Static Type Inference asa Constraint Satisfaction Problem
Zsolt Zombori, Janos Csorba, Péter Szeredi

Abstract:

We describe an application of Prolog: a type aralyaol for the Q functional language.
Q is a dynamically typed language, much like Prolegtending Q with static typing
improves both the readability of programs and progner productivity, as type errors
are discovered by the tool at compile time, ratihan through debugging the program
execution. We map the task of type inference intmmstraint satisfaction problem and
use constraint logic programming, in particular @anstraint Handling Rules extension
of Prolog. We determine the possible type valuesé&xh program expression and detect
inconsistencies. As most built-in function name<oére overloaded, i.e. their meaning
depends on the argument types, a quite complexemystf constraints had to be
implemented.

I ntroduction:

Our paper presents most recent developments dftthk type analysis tool, for the Q
vector processing language. The tool has been alge@lin a collaborative project
between Budapest University of Technology and Eodo® and Morgan Stanley
Business and Technology Centre, Budapest. The gwah of the type analyzer is to
detect type errors and provide detailed error ngessaxplaining the reason of the
inconsistency. Our tool can help detect progranorsrithat would otherwise stay
unnoticed, thanks to which it has the potentiareatly enhance program development.

We perform type inference using constraint logiogpamming: the initial task is mapped
into a constraint satisfaction problem (CSP), whishsolved using the Constraint
Handling Rules extension of the Prolog programntémguage.

In the following, we present the constraint satstan problem, we show how type
inference can be mapped into a CSP and how thdegpnoban be solved. Finally, we
briefly report on our implementation.

Constraint Satisfaction Problem:
A constraint satisfaction problem (CSP) can be desd with a triple X, D,C where

* X ={x..x,}is a series of variables,
« D={D,..D,}is a series of finite sets called domains,
« variable x can only take values from domaip),

» C={c..c} is a series of constraints, i.e., atomic relatiovisose arguments are
variables fromX .

A solution to a CSP is an assignment to e&dhi X a domain element, 0D, such that
all constraintscJC are satisfied.

A value d. of a variablex that appears in a constraiatis superfluous in case there is
no assignment to the rest of the variablescoflong with x =d, that satisfies the

constraint. Removing superfluous values from theresponding domains yields an
equivalent CSP.

There are two mechanisms that lead to a solutiom GSP. First, constraints constantly
monitor the domains of their variables and remaweesfluous values. Second, in case
constraints fail to reduce some domain to a singlae, we apply labeling: we choose a
variable x. and split its domain into two parts, creating aich point where each branch

corresponds to a reduced domain. Through a ba&ktgacsearch we explore the
branches. Constraints can wake up as the domairniseof variables change and can
further eliminate superfluous values. In case aaorbecomes empty, we roll back to
the last choice point. By the end of labeling, eithve find a single value for each
variable such that all constraints are satisfiedelse we conclude that the CSP is
unsatisfiable.

Mapping Type Inferenceinto a Constraint Satisfaction Problem:

Type reasoning starts from a program code thabeaseen as a complex expression built
from simpler expressions. Our aim is to assignpe iy each expression appearing in the
program in a coherent manner. The types of someessgipns are known immediately

(atomic expressions, built-in function symbols),ilelother types might be provided by

the user through a type declaration. Besides, thgram syntax imposes restrictions that
can be interpreted as constraints between the tgpesrtain expressions. A coherent

type assignment respects all user declarationsfhodnstraints.

We associate a CSP variable with each expressidheoprogram. Each variable has a
domain, which initially is the set of all possiliigpes. Different type restrictions can be
interpreted as constraints that restrict the domafrsome variables. In this terminology,
the task of the analyzer is to assign a value th @ariable from the associated domain
that satisfies all the constraints.

However, our task is more difficult than a claskiC&P, because type expressions can be
arbitrarily embedded into each other (éig(int), list(list(int))), hence there are infinitely
many types, which cannot be represented explititly list. Another difficulty is that the
types are not necessarily disjoint. For example,ekpressiod.1f might have typdloat

or numeric as well. It is evident that every expression whsetisfies typdloat also
satisfies typawumeric, i.e.,float is a subtype ofumeric. The subtype relation is a partial
ordering over type expressions. We use this relabaepresent infinite domains finitely
as intervals: a domain is represented with an uppdra lower bound. This is possible
because the type restrictions in a Q program niatutranslate into upper and lower
bound constraints. We demonstrate this with a sreghmple:

/I$f: numeric -> tuple([int,int])

a: f[b]

According to the declaration, varialfles a function that maps numeric values to tuples
of two integers. The code that follows is a sinmfplection application and an assignment:
f is applied tab and the result is assigned to variahldVe can infer that the type bf
must be at mostumeric, which can be expressed with an upper bound. @idtroff[b]

has the typetuple([int,int]), which means, that the type @& must be at least
tuple([int,int]), which can be expressed with a lower bound.

We build an abstract syntax tree representatiothefinput program. Afterwards, we
traverse the tree and impose constraints on thestgb the program expressions. The
constraints describing the domains of variablespargicularly important, we call them
primary constraints. These are the upper and lower bound constraiviéswill refer to
the rest of the constraints @scondary constraints. Secondary constraints constrain
several types and eventually restrict domains hyeg#ing primary constraints, when
their arguments are sufficiently instantiated,, ivwhen their domains are sufficiently
narrow. The order in which constraints are addedré&devant. Constraints that can be
used for type inference can originate from theolelhg sources in a Q program:

1. Type declarations. If the user gives a type declaration, the expoeswill be
treated having the declared type.

2. Built-in functions. For every built-in function, there is a well-defid relation
between the types of its arguments and the typgheofesult. These relations are
expressed by adequate constraints. For each builthinction we need to
implement a constraint to describe how the condtre supposed to narrow
domains.

3. Atomic expressions. The types of atomic expressions are reveale@a@réy the
parser, so for examplg,2f is immediately known to befkoat.

4. Variables. Local variables are made globally unique by thespr. This means,
that variables with the same name are equal, hbeaetypes are also equal.

5. Program syntax: Most syntactic constructs impose constraints en types of
their constituent constructs. For example, thet fmgument of anf-then-else
construct must be a boolean value.

Constraint Reasoning:

Constraint reasoning is based on a production syste., a set of IF-THEN rules. We
maintain a constraint store, i.e., the set of qainss to be satisfied for the program to be
type correct. We start with the constraints gemerdtom the abstract syntax tree. A
production rule fires when certain constraints @ppe the store and results in adding or
removing some constraints. For example, two uppents on the same variable are
merged using the following rule: Ik<a and x< 8 THEN addx < min(a,) , remove

Xx<a, removex< f.

The semantics of the constraints is given by desgitheir consequences and their
interactions with other constraints. At each stepsystematically check for rules that can

fire. The more rules we provide the more reasontag be performed. Primary
constraints represent variable domains. If a dornaims out to be empty, this indicates a
type error and we expect the analyzer to detest thénce, it is very important for the
primary constraints to be as “smart” as possibte.tkis, we formulated rules to describe
the following interactions of primary rules:

* If a variable has two upper bounds, then they shbalreplaced with their intersection.
« If a variable has two lower bounds, then they sthdne replaced with their union.

« If a variable has an upper and a lower bound shahthere is no type that satisfies
both, this should be detected and the clash shmuldade explicit by setting the upper
bounds to the empty set.

 If a variable has an upper and a lower bound tloatacns other variables, then
adequate constraints should be added to ensur¢hthaomain cannot reduce to the
empty set.

Secondary constraints connect different variablesk rastrict several domains. The way
they influence one variable might depend heavilyttenvalue of some other variable(s).
Hence, often secondary constraints cannot partakieei reasoning until more is known
about the possible values of their arguments. Wahately, it is not realistic to capture
all interactions of secondary constraints in owdpiction system. For this we would need
a production rule for any set of constraints su@it each member has the potential to
restrict the domain of the same variable. The nurobeules would be exponential in the
number of constraints, which is too much for angsmnably complex target language.
For the Q language, we use over 60 different seamgncbnstraints. The rules cannot be
automatically generated: they are needed to caphaehighly irregular nature of the
language and we could not find any general patteaomaracterize their interactions.

In our solution, we fully describe the interactiohsecondary constraints with primary

constraints, i.e., we formulate rules of the forihecertain arguments of the constraints are
within a certain domain, then some other argumanthe restricted. For example, in Q if

there is a summation and we already know that thenaents are numeric values, then
the result must be either integer or float. If $eeond argument later turns out to be float,
then the result must be float as well. Afterwattgre is nothing more to be inferred and
the constraint can be eliminated from the store.

Our aim is to eventually eliminate all secondarpstaaints. If we manage to do this, the
domains described by the primary constraints ctutetithe set of possible type
assignments to each expression. If some domainrgstscted to the empty set, this
means that the corresponding expression cannaidignad any type, i.e., we have a type
error. At this point we mark the erroneous expssas well as the primary constraints
whose interaction resulted in the empty domain.sTinformation — along with the
position of the expression — is used to generagriam message. The primary constraints
are meant to justify the error.

I mplementation:

We built a Prolog program callagtichk that implements the type analysis described in
this paper. The program runs equally in SICStudord.1 and SWI Prolog 5.10.5. It
consists of over 8000 lines of code. Constraintsgaang is performed using the
Constraint Handling Rules extension of Prolog. @ hzany irregularities and lots of
built-in functions (over 160), due to which a ratlsemplex system of constraints had to
be implemented using over 60 constraints.

Evaluation:

We have started testing on our tool. We used Qrprog written by ourselves, as well as
programs that can be found on the web. Here werguine our findings.

1. Analyzing a typical Q program (100 — 200 lines ofle) can take 3-5 minutes.
This is slow for an interactive system, but in @ase it is acceptable, since
programs can be checked offline.

2. We found syntactically correct Q programs where tmal indicated a syntax
error. It turned out that it was because the pmogrased language elements that
are not needed by our partners at Morgan Stanleyddhot support the whole Q
syntax, only the part that is used by Morgan Stanle

3. We found type correct Q programs where our tooicawed a type error. This is
because we make some restrictions in our type raythat Q does not. These
restrictions are meant to discourage dangerousngopliactices and to enable
more to be inferred by the tool. These restrictians the result of negotiations
with Q programmers at Morgan Stanley. The restnditypically involve the
types of built-in functions. For example, the fuantraze flattens lists of lists
into a list i.e.,raze (1 2; 3 4) results in the lis{1 2 3 4). When the argument of
razeis not a list of lists, then it returns the argmtnenmodified. This, however,
is not the intended meaning of the function anddigallow this use by declaring
its typelist(list(X)) — list(X).

Conclusions;

We presented the theoretical background of a that tan be used for checking Q
programs for type correctness. We proceed by mgpihi@ initial task into a constraint
satisfaction problem which we solve using constrigigic programming tools.

We have found that our program is a useful toolfiieding type errors, as long as the
programmers adhere to some coding practices. Tlhngopractices are the ones
negotiated with Morgan Stanley.

Acknowledgement (bold 14 pt): The work reported in the paper has been
developed in the framework of the project ,Taleatecand cultivation in the scientific
workshops of BME" project. This project is suppdrtay the granTAMOP - 4.2.2.B-
10/1--2010-0009

