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Loop Elimination, a Sound Optimisation Technique
for PTTP Related Theorem Proving∗

Zsolt Zombori and Ṕeter Szeredi†

Abstract

In this paper we presentloop elimination, an important optimisation technique for
first-order theorem proving based on Prolog technology, such as the Prolog Technol-
ogy Theorem Prover or the DLog Description Logic Reasoner. Althoughseveral loop
checking techniques exist for logic programs, to the best of our knowledge, we are the
first to examine the interaction of loop checking with ancestor resolution. Our main
contribution is a rigorous proof of the soundness of loop elimination.
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1 Introduction

Resolution [8] has long been one of the major approaches to automated theorem proving.
Besides its theoretical importance, many academic as well as industrial implementations
have been built using resolution. Prolog [7] is a programming language that too imple-
ments a resolution based inference mechanism. Prolog is highly optimised and has a very
high inference rate, thanks to which more complex reasoningsystems, such as the Prolog
Technology Theorem Prover (PTTP) [9] and the DLog system [6]have been built on top of
Prolog. These systems exploit the backtracking mechanism of Prolog to search for a proof
of the initial goal. Efficiency is crucial since these systems typically need to explore a huge
search space. In this paper we present an optimisation technique calledloop elimination
for Prolog based reasoning, which can make a tremendous impact on the speed of both of
the aforementioned systems. This technique prevents logicprograms from trying to prove
the same goal over and over again, thus avoiding certain types of infinite loops.

Detecting loops to prune the search space for logic programsis not new, see for exam-
ple [2]. However, the systems that we are interested in extend standard Prolog execution
with a technique calledancestor resolution, that corresponds to the positive factoring in-
ference rule. In the presence of ancestor resolution, the considerations that trivially justify
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loop elimination do not hold. It is easy to see that trying to prove a goal that is identical
to some goal that we are already in the process of proving yields no useful solution and
the corresponding proof attempt can be aborted. However, itis far from trivial that the
same holds in case the two goals are identical onlymodulo ancestor list, i.e., they can be
different in one of their arguments, namely in their list of ancestors. Our paper proves this
stronger claim. We are not aware of any other work exploring the interaction between loop
elimination and ancestor resolution.

In Section 2 we provide an overview of resolution reasoning and Prolog programming,
that will be necessary for understanding the rest of the paper. In Section 3 we examine logic
programs in terms of termination and identify the sources ofinfinite execution. Section 4
contains our main contribution: we define loop elimination and prove its soundness. We
end the paper with some concluding remarks in Section 5.

2 Background

In this section we provide some background information about first-order resolution (Sub-
section 2.1) and its connection to the Prolog programming language (Subsection 2.2). In
Subsection 2.3 we present the Prolog Technology Theorem Prover (PTTP), a complete
first-order reasoner built-on top of Prolog. Finally, in Subsection 2.4, we give an overview
of DLog, a Description Logic reasoner that implements a PTTPlike approach. We expect
the reader to be familiar with the basics of First-Order Logic.

2.1 Resolution Theorem Proving

Resolution [8] is a powerful method for proving first-order theorems. Directly, it is used
to check the consistency of a set of first-order clauses, however, all common reasoning
tasks – such as entailment analysis – can be easily reduced toconsistency check.Clauses
are first-order formulae satisfying the following properties: all variables are universally
quantified, all quantifiers are at the beginning of the formula and the quantifier-free part
is a disjunction ofliterals, i.e., possibly negated atomic predicates. It is well knownthat
any set of first-order formulae can be translated into an equisatisfiable set of clauses (for
example, see [3]). Since all variables are universally quantified, it is customary to omit
the quantifiers. We will do so in the following. Resolution defines two inference rules,
calledBinary ResolutionandPositive Factoring, presented in Figure 1. In the figure, the
clauses above the bar are the premises of the inference and the clause under the bar is the
conclusion.σ is themost general unifierof B andC, i.e., a variable substitution to terms
that satisfies two properties: (1) after the substitutionB andC are identical, i.e.,Bσ =Cσ ,
and (2)σ is a most general substitution that satisfies (1). In Figure 2, we illustrate the

A∨B ¬C∨D
Aσ∨Dσ

A∨B∨C
Aσ∨Cσ

Figure 1: Binary Resolution and Positive Factoring

application of the the two inference rules. On the left side the Binary Resolution rule is



Loop Elimination, a Sound Optimisation Technique . . . 443

used and on the right side the Positive Factoring rule fires. The most general unifier is the
same in both examples: variabley is mapped tox and every other variable is mapped to
itself.

A(x)∨B(x) ¬B(y)∨D(y)
A(x)∨D(x)

A(x)∨B(x)∨B(y)∨D(y)
A(x)∨B(x)∨D(x)

Figure 2: Examples illustrating the Binary Resolution and Positive Factoring inference
rules

Theorem 1. Binary Resolution and Positive Factoring yield a calculus that issoundand
complete. This means that a set of clauses is inconsistent if and only if there is a finite series
of clauses C1,C2, . . . ,Cn = ◻, where◻ denotes the empty clause, such that each clause is
either a member of the initial clause set or is obtained as a conclusion of Binary Resolution
or Positive Factoring with premises selected from preceding clauses.

A proof of Theorem 1 can be found, for example, in [8].

Linear resolution As Theorem 1 indicates, resolution captures logical entailment very
well. However, finding a deduction of the empty clause to showinconsistency can be
rather tedious as we are given no guidance as to what clauses should be resolved in what
order. To address this, various selection strategies have been devised, among themlinear
resolution.

Linear resolution is motivated by the idea that if we add a clause to a set of clauses
that is considered consistent, then we only have to check theinteractions that the new
clause can have with the rest. Hence, in the first step, we resolve the new clause with
some other, and in all subsequent steps, one of the premises will be the conclusion of the
preceding step. Unfortunately, while in linear resolutionthe number of possible deductions
is greatly decreased, we lose completeness. However, linear resolution remains complete
for a restricted type of clauses that contain at most one positive literal, calledHorn clauses.
Besides, as it is shown in [5], linear resolution can be extended with a technique called
ancestor resolution(see below in Subsection 2.3) which yields a complete calculus for the
whole of First-Order Logic.

2.2 Programming in Prolog

Prolog [7] is a declarative programming language equipped with a built-in logical infer-
ence mechanism that corresponds to linear resolution. Thismechanism is complete for
Horn clauses, which correspond directly to Prolog rules. A rule has three parts: a head
containing the only positive literal, the symbol’:-’ and a body which is the list of neg-
ative literals without negation, separated by commas. So, for instance, the Horn clause
P(X)∨¬Q1(X)∨¬R(X,Y)∨¬Q2(Y) corresponds to the Prolog rule

P(X) ∶ − Q1(X), R(X,Y), Q2(Y).
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The semantics of this rule is as follows: if all atoms in the body are true, then so is the
atom in the head. A Prolog program is a set of rules that can be used to prove a query
atom, calledgoal. The program will try to unify the goal with some rule head, and in case
of a successful unification, it will recursively try to proveeach statement in the body. If
the goal matches more than one rule head, then the program remembers this by creating
a so calledchoice pointand proceeds with the first matching rule. If we manage to unify
the goal with a bodiless rule head, then the goal is proved. Ifthe inference fails, because
there is no matching rule head, then we roll back to the last choice point and proceed with
the next matching rule. This algorithm corresponds to linear resolution that starts from
the negation of the query and that is always resolved in its first literal. This mechanism is
very efficient in that it starts out from the goal and examinesonly those rules that have a
potential to answer it.

2.3 Prolog Technology Theorem Proving

The Prolog Technology Theorem Prover approach (PTTP) was developed by Mark E.
Stickel in the late 1980’s [9]. PTTP is a sound and complete first-order theorem prover,
built on top of Prolog. An arbitrary set of general clauses istransformed into a set of Horn-
clauses that correspond to Prolog rules. Prolog execution on these rules yields first-order
logic reasoning.

In PTTP, to each first-order clause we assign a set of Horn-clauses, the so-calledcon-
trapositives. The first-order clauseL1∨L2∨L3∨ ⋅ ⋅ ⋅ ∨Ln hasn contrapositives of the form
Lk ←¬L1, . . . ,¬Lk−1,¬Lk+1, . . . ,¬Ln, for each 1≤ k≤ n. Having removed double negations,
the remaining negations are eliminated by introducing new predicate names for negated
literals. For each predicate nameP a new predicate namenot P is introduced, and all
occurrences of¬P(X) are replaced withnot P(X), both in the head and in the body. The
link between the separate predicatesP andnot P is provided usingancestor resolution, see
below. For example, the clauseA(X)∨¬B(X)∨¬R(X,Y) is translated into three Prolog
rules, each with different rule head:

A(X) :- B(X), R(X,Y).

not_B(X) :- not_A(X), R(X,Y).

not_R(X,Y) :- not_A(X), B(X).

Thanks to using contrapositives, each literal of a first-order clause appears in the head of a
Horn clause. This ensures that each literal can participatein a resolution step, in spite of
the restricted selection rule of Prolog.

Next, let us see how PTTP implements positive factoring. Suppose we want to prove
the goalA and during execution we obtain the subgoal¬A. What this means that by this
time we have inferred a rule, according to which if a series ofgoals starting with¬A is
true, thenA follows:

A← not A, P1, P2, . . .Pk.

The logically equivalent first-order clause is

A∨A∨¬P1∨¬P2∨⋅ ⋅ ⋅∨¬Pk
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from which we see immediately that the two occurrences ofA can be unified, so there
is no need to prove the subgoalnot A. This step is calledancestor resolution[5], which
corresponds to the positive factoring inference rule. Ancestor resolution is implemented in
Prolog by building anancestor listwhich containsopenpredicate calls (i.e. goals that we
started but have not yet finished proving).

Ancestor resolution is the inference step that checks if theancestor list contains a goal
which can be matched with the negation of the current goal. Ifthis is the case, then the
current goal succeeds and the unification with the ancestor element is performed. Note
that in order to retain completeness, as an alternative to ancestor resolution, one has to try
to prove the current goal using normal resolution, too. Thisis important if the ancestor
element contains variables and a different proof can yield adifferent variable substitution.

There are two further features in the PTTP approach. First, to avoid infinite loops, iter-
ative deepening is used instead of the standard depth-first Prolog search strategy. Second,
in contrast with most Prolog systems, PTTP uses occurs checkduring unification, i.e., for
example termsX and f (X) are not allowed to be unified because this would result in a
term of infinite depth.

To sum up, PTTP uses five techniques to build a first-order theorem prover on the
top of Prolog: contrapositives, renaming of negated literals, ancestor resolution, iterative
deepening, and occurs check.

2.4 DLog, a Description Logic Reasoner

The system DLog [6] is a Description Logic (DL) [1] reasoner for theSHIQDL language,
geared towards data reasoning, i.e., so called ABox inference. It proceeds by transforming
the initial knowledge base into a set of first-order clauses and then performs a two-phase
reasoning. The first phase deals only with the so called terminology box (TBox) part of the
knowledge base that contains general background knowledge. The point of this phase is
that by the end we obtain a syntactically simpler set of clauses to be used in the subsequent
data reasoning. The second phase uses Prolog to perform the rest of the reasoning in a
way similar to PTTP. Due to the syntactically simpler input clause set, the general PTTP
approach can be optimised and simplified in a number of ways.

In [10] we describe the algorithm of the first phase, as a result of which we obtain
clauses of the following types:

¬R(x,y)∨S(y,x) (1)

¬R(x,y)∨S(x,y) (2)

P(x) (3)

⋁
i

⎛
⎝P1(xi)∨

⎛
⎝⋁j

¬R(xi ,y j)∨⋁
j

P2(y j)∨ ⋁
j1, j2

(y j1 = y j2)
⎞
⎠
⎞
⎠ (4)

R(a,b) (5)

C(a) (6)

a= b (7)

a≠ b (8)
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whereP(x) is a shorthand for(¬)P1(x)∨(¬)P2(x)∨⋅ ⋅ ⋅∨(¬)Pk(x). Note some nice prop-
erties of our clause set:

1. There are no function symbols.

2. In the contrapositives generated from these clauses a negative binary literal can only
appear in the body in case the head is a negative binary literal (clauses of type 1 and
2).

3. For every clause that contains binary literals, all variables occur in some binary
literal.

4. Clauses that do not contain binary literals have at most one variable.

As we will see later, these nice properties allow for specializing PTTP to obtain a
terminating decision procedure for theSHIQ DL language.

3 Termination of Logic Programs

Given that first-order logic is undecidable, it is not surprising that the Prolog Technology
Theorem Prover is not guaranteed to terminate. In this section we review the ways in which
a logic program can fall short of termination. Afterwards, we compare PTTP and DLog
with respect to termination.

3.1 Sources of infinite execution

We identify three sources of infinite execution:

• If the program containsfunction symbols, then we might obtain terms of ever in-
creasing depth. Consider, for example, the following simple program:

p(X) :- p(f(X)).

If we attempt to provep(a) using the above rule, we will end up reducing it to the
proof of p( f (a)), p( f ( f (a))) etc. and the program will never stop.

• A proof attempt might visit infinitely many goals if an unbounded number ofnew
variables can be introduced during the proof. This is the case for example with the
transitivity rule:

r(X,Y) :- r(X,Z), r(Z,Y).

It is easy to see that a proof attempt for the goalr(a,b) using the above rule will
generate infinitely manyr(X,Y) subgoals, always with fresh variables.

• Even if both the depth of terms and the number of variables can be bounded, the
program might fall into aloop and attempt to prove the same goal over and over
again. For example, the program consisting of the followingrule
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p(X) :- p(X).

will never terminate, even though there are no function symbols and no new variables
are introduced.

One can see easily that the above list is exhaustive. If the number of variables is
bounded and there are no functions, then the total set of terms is that of the variables and
the constants appearing in the program, i.e., it is finite. Since the predicate names are also
finite, there can be finitely many different goals. If there are no loops, even if a proof
attempt goes though all possible goals (the worst case), it will eventually terminate.

Hence, we conclude that infinite execution is due exactly to three aspects of logic
progams: function symbols, the proliferation of new variables and loops.

3.2 Termination in DLog

In light of the preceding subsection, let us reexamine the input clause set of the DLog data
reasoner. We see immediately that the absence of function symbols eliminates one of the
three sources of infinite execution.

We shall see that new variables are not introduced, either. The second nice property
of the input clause set is that the resulting contrapositives only contain a negative binary
literal in the body in case the head is a negative binary literal. This means that we can only
encounter negative binary subgoals if the initial query itself is a negative binary goal. In
SHIQ DL reasoning, however, negative binary queries are forbidden, so all contraposi-
tives with a negative binary literal are unnecessary and canbe disposed of. Consequently,
in our logic program binary literals will only appear positively. For proving such binary
goals only contrapositives from clauses of type 1 and 2 are available:

r(X,Y) :- s(X,Y).

r(X,Y) :- s(Y,X).

These rules do not introduce new variables. A proof of a binary goal consists of applying
such rules possibly several times, until finally we obtain a matching data assertionr(a,b),
thanks to which the variables in the binary goal get instantiated. We know that in all rule
bodies that contain binary literals every variable occurs in some binary literal (the third
nice property of our input clause set). These are the rules that introduce new variables.
If, however, we move the binary literals to the front of the body, i.e., we prove the binary
goals first, by the time we reach the unary goals, they become ground. Hence, any unary
goal in the body either contains the same variable as the one in the head – in case the rule
contains no binary predicates – or else it is ground by the time it is called. New variables
may appear only for a short time – until we prove the binary goals holding them. Hence,
DLog will never encounter infinitely many new variables during a proof attempt.

If there are no terms of increasing depth and variables do notproliferate, then the only
way a DLog program may not terminate is if it falls in an infinite loop and proves the same
goal repeatedly.
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3.3 Eliminating Loops

We have seen that there are three independent features that can make a PTTP execution
non-terminating, of which only one, namely loops can occur in DLog programs. In Sec-
tion 4 we shall show that proofs containing such loops are notnecessary for completeness.
This result yields an important optimization for both PTTP and DLog, calledloop elimi-
nation. General PTTP still has to cope with infinite proof attempts (due to the other two
sources) and hence has to use iterative deepening, i.e., build several proof attempts in par-
allel. However, even if loop elimination does not allow for changing the proof search
strategy, but it still prunes the search space significantly. In DLog, loop elimination elim-
inates the only remaining source of infinite proofs. Accordingly, DLog always terminates
and uses the standard depth-first search strategy of Prolog,which gives much better per-
formance than iterative deepening.

4 Loop Elimination

In this section we present the optimization heuristicloop eliminationfor both PTTP and
DLog. In the literature, loop elimination is often referredto asidentical ancestor pruning,
see for example [9] or [4]. Although both systems employ thisoptimisation, there has not
yet been any rigorous proof of its soundness. In Subsection 4.1 we describeproof trees
that can be used to represent Prolog execution. Afterwards,Subsection 4.2 contains the
proof of soundness.

Definition 1 (Loop elimination). Let P be a Prolog program and G a Prolog goal. Exe-
cuting G w.r.t. P usingloop eliminationmeans the Prolog execution of G extended in the
following way: we stop the given execution branch with a failure whenever we encounter
a goal H that is identical to an open subgoal (that we started,but have not yet finished
proving). Two goals are identical only if they are syntactically the same.

Loop elimination is very intuitive. If, for example, we wantto prove goalG and at
some point we realise that this involves proving the same goal G, then there is no point
in going further, because 1) either we fall in an infinite loopand obtain no proof or 2) we
manage to prove the second occurrence ofG in some other way that can be directly used
to prove the first occurrence of the goalG. This is the standard justification that we find in
the literature. For example [4] says:

Identical ancestor pruning (IAP) is a powerful pruning heuristic in a model
elimination search. Imagine, in the course of expanding a MEproof space for
a particular goal P, that one were to encounter that same goalP again. One of
two situations must hold:

1. There are no proofs of P from this database (because it doesn’t logically
follow).

2. Whether or not there is a proof using this second occurrenceof P, there
must be another proof of the original P not using it. Also, thedifferent
proof occurs at a shallower depth.
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This is true because the second occurrence must eventually be proven some-
how, so this recursion must bottom out. And then, by whateverproof this
second occurrence succeeds, an analogous proof path must exist below the
first occurrence of P. In either case, it is justifiable to prune the space below
the second occurrence of P.

Things get complicated, however, due to ancestor resolution. The twoG goals have differ-
ent ancestor lists and it can be the case that we only manage toprove the secondG due to
the ancestors that the firstG does not have. As it will turn out in the rest of this section,
while we can indeed construct a proof of the firstG from that of the second, this proof
might have to be very different from the original one.

4.1 Proof Trees

In this subsection we introduceproof trees, that are used to represent Prolog execution.
We will only consider trees in the context of a PTTP like Prolog program, more precisely
we will assume that the program contains all contrapositives. Each tree node has a unique
name and is labelled with a goal:(Name:Goal) refers to a node calledName and labelled
with goalGoal. The root is labelled with the initial goal to be proved. Suppose the current
goalG is unified with the head of rule

G ∶ − B1,B2, . . . ,Bk.

In this case, the node labelledG will have k children, each labelledB1,B2, . . . ,Bk, respec-
tively. In each inference step, the validity of a goal is reduced to the validity of a set of
goals in the children. After a successful execution, we obtain a proof tree such that each of
its leaves can be considered true without further proof. We formalise this in the following
definitions.

Definition 2. An atomic proof treeconsists of a root node labelled Aσ with children la-
belled B1σ ,B2σ , . . . ,Bnσ , whereσ is a variable substitution. We say that the atomic proof
tree isvalid if the corresponding Prolog program contains a rule

A ∶ − B1,B2, . . . ,Bn.

A valid atomic proof tree can be seen as an instance of a rule. Aproof treeis built from
atomic proof trees by matching nodes of identical labels. A proof tree isvalid if all consti-
tuting atomic proof trees are valid.

Remark 1. The labels of proof trees are atomic predicates that can contain variables. Note
that labelsp(X) andp(Y) are not identical.

Definition 3. In a valid proof tree, a node labelled A is calledcompleteif either 1) A can
be unified with the head of a bodiless Prolog rule or 2) the nodehas an ancestor labelled
¬A (ancestor resolution). A valid proof tree is complete if all its leafs are complete.
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To each successful Prolog execution that employs ancestor resolution, we can assign
a complete proof tree.1 In fact, the execution mechanism can be seen as a search in the
space of complete proof trees. While standard Prolog will notnecessarily traverse the
whole space (because it might fall into an infinite loop), both PTTP and DLog are built so
that they can enumerate all complete proof trees. This meansthat it is enough to show the
existence of a complete proof tree to guarantee a successfulPTTP or DLog execution.

Definition 4. For an arbitrary child b of an atomic proof tree, the transformationflipping
over along theb child is defined as follows: the root node is switched with its childb and
their labels are negated. The rest of the tree is unaltered. This transformation is illustrated
in Figure 3.

a:A

b:B c:Cc:C a:¬A

b:¬B

Figure 3: Flipping over along theb child

Lemma 1. For every valid atomic proof tree, the atomic tree obtained after flipping over
along a child results in a valid atomic proof tree.

Proof. Let T be an atomic proof tree with the root node labelledAσ and children labelled
Bσ ,C1σ , . . . ,Ckσ . T is an instance of the Prolog clause

A ∶ − B,C1, . . . ,Ck.

which is a contrapositive of the first-order clauseA∨¬B∨¬C1∨ ⋅ ⋅ ⋅ ∨Ck. Since the Prolog
program contains all contrapositives of this clause, we also have

not B ∶ − not A,C1, . . . ,Ck.

an instance of which corresponds to the flipped over version of T.

Note that flipping over allows us to move between contrapositives of the same first-order
clause.

Definition 5. The transformationflipping over along thea, ā branchis defined on proof
trees as follows: let F be a proof tree, with a node(a ∶ A) which has a leaf descendant
(ā ∶ ¬A). The nodes on the path from a tōa are a= x0,x1, . . . ,xn−1,xn = ā. To this tree we
assign a tree F′ which differs from F only in the subtree rooted at a. This subtree contains
a branch y0 = xn,y1 = xn−1, . . . ,yi = xn−i , . . . ,yn = x0, and the label of each of these nodes is
negated. Furthermore, each yi in F ′ has the same siblings as xn−i+1 in F. The subtrees
under the siblings are left unaltered. This transformationis illustrated in Figure 4.
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x1:B

x2:D x1:¬B

x2:¬D

a:A

c:C

c:C

e:Ee:E

f :F

f :Fā:¬A

ā:A

a:¬A

Figure 4: Flipping over along the(a, ā) branch

Lemma 2. If we have a complete proof tree T that contains nodes(a ∶ A) and (ā ∶ ¬A)
such thatā is a leaf descendant of a, then the tree obtained after flipping T along the(a, ā)
branch is a valid proof tree.

Proof. The new downward path ¯a→ a consists of atomic trees that are the flipped over
versions of the atomic trees of the initial upward path ¯a→ a. We know from Lemma 1 that
flipping over a valid atomic proof tree yields another valid atomic proof tree, hence the
whole new proof tree is valid.

Remark 2. Although we obtained a valid proof tree after flipping over, the proof tree is
not necessarily complete. This is because some ancestor lists change and branches that
previously terminated in ancestor resolution might have tobe expanded further (because
the required ancestor disappeared).

4.2 The Soundness of Loop Elimination

In this subsection we show that for every complete proof treethat contains loops, one can
construct a complete proof tree that is loop free.

Definition 6. A complete proof tree is said to contain a loop L if it containsa pair of nodes
(p1 ∶ P),(p2 ∶ P), for some label P, such that p2 is a descendant of p1. Node p1 is called
thetop nodeand node p2 thebottom nodeof the loop L. We define thedepthof L to be the
distance of p1 from the root.

Definition 7. A node n∶N is said to beeligible for ancestor resolutionif it has an ancestor
with label¬N. If an inner node is eligible for ancestor resolution, thenit is called abad
node.

Bad nodes are called bad, because they are unnecessarily expanded. There is no need
to provide a proof tree under a bad node, since it is complete even if it remains a leaf.

1In the Logic Programming community, it is customary to reserve thename proof tree only for complete proof
trees. We introduce the notion of completeness because we will have to refer to trees that are not fully expanded.
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Lemma 3. If we have a complete proof tree that contains a bad node n, then the tree
obtained after removing the subtree under n yields a complete proof tree in which n is not
bad any more.

Proof. Removing the subtree undern makesn a leaf node. However,n is complete due to
ancestor resolution. The rest of the leaves are unaltered, so they remain complete. Hence,
the new proof tree is complete.

Definition 8. We define theloop-depthof a tree T with a pair of integers(−D,C), where
D is the minimum depth of all loops in T and C is the number of nodes that are bottom
nodes of some loop of depth D. If the tree contains no loops, then its loop-depth is(−∞,0).
Loop-depths are comparable using lexicographic ordering,i.e., loop-depth(A,B) is less
than loop-depth(C,D) if and only if either A<C or else A=C and B<D.

Lemma 4. Let F be a complete proof tree with loop-depth LD that contains at least one
loop. It is possible to find another complete proof tree F′ for the same goal (i.e., with the
same label in the root) such that the loop-depth of F′ is strictly less than LD.

Proof. The loop-depth ofF is LD=(−D,C). This means that there is at least one loop of
depthD and there are no loops with depth less thanD. Let L be one such loop with top
and bottom nodes(p1 ∶ P) and(p2 ∶ P), respectively. First, we eliminate all bad nodes
by removing the subtrees rooted at the bad nodes. According to Lemma 3, we obtain a
complete proof tree.

In case the elimination of the subtrees under bad nodes eliminates loopL, then the
obtained complete proof tree has loop-depth(−D2,C2). In case there were no other loops
of depthD in F thenD2 >D. Otherwise,D2 =D andC2 =C−1. In either case(−D2,C2) <
(−D,C), so our lemma is satisfied.

Otherwise, in the obtained tree, all nodes that are eligiblefor ancestor resolution are
leaf nodes. The ancestor list ofp2 contains the ancestors ofp1 plus the nodes on the path
betweenp1 andp2. Let ANCdenote the set of nodes betweenp1 andp2.

In case none of the nodes inANC play any role in the proof ofp2 (i.e., they do not
participate in ancestor resolution), the proof ofp1 can be directly replaced with that ofp2,
eliminating loopL. This is illustrated in Figure 5. We obtained a complete proof treeF ′

with loop-depth(−D2,C2). In case there were no other loops of depthD in F thenD2 >D.
Otherwise,D2 = D andC2 =C−1. In either case(−D2,C2) < (−D,C), so our lemma is
satisfied.

The situation is more complicated when some nodes inANC participate in ancestor
resolution underp2. Among these, let(a ∶ A) be the lowest one (i.e., the last one to enter
the ancestor list). Somewhere underp2 there is a leaf(ā ∶ ¬A) that is complete due to
ancestor resolution. Let us flip overF along the branch(a, ā). In the flipped over branch
the nodes betweena andā will appear with negated labels and in inverse order. Afterwards,
we once more eliminate all bad nodes by removing the subtreesunder them. Nodep2 is
on the path betweena and ā, so its label will turn to¬P, which makesp2 eligible for
ancestor resolution. Hence, when we eliminate badness, we eliminate the subtree under
p2. As a result, loopL disappears. An example of this is shown in Figure 6. We know
that flipping a complete proof tree results in a valid proof tree, but it is not necessarily
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p1:Pp1:P

p2:P

a:A b:B

c:C

d:D

d:D

e:E

e:E

Figure 5: Replacing the proof ofp1 with that of p2

p1:P

p1:Pp1:P

p2:P

p2:¬P

p2:¬P

a:A

b:B

b:Bb:B

c:C

c:C

e:E

e:E

e:Eā:¬A

ā:A

ā:A

a:¬A

Figure 6: Flipping over along the(a, ā) branch, then bad node elimination
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complete, because some goals that previously succeeded with ancestor resolution might
loose the required ancestor (cf. Remark 2). This is the case when there is a node(b ∶ B)
undera and somewhere underneath there is a leaf(b̄ ∶ ¬B). Nodeb has to be on the path
betweena andā otherwiseb will continue to be an ancestor of̄b and their labels will not
change. There are two possibilities:

p1:P

p1:Pp1:P

p2:P

p2:¬P

p2:¬P

a:A

b:B

c:C

c:Cc:C

d:D

d:D

e:Ee:E

ā:¬A b̄:¬Bb̄:¬B

ā:A

ā:A

a:¬A

b:¬B

Figure 7: Ancestor resolution eliminates bothb andb̄

1. As it is illustrated in Figure 7,b lies betweena andp2. Then,b̄ cannot appear under
p2, becausea was chosen to be the lowest node participating in ancestor resolution
underp2. Hence,b̄ appears underb, but not underp2. After flipping, bothb andb̄
will appear underp2, so they will be eliminated when we eliminate the badness of
p2. Hence, this case will not yield any incomplete leaves.

2. We illustrate the second case, namely whenb is underp2 in Figure 8. We will treat
all such nodes together, i.e., let(b1 ∶ B1),(b2 ∶ B2), . . .(bk ∶ Bk) be nodes on the path
betweena and ā (nodesb,c on Figure 8), such that eachbi has at least one leaf
descendant(b̄il ∶ ¬Bi). The nodes are ordered so thatb1 is the closest top2 andbk is
the farthest. After flipping over, the labels of these nodes will be negated, i.e., turn to
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¬Bi , respectively, and they will appear on the branch leading top2 in inverted order,
i.e.,bk will be the topmost, whileb1 the lowest.

Let us considerb1. Due to flipping over, it will lose all its previous descendants.
Its new descendants will be its previous ancestors on the path betweenp2 andb1

along with their descendants towards other branches. We claim that none of the new
descendants ofb1 can have lost an ancestor which previously allowed for ancestor
resolution, i.e., none can be one ofb̄il . This is because the lost ancestor would have
been aboveb1, however,b1 was chosen to be the topmost one. Consequently, the
subtree underb1 after flipping has no incomplete leaves. This subtree in itself is not
necessarily complete, because the ancestors of ¯a might be needed for some ancestor
resolution steps. We express this by saying that the subtreeunderb1 is complete
in the context of the ancestors of̄a. In the following, we will always assume the
same context (the ancestors of ¯a) and will omit specifying it whenever it leads to
no misunderstanding. The label ofb1 is ¬B1, so we have a complete proof for¬B1

(again in the context of the ancestors of ¯a). This means that we can copy the subtree
underb1 to any node(b̄1l ∶ ¬B1), thus compensating such nodes for the lost ancestor.
Note that we need to rename the copied nodes to ensure that each node has a unique
name.

We next turn tob2. Through analogous reasoning we can see that the new leaf
descendants ofb2 are either complete or else are incomplete because they lostan
ancestor labelled¬B1. However, by copying the subtree underb1, we have already
turned such leaves into complete trees. Hence, we have a complete proof tree under
b2 (in the context of ¯a), proving¬B2, which we copy to any incomplete leaf(b̄2l ∶
¬B2) (again assigning new names to the newly created nodes).

We continue the process. In theith step, we have a complete proof tree underbi

which we copy to any leaf(b̄il ∶ ¬Bi). By the end of thekth step, we obtain a complete
proof tree. Note that we make exactly one copying for each leaf b̄il that lost its
completeness after flipping over, so copying terminates.

We now obtained a new proof treeF ′. Let us show thatF ′ has the properties claimed
by the lemma being proved. Flipping over turns the label ofp2 from P to ¬P, which
makes loopL disappear. New loops can arise (some nodes were negated), however,
no such loop can start above or atp1. We show this by contradiction. Suppose a
node(n1 ∶N) above or atp1 obtains a descendant(n2 ∶N) after flipping. The labels
of the nodes undern1 in the new tree are either the same or the negated labels that
appeared undern1 before flipping. So, if a new loop appeared, it was either because
the bottom node of an already existing loopL2 was copied or because the label of a
descendant ofn1, namely ofn2, changed from¬N to N. In the first case, the depth
of loop L2 is smaller than the depth of loopL, which is impossible becauseL was
chosen to be a loop of minimum depth (cf. Definition 8. of loop-depth). In the
second case, before flipping over,n2 was eligible for ancestor resolution. Since we
eliminated all bad nodes,n2 was a leaf. However, flipping over does not negate the
labels of leaf nodes, so we obtained a contradiction.

We conclude that the possibly arising loops are all of greater depth than the eliminated
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loop. Hence, the number of loops of depthD is reduced by one, i.e., the loop-depth of the
new tree is strictly less than that of the original tree.

Theorem 2. For every complete proof tree containing loops there is a complete proof tree
that is loop free.

Proof. Using the transformation described in Lemma 4, we can createa series of proof
trees of the same goal such that the loop-depth is always decreasing. The second compo-
nent of the loop-depth is a positive integer (the number of loops at minimum depth) which
cannot decrease infinitely, so eventually the first component will decrease as well. This
means that the minimum depth of the loops increases, i.e. loops get deeper and deeper.
There are two possibilities:

1. Eventually, we manage to eliminate each loop after a finitenumber of iterations. The
resulting proof tree satisfies our theorem.

2. The elimination never terminates. Since the loops are getting farther from the root,
it follows that the part of the proof tree that is loop free grows beyond any limit.
Suppose the initial tree containsn distinct labels in its nodes. The transformation
steps involve flipping over, copying subtrees and eliminating nodes, each of which
either preserves node labels or introduces the negation of some label to a node.
Hence, there can be at most 2n distinct labels, i.e., any loop free path from the root
node can be at most 2n long. This contradicts the assumption that the loop free part
of the tree grows beyond any limit. Hence, all loops have to disappear after finitely
many iterations.

5 Conclusion

Prolog based inference systems like PTTP and DLog can be usedto prove a query goal. We
have shown is Section 4 that these systems need not explore proof trees that contain loops,
because in case there is a complete proof tree, there is one without loops (Theorem 2). This
allows for reducing the search space, making both systems faster. Besides, loop elimination
is sufficient to make the DLog reasoner terminating, thus allowing one to replace iterative
deepening search with depth-first search, which further increases performance.
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