clause set). These are the rules that
introduce new variables. If, however, we move the binasrdits to the front of the body, i.e., we prove
the binary goals first, by the time we reach the unary goaés, become ground. Hence, any unary goal
in the body either contains the same variable as the one ihghd — in case the rule contains no binary
predicates — or else it is ground by the time it is called. Newables may appear only for a short time
— until we prove the binary goals holding them. Hence, DLoly méver encounter infinitely many new
variables during a proof attempt.

If there are no terms of increasing depth and variables deraiferate, then the only way a DLog
program may not terminate is if it falls in an infinite loop gmebves the same goal repeatedly.

4.1.3 Eliminating Loops

We have seen that there are three independent featuresthaiake a PTTP execution non-terminating,
of which only one, namely loops can occur in DLog programsSéation 4.2 we shall show that proofs
containing such loops are not necessary for completenéssrdsult yields an important optimization for
both PTTP and DLog, calleldop elimination General PTTP still has to cope with infinite proof attempts
(due to the other two sources) and hence has to use iterateeding, i.e., build several proof attempts
in parallel. However, even if loop elimination does not allfor changing the proof search strategy, but it
still prunes the search space significantly. In DLog, loomiglation eliminates the only remaining source
of infinite proofs. Accordingly, DLog always terminates amges the standard depth-first search strategy
of Prolog, which gives much better performance than iteeadieepening.

4.2 Loop Elimination

In this section we present the optimization heurisiop eliminationfor both PTTP and DLog. In the
literature, loop elimination is often referred toidentical ancestor pruningsee for example [51] or [20].
Although both PTTP and DLog employ this optimisation, thieas not yet been any rigorous proof of its
soundness. In Subsection 4.2.1 we descpilmof treesthat can be used to represent Prolog execution.
Afterwards, Subsection 4.2.2 contains the proof of soussine

Definition 12 (Loop elimination) Let P be a Prolog program and G a Prolog goal. Executing G wi.t
usingloop eliminationmeans the Prolog execution of G extended in the following waystop the given
execution branch with a failure whenever we encounter a gotiat is identical to an open subgoal (that
we started, but have not yet finished proving). Two goals deatical only if they are syntactically the
same.

Loop elimination is very intuitive. If, for example, we watd prove goalG and at some point we
realise that this involves proving the same g@athen there is no point in going further, because 1) either
we fall in an infinite loop and obtain no proof or 2) we manag@tove the second occurrence®fin
some other way that can be directly used to prove the firstroggce of the goal. This is the standard
justification that we find in the literature. For example [2@}s:

Identical ancestor pruning (IAP) is a powerful pruning histiz in a model elimination search.
Imagine, in the course of expanding a ME proof space for aquéar goal P, that one were to
encounter that same goal P again. One of two situations nolct h
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1. There are no proofs of P from this database (because intdidegically follow).

2. Whether or not there is a proof using this second occuereh®, there must be another
proof of the original P not using it. Also, the different pfacurs at a shallower depth.

This is true because the second occurrence must eventwapydven somehow, so this re-
cursion must bottom out. And then, by whatever proof thisoedooccurrence succeeds, an
analogous proof path must exist below the first occurrenée bf either case, it is justifiable
to prune the space below the second occurrence of P.

Things get complicated, however, due to ancestor resolulibe twoG goals have different ancestor lists
and it can be the case that we only manage to prove the s€&dné to the ancestors that the fi&Gtoes
not have. As it will turn out in the rest of this section, while can indeed construct a proof of the figst
from that of the second, this proof might have to be very déife from the original one.

4.2.1 Proof Trees

In this subsection we introdugeoof trees that are used to represent Prolog execution. We will onfy co
sider trees in the context of a PTTP like Prolog program, npoeeisely we will assume that the program
contains all contrapositives. Each tree node has a unigue mad is labelled with a goalNane: Goal )
refers to a node calledane and labelled with goaBoal . The root is labelled with the initial goal to be
proved. Suppose the current g@is unified with the head of rule

G:— By,Bs,...,Bs.

In this case, the node labell&iwill have k children, each labelleB;,Bs,,..., By, respectively. In each
inference step, the validity of a goal is reduced to the Wglidf a set of goals in the children. After a
successful execution, we obtain a proof tree such that ehbith leaves can be considered true without
further proof. We formalise this in the following definitisn

Definition 13 (atomic proof tree) An atomic proof treeconsists of a root node labelledsAwvith children
labelled B o, Byo, ..., Byo, whereo is a variable substitution. We say that the atomic proof tsaelid if
the corresponding Prolog program contains a rule

A:— Bi,Bs,...,Bn.

A valid atomic proof tree can be seen as an instance of a rufgoAf treeis built from atomic proof trees
by matching nodes of identical labels. A proof tregatid if all constituting atomic proof trees are valid.

Remark 1. The labels of proof trees are atomic predicates that canaiontariables. Note that labels
p(X) and pY) are not identical.

Definition 14 (complete node)In a valid proof tree, a node labelled A is calledmpleteif either 1) A
can be unified with the head of a bodiless Prolog rule or 2) theéenhas an ancestor labelle¢h (ancestor
resolution). A valid proof tree is complete if all its leafea@omplete.

To each successful Prolog execution that employs ancesgtolution, we can assign a complete proof
treel In fact, the execution mechanism can be seen as a searchspabe of complete proof trees. While
standard Prolog will not necessarily traverse the wholeesgbecause it might fall into an infinite loop),
both PTTP and DLog are built so that they can enumerate alpt&teproof trees. This means that it is
enough to show the existence of a complete proof tree to gtessa successful PTTP or DLog execution.

Definition 15 (flipping along a child) For an arbitrary child b of an atomic proof tree, the transfoation
flipping over along thé child is defined as follows: the root node is switched with its chiland their
labels are negated. The rest of the tree is unaltered. Thissfiormation is illustrated in Figure 4.1.

Lin the Logic Programming community, it is customary to reeghe name proof tree only for complete proof trees. We éhice
the notion of completeness because we will have to refeegstthat are not fully expanded.
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Figure 4.1: Flipping over along thechild

Lemma 1. For every valid atomic proof tree, the atomic tree obtaindigraflipping over along a child
results in a valid atomic proof tree.

Proof. LetT be an atomic proof tree with the root node labekedand children labelle®o,Cy0,...,Cko.
T is an instance of the Prolog clause
A:— B,Cq,...,Ck.

which is a contrapositive of the first-order cladse—BVv —C, V- - - VCi. Since the Prolog program contains
all contrapositives of this clause, we also have

not_B:— mnot_A,Cy,...,Ck.
an instance of which corresponds to the flipped over versidn o O

Note that flipping over allows us to move between contrap@sitof the same first-order clause.

Definition 16 (flipping along a branch)The transformatiorlipping over along the, a branchis defined
on proof trees as follows: let F be a proof tree, with a ndde A) which has a leaf descendaf@: —A).
The nodes on the path from a&oare a= xg,X1,...,%Xn_1,% = a. To this tree we assign a tre€ which
differs from F only in the subtree rooted at a. This subtrestams a branch y= X, y1 = Xn—1,---,Yi =
Xn_i,---,Yn = X0, and the label of each of these nodes is negated. Furtherraaah yin F’ has the same
siblings as x_j+1 in F. The subtrees under the siblings are left unaltereds Tlainsformation is illustrated
in Figure 4.2.

—
(o) () (=) ()

Figure 4.2: Flipping over along th@,a) branch

Lemma 2. If we have a complete proof tree T that contains nd@es?) and(a: —A) such tha@ is a leaf
descendant of a, then the tree obtained after flipping T atbeda,a) branch is a valid proof tree.

Proof. The new downward path — a consists of atomic trees that are the flipped over versioriheof
atomic trees of the initial upward pash— a. For example, the atomic tree on the left side of Figure 4.2
that consists of parent nodg and childrera'and f turns into a flipped atomic tree with parent nadand
childrenx, and f. We know from Lemma 1 that flipping over a valid atomic proeglyields another valid
atomic proof tree, hence the whole new proof tree is valid. O
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Remark 2. Although we obtained a valid proof tree after flipping ovée roof tree is not necessarily
complete. This is because some ancestor lists change andh@a that previously terminated in ancestor
resolution might have to be expanded further (because tpgned ancestor disappeared).

4.2.2 The Soundness of Loop Elimination

In this subsection we show that for every complete proof thes contains loops, one can construct a
complete proof tree that is loop free.

Definition 17 (loop in proof tree) A complete proof tree is said to contain a loop L if it conta@ngair of
nodes(p1 : P),(p2: P), for some label P, such thab s a descendant ofipNode p is called thetop node
and node p thebottom nodeof the loop L. We define thldepthof L to be the distance of;grom the root.

Definition 18 (bad node) A node n: N is said to besligible for ancestor resolutioifiit has an ancestor
with label-N. If an inner node is eligible for ancestor resolution, theis called abad node

Bad nodes are called bad, because they are unnecessaslyded There is no need to provide a proof
tree under a bad node, since it is complete even if it remalieafa

Lemma 3. If we have a complete proof tree that contains a bad node m the tree obtained after
removing the subtree under n yields a complete proof treehiclwn is not bad any more.

Proof. Removing the subtree undemakesn a leaf node. Howeven is complete due to ancestor res-
olution. The rest of the leaves are unaltered, so they remaimplete. Hence, the new proof tree is
complete. O

Definition 19 (loop-depth) We define théoop-depthof a tree T with a pair of integer6-D,C), where D

is the minimum depth of all loops in T and C is the number of adllat are bottom nodes of some loop of
depth D. If the tree contains no loops, then its loop-depth-i®,0). Loop-depths are comparable using
lexicographic ordering, i.e., loop-depf{, B) is less than loop-deptfC, D) if and only if either A< C or
else A=C and B< D.

Lemma 4. Let F be a complete proof tree with loop-depth LD that corgaitleast one loop. Itis possible
to find another complete proof tre€ for the same goal (i.e., with the same label in the root) shel the
loop-depth of Fis strictly less than LD.

Proof sketch.We pick a loop of greatest depth and try to get rid of it.
1. First, we eliminate bad nodes from the proof tree. If thimi@ates the loop, we are ready.

2. Next, we try to replace the proof at the top of the root whith proof at the bottom of the loop. If this
results in a valid proof tree, then we are again ready.

3. If the proof at the bottom cannot be moved to the top (duentestor resolution), then we flip the
tree along the branch that connects the two ends of the loapobtain a valid proof tree which,
however, is not necessarily complete.

4. If a nodea becomes incomplete after flipping, this is because it loseareestor that previously
allowed for ancestor resolution. In this case, however, hensthat there is another nothen the
tree with the same label, and the proof tree rootduicetn be copied underto make it complete.

5. It can be shown that finitely many subtree copying resaléséomplete proof tree whose loop-depth
is greater than that of the initial tree.

O
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Proof. The loop-depth of is LD=(—D,C). This means that there is at least one loop of dépiand
there are no loops with depth less tHanLet L be one such loop with top and bottom nodes : P) and

(p2 : P), respectively. First, we eliminate all bad nodes by remgy¥ire subtrees rooted at the bad nodes.
According to Lemma 3, the result is still a complete prooétre

In case the elimination of the subtrees under bad nodesreltes loof, then the obtained complete
proof tree has loop-depth-D,,C,). In case there were no other loops of deptlin F thenD, > D.
Otherwise D, = D andC,; = C — 1. In either cas¢é—D3,C;) < (—D,C), so our lemma is satisfied.

Otherwise, in the obtained tree, all nodes that are eligin@ncestor resolution are leaf nodes. The
ancestor list ofp, contains the ancestors pi plus the nodes on the path betwegmnand p,. Let ANC
denote the set of nodes betwganand p;.

In case none of the nodesANC play any role in the proof of; (i.e., they do not participate in ancestor
resolution), the proof op; can be directly replaced with that p$, eliminating loopL. Thisis illustrated in
Figure 4.3. We obtained a complete proof tFéeand one of the loops at minimum depth was eliminated.
The new loop-depth is less than the initial, so our lemmatisfad.

(=) () (=) (=)
—
() (=)

Figure 4.3: Replacing the proof @f with that of p,

The situation is more complicated when some nodeSNIC participate in ancestor resolution under
p2. Among these, leta: A) be the lowest one (i.e., the last one to enter the ancestpr 88mewhere
underpy there is a leafa: —A) that is complete due to ancestor resolution. Let us flip &vafong the
branch(a,a). In the flipped over branch the nodes betwaeamda will appear with negated labels and
in inverse order. Afterwards, we once more eliminate all bades by removing the subtrees under them.
Node p; is on the path betweemanda, so its label will turn to-P, which makesp; eligible for ancestor
resolution. Hence, when we eliminate badness, we elimitneesubtree undep,. As a result, loofL
disappears. An example of this is shown in Figure 4.4. We kilmawflipping a complete proof tree results
in a valid proof tree, but it is not necessarily complete duese some goals that previously succeeded with
ancestor resolution might loose the required ancestoR@ifark 2). This is the case when there is a node
(b: B) undera and somewhere underneath there is a (baf-B). Nodeb has to be on the path between
a anda otherwiseb will continue to be an ancestor bfand their labels will not change. There are two
possibilities:

1. Asitis illustrated in Figure 4.9 lies betweera and p. Then,b cannot appear undgy, because
awas chosen to be the lowest node participating in ancestofutton undep,. Henceb appears
underb, but not undeps. After flipping, bothb andb will appear undep,, so they will be eliminated
when we eliminate the badnessmf Hence, this case will not yield any incomplete leaves.

2. We illustrate the second case, namely whénunderp, in Figure 4.6. We will treat all such nodes
together, i.e., letby : B1), (b2 : By),... (bk : Bx) be nodes on the path betweganda (nodesh,c on
Figure 4.6), such that eadip has at least one leaf descendé@nt: —B;). The nodes are ordered so
thatb, is the closest tg, andby is the farthest. After flipping over, the labels of these reoddl be
negated, i.e., turn te:B;, respectively, and they will appear on the branch leadingtm inverted
order, i.e. bk will be the topmost, whild; the lowest.
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Let us consideb;. Due to flipping over, it will lose all its previous descentiarits new descendants
will be its previous ancestors on the path betwegrandb; along with their descendants towards
other branches. We claim that none of the new descendamisazin have lost an ancestor which
previously allowed for ancestor resolution, i.e., none barone ofb;. This is because the lost
ancestor would have been abdwe howeverb; was chosen to be the topmost one. Consequently,
the subtree unddy, after flipping has no incomplete leaves. This subtree irfils@ot necessarily
complete, because the ancestora ofight be needed for some ancestor resolution steps. Wesxpre
this by saying that the subtree und®gris complete in the context of the ancestorsaofin the
following, we will always assume the same context (the atoce®fa) and will omit specifying it
whenever it leads to no misunderstanding. The labéhd$ —B1, so we have a complete proof for
-Bs (again in the context of the ancestorsapf This means that we can copy the subtree utger
to any node(by : —Bs), thus compensating such nodes for the lost ancestor. Natevéhneed to
rename the copied nodes to ensure that each node has a uaigae n

We next turn tobp. Through analogous reasoning we can see that the new leadriiemnts ob,
are either complete or else are incomplete because thewnoahcestor labelleéB;. However,
by copying the subtree undbg, we have already turned such leaves into complete treesce;len
we have a complete proof tree under(in the context ofa), proving—By, which we copy to any
incomplete leafby : —B;) (again assigning new names to the newly created nodes).

We continue the process. In tif8 step, we have a complete proof tree unbewhich we copy

to any leaf(by : —B;). By the end of tﬂek”1 step, we obtain a complete proof tree. Note that we
make exactly one copying for each ldgfthat lost its completeness after flipping over, so copying
terminates.

We now obtained a new proof tré&é. Let us show thaF’ has the properties claimed by the lemma
being proved. Flipping over turns the labelmffrom P to —P, which makes looj. disappear. New
loops can arise (some nodes were negated), however, nomyhbdn start above or pi. We show
this by contradiction. Suppose a noge : N) above or afp; obtains a descendafi : N) after
flipping. The labels of the nodes underin the new tree are either the same or the negated labels
that appeared undei before flipping. So, if a new loop appeared, it was either beedhe bottom
node of an already existing lodp was copied or because the label of a descendant,ofamely

of np, changed from-N to N. In the first case, the depth of lodp is smaller than the depth of loop
L, which is impossible becausewas chosen to be a loop of minimum depth (cf. Definition 19. of
loop-depth). In the second case, before flipping orgryas eligible for ancestor resolution. Since
we eliminated all bad nodes; was a leaf. However, flipping over does not negate the laliéésnbd
nodes, so we obtained a contradiction.

We conclude that the possibly arising loops are all of gredeégth than the eliminated loop. Hence, the
number of loops of deptD is reduced by one, i.e., the loop-depth of the new tree istlstiess than that
of the original tree. O

Theorem 8. For every complete proof tree containing loops there is aglete proof tree that is loop free.

Proof. Using the transformation described in Lemma 4, we can cigeaggies of proof trees of the same

goal such that the loop-depth is always decreasing. Thendemmmponent of the loop-depth is a positive
integer (the number of loops at minimum depth) which canmatrelase infinitely, so eventually the first

component will decrease as well. This means that the minihejoth of the loops increases, i.e. loops get
deeper and deeper. There are two possibilities:

1. Eventually, we manage to eliminate each loop after a fimitaber of iterations. The resulting proof

tree satisfies our theorem.

2. The elimination never terminates. Since the loops arengeflarther from the root, it follows that

the part of the proof tree that is loop free grows beyond amijtliSuppose the initial tree contains
n distinct labels in its nodes. The transformation stepslire/flipping over, copying subtrees and
eliminating nodes, each of which either preserves nodddaireintroduces the negation of some
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label to a node. Hence, there can be at modtigtinct labels, i.e., any loop free path from the root
node can be at mosh2ong. This contradicts the assumption that the loop freeqfdhe tree grows
beyond any limit. Hence, all loops have to disappear aftéefinmany iterations.

O

4.3 Summary

Prolog based inference systems like PTTP and DLog can betaggdve a query goal. We have shown
is Section 4.2 that these systems need not explore prodf thaé contain loops, because in case there is
a complete proof tree, there is one without loops (TheorenTBis allows for reducing the search space,
making both systems faster. Besides, loop eliminationfficgent to make the DLog reasoner terminating,

thus allowing one to replace iterative deepening search défpth-first search, which further increases
performance.
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Chapter 5

The DLog Description Logic Reasoner

The DLog system [38] is a DL data reasoner, written in the&®ytdnguage, which implements a two-phase
reasoning algorithm based on first-order resolution, asdpiports theR 7Q language. As described in
Chapter 3, the input knowledge base is first transformedfimotion-free clauses of first-order logic. The
clauses obtained from the TBox after the first phase are wdedild a Prolog program. It is the execution
of this program — run with an adequate query — that perforras#tond phase, i.e., the data reasoning.
The second phase is focused in that it starts out from theycaret only accesses parts of the ABox that
are relevant to answering the query. The relevant part exghéed by the clauses derived from the TBox.
Hence, the performance of DLog is not affected by the presehirelevant data. Furthermore, the ABox
can be accessed through direct database queries and nébdstayed in memory. To our best knowledge,
DLog is the only DL reasoner which does not need to scan thrtlugwhole ABox. Thanks to this, DLog
can be used to reason over really large amounts of data stoeeternal databases. The last stable version
of DLog that supports th6 # 1 Q language is available att p: // dl og- r easoner . sour cef or ge. net .

In Section 5.1 we give an overview of the architecture of treteam. Afterwards, Section 5.2 discusses
more in depth the implementation of the TBox saturation ni@duhich performs the first phase of rea-
soning. In Section 5.3 we collect the most important tas&sstill need to be done to make DLog usable
in practical applications. Finally, Section 5.4 summagisar work in the DLog project.

5.1 Architecture of the DLog System

Figure 5.1 gives an overview of DLog. The system can be uséld &® a server and as a standalone
application. It communicates through the DIG [7] interfasich is a standardised, XML based interface
for Description Logic Reasoners. The input has three p#resABox which can be potentially huge, the
TBox which is typically much smaller and the user queriese ABox is left unmodified and is asserted
into the Prolog modulebox. The ABox can also be provided as a database, which is cifociadally large
data sets. The content of the TBox is first transformed by B@XTsaturation module into a set of function
free clauses, which are next compiled into Prolog clausieg @sspecialised PTTP transformation, and are
asserted into modulebox. The last part of the input contains the user queries. Thesastance retrieval
gueries or their conjunctions. The generated Prolog progsarun with the provided query as argument
and returns all solutions through a backtracking search.

The first reasoning phase is independent from the ABox and ffee query. Hence, as long as the
TBox is unchanged, it is sufficient to perform the first phasky @nce, as a preprocessing step. For this
reason, its speed is not critical as it does not affect theorese time of the system when answering queries.

This dissertation only deals with the first reasoning phpeegprmed by the TBox saturation module.
For a thorough description of the whole DLog system and itigadar the Prolog code generation module,
see [38].
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Figure 5.1: Architecture of the DLog system
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5.2 Terminology Reasoning — the First Phase

The TBox saturation module takes the TBox part of the inpdtteansforms it to first-order clauses of the
following types:

_'R(X’ y) 4 S(yv X) (Cll)
_‘R(Xa y) \v S(Xa y) (012)
P(X) (c13)
PL(x) vV (GROG)) Vv V Pa(y) vV (3 =y)) (c14)

i

The transformation proceeds as described in Section 3.Baation 3.3 and this constitutes the first
phase of reasoning. The output clauses have a rather sigmgxswhich allows for using a highly opti-
mised variant of PTTP in the subsequent data reasoninggvthese clauses and the ABox are transformed
into a Prolog program. The most important benefit of the TBudustion is that there are no function sym-
bols left in the knowledge base.

The first phase is implemented in the Prolog predieatens_t o_cl auses/ 2, which takes aR 1Q.
knowledge base and generates clauses of types (c11) — {eel)gh a series of transformation steps, as
shown in Figure 5.2.

First, we eliminate from the TBox the complex role hieraeshias described in Section 3.3 and obtain
a setof4LCH IQ axioms. The predicate call

transitive:rig_to_al chi g( +Rl QAxi ons, - RBox, - ALCHI QGCl s)

results in a set afl LCH 1Q GCls and an RBox that contains neither transitivity axiomsaomplex role
inclusion axioms.
This is followed by internalisation and normalisation,lgiag a set of2LC# 1Q concepts.

dl _to_fol:axi omsTONNFConcept s( +ALCHI QGCl s, - NNF)

The semantics of these concepts is that all individuals aheampretation have to satisfy all the concepts
in order for the interpretation to be a model of the TBox.

Afterwards, we eliminate the nesting of composite concieptseach other, by introducing new concept
names for embedded concepts.

dl _to_fol:defNornfFor nms( +NNF, - Def s)

This is called structural transformation.
Next, we translate our concepts into first-order logic:

dl _to_fol:toFOLList(+Defs,-FOL1)
dl _to fol:toFQOLLi st (+RBox, - FOL2)
append(+FOL1, +FOL2, - FQL)
The first-order formulae are turned into first-order clauses
dl _to fol:list_cls(+FQL, - FOLO auses)

We obtain a set aff LCH 1 Q clauses (see Figure 2.4), i.e., they are of type (c1) — (c7).
This is followed by the real reasoning phase: the saturatidche 2L C# 1Q clauses by the modified
calculus presented in Subsection 3.2.2.

saturate: saturate(+FOLC auses, - Sat ur at ed)

After saturation, no more inference steps can be perforraedclauses containing function symbols,
hence they can be eliminated.

el imnate_functions(+Saturated,-FunFree)

The remaining clauses are passed over to the Prolog transiadule which builds a Prolog program
from them based on PTTP.
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Figure 5.2: The TBox saturation module

58



5.2.1 Data Representation

The input of the TBox reasoner isaI Q terminology, represented as a Prolog[i&Cls Hbox Trbox
of three elementsGClsis a list of concept inclusion axioms of the foimpl i es(Cy, Cy) , whereCy,Cy
are conceptsHboxis a list of complex role inclusion axioms of the fosubr ol e( Rs R), whereRsis
a list of roles andR is a role. Trboxis the list of transitive roles. The Prolog representationotes and
concepts is defined by the functidhas follows:

DL expression Prolog Representation
RP(Re€ NR) = arole(R

(RT)P = inv(RP)
CP(CeNg) = aconcept(C)

TP = top

1P = bottom

(-C)P = not(CP)

(CmD)P = and([CP,DP])
(CUD)P = or([CP,DF])
(VRC)P = all(RP,CP)
(IRC)P = sone(RP,CP)

(< NRC)P = atleast(N,RP, CP)
(> NRC)P = atnost(N, RP,CP)

For example, the DL axioni> 2hasChildClever C (RichmHappy) is represented with the following
Prolog term:

inplies( atnost(2,arole(hasChild),aconcept(clever)),
and([aconcept (rich), aconcept (happy)]) )

After a series of transformation steps the TBox is trandlatéo a set of first-order clauses, that are
represented as lists of literals. We extend-thizinction to describe how terms and literals are represented

FOL expression Prolog Representation
FOL variable = Prolog variable
(f(X)P = fun(f, XP, M)

(C(X))P = concept (CP, XP)
(R(X,Y))P = role(R XP,YP)

(=P)P = not(PP)

The third argument of a functional term is used to indicatbéfterm is marked (see Subsection 2.1.1). If
the term is marked, its value is the tenmr ked, otherwise it is an uninstantiated variable. As an example,
we give the Prolog representation of the FOL cla@&e) v —R(x, f (x)) V S([9(X)], X):

[ concept (aconcept(c), X),
not(role(arole(r), X fun(f,X ))),
rol e(arol e(s), fun(g, X, marked), X) ]

5.2.2 Saturation

The key part of the TBox saturation module is saturatiorfijtagnich performs all possible inference steps
on the input clause set. A naive first implementation couldolb®on-deterministically select two clauses,
try to resolve them and if it succeeds, then add the conaiusidhe clause set. This is very inefficient,

because (1) the same inference step might be performed hemence, (2) most of the time the selected
clauses cannot together be premises of an inference andg38jgrd to determine when to stop, i.e., when
the clause set is saturated.
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To make saturation more efficient, we separate the clausesio sets: the clause set SAT is saturated,
i.e., any inference with premises from SAT yields a conclnghat is either in SAT or is implied by some
clause in SAT. The rest of the clauses constitute the set UNB#ially, UNSAT contains all clauses and
SAT is empty. We gradually add clauses from UNSAT to SAT amehgk collect all conclusions that can
be drawn from the newly added clause and some clause alrec@iTi. These conclusions are added to
UNSAT. Saturation terminates when UNSAT becomes empty.

Before adding a clause to SAT, it is very important to perfeedundancy checking. If one clause is
a consequence of another, then the first is said to be reduaddrcan be eliminated. For example, if we
have clause§; = P(x) andCz = P(x) V Q(x), thenC; can be eliminated. Each clausghat is newly added
to SAT has to be compared with every single clause alreadyin [ C turns out to be redundant, than
it should not be added. If, on the other hand, the presen€enadikes some other clauses redundant, then
they should be eliminated from SAT.

Saturation, extended with redundancy checking is sumethitsAlgorithm 2.

Algorithm 2 Saturation of2LCH IQ clauses
SAT=0

UNSAT = Input clause set
DO

IF UNSAT = 0 THEN return SAT
ELSE LETC € UNSAT

removeC from UNSAT
IsRedundant = FALSE
FOREACHC; € SAT
IF C; is redundant due t68 THEN removeC, from SAT
IF Cis redundant due t6; THEN IsRedundant = TRUE
IF IsRedundant = FALSE THEN
Let RSbe the set oR such that there is a clau§e € SAT and an inference rule with
premisesC andC; and conclusiorR,, whereR, can be simplified into the logically
equivalenR
addC to SAT
addRsto UNSAT

5.2.3 Optimising saturation via indexing

Saturation can take a long time. The size of the sets SAT angATNtan grow exponential in the size of
the initial clause set. Each time we add a claOgeom UNSAT to SAT, we compare it with every clause
in SAT to see if they can participate together in an infereamog also to see if one is implied by the other.
Performance can increase greatly if we manage to narrow tloeveet of clauses that are worth examining
for possible inferences wit@@ and also to narrow down the set of clauses that have the padtentmakeC
redundant. We can achieve this through some index tables.

In our first implementation, SAT and UNSAT were stored in Bgolists. However, a Prolog list does
not allow for random access: if we want to find a particularredat in the list, we have to go through all
the preceding elements, so it takes linear time in the sitlesolist. Hence, we decided to use the dynamic
predicate facility of Prolog for storing these sets. Ea@usEC is associated with a unique identifié
and we use the following Prolog facts:

For each claus€ € UNSAT, we assert!| ause: cl ause0( IDc,C)

For each clausB € SAT, we assert| ause: cl ausel(IDp,D)
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Most Prolog implementations perform indexing on the funabtheir first argument, so if we have an
identifier ID, then we can find the corresponding clause in constant tisggrdless of the number of
clauses asserted.

When looking for resolvent clauses with some clads&ve can use the maximal literal 6fto focus
our search. For example,@ = AV B and literalA is greater than literaB, thenC can only be resolved
with a clause whose maximal literal48A (for a resolution step), or with a clause whose maximaldites
A =w (for a superposition step). Hence, we maintain an indexetattich allows us to look up the set of
clauses associated with a particular maximal literal. Tdiiée is implemented using the Prolog fact

clause:starts_with(MuxLiteral, 1D
The following Prolog code collects all clausésfrom SAT whose maximal literal ik:

is_maximal _literal (L, Cs):-
findall (C (
clause:starts_with(L, D),
clause: cl ausel(ID, Q)
), Cs
).

The time that this predicate uses is linear in the siZ89but it is independent from the size of SAT.
Another aspect of saturation that can be a serious perfarenaottieneck is redundancy checking. In
fact, it is a well known fact that modern theorem provers sip@ost of their reasoning time on redundancy
checking. In return, this allows for avoiding repeated iafeces and falling into infinite loops. Hence, any
speedup in redundancy checking manifests directly in sggeadthe whole reasoning process.
A clauseC is made redundant by some clau3ef there is a substitutiow such that the literals in
Do are a subset of the literals &. Consequently, when we want to check if cla@é redundant, it
is enough to focus on clauses whose predicates are a subdettafC. We maintain a lookup table
(implemented as the Prolog fadtause: i s_cont ai ned( Pred, | D)) which associates with each predicate
the clauses that contain it and another table which assscigith each clause the set of its predicates
(clause: al | _predicates(ID, Preds)). We first determine the set of predica@8redsof C, collect the
clauses that contain some of these predicates and themat@the ones that contain other predicates than
those ofC. The redundancy & is checked only with respect to the remaining clauses. Bhimplemented
in the following predicate:

narrower _predi cate_set (CPreds, Ds): -
findall (1D, (
menber (P, CPreds),
clause:is_contained(P, 1D

), IDs
),
sort(1Ds, |Ds2),
findall (D, (

menber (1D, | Ds2),
clause: al | _predicates(|D, DPreds),
ord_subset ( DPreds, CPreds),
clause: cl ausel(ID, D)
), Ds
).

On the other hand, if we want to see what clauses are madedaduoyC, then it is enough to check
those clauses whose predicate set is a superset of tBatH#nce we collect all the clauses that contain all
the predicates dT:

broader _predicate _set([First|Preds],|DDs):-
findall (1D, (
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clause:is_contained(First, D),
( foreach(P, Preds), paran(lD)
do is_contained_nochoi ce(P, | D)
)
), IDs
),
( foreach(I1D2,1Ds), foreach(l1D2-D, 1DDs) do clause:clausel(1D2,D) ).
broader _predicate_set([],IDDs):- !, % The enpty cl ause makes
% everyt hi ng redundant
findall (1D-D, clause:clausel(lID D), 1DDs).

i s_cont ai ned_nochoi ce(P,ID): -
clause:is_contained(P,1D), !.

The optimisations described in this paragraph increasedvhbrall speed of TBox saturation with two
orders of magnitude.

5.3 Future Work

One of the most urgent tasks ahead of us is extending thensysterface. Currently, we only support the
DIG ([7]) format for the input knowledge base and query. Weulddike to provide the system with an
OWL interface (see [27] and [21]). Moreover, we have alregwiylemented the database support ([32])
which enables really large scale reasoning, however, itnledget been incorporated into the reasoner.
Once these tasks are done, we need to do more testing to evBluag with respect to other DL reasoners
such as RacerPro, Pellet, Hermit, KAON2.

On the theoretical side, we are curious to see how far we cméxhe expressivity of DLog beyond
R IQ, approximating, as much as possibl® OIQ (D), the language behind OWL2 ([21]).

5.4 Summary
The DLog program is in experimental stage. We implementethalreasoning algorithms and we have

prototype implementations for various further featureshsas support for ABoxes stored in database. In
the near future we plan to incorporate all our results in agear that proves useful for the DL community.
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Chapter 6

Introducing the Q Language and
Constraint Logic Programming

In the following, we present some background knowledgettieatser my find useful in the context of type
inference for the Q functional programming language, irtipalar for understanding Chapters 7 and 8. In
Section 6.1 we describe the Q functional programming laggwehich was the target language for which
we developed a type analysis tool. In Section 6.2 we briefs@nt the constraint satisfaction problem.
In Chapter 7, we will rephrase the task of type inference asrstcaint satisfaction problem. Finally, in
Section 6.3 we present the Constraint Handling Rules laggyuahich we used for implementing our type
analyser.

6.1 The Q Programming Language

Q is a highly efficient vector processing functional langeiaghich is well suited to performing complex
calculations quickly on large volumes of data. Conseqyemtimerous investment banks (Morgan Stanley,
Goldman Sachs, Deutsche Bank, Zurich Financial Group), ese this language for storing and analysing
financial time series [35]. The Q language first appeared @82Md is now (July 2012) so popular, that it
is ranked among the top 50 programming languages by the TIRBEramming Community [53].

Types Q is a strongly typed, dynamically checked language. Thiamaghat while each variable, at any
point of time, is associated with a well defined type, the tgpa variable is not declared explicitly, but
stored along its value during execution. The most impottigrgs are as follows:

e Atomic typesin Q correspond to those in SQL with some additional date emel telated types that
facilitate time series calculations. Q has the followingat@mic typeshool ean, byt e, short, i nt,
I ong,real ,float,char,synbol ,date,datetime, mnute,second,tine,ti mespan,timestanp.

e Lists are built from Q expressions of arbitrary types, €.53.2. 2; * abc) is a list comprising two
numbers and a symbol. However, if a variable is initialise@tlist of atomic values of the same
type, then certain operations, e.g. updating a certainexi¢mf the list, insist on keeping the list
homogeneous.

e Dictionaries are a generalisation of lists and provide the foundatiortdbtes. A dictionary is a
mapping that is given by exhaustively enumerating all donrange pairs. For examplg,a' b !
1 2) is a dictionary that maps symbalsb to integersl, 2, respectively.

e Tablesare lists of special dictionaries callegcords, that correspond to SQL records.

e Functionscorrespond to mathematical mappings specified by an afgorit
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Main Language Constructs Q being a functional language, functions form the basis eflémguage.
A function is composed of an optional parameter list and aylmmanprising a sequence of expressions to
be evaluated. Function application is the process of etialythe sequence of expressions obtained after
substituting actual arguments for formal parameters.

As an example, consider the expression

fo {[x] $[x>0;sqgrt x;0]}

which defines a function of a single argumenteturning./x, if x> 0, and 0 otherwise. Note that the
formal parameter specificatigrx] can be omitted from the above function, as Q assumgsandz to
be implicit formal parameters. If a return value is specifitte function evaluates to its return value,
otherwise it has no return value.

Input and return values of functions can also be functioasekample, a special group of functions,
calledadverbgake functions and return a modified version of the input. Whele Q program can be seen
as a series of complex function evaluation steps.

Some built-in functions (dominantly mathematical funogdwith one or two arguments have a special
behaviour calledtem-wise extensionNormally, the built-in functions take atomic argumentsl aaturn
an atomic result of some numerical calculation. Howeverséhfunctions extend to list arguments item-
wise. If a unary function is given a list argument, the reslthe list of results obtained by evaluating
each argument element. A binary function with an atom andtatgument evaluates the atom with each
list element. When both arguments are lists, the functiaraies pair-wise on elements in corresponding
positions. Item-wise extension applies recursively irecafsdeeper lists, e.§(1;2); (3;4)) + (0.1;

0.2) =((1.1;2.1); (3.2,4.2))

Although it is a functional language, Q also has imperataadires, such as multiple assignment vari-
ables, loops, etc.

Q is often used for manipulating data stored in tables. Thezethe language contains a sublanguage
called Q-SQL, which extends the functionality of SQL, wipleserving a very similar syntax.

Besides expressions to be evaluated, a Q program can csoteiiledcommandsCommands control
aspects of the Q environment. Among many other tasks, theyemponsible for changing the current
context (namespace), performing various O/S level opmratioading a file, etc.

Principles of evaluation In Q, expressions are always parsed from right to left. FarmgXe, the evalua-
tion of the expressioa: 2* 3+4 begins with adding to 3, then the result is multiplied by and finally, the
obtained value is assigned to variahleThere is no operator precedence, one needs to use paesithes
change the built-in right-to-left evaluation order.

Flexibility Q is an extremely permissive language: for example, it iswad to divide by zero and
built-in functions accept extreme types without runtimeerThis property of the language significantly
increases the chance of program errors that are very dtfficeixplore once the program evaluation fails.
Overcoming this difficulty by developing debugging tools @is likely to greatly enhance the usability of
the language.

Type restrictions in Q The program code environment can impose various kinds tfaesns on types
of expressions. In certain contexts, only one type is altbwieor example, in the do-loago[ n; x*: 2] ,
the first argument specifies how many timelsas to be multiplied bg and it is required to be an integer.
In other cases we expect a polymorphic type. If, for examfulectionf takes arbitrary functions for
argument, then its argument has to be of type-> B (a function taking an argument of typeand
returning a value of typB), whereA andB are arbitrary types. In the most general case, there isrictest
involving the types of several expressions. For instancehé expressiom : y + z, the type ofx
depends on those gfandz. A type analyser for Q has to use a framework that allows fanfdating all
type restrictions that can appear in the program.
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6.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) [24] can be desdihith a triple(X,D,C), where
e X ={X1,...,Xn} is a series of variables,
e D={Dsy,...,Dn} is a series of finite sets called domains,
e variablex; can only take values from domalh,

e C={cy,...,c} is a series of constraints, i.e., atomic relations whoseragnts are variables from
X.

A solution to a CSP is an assignment to each X a domain element; € D;, such that all constraints
¢ € C are satisfied.

A value d; of a variablex; of a constraint is superfluousn case there is no assignment to the rest
of the variables ot along withx; = d; that satisfies constraigt Removing superfluous values from the
corresponding domains yields an equivalent CSP.

There are two mechanisms that lead to a solution of a CSR, Egsstraints constantly monitor the
domains of their variables and remove superfluous valuere in case constraints fail to reduce some
domain to a single value, we apply labeling: we choose abkri@and split its domain into two (or more)
parts, creating a choice point where each branch corresgordreduced domain. Through a backtracking
search we explore the branches. During labeling, constream wake up as the domains of their variables
change and can further eliminate superfluous values. Inaassmain becomes empty, we roll back to
the last choice point. By the end of labeling, either we findngle value for each variable such that all
constraints are satisfied, or else we conclude that the C@#satisfiable.

6.3 Constraint Handling Rules (CHR)

Constraint Handling Rules (CHR) is a language embeddediihimst language. Here we only give a brief
introduction, a more detailed tutorial can be found in [4¥lost Prolog implementations contain a CHR
extension, and CHR code is translated into Prolog code. drfdhowing, we will as assume the host
language to be Prolog.

CHR provides a very flexible tool, because arbitrary comstsecan be formulated. However, there is
no built-in constraint reasoning, it has to be provided g/ phogrammer in the form of rewrite rules. A
constraint can be any Prolog term except for varidbke CHR program consists of a sequence of rules,
that are simple if-then rules. Program execution is as\idglo

1. There is aonstraint storevhere constraints are accumulated. A constraint can appgarhere in
a Prolog program, instead of a predicate call. The constgaits added to the store.

2. Each CHR rule monitors the constraint store and in cagainaronstraints are present, it can fire.
The firing of a rule can result in the addition or removal of sxgonstraints, along with the execution
of some Prolog calls.

3. If the constraints in the store allow for no rule to fire angre execution terminates and the user is
shown the final state of the constraint store.

We illustrate the use of CHR with a simple example taken frdif].[ The program describes how to
mix colors. We will work with six different colorst ed, yel | ow, bl ue, green, purpl e, orange. These
colors are our constraints, declared at the beginning gbtbgram:

;- chr_constraint red, yellow, blue.
.- chr_constraint green, purple, orange.

1Though, it can contain variables as subexpressions.
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Of course, we know that three colors are sufficient for cngpthe other three. Red and blue yield
purple, red and yellow yield orange, blue and yellow yieldegr. These are expressed using the following
CHR rules:

red, blue <=> purple.
red, yellow <=> orange.
bl ue, yellow <=> green.

The above rules are calleiimplification rules because the constraints to the left of #we sign are
simplified into the constraints to the right. The left part@led theheadthat contains all the constraints
that need to be present in the store in order for the rule to Titee right part is thdodythat holds the
constraints to be added after firing. For example, the filstean fire if we have constrainted andbl ue
in the store. After firingr ed andbl ue are removed anplur pl e is added to the store.

We have a mixing bucket, which corresponds to the conststine. What happens if we pugd in the
bucket?

?- red.
red

Nothing happens,ed remains in the bucket, because the rules require two caldiset If, however, we
also add yellow:

?- red, yellow
orange

then the second rule fires and we obtain the color (consti@iange in the bucket (store).
Now, let us add the coldir own to our palette:

.- chr_constraint brown.
The particularity obr own is that it remain®r own, no matter what color is added to it.

brown, orange <=> brown.
brown, purple <=> brown.

Notice that the constrairir own appears both in the head and in the body. For such rules, there
simplified notation:

brown \ orange <=> true.
brown \ purple <=> true.

The head has two parts: constraints that remain after finmythose that are eliminated by the rule.
Simplification rules are special cases of this rule, wheedfitist part was empty. It is also possible that the
second part is empty, i.e., nothing is removed from the stéoeexample, the colgrel | ow might contain
some constituent that leads to the corrosion of the mixirgkéu This is called @ropagation rule

yel | ow ==> corrosi on

Rules where neither part of the head is empty can be seen asrit@nation of simplification and propa-
gation rules. For this reason, they are calledpagation rules

Until now, we only had atomic constraints. There is no redsorthat, any Prolog term is allowed
(except for variables). Let us add a saturation value to olors. The arity of the constraints change,
which has to be reflected in the constraint declaration:

- chr_constraint red/1, yellow 1, blue/l.
.- chr_constraint green/1, purple/l, orange/l.
.- chr_constraint brown/1.
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As we mix colors, the saturation values are added:

red(X), blue(Y) <=>2Zis X+Y, purple(Z).
red(X), vyellowY) <=>Z is X+Y, orange(Z2).
blue(X), yellowY) <=> Z is XtY, green(Z2).

What we see here is that arbitrary Prolog code can be inserted rule body. The code is executed, while
the constraints are added to the store.

?- yellow(3), blue(4).
green(7)

Let us suppose that colors have a maximum saturation vadyel & This means that if some color has
maximum saturation, then it does not mix with any other coldris is a precondition for firing the rule,
that can be placed in the so callgdard part:

red(X), blue(Y) <=> X <10, Y<10 | Zis X+Y, purple(2).
red(X), vyellow(Y) <=> X< 10, Y< 10| Zis X+Y, orange(Z).
blue(X), yellow(Y) <=> X< 10, Y< 10| Zis X+Y, green(2).

The guard can contain arbitrary Prolog calls with the onktrietion that it may not bind variables from
the head. If the guard succeeds, the rule can fire and the betkgcuted.

Formal syntax After this informal introduction, we now present the precgyntax for the tree kinds of
CHR rules:

e Simplification
Hi,....Hj <=> Gl,...,Gj|Bl,...,Bk.

e Propagation
Hi,....,Hj==> Gl,...,Gj|Bl,...,Bk.

e SimpagatiorHy,...,H\Hi11,...,Hi <=> Gy,...G;j|By,...,Bxk.
The rules consist of the following parts:

e Head:Hs,...,Hi, whereHy, is a CHR constraint

e Guard:Gy,...,Gj, whereGy, is a host constraift

e Body: By, ...,Bk, whereBy, is either a CHR or a host constraint

The semantics and execution of the rules:

e Simplification: In case the guard is true, the head and the boel equivalent. The constraints in
the store that match the head are removed and the body istegledtnis might involve adding new
constraints to the store.

e Propagation: In case the guard is true, the head impliesatie The body is executed.

e Simpagation: In case the guard is true, the head is equividehe body along with the first part
of the head. The constraints in the store that match the dguam of the head are removed and the
body is executed. Note that simpagation can be expressegiagp#fication, since the following
two rules are equivalerit:

Headl \ Head2 <=> Body
Headl, Head2 <=> Headl, Body.

2In the case of Prolog a host constraint can be arbitrary gaeslicall.
SHowever, the rules are different in terms of efficiency, sittte constraints iHead1 are removed and then re-added in the second
rule.
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Example We demonstrate the usefulness of CHR through a small exgonpdgam. The program com-
putes the prime numbers in the ran@e.. N}, implementing the sieve of Eratosthenes:

.- chr_constraint primes/1, prinme/l.

primes(1l) <=> true.

primes(N) <=> ground(N), N>1 | Mis N1, prinmes(M, prinme(N).
prime(X) \ prime(Y) <=>Y nmod X == 0| true.

The code is remarkably short. Let us see what happens if wéhadebnstrainpri mes(10) to the store.
The second rule generates constrapmtsne(1) for all | € {2...10}. Afterwards, the first rule removes
theprimes/ 1 constraint. Finally, the third rule fires as long as it find® teonstraintgri me( X) and
prime(Y) inthe store, such thatis divisible byX, in which case it eliminateg. Only the primes remain.

?- prines(10).
prime(2)
prime(3)
prime(5)
prime(7)
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Chapter 7

Type Inference for the Q Functional
Language

In this chapter we present our work on designing a type arsatlys| for the Q vector processing language,
see Section 6.1. This work was carried out in the framewoik cdllaborative project between Budapest
University of Technology and Economics and Morgan StanlesiBess and Technology Centre, Budapest.
We emphasize two merits of our work: 1) we provide a type lagguthat allows for adding type declara-
tions to Q programs, making the code better documented agier¢a maintain and 2) our tool checks the
type correctness of Q programs and detects type errorsahdtecinferred from the code before execution.

The type analysis tool has been developed in two phases.elfirgth phase we built &ype checker
the programmer was expected to provide type annotatioralifgariables (in the form of appropriate Q
comments) and our task was to verify the correctness of thetations. In the second phase we moved
from type checking towardype inferencewe devised an algorithm for inferring the possible typealbf
program expressions, without relying on user provided ippermation. Although we no longer require
type annotations, we allow them as they provide documemtaind improve maintenance and code reuse.

The main goal of the type analysis tool is to detect type sreord provide detailed error messages
explaining the reason of the inconsistency. Our tool cap Hetect program errors that would otherwise
stay unnoticed, thanks to which it has the potential to dyeathance program development.

We perform type inference using constraint logic prograngnihe initial task is mapped into a con-
straint satisfaction problem (CSP), which is solved ush€onstraint Handling Rules extension of Pro-
log [19], [48].

First, in Section 7.1, we give an overview of previous workieadn the field of static type analysis.
In Section 7.2, we present some restrictions that we had po$e on the Q language in order to make
type analysis feasible. Afterwards, in Section 7.3 we prese type language that we designed in order
to enable Q programmers to add type annotations to theiranog The following two sections describe
the type analysis itself. Section 7.4 shows how to check @naras for type correctness in case there is a
ground type declaration for each variable. The algorithsecalsed in Section 7.5 lifts this restriction and
allows for inferring the possible types for each programregpion without any type information provided
by the user.

7.1 Work Related to Type Inference

Static analysis of computer programs is a very broad conaegtencompasses numerous techniques.
These techniques analyse the code in compile time and tryetdigt the runtime behaviour. Often they
aim to optimise resource consumption through better memmanyagement, reuse of previously computed
results etc. Furthermore, they can be used to automatigadljict properties of the program that hold for
all possible execution paths.

Static type analysis aims to ensure that program execufilbnaver cause an error. This is not possible
with full generality as errors may depend on particular inyalues of the program, but a large class of
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errors may be discovered based on the types of the involvedesions and these types are often known
already in compile time. A type represents a set of exprassiad working with types as opposed to values
is a useful abstraction that enables the early discoveryamfynprogramming errors.

A successful method for static analysis and in particulaticstype analysis iabstract interpretation
[12]. In order to demonstrate a certain property of the progrwe approximate the program with a
simpler, more abstract one that shares the property to bems&nated. This involves mapping concrete
values to abstract values (types) and mapping concretates to abstract operations. The benefit of
the mapping is that instead of considering all the possikézetion branches of the initial program, we
only need to consider groups of execution branches, sutthih&arious executions within a group cannot
be distinguished on the abstract level. Abstract integpi@t can be very fine grained or very abstract,
depending on the complexity of the property to be demoresirat

A very different approach to type analysis is to generatestaints from the program to ensure that it
is well typed. One of the first such algorithms used for tyderience is the Hindley-Milner type system
[25]. It associates the program to be analysed with a setudtéans which can be solved by unification. It
supports parametric polymorphism, i.e., allows for usypgetvariables. The type inferred by the algorithm
for an expression is guaranteed to be the most general ggie, theprincipal type Most type systems
for statically typed functional languages can be seen ameidns of the Hindley-Milner system. Some
of the best known examples are the ML family [44] and Hask&ll][ We also find several examples of
dynamically typed languages extended with a type systesw{y for type checking and type inference.
These attempts aim to combine the safeness of static typihgthe flexibility of dynamic typing. [42]
describes a polymorphic type system for Prolog, which iemislly the same as that of ML. Here, the
only addition to the language are type declarations, arglgtiaranteed that any well-typed program will
behave identically with or without type analysis.

A major limitation of the Hindley-Milner system is that itgaires disjoint types. In such a system
one cannot have, for examplenamericand anintegertype since they are not disjoint. Another approach
to type inference which does not suffer from this limitatisrbased on subtyping [10]. Here, the input
program is mapped into type constraints of the fddn V whereU andV are types, as opposed to
Hindley-Milner systems where we obtain constraints of tihvefU = V. Subtyping systems can be seen as
generalisations of Hindley-Milner systems. [40] presentgpe checker for Erlang, a dynamically typed
functional language, based on subtyping. Several of theadmings of this system were addressed in
[36]. Their tool aims to automatically discover hidden typ®rmation, without requiring any alteration of
the code. The inferred types enhance program maintenadaease by helping programmers understand
code written long ago. They introduce the notion of succgsmg: in case of potential type errors (for
example, because a variable can have two possible typesgdexicution and one leads to abnormal
behaviour), they assume that the programmer knows what hteswahey only reject programs where the
type error is certain, i.e., when there is no way the programran correctly.

The Q language is similar to Erlang in that they are both dyinally typed functional languages. The
usage of the language naturally yields many constrainteefdrmU C V for typesU,V. Still, a type
system based on subtyping is not sufficient. Due to builtsimctions being highly overloaded (ad-hoc
polymorphism), we need tools to formulate and handle vilesatd complex constraints. Constraint logic
programming seems ideal for this task.

[16] reports on using constraints in type checking and &riee for Prolog. They transform the input
logic program with type annotations into another logic pesg over types, whose execution performs the
type checking. They give an elegant solution to the probléimaadling infinite variable domains by not
explicitly representing the domain on unconstrained Ve The way variable domains are represented
in the Q type inference tool was motivated by their work. [88%cribe a generic type inference system for
a generalisation of the Hindley-Milner approach using t@msts, and also report on an implementation
using Constraint Handling Rules. The CY#7") [17] framework provides constraint logic reasoning over
sets. Our solution has many similarities to CKP(7') as types can be easily seen as sets of expressions.
The main difference is that we have to handle infinite sets.
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7.2 Necessary Restrictions of the Q Language for Type Reasoq

Q is a very permissive language. In consultation with expattMorgan Stanley we decided to impose
some restrictions on the language supported by our toolrderado promote good coding practice and
make the type analysis more efficient.

With multiple assignment variables and dynamic typing, @ves for setting a variable to a value
of type different from that of the current value. Howeveistts not the usual practice and it defies the
very goal of type checking. Hence we agreed that each varg&imuld have a single type in a program,
otherwise the type analyser gives an error message.

Other restrictions concern the type of the built-in funao Most built-in functions in Q are highly
overloaded, thanks to which some functions do not raisefoo certain “strange” arguments. For exam-
ple, the built-in functiord ast takes a list as argument and returns the last element ofsheHowever,
this function works on atomic arguments as well: it simpliuras the input argument. To increase the
efficiency of the type reasoner we decided to ignore somdapaeanings of some built-in functions. For
example, we neglected this special meaning of e function. Consequently, we infer that the argument
of thel ast function is a list, which is not necessarily true in general.

7.3 Extending Q with a Type Language

In order to allow the users to annotate their programs wige tgeclarations, we had to devise a type
language that could be comfortably integrated into a Q @grOur type language supports type poly-
morphism, i.e., the usage of type variables. Type exprassaoe built from atomic types and variables
using type constructors. The concrete syntax is providéspipendix B. The abstract syntax of the type
language — which is at the same time the Prolog represemaitiypes — is as follows:

TypeExpr =
At om cTypes | TypeVar | synbol ( Name) | any
| list(TypeExpr) | tuple([TypeExpr,..., TypeExpr])
| dict(TypeExpr, TypeExpr) | func(TypeExpr, TypeExpr)

At om cTypes This is shorthand for the 16 atomic types of Q. Furthermdrentimeri ¢ keyword is
used to denote a type consisting of all numeric values.

TypeVar represents an arbitrary type expression with the regiridihat the same variables stand for
the same type expression. Type variables make it possillefine polymorphic type expressions,
such agist(A) -> A(afunction mapping a list of a certain type to a value of thegitype) and
tuple([A A B]).

symbol ( Nane) The named symbol type is a degenerate type, as it has a sistgace only, namely the
provided symbol. Nevertheless, it is important becausedemto support certain table operations,
the type reasoner needs to know what exactly the involvedbsisvare. For example, when we insert
a new record into a table, it is not sufficient to know that taeard maps symbols to the adequate
types (that of the column values), we also have to check ligatdlumn names match.

any This is a generic type description, which denotes all datacgires allowed by the Q language.
i st(TE) The set of all lists with elements from the set representetitby

tupl e([TEL, ..., TEW) The setof all lists of lengtlk, such that thé!" element is from the set
represented byE;.

di ct (TE1, TE2) The set of all dictionaries, defined by an explicit assooiatietween domain lisT(E;)
and range lisi[ Ep) via positional correspondence. For example, the dictiphanane; ‘* date) !
(*Joe; 1962) has type
di ct (tupl e([ synbol (nane), synbol (date)]), tupl e([ synbol (Joe),int]))?.

7o facilitate type inference for tables, we include dethilgformation on the domain/range of a dictionary in its typk record
is a dictionary with the domain being a list of column names.)
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func(TE1, TE2) The set of all functions, such that the domain and range ane fne sets represented
by TE; andTE,, respectively

While some type expressions correspond directly to Q laggeanstructs (such &sst, di ct orfunc),
others were “discovered” in the process of trying to descfbexpressions. Such are thepl e(...)
and synbol (...) type expressions. Some built-in functions require listuargnts with fixed length.
These lists might also have to be non-homogeneous, with speltified type for each list member. To
be able to describe the type of such functions (and that oaf #trgument), we introduced thieupl e
type. Using thet upl e type, we can for example easily describe a function thatstakést consisting
of an integer and a symbol and returns another list congisifntwo integers and a float: it has type
func(tuple([int,symbol]),tuple([int,int,float])).

Thesynbol (Namée type was introducted to enable type checking table operatié-or example, it
allows for deciding whether a given record to be inserted &ngiven table has matching column names. A
record is a dictionary that maps column names to values. Bygggnbol (Nameg, we can represent the
domain type of dictionaries in such a way that contains tmeesof all columns. Hence, instead of treating
dictionary(‘ name‘ age)! (‘jim2), asdict(tuple([synbol,symbol]),tuple([synbol,int])), we
represent its type aB ct (t upl e([ symbol (nane), symbol (age)]), tupl e([symbol ,int])).

Note that our type system contains non-disjoint types: fangple,i nt is a subtype ofiuneri ¢ and
tuple([int,int]) is a subtype ofist(int). As we shall see later, this greatly complicates the type
analysis.

7.3.1 Type Declarations

Type annotations appear as Q comments and hence do no¢retesith the Q compiler. A type declaration
can appear anywhere in the program and it will be attachetieécstallest expression that it follows
immediately. For example, in the code

x +y /[/$ int

variabley is declared to be an integer.

Type declarations can be of two kinds, having slightly dife semanticimperative(believe me that
the type of expression E is T) orterrogative(l think the type of E is T, but please do check). To understand
the difference, suppose the valuexak loaded from a file. This means that both the value and theityp
determined in runtime and the type checker will treat theetyfx asany. If the user gives an imperative
type declaration that is a list of integers, then the type analyser will believes thind treak as a list of
integers. If, however, the type declaration is interroggtihen the type analyser will issue a warning,
because there is no guarantee thatill indeed be a list of integers (it can be anything). Intgative
declarations are used to check that a piece of code worksdlgdtve programmer intended. Imperative
declarations provide extra information for the type anatys

Different comment tags have to be used for introducing the kimds of declarations. We give an
example for each:

f I1'$: int -> bool ean interrogative
g/l int ->int i nperative

7.4 Type Checking for the Q Language

In this section we give an outline of the data structures dgdrithms developed for the first version of
our type analyser tool: the type checker. There are two rements towards Q programmers: they have to
provide a type declaration for all variables and only grodadarations are allowed, i.e., type variables are
not allowed. Both restrictions will be lifted in the type @rence algorithm to be described in Section 7.5.

We only discuss type analysis proper: details about pa@ipgograms can be found in [62]. Hence,
we assume that the input of this phase is the abstract sye&gAST), constructed by the parser. Its output
is a (possibly empty) list of type errors.

2To help readability, we often use the notatibn > B instead of unc(A, B) .
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7.4.1 Type Analysis Proper

Algorithm 3 gives a summary of the type analysis componenir &m is to determine whether we can
assign a type to each expression of the program in a coheramen Some types are known from the
start: the types of variables are provided by the programfughermore, we know the types of atomic
expressions and built-in functions. The analyser infeestyfpes of the other expressions and checks for
consistency.

Algorithm 3 Algorithm of the type analysis component
1. To each node of the abstract syntax tree, we assign a tyjadla

2. We traverse the tree and formulate type constraints. &t program expression there is a constraint
that can be used to determine its type based on the typesabiéxpressions. In terms of the abstract
syntax tree, these constraints specify the type of a nodsdbasthe types of its child nodes.

3. Constraint reasoning is used to automatically

e propagate constraints,
e deduce unknown types
e detect and store clashes, i.e., type errors.
From the types of the leaf nodes, we infer the types of theinédiate parents. This wakes up new

constraints, so in the next step we can determine the typegdss that are at most two steps away
from all their leaf descendants. Continuing this procegsewentually find all types.

4. If there is a type mismatch, we mark the erroneous nodethalparent nodes will also be marked
erroneous — however, we only show the smallest erroneougssipns to the user, i.e., those that
have no erroneous subexpression.

5. By the end of the traversal, each node that corresponds$yjeeacorrect expression is assigned a
type. The types satisfy all constraints.

Each expression in the concrete syntax corresponds to eesutt the AST. Hence, we maintain a
variable (in mathematical sense) for each node of the the¢ stands for the type of the subtree rooted at
the node. The task of the type checker is to instantiate thHahlas to proper ground types, as described
in the type language in Section 7.3. During reasoning, threxg be situations where we can only partially
instantiate a variable, for example, we might first infet theertain expression is a list and only later narrow
it to be a list of floats. To handle these situations, we allgpetvariables in the inner representation of
types, despite the fact that the programmers are not alléovese them in the declarations.

We traverse the tree and formulate context specific conssrain the type of the current node and those
of its children. For instance, in the example in Figure 7.hewwe reach thepp node, we know it is
a function application, so the left child has to be of type> b, the right child of typea and the whole
subtree of typ®. In some cases the constraint determines the type of songs idn many others it only
narrows down the range of possible values. In case of clasteka the restrictions, there is a type error
in the program.

The type checker also detects hazardous code that contaistial type error. This is the case when
the expected type of some expression is a subtype of theadf@ne. An example for this is when a
function is declared to expect an integer argument and alinegv about the argument s that it is numeric.
We cannot determine the runtime behaviour of such a codee $he type error depends on what sort of
numeric argument will be provided. Instead of an error, we @i warning in such cases that the user can
decide to suppress.

Constraints are handled using the Prolog CHR [48] libragr. éach constraint, the program contains
a set of constraint handling rules. Once the arguments #ieisntly instantiated (what this means differs
from constraint to constraint), an adequate rule wakes tip.rlile might instantiate some type variable, it
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Figure 7.1: The abstract tree format of the expresbkidrd+2)

might invoke further constraints or else it infers a typeerin the latter case we mark the location of the
error, along with the clashing constraint.

In case all variables are provided with a type declaratianstart the analysis with the knowledge of
the types of all leaves of the abstract syntax tree. Thisdslige a leaf is either an atomic expression or
a variable. Once the leaf types are known, propagation afstfpom the leaves upwards is immediate,
because we can infer the type of an expression from those slliexpressions. Constraints wake up
immediately when their arguments are instantiated, as w@treEwhich the type variables of the inner
nodes become instantiated.

7.4.2 Constraints

The constraints that can be used for type inference come finansources. First, we know the types of
atomic expressions and built-in functions. For exampl@,is immediately known to be a float. Similarly,
we know that the functiomount is of typeany -> int. Such knowledge allows us to set — or at least
constrain — the types of certain leaves of the abstract syréa. The other source of constraints is the lan-
guage syntax. This can be used to propagate constraintajdethe language syntax imposes restrictions
on the types of neighbouring nodes.

Besides these type constraints, there can be type infamptovided by the user at any level of the
abstract syntax tree.

Constraint Handling Rules To handle type constraints, we use constraint logic progreng. More
precisely, we use the Prolog CHR (Constraint Handling Rulibsary [48], which provides a general
framework for defining constraints and describing how thegract with each other. The advantage of
CHR is that the constraint variables can take values froritrar Prolog structures, so we can comfortably
represent all values that a type expression can have.

An Example Constraint We illustrate constraint handling with a small example. §lder the expression
X iny, where the types of,y areX Y, respectively. Thén function checks if the first argument is
a member of the second. The second argument is either a lsstdationary. The type of the whole
expression is boolean and the restrictionoN is expressed using the constradntt _|ist _c(Y, _, X),
which can be defined by the following constraint handlingsul

%dict _list c(X AB):-

%either Xis alist of type B and A is integer

%or Xis adictionary with domain type A and range type B
dict_list c(dict(XY),AB <=>A=X B=Y.
dict_list_c(list(X),A B) <=>A=int, B=X

The rules remain suspended until the first argument getsritiated to ali ct/ 2 orl i st/ 1 structure. The
constraint fails if the adequate types cannot be unified.
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However, these rules are incomplete in two ways. First, abave seen in Section 7.3, a list can also
be represented as a tuple. Hence, we have to add the folloulieg

dict _list_c(tuple(Xs),A B) <=>
A=int, ( foreach(B, Xs), paramB) do true ).

The second problem is the lack of error handling. If the c@iirst fails, the whole program fails. Thus,
instead of telling the user where the type error occurredgmig indicate that there is a type error, which is
not useful at all. We address this by assigning an identifieaich expression. Each time an error occurs,
we store the identifier and the kind of error. After all comsits exited, we retrieve the identifiers of the
erroneous expressions and the relevant location in thergmogode. With these we can give an error
message that explains the problem. The final version of thetmint handling rules fati ct _|ist _c:

%dict list ¢(X,ABID):-
%either Xis alist of type Band Ais integer
%or Xis adictionary with domain type A and range type B
dict_list_c(X A B, 1D <=> nonvar(X) |
( X =dict(AB)

; X =1list(B), A=int
; X =tuple(Xs), A=int,

( foreach(B, Xs), paranm(B) do true )
; assert(q:error(type, I D, wong dict list))

|

The constraint wakes up as soon as the first argument is fisdtth Then, if it is a dictionary or a list,
we can enforce the constraint by unifying some terms. If thifigation succeeds, the constraint exits
successfully. Otherwise, we mark that an error occurred.

7.4.3 Issues about Type Declarations

We require programmers to provide every variable with a gdotype declaration. In this subsection we
give reasons for this requirement.

The immediate benefit is that the types of all leaves of th&ratissyntax tree are known at the begin-
ning of the analysis. Without type declarations, some gairgs might remain suspended and lots of types
unknown. In this case we would have to use some sort of ladp@diassign a type to each expression.

Furthermore, if the arguments of constraints are groundjavweot have to worry about the interaction
of constraints. Consider, for example the following two staints:

int_or float(X) <=> (X ==1int ; X=="float) | true.
int_or_long(X) <=>(X==1int ; X==1long) | true.

If these two constraints apply @ then they will not do anything as long @ds a variable, even though
there is only one solution, namelyi nt . In order for the type analyser to infer this, we have to adéw n
rule that describes the interaction of the two constrasush as

int_or float(X), int_or_long(X) <=> X = int.

More complex constraints can interact in many differentsvagd the number of constraint handling rules
necessary for capturing all interactions can be expordntilie number of constraints. Given that we
work with more than 60 different constraints, it is not retidi to exhaustively write up all rules. If, on the
other hand, the arguments are sufficiently instantiatetitieaconstraints can wake up individually (not
knowing about the others), then we only need to provide alecfirules for each constraint. In the above
example, ifX is instantiated, then eithé=i nt and both constraints exit successfully or else at least one
constraint indicates an error.

When we have a variable in a Q program, we have to copy its type fts defining occurrence to all
its applied occurrences. If the type is ground, copyingriggé since we unify the type expressions. This,
however, does not work if the type of the variable containsaldes that are possibly constrained. Let
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the type off beX -> int where there is a constraint &rensuring that it is from the s¢tnt, float}.
Consider the following code:

x:f 2
y:f 3.1

If we unify the type variables for each occurrencd ofith X - > int, then from the first lineX will be
instantiated to nt , which will make the type checker indicate a type error ingbeond line, since it will
try to unify i nt with fl oat. What we need is separate instances of the tygdewith distinct variables,
while holding the same constraints, which is quite compéidaFortunately, this problem does not arise if
all variables are provided with a ground type declaration.

7.5 Type Inference for the Q Language

In the second phase of the development of our type analyserte set out to eliminate the two main
restrictions of the type checker: sometimes it is too busdere for the programmers to have to provide
type declarations and sometimes it is too restrictive thatdeclarations have to be ground. In order
to find a more flexible solution, where the analyser uses whataeformation is available and infers as
much as possible, we looked for a more solid theoreticaldation. In the following, we will show how
to reformulate the task of type inference as a constraimgfaation problem (CSP) and then provide a
solution through this reformulation, based on logic progmang.

7.5.1 Type Inference as a Constraint Satisfaction Problem

Type reasoning starts from a program code that can be seenas@ex expression built from simpler
expressions. Our aim is to assign a type to each expresgp@agpg in the program in a coherent manner.
The types of some expressions are known immediately (aterpeessions, certain built-in functions),
besides, the program syntax imposes restrictions betvieetypes of certain expressions. The aim of the
reasoner is to assign a type to each expression that sagibfies restrictions.

We associate a CSP variable with each subexpression of tigggon. Each variable has a domain,
which initially is the set of all possible types. Differewpe restrictions can be interpreted as constraints
that restrict the domains of some variables. In this tertoigy the task of the reasoner is to assign a value
to each variable from the associated domain that satisfidseatonstraints.

Domains Type expressions can be embedded into each othet {sx.int),list(list(int)), etc.),
and tuples can be of arbitrary length, consequently we hdirgtely many types, which makes represent-
ing domains more difficult than in a classical CSP. Furtheemihe types determined by the type language
are not disjoint. For example 1f might have typd | oat or nuneric as well. It is evident that every
expression which satisfies typeoat also satisfies typeuneri c, i.e.,f| oat is asubtypeof nuneric. We
will use the subtype relation to represent infinite domaingdiy: a domain will be represented with an
upper and a lower bound.

We say that type expressidn is a subtype of type expressidp (T1 < T») if and only if, all expres-
sions that satisfyl; also satisfyT,. The subtype relation determines a partial ordering ovee gxpres-
sions. For example, consider thapl e([int,int]) type which represents lists of length two, where both
elements are integers. Every expression that satistigise([i nt, i nt]) also satisfiesist(int), i.e.,
tuple([int,int]) isasubtype ofist(int). Foratomic expressions it is trivial to check if one type is
the subtype of another. Complex type expressions can b&etiesing some simple recursive rules. In
the following, we provide these rules:

e |ist(A) isasubtype ofist(B) exactly ifAis subtype oB.

o tuple([As,...,Aq]) is a subtype of upl e([Bs,...,B]) exactly if A; is a subtype oB; for all
1<i<k

e tuple([Ay,...,Aq) is asubtype ofi st (B) exactly ifA; is a subtype oBforall 1 <i <k.
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e func(Dj1, Ry1) is a subtype of unc( D>, Ry) exactly if D2 is a subtype oD; andR; is a subtype of
Ro.

e dict(D1, R1) is a subtype ofli ct (D2, Ry) exactly if D, is a subtype oD andR; is a subtype of
Ro.

e synbol (Name is a subtype ofynbol .
e Everytype is a subtype aiy.

The domain of a variable is initially the set of all types, alincan be constrained with different upper
and lower bounds.

An upper bound restriction for variableis a listA = [A4, ..., Ay], meaning that the upper boundXfs
U'j‘:lA,-, i.e., X is a subtype of some elementAf Disjunctive upper bounds are very common and natural
in Q, for example, the type of an expression might have tothesdii st ordi ct . The conjunction of upper
bounds is easily described by having multiple upper boulfidge have two upper bounds= [Aq, ..., A(]
andB = [By,...,B] on the same variabl¥, this means the value of has to be inJ(A NB;), for all
1<i<kand1<j<lI.

A lower bound restriction for variabl¥ is a single type expressigh meaning thaf is a subtype of
X. For lower bounds, it is their union which is naturally reggated by having multiple constraints:Xf
has two lower bounda andB, thenAUB has to be subtype of. We do not use lists for lower bounds and
hence cannot represent the intersection of lower boundshd&e this representation because no language
construct in Q yields a conjunctive lower bound.

With the following example we demonstrate that lower andarfigounds are natural restrictionsin Q: In
the codea: f [ b] functionf is applied tdh and the result is assigneddoSuppose the type éfturns out to
be a map froomuneric totuple([int, int]). We can infer that the type dfmust be at mosturreri c,
which can be expressed with an upper bound. The restthdf has the typéupl e([int,int]), which
means, that the type afmust be at leastupl e([i nt,int]), which can be expressed with a lower bound.
If later the type ofa turns outto be i st (i nt) (alist of integers) and the type bfto be e.gf | oat, then
the above expression is type correct.

Constraints After parsing — where we build an abstract syntax tree remtesion of the input program

— the type analyser traverses the abstract syntax tree grambén constraints on the types of the subex-
pressions. The constraints describing the domain of ablarare particularly important, we call them
primary constraints These are the upper and lower bound constraints. We waék itef the rest of the
constraints asecondary constraintsSecondary constraints eventually restrict domains by geimg pri-
mary constraints, when their arguments are sufficienttiamsated (i.e., domains are sufficiently narrow).
Constraints that can be used for type inference can orggiinain the following sources in a Q program:

Type declarations If the user gives a type declaration, the expression wilteated as having the declared
type.

Built-in functions For every built-in function, there is a well-defined relatship between the types of its
arguments and the type of the result. These relations aressgd by adequate — sometimes quite
complicated — constraints.

Atomic expressions The types of atomic expressions are revealed already byattseip so for example,
2. 2f is immediately known to befd oat .

Variables Local variables are made globally unique by the parser, sahlas with the same name must
have the same type. We ensure this by equating their comdspmpdomains. However, care has to
be taken with polymoprhic functions. If, for example, thexa functionf that maps arbitrary input
to an integer, then its various applied occurrences migvet dédferent types: iri[ 2] andf[ ‘| ack]
the function will have typesnt -> int andsynbol -> int, respectively. In such cases, instead
of equality, we impose thspecialisedrelation on the defining and the various applied occurrences
of the function symbol. We will discuss this later in morealkt
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Program syntax Most syntactic constructs impose constraints on the typteed constituent constructs.
For example, the first argument of ah- t hen- el se construct must bent or bool ean. Another
example is the assignment construct. The type of the ledtlsés to be at least as “broad” as the type
of the right side. It means the type of the right side is subtyfthe type of the left side.

Constraint Reasoning Constraint reasoning is based opraduction systerf#3], i.e., a set of IF-THEN
rules. We maintain aonstraint storevhich holds the constraints to be satisfied for the prograbettype
correct. We start out with an initial set of constraints. Aguction rule fires when certain constraints
appear in the store and results in adding or removing somstraints. \We also say (with the terminology
of CHR) that each rule has a head part that holds the contstreecessary for firing and a body containing
the constraints to be added. The constraints to be remoeea smbset of the head constraints. One can
also provide a guard part to specify more refined firing cooiét.

The semantics of the constraints is given by describing ttaisequences and their interactions with
other constraints. At each step we systematically checkules that can fire. The more rules we provide
the more reasoning can be performed.

Primary constraints represent variable domains. If a dorhains out to be empty, this indicates a
type error and we expect the reasoner to detect this. Heris&gry important for the constraint system to
handle primary constraints as “cleverly” as possible. R, e formulated rules to describe the following
interactions on primary constraints:

Two upper bounds on a variable should be replaced with thesrsection.

Two lower bounds on a variable should be replaced with thammu

If a variable has an upper and a lower bound such that no tysies both, then the clash should
be made explicit by setting the upper bound to the empty set.

Upper and lower bounds can be polymorphic, i.e., they mightain other variables. From the fact
that the lower bound must be a subtype of the upper bound, weagate constraints to the
variables appearing in the bounds.

Secondary constraints connect different variables anuigeseveral domains. There are two ap-
proaches for reasoning over such constraints: 1) We can ukielreaded rules to capture the interactions
of several constraints or 2) we only provide single headéesrin which case constraints interact only
through the narrowing of domains. Unfortunately, it is reslistic to capture all interactions of secondary
constraints as that would require exponentially many riddbe number of constraints. Hence, we only
describe (fully) the interaction of secondary constrawith primary constraints, i.e., we formulate rules
of the form: if certain arguments of the constraints are inithcertain domain, then some other argument
can be restricted. E.g., if there is an expression and we know that the arguments are numeric values,
then the result must be either integer or float. If the secogdraent later turns out to be float, then the
result must be float. At this point, there is nothing more tarfberred and the constraint can be eliminated
from the store.

Our aim is to eventually eliminate all secondary constmirlf we manage to do this, the domains
described by the primary constraints constitute the sebssiple type assignments to each expression. In
case some domain is the empty set, we have a type error. Osleeme consider the program type correct.

If the upper and lower bounds on a variable determine a dimgket, then we say that itiisstantiated
If all arguments of a secondary constraint are instantjatezh there are two possibilities. If the instan-
tiation satisfies the constraint, then the latter can be vehdrom the store. Otherwise, the constraint
fails.

Error Handling  As we parse the input program, we generate constraints ahthath to the constraint
store. The production rules automatically fire whenevey tten. If some domain gets restricted to the
empty set, this means that the corresponding expressigrothe assigned any type, i.e., we have a type
error. At this point we mark the erroneous expression, akagghe primary constraints whose interaction
resulted in the empty domain. This information — along with position of the expression — is used to
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generate an error message. The primary constraints aret togastify the error. Once the error has been
detected and noted, we roll back to the addition of the lasstaint and simply proceed by skipping the
constraint. This way, the type analyser can detect moredharerror during a single run.

Labeling Eventually, after all constraints have been added, we wltabnstraint store such that none of
the rules can fire any more. There are three possibilities:

e There were some discovered errors. Then we display thectetlerror messages and terminate the
type inference algorithm.

e There were no type errors found and only primary constraiemsain. In this case the domains
described by the primary constraints all contain at leastelament. Any type assignment from the
respective domains satisfies all constraints, so the typlyser stops with success.

¢ No type errors were found, however, some secondary conttnamain. In order to decide if the
constraints are consistent, we ldbdeling

Labeling is the process of systematically assigning valaesriables from within their domains. The
assignments wake up production rules. We might obtain ar&ilin which case we roll back until the
last assignment and try the next value. Eventually, eithefind a type assignment to all variables that
satisfies all constraints or we find that there is no congistesignment. In the first case we indicate that
there is no type error. In the second case, however, we shihwaethe type constraints are inconsistent, so
an error message to this effect is displayed. Due to the paligriarge size of the search space traversed
in labeling, it looks very difficult to provide the user wittcancise description of the error.

7.6 Summary

In this chapter we presented our methods developed for atge€k programs for type correctness. This
work involved the design of a type language with which progreers can add type annotations to their
programs. Our first algorithm is capable of analysing a Q @mworthat contains a ground type declaration
for each variable and discover any type mismatches. Aftetsyave designed a more involved method that
can infer the possible types of all program expressionsawitlny information provided by the program-
mer. This method proceeds by transforming the initial tefslyjee inference into a constraint satisfaction
problem, which is solved using a production system.

All our algorithms have been implemented in a tool caligdhk, based on the Constraint Handling
Rules extension of the Prolog language. A detailed desonijgf our tool will be provided in Chapter 8.
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Chapter 8

The gt chk Static Type Inference Tool
for the Q Functional Language

In this chapter we present a Prolog program cadfechk that implements the type analysis described in
Chapter 7. In Section 8.1 we give an overview of the systerhi@ature. Afterwards, in Section 8.2,
we discuss the implementation of the constraint satisfagtroblem. Section 8.3 presents how we imple-
mented error handling. Section 8.4 discusses labelingetti@ 8.5 we summarize the major difficulties
that we came across with during the developmerjtahk. In Section 8.6 we briefly evaluate our tool,
based on test results.

8.1 Architecture

The type analysis can be divided into three parts:

e Pass 1: lexical and syntactic analysis
The Q program is parsed into an abstract syntax tree steictur

e Pass 2: post processing
Some further transformations make the abstract syntaxeaasier to work with.

e Pass 3: type checking proper
The types of all expressions are processed, type erroreseetdd.

Built-in Func
types

Abs Post @
— i
Tree Processing \Ir_ey

Type
Reasoning

Q program Lexical | Syntactic

I
Analyser | Analyser
|

Figure 8.1: Architecture of the type analyser

The algorithm is illustrated in Figure 8.1. The analyseriees the Q program along with the user
provided type declarations. The lexical analyser breakstéit into tokens. The tokeniser recognises
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constants and hence their types are revealed at this eadg.sAfterwards, the syntactic analyser parses
the tokens into an abstract syntax tree representationeoQtiprogram. Parsing is followed by a post
processing phase that encompasses various small tramasiontasks.

In the post processing phase some context sensitive tramsfions are carried out, such as filling in
the omitted formal parameter parts in function definitioasd finding for each variable occurrence the
declaration the given occurrence refers to.

Finally, in pass 3, the type analysis component traverseatibtract syntax tree and imposes constraints
on the types of the subexpressions of the program. This fhélsks on the user provided type declarations
and the types of built-in functions. The latter are listechineparate text file, that is parsed just like any
Q program. The predefined constraint handling rules triggégmmatic constraint reasoning, by the end of
which each expression is assigned a type that satisfiesatbtfistraints.

Each phase of the type analyser detects and stores errdhe éd of the analysis, the user is presented
with a list of errors, indicating the location and the kindewfor. In case of type errors, the analyser also
gives some justification, in the form of conflicting consirtai

8.2 Representing variables and constraint reasoning

All subexpressions of the program are associated with C&Rblas. In case some constraint fails, we
need to know which expression is erroneous in order to genaraseful error message. If the arguments
of the constraints are variables, we do not have this inftionat hand. Hence, instead of variables we use
identifiersI D = i d(N, Type, Error) which consist of three parts: an integéwhich uniquely identifies
the corresponding expression, the type prdgee (which is a Prolog variable before the type is known)
and an error flager ror which is used for error propagation. We use the same repmganfor type
variables in polymorphic types, e.g. the typest (X) may be represented byst (i d(2)1).

Constraint reasoning is performed using the Constraintdttag Rules library of Prolog. CHR has
proved to be a good choice as it is a very flexible tool for dbsuy the behaviour of constraints. Any
constraint involving arbitrary Prolog structures couldfbemulated. We illustrate our use of CHR by
presenting some rules that describe the interaction ofgsiroonstraints. Our two primary constraints are

e subTypeO (1D, L): The type of identified D is a subtype of some type in wherel is a list of
polymorphic type expressions.

e super TypeCf (1 D, T) : The type of identifiet Dis a supertype of typ€&, a polymorphic type expres-
sion.

With polymorphic types we can restrict the domain by a typgregsion containing the — not yet known —
type of another identifier. If the type of such an identifiectmmes known, the latter is replaced with the
type in the constraint. For example, consider the followimng constraints:

subTypeO (i d(1),[float,list(id(2))])
super TypeOf (i d(1),tuple([id(3),int])

Suppose the types 6fd(2) andid(3) both turn out to be nt. Then the above two constraints are
automatically replaced with constraints:

subTypeO (id(1),[float,list(int)])
super TypeOf (i d(1), tuple([int,int])

Due to the lower bound] oat can be eliminated from the upper bound. This is performetbydllowing
CHR rule:

super TypeO (X, A) \ subTypeOf (X, B0) <=> elinm nate_sub(A B0, B) |
create | og entry(elininate_sub(X A BO,B)), subTypeX(X, B).

1in order to make this and the following examples easier td,re® will write i d(N) instead of d(N, Type, Error).
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Here we make use of the following Prolog predicates:

e elimnate_sub(A BO,B): The list of upper boundB0 can be reduced to a proper subBdtased
on lower bound:.

e create_ | og_entry(X): We assert a log entry used for creating error messages.

Consequently, we obtain:

subTypeO (id(1),[list(int)])
super TypeOf (i d(1),tuple([int,int])

In another example, we show how two upper bounds on the saenéfidr are handled. Suppose we
have the following constraints:

subTypeOF (id(1),[float,list(int)])
subTypeOf (id(1),[tuple([int,int]),func(int,float)])

The upper bounds trigger the following CHR rule:

subTypeO (X, T1), subTypeOr (X T2) <=> type_intersection(Tl, T2, T) |
create_|log_entry(intersection(X T1,T2,T)),
subTypeCf (X, T).

The predicatéype_intersection(T1, T2, T) imposes the constraint thatis the intersection of1 and
T2. We obtain a single upper bound:

e subTypeO (id(1),[tuple([int,int])])

8.3 Error Handling

During constraint reasoning, a failure of Prolog executiahcates some type conflict. In such situations,
before we roll back to the last choice point, we remember #tail$ of the error. We maintain a log that
contains entries on how various domains change during toreng and what constraints were added to
the store. Furthermore, to make error handling more unifevirenever secondary constraints are found
violated, they do not lead to failure, but they reduce the diorof a variable contributing to the failure of
the constraint to the empty set. Hence, we only need to hamdes for primary constraints. Whenever a
domain gets empty, we mark the expression associated vettidimain and we look up the log to find the
domain restrictions that contributed to the clash. We eraatl assert an error message and let Prolog fail.
For example, the following message

Expected to be broader than (int -> numeric) and
narrower than (int -> int)
file:sanples/sl.q line: 13 character:4

{[x] f[x]}

ANNANNNANNNAN
indicates that the underlined function definition is erraume the return value is numeric or broader (in-

ferred from the type of ), although it is supposed to be narrower than integer (iatefrom a type decla-
ration).

8.4 Labeling

After all constraints are added to the constraint store, selabeling to find a type assignment to each
program expression (i.e., to each identifier associateld avitode of the abstract syntax tree) that satisfies
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the constraints. This involves another traversal of thérabissyntax tree to make sure no program expres-
sion is left without a type assignment. We select the nexitifler X to be labelled and set its domain to
a singleton set, based on its current domain. We implemehiety adding a new constraihabel ( X) .
This constraint triggers the narrowing of the domairXafirough the following CHR rules:

| abel (X) <=> id_known_type(X, _) | true.

| abel (X), superTypeO (X, A), subTypeOr(X, L) <=>
| abel _upwards(X, A L, Type),
hasType(X, Type).

| abel (X), superTypeO (X, A) <=>
| abel _upwards(X, A [any], Type),
hasType(X, Type).

[ abel (X), subTypeOf (X L) <=>
| abel _downwar ds(X, L, Type),
hasType(X, Type).

| abel (X) <=>
| abel _downwar ds( X, [ any], Type),
hasType(X, Type).

First, we check if the type oX is already known. If so, we do nothing. Otherwise, we have frases
based on the presence or absence of a lower and upper bound:

¢ If we have a lower and an upper bound, we nondeterminisfisalect a type from the domain. We
start from the lower bound and successively try the broggesst This directionality is comfortable
for implementation, because while a type might have manyypels (e.g. any tuple of integers is a
subtype of the type ‘list of integers’), it has only few suyees.

e If only a lower bound is present, we set the upper bourahyoand proceed as in the previous case.
e If only an upper bound is present, we start from that type ansugcessively to its subtypes.

o If there is neither a lower, nor an upper bound, then we assaammeplicit upper boundny and
proceed as above.

Note that thenasType/ 2 constraint, used above in the labeling code, translates tepper and a lower
bound:
hasType(X, Y):- subTypeO (X, [Y]), superTyped(XY).

8.5 Difficulties

In this section, we discuss some difficulties that we had sr@yme during the implementation of the type
inference tool. These problems arose on the one hand frora spetial features of the Q language, and
on the other hand from some limitations of the CHR librarydise

8.5.1 Handling Meta-Constraints

As we described earlier, several built-in functions of Qéaspecial behaviour, called item-wise extension.
We discuss the implementation of this feature now.

Let us consider, for example, the constrainmmwhich captures the relation between the arguments
and the result of the built-in function ‘+’. If some of the argents turn out to be lists, then the rela-
tion should be applied to the types of the list elements. Weddcoapture this by adding adequate rules
to thesum constraint. However, the rules describing the list exiemdiehaviour would have to be re-
peated for each built-in function, which is counter-praiitee Instead, we introduced a meta-constraint
|ist_extension/3.

Consider a binary built-in functiof, which extends item-wise to lists in both arguments and fwhic
imposes constraint on its atomic arguments and result. Suppose thas arguments identified By'Y
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and result identified b¥. We cannot add the constraints@fto the constraint store until we know that the
arguments are all of atomic type. Instead, we use the metstreont i st _ext ensi on(Di r, Args, Fun),
whereDi r specifies which arguments can be extended item-wise to Aisgs is the list of arguments on
which the list of constrainfsmposed by functiorffun, will have to be formulated.

Hence, the constraint st _ext ensi on(both,[X, Y, Z], +) is added in our example. If later the in-
put arguments are inferred to be atomic, then the meta‘@onsti st _ext ensi on/ 3 adds the atomic
constraint$Cs and removes itself:

subTypeO (X, Ux), subTypeO (Y, Uy) \
list_extension(both,[XY,Z],Fun) <=> nonlist(W), nonlist(U) |
list_ext_constraints(Fun,[XY,Z],Cs), ( foreach(C Cs) do C).

Here, the complicated part is to find the arguments of thegaropnstraints imposed by the given built-in
function. We solved this by asserting the relevant infofamain thel i st _ext _constrai nts predicate.
E.g. in the case of the Q function ‘+” we have the followingtfac

list_ext_constraints(+, [ABC, [sumMABCQ]).

If, on the other hand, some argument turns out to be a listnthia-constraint is replaced by another
one. For example, if we know that the typesXo&ndY arelist(A) andlist(B), then the type oZ
must be a list as well and we replace thet _ext ensi on constraint with the following two constraints:
list_extension(both,[A B, C],+) andhasType(Zlist(Q)).

In fact, thel i st _ext ensi on meta-constraint could have been avoided, had CHR been neaibld:
the difficulty arose from the fact that it is not possible téereto a constraint in a CHR rule head by
supplying a variable holding its name and a list of its argntaécf. thecal | / N built-in predicate group of
Prolog).

To express item-wise extension, it would be more converi@mirite generic rules where the name
of the involved constraint can also be a variable (this isat fvhat the i st _ext ensi on meta-constraint
simulates).

For example, in the case of unary functions, where the cporeding constraint has two arguments
(the identifiers of the input and the output), item-wise asten could be implemented using the following,
quite natural “meta-rule”

call (Cons, A B) <=>is_list(A X), is_list_extensible(Cons) |
cal I (Cons, X, Y), hasType(B,1ist(Y)).

wherei s_|ist_extensibl e( Cons) succeeds exactly whebons has the list-extension behaviour and
is_list(A X) means thatthe type éfisli st (X).
8.5.2 Copying Constraints over Variables

Local variables are made globally unique by the parser. fieians, that variables with the same name have
the same value, so we can constrain their types to be the ddoweever, each occurrence of a variable
that holds a polymorphic function can have a different typsigned. Consider, for example, the following
three lines of a program:

fi{[x] x+2} (1)
f 12 (2)
f L 1f] (3)

In the first line,f is defined to be a function having a single argumenthich returns<+2. This means
that the type of is a (polymorphic) function which mapsto B (A - > B), where a secondary constraint

’Note that there are several built-in functions, whose tgmeiscribed using more than one constraint.
3Here we assume that CHR supports meta-constraints in ratishesing theal | / Nformalism of Prolog.
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sum(A, int, B) holds between the argument and the result. In (2) and (3¢ trertwo different applied
occurrences of , which specialise thisumconstraint in two independent ways. In these exampliss
applied to an integer and to a float, therefore the types of¢ltend and third occurrencefofirei nt - >
int andfloat -> float.

The above example shows that if a variable holds a (polymo)inction then we cannot assume
that the type of an applied occurrence is the same as thaeafdfining occurrence. We introduced the
“specialisation” relationship to capture the connectiebA®en the defining and an applied occurrence of
the same variable. A type is a specialisation of anotheri#f @btained by substituting zero or more type
variables with (possibly polymorphic) types.

Specialisation could be seen as yet another constraineleettwo types, for which the natural imple-
mentation would be as follows:

1. Atthe defining occurrence of a variable, post the reletygye constraints.

2. Atthe applied occurrence of a variable, make a replica@fype constraints posted for the variable
and apply them with fresh type variables.

This approach requires that the CHR library provide meansdoessing the constraints that involve
a specific argument, a feature similar to firevzen( X, Goal s) built-in predicate of SICStus Prolog.
Unfortunately, the CHR implementations we used do not hhigefeature. This means that a Q variable
holding a polymorphic function has to be treated specialiyg constraints involving its type have to be
collected and remembered, so that they can be accessedgipiie! occurrences of the given Q variable.

8.5.3 Handling Equivalence Classes of Variables

The constraint system yields lots of equalities. For examnmo occurrences of the same (non-function-
valued) variable give rise to an equality constraint. Ong teahandle this is to propagate all primary
constraints between equal variables, i.e. when®verY, Y inherits all primary constraints of and the
other way round. For example, a simple implementation opagating the upper bounds in the equality
constraint €g/ 2) would be the following:

eq( X Y), subTypeOf(X, T) ==> subType(Y,T). (1)
eq(X Y), subTypeOf(Y, T) ==> subTypeCf (X, T). (2)

Unfortunately, this solution is rather inefficient, sinderaasoning is repeated at each variable occurrence.
Moreover, we have found cases which lead to an infinite prapagof CHR constraints. In the following
paragraph we outline an example of this.

As we have seen in Section 8.2, two upper bounds on a variableplaced with their intersection.
Let us suppose that variabdehas two upper bounds st (X) andl i st(Y). There is an intersection rule
which replaces these two with the upper bolindt ( Z) , whereZ is a new variable and < XandZ <Y
also have to be satisfied. Consider the following state o€testraint store:

eq(id(1), id(2)),
subTypeO (id(1), [list(id(3))]),
subTypeOF (i d(2), [list(id(4))]).

First, the equality rule can fire, yielding two new upper basioni d(1) andi d(2) . Now, the intersection
rule can merge upper bounds on the same variable to creat® ang which can be propagated to the
other variable by the equality rule again.

It is easy to see that the above constraint store results infamite firing sequence. Consider the
following conditionC: either one of the variables has two upper bounds that havwetdeen merged by
the intersection rule, or else there is an upper bound on arighte that has not yet been propagated to the
other by the equality rule. I€ holds, then at least one rule can fire (intersection or etyyatioweverC
is an invariant condition, it remains true when any of thegegfire if it was true before. Sin€&holds in
the initial store, the rules will never stop firing (regasii®f the rule execution order).

The problemis caused by repeating the reasoning at eachi¢euntfier. We solved this by introducing
a directionality to the constraint propagation: we taker@tstiotal order on identifiers and only propagate
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constraints towards the smaller identifier. The smalleatsat of equal identifiers thus represents the whole
set in the sense that it accumulates all constrdi@sce the type of the smallest identifier becomes known,
it gets propagated back to the other identifiers. Henceednksbfeq( X, Y) we introduced the constraint
represented_by(X Y), whereY < X holds. Furthermore, for all constrair@swe have a new rule, which
states that i is represented by andX occurs inC, then it should be substituted with As we could not
formulate meta-constraints with CHR, we had to provide pgation rules for every single constraint. For
example, in case of the constrasnimwe needed the following code:

represented by(A B) \ sun(A C D) <=> sumB,CD).
represented by(A B) \ sun(C A D) <=> sumC B,D).
represented by(A B) \ sun(C D A) <=> sumC D, B).

This yielded lots of new rules, however, it was easy to gerdireem automatically, using a small Prolog
program.

There are efficiency problems even with this solution. Swsppae have the following constraint:
c(id(2)) and a propagation rulB, whose head matches the above constraint (possibly imghther
constraints) and the body of the rule contains a new CHR cainstd(i d(2)). If i d(2) later turns out to
be equivalenttod( 1), then we substituted(2) withi d(1) in every constraint that containd( 2) . This
yields a store with constraints:

c(id(1))
d(id(1))

The propagation rul® might fire now, which can infer the second constraifitd( 1)) again. In order
to avoid further cumulation of repeated inferences, we dddempotency rules for every constraint, i.e.,
some rules constantly monitor the store for duplicate ¢airgs to be eliminated.

Unfortunately, idempotency rules do not fully solve thelgemn. Duplicate constraints might still
yield redundant inferences in case these inference rukesdifore the idempotency rules eliminate their
premises. Consider, for example, the following constraiate: C; for all 1 <i < n. Furthermore, let us
suppose that we have propagation riRgs Cj => Cjq for all 1 < j <n—1. Suppose that constraint
C, is inferred redundantly (twice). If the ruld® fire before the idempotency rules, then it is possible
that we infer all constraint§; twice, before eliminating the duplicates. This results iirirference steps
instead of the optimal 1 (in case the duplic@tds eliminated immediately when it appears). This problem
occurs because programmers have no control over the firtiey of CHR rules with different heads. We
identify this as a major shortcoming of CHR and believe tlighg the programmers more elaborate tools
to specify firing priorities would often help in improvingetefficiency of CHR applications.

8.5.4 Labeling

The implementation of labeling posed several challengesndticed that the order in which identifiers are
selected is crucial for efficiency. For example, it is impottto label subexpressions first and then find the
type of a complex expression. Another example is functiguliegtion, where labeling should first assign
a type to the input and then the type of the output is typicalljomatically inferred by the constraints.
Consequently, labeling involves a traversal of the abssgotax tree, and at each node we decide the
order in which expressions are labelled based on the symtamtstruct involved. Often we had to rely on
heuristics as it was hard to guess what order would work bgstactice.

The next difficulty arises when we already know which ideetitio label, and we have to choose a
value. The set of all types is infinite, so we cannot try allresl for a variable during labeling, hence we
made some restrictions. First, if there is an unboundedbbaX, we only try terms of depth at most
two. Hence, we daot replace it withlist(list(int)). We can make this restriction because our
constraints do not distinguish between deeply embeddezsiyip the unbounded appears in constraint
c and there is a substitution &f with depth greater than two that satisfeshen we can generalise it to a
substitution of depth two that also satisfiesFor example, iX =tupl e([int,list(float)]) satisfies
cthenX =tupl e([int, any]) is also a solution. IK does not satisfy this property with respecttaehen

4This is similar to how Prolog handles the unification of twoiahles.
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as soon as is added to the store, we add a boun&tdf, for example forcesX to be a list of lists, then
we add the upper bourgibTypeO (X, [list(list(A))]), and hereA will be the unbounded variable
which needs not be labelled with deep types. During labelwegfirst assign a typ& to A, and then use
the ground upper bourid st (1ist(T)) to make a finite choice for the type f

Unfortunately, even if we have a ground boundXnwe might still have an infinite search space.
This is because tuples can have arbitrarily many argumedigpose we know thaX is a subtype of
list(int). ThenX canbetuple([int]),tuple([int,int]),tuple([int,int,int]) etc. Labeling
through all the different kinds of tuples only makes sensé¢an happen that some tuple types satisfy
a constraint, while others do not. For this reason, we made that for all such constraints explicit
bounds indicate the possible tuple types. Hence, if notsal bf integers are accepted, the constraint will
generate either a lower bound (suctsager TypeO (X, tupl e([int,int]))) oran upperbound (such as
subTypeCf (X, [tuple([int]),tuple([int,int,int])])). Consequently, if neither the lower nor the
upper bound oK contains a tuple type, then we do not assign a tuple type teeipnly tryl i st (int).

If, however, X also has a lower bounidupl e([int,int]), then we try botht upl e([int,int]) and
list(int).

The main challenge of labeling comes from the fact that itsstiortraverse a huge search space. The ab-
stract syntax tree can have many nodes even for moderatgjplograms, hence we have many identifiers.
Besides, Q programs are typically full of ambiguous expogss(in terms of type), so without labeling,
very few types are known for sure. All this amounts to lalglieing the bottleneck of type inference.

A solution to this problem would be to find a good partitionimigthe program, such that not all the
tree is labelled together, but in smaller portions. Consiite example, two function definitions. The first
definition contains an expressi@n that allows many different types. Labeling assigns oneipless/pe
to E; and then starts labeling the second function definition pBap the second definition contains a type
error at expressiok, which leads labeling to failure. Hence, we backtrack to theice point att; and
assign another possible typeHEg. However, this type has nothing to do with the type mismatacinee
it occurs in a different function definition, — and we get diad again aE,. This cycle is repeated until
all possible types foE; are tried and only then do we conclude that the program austaitype error.
This procedure could be made more efficient by placing a det &beling the first function definition,
thus eliminating the irrelevant choice point. Realizingttthe types of expressions in one piece of code
are independent from those of another can lead to much sni@igments to be labelled, which has the
potential to drastically reduce the time spent on labelldgpendency analysis ([1]) could be used to find
a code partitioning. Also, some kind of intelligent backkimg ([6]) algorithm could be used to avoid
unnecessary choice points. However, adapting these tpodsito the Q language requires further work.

8.6 Evaluation

gt chk runs both in SICStus Prolog 4.1 [49] and SWI Prolog 5.10.3.[84onsists of over 8000 lines of
code® Q has many irregularities and lots of built-in functions€ot60), due to which a complex system
of constraints had to be implemented using over 60 conséralime detailed user manual fgirchk can be
found in [13] that contains lots of examples along with the@ete syntax of the Q language.

The best way to evaluate our tool would be on Q programs dpedlby Morgan Stanley, our project
partner. However, we could not obtain such programs dueg@aéburity policy of the company. Instead,
we used user contributed Q examples, publicly availableeahbmepage of Kx-System [9]. This test set
contains several (extended) examples from the Q tutoridlaher more complex programs. Table 8.1
summarizes our findings.

Table 8.1: Test results.

All | Type correct| Restrictions| Labeling timeout| Type error| Analyser error
128 | 43(33.6%) | 43 (33.6%) 32 (25%) 5 (3.9%) 5 (3.9%)

5We are happy to share the code over e-mail with anyone inéetés .
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We used 128 publicly available Q programs. Of this 43 werenébtype correct. As explained in
Subsection 7.2, we made some restrictions on the Q langdielgmying the requirements of Morgan
Stanley. 43 programs were found erroneous due to not folfilthese restrictions. Most of the error
messages arose from the same variable used with diffeneas tyUnfortunately, there is no way for the
type analyser to lift this restriction as it defies the verglgaf type checking.

The test set that we used often contained code fragmentsathsf full programs: we found several
cases that a function is called but defined in another filetlatnot included among the examples. In such
programs the lack of information often resulted in an exgbntarge search space to be traversed during
labeling. In 32 programs labeling could not find any solutigthin the given time limit (1000 sec), partly
for the former reason. We believe, however, that on full paogs that actually contain all necessary type
information,qt chk can perform type analysis in acceptable time. Unfortugatieé available test set has
not yet allowed us to ascertain about this.

We were happy to find 5 genuine errors in the test set. These &re following programsr un. g°.
nserve. q’. oop. q® quant. g° anddgauss. q°. We have found 5 programs containing some language
element that our tool cannot handle well. We are in the pmoésliminating these problems.

8.7 Summary

In this chapter we presented thiechk type inference tool, developed to detect type errors in @anms.
The tool takes an input Q program, parses it into an abstretrepresentation and then tries to assign a
type to each subexpression in a coherent manner. This isvachby rephrasing the task as a constraint
satisfaction problem, which is solved using constraintdggogramming and in particular the Constraint
Handling Rules extension of Prolog.

CHR has proved to be a good choice as it is a very flexible taodiéscribing the behaviour of con-
straints. In CHR, arbitrary Prolog structures can be usezbastraint arguments, therefore it was natural
to handle the special domain defined by the type language.

However, we also had negative experiences with CHR. As tdestin Section 8.5, it often would be
more convenient if we could write “meta-rules” in CHR. Thesddo access the constraint store also arose
in some situations. For efficiency reasons, we believe itldvoften be useful to be able to influence the
firing order of rules with different heads. Furthermore, litvey and tiring process of debugging our CHR
programs was seriously hampered by the lack of a tracing tool

We have found that our program is a useful tool for finding tgpers, as long as the programmers
adhere to some coding practices, negotiated with MorgameStaour project partner. Unfortunately, it
turns out that many publicly available programs do not resiheese practices. Nonetheless, we believe that
the restrictions that we impose on the use of the Q languageeasonable enough for other programmers
as well, and our tool will find users in the broader Q community

Shttp:// code. kx. com wsvn/ code/ cont ri b/ cbur ke/ gr ef er ence/ sour ce/ run. q
“http:// code. kx. conf wsvn/ code/ kx/ kdb+/ e/ nser ve. q

8http: // code. kx. conf wsvn/ code/ cont ri b/ azhol os/ oop. q

Shttp: // code. kx. conf wsvn/ code/ cont ri b/ gbaker / cormon/ quant . q

L0ht t p: // code. kx. conf wsvn/ code/ cont ri b/ gbaker / depr ecat ed/ dgauss. q
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Summary and List of Contributions

| have presented our results in the fields of Description talgita reasoning and static type inference.
Although these domains are different in many ways, they bedfuire some sort of automated reasoning.
Our algorithms exploit and extend a variety of techniquekgic programming, and hence it was very
natural to choose Prolog as an implementation languageiniplemented systems — DLog agtichk —
demonstrate that the built-in inference mechanism of Brekn be extended to solve various reasoning
tasks.

In the following, | summarise my personal contributions tor cesults. | also indicate my relevant
publications.

Thesis 1.1 designed a transformation scheme from Description Logiioras to first-order clauses that are
function-free. | implemented all methods in the DLog Destioin Logic reasoner. [58, 55, 56, 65, 59]

Thesis 1.A.l designed a first-order resolution calculus calteddified calculuswhich is a modified ver-
sion of basic superposition. | proved that the calculus isxglpcomplete and terminating fa#LCHIQ,
clauses, which constitute a sublanguage of first-ordeclofinis result is what makes the two-phase rea-
soning algorithm of the DLog system possible: the complasoaing over the TBox becomes independent
of the potentially large ABox. [55, 56, 59]

Thesis 1.B.l designed a transformation that map® 4 Q knowledge base into afi L CH I Q knowledge
base by eliminating complex role hierarchies. | proved thattransformation is sound, i.e., the initial
knowledge base is satisfiable if and only if the transformedwdedge base is. Thanks to this transfor-
mation, any of the numerous techniques that were designegdsoning over the1lLCH IQ language
became available for the more expressk/éQ language as well. [55]

Thesis 1.C.I designed the DL calculus, which decides the consisteney$#/ Q terminology. | proved
that the calculus is sound, complete and always termin@tesDL calculus provides an interesting alter-
native to the tableau method. [58, 65]

Thesis 1.D.l implemented the modified calculus, along with the transfation from® 1Q to ALCHIQ,
in the TBox saturation module of the DLog data reasoner. gtiistitutes the first phase of our reasoning
algorithm.

Thesis 2.1 proved the soundness of loop elimination, a crucial optation technique for PTTP related
theorem proving. [68, 69]

Thesis 2.A.1 identified the three features in logic programs that cad keainfinite execution: function
symbols, proliferation of variables and loops. | showed fham these only loops can occur in DLog
programs. From this follows that the loop elimination opsiation makes DLog reasoning terminating.
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[68, 69]

Thesis 2.B.| gave a rigorous proof of the soundness of loop eliminati@sed on a novel technique called
flipping, which identifies alternative proofs of the samelgo@TTP programs. From this result follows
that for any statement that can be proved by PTTP, there isd& firat contains no loops. [68, 69]

Thesis 3. | designed a static type analysis algorithm to check programitten in the Q language for
type correctness. | also implemented this algorithm in e tanalysis module of thgt chk system.
[61, 14, 64, 63, 15]

Thesis 3.A.l designed a method for type checking: based on type anoogatif program variables pro-
vided by the user, the algorithm determines the types of mamgplex expressions. [61, 14]

Thesis 3.B.l designed a method to move from type checking to type inf&zeno type annotations are re-
quired and the algorithm tries to infer the possible typedlafxpressions. This is achieved by transforming
the task of type inference into a constraint satisfactiabfam. [64, 63, 15]

Thesis 3.C.I implemented both type checking and type inference in tipe gnalysis component of the
gt chk system. The implementation uses constraint logic prograug@and in particular the Constraint
Handling Rules extension of Prolog. [61, 14, 64, 63, 15]
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Appendix A

ALCHQ tableau rules

In this appendix we provide the rules of the tableau methognEhough the TBox reasoning starts out
from anS#H Q knowledge base, we quickly eliminate transitivity axiomsidg preprocessing and obtain
an 4LC% Q knowledge base. Accordingly, the rules provided in Figukesand A.2 are those for the
ALCHQ language. This appendix is not meant to explain how the gaibleorks. Instead, we provide it
to make explicit what sorts of tableau rules we assume. Fomgpeehensive treatment §f# 1 Q -tableau,
we refer the reader to [29].

M-rule
Condition: (C1MCy) € L(x), xis not indirectly blocked angiC1,Co} Z L(X).
NewstateT":  £'(x) = L(X) U{Cy1,Co}.
U-rule
Condition: (C1UCy) € L(x), xis not indirectly blocked angCy,Co} N L(x) =
0.
Newstate T1:  L£'(X) = L(X)U{Cy1}.
Newstate To:  £/(x) = L(X) U{Cy}.
F-rule
Condition: (3R.C) € L(x), xis not blocked and
x has noR-neighbouty for whichC € L(y).
NewstateT’: V' =V U{y} (y€V is a new node),
E'=EU{(xY.}), £((xy.)) = {R}, £L'(y) = {C}.
V-rule
Condition: (VRC) € L(x), xis not indirectly blocked, and
x has arR-neighbouly for whichC ¢ L(y).
NewstateT":  L'(y) = L(y) U{C}.

Figure A.1: The transformation rules of thieL. C# Q tableau algorithm, part 1.
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- rule

Condition: (=<1nRC) € L(x), wherex is one of the symbols or <, x is not
indirectly blocked, and has arR-neighbouly for which {C,~C} N
L(y) =0.

Newstate T1:  L/(y) = L(y) U{C}.
Newstate To:  L/(y) = L(y) U{~C}.

>-rule

Condition: (>nRC) € L(x), xis not blocked, and it is not the case that
there exist nodeg, ..., Yy, such that no two of them are identifiabl
and

for everyi, y; is anR-neighbour of, andC € L(y;) holds.
Newstate T’: V' =V U{y1,...,yn} (i €V new nodes),

E'=EU{(XY1,,)---,(XYn, }),

L((x¥,)) ={R}, L'(yi) ={C}, foreveryi=1<i<n,

"'=1u{yi#yj[1<i<j<n}

<-rule

Condition: (£nRC) € L(x), xis not indirectly blocked,
x hasn+ 1 R-neighboursy, ...,yn such thatC € L(y;) holds for
everyi,

and there exisy; andy; that are identifiable.

For every(0 <i < j < n), wherey; andy; are identifiable, lefy,z} = {yi,y;} so
thatx is not a successor gf

Newstate Tij:  L'(2) = L(2) U L(y),

L/((X7y7)) = 01
L'((z)x,)) = L((z,x,))UInv(L((x,y,))) if xis a successor &
L'((%,2)) = L((%,z,))UL((xY,)) if Xis nota successor af

I’ =1[y — Z] (each occurrence gfis replaced by).

Figure A.2: The transformation rules of tteL CH Q tableau algorithm, part 2.
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Appendix B

Syntax of the Q Type Language

We provide the concrete syntax of the type language that sigided for the Q language. Note that all type
expressions can be enclosed in parentheses, to improvahibyd or to specify precedence (in the case
of functions). Formally, this means that each syntactie mhose head is of the formxxt ype’ should

be implicitly extended with a first alternative(™, xxxtype, ")" |’. To illustrate the point we have
carried out this extension for the first rutg;pe expr, as shown by the text in italics.

type expr =

(", type expr, ")"
| atom type

type variable

list type

tuple type

stuple type

dictionary type

record type

table type
function type
"any"
"cond"
" g
“stuple" ;
atom type =
"bool ean" | "byte" | "short" | "int" | "long"
| "real" | "float" | "nuneric"
| "char" | "string" | "symbol" | "hsynbol"
| "month" | "date" | "datetime" | "mnute" | "second" | "tine"
| "timestanp" | "tinespan”

type variable =
? any Qidentifier starting with a capital letter ?;

list type =
"list", "(", type expr , )" ;

tuple type =
"tuple", "(", type expr, ";", type expr , ")" ;
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stuple type =
"stuple", "(", symbol, ";", synbol , ")"

dictionary type =
"dict", "(", type expr, ";", type expr, ")"

record type =
"record", "(", colum names types, ")"

table type =
"table", "(", "[", [colum nanes types], "]

n

function type =
type expr, "->", type expr

col um names types =
colum name type, ";", colum name type

col um nane type =
colum nane, ":", type expr ;
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