
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics H-1117 Budapest
Department of Computer Science and Magyar tudósok körútja 2. B-132.sz

Information Theory Tel.: (36-1) 463-2585 Fax: (36-1) 463-3157

Prolog Based Reasoning

by

Zsolt Zombori

PhD Dissertation summary

Adviser: Dr. Péter Szeredi

Department of Computer Science and Information Theory
Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics
Budapest, Hungary

Budapest, Hungary
March, 2013



1 Introduction

Reasoningis the magic word that binds the parts of this thesis together. Reasoning is the ability to use
available knowledge to infer something true that has not been stated explicitly. Today, there are numerous
information based systems that aim to represent knowledge in a machine processable way. For such sys-
tems, automated reasoning support is very important: it allows for discovering hidden knowledge, as well
as hidden errors in the knowledge base. Besides, automated reasoning can be used to answer complex user
queries.

In this dissertation I present work related to two main topics. The first topic is Description Logic
reasoning. Description Logics (Dls) is a family of logic languages, a knowledge representation formalism
that is widely used for building domain ontologies. We developed various reasoning algorithms that allow
for querying DL ontologies, as well as checking the consistency of an ontology. The second topic is type
inference for functional languages. Here, the task is to analyse an input program and discover as many
errors as possible in compile time, to make program development easier. These topics seem very different
at first sight, but they are quite similar at their cores: in both cases we start out from some initial knowledge
(a set of DL axioms in the first case, an input program and a set of type restrictions in the second), and we
aim to discover some logical properties of the input throughautomated reasoning.

1.1 Problem Formulation

In the following, I summarize my main research objectives and give some motivation for pursuing them.

Large scale Description Logic reasoning Description Logics is an important and widely used formalism
for knowledge representation. While existing reasoning support for Description Logics is very sensitive
to the size of the available data, there are lots of application domains – such as reasoning over the web
– that has to cope with really huge amounts of data. The goal ofthis work is to explore novel reasoning
techniques that are applicable in such situations. In particular, it is crucial that the reasoner be not affected
by the size of irrelevant data and to find a way to transform user queries into direct database queries.

1. The primary goal of my work is to find a transformation scheme of Description Logic axioms into
function-free clauses of first-order logic.

2. This transformation should primarily target theSH I Q Description Logic language.

3. After a successfulSH I Q transformation, the results should be extended to incorporate more refined
language elements, such as complex role inclusion axioms.

4. The results should be implemented in the DLog data reasoning system.

Optimised PTTP execution The Prolog Technology Theorem Prover (PTTP) is a complete first-order
theorem prover built on top of Prolog. This technique plays an important role in the DLog reasoner, hence
any optimisations to this technique have the potential to greatly increase the performance of DLog.

1. Most PTTP implementations use an optimisation called loop elimination. However, its soundness
has not yet been proved. My goal was to find a rigorous proof of the soundness of loop elimination.

Static Type Analysis for the Q functional language Q is a dynamically typed functional programming
language with a very terse and irregular syntax. While the language is widespread in financial applications,
there is no built-in support for debugging and compile-timedetection of errors, which makes program
maintenance very difficult. The goal of this work is to provide Q with a tool that discovers static type
errors in compile-time.

1. The first task is to examine the possibility of static type analysis of Q programs. This task also
involves identifying the type discipline that should be enforced on Q programmers.

1



2. Devise an algorithm to verify the correctness of user provided type information.

3. Devise an algorithm that discovers type errors without any input from programmers.

4. Implement all the algorithms in a tool that can be deployedin industrial environment at Morgan
Stanley Business and Technology Centre, Budapest.

1.2 Booklet Overview

In Section 2 we present two reasoning calculi that can be usedfor deciding the consistency of a DL knowl-
edge base. The first calculus, that we will refer to as themodified calculusis based on first-order resolution
and supports theALC H I Q DL language. We show how this calculus can be used for a two-phase data
reasoning, which scales well and allows for reasoning over really large data sets. Using well known tech-
niques that reduce aSH I Q knowledge base to an equisatisfiableALC H I Q knowledge base, we easily
extend our results to theSH I Q language, which is the most widely used DL variant. Afterwards, we
present a transformation that reduces the task of consistency checking of aR I Q knowledge base into that
of anALC H I Q knowledge base. The benefit of this reduction is that the latter task can be solved using
our modified calculus. Our results yield a well scaling reasoning algorithm for theR I Q language. In the
end of this section, we introduce a second calculus called the DL calculus, which is defined directly on
DL expressions, without recourse to first-order logic. The DL calculus decides the consistency of aSH Q
terminology.

In Section 3 we presentloop elimination. This technique allows for avoiding certain kinds of infinite
looping in the reasoning process and is the single most important optimisation for PTTP.

In Section 4 we present a reasoning algorithm that we developed to analyse programs written in the Q
language. We first present a type checker that builds on user provided type information. Afterwards, we
introduce a type inference algorithm that can detect type errors even without any user provided information.

In Section 5 we present the DLog data reasoner system that canbe used to queryR I Q DL knowledge
bases with really large data sets.

Finally, in Section 6 we present theqtchk type inference tool, that analyses Q programs and discovers
type errors.

1.3 List of Publications

Journal Articles

1. [21] Zsolt Zombori: A Resolution Based Description LogicCalculus. In ACTA CYBERNETICA-
SZEGED 19: pp. 571-588. (2010)

2. [30] Zsolt Zombori, Péter Szeredi: Loop Elimination, a Sound Optimisation Technique for PTTP
related Theorem Proving. In ACTA CYBERNETICA-SZEGED 20: pp. 441-458. Paper 3. (2012)

3. [19] Zsolt Zombori: Expressive Description Logic Reasoning Using First-Order Resolution. Sub-
mitted to JOURNAL OF LOGIC AND COMPUTATION.

Reviewed International Conference Proceedings

1. [20] Zsolt Zombori: Efficient Two-Phase Data Reasoning for Description Logics. In Artificial In-
telligence in Theory and Practice II: World Computer Congress 2008. Milan, Italy, 2008.09.07-
2008.09.10. Springer, pp. 393-402.(ISBN: 978-0-387-09694-0)

2. [27] Zsolt Zombori Zsolt, Gergely Lukácsy: A Resolution Based Description Logic Calculus. In
Proceedings of the 22nd International Workshop on Description Logics (DL2009). Oxford, UK,
2009.07.27-2009.07.30. pp. 27-30.

3. [23] Zombori Zsolt: Two Phase Description Logic Reasoning for Efficient Information Retrieval. In
27th International Conference on Logic Programming (ICLP’11): Technical Communications. Lex-
ington, USA, 2011.07.06-2011.07.10. Wadern: Schloss Dagstuhl Leibniz-Zentrum für Informatik,
pp. 296-300.(ISBN: 978-3-939897-31-6)

2



4. [22] Zsolt Zombori: Two Phase Description Logic Reasoning for Efficient Information Retrieval. In
Extended Semantic Web Conference (ESWC) 2011: AI Mashup Challenge 2011. Heraklion, Greece,
2011.05.29-2011.06.02. pp. 498-502.

5. [31] Zsolt Zombori, Péter Szeredi, Gergely Lukácsy: Loopelimination, a sound optimisation tech-
nique for PTTP related theorem proving. In Hungarian Japanese Symposium on Discrete Mathemat-
ics and Its Applications. Kyoto, Japan, 2011.05.31-2011.06.03. Kyoto: pp. 503-512.

6. [24] Zsolt Zombori, János Csorba, Péter Szeredi: Static Type Checking for the Q Functional Lan-
guage in Prolog. In 27th International Conference on Logic Programming (ICLP’11): Technical
Communications. Lexington, USA, 2011.07.06-2011.07.10.Wadern: Schloss Dagstuhl Leibniz-
Zentrum für Informatik, pp. 62-72.(ISBN: 978-3-939897-31-6)

7. [4] János Csorba, Zsolt Zombori, Péter Szeredi: Using Constraint Handling Rules to Provide Static
Type Analysis for the Q Functional Language. In Proceedingsof the 11th International Colloquium
on Implementation of Constraint and LOgic Programming Systems (CICLOPS 2011). Lexington,
USA, 2011.07.10. Paper 5.

8. [26] Zsolt Zombori, János Csorba, Péter Szeredi: Static Type Inference for the Q language using
Constraint Logic Programming. In Technical Communications of the 28th International Conference
on Logic Programming (ICLP’12): Leibniz International Proceedings in Informatics (LIPIcs). Bu-
dapest, Hungary, 2012.09.04-2012.09.08. Dagstuhl: pp. 119-129. Paper 8. (ISBN: 978-3-939897-
43-9)

9. [5] János Csorba, Zsolt Zombori, Péter Szeredi: Pros and Cons of Using CHR for Type Inference.
In Proceedings of the 9th workshop on Constraint Handling Rules (CHR 2012). Budapest, Hungary,
2012.09.04 Paper 4.

Domestic Conference Proceedings

1. [28] Zsolt Zombori, Gergely Lukácsy, Péter Szeredi: Hatékony következtetés ontológiákon. In 17th
Networkshop Conference 2008. Dunaújváros, Hungary, 2008.03.17-2008.03.19.

2. [25] Zsolt Zombori, János Csorba, Péter Szeredi: Static Type Inference as a Constraint Satisfac-
tion Problem. In Proceedings of the TAMOP PhD Workshop: TAMOP-4.2.2/B-10/1-2010-0009.
Budapest, Hungary, 2012.03.09.

Course Handouts

1. [29] Zsolt Zombori, Péter Szeredi: Szemantikus és deklaratív technológiák oktatási segédlet. Course
handout. 2012. Budapest, pp. 1-32.

2 Resolution based Methods for Description Logic Reasoning

First, we present a resolution calculus in Subsection 2.1 that is a modified version of basic superposi-
tion and is specialised forALC H I Q DL reasoning. In Subsection 2.2 we extend these results to the
R I Q language by giving a transformation that maps anyR I Q DL knowledge base to an equisatisfiable
ALC H I Q knowledge base. Subsection 2.3 presents another resolution based calculus which, however, is
defined directly on DL expressions, without recourse to first-order logic.

2.1 Translating anALCH I Q TBox to function-free clauses

Motivated by [13], we cope with the complexity of reasoning by breaking it into two phases: a data indepen-
dent phase on the general background knowledge (called the TBox, which is typically small and complex)
and the real reasoning over the available data (called the ABox, which is typically large and simple). The
two phases are called terminology and data reasoning, respectively. This separation has tremendous effect
on efficiency. Besides being complex, the rules in the TBox are likely to remain the same over time while

3



the ABox data can change continuously. Hence, if we manage tomove forward all inferences involving the
TBox only and perform them separately, then the slow reasoning algorithm required by the complexity of
the TBox does not take unacceptably much time due to the potentially large size of the ABox. Furthermore,
these inferences need only to be performed once, in a preprocessing phase. Afterwards, the second phase of
reasoning can be performed by a fast and focused data reasoner. Each time queries arrive, only the second
phase is repeated, to reflect the current state of the ABox.

The input of the reasoner is aSH I Q DL knowledge base and we want to decide whether the knowledge
base is satisfiable. It can be shown easily that this is sufficient for solving all other DL reasoning tasks.

In the first step we translate the knowledge base into first-order clauses. Doing this transformation
carefully, it can be shown that the obtained clauses belong to a real subset of first-order logic. We call
this setALC H I Q clauses. Afterwards, the clause set is saturated using a modified version of basic
superposition, calledmodified calculus. The main merit of this calculus is that it allows for performing all
inferences related to function symbols before accessing the ABox.

The initialSH I Q DL knowledge base contains no functions. However, after translating TBox axioms
to first-order logic, we have to eliminate existential quantifiers using skolemisation which introduces new
function symbols. The ABox remains function-free, hence everything that is to know about the functions
is contained in the TBox. This suggests that we should be ableto perform all function-related reasoning
before accessing the ABox. Indeed, this is what the modified calculus achieves: after saturating the TBox,
we can eliminate clauses containing function symbols as they will play no further role. This makes the
second phase of reasoning much simpler.

Proposition 1. The modified calculus is sound and complete and the saturation of a set ofALC H I Q
clauses using the modified calculus always terminates.

2.1.1 Implementing Two-Phase Reasoning

We use the modified calculus to solve the reasoning task in twophases, summarised in Algorithm 1, where
steps (1) - (3) constitute the first phase of the reasoning andstep (4) is the second phase, i.e., the data
reasoning. Note that one does not necessarily have to use themodified calculus for the second phase: any
calculus that more effectively exploits the fact that no function symbols remain is applicable.

Algorithm 1 SH I Q reasoning

1. Transform theSH I Q TBox to a set ofALC H I Q clauses.

2. Saturate the TBox clauses with the modified calculus.

3. Eliminate all clauses containing function symbols.

4. Add the ABox clauses and saturate the set.

Theorem 1. Algorithm 1 is a correct, complete and finiteSH I Q DL theorem prover.

2.1.2 Benefits of Eliminating Functions

There are several advantages of eliminating function symbols before accessing the ABox. First, it is more
efficient. Whatever ABox independent reasoning we perform after having accessed the data will have to
be repeated for every possible substitution of variables. Next, it is safer. A top-down reasoner that has
to be prepared for arguments containing function symbols isvery prone to fall into infinite loops. Special
attention needs to be paid to ensure the reasoner does not generate goals with ever increasing number of
function symbols. Finally, ABox reasoning without functions isqualitatively easier. Some algorithms,
such as those for Datalog reasoning are not available in the presence of function symbols.

4



2.2 Reduction ofR I Q DL reasoning to ALCH I Q DL reasoning

R I Q is a Description Logic language that is obtained by extending SH I Q with complex role inclusion
axioms. InSH I Q we could express statements like(father⊑ relative), i.e., that a father is a relative.
Complex role inclusion axioms allow for using composition of roles on the left side of such statements. For
example, we can make the optimistic claim(spouse◦mother⊑ friend), i.e., that a mother-in-law is a friend.
This extension significantly increases the expressive power of the language and is particularly important
in medical ontologies. It is well known that the complexity of reasoning also increases, namely by an
exponential factor. We designed an algorithm that maps anyR I Q knowledge base into an equisatisfiable
ALC H I Q knowledge base. The transformation time is exponential in the size of the initial knowledge
base, hence it is asymptotically optimal. The transformation provides a means to reduceR I Q reasoning
to ALC H I Q reasoning.

2.2.1 A Motivating Example

Before formally defining the transformation, we try to give an intuition through a small example. The
example uses basic Description Logic syntax. Readers unfamiliar with DLs might prefer to skip this
subsection.

Suppose the role hierarchy of a knowledge base consists of the single axiom

PQ⊑ R

whereR,P,Q are role names. One of the things that this axiom tells us is that in case an individualx satisfies
∀R.C for some conceptC, then the individuals connected tox through aP◦Q chain have to be inC. This
consequence can be described easily by the following concept inclusion axiom:

∀R.C⊑ ∀P.∀Q.C

or equivalently, we can introduce new concept names to avoidtoo much nesting of complex concepts:

∀R.C⊑ X1

X1⊑ ∀P.X2

X2⊑ ∀Q.C

Of course, these axioms only provide for the correct propagation of conceptC and a new set of similar
axioms is required for all other concepts. However, we only need to consider the universal restrictions that
appear as subconcepts of some axiom in the knowledge base. These concepts can be determined by a quick
scan of the initial knowledge base. For example, if the TBox contains the following GCIs:

D⊑ ∀R.C

⊤⊑ ∀R.D

then, only conceptsC andD appear in the scope of a universalR-restriction. Let us add a copy of the above
GCIs for bothC andD and eliminate the role hierarchy. We obtain the following TBox:

D⊑ ∀R.C ⊤⊑ ∀R.D

∀R.C⊑ X1 ∀R.D⊑Y1

X1⊑ ∀P.X2 Y1⊑ ∀P.Y2

X2⊑ ∀Q.C Y2⊑ ∀Q.D

The two knowledge bases have different signatures and hencehave different models, however they are
equisatisfiable. We prove this by showing that a model of one knowledge base can be constructed from a
model of the other.

5



2.2.2 From automata to concept inclusion axioms

Our results build on [9], which gives a tableau procedure fordecidingR I Q . For each roleR, the au-
thors define a non-deterministic finite automatonBR that captures the role paths that are subsumed byR.
These automata are used during the construction of a tableau, to “keep track” of role paths. We show that
the automata can be used to transform the initialR I Q knowledge base to an equisatisfiableALC H I Q
knowledge base. The main benefit is that the treatment of the role hierarchy becomes independent of
the tableau algorithm. Hence, any algorithm that decides satisfiability for anALC H I Q knowledge base
can be used for satisfiability checking of aR I Q knowledge base. In particular, the two phase reasoning
algorithm that we presented in Subsection 2.1 is applicable.

Proposition 2. For a regular role hierarchyR and interpretation I, I is a model ofR if and only if, for each
(possibly inverse) role S occurring inR , each word w∈ L(BS) and each〈x,y〉 ∈ wI , we have〈x,y〉 ∈ SI .

Proposition 2 states that two individuals areS-connected exactly when there is a role pathw between them
accepted byBS.

In the following, we will make use of the notion of concept closure (clos(KB)), defined in [9], which
contains all subconcepts appearing inKB.

For each concept∀R.C ∈ clos(KB) and each automaton states of BR, we introduce a new concept
nameX(s,R,C). The concepts associated with the initial and final states ofBR are denoted withX(start,R,C)
andX(stop,R,C), respectively.

Definition 1. For anyR I Q DL knowledge base KB,Ω(KB) is anALC H I Q knowledge base constructed
as follows:

• Ω(KB)T is obtained from KBT by removing all role inclusion axioms w⊑R such that R is not simple
and adding for each concept∀R.C∈ clos(KB) the following axioms:

1. ∀R.C⊑ X(start,R,C)

2. X(p,R,C) ⊑ X(q,R,C) for each p
ε
−→ q∈ BR

3. X(p,R,C) ⊑ ∀S.X(q,R,C) for each p
S
−→ q∈ BR

4. X(stop,R,C) ⊑C

• Ω(KB)A = KBA

Theorem 2. KB is satisfiable if and only ifΩ(KB) is satisfiable. Furthermore, the size ofΩ(KB) can be
bounded exponentially in the size of KB.

The transformationΩ maps an arbitraryR I Q knowledge base to anALC H I Q knowledge base. The-
orem 2 states that the transformation preserves satisfiability and increases the size of the TBox with at most
an exponential factor, which is asymptotically optimal. Using this result, any algorithm that decides satis-
fiability for ALC H I Q can decide satisfiability forR I Q . In particular, the modified calculus presented in
Subsection 2.1 is applicable.

2.3 A Resolution Based Description Logic Calculus

We present a reasoning algorithm, calledDL calculus, which decides the consistency of aSH Q TBox.
The novelty of this calculus is that it is defined directly on DL axioms. Working on this high level of
abstraction provides an easier to grasp algorithm with lessintermediary transformation steps and increased
efficiency.

The algorithm can be summarized as follows. We determine a set of concepts that have to be satisfied
by each individual of an interpretation in order for the TBoxto be true. Next, we introduce inference
rules that derive a new concept from two concepts. Using the inference rules, we saturate the knowledge
base, i.e., we apply the rules as long as possible and add the consequent to the knowledge base. We also
apply redundancy elimination: whenever a concept extends another, it can be safely eliminated from the

6



knowledge base [1]. We prove that saturation terminates. Furthermore, we show that the knowledge base
is inconsistent if and only if the saturated set contains theempty concept (⊥).

A literal concept(typically denoted withL) is a possibly negated atomic concept. Abool concept
contains no role expressions (allowing only negation, union and intersection). We use capital letters from
the beginning of the alphabet (A,B,C. . . ) to refer to bool concepts. In the following, we will always
assume that a bool concept is presented in a simplest disjunctive normal form, i.e., it is the disjunction of
conjunctions of literal concepts. So for example, instead of A⊔A⊔ (B⊓¬B⊓C) we writeA, andA⊓¬A
is replaced with⊥. When the inference rules do not preserve disjunctive normal form, we use the explicit
dnf operator.

We define a total ordering≻ on DL expressions. Given a setN of concepts, conceptC∈ N is maximal
in N if C is greater (with respect to≻) than any other concept inN. Since the ordering≻ is total, for any
finite setN there is always a unique maximal conceptC∈ N.

SH Q -concepts TheSH Q TBox is transformed into a set ofSH Q -concepts, defined as follows (C,D,E
stand for concepts containing no role expressions):

C (bool concepts)

C⊔
⊔

(≤ nR.D) (≤ -max concepts)

C⊔
(⊔

(≤ nR.D)
)

⊔ (≥ kS.E) (≥ -max concepts)

where bool conceptsC,D,E are in disjunctive normal form.

Inference Rules The inference rules are presented in Figure 1, whereCi ,Di ,Ei are possibly empty bool
concepts.Wi stands for an arbitrarySH Q -concept that can be empty as well. Note that two disjunctive
concepts are resolved along their respective maximal disjuncts and the ordering that we imposed on the
concepts yields a selection function. Since the ordering istotal, we can always select the unique maximal
disjunct to perform the inference step.

Rule1
C1⊔ (D1⊓A) C2⊔ (D2⊓¬A)

C1⊔C2

whereD1⊓A is maximal inC1⊔ (D1⊓A)

andD2⊓¬A is maximal inC2⊔ (D2⊓¬A)

Rule2
C W⊔ (≥ nR.D)

W⊔ (≥ nR.dnf(D⊓E))

whereE is obtained by using Rule1 on premisesC andD

Rule3
W1⊔ (≤ nR.C) W2⊔ (≥ kS.D)

W1⊔W2⊔ (≥ (k−n)S.dnf(D⊓¬C))

n< k,S⊑∗ R, (≤ nR.C) is maximal inW1⊔ (≤ nR.C)

and(≥ kS.D) is maximal inW2⊔ (≥ kS.D)

Rule4
W1⊔ (≤ nR.C) W2⊔ (≥ kS.D)

W1⊔W2⊔ (≤ (n− k)R.dnf(C⊓¬D))⊔ (≥ 1S.dnf(D⊓¬C))

n≥ k,S⊑∗ R, (≤ nR.C) is maximal inW1⊔ (≤ nR.C)

and(≥ kS.D) is maximal inW2⊔ (≥ kS.D)

Figure 1: TBox inference rules of the DL calculus

Along with the inference rules, we also use somesimplification rules(not detailed in the booklet) that
ensure that concepts always appear in their simplest form.

7



Rule1 corresponds to the classical resolution inference and Rule2 makes this same inference possible
for entities whose existence is required by≥-concepts. Rule3 and Rule4 are harder to understand. They
address the interaction between≥-concepts and≤-concepts. Intuitively, if some entity satisfies≤ nR.C
and also satisfies≥ kS.D, then there is a potential for clash if conceptsC andD are related, more precisely
if D is subsumed byC. In such casesD⊓¬C is not satisfiable, which either leads to contradiction if
n< k (Rule3) or results in a tighter cardinality restriction on the entity (Rule4). If several≥-concepts and
a≤-concept are inconsistent together, then each≥-concept is used to deduce a≤-concept with smaller
cardinality (Rule4) until the≤-concept completely disappears from the conclusion (Rule3) and we obtain
the empty concept.

Saturation We saturate the knowledge base, i.e., we apply the rules in Figure 1 to deduce new concepts
as long as possible. We claim that the consequent is always aSH Q -concept (possibly after applying some
simplification rules).

Proposition 3. The set ofSH Q -concepts is closed under the inference rules in Figure 1 andonly finitely
many differentSH Q -concepts can be deduced from a finite TBox.

Theorem 3. The inference rules of the DL calculus are sound and complete.

Let T be aSH Q TBox. Let SatT be the set of concepts obtained after transformingT into SH Q
-concepts and then saturating with the DL calculus. We have showed that saturation terminates. Further-
more, ifSatT does not contain⊥ then it is possible to build a model forT , i.e., it is satisfiable.

3 Loop Elimination, a Sound Optimisation Technique for PTTPRe-
lated Theorem Proving

The Prolog Technology Theorem Prover approach (PTTP) [17] is a sound and complete first-order theorem
prover, built on top of Prolog. An arbitrary set of general clauses is transformed into a set of Horn-clauses
that correspond to Prolog rules. Prolog execution on these rules yields first-order reasoning.

In PTTP, to each first-order clause we assign a set of Horn-clauses, the so-calledcontrapositives. The
first-order clauseL1∨L2∨·· ·∨Ln hasn contrapositives of the formLk←¬L1, . . . ,¬Lk−1,¬Lk+1, . . . ,¬Ln,
for each 1≤ k≤ n. Having removed double negations, the remaining negationsare eliminated by intro-
ducing new predicate names for negated literals. For each predicate nameP a new predicate namenot_P
is introduced, and all occurrences of¬P(X) are replaced withnot_P(X), both in the head and in the body.
The link between the separate predicatesP andnot_P is provided usingancestor resolution, see below. For
example, the clauseA(X)∨¬B(X)∨¬R(X,Y) is translated into three Prolog rules, each with different rule
head:

A(X) :- B(X), R(X,Y).
not_B(X) :- not_A(X), R(X,Y).
not_R(X,Y) :- not_A(X), B(X).

Thanks to using contrapositives, each literal of a first-order clause appears in the head of a Horn clause.
This ensures that each literal can participate in a resolution step, in spite of the restricted selection rule of
Prolog.

Suppose we want to prove the goalA and during execution we obtain the subgoal¬A. What this means
is that by this time we have inferred a rule, according to which if a series of goals starting with¬A is true,
thenA follows:

A← not_A, P1, P2, . . .Pk.

The logically equivalent first-order clause is

A∨A∨¬P1∨¬P2∨·· ·∨¬Pk

8



from which we see immediately that the two occurrences ofA can be unified, so there is no need to prove
the subgoalnot_A. This step is calledancestor resolution[11], which corresponds to the positive factoring
inference rule.

There are two further features in the PTTP approach. First, to avoid infinite loops, iterative deepening
is used instead of the standard depth-first Prolog search strategy. Second, in contrast with most Prolog
systems, PTTP uses occurs check during unification, i.e., for example termsX and f (X) are not allowed to
be unified because this would result in a term of infinite depth.

To sum up, PTTP uses five techniques to build a first-order theorem prover on the top of Prolog:
contrapositives, renaming of negated literals, ancestor resolution, iterative deepening, and occurs check.

The DLog system [12] that will be presented in Section 5 is a specialisation of PTTP to Description
Logic reasoning. DLog performs a two-phase reasoning, where the first phase uses the modified calculus
of Subsection 2.1 and the second phase uses PTTP.

Loop elimination is an optimisation technique which prevents logic programs from trying to prove the
same goal over and over again, thus avoiding certain types ofinfinite loops. Although both PTTP and DLog
employ this optimisation, there has not yet been any rigorous proof of its soundness. My main contribution
to this domain is providing such a proof.

Definition 2 (Loop elimination). Let P be a Prolog program and G a Prolog goal. Executing G w.r.t. P
usingloop eliminationmeans the Prolog execution of G extended in the following way: we stop the given
execution branch with a failure whenever we encounter a goalH that is identical to an open subgoal (that
we started, but have not yet finished proving). Two goals are identical only if they are syntactically the
same.

Loop elimination is very intuitive. If, for example, we wantto prove goalG and at some point we
realise that this involves proving the same goalG, then there is no point in going further, because 1) either
we fall in an infinite loop and obtain no proof or 2) we manage toprove the second occurrence ofG in some
other way that can be directly used to prove the first occurrence of the goalG. Things get complicated,
however, due to ancestor resolution. The twoG goals have different ancestor lists and it can be the case
that we only manage to prove the secondG due to the ancestors that the firstG does not have. As it turns
out, while we can indeed construct a proof of the firstG from that of the second, this proof might have to
be very different from the original one.

Theorem 4. For every complete PTTP proof containing loops there is a complete PTTP proof that is loop
free.

Theorem 4 justifies the use of loop elimination, which allowsfor reducing the search space, making
both PTTP and DLog faster. Besides, loop elimination is sufficient to make the DLog reasoner terminat-
ing, thus allowing us to replace iterative deepening searchwith depth-first search, which further increases
performance.

4 Type Inference for the Q Functional Language

We designed a type analysis tool for the Q vector processing language. We emphasize two merits of our
work: 1) we provide a type language that allows for adding type declarations to Q programs, making the
code better documented and easier to maintain and 2) our toolchecks the type correctness of Q programs
and detects type errors that can be inferred from the code before execution.

The type analysis tool has been developed in two phases. In the first phase we built atype checker:
the programmer was expected to provide type annotations forall variables (in the form of appropriate Q
comments) and our task was to verify the correctness of the annotations. In the second phase we moved
from type checking towardstype inference: we try to assign a type to each program expression in a con-
sistent manner, without relying on user provided type information. Although we no longer require type
annotations, we allow them as they provide documentation and improve maintenance and code reuse.

The main goal of the type analysis tool is to detect type errors and provide detailed error messages
explaining the reason of the inconsistency. Our tool can help detect program errors that would otherwise
stay unnoticed, thanks to which it has the potential to greatly enhance program development.

9



We perform type inference using constraint logic programming: the initial task is mapped into a con-
straint satisfaction problem (CSP), which is solved using the Constraint Handling Rules extension of Pro-
log [6], [15].

4.1 Type Checking for the Q Language

Our type checking algorithm imposes some restrictions on Q programmers: they have to provide a type
declaration for each variable and only ground declarationsare allowed, i.e., type variables are forbidden.
Both restrictions will be lifted in our type inference algorithm.

Algorithm 2 gives a summary of the type analysis component. We start out from an abstract syntax tree
(AST) representation of the input program, constructed by the parser component. Our aim is to determine
whether we can assign a type to each expression (each node in the AST) of the program in a coherent
manner. Some types are known from the start: the types of variables are provided by the programmer,
furthermore, we know the types of atomic expressions and built-in functions. The analyser infers the types
of the other expressions and checks for consistency.

Algorithm 2 Algorithm of the type analysis component
1. To each node of the abstract syntax tree, we assign a type variable.

2. We traverse the tree and formulate type constraints. For each program expression there is a constraint
that can be used to determine its type based on the types of itssubexpressions. In terms of the abstract
syntax tree, these constraints specify the type of a node based on the types of its child nodes.

3. Constraint reasoning is used to automatically

• propagate constraints,

• deduce unknown types

• detect and store clashes, i.e., type errors.

From the types of the leaf nodes, we infer the types of their immediate parents. This wakes up new
constraints, so in the next step we can determine the types ofnodes that are at most two steps away
from all their leaf descendants. Continuing this process, we eventually find all types.

4. If there is a type mismatch, we mark the erroneous node. Allthe parent nodes will also be marked
erroneous – however, we only show the smallest erroneous expressions to the user, i.e., those that
have no erroneous subexpression.

5. By the end of the traversal, each node that corresponds to atype correct expression is assigned a
type. The types satisfy all constraints.

Constraints are handled using the Prolog CHR [15] library. For each constraint, the program contains
a set of constraint handling rules. Once the arguments are sufficiently instantiated (what this means differs
from constraint to constraint), an adequate rule wakes up. The rule might instantiate some type variable, it
might invoke further constraints or else it infers a type error. In the latter case we mark the location of the
error, along with the clashing constraint.

In case all variables are provided with a type declaration, we start the analysis with the knowledge of
the types of all leaves of the abstract syntax tree. This is because a leaf is either an atomic expression or
a variable. Once the leaf types are known, propagation of types from the leaves upwards is immediate,
because we can infer the type of an expression from those of its subexpressions. Constraints wake up
immediately when their arguments are instantiated, as a result of which the type variables of the inner
nodes become instantiated.

10



4.2 Type Inference for the Q Language

In the second phase of the type analysis project, we set out toeliminate the two main restrictions of the
type checker: sometimes it is too burdensome for the programmers to have to provide type declarations
and sometimes it is too restrictive that the declarations have to be ground. We looked for a more flexible
solution, where the analyser uses whatever information is available and infers as much as possible.

CSP We reformulate the task of type inference as a constraint satisfaction problem (CSP), which we solve
using logic programming techniques. We associate a CSP variable with each subexpression of the program.
Each variable has a domain, which initially is the set of all possible types. Different type restrictions can
be interpreted as constraints that restrict the domains of some variables. In this terminology, the task of the
reasoner is to assign a value to each variable from the associated domain that satisfies all the constraints.

Constraints The type analyser traverses the abstract syntax tree and imposes constraints on the types
of the subexpressions. The constraints describing the domain of a variable are particularly important,
we call themprimary constraints. These are the upper and lower bound constraints. We will refer to
the rest of the constraints assecondary constraints. Secondary constraints eventually restrict domains
by generating primary constraints, when their arguments are sufficiently instantiated (i.e., domains are
sufficiently narrow).

Constraint Reasoning Constraint reasoning is based on aproduction system[14], i.e., a set of IF-THEN
rules. We maintain aconstraint storewhich holds the constraints to be satisfied for the program tobe type
correct. We start out with an initial set of constraints. A production rule fires when certain constraints
appear in the store and results in adding or removing some constraints. We also say (with the terminology
of CHR) that each rule has a head part that holds the constraints necessary for firing and a body containing
the constraints to be added. The constraints to be removed are a subset of the head constraints. One can
also provide a guard part to specify more refined firing conditions.

Our aim is to eventually eliminate all secondary constraints through the repeated firing of rules. If we
manage to do this, the domains described by the primary constraints constitute the set of possible type
assignments to each expression. In case some domain is the empty set, we have a type error. Otherwise,
we consider the program type correct.

In case some secondary constraints remain, we uselabeling. Labeling is the process of systematically
assigning values to variables from within their domains. The assignments wake up production rules. We
might obtain a failure, in which case we roll back until the last assignment and try the next value. Even-
tually, either we find a consistent type assignment that satisfies all constraints, or else we conclude the
existence of a type error.

5 The DLog Description Logic Reasoner

The DLog system [12] is a DL data reasoner, written in the Prolog language, which implements a two-phase
reasoning algorithm based on first-order resolution, and itsupports theR I Q language. As described in
Section 2, the input knowledge base is first transformed intofunction-free clauses of first-order logic. The
clauses obtained from the TBox after the first phase are used to build a Prolog program based on PTTP.
It is the execution of this program – run with an adequate query – that performs the second phase, i.e.,
the data reasoning. The second phase is focused in that it starts out from the query and only accesses
parts of the ABox that are relevant to answering the query. The relevant part is determined by the clauses
derived from the TBox. Hence, the performance of DLog is not affected by the presence of irrelevant
data. Furthermore, the ABox can be accessed through direct database queries and needs not be stored
in memory. To our best knowledge, DLog is the only DL reasonerwhich does not need to scan through
the whole ABox. Thanks to this, DLog can be used to reason overreally large amounts of data stored
in external databases. The last stable version of DLog that supports theSH I Q language is available at
http://dlog-reasoner.sourceforge.net.

11



The first reasoning phase is independent from the ABox and from the query. Hence, as long as the
TBox is unchanged, it is sufficient to perform the first phase only once, as a preprocessing step. For this
reason, its speed is not critical as it does not affect the response time of the system when answering queries.

Terminology Reasoning The TBox saturation module takes the TBox part of the input and transforms it
to first-order clauses of the following types:

¬R(x,y)∨S(y,x) (c11)

¬R(x,y)∨S(x,y) (c12)

P(x) (c13)

P1(x)∨
∨

i

(¬R(x,yi))∨
∨

i

P2(yi)∨
∨

i, j

(yi = y j) (c14)

The transformation proceeds as described in Section 2.1 andSection 2.2 and this constitutes the first
phase of reasoning. The output clauses have a rather simple syntax, which allows for using a highly opti-
mised variant of PTTP in the subsequent data reasoning, where these clauses and the ABox are transformed
into a Prolog program. The most important benefit of the TBox saturation is that there are no function sym-
bols left in the knowledge base.

Future Work One of the most urgent tasks ahead of us is extending the system interface. Currently, we
only support the DIG ([2]) format for the input knowledge base and query. We would like to provide the
system with an OWL interface (see [8] and [7]). Moreover, we have already implemented the database
support ([10]) which enables really large scale reasoning,however, it has not yet been incorporated into the
reasoner. Once these tasks are done, we need to do more testing to evaluate DLog with respect to other DL
reasoners such as RacerPro, Pellet, Hermit, KAON2.

On the theoretical side, we are curious to see how far we can extend the expressivity of DLog beyond
R I Q , approximating, as much as possibleSR OI Q (D), the language underpinning OWL2 ([7]).

6 Theqtchk Static Type Inference Tool for the Q Language

We built a Prolog program calledqtchk that implements the type analysis described in Section 4. The
system can be divided into three parts:

• Pass 1: lexical and syntactic analysis
The Q program is parsed into an abstract syntax tree structure.

• Pass 2: post processing
Some further transformations make the abstract syntax treeeasier to work with.

• Pass 3: type checking proper
The types of all expressions are processed, type errors are detected.

More details of the system architecture are provided in Figure 2. The analyser receives the Q program
along with the user provided type declarations. The lexicalanalyser breaks the text into tokens. The to-
keniser recognises constants and hence their types are revealed at this early stage. Afterwards, the syntactic
analyser parses the tokens into an abstract syntax tree representation of the Q program. Parsing is followed
by a post processing phase that encompasses various small transformation tasks.

Finally, in pass 3, the type analysis component traverses the abstract syntax tree and imposes constraints
on the types of the subexpressions of the program. This phasebuilds on the user provided type declarations
and the types of built-in functions. The predefined constraint handling rules trigger automatic constraint
reasoning, by the end of which each expression is assigned a type that satisfies all the constraints.

Each phase of the type analyser detects and stores errors. Atthe end of the analysis, the user is presented
with a list of errors, indicating the location and the kind oferror. In case of type errors, the analyser also
gives some justification, in the form of conflicting constraints.

12



replacements

Abs Abs

TreeTree

Q program

Type comments

Lexical

Analyser Analyser

Syntactic Post

Processing

Errors

Type

Reasoning

types

Built-in Func

Figure 2: Architecture of the type analyser

qtchk runs both in SICStus Prolog 4.1 [16] and SWI Prolog 5.10.5 [18]. It consists of over 8000 lines
of code.1 Q has many irregularities and lots of built-in functions (over 160), due to which a complex system
of constraints had to be implemented using over 60 constraints. The detailed user manual forqtchk can be
found in [3] that contains lots of examples along with the concrete syntax of the Q language.

7 Summary and List of Contributions

I have presented our results in the fields of Description Logic data reasoning and static type inference.
Although these domains are different in many ways, they bothrequire some sort of automated reasoning.
Our algorithms exploit and extend a variety of techniques oflogic programming, and hence it was very
natural to choose Prolog as an implementation language. Theimplemented systems – DLog andqtchk –
demonstrate that the built-in inference mechanism of Prolog can be extended to solve various reasoning
tasks.

In the following, I summarise my personal contributions to our results.

Thesis 1.I designed a transformation scheme from Description Logic axioms to first-order clauses that are
function-free. I implemented all methods in the DLog Description Logic reasoner. [21, 19, 20, 27, 22]

Thesis 1.A.I designed a first-order resolution calculus calledmodified calculus, which is a modified ver-
sion of basic superposition. I proved that the calculus is sound, complete and terminating forALC H I Q
clauses, which constitute a sublanguage of first-order logic. This result is what makes the two-phase rea-
soning algorithm of the DLog system possible: the complex reasoning over the TBox becomes independent
of the potentially large ABox. [19, 20, 22]

Thesis 1.B.I designed a transformation that maps aR I Q knowledge base into anALC H I Q knowledge
base by eliminating complex role hierarchies. I proved thatthe transformation is sound, i.e., the initial
knowledge base is satisfiable if and only if the transformed knowledge base is. Thanks to this transfor-
mation, any of the numerous techniques that were designed for reasoning over theALC H I Q language
became available for the more expressiveR I Q language as well. [19]

Thesis 1.C.I designed the DL calculus, which decides the consistency ofa SH Q terminology. I proved
that the calculus is sound, complete and always terminates.The DL calculus provides an interesting alter-

1We are happy to share the code over e-mail with anyone interested in it.

13



native to the tableau method. [21, 27]

Thesis 1.D.I implemented the modified calculus, along with the transformation fromR I Q to ALC H I Q
in the TBox saturation module of the DLog data reasoner. Thisconstitutes the first phase of our reasoning
algorithm.

Thesis 2. I proved the soundness of loop elimination, a crucial optimisation technique for PTTP related
theorem proving. [30, 31]

Thesis 2.A.I identified the three features in logic programs that can lead to infinite execution: function
symbols, proliferation of variables and loops. I showed that from these only loops can occur in DLog
programs. From this follows that the loop elimination optimisation makes DLog reasoning terminating.
[30, 31]

Thesis 2.B.I gave a rigorous proof of the soundness of loop elimination,based on a novel technique called
flipping, which identifies alternative proofs of the same goal in PTTP programs. From this result follows
that for any statement that can be proved by PTTP, there is a proof that contains no loops. [30, 31]

Thesis 3. I designed a static type analysis algorithm to check programs written in the Q language for
type correctness. I also implemented this algorithm in the type analysis module of theqtchk system.
[24, 4, 26, 25, 5]

Thesis 3.A.I designed a method for type checking: based on type annotations of program variables pro-
vided by the user, the algorithm determines the types of morecomplex expressions. [24, 4]

Thesis 3.B.I designed a method to move from type checking to type inference: no type annotations are re-
quired and the algorithm tries to infer the possible types ofall expressions. This is achieved by transforming
the task of type inference into a constraint satisfaction problem. [26, 25, 5]

Thesis 3.C.I implemented both type checking and type inference in the type analysis component of the
qtchk system. The implementation uses constraint logic programming and in particular the Constraint
Handling Rules extension of Prolog. [24, 4, 26, 25, 5]

References

[1] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and A. Voronkov,
editors,Handbook of Automated Reasoning, volume 1, chapter 2, pages 19–100. North Holland,
2001.

[2] S. Bechhofer, R. Moller, and P. Crowther. The dig description logic interface. InIn Proc. of Interna-
tional Workshop on Description Logics, 2003.citeseer.ist.psu.edu/690556.html.

[3] János Csorba, Péter Szeredi, and Zsolt Zombori.Static Type Checker for Q Programs (Reference
Manual), 2011. http://www.cs.bme.hu/∼zombori/q/qtchk_reference.pdf.

14



[4] János Csorba, Zsolt Zombori, and Péter Szeredi. Using constraint handling rules to provide static
type analysis for the q functional language. InProceedings of the 11th International Colloquium on
Implementation of Constraint and LOgic Programming Systems (CICLOPS 2011), 2011.

[5] János Csorba, Zsolt Zombori, and Péter Szeredi. Pros andcons of using CHR for type inference. In
Jon Sneyers and Thom Frühwirth, editors,Proceedings of the 9th workhop on Constraint Handling
Rules (CHR 2012), pages 16–31, September 2012.

[6] Th. Fruehwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and K. Marriot,
editors,Journal of Logic Programming, volume 37(1–3), pages 95–138, October 1998.

[7] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and Ulrike
Sattler. OWL 2: The next step for OWL.Web Semant., 6:309–322, November 2008.

[8] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: the
making of a web ontology language.Web Semantics: Science, Services and Agents on the World Wide
Web, 1(1):7 – 26, 2003.

[9] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion axioms. In Georg
Gottlob and Toby Walsh, editors,IJCAI, pages 343–348. Morgan Kaufmann, 2003.

[10] Balázs Kádár, Gergely Lukácsy, and Péter Szeredi. Large scale semantic web reasoning. InProceed-
ings of the 3rd International Workshop on Applications of Logic Programming to the Web, Semantic
Web and Semantic Web Services (ALPSWS2008), Udine, Italy, pages 57–70, December 2008.

[11] R. Kowalski and D. Kuehner. Linear resolution with selection function.Artificial Intelligence, 2:227–
260, 1971.

[12] Gergely Lukácsy and Péter Szeredi. Efficient Description Logic reasoning in Prolog: The DLog
system.Theory and Practice of Logic Programming, 9(03):343–414, 2009.

[13] Boris Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany, January 2006.

[14] A. Newell and H.A. Simon.Human Problem Solving. Prentice Hall, Englewood Cliffs, 1972.

[15] Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation and application.
In First Workshop on Constraint Handling Rules: Selected Contributions, pages 1–5, 2004.

[16] SICS. SICStus Prolog Manual version 4.1.3. Swedish Institute of Computer Science, September
2010.
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html.

[17] Mark E. Stickel. A Prolog technology theorem prover: a new exposition and implementation in
Prolog.Theoretical Computer Science, 104(1):109–128, 1992.

[18] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.TPLP, 12(1-
2):67–96, 2012.

[19] Zsolt Zombori. Expressive description logic reasoning using first-order resolution.Journal of Logic
and Computation. Submitted for publication.

[20] Zsolt Zombori. Efficient two-phase data reasoning for description logics. InIFIP AI, pages 393–402,
2008.

[21] Zsolt Zombori. A resolution based description logic calculus. Acta Cybern., pages 571–588, 2010.

[22] Zsolt Zombori. Two phase description logic reasoning for efficient information retrieval. In Lora
Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten Teije,Heiner Stuckenschmidt, Liliana Cabral,
and Tania Tudorache, editors,ESWC (2), volume 6089 ofLecture Notes in Computer Science, pages
498–502. Springer, 2010.

15



[23] Zsolt Zombori. Two Phase Description Logic Reasoning for Efficient Information Retrieval . In
John Gallagher and Michael Gelfond, editors,Technical Communications of the 27th International
Conference on Logic Programming (ICLP’11), volume 11 ofLeibniz International Proceedings in
Informatics (LIPIcs), pages 296–300, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[24] Zsolt Zombori, János Csorba, and Péter Szeredi. StaticType Checking for the Q Functional Language
in Prolog. In John Gallagher and Michael Gelfond, editors,Technical Communications of the 27th
International Conference on Logic Programming (ICLP’11), volume 11 ofLeibniz International Pro-
ceedings in Informatics (LIPIcs), pages 62–72, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[25] Zsolt Zombori, János Csorba, and Péter Szeredi. StaticType Inference as a Constraint Satisfaction
Problem. InProceedings of the TAMOP PhD Workshop: TAMOP-4.2.2/B-10/1-2010-0009, Leibniz
International Proceedings in Informatics (LIPIcs), Budapest, Hungary, 2012.

[26] Zsolt Zombori, János Csorba, and Péter Szeredi. StaticType Inference for the Q language using
Constraint Logic Programming. In Agostino Dovier and VítorSantos Costa, editors,Technical Com-
munications of the 28th International Conference on Logic Programming (ICLP’12), volume 17 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 119–129, Dagstuhl, Germany, 2012.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[27] Zsolt Zombori and Gergely Lukácsy. A resolution based description logic calculus. InDescription
Logics, 2009.

[28] Zsolt Zombori, Gergely Lukácsy, and Péter Szeredi. Hatékony következtetés ontológiákon. In17th
Networkhop Conference 2008, Budapest, Dunaújváros, 2008.

[29] Zsolt Zombori and Péter Szeredi. Szemantikus és deklaratív technológiák oktatási segédlet. Course
handout.

[30] Zsolt Zombori and Péter Szeredi. Loop elimination, a sound optimisation technique for pttp related
theorem proving.Acta Cybernetica, 20(3):441–458, 2012.

[31] Zsolt Zombori, Péter Szeredi, and Gergely Lukácsy. Loop elimination, a sound optimisation tech-
nique for pttp related theorem proving. InHungarian Japanese Symposium on Discrete Mathematics
and Its Applications, pages 503–512, Kyoto, Japan, 2011.

16


