R

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics H-11lurdapest
Department of Computer Science and Magyar tudésok korutja 2. B-132.sz
Information Theory Tel.: (36-1) 463-2585 Fax: (36-1) 463-3157

Prolog Based Reasoning
by
Zsolt Zombori

PhD Dissertation summary

Adviser: Dr. Péter Szeredi

Department of Computer Science and Information Theory
Faculty of Electrical Engineering and Informatics
Budapest University of Technology and Economics
Budapest, Hungary

Budapest, Hungary
March, 2013

1 Introduction

Reasonings the magic word that binds the parts of this thesis togetReasoning is the ability to use
available knowledge to infer something true that has nohIs¢égted explicitly. Today, there are numerous
information based systems that aim to represent knowledgeniachine processable way. For such sys-
tems, automated reasoning support is very important:atelifor discovering hidden knowledge, as well
as hidden errors in the knowledge base. Besides, autonmesdmning can be used to answer complex user
gueries.

In this dissertation | present work related to two main tepidhe first topic is Description Logic
reasoning. Description Logics (DIs) is a family of logic tarages, a knowledge representation formalism
that is widely used for building domain ontologies. We depeld various reasoning algorithms that allow
for querying DL ontologies, as well as checking the consisyeof an ontology. The second topic is type
inference for functional languages. Here, the task is tdyaraan input program and discover as many
errors as possible in compile time, to make program devetopmasier. These topics seem very different
at first sight, but they are quite similar at their cores: ithmases we start out from some initial knowledge
(a set of DL axioms in the first case, an input program and afggpe restrictions in the second), and we
aim to discover some logical properties of the input throagtomated reasoning.

1.1 Problem Formulation

In the following, | summarize my main research objectived give some motivation for pursuing them.

Large scale Description Logic reasoning Description Logics is an important and widely used fornmalis
for knowledge representation. While existing reasoningpsut for Description Logics is very sensitive
to the size of the available data, there are lots of apptinaiomains — such as reasoning over the web
— that has to cope with really huge amounts of data. The godli®fivork is to explore novel reasoning
techniques that are applicable in such situations. Inq@adi, it is crucial that the reasoner be not affected
by the size of irrelevant data and to find a way to transfornn ggeries into direct database queries.

1. The primary goal of my work is to find a transformation scleesh Description Logic axioms into
function-free clauses of first-order logic.

2. This transformation should primarily target tsig/ 1 Q Description Logic language.

3. After a successfu§ # 1Q transformation, the results should be extended to incatpanore refined
language elements, such as complex role inclusion axioms.

4. The results should be implemented in the DLog data reagayistem.

Optimised PTTP execution The Prolog Technology Theorem Prover (PTTP) is a completedider
theorem prover built on top of Prolog. This technique playsaportant role in the DLog reasoner, hence
any optimisations to this technique have the potential &atly increase the performance of DLog.

1. Most PTTP implementations use an optimisation calleg lelimination. However, its soundness
has not yet been proved. My goal was to find a rigorous prodi®@sbundness of loop elimination.

Static Type Analysis for the Q functional language Q is a dynamically typed functional programming
language with a very terse and irregular syntax. While thguage is widespread in financial applications,
there is no built-in support for debugging and compile-tidegection of errors, which makes program
maintenance very difficult. The goal of this work is to praxi@ with a tool that discovers static type
errors in compile-time.

1. The first task is to examine the possibility of static typalgsis of Q programs. This task also
involves identifying the type discipline that should be@wkd on Q programmers.

2. Devise an algorithm to verify the correctness of user joiexy type information.
3. Devise an algorithm that discovers type errors withoytiaput from programmers.

4. Implement all the algorithms in a tool that can be deployethdustrial environment at Morgan
Stanley Business and Technology Centre, Budapest.

1.2 Booklet Overview

In Section 2 we present two reasoning calculi that can be fasetbciding the consistency of a DL knowl-
edge base. The first calculus, that we will refer to aslodified calculuss based on first-order resolution
and supports thel LCH IQ DL language. We show how this calculus can be used for a tvesghlata
reasoning, which scales well and allows for reasoning cealiy large data sets. Using well known tech-
niques that reduce §# 1 Q knowledge base to an equisatisfialile CH 1Q knowledge base, we easily
extend our results to the# 1Q language, which is the most widely used DL variant. Aftengawe
present a transformation that reduces the task of consistdrecking of ak 1 Q knowledge base into that
of an4LCH 1Q knowledge base. The benefit of this reduction is that therlédisk can be solved using
our modified calculus. Our results yield a well scaling rewsg algorithm for theR 7Q language. In the
end of this section, we introduce a second calculus calledthcalculus which is defined directly on
DL expressions, without recourse to first-order logic. Thedalculus decides the consistency o & Q
terminology.

In Section 3 we presetdop elimination This technique allows for avoiding certain kinds of infanit
looping in the reasoning process and is the single most itapboptimisation for PTTP.

In Section 4 we present a reasoning algorithm that we deedltpanalyse programs written in the Q
language. We first present a type checker that builds on uwegided type information. Afterwards, we
introduce atype inference algorithm that can detect typreeven without any user provided information.

In Section 5 we present the DLog data reasoner system thdsecased to quer® 7 Q DL knowledge
bases with really large data sets.

Finally, in Section 6 we present tlagchk type inference tool, that analyses Q programs and discovers
type errors.

1.3 List of Publications
Journal Articles

1. [21] Zsolt Zombori: A Resolution Based Description Lo@lealculus. In ACTA CYBERNETICA-
SZEGED 19: pp. 571-588. (2010)

2. [30] Zsolt Zombori, Péter Szeredi: Loop Elimination, au8d Optimisation Technique for PTTP
related Theorem Proving. In ACTA CYBERNETICA-SZEGED 20.. g@1-458. Paper 3. (2012)

3. [19] Zsolt Zombori: Expressive Description Logic ReasgnUsing First-Order Resolution. Sub-
mitted to JOURNAL OF LOGIC AND COMPUTATION.

Reviewed International Conference Proceedings

1. [20] Zsolt Zombori: Efficient Two-Phase Data ReasoningDescription Logics. In Artificial In-
telligence in Theory and Practice II: World Computer Corsgr@008. Milan, Italy, 2008.09.07-
2008.09.10. Springer, pp. 393-402.(ISBN: 978-0-387-@969

2. [27] Zsolt Zombori Zsolt, Gergely Lukacsy: A Resolutiomd®d Description Logic Calculus. In
Proceedings of the 22nd International Workshop on Desoridtogics (DL2009). Oxford, UK,
2009.07.27-2009.07.30. pp. 27-30.

3. [23] Zombori Zsolt: Two Phase Description Logic Reasgrfior Efficient Information Retrieval. In
27th International Conference on Logic Programming (ICLB’ Technical Communications. Lex-
ington, USA, 2011.07.06-2011.07.10. Wadern: Schloss &g eibniz-Zentrum fur Informatik,
pp. 296-300.(ISBN: 978-3-939897-31-6)

4. [22] Zsolt Zombori: Two Phase Description Logic Reasgrfior Efficient Information Retrieval. In
Extended Semantic Web Conference (ESWC) 2011: Al Mashupeigee 2011. Heraklion, Greece,
2011.05.29-2011.06.02. pp. 498-502.

5. [31] Zsolt Zombori, Péter Szeredi, Gergely Lukacsy: Letimination, a sound optimisation tech-
nigue for PTTP related theorem proving. In Hungarian JapaSgmposium on Discrete Mathemat-
ics and Its Applications. Kyoto, Japan, 2011.05.31-208.08. Kyoto: pp. 503-512.

6. [24] Zsolt Zombori, JaAnos Csorba, Péter Szeredi: Staie Thecking for the Q Functional Lan-
guage in Prolog. In 27th International Conference on LogimgPamming (ICLP’11): Technical
Communications. Lexington, USA, 2011.07.06-2011.07 . &adern: Schloss Dagstuhl Leibniz-
Zentrum fur Informatik, pp. 62-72.(ISBN: 978-3-939897-G)L

7. [4] Janos Csorba, Zsolt Zombori, Péter Szeredi: Usings€@aimt Handling Rules to Provide Static
Type Analysis for the Q Functional Language. In Proceedafgke 11th International Colloquium
on Implementation of Constraint and LOgic Programming &yst (CICLOPS 2011). Lexington,
USA, 2011.07.10. Paper 5.

8. [26] Zsolt Zombori, JAnos Csorba, Péter Szeredi: Stafpe Tnference for the Q language using
Constraint Logic Programming. In Technical Communicagiohthe 28th International Conference
on Logic Programming (ICLP’12): Leibniz International Beedings in Informatics (LIPIcs). Bu-
dapest, Hungary, 2012.09.04-2012.09.08. Dagstuhl: p§-1PB. Paper 8. (ISBN: 978-3-939897-
43-9)

9. [5] Janos Csorba, Zsolt Zombori, Péter Szeredi: Pros ams ©f Using CHR for Type Inference.
In Proceedings of the 9th workshop on Constraint Handling®R(CHR 2012). Budapest, Hungary,
2012.09.04 Paper 4.

Domestic Conference Proceedings

1. [28] Zsolt Zombori, Gergely Lukacsy, Péter Szeredi: Hatd kdvetkeztetés ontologidkon. In 17th
Networkshop Conference 2008. Dunaujvéros, Hungary, 23087-2008.03.19.

2. [25] Zsolt Zombori, Janos Csorba, Péter Szeredi: StateTnference as a Constraint Satisfac-
tion Problem. In Proceedings of the TAMOP PhD Workshop: TARA®.2.2/B-10/1-2010-0009.
Budapest, Hungary, 2012.03.09.

Course Handouts

1. [29] Zsolt Zombori, Péter Szeredi: Szemantikus és dakilatechnoldgidk oktatasi segédlet. Course
handout. 2012. Budapest, pp. 1-32.

2 Resolution based Methods for Description Logic Reasoning

First, we present a resolution calculus in Subsection 2al itha modified version of basic superposi-
tion and is specialised fofl LCH IQ DL reasoning. In Subsection 2.2 we extend these resultseto th
R I1Q language by giving a transformation that maps &¥Q DL knowledge base to an equisatisfiable
ALCHIQ knowledge base. Subsection 2.3 presents another resohased calculus which, however, is
defined directly on DL expressions, without recourse to-firster logic.

2.1 Translating an4LCH IQ TBox to function-free clauses

Motivated by [13], we cope with the complexity of reasonirygdbeaking it into two phases: a data indepen-
dent phase on the general background knowledge (calledBbg, vhich is typically small and complex)
and the real reasoning over the available data (called thexABhich is typically large and simple). The
two phases are called terminology and data reasoning,atggg. This separation has tremendous effect
on efficiency. Besides being complex, the rules in the TBexiliely to remain the same over time while

the ABox data can change continuously. Hence, if we managmt@ forward all inferences involving the
TBox only and perform them separately, then the slow reagpaligorithm required by the complexity of
the TBox does not take unacceptably much time due to the fialigtarge size of the ABox. Furthermore,
these inferences need only to be performed once, in a pregsing phase. Afterwards, the second phase of
reasoning can be performed by a fast and focused data reaE@ch time queries arrive, only the second
phase is repeated, to reflect the current state of the ABox.

The input of the reasoner issa I Q DL knowledge base and we want to decide whether the knowledge
base is satisfiable. It can be shown easily that this is seiffidor solving all other DL reasoning tasks.

In the first step we translate the knowledge base into firdétoclauses. Doing this transformation
carefully, it can be shown that the obtained clauses belorggreal subset of first-order logic. We call
this set4LCH1Q clauses Afterwards, the clause set is saturated using a modifiesiareiof basic
superposition, callethodified calculusThe main merit of this calculus is that it allows for perfongpall
inferences related to function symbols before accessim@BoX.

The initial SH 1Q DL knowledge base contains no functions. However, aftersieaing TBox axioms
to first-order logic, we have to eliminate existential qufgrs using skolemisation which introduces new
function symbols. The ABox remains function-free, hencergthing that is to know about the functions
is contained in the TBox. This suggests that we should betalpperform all function-related reasoning
before accessing the ABox. Indeed, this is what the modifidclitus achieves: after saturating the TBox,
we can eliminate clauses containing function symbols ag Wik play no further role. This makes the
second phase of reasoning much simpler.

Proposition 1. The modified calculus is sound and complete and the saturafi@ set ofALCHIQ,
clauses using the modified calculus always terminates.

2.1.1 Implementing Two-Phase Reasoning

We use the modified calculus to solve the reasoning task iphases, summarised in Algorithm 1, where

steps (1) - (3) constitute the first phase of the reasoningséeq (4) is the second phase, i.e., the data
reasoning. Note that one does not necessarily have to usedtidied calculus for the second phase: any
calculus that more effectively exploits the fact that nodtimn symbols remain is applicable.

Algorithm 1 S#H 1Q reasoning
1. TransformthesH IQ TBox to a set of2LCH 1Q clauses.

2. Saturate the TBox clauses with the modified calculus.
3. Eliminate all clauses containing function symbols.
4

. Add the ABox clauses and saturate the set.

Theorem 1. Algorithm 1 is a correct, complete and finige&/{ 1 Q DL theorem prover.

2.1.2 Benefits of Eliminating Functions

There are several advantages of eliminating function sysrtefore accessing the ABox. First, it is more
efficient. Whatever ABox independent reasoning we perform afterrgpaccessed the data will have to
be repeated for every possible substitution of variablesxtNt is safer. A top-down reasoner that has
to be prepared for arguments containing function symbalgetig prone to fall into infinite loops. Special
attention needs to be paid to ensure the reasoner does rexagegoals with ever increasing number of
function symbols. Finally, ABox reasoning without funcat®is qualitatively easier. Some algorithms,
such as those for Datalog reasoning are not available inrds=pce of function symbols.

2.2 Reduction of® 1Q DL reasoning to 4LC# I1Q DL reasoning

R IQ is a Description Logic language that is obtained by extemdif/ I Q with complex role inclusion
axioms. InS#HI1Q we could express statements likkatherC relative), i.e., that a father is a relative.
Complex role inclusion axioms allow for using compositidmales on the left side of such statements. For
example, we can make the optimistic claispouse motherC friend), i.e., that a mother-in-law is a friend.
This extension significantly increases the expressive pofvthe language and is particularly important
in medical ontologies. It is well known that the complexitiyreasoning also increases, namely by an
exponential factor. We designed an algorithm that mapsfang® knowledge base into an equisatisfiable
ALCHIQ knowledge base. The transformation time is exponentidiénsize of the initial knowledge
base, hence it is asymptotically optimal. The transforamfirovides a means to redu®el Q reasoning

to ALCH 1Q reasoning.

2.2.1 A Motivating Example

Before formally defining the transformation, we try to give iatuition through a small example. The
example uses basic Description Logic syntax. Readers lldamwith DLs might prefer to skip this
subsection.

Suppose the role hierarchy of a knowledge base consistg afrtlgle axiom

PQLR

whereR P, Q are role names. One of the things that this axiom tells usistitase an individuadsatisfies
VR.C for some concep, then the individuals connectedxahrough aP o Q chain have to be i€. This
consequence can be described easily by the following conuepsion axiom:

YRCLC VPVQ.C
or equivalently, we can introduce new concept names to aeoighuch nesting of complex concepts:

VRCLC Xz
X1 CVP.Xo
X2 CVQ.C

Of course, these axioms only provide for the correct propagaf concepC and a new set of similar
axioms is required for all other concepts. However, we oelgchto consider the universal restrictions that
appear as subconcepts of some axiom in the knowledge basse Thncepts can be determined by a quick
scan of the initial knowledge base. For example, if the TBamtains the following GCls:

DCVRC
TCVRD

then, only conceptS andD appear in the scope of a univergatestriction. Let us add a copy of the above
GCls for bothC andD and eliminate the role hierarchy. We obtain the followingokB

DCVRC TLCVRD
VR.CLC X1 VRDLCY;,
X1 E VP X2 Y. CVPY,
Xo CVQ.C Y, CVQ.D

The two knowledge bases have different signatures and hexveedifferent models, however they are
equisatisfiable. We prove this by showing that a model of areMedge base can be constructed from a
model of the other.

2.2.2 From automata to concept inclusion axioms

Our results build on [9], which gives a tableau proceduredeciding® Q. For each roleR, the au-
thors define a non-deterministic finite automaRthat captures the role paths that are subsumeR. by
These automata are used during the construction of a talitedkeep track” of role paths. We show that
the automata can be used to transform the iniidlQ knowledge base to an equisatisfiall& CH I1Q
knowledge base. The main benefit is that the treatment ofdleehierarchy becomes independent of
the tableau algorithm. Hence, any algorithm that decidgsfisdility for an 2L CH IQ knowledge base
can be used for satisfiability checking offa/ Q knowledge base. In particular, the two phase reasoning
algorithm that we presented in Subsection 2.1 is applicable

Proposition 2. For a regular role hierarchy® and interpretation I, | is a model & _if and only if, for each
(possibly inverse) role S occurring iR, each word we L(Bs) and each/x,y) € w/, we havex,y) € S'.

Proposition 2 states that two individuals &eonnected exactly when there is a role pathetween them
accepted b¥Bs.

In the following, we will make use of the notion of conceptsilioe €losKB)), defined in [9], which
contains all subconcepts appearingdii.

For each conceptR.C € clogKB) and each automaton statef Bg, we introduce a new concept
nameXsrc). The concepts associated with the initial and final stateBgadre denoted witiXsiartrc)
andXstoprc), respectively.

Definition 1. For any®_IQ DL knowledge base KEB)(KB) is an2LCH IQ knowledge base constructed
as follows:

e Q(KB) is obtained from KB by removing all role inclusion axiomsWR such that R is not simple
and adding for each concepR.C € clogKB) the following axioms:

1. VRCC XstantRC)
2. XpRro) C Xgre) for each p5 g€ Br
3. XpRre) E VSXqRre) for each p§> geBr
4. Xstoprc) EC

e Q(KB)4 = KBy

Theorem 2. KB is satisfiable if and only i2(KB) is satisfiable. Furthermore, the size @{KB) can be
bounded exponentially in the size of KB.

The transformatio® maps an arbitrar® I Q knowledge base to adLC#H 1Q knowledge base. The-
orem 2 states that the transformation preserves satidfjadoild increases the size of the TBox with at most
an exponential factor, which is asymptotically optimalindsthis result, any algorithm that decides satis-
fiability for 2LCH I1Q can decide satisfiability faR 7Q. In particular, the modified calculus presented in
Subsection 2.1 is applicable.

2.3 A Resolution Based Description Logic Calculus

We present a reasoning algorithm, callet calculus which decides the consistency ofS& Q TBox.
The novelty of this calculus is that it is defined directly oh Bxioms. Working on this high level of
abstraction provides an easier to grasp algorithm withitrgesmediary transformation steps and increased
efficiency.

The algorithm can be summarized as follows. We determin¢ af ®®ncepts that have to be satisfied
by each individual of an interpretation in order for the TBwxbe true. Next, we introduce inference
rules that derive a new concept from two concepts. Usingrtfezénce rules, we saturate the knowledge
base, i.e., we apply the rules as long as possible and adadtisequent to the knowledge base. We also
apply redundancy elimination: whenever a concept extendthar, it can be safely eliminated from the

knowledge base [1]. We prove that saturation terminateghBtmore, we show that the knowledge base
is inconsistent if and only if the saturated set containsethety concept().

A literal concept(typically denoted withlL) is a possibly negated atomic concept. bAol concept
contains no role expressions (allowing only negation, n@iod intersection). We use capital letters from
the beginning of the alphabef[B,C...) to refer to bool concepts. In the following, we will always
assume that a bool concept is presented in a simplest disjegmormal form, i.e., it is the disjunction of
conjunctions of literal concepts. So for example, insteBA 0 AL (B —-BMC) we write A, andAM —-A
is replaced withL. When the inference rules do not preserve disjunctive nbiona, we use the explicit
dnf operator.

We define a total ordering on DL expressions. Given a ggtof concepts, concef@ € N is maximal
in N if C is greater (with respect te) than any other concept M. Since the ordering- is total, for any
finite setN there is always a unique maximal conc€pt N.

SH Q-concepts TheSH Q TBox is transformed into a set ¢f# Q -conceptsdefined as followsE, D, E
stand for concepts containing no role expressions):

C (bool concepts
Cul| |(<nRD) (< -max concepts
Cu (|_|(§ nRD)) U (> kSE) (> -max concepts

where bool concepts, D, E are in disjunctive normal form.

Inference Rules The inference rules are presented in Figure 1, wligt®;, E; are possibly empty bool
concepts.W stands for an arbitrary 4 Q-concept that can be empty as well. Note that two disjunctive
concepts are resolved along their respective maximalmtisjuand the ordering that we imposed on the
concepts yields a selection function. Since the orderingta, we can always select the unique maximal
disjunct to perform the inference step.

CllJ(DlI_IA) Cu (Dzl_lﬂA)
CLuC,
whereD1 MAis maximal inC; L (D1 M A)
andD, M —Ais maximal inCz LI (D2 —A)
C WU(>nRD)
WU (> nRdnf(DME))
whereE is obtained by using Rulel on premisesandD
Wi LU (< nRC) Wo U (> kSD)
WL LWL U (> (k—n)S.dnf(D1—C))
n<k,SC*R, (< nRC) is maximal inW; LI (< nRC)
and(> kSD) is maximal inWs LI (> kSD)
WL U (< nRC) W, U (> kSD)
WL UWL U (< (n—K)R.dnf(CM—D)) U (> 1S.dnf(DM-C))
n>k SC*R, (< nRC) is maximal inW; LI (< nRC)
and(> kSD) is maximal inW, LI (> kSD)

Rulel

Rule2

Rule3

Rule4

Figure 1: TBox inference rules of the DL calculus

Along with the inference rules, we also use sasimaplification rulegnot detailed in the booklet) that
ensure that concepts always appear in their simplest form.

Rulel corresponds to the classical resolution inferendeRarie2 makes this same inference possible
for entities whose existence is required byconcepts. Rule3 and Rule4 are harder to understand. They
address the interaction betweenconcepts andgl-concepts. Intuitively, if some entity satisfiessnRC
and also satisfies kSD, then there is a potential for clash if conce@tandD are related, more precisely
if D is subsumed b¥. In such case® M —C is not satisfiable, which either leads to contradiction if
n < k (Rule3) or results in a tighter cardinality restriction dve tentity (Rule4). If severat-concepts and
a <-concept are inconsistent together, then eaetoncept is used to deduce<aconcept with smaller
cardinality (Rule4) until the<-concept completely disappears from the conclusion (Rwdad we obtain
the empty concept.

Saturation We saturate the knowledge base, i.e., we apply the ruleguré&il to deduce new concepts
as long as possible. We claim that the consequent is alwgy$@-concept (possibly after applying some
simplification rules).

Proposition 3. The set ofs # Q-concepts is closed under the inference rules in Figure 1 finitely
many differents # Q -concepts can be deduced from a finite TBox.

Theorem 3. The inference rules of the DL calculus are sound and complete

Let 7 be aS# Q TBox. LetSat; be the set of concepts obtained after transformiihgnto SH Q,
-concepts and then saturating with the DL calculus. We hbheeed that saturation terminates. Further-
more, if Satr does not contain_ then it is possible to build a model faF, i.e., it is satisfiable.

3 Loop Elimination, a Sound Optimisation Technique for PTTP Re-
lated Theorem Proving

The Prolog Technology Theorem Prover approach (PTTP) El@sound and complete first-order theorem
prover, built on top of Prolog. An arbitrary set of generaludes is transformed into a set of Horn-clauses
that correspond to Prolog rules. Prolog execution on thass yields first-order reasoning.

In PTTP, to each first-order clause we assign a set of Housel the so-callecbntrapositivesThe
first-order clausé; VLoV ---V Ly hasn contrapositives of the foray < —L4,...,-Lx_1,-Lks1,--.,7Ln,
for each 1< k < n. Having removed double negations, the remaining negatice&liminated by intro-
ducing new predicate names for negated literals. For eaafiqgate nam® a new predicate nameot P
is introduced, and all occurrences-aP(X) are replaced witmot P(X), both in the head and in the body.
The link between the separate predic&®esdnot P is provided usin@ncestor resolutioysee below. For
example, the claus&(X) v -B(X) v =R(X,Y) is translated into three Prolog rules, each with differeie r
head:

A(X) t- B(X), RIXY).
not _B(X) o= not_A(X), RIXY).
not R(XY) :- not_A(X), B(X).

Thanks to using contrapositives, each literal of a firsteoilause appears in the head of a Horn clause.
This ensures that each literal can participate in a reswigiep, in spite of the restricted selection rule of
Prolog.
Suppose we want to prove the gdehnd during execution we obtain the subgeal What this means
is that by this time we have inferred a rule, according to Whi@ series of goals starting withA is true,
thenA follows:
A< not_A, Py, P2,.. Px.

The logically equivalent first-order clause is

AVAV-PLV-P2V-.- V-

from which we see immediately that the two occurrence& cén be unified, so there is no need to prove
the subgoatot _A. This step is calledncestor resolutiofil1], which corresponds to the positive factoring
inference rule.

There are two further features in the PTTP approach. Fastyoid infinite loops, iterative deepening
is used instead of the standard depth-first Prolog searategyr. Second, in contrast with most Prolog
systems, PTTP uses occurs check during unification, i;eexample termX and f (X) are not allowed to
be unified because this would result in a term of infinite depth

To sum up, PTTP uses five techniques to build a first-orderrémegrover on the top of Prolog:
contrapositives, renaming of negated literals, ancesgwlution, iterative deepening, and occurs check.

The DLog system [12] that will be presented in Section 5 isecigisation of PTTP to Description
Logic reasoning. DLog performs a two-phase reasoning, vtier first phase uses the modified calculus
of Subsection 2.1 and the second phase uses PTTP.

Loop elimination is an optimisation technique which pregdagic programs from trying to prove the
same goal over and over again, thus avoiding certain typesioite loops. Although both PTTP and DLog
employ this optimisation, there has not yet been any rigeppraof of its soundness. My main contribution
to this domain is providing such a proof.

Definition 2 (Loop elimination) Let P be a Prolog program and G a Prolog goal. Executing G wi.t
usingloop eliminationmeans the Prolog execution of G extended in the following waystop the given
execution branch with a failure whenever we encounter a gotiat is identical to an open subgoal (that
we started, but have not yet finished proving). Two goals @eatical only if they are syntactically the
same.

Loop elimination is very intuitive. If, for example, we watd prove goalG and at some point we
realise that this involves proving the same gBathen there is no point in going further, because 1) either
we fall in an infinite loop and obtain no proof or 2) we managprave the second occurrence®in some
other way that can be directly used to prove the first occagari the goalc. Things get complicated,
however, due to ancestor resolution. The @& goals have different ancestor lists and it can be the case
that we only manage to prove the secd@hdue to the ancestors that the fi@does not have. As it turns
out, while we can indeed construct a proof of the figsfrom that of the second, this proof might have to
be very different from the original one.

Theorem 4. For every complete PTTP proof containing loops there is agete PTTP proof that is loop
free.

Theorem 4 justifies the use of loop elimination, which alldemsreducing the search space, making
both PTTP and DLog faster. Besides, loop elimination is sigffit to make the DLog reasoner terminat-
ing, thus allowing us to replace iterative deepening seaitthdepth-first search, which further increases
performance.

4 Type Inference for the Q Functional Language

We designed a type analysis tool for the Q vector processinguage. We emphasize two merits of our
work: 1) we provide a type language that allows for addingetglpclarations to Q programs, making the
code better documented and easier to maintain and 2) oucheacks the type correctness of Q programs
and detects type errors that can be inferred from the codedekecution.

The type analysis tool has been developed in two phases.elfirth phase we built &/pe checker
the programmer was expected to provide type annotatioralifeariables (in the form of appropriate Q
comments) and our task was to verify the correctness of thetations. In the second phase we moved
from type checking towardype inferencewe try to assign a type to each program expression in a con-
sistent manner, without relying on user provided type imfation. Although we no longer require type
annotations, we allow them as they provide documentatidriraprove maintenance and code reuse.

The main goal of the type analysis tool is to detect type sreord provide detailed error messages
explaining the reason of the inconsistency. Our tool cap Hetect program errors that would otherwise
stay unnoticed, thanks to which it has the potential to ¢yesthance program development.

We perform type inference using constraint logic prograngnihe initial task is mapped into a con-
straint satisfaction problem (CSP), which is solved ush€onstraint Handling Rules extension of Pro-
log [6], [15].

4.1 Type Checking for the Q Language

Our type checking algorithm imposes some restrictions onmd@nammers: they have to provide a type
declaration for each variable and only ground declaratisesallowed, i.e., type variables are forbidden.
Both restrictions will be lifted in our type inference alggom.

Algorithm 2 gives a summary of the type analysis componer gt st&rt out from an abstract syntax tree
(AST) representation of the input program, constructechieyptarser component. Our aim is to determine
whether we can assign a type to each expression (each node WST) of the program in a coherent
manner. Some types are known from the start: the types adihlas are provided by the programmer,
furthermore, we know the types of atomic expressions anttinufunctions. The analyser infers the types
of the other expressions and checks for consistency.

Algorithm 2 Algorithm of the type analysis component
1. To each node of the abstract syntax tree, we assign a tyjadla

2. We traverse the tree and formulate type constraints. &t program expression there is a constraint
that can be used to determine its type based on the typesabiéxpressions. In terms of the abstract
syntax tree, these constraints specify the type of a nodsdbasthe types of its child nodes.

3. Constraint reasoning is used to automatically

e propagate constraints,
e deduce unknown types
e detect and store clashes, i.e., type errors.
From the types of the leaf nodes, we infer the types of theinédiate parents. This wakes up new

constraints, so in the next step we can determine the typegdss that are at most two steps away
from all their leaf descendants. Continuing this procegsewentually find all types.

4. If there is a type mismatch, we mark the erroneous nodethalparent nodes will also be marked
erroneous — however, we only show the smallest erroneougssipns to the user, i.e., those that
have no erroneous subexpression.

5. By the end of the traversal, each node that corresponds$yjoeacorrect expression is assigned a
type. The types satisfy all constraints.

Constraints are handled using the Prolog CHR [15] librany. éach constraint, the program contains
a set of constraint handling rules. Once the arguments #ieisatly instantiated (what this means differs
from constraint to constraint), an adequate rule wakes hp.rlile might instantiate some type variable, it
might invoke further constraints or else it infers a typeerin the latter case we mark the location of the
error, along with the clashing constraint.

In case all variables are provided with a type declaratianstart the analysis with the knowledge of
the types of all leaves of the abstract syntax tree. Thisdéalree a leaf is either an atomic expression or
a variable. Once the leaf types are known, propagation adsyfmpm the leaves upwards is immediate,
because we can infer the type of an expression from those sliltexpressions. Constraints wake up
immediately when their arguments are instantiated, as w@treEwhich the type variables of the inner
nodes become instantiated.

10

4.2 Type Inference for the Q Language

In the second phase of the type analysis project, we set aliniinate the two main restrictions of the

type checker: sometimes it is too burdensome for the progrensito have to provide type declarations
and sometimes it is too restrictive that the declarationg @ be ground. We looked for a more flexible
solution, where the analyser uses whatever informationdgable and infers as much as possible.

CSP We reformulate the task of type inference as a constraiisfaation problem (CSP), which we solve
using logic programming techniques. We associate a CSBblanivith each subexpression of the program.
Each variable has a domain, which initially is the set of akgible types. Different type restrictions can
be interpreted as constraints that restrict the domainsroésvariables. In this terminology, the task of the
reasoner is to assign a value to each variable from the asedalomain that satisfies all the constraints.

Constraints The type analyser traverses the abstract syntax tree armsé@sponstraints on the types
of the subexpressions. The constraints describing the iooiaa variable are particularly important,
we call themprimary constraints These are the upper and lower bound constraints. We wak rtef
the rest of the constraints @gcondary constraints Secondary constraints eventually restrict domains
by generating primary constraints, when their argumergssafficiently instantiated (i.e., domains are
sufficiently narrow).

Constraint Reasoning Constraint reasoning is based opraduction systeriil4], i.e., a set of IF-THEN
rules. We maintain aonstraint storevhich holds the constraints to be satisfied for the prograbettype
correct. We start out with an initial set of constraints. Aguction rule fires when certain constraints
appear in the store and results in adding or removing somstraints. We also say (with the terminology
of CHR) that each rule has a head part that holds the contstraggessary for firing and a body containing
the constraints to be added. The constraints to be remoeed smbset of the head constraints. One can
also provide a guard part to specify more refined firing coolét.

Our aim is to eventually eliminate all secondary constsaihtough the repeated firing of rules. If we
manage to do this, the domains described by the primary reonts constitute the set of possible type
assignments to each expression. In case some domain is fitg sen, we have a type error. Otherwise,
we consider the program type correct.

In case some secondary constraints remain, wealiding Labeling is the process of systematically
assigning values to variables from within their domainse @ssignments wake up production rules. We
might obtain a failure, in which case we roll back until thetlassignment and try the next value. Even-
tually, either we find a consistent type assignment thasfiedi all constraints, or else we conclude the
existence of a type error.

5 The DLog Description Logic Reasoner

The DLog system [12] is a DL data reasoner, written in thed&®ytdnguage, which implements a two-phase
reasoning algorithm based on first-order resolution, asdpiports theR 7 Q language. As described in
Section 2, the input knowledge base is first transformedfuntotion-free clauses of first-order logic. The
clauses obtained from the TBox after the first phase are wsbdild a Prolog program based on PTTP.
It is the execution of this program — run with an adequate yjuethat performs the second phase, i.e.,
the data reasoning. The second phase is focused in thattg etat from the query and only accesses
parts of the ABox that are relevant to answering the querg retevant part is determined by the clauses
derived from the TBox. Hence, the performance of DLog is rtdcéed by the presence of irrelevant
data. Furthermore, the ABox can be accessed through diae¢abase queries and needs not be stored
in memory. To our best knowledge, DLog is the only DL reasaomieich does not need to scan through
the whole ABox. Thanks to this, DLog can be used to reason adly large amounts of data stored
in external databases. The last stable version of DLog thgptarts theS#H 1Q, language is available at
http://dl og-reasoner. sour cef orge. net.

11

The first reasoning phase is independent from the ABox and ffee query. Hence, as long as the
TBox is unchanged, it is sufficient to perform the first phasly @nce, as a preprocessing step. For this
reason, its speed is not critical as it does not affect theorese time of the system when answering queries.

Terminology Reasoning The TBox saturation module takes the TBox part of the inpdttaansforms it
to first-order clauses of the following types:

_‘R(Xa y) v S(y7 X) (cl1)
_‘R(Xa y) v S(Xa y) (c12)
P(x) (c13)
PL(x) vV (SR VvV Pa(y) v\ (v =y)) (c14)

i
The transformation proceeds as described in Section 2.Baation 2.2 and this constitutes the first
phase of reasoning. The output clauses have a rather sigmglexswhich allows for using a highly opti-
mised variant of PTTP in the subsequent data reasoninggvthese clauses and the ABox are transformed
into a Prolog program. The most important benefit of the TBaumation is that there are no function sym-
bols left in the knowledge base.

Future Work One of the most urgent tasks ahead of us is extending thensysterface. Currently, we
only support the DIG ([2]) format for the input knowledge band query. We would like to provide the
system with an OWL interface (see [8] and [7]). Moreover, ve@édhalready implemented the database
support ([10]) which enables really large scale reasoriingiever, it has not yet been incorporated into the
reasoner. Once these tasks are done, we need to do morg testiraluate DLog with respect to other DL
reasoners such as RacerPro, Pellet, Hermit, KAONZ2.

On the theoretical side, we are curious to see how far we cmeéxhe expressivity of DLog beyond
R IQ, approximating, as much as possibi® O1Q (D), the language underpinning OWL2 ([7]).

6 Theqt chk Static Type Inference Tool for the Q Language

We built a Prolog program callegt chk that implements the type analysis described in Section & Th
system can be divided into three parts:

e Pass 1: lexical and syntactic analysis
The Q program is parsed into an abstract syntax tree steictur

e Pass 2: post processing
Some further transformations make the abstract syntaxetisier to work with.

e Pass 3: type checking proper
The types of all expressions are processed, type erroreseetdd.

More details of the system architecture are provided in féi@u The analyser receives the Q program
along with the user provided type declarations. The |lexdcellyser breaks the text into tokens. The to-
keniser recognises constants and hence their types asded\a this early stage. Afterwards, the syntactic
analyser parses the tokens into an abstract syntax tresseggation of the Q program. Parsing is followed
by a post processing phase that encompasses various saafbirmation tasks.

Finally, in pass 3, the type analysis component traversealibtract syntax tree and imposes constraints
on the types of the subexpressions of the program. This fhalsks on the user provided type declarations
and the types of built-in functions. The predefined constraandling rules trigger automatic constraint
reasoning, by the end of which each expression is assigngrbdtat satisfies all the constraints.

Each phase of the type analyser detects and stores errdhe éd of the analysis, the user is presented
with a list of errors, indicating the location and the kindewfor. In case of type errors, the analyser also
gives some justification, in the form of conflicting consttai

12

Built-in Func
—_
types

Post @
Processing @

Type
Reasoning

Q program Lexical | Syntactic

Abs
—
Tree

I
Analyser | Analyser
|

Figure 2: Architecture of the type analyser

gt chk runs both in SICStus Prolog 4.1 [16] and SWI Prolog 5.10.5%.[k&onsists of over 8000 lines
of code! Q has many irregularities and lots of built-in functions¢o%60), due to which a complex system
of constraints had to be implemented using over 60 conséralime detailed user manual fgirchk can be
found in [3] that contains lots of examples along with theaete syntax of the Q language.

7 Summary and List of Contributions

| have presented our results in the fields of Description talita reasoning and static type inference.
Although these domains are different in many ways, they bediuire some sort of automated reasoning.
Our algorithms exploit and extend a variety of techniquekgic programming, and hence it was very
natural to choose Prolog as an implementation languageiniplemented systems — DLog agtichk —
demonstrate that the built-in inference mechanism of Brokn be extended to solve various reasoning
tasks.

In the following, | summarise my personal contributions tw tesults.

Thesis 1.1 designed a transformation scheme from Description Logicras to first-order clauses that are
function-free. | implemented all methods in the DLog Degstioin Logic reasoner. [21, 19, 20, 27, 22]

Thesis 1.A.1 designed a first-order resolution calculus calteddified calculuswhich is a modified ver-
sion of basic superposition. | proved that the calculus isxglpcomplete and terminating fa#LCHI1Q,
clauses, which constitute a sublanguage of first-ordecloginis result is what makes the two-phase rea-
soning algorithm of the DLog system possible: the complasoaing over the TBox becomes independent
of the potentially large ABox. [19, 20, 22]

Thesis 1.B.I designed a transformation that map® 4 Q knowledge base into afi L CH I Q knowledge
base by eliminating complex role hierarchies. | proved thattransformation is sound, i.e., the initial
knowledge base is satisfiable if and only if the transformedwdedge base is. Thanks to this transfor-
mation, any of the numerous techniques that were designegdsoning over the1lLCH IQ language
became available for the more expressk/éQ language as well. [19]

Thesis 1.C.I designed the DL calculus, which decides the consisteney$#/ Q terminology. | proved
that the calculus is sound, complete and always termin@tesDL calculus provides an interesting alter-

1We are happy to share the code over e-mail with anyone in¢etés it.

13

native to the tableau method. [21, 27]

Thesis 1.D.l implemented the modified calculus, along with the transfation from® I1Q to ALCHIQ,
in the TBox saturation module of the DLog data reasoner. tiistitutes the first phase of our reasoning
algorithm.

Thesis 2.1 proved the soundness of loop elimination, a crucial ogation technique for PTTP related
theorem proving. [30, 31]

Thesis 2.A.l identified the three features in logic programs that cad keainfinite execution: function
symbols, proliferation of variables and loops. | showed fham these only loops can occur in DLog
programs. From this follows that the loop elimination opiation makes DLog reasoning terminating.
[30, 31]

Thesis 2.B.| gave a rigorous proof of the soundness of loop eliminati@sed on a novel technique called
flipping, which identifies alternative proofs of the samelgod@TTP programs. From this result follows
that for any statement that can be proved by PTTP, there isd firat contains no loops. [30, 31]

Thesis 3. | designed a static type analysis algorithm to check programitten in the Q language for
type correctness. | also implemented this algorithm in thpe tanalysis module of thet chk system.
[24, 4, 26, 25, 5]

Thesis 3.A.1 designed a method for type checking: based on type anoogtif program variables pro-
vided by the user, the algorithm determines the types of roomgplex expressions. [24, 4]

Thesis 3.B.l designed a method to move from type checking to type inf@zeno type annotations are re-
quired and the algorithm tries to infer the possible typesiaxpressions. This is achieved by transforming
the task of type inference into a constraint satisfactiabjam. [26, 25, 5]

Thesis 3.C.I implemented both type checking and type inference in tipe gnalysis component of the
gt chk system. The implementation uses constraint logic prograwg@nd in particular the Constraint
Handling Rules extension of Prolog. [24, 4, 26, 25, 5]

References

[1] L. Bachmair and H. Ganzinger. Resolution theorem prgvinn A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoninglume 1, chapter 2, pages 19-100. North Holland,
2001.

[2] S. Bechhofer, R. Moller, and P. Crowther. The dig des@iplogic interface. Irin Proc. of Interna-
tional Workshop on Description Logic8003.ci t eseer. i st. psu. edu/ 690556. ht m .

[3] Janos Csorba, Péter Szeredi, and Zsolt Zombstatic Type Checker for Q Programs (Reference
Manual), 2011. http://www.cs.bme.hwZombori/g/gtchk_reference.pdf.

14

[4] Janos Csorba, Zsolt Zombori, and Péter Szeredi. Usimgtcaint handling rules to provide static
type analysis for the q functional language.Aroceedings of the 11th International Colloquium on
Implementation of Constraint and LOgic Programming SystéGiCLOPS 2011011.

[5] Janos Csorba, Zsolt Zombori, and Péter Szeredi. Pros@mslof using CHR for type inference. In
Jon Sneyers and Thom Frihwirth, editdPspceedings of the 9th workhop on Constraint Handling
Rules (CHR 2012pages 16-31, September 2012.

[6] Th. Fruehwirth. Theory and Practice of Constraint HamglRules. In P. Stuckey and K. Marriot,
editors,Journal of Logic Programmingsolume 37(1-3), pages 95-138, October 1998.

[7] Bernardo Cuenca Grau, lan Horrocks, Boris Motik, Bijaar$ta, Peter Patel-Schneider, and Ulrike
Sattler. OWL 2: The next step for OWIWeb Semant6:309-322, November 2008.

[8] lan Horrocks, Peter F. Patel-Schneider, and Frank vamidken. From SHIQ and RDF to OWL.: the
making of a web ontology languagé@/eb Semantics: Science, Services and Agents on the Woed Wid
Weh 1(1):7 — 26, 2003.

[9] lan Horrocks and Ulrike Sattler. Decidability of SHIQtvicomplex role inclusion axioms. In Georg
Gottlob and Toby Walsh, editork]CAl, pages 343—348. Morgan Kaufmann, 2003.

[10] Balazs Kadar, Gergely Lukacsy, and Péter Szeredi.d stgle semantic web reasoningPiroceed-
ings of the 3rd International Workshop on Applications oflcoProgramming to the Web, Semantic
Web and Semantic Web Services (ALPSWS2008), Udine pégjgs 57—70, December 2008.

[11] R. Kowalski and D. Kuehner. Linear resolution with sgien function.Atrtificial Intelligence 2:227—-
260, 1971.

[12] Gergely Lukacsy and Péter Szeredi. Efficient Desaiptiogic reasoning in Prolog: The DLog
system.Theory and Practice of Logic Programmin@(03):343—-414, 2009.

[13] Boris Motik. Reasoning in Description Logics using Resolution and Dedeidatabases PhD
thesis, Univesitat Karlsruhe (TH), Karlsruhe, Germanguay 2006.

[14] A. Newell and H.A. SimonHuman Problem SolvingPrentice Hall, Englewood Cliffs, 1972.

[15] Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR eystimplementation and application.
In First Workshop on Constraint Handling Rules: Selected @butions, pages 1-5, 2004.

[16] SICS. SICStus Prolog Manual version 4.1.3wedish Institute of Computer Science, September
2010.
http://ww. sics. se/sicstus/docs/ | atest4/htm/sicstus. htm .

[17] Mark E. Stickel. A Prolog technology theorem prover: ewnexposition and implementation in
Prolog. Theoretical Computer Scienci04(1):109-128, 1992.

[18] Jan Wielemaker, Tom Schrijvers, Markus Triska, andbjam Lager. SWI-Prolog. TPLP, 12(1-
2):67-96, 2012.

[19] Zsolt Zombori. Expressive description logic reasanirsing first-order resolutionlournal of Logic
and ComputationSubmitted for publication.

[20] Zsolt Zombori. Efficient two-phase data reasoning fesctiption logics. InFIP Al, pages 393402,
2008.

[21] Zsolt Zombori. A resolution based description logitctdus. Acta Cybern.pages 571-588, 2010.

[22] Zsolt Zombori. Two phase description logic reasoning éfficient information retrieval. In Lora
Aroyo, Grigoris Antoniou, Eero Hyvénen, Annette ten Teliiiner Stuckenschmidt, Liliana Cabral,
and Tania Tudorache, edito ESWC (2)volume 6089 ot ecture Notes in Computer Scienpages
498-502. Springer, 2010.

15

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Zsolt Zombori. Two Phase Description Logic Reasoniog Efficient Information Retrieval . In
John Gallagher and Michael Gelfond, editoFechnical Communications of the 27th International
Conference on Logic Programming (ICLP'1Molume 11 ofLeibniz International Proceedings in
Informatics (LIPIcs) pages 296—300, Dagstuhl, Germany, 2011. Schloss Dagkrihhiz-Zentrum
fuer Informatik.

Zsolt Zombori, JAnos Csorba, and Péter Szeredi. Sigtie Checking for the Q Functional Language
in Prolog. In John Gallagher and Michael Gelfond, editGesshnical Communications of the 27th
International Conference on Logic Programming (ICLP’1xidlume 11 ofLeibniz International Pro-
ceedings in Informatics (LIPIcspages 62—72, Dagstuhl, Germany, 2011. Schloss Dagsteibhilz-
Zentrum fuer Informatik.

Zsolt Zombori, Janos Csorba, and Péter Szeredi. Skgpie Inference as a Constraint Satisfaction
Problem. InProceedings of the TAMOP PhD Workshop: TAMOP-4.2.2/B-20/0-0009Leibniz
International Proceedings in Informatics (LIPIcs), Budstp Hungary, 2012.

Zsolt Zombori, Janos Csorba, and Péter Szeredi. Stgpe Inference for the Q language using
Constraint Logic Programming. In Agostino Dovier and Vi&antos Costa, editorsechnical Com-
munications of the 28th International Conference on LogiasgPamming (ICLP’12) volume 17 of
Leibniz International Proceedings in Informatics (LIPjcsages 119-129, Dagstuhl, Germany, 2012.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Zsolt Zombori and Gergely Lukécsy. A resolution basedgatiption logic calculus. IDescription
Logics 2009.

Zsolt Zombori, Gergely Lukécsy, and Péter Szeredi.éKany kdvetkeztetés ontoldgiakon. 1ith
Networkhop Conference 200Budapest, Dunaujvaros, 2008.

Zsolt Zombori and Péter Szeredi. Szemantikus és datilaiechnoldgiak oktatasi segédlet. Course
handout.

Zsolt Zombori and Péter Szeredi. Loop elimination, arsboptimisation technique for pttp related
theorem provingActa Cybernetica20(3):441-458, 2012.

Zsolt Zombori, Péter Szeredi, and Gergely Lukacsy. p.ebimination, a sound optimisation tech-
nique for pttp related theorem proving. Hungarian Japanese Symposium on Discrete Mathematics
and Its Applicationspages 503-512, Kyoto, Japan, 2011.

16

