
Static Type Inference for the Q language using
Constraint Logic Programming
Zsolt Zombori1, János Csorba1, and Péter Szeredi1

1 Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Budapest, Magyar tudósok körútja 2. H-1117, Hungary
{zombori,csorba,szeredi}@cs.bme.hu

Abstract
We describe an application of Prolog: a type inference tool for the Q functional language. Q
is a terse vector processing language, a descendant of APL, which is getting more and more
popular, especially in financial applications. Q is a dynamically typed language, much like Prolog.
Extending Q with static typing improves both the readability of programs and programmer
productivity, as type errors are discovered by the tool at compile time, rather than through
debugging the program execution.

We map the task of type inference onto a constraint satisfaction problem and use constraint
logic programming, in particular the Constraint Handling Rules extension of Prolog. We determ-
ine the possible type values for each program expression and detect inconsistencies. As most
built-in function names of Q are overloaded, i.e. their meaning depends on the argument types,
a quite complex system of constraints had to be implemented.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving

Keywords and phrases logic programming, types, static type checking, CSP, CHR, Q language

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

Introduction

Our paper presents most recent developments of the qtchk type analysis tool, for the Q
vector processing language. The tool has been designed in a collaborative project between
Budapest University of Technology and Economics and Morgan Stanley Business and Tech-
nology Centre, Budapest. We described our first results in [19]. That version provided type
checking: the programmer had to provide type annotations (in the form of appropriate Q
comments) and our task was to verify the correctness of the annotations. Since then, we
moved from type checking towards type inference: we devised an algorithm for inferring the
possible types of all program expressions, without relying on user provided type information.
Our preliminary results with the type inferencer were presented in [4]. Now we report on
the more mature qtchk system that is nearly complete. The main goal of the type inference
tool is to detect type errors and provide detailed error messages. Our tool can help detect
program errors that would otherwise stay unnoticed, thanks to which it has the potential
to greatly enhance program development. We perform type inference using constraint lo-
gic programming: the initial task is mapped onto a constraint satisfaction problem (CSP),
which is solved using the Constraint Handling Rules extension of Prolog [7], [15].

In Section 1 we give some background information. Section 2 briefly discusses approaches
to type inference that are related to our work. Section 3 contains our main contribution:
we present static type inference as a constraint satisfaction problem. Section 4 presents

© Zsolt Zombori, János Csorba and Péter Szeredi;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Static Type Inference for the Q language using Constraint Logic Programming

the qtchk program, a static type inferencer for Q that implements the algorithm outlined
in Section 3. Due to lack of space, we only address type inference proper. More details
about parsing Q programs and the system architecture can be found in [19]. In Section 5
we evaluate our tool.

1 Background

In this section we present the Q programming language. Due to lack of space we do not
describe the necessary background related to constraint logic programming: we expect the
readers to be familiar with the constraint satisfaction problem, the Prolog language and the
Constraint Handling Rules (CHR) extension of Prolog.

1.1 The Q Programming Language
Q is a highly efficient vector processing functional language, which is well suited to per-
forming complex calculations quickly on large volumes of data. Consequently, numerous in-
vestment banks (Morgan Stanley, Goldman Sachs, Deutsche Bank, Zurich Financial Group,
etc.) use this language for storing and analysing financial time series1. The Q language [1]
first appeared in 2003 and is now (February 2012) so popular, that it is ranked among the
top 50 programming languages by the TIOBE Programming Community [18].

Types Q is a strongly typed, dynamically checked language. This means that while each
variable is associated with a well-defined type, the type of a variable is not declared explicitly,
but stored along its value during execution. The most important types are as follows:

Atomic types in Q correspond to those in SQL with some additional date and time
related types that facilitate time series calculations. Q has the following 16 atomic types:
boolean, byte, short, int, long, real, float, char, symbol, date, datetime, minute,
second, time, timespan, timestamp.
Lists are built from Q expressions of arbitrary types, e.g. (1;2.2;‘abc) is a list com-
prising two numbers and a symbol.
Dictionaries are a generalisation of lists and provide the foundation for tables. A
dictionary is a mapping given by exhaustively enumerating all domain-range pairs. E.g.,
((‘a;‘b) ! (1;2)) is a dictionary that maps symbols a,b to integers 1,2, respectively.
Tables are lists of special dictionaries that correspond to SQL records.
Functions correspond to mathematical mappings specified by an algorithm.

Main Language Constructs As Q is a functional language, functions form the basis of the
language. A function is composed of an optional parameter list and a body comprising a
sequence of expressions to be evaluated. Function application is the process of evaluating the
sequence of expressions obtained after substituting actual arguments for formal parameters.
For example, the expression f: {[x] $[x>0;sqrt x;0]} defines a function of a single
argument x, returning

√
x, if x > 0, and 0 otherwise. Input and return values of functions

can also be functions. While being a functional language, Q also has imperative features,
such as multiple assignment2 of variables and loops.

1 Kx-Systems: http://kx.com/Customers/end-user-customers.php
2 Assignment is denoted by a colon, e.g. x:x*2 doubles the value of the variable x.

http://kx.com/Customers/end-user-customers.php

Zsolt Zombori, János Csorba, and Péter Szeredi 3

Type restrictions in Q The program code environment can impose various kinds of restric-
tions on types of expressions. In certain contexts, only one type is allowed. For example,
in the do-loop do[n;x:x*2], the first argument is required to be an integer. In other cases
we expect a polymorphic type, such as a list (list(A), where A is an arbitrary type). In
the most general case, there is a restriction involving the types of several expressions. For
instance, in the expression x = y + z, the type of x depends on those of y and z. A type
analyser for Q has to use a framework that allows for formulating all type restrictions that
can appear in the program.

1.2 Restriction of the Q language for type reasoning
Q is a very permissive language. In consultation with experts at Morgan Stanley we decided
to impose some restrictions on the language supported by the inference tool, in order to
promote good coding practice and make the type analyser more efficient.

With multiple assignment variables and dynamic typing, Q allows for setting a variable
to a value of type different from that of the current value. However, this is not the usual
practice and it defies the very goal of type checking. Hence we agreed that each variable
should have a single type in a program, otherwise the type analyser gives an error message.

Other restrictions concern the types of the built-in functions. Most built-in functions
in Q are highly overloaded, thanks to which some functions do not raise errors for certain
“strange” arguments. For example, the built-in function last takes a list as argument and
returns the last element of the list. However, this function works on atomic arguments as
well: it simply returns the input argument. To increase the efficiency of the type reasoner
we decided to ignore some special meanings of some built-in functions. For example, we neg-
lected this special meaning of the last function. Consequently, we infer that the argument
of the last function is a list, which is not necessarily true in general.

2 Related Work

One of the first algorithms for type inference is the Hindley-Milner type system [8]. It
associates the program with a set of equations which can be solved by unification. It sup-
ports parametric polymorphism, i.e., allows for using type variables. Most type systems
for statically typed functional languages are extensions of the Hindley-Milner system, for
example the ML family [14] and Haskell [9]. We also find several examples of dynamically
typed languages extended with a type system allowing for type checking and type inference.
These attempts aim to combine the safeness of static typing with the flexibility of dynamic
typing. [12] describe a polymorphic type system for Prolog.

A major limitation of the Hindley-Milner system is that it requires disjoint types. This
limitation is lifed in subtyping [2], which is a generalisation of Hindley-Milner. Here, the
input program is mapped into type constraints of the form U ⊆ V where U and V are types.
[11] and [10] present type checking tools for Erlang, a dynamically typed functional language,
based on subtyping. They introduce the notion of success typing: in case of potential type
errors, they assume that the programmer knows what he wants and only reject programs
where the type error is certain. Their tool aims to automatically discover hidden type in-
formation, without requiring any alteration of the code. Q is a dynamically typed functional
language, just like Erlang. While the language naturally yields many constraints of the form
U ⊆ V , subtyping is not sufficient to capture all constraints related to types. Built-in func-
tions are highly overloaded (ad-hoc polymorphism), and we need more sophisticated tools,
like constraint logic programming, to formulate and handle complex constraints. [5] report

4 Static Type Inference for the Q language using Constraint Logic Programming

on using constraints in type checking and inference for Prolog. They transform the input
logic program with type annotations into another logic program over types, whose execution
performs the type checking. [17] describe a generic type inference system for a generalisa-
tion of the Hindley-Milner approach using constraints, and also report on an implementation
using Constraint Handling Rules. The CLP(SET) [6] framework provides constraint logic
reasoning over sets. Our solution has many similarities to CLP(SET) as types can be easily
seens as sets of expressions. The main difference is that we have to handle infinite sets.

3 Type Inference as a Constraint Satisfaction Problem

In this section we give an overview of our approach of transforming the problem of type
reasoning into a CSP. Type reasoning starts from a program code that can be seen as a
complex expression built from simpler expressions. Our aim is to assign a type to each
expression appearing in the program in a coherent manner. The types of some expressions
are known immediately (atomic expressions, certain built-in functions), besides, the program
syntax imposes restrictions between the types of certain expressions. The aim of the reasoner
is to assign a type to each expression that satisfies all the restrictions.

We associate a CSP variable with each subexpression of the program. Each variable has
a domain, which initially is the set of all possible types. Different type restrictions can be
interpreted as constraints that restrict the domains of some variables. In this terminology,
the task of the reasoner is to assign a value to each variable from the associated domain
that satisfies all the constraints. However, our task is more difficult than a classical CSP,
because there are infinitely many types, which cannot be represented explicitly in a list.

3.1 Type Language for Q
We describe the type language developed for Q. We allow polymorphic type expressions,
i.e., any part of a complex type expression can be replaced with a variable. Expressions are
built from atomic types and variables using type constructors. The abstract syntax of the
type language – which is also the Prolog representation of types – is as follows:

TypeExpr =
AtomicTypes | TypeVar | symbol(Name) | any

| list(TypeExpr) | tuple([TypeExpr ,...,TypeExpr])
| dict(TypeExpr , TypeExpr) | func(TypeExpr , TypeExpr)

AtomicTypes This is shorthand for the 16 atomic types of Q. Furthermore, the numeric
keyword can be used to denote a type consisting of all numeric values.

TypeVar represents an arbitrary type expression, with the restriction that the same variables
stand for the same type expression. Type variables allow for defining polymorphic type
expressions, such as list(A) -> A and tuple([A,A,B]).

symbol(Name) This is a degenerate type, as it has a single instance only, namely the
provided symbol. Nevertheless, it is important because in order to support certain table
operations, the type reasoner needs to know what exactly the involved symbols are.

any This is a generic type description, which denotes all data structures allowed by Q.
list(TE) The set of all lists whose elements are from the set represented by TE.
tuple([TE1, ..., TEk]) The set of all lists of length k, such that the ith element is from

the set represented by TEi.

Zsolt Zombori, János Csorba, and Péter Szeredi 5

dict(TE1, TE2) The set of all dictionaries, defined by an explicit association between a
domain list (TE1) and a range list(TE2) via positional correspondence. For example,
the dictionary (‘name;‘date) ! (‘Joe; 1962) has type
dict(tuple([symbol(name),symbol(date)]),tuple([symbol(Joe),int]))3.

func(TE1, TE2) The set of all functions, such that the domain and range are from the sets
represented by TE1 and TE2, respectively.

3.2 Domains
Type expressions can be embedded into each other (e.g. list(int), list(list(int)), etc.),
and tuples can be of arbitrary length, consequently we have infinitely many types, which
makes representing domains more difficult. Furthermore, the types determined by the type
language are not disjoint. For example 1.1f might have type float or numeric as well.
It is evident that every expression which satisfies type float also satisfies type numeric,
i.e., float is a subtype of numeric. We will use the subtype relation to represent infinite
domains finitely as intervals: a domain will be represented with an upper and a lower bound.

Partial Ordering We say that type expression T1 is a subtype of type expression T2 (T1 ≤
T2) if and only if, all expressions that satisfy T1 also satisfy T2. The subtype relation determ-
ines a partial ordering over type expressions. For example, consider the tuple([int,int])
type which represents lists of length two, both elements being integers. Every expression
that satisfies tuple([int,int]) also satisfies list(int), i.e., tuple([int,int]) is a sub-
type of list(int). For atomic expressions it is trivial to check if one type is the subtype of
another. Complex type expressions can be checked using some simple recursive rules. For
example, list(A) is a subtype of list(B) exactly if A is subtype of B.

Finite Representation of the Domain The domain of a variable is initially the set of all
types, which can be constrained with different upper and lower bounds.

An upper bound restriction for variable Xi is a list Li = [Ti1, . . . , Tini
], meaning that

the upper bound of Xi is
⋃ni

j=1 Tij , i.e., the type of Xi is a subtype of some element of Li.
Disjunctive upper bounds are very common and natural in Q, for example, the type of an
expression might have to be either list or dict. The conjunction of upper bounds is easily
described by having multiple upper bounds. If we have two upper bounds L1 and L2 on the
same variable Xi, this means the value of Xi expression has to be in

⋃
(T1j

⋂
T2k), for all

1 ≤ j ≤ n1 and 1 ≤ k ≤ n2.
A lower bound restriction for variable Xi is a single type expression Ti, meaning that

Ti is a subtype of the type of Xi. For lower bounds, it is their union which is naturally
represented by having multiple constraints: if X has two lower bounds T1 and T2, then
T1 ∪ T2 has to be subtype of the type of X. We do not use lists for lower bounds and hence
cannot represent the intersection of lower bounds. We chose this representation because no
language construct in Q yields a conjunctive lower bound.

With the following example we demonstrate that lower and upper bounds are natural
restrictions in Q: In the code a: f[b] function f is applied to b and the result is assigned
to a. Suppose the type of f turns out to be a map from numeric to tuple([int, int]).
We can infer that the type of b must be at most numeric, which can be expressed with an

3 To facilitate type inference for tables, we include detailed information on the domain/range of a
dictionary in its type. (A record is a dictionary with the domain being a list of column names.)

6 Static Type Inference for the Q language using Constraint Logic Programming

upper bound. The result of f of b has the type tuple([int,int]), which means, that the
type of a must be at least tuple([int,int]), which can be expressed with a lower bound.
If later the type of a turns out to be list(int) (a list of integers) and the type of b to be
e.g. float, then the above expression is type correct.

3.3 Constraints
After parsing – where we build an abstract syntax tree representation of the input program
– the type analyser traverses the abstract syntax tree and imposes constraints on the types
of the subexpressions. The constraints describing the domain of a variable are particularly
important, we call them primary constraints. These are the upper and lower bound con-
straints. We will refer to the rest of the constraints as secondary constraints. Secondary
constraints eventually restrict domains by generating primary constraints, when their argu-
ments are sufficiently instantiated (i.e., domains are sufficiently narrow). Constraints that
can be used for type inference can originate from the following sources in a Q program:

Built-in functions For every built-in function, there is a well-defined relationship between
the types of its arguments and the type of the result. These relations are expressed by
adequate – sometimes quite complicated – constraints.

Atomic expressions The types of atomic expressions are revealed already by the parser, so
for example, 2.2f is immediately known to be a float.

Variables Local variables are made globally unique by the parser, so variables with the same
name must have the same type. We ensure this by equating their corresponding domains.

Program syntax Most syntactic constructs impose constraints on the types of their con-
stituent constructs. For example, the first argument of an if-then-else construct must
be int or boolean. Another example is the assignment construct. The type of the left
side has to be at least as “broad” as the type of the right side. It means the type of the
right side is subtype of the type of the left side.

3.4 Constraint Reasoning
In this subsection we describe how the constraints are used to infer possible types. Constraint
reasoning is based on a production system [13], i.e., a set of IF-THEN rules. We maintain
a constraint store which holds the constraints to be satisfied for the program to be type
correct. We start out with an initial set of constraints. A production rule fires when certain
constraints appear in the store and results in adding or removing some constraints. With
CHR terminology, we say that each rule has a head part that holds the constraits necessary
for firing and a body containing the constraints to be added. The constraints to be removed
are a subset of the head constraints. One can also provide a guard part to specify more
refined firing conditions.

The semantics of the constraints is given by describing their consequences and their
interactions with other constraints. At each step we systematically check for rules that can
fire. The more rules we provide the more reasoning can be performed.

Primary constraints represent variable domains. If a domain turns out to be empty, this
indicates a type error and we expect the reasoner to detect this. Hence, it is very important
for the constraint system to handle primary constraints as “cleverly” as possible. For this,
we formulated rules to describe the following interactions on primary constraints4:

4 Concrete examples of rules will be given in Section 4.

Zsolt Zombori, János Csorba, and Péter Szeredi 7

Two upper bounds on a variable should be replaced with their intersection.
Two lower bounds on a variable should be replaced with their union.
If a variable has an upper and a lower bound such that no type satisfies both, then the
clash should be made explicit by setting the upper bound to the empty set.
Upper and lower bounds can be polymorphic, i.e., they might contain other variables.
From the fact that the lower bound must be a subtype of the upper bound, we can
propagate constraints to the variables appearing in the bounds.

Secondary constraints connect different variables and restrict several domains. Unfortu-
nately, it is not realistic to capture all interactions of secondary constraints as that would
require exponentially many rules in the number of constraints. Hence, we only describe
(fully) the interaction of secondary constraints with primary constraints, i.e., we formulate
rules of the form: if certain arguments of the constraints are within a certain domain, then
some other argument can be restricted. E.g., if there is a summation in Q and we know
that the arguments are numeric values, then the result must be either integer or float. If
the second argument later turns out to be float, then the result must be float. At this point,
there is nothing more to be inferred and the constraint can be eliminated from the store.

Our aim is to eventually eliminate all secondary constraints. If we manage to do this, the
domains described by the primary constraints constitute the set of possible type assignments
to each expression. In case some domain is the empty set, we have a type error. Otherwise,
we consider the program type correct.

If the upper and lower bounds on a variable determine a singleton set, then we say that
it is instantiated. If all arguments of a secondary constraint are instantiated, then there are
two possibilities. If the instantiation satisfies the constraint, then the latter can be removed
from the store. Otherwise, the constraint fails.

Error Handling As we parse the input program, we generate constraints and add them to
the constraint store. The production rules automatically fire whenever they can. If some
domain gets restricted to the empty set, this means that the corresponding expression can-
not be assigned any type, i.e., we have a type error. At this point we mark the erroneous
expression, as well as the primary constraints whose interaction resulted in the empty do-
main. This information – along with the position of the expression – is used to generate
an error message. The primary constraints are meant to justify the error. Once the error
has been detected and noted, we roll back to the addition of the last constraint and simply
proceed by skipping the constraint. This way, the type analyser can detect more than one
error during a single run.

Labeling Eventually, after all constraints have been added, we obtain a constraint store
such that none of the rules can fire any more. There are three possibilities:

There were some discovered errors. Then we display the collected error messages and
terminate the type inference algorithm.
There were no type errors found and only primary constraints remain. In this case the
domains described by the primary constraints all contain at least one element. Any type
assignment from the respective domains satisfies all constraints, so the type analyser
stops with success.
No type errors were found, however, some secondary constraints remain. In order to
decide if the constraints are consistent, we do labeling.

8 Static Type Inference for the Q language using Constraint Logic Programming

Labeling is the process of systematically assigning values to variables from within their
domains. The assignments wake up production rules. We might obtain a failure, in which
case we roll back until the last assignment and try the next value. Eventually, either we find
a type assignment to all variables that satisfies all constraints or we find that there is no
consistent assignment. In the first case we indicate that there is no type error. In the second
case, however, we showed that the type constraints are inconsistent, so an error message to
this effect is displayed. Due to the potentially large size of the search space traversed in
labeling, it looks very difficult to provide the user with a concise description of the error.

4 Implementation – the qtchk program

We built a Prolog program called qtchk that implements the type analysis described in
Section 3. It runs both in SICStus Prolog 4.1 [16] and SWI Prolog 5.10.5. It consists of over
8000 lines of code5. Constraint reasoning is performed using Constraint Handling Rules. Q
has many irregularities and lots of built-in functions (over 160), due to which a complex
system of constraints had to be implemented using over 60 constraints. The detailed user
manual for qtchk can be found in [3] that contains lots of examples along with the concrete
syntax of the Q language.

4.1 Representing variables
All subexpressions of the program are associated with CSP variables. In case some constraint
fails, we need to know which expression is erroneous in order to generate a useful error
message. If the arguments of the constraints are variables, we do not have this information
at hand. Hence, instead of variables we use identifiers ID = id(N,Type,Error)6, which
consist of three parts: an integer N which uniquely identifies the corresponding expression,
the type proper Type (which is a Prolog variable before the type is known) and an error
flag Error which is used for error propagation. We use the same representation for type
variables in polymorphic types, e.g. the type list(X) may be represented by list(id(2)).

4.2 Constraint Reasoning
Constraint reasoning is performed using the Constraint Handling Rules library of Prolog.
CHR has proved to be a good choice as it is a very flexible tool for describing the behaviour of
constraints. Any constraint involving arbitrary Prolog structures could be formulated. We
illustrate our use of CHR by presenting some rules that describe the interaction of primary
constraints. Our two primary constraints are

subTypeOf(ID,L): The type of identifier ID is a subtype of some type in L, where L is a
list of polymorphic type expressions.
superTypeOf(ID,T): The type of ID is a supertype of T, a polymorphic type expression.

With polymorphic types we can restrict the domain by a type expression containing the type
of another identifier. If the type of such an identifier becomes known, the latter is replaced
with the type in the constraint. For example, if we have constraints
subTypeOf(id(1),[float,list(id(2))]), superTypeOf(id(1),tuple([id(3),int])
and the types of id(2) and id(3) later both turn out to be int, then the constraints are
automatically replaced with

5 We are happy to share the code over e-mail with anyone interested in it.
6 In order to make the following examples easier to read, we will write id(N) instead of id(N,Type,Error)

Zsolt Zombori, János Csorba, and Péter Szeredi 9

subTypeOf(id(1),[float,list(int)]), superTypeOf(id(1),tuple([int,int]).
Due to the lower bound, float can be eliminated from the upper bound. This is performed
by the following CHR rule:

superTypeOf(X,A) \ subTypeOf(X,B0) <=> eliminate_sub(A, B0, B) |
create_log_entry(eliminate_sub(X,A,B0,B)), subTypeOf(X, B).

We make use of the Prolog predicate eliminate_sub(A,B0,B), which expresses that the list
of upper bounds B0 can be reduced to a proper subset B based on lower bound A. We obtain:
subTypeOf(id(1),[list(int)]), superTypeOf(id(1),tuple([int,int]).

4.3 Error Handling
During constraint reasoning, a Prolog failure indicates some type conflict. Before we roll
back to the last choice point, we remember the details of the error. We maintain a log that
contains entries on how various domains change during the reasoning and what constraints
were added to the store. Furthermore, to make error handling more uniform, whenever
secondary constraints are found violated, they do not lead to failure, but they set some
domain empty. Hence, we only need to handle errors for primary constraints. Whenever a
domain gets empty, we mark the expression associated with the domain and we look up the
log to find the domain restrictions that contributed to the clash. We create and assert an
error message and let Prolog fail. For example, the following message

Expected to be broader than (int -> numeric) and
narrower than (int -> int)

file:samples/s1.q line:13 character:4
{[x] f[x]}
^^^^^^^^^^

indicates that the underlined function definition is erroneous: the return value is numeric
or broader, although it is supposed to be narrower than integer.

5 Evaluation

The best way to evaluate our tool would be on Q programs developed by Morgan Stanley.
However, we could not obtain such programs due to the security policy of the company.
Instead, we used user contributed Q examples, publicly available at the homepage of Kx-
System [1]. This test set contains several (extended) examples from the Q tutorial and other
more complex programs. Table 1 summarizes our findings.

Table 1 Test results.

All Type correct Restrictions Labeling timeout Type error Analyser error
128 43 (33.6%) 43 (33.6%) 32 (25%) 5 (3.9%) 5 (3.9%)

We used 128 publicly available Q programs. Of this 43 were found type correct. As
explained in Subsection 1.2, we made some restrictions on the Q language, following the
requirements of Morgan Stanley. 43 programs were found erroneous due to not fulfilling
these restrictions. Most of the error messages arise from the same variable used with different
types and from some neglected special meaning of built-in functions. We often found the

10 Static Type Inference for the Q language using Constraint Logic Programming

case that a function is called but defined in another file that was not included among the
examples. In such programs the lack of information often resulted in an extremely large
search space to be traversed during labeling. In 32 programs labeling could not find any
solution within the given time limit (1000 sec), partly for the former reason.

We were happy to find 5 genuine errors in the test set. These are in the following
programs: run.q7. mserve.q8. oop.q9 quant.q10 and dgauss.q11. We have found 5
programs containing some language element that our tool cannot handle well. We are in the
process of eliminating these problems.

Conclusions

We presented an algorithm and the tool qtchk that can be used for checking Q programs for
type correctness. We described how to map this task onto a constraint satisfaction problem
which we solve using constraint logic programming tools. We have found that our program
is a useful tool for finding type errors, as long as the programmers adhere to some coding
practices, negotiated with Morgan Stanley, our project partner. However, we believe that
the restrictions that we impose on the use of the Q language are reasonable enough for other
programmers as well, and our tool will find users in the broader Q community.

Acknowledgements

The results discussed above are supported by the grant TÁMOP - 4.2.2.B-10/1–2010-0009 .

References
1 Jeffry A. Borror. Q For Mortals: A Tutorial In Q Programming. CreateSpace, Paramount,

CA, 2008.
2 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-

morphism. ACM COMPUTING SURVEYS, 17(4):471–522, 1985.
3 János Csorba, Péter Szeredi, and Zsolt Zombori. Static Type Checker for Q Programs

(Reference Manual), 2011. http://www.cs.bme.hu/∼zombori/q/qtchk_reference.pdf.
4 János Csorba, Zsolt Zombori, and Péter Szeredi. Using constraint handling rules to provide

static type analysis for the q functional language. CoRR, abs/1112.3784, 2011.
5 Bart Demoen, M. García de la Banda, and P. Stuckey. Type constraint solving for para-

metric and ad-hoc polymorphism. In Proceedings of Australian Workshop on Constraints,
pages 1–12, 1998.

6 Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco Rossi. Sets and constraint
logic programming. ACM Trans. Program. Lang. Syst., 22(5):861–931, September 2000.

7 Th. Fruehwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and
K. Marriot, editors, Journal of Logic Programming, volume 37(1–3), pages 95–138, October
1998.

8 R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of
the American Mathematical Society, 146:pp. 29–60, 1969.

9 Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.

7 http://code.kx.com/wsvn/code/contrib/cburke/qreference/source/run.q
8 http://code.kx.com/wsvn/code/kx/kdb+/e/mserve.q
9 http://code.kx.com/wsvn/code/contrib/azholos/oop.q
10 http://code.kx.com/wsvn/code/contrib/gbaker/common/quant.q
11 http://code.kx.com/wsvn/code/contrib/gbaker/deprecated/dgauss.q

http://code.kx.com/wsvn/code/contrib/cburke/qreference/source/run.q
http://code.kx.com/wsvn/code/kx/kdb+/e/mserve.q
http://code.kx.com/wsvn/code/contrib/azholos/oop.q
http://code.kx.com/wsvn/code/contrib/gbaker/common/quant.q
http://code.kx.com/wsvn/code/contrib/gbaker/deprecated/dgauss.q

Zsolt Zombori, János Csorba, and Péter Szeredi 11

10 Tobias Lindahl and Konstantinos F. Sagonas. Practical type inference based on success
typings. In Annalisa Bossi and Michael J. Maher, editors, PPDP, pages 167–178. ACM,
2006.

11 Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. SIGPLAN
Not., 32:136–149, August 1997.

12 Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23(3):295–307, 1984.

13 A. Newell and H.A. Simon. Human Problem Solving. Prentice Hall, Englewood Cliffs, 1972.
14 Francois Pottier and Didier Remy. The essence of ML type inference. Advanced Topics in

Types and Programming Languages, pages 389–489, 2005.
15 Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation and

application. In First Workshop on Constraint Handling Rules: Selected Contributions,
pages 1–5, 2004.

16 SICS. SICStus Prolog Manual version 4.1.3. Swedish Institute of Computer Science,
September 2010.
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html.

17 Martin Sulzmann and Peter J. Stuckey. HM(X) type inference is CLP(X) solving. Journal
of Functional Programming, 18:251–283, March 2008.

18 TIOBE. TIOBE programming-community, TIOBE index, 2010. http://www.tiobe.com.
19 Zsolt Zombori, János Csorba, and Péter Szeredi. Static type checking for the q functional

language in prolog. In John P. Gallagher and Michael Gelfond, editors, ICLP (Technical
Communications), volume 11 of LIPIcs, pages 62–72. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011.

http://www.tiobe.com

	Background
	The Q Programming Language
	Restriction of the Q language for type reasoning

	Related Work
	Type Inference as a Constraint Satisfaction Problem
	Type Language for Q
	Domains
	Constraints
	Constraint Reasoning

	Implementation – the qtchk program
	Representing variables
	Constraint Reasoning
	Error Handling

	Evaluation

