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Abstract: 
We describe an application of Prolog: a type analyzer tool for the Q functional language. 
Q is a dynamically typed language, much like Prolog. Extending Q with static typing 
improves both the readability of programs and programmer productivity, as type errors 
are discovered by the tool at compile time, rather than through debugging the program 
execution. We map the task of type inference into a constraint satisfaction problem and 
use constraint logic programming, in particular the Constraint Handling Rules extension 
of Prolog. We determine the possible type values for each program expression and detect 
inconsistencies. As most built-in function names of Q are overloaded, i.e. their meaning 
depends on the argument types, a quite complex system of constraints had to be 
implemented. 

 

Introduction: 
Our paper presents most recent developments of the qtchk type analysis tool, for the Q 
vector processing language. The tool has been developed in a collaborative project 
between Budapest University of Technology and Economics and Morgan Stanley 
Business and Technology Centre, Budapest. The main goal of the type analyzer is to 
detect type errors and provide detailed error messages explaining the reason of the 
inconsistency. Our tool can help detect program errors that would otherwise stay 
unnoticed, thanks to which it has the potential to greatly enhance program development. 

We perform type inference using constraint logic programming: the initial task is mapped 
into a constraint satisfaction problem (CSP), which is solved using the Constraint 
Handling Rules extension of the Prolog programming language. 

In the following, we present the constraint satisfaction problem, we show how type 
inference can be mapped into a CSP and how the problem can be solved. Finally, we 
briefly report on our implementation. 

 

Constraint Satisfaction Problem:  

A constraint satisfaction problem (CSP) can be described with a triple CDX ,,  where 

• }...{ 1 nxxX = is a series of variables, 

• }...{ 1 nDDD = is a series of finite sets called domains, 

• variable ix can only take values from domain iD , 

• }...{ 1 kccC =  is a series of constraints, i.e., atomic relations whose arguments are 

variables from X . 
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A solution to a CSP is an assignment to each Xxi ∈ a domain element ii Dv ∈  such that 

all constraints Cc ∈ are satisfied. 

A value id  of a variable ix  that appears in a constraint c  is superfluous in case there is 

no assignment to the rest of the variables of c  along with ii dx =  that satisfies the 

constraint. Removing superfluous values from the corresponding domains yields an 
equivalent CSP. 

There are two mechanisms that lead to a solution of a CSP. First, constraints constantly 
monitor the domains of their variables and remove superfluous values. Second, in case 
constraints fail to reduce some domain to a single value, we apply labeling: we choose a 
variable ix  and split its domain into two parts, creating a choice point where each branch 

corresponds to a reduced domain. Through a backtracking search we explore the 
branches. Constraints can wake up as the domains of their variables change and can 
further eliminate superfluous values. In case a domain becomes empty, we roll back to 
the last choice point. By the end of labeling, either we find a single value for each 
variable such that all constraints are satisfied, or else we conclude that the CSP is 
unsatisfiable. 

 

Mapping Type Inference into a Constraint Satisfaction Problem:  

Type reasoning starts from a program code that can be seen as a complex expression built 
from simpler expressions. Our aim is to assign a type to each expression appearing in the 
program in a coherent manner. The types of some expressions are known immediately 
(atomic expressions, built-in function symbols), while other types might be provided by 
the user through a type declaration. Besides, the program syntax imposes restrictions that 
can be interpreted as constraints between the types of certain expressions. A coherent 
type assignment respects all user declarations and all constraints. 

We associate a CSP variable with each expression of the program. Each variable has a 
domain, which initially is the set of all possible types.  Different type restrictions can be 
interpreted as constraints that restrict the domains of some variables. In this terminology, 
the task of the analyzer is to assign a value to each variable from the associated domain 
that satisfies all the constraints.  

However, our task is more difficult than a classical CSP, because type expressions can be 
arbitrarily embedded into each other (e.g. list(int), list(list(int))), hence there are infinitely 
many types, which cannot be represented explicitly in a list. Another difficulty is that the 
types are not necessarily disjoint. For example, the expression 1.1f might have type float 
or numeric as well. It is evident that every expression which satisfies type float also 
satisfies type numeric, i.e., float is a subtype of numeric. The subtype relation is a partial 
ordering over type expressions. We use this relation to represent infinite domains finitely 
as intervals: a domain is represented with an upper and a lower bound. This is possible 
because the type restrictions in a Q program naturally translate into upper and lower 
bound constraints. We demonstrate this with a simple example: 

//$ f: numeric -> tuple([int,int]) 
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a: f[b] 

According to the declaration, variable f is a function that maps numeric values to tuples 
of two integers. The code that follows is a simple function application and an assignment: 
f is applied to b and the result is assigned to variable a. We can infer that the type of b 
must be at most numeric, which can be expressed with an upper bound. The result of f[b] 
has the type tuple([int,int]), which means, that the type of a must be at least 
tuple([int,int]), which can be expressed with a lower bound. 

We build an abstract syntax tree representation of the input program. Afterwards, we 
traverse the tree and impose constraints on the types of the program expressions. The 
constraints describing the domains of variables are particularly important, we call them 
primary constraints. These are the upper and lower bound constraints. We will refer to 
the rest of the constraints as secondary constraints. Secondary constraints constrain 
several types and eventually restrict domains by generating primary constraints, when 
their arguments are sufficiently instantiated, i.e., when their domains are sufficiently 
narrow. The order in which constraints are added is irrelevant. Constraints that can be 
used for type inference can originate from the following sources in a Q program: 

1. Type declarations: If the user gives a type declaration, the expression will be 
treated having the declared type.  

2. Built-in functions: For every built-in function, there is a well-defined relation 
between the types of its arguments and the type of the result. These relations are 
expressed by adequate constraints. For each built-in function we need to 
implement a constraint to describe how the constraint is supposed to narrow 
domains.  

3. Atomic expressions: The types of atomic expressions are revealed already by the 
parser, so for example, 2.2f is immediately known to be a float. 

4. Variables: Local variables are made globally unique by the parser. This means, 
that variables with the same name are equal, hence their types are also equal. 

5. Program syntax: Most syntactic constructs impose constraints on the types of 
their constituent constructs. For example, the first argument of an if-then-else 
construct must be a boolean value.  

 

Constraint Reasoning: 

Constraint reasoning is based on a production system, i.e., a set of IF-THEN rules. We 
maintain a constraint store, i.e., the set of constraints to be satisfied for the program to be 
type correct. We start with the constraints generated from the abstract syntax tree. A 
production rule fires when certain constraints appear in the store and results in adding or 
removing some constraints. For example, two upper bounds on the same variable x  are 
merged using the following rule: IF α≤x  and β≤x  THEN add ),min( βα≤x , remove 

α≤x , remove β≤x . 

The semantics of the constraints is given by describing their consequences and their 
interactions with other constraints. At each step we systematically check for rules that can 
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fire. The more rules we provide the more reasoning can be performed. Primary 
constraints represent variable domains. If a domain turns out to be empty, this indicates a 
type error and we expect the analyzer to detect this. Hence, it is very important for the 
primary constraints to be as “smart” as possible. For this, we formulated rules to describe 
the following interactions of primary rules: 

• If a variable has two upper bounds, then they should be replaced with their intersection. 

• If a variable has two lower bounds, then they should be replaced with their union. 

• If a variable has an upper and a lower bound such that there is no type that satisfies 
both, this should be detected and the clash should be made explicit by setting the upper 
bounds to the empty set. 

• If a variable has an upper and a lower bound that contains other variables, then 
adequate constraints should be added to ensure that the domain cannot reduce to the 
empty set. 

Secondary constraints connect different variables and restrict several domains. The way 
they influence one variable might depend heavily on the value of some other variable(s). 
Hence, often secondary constraints cannot partake in the reasoning until more is known 
about the possible values of their arguments. Unfortunately, it is not realistic to capture 
all interactions of secondary constraints in our production system. For this we would need 
a production rule for any set of constraints such that each member has the potential to 
restrict the domain of the same variable. The number of rules would be exponential in the 
number of constraints, which is too much for any reasonably complex target language. 
For the Q language, we use over 60 different secondary constraints. The rules cannot be 
automatically generated: they are needed to capture the highly irregular nature of the 
language and we could not find any general pattern to characterize their interactions. 

In our solution, we fully describe the interaction of secondary constraints with primary 
constraints, i.e., we formulate rules of the form: if certain arguments of the constraints are 
within a certain domain, then some other argument can be restricted. For example, in Q if 
there is a summation and we already know that the arguments are numeric values, then 
the result must be either integer or float. If the second argument later turns out to be float, 
then the result must be float as well. Afterwards, there is nothing more to be inferred and 
the constraint can be eliminated from the store. 

Our aim is to eventually eliminate all secondary constraints. If we manage to do this, the 
domains described by the primary constraints constitute the set of possible type 
assignments to each expression. If some domain gets restricted to the empty set, this 
means that the corresponding expression cannot be assigned any type, i.e., we have a type 
error. At this point we mark the erroneous expression, as well as the primary constraints 
whose interaction resulted in the empty domain. This information – along with the 
position of the expression – is used to generate an error message. The primary constraints 
are meant to justify the error. 

 

Implementation: 
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We built a Prolog program called qtchk that implements the type analysis described in 
this paper. The program runs equally in SICStus Prolog 4.1 and SWI Prolog 5.10.5. It 
consists of over 8000 lines of code. Constraint reasoning is performed using the 
Constraint Handling Rules extension of Prolog. Q has many irregularities and lots of 
built-in functions (over 160), due to which a rather complex system of constraints had to 
be implemented using over 60 constraints.  

 

Evaluation:  

We have started testing on our tool. We used Q programs written by ourselves, as well as 
programs that can be found on the web.  Here we summarize our findings. 

1. Analyzing a typical Q program (100 – 200 lines of code) can take 3-5 minutes. 
This is slow for an interactive system, but in our case it is acceptable, since 
programs can be checked offline. 

2. We found syntactically correct Q programs where our tool indicated a syntax 
error. It turned out that it was because the programs used language elements that 
are not needed by our partners at Morgan Stanley. We do not support the whole Q 
syntax, only the part that is used by Morgan Stanley. 

3. We found type correct Q programs where our tool indicated a type error. This is 
because we make some restrictions in our type system that Q does not. These 
restrictions are meant to discourage dangerous coding practices and to enable 
more to be inferred by the tool. These restrictions are the result of negotiations 
with Q programmers at Morgan Stanley. The restrictions typically involve the 
types of built-in functions. For example, the function raze flattens lists of lists 
into a list i.e., raze (1 2; 3 4) results in the list (1 2 3 4). When the argument of 
raze is not a list of lists, then it returns the argument unmodified. This, however, 
is not the intended meaning of the function and we disallow this use by declaring 
its type )())(( XlistXlistlist → . 

 

Conclusions: 
We presented the theoretical background of a tool that can be used for checking Q 
programs for type correctness. We proceed by mapping the initial task into a constraint 
satisfaction problem which we solve using constraint logic programming tools.  

We have found that our program is a useful tool for finding type errors, as long as the 
programmers adhere to some coding practices. The coding practices are the ones 
negotiated with Morgan Stanley. 
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