
Under consideration for publication in Theory and Practice of Logic Programming 1

Static Type Checking for the Q Functional

Language in Prolog

ZSOLT ZOMBORI, JÁNOS CSORBA AND PÉTER SZEREDI

Department of Computer Science and Information Theory

Budapest University of Technology and Economics

Budapest, Magyar tudósok körútja 2. H-1117, Hungary

E-mail: {zombori,csorba,szeredi}@cs.bme.hu

submitted 24 January 2011; revised ? ? ?; accepted ? ? ?

Abstract

We describe an application of Prolog: a type checking tool for the Q functional language. Q
is a terse vector processing language, a descendant of APL, which is getting more and more
popular, especially in financial applications. Q is a dynamically typed language, much like
Prolog. Extending Q with static typing improves both the readability of programs and
programmer productivity, as type errors are discovered by the tool at compile time, rather
than through debugging the program execution.

We designed a type description syntax for Q and implemented a parser for both the
Q language and its type extension. We then implemented a type checking algorithm us-
ing constraints. As most built-in function names of Q are overloaded, i.e. their meaning
depends on the argument types, a quite complex system of constraints had to be imple-
mented.

Prolog proved to be an ideal implementation language for the task at hand. We used
Definite Clause Grammars for parsing and Constraint Handling Rules for the type checking
algorithm. In the paper we describe the main problems solved and the experiences gained
in the development of the type checking tool.

KEYWORDS: logic programming, types, static type checking, constraints, CHR, DCG

1 Introduction

The paper presents a type analysis tool for the Q vector processing language, which

has been implemented in Prolog. The tool has been developed in a collaborative

project between Budapest University of Technology and Economics and Morgan

Stanley Business and Technology Centre, Budapest.

In Section 2 we give some background information on the Q language and typing.

Next, in Section 3 an overview of the type analysis tool is presented. The subsequent

three sections discuss the three main tasks that had to be solved in the develop-

ment of the application: extending Q with a type description language (Section 4);

implementing the parser (Section 5); and developing the type checker (Section 6).

In Section 7 we provide an evaluation of the tool developed and give an outline of

future work, while in Section 8 we provide an overview of approaches related to our

work. Finally, Section 9 concludes the paper.

2 Zsolt Zombori, János Csorba and Péter Szeredi

2 Background

In this section we first present the Q programming language. Next, we introduce

some notions related to type handling that will be important for the description of

the type analyser.

2.1 The Q Programming Language

Q is a highly efficient vector processing functional language, which is well suited to

performing complex calculations quickly on large volumes of data. Consequently, nu-

merous investment banks (Morgan Stanley, Goldman Sachs, Deutsche Bank, Zurich

Financial Group, etc.) use this language for storing and analysing financial time se-

ries (Kx-Systems). The Q language first appeared in 2003 and is now (December

2010) so popular, that it is ranked among the top 50 programming languages by

the TIOBE Programming Community (TIOBE 2010).

Types Q is a strongly typed, dynamically checked language. This means that while

each variable is associated with a well defined type, the type of a variable is not

declared and stored explicitly, but inferred from its value during execution. The

most important types are as follows:

• Atomic types in Q correspond to those in SQL with some additional date

and time related types that facilitate time series calculations. Q has the fol-

lowing 16 atomic types: boolean, byte, short, int, long, real, float, char,

symbol, date, datetime, minute, second, time, timespan, timestamp.

• Lists are built from Q expressions of arbitrary types. However, if a variable

is initialised to a list of atomic values of the same type, then certain oper-

ations, e.g. updating a certain element of the list, insist on keeping the list

homogeneous.

• Dictionaries are a generalisation of lists and provide the foundation for

tables. A dictionary is a mapping that is given by exhaustively enumerating

all domain-range pairs. For example, (‘a‘b ! 1 2) is a dictionary that maps

symbols a,b to integers 1,2, respectively.

• Tables are lists of special dictionaries called records, that correspond to

SQL records.

Main Language Constructs Q being a functional language, functions form the basis

of the language. A function is composed of an optional parameter list and a body

comprising a sequence of expressions to be evaluated. Function application is the

process of evaluating the sequence of expressions obtained after substituting actual

arguments for formal parameters.

As an example, consider the expression

f: {[x] $[x>0;sqrt x;0]}

which defines a function of a single argument x, returning
√
x, if x > 0, and 0

Static Type Checking for the Q Functional Language in Prolog 3

otherwise. Note that the formal parameter specification [x] can be omitted from

the above function, as Q assumes x, y and z to be implicit formal parameters.

Input and return values of functions can also be functions: for example, a special

group of functions, called adverbs take functions and return a modified version of

the input.

While being a functional language, Q also has imperative features, such as mul-

tiple assignment variables, loops, etc.

Q is often used for manipulating data stored in tables. Therefore, the language

contains a sublanguage called Q-SQL, which extends the functionality of SQL, while

preserving a very similar syntax.

Besides expressions to be evaluated, a Q program can contain so called commands.

Commands control aspects of the Q environment. Among many other tasks they

are responsible for changing the current context (namespace), performing various

O/S level operations, loading a file, etc.

Principles of evaluation In Q, expressions are always parsed from right to left. For

example, the evaluation of the expression a:2*3+4 begins with adding 4 to 3, then

the result is multiplied by 2 and finally, the obtained value is assigned to variable

a. In Q it is quite common to have a series of expressions f1 f2, evaluated as the

function f1 applied to arguments f2. For example we can define the function 4
√
x

using the above function for
√
x as follows: g : f f.

There is no operator precedence, one needs to use parentheses to change the

built-in right-to-left evaluation order.

Type restrictions in Q The program code environment can impose various kinds of

restrictions on types of expressions. In certain contexts, only one type is allowed.

For example, in the do-loop do[n;x*:2], the first argument specifies how many

times x has to be multiplied by 2 and it is required to be an integer. In other cases

we expect a polymorphic type. If, for example, function f takes arbitrary functions

for argument, then its argument has to be of type A -> B (a function taking an

argument of type A and returning a value of type B), where A and B are arbitrary

types. In the most general case, there is a restriction involving the types of several

expressions. For instance, in the expression x = y + z, the type of x depends on

those of y and z. A type analyser for Q has to use a framework that allows for

formulating all type restrictions that can appear in the program.

2.2 Typing

Static vs. Dynamic Typing The Q language is dynamically typed. This means that

the type of an expression is not explicitly associated with it, but the type is stored

along the value. However, since the value is only known during execution, there

is no possibility of detecting a type error during compilation. In statically typed

languages, each expression has a declared type associated with it, which is known

before execution. Handling type information requires extra effort, but it allows for

compile time detection of some errors, namely type errors.

4 Zsolt Zombori, János Csorba and Péter Szeredi

Type Checking vs. Type Inference Type analysis comes in two different flavours. The

easier task is type checking, when the types of expressions are provided (typically

by the programmer) and the algorithm only needs to check if the type assignments

are consistent. If types are not provided, the more difficult task of type inference

is necessary, i.e., it is the type analyser that has to infer the types of complex

expressions from those of atomic expressions and from the program syntax. There

can be all sorts of transitions between pure type checking and pure type inference,

depending on how much is provided and how much needs to be inferred.

3 The Q Type Analyser – an Overview

In this section we first introduce the type analyser from the perspective of the user

and then give a bird’s eye view of the architecture of the system.

Using the Type Analyser The type analyser comes as a stand-alone executable

application called qtchk. The code to be analysed has to be extended with a type

declaration for each variable and named function, in the form of an appropriate

Q comment. The program can take its input either from a script file or through

the standard input. The analyser returns the list of errors and potential errors

(warnings)1, along with the code fragments where they occur. Besides, the user has

the option to ask for detailed error message that shows all restrictions that resulted

in the clash.

We give a small example. Let sample.q contain the following lines:

f //$: list(int) -> list(int)

: {[x] $[count x;x;0]}

The function f checks the length of its argument x and if it is greater than zero, then

it returns x, otherwise it returns 0. The programmer has provided a Q comment2

which declares the type of f: it is a function that maps lists of integers to lists of

integers. However, if the input is an empty list, then the output is 0, which is not

a list of integers, but an integer. The type analyser detects the mismatch and gives

an error message:

zombori@pnp src $ qtchk samples/sample.q

Type error: Could not find type that subsumes all: [list(int),int]

file: samples/sample.q

line: 2

character: 10

{$[count x;x;0]}

^^^^^^^^^^^^^^

Type check complete.

1 In Section 6 we explain the difference between errors and warnings.
2 In Q, comments start with the // characters and are terminated by a newline.

Static Type Checking for the Q Functional Language in Prolog 5

As we can see in the example, the analyser points to the exact location of the

erroneous expression along with a description of the error.

The Architecture of the Type Analyser The type analysis can be divided into three

parts:

• Pass 1: lexical and syntactic analysis

The Q program is parsed into an abstract tree structure.

• Pass 2: post processing

Some further transformations make the abstract tree easier to work with.

• Pass 3: type checking proper

The types of all expressions are processed, type errors are detected.

Abs Abs

TreeTree

Q program

Type comments

Lexical

Analyser Analyser

Syntactic Post

Processing

Errors

Type

Checking

types

Built in Func

Fig. 1. Architecture of the type analyser

The algorithm is illustrated in Figure 1. The analyser receives the Q program

along with the user provided type declarations. The lexical analyser breaks the text

into tokens. The tokenizer recognises constants and hence their types are revealed

at this early stage. Afterwards, the syntactic analyser parses the tokens into an ab-

stract tree representation of the Q program. Parsing is followed by a post processing

phase that encompasses various small transformation tasks.

In the post processing phase some context sensitive transformations are carried

out, such as filling in the omitted formal parameter parts in function definitions;

and finding, for each variable occurrence, the declaration the given occurrence refers

to.

Finally, in pass 3, the type analysis component traverses the abstract tree and

imposes constraints on the types of the subexpressions of the program. This phase

builds on the user provided type declarations and the types of built-in functions.

The latter are listed in a separate text file with a syntax that is an extension

of the type language described in Section 4. The difference is that the current

version of the type analyser does not support polymorphic types for user defined

6 Zsolt Zombori, János Csorba and Péter Szeredi

functions, while this is unavoidable for characterising built in functions.3 The built-

in functions defined this way, it is very easy to extend the type analyser with further

built-in functions, should there be new ones. The predefined constraint handling

rules trigger automatic constraint reasoning, by the end of which the types of all

subexpressions are inferred.

Each phase of the type analyser detects and stores errors. At the end of the

analysis, the user is presented with a list of errors, indicating the location and the

kind of error. In case of type errors, the analyser also gives some justification, in

the form of conflicting constraints.

The type checking tool has been implemented in SICStus Prolog 4.1 (SICS 2010).

The subsequent sections deal with three main parts of the development process:

extending Q with a type language, implementing parsing and implementing type

checking.

4 Extending Q with a Type Language

In order to allow the users to annotate their programs with type declarations,

we had to devise a type language that could be comfortably integrated into a Q

program. Type annotations appear as Q comments and hence do not interfere with

the Q compiler. A type declaration can appear anywhere in the program and it will

be attached to the smallest expression that it follows immediately. For example, in

the code x + y //$: int variable y is declared to be an integer.

Due to lack of space, we only illustrate the type language, without any pre-

tence to completeness. The type language contains usual atomic types, such as

int, float, real, symbol and constructors for building lists (list(int)), dic-

tionaries (dict(int,list(int))), tables (table(‘name: symbol; ‘age: int)),

records (record(‘name: symbol; ‘age: int)) and functions (int -> symbol).

There are a couple generic types, such as numeric and any. Furthermore, we intro-

duced some other types, such as the tuple type, which allow us to describe fixed

length generic lists (tuple(int,real,int)). Such types require extra care, because

the same expression can have different descriptions. For example (3;2.2;4) could

have type list(numeric) or tuple(int,float,int), and this has to be kept in

mind constantly during type analysis. Type constructors can be embedded into

each other, building complex types of arbitrary depth.

Type declarations can be of two kinds, having slightly different semantics: im-

perative (believe me that the type of expression E is T) or interrogative (I think

the type of E is T, but please do check). To understand the difference, suppose

the value of x is loaded from a file. This means that both the value and the type

is determined in runtime and the type checker will treat the type of x as any. If

the user gives an imperative type declaration that x is a list of integers, then the

type analyser will believe this and treat x as a list of integers. If, however, the type

declaration is interrogative, then the type analyser will issue a warning, because

3 We are currently working to extend the type language to polymorphic types. See more about
this in Section 7.

Static Type Checking for the Q Functional Language in Prolog 7

there is no guarantee that x will indeed be a list of integers (it can be anything).

Interrogative declarations are used to check that a piece of code works the way

the programmer intended. Imperative declarations provide extra information for

the type analyser. A Q program is guaranteed to be free of type errors in case the

analyser issues no errors and all the imperative declarations are indeed true.

Different comment tags have to be used for introducing the two kinds of decla-

rations. We give an example for each:

f //$: int -> boolean interrogative

g //!: int -> int imperative

5 Parsing

In this section we give an outline of the data structures and algorithms used by

the parser component of the type checker. The input of this phase is the original Q

program extended with type declarations embedded into Q comments. Its output is

the abstract syntax tree and a (possibly empty) list of lexical and syntactic errors.

The parser consists of three parts: a lexical analyser, a syntax analyser and a post

processor. A particular challenge of parsing Q was that there is no publicly available

syntax for the language. We had to use various incomplete tutorials and experiment

a lot. Not only is the language poorly documented, we found that it supports lots

of exceptions and extreme cases. Some exceptions are demanded by programmers

while others only lead to wrong programming habits, hence we were in constant

negotiation about what the final syntax should look like.

5.1 Lexical Analysis

As the first processing step, the type checker converts its input Q program to a list

of lexical elements, or tokens, for short. We defined the following kinds of lexical

elements: layout, string, identifier (variable or built-in function), constant

(literal value of an atom type of Q), separator, graphic (a single non-alphanumeric

character that is not a separator) and comment start. It is the responsibility of

the analyser to identify the different atomic expressions in the program, and to

determine their types.

Each token contains position information, so that if a later phase discovers an

error, it can point to the exact location where the error occurred. If an error occurs

during the lexical analysis, a special token called error token is generated.

5.2 Syntactic Analysis

The syntax analyser takes a list of tokens as its input, and builds an abstract

syntax tree representation of the program. The input is parsed as a sequence of

Q expressions and Q commands. While most of the commands are irrelevant for

the type analysis, some have to be taken into account: \cd changes the working

directory, \l loads a file and \d controls the current context. When a load command

is encountered, the referred file is parsed and included in the abstract syntax tree.

8 Zsolt Zombori, János Csorba and Péter Szeredi

In the syntax analyser we exploit the backtracking search of the Prolog language

and use the Definite Clause Grammar (DCG) (Pereira and Warren 1980) extension

of Prolog to perform the parsing.

A particular challenge of building the parser was that the language syntax of Q

is not publicly available. There are all sorts of online documentations that we could

use, such as (Borror 2008), but the sources are all incomplete, hence we had to do

lots of experiments to discover the syntax.

It is beyond the scope of this paper to present the syntax of the Q language. We

only mention that the most frequent expressions are function definitions, function

applications, infix function applications, list expressions, table expressions, assign-

ments, identifiers and constant atomic values. The abstract syntax tree form of an

expression consists of a node whose label identifies an expression constructor, and

whose children are the abstract syntax forms of its subexpressions. For example,

the abstract form of a function application is a node labelled with app, whose left

subtree is the expression providing the function, and the right subtree is the ar-

gument (or the list of arguments). Atomic constants are represented with a node

labelled cons,whose left subtree is the constant itself (as a Prolog string), while

the right subtree identifies the type of the constant. As an example, in Figure 2 we

show the abstract format of the expression f (4+2).

app

app

var

varf

24

+

list

conscons

intint

Fig. 2. The abstract tree format of the expression f (4+2)

In the rest of the subsection, we list some of the challenges that we had to

overcome for building the syntax analyser.

Left-Recursion and Evaluation Order Our first version of the grammar was simple

to understand, but it was not free from (indirect) left recursion. A formal gram-

mar that contains left recursion cannot be parsed using DCGs. The right-to-left

evaluation order of Q also caused difficulties. Both problems were solved using the

well known algorithm from (Moore 2000) to convert the grammar into an equiva-

lent right recursive grammar. The algorithm is based on dividing the problematic

nonterminals to a start and a tail part. In this grammar, implementing right-to-left

evaluation became simple.

Static Type Checking for the Q Functional Language in Prolog 9

Avoiding Exponential blowup Improper grammar can drive the parsing to exponen-

tial run time. Consider the following simplified grammar fragment:

expression :=

...

| assignment

| application ;

application :=

identifier, expression ;

assignment :=

application, :, expression ;

An expression starting with an application can be parsed directly as an applica-

tion or as an assignment whose left-hand side starts with an application. Hence,

the expression e1 e2 . . . ek can be parsed in 2k different ways. The problem oc-

curs, whenever there are two disjunctive non-terminals that can be parsed to start

with the same expression. We solved this problem by transforming the grammar to

eliminate unnecessary choice points.

Parsing Q-SQL The query sublanguage of Q, called Q-SQL, has a syntax that

differs from the rest of the code. To make matters worse, some language elements

are defined both inside and outside of Q-SQL, with different meaning. For example,

’,’ is the join operator in Q, but it serves to separate conditional arguments in Q-

SQL. The where function is another example. The parser had to be prepared for

this double parsing, which was further complicated by the fact that one can insert

a normal Q expression between parentheses into a Q-SQL expression. This requires

knowledge about the current context during parsing. In our solution the DCG

clauses were extended with an environment argument, which carries information

about the parenthesis depth and the actual position of the parser whenever parsing

inside a Q-SQL expression.

5.3 Post Processing

In the post processing phase we perform some transformations on the abstract

syntax tree provided by the syntax analyser. The result is another abstract tree

conforming to the same abstract syntax. This phase has two main tasks:

• Implicit formal parameters are made explicit, e.g. the function definition

f:{x+y} is extended to f:{[x;y] x+y}.

• Local variables are made globally unique:

Variable name x refers to different variables in different function definitions.

Since we would like to associate a type with each variable, we attach a context

specific part to the variable name, making all variables globally unique.

10 Zsolt Zombori, János Csorba and Péter Szeredi

6 The Type Analysis Component

In this section we give an outline of the data structures and algorithms used by

the type analysis component. The input of this phase is the abstract syntax tree,

constructed by the parser. Its output is a (possibly empty) list of type errors.

6.1 Type Analysis Proper

Figure 6.1 gives a brief summary of the type analysis component. Our aim is to

determine whether we can assign a type to each expression of the program in a

coherent manner. Some types are known from the start, since the type analyser

requires that the Q program to be checked includes type definitions for all user

defined functions and variables. Furthermore, we know the types of the built-in

functions. The analyser infers the types of further expressions and checks for the

consistency of all types.

1. To each node of the abstract tree, we assign a type variable.
2. We traverse the tree and formulate type constraints.
3. Constraint reasoning is used to automatically

• propagate constraints,
• deduce unknown types
• detect and store clashes, i.e., type errors.

4. By the end of the traversal, each node that corresponds to a type correct
expression is assigned a type. The types satisfy all constraints.

Fig. 3. Overview of the type analysis component

Each expression in the concrete syntax corresponds to a subtree in the abstract

syntax. Hence, we maintain a variable (in mathematical sense) for each node of the

tree, that stands for the type of the subtree rooted at the node. The task of the

type checker is to substitute the variables with proper types.

We use type expressions to describe the type of an expression in the Q language.

The type checker uses type expressions similar to those described in Section 4,

extended with type variables. In the examples below such type variables are denoted

with a, b,

We traverse the tree and formulate context specific constraints on the type of the

current node and those of its children. For instance, in the example in Figure 2,

when we reach the app node, we know it is a function application, so the left child

has to be of type a -> b, the right child of type a and the whole subtree of type

b. In some cases the constraint determines the type of some node, but in many

other it only narrows down the range of possible values. In case of clash between

the restrictions, there is a type error in the program.

The type checker also detects hazardous code that contains potential type error.

This is the case when the expected type of some expression is a subtype of the

inferred one. An example for this is when a function is declared to expect an integer

Static Type Checking for the Q Functional Language in Prolog 11

argument and all we know about the argument is that it is numeric. We cannot

determine the runtime behaviour of such a code, since the type error depends on

what sort of numeric argument will be provided. Instead of an error, we give a

warning in such cases that the user can decide to suppress.

Constraints are handled using the Prolog CHR (Fruehwirth 1998) library. For

each constraint, the program contains a set of constraint handling rules. Once the

arguments are sufficiently instantiated (what this means differs from constraint

to constraint), an adequate rule wakes up. The rule might instantiate some type

variable, it might invoke further constraints or else it infers a type error. In the

latter case we mark the location of the error, along with the clashing constraint.

In case all variables and user defined functions are provided with a type decla-

ration, we start the analysis with the knowledge of the types of all leaves of the

abstract tree. This is because a leaf is either an atomic expression, a variable or

a function. Once the leaf types are known, propagation of types from the leaves

upwards is immediate, because we can infer the type of an expression from those

of its subexpressions. Constraints wake up immediately when their arguments are

instantiated, as a result of which the type variables of the inner nodes become

instantiated. Hence, as long as sufficient type information is provided by the pro-

grammer, there is no need for labelling.

The Q program is type correct if there can be no type error during execution. In

case the type checker issues neither error nor warning, the program is guaranteed

to be type correct. If there are no errors but some warnings, the program is correct

only if the provided type declarations are true. In this case it is up to the discretion

of the programmer to decide whether to neglect the warnings.

6.2 Constraints

The constraints that can be used for type inference come from two sources. First,

we know the types of atomic expressions and built-in functions. For example, 2.2

is immediately known to be a float. Similarly, we know that the function count is

of type any -> int. Such knowledge allows us to set – or at least constrain – the

types of certain leaves of the abstract syntax tree. The other source of constraints

is the language syntax. This can be used to propagate constraints, because the

language syntax imposes restrictions on the types of neighbouring nodes.

Besides these type constraints, there can be type information provided by the

user at any level of the abstract tree.

Constraint Handling Rules To handle type constraints, we use constraint logic pro-

gramming. More precisely we use the Prolog CHR (Constraint Handling Rules)

library (Fruehwirth 1998), which provides a general framework for defining con-

straints and describing how they interact with each other. The advantage of CHR

is that the constraint variables can take values from arbitrary Prolog structures, so

we can comfortably represent all values that a type expression can have.

12 Zsolt Zombori, János Csorba and Péter Szeredi

An Example Constraint We illustrate constraint handling with a small example.

Consider the expression x in y, where the types of x,y are X,Y, respectively. The

in function checks if the first argument is a member of the second. The second

argument is either a list or a dictionary. The type of the whole expression is boolean

and the restriction on X,Y is expressed using the constraint dict list c(Y, ,X),

which can be defined by the following constraint handling rules:

% dict_list_c(X,A,B):-

% either X is a list of type B and A is integer

% or X is a dictionary with domain type A and range type B

dict_list_c(dict(X,Y),A,B) <=> A = X, B = Y.

dict_list_c(list(X),A,B) <=> A = int, B = X.

The rules remain suspended until the first argument gets instantiated to a dict/2

or list/1 structure. The constraint fails if the adequate types cannot be unified.

However, these rules are incomplete in two ways. First, as we have seen in Sec-

tion 4, a list can also be represented as a tuple. Hence, we have to add the following

rule:

dict_list_c(tuple(Xs),A,B) <=>

A = int, (foreach(B,Xs), param(B) do true).

The second problem is the lack of error handling. If the constraint fails, the whole

program fails. Thus, instead of telling the user where the type error occurred, we

only indicate that there is a type error, which is not useful at all. We address this

by assigning an identifier to each expression. Each time an error occurs, we store

the identifier and the kind of error. After all constraints exited, we retrieve the

identifiers of the erroneous expressions and the relevant location in the program

code. With these we can give an error message that explains the problem. The final

version of the constraint handling rules for dict list c/3:

% dict_list_c(X,A,B):-

% either X is a list of type B and A is integer

% or X is a dictionary with domain type A and range type B

dict_list_c(X,A,B,ID) <=> nonvar(X) |

(X = dict(A,B)

; X = list(B), A = int

; X = tuple(Xs), A = int,

(foreach(B,Xs), param(B) do true)

; assert(q:error(type,ID,wrong_dict_list))

), !.

The constraint wakes up as soon as the first argument is instantiated to a non-

variable. Then, if it is a dictionary or a list, we can enforce the constraint by

unifying some terms. If the unification succeeds, the constraint exits successfully.

Otherwise, we store that an error occurred.

Static Type Checking for the Q Functional Language in Prolog 13

6.3 Issues about Type Declarations

As we have discussed in Section 3, the user is required to provide every variable and

user-defined function with a type description. In this subsection we give reasons for

this requirement.

As we have seen before, the immediate benefit is that the types of all leaves of the

abstract tree are known at the beginning of the analysis. Without type declarations,

some constraints might remain suspended and lots of types unknown. In this case

we have to use some sort of labeling to assign a type to each expression.

Furthermore, if the arguments of constraints are ground, we do not have to

worry about the interaction of constraints. Consider, for example the following

two constraints:

int_or_float(X) <=> (X == int ; X == float) | true.

int_or_long(X) <=> (X == int ; X == long) | true.

If these two constraints apply to type T, then they will not do anything as long as T

is a variable, even though there is only one solution, namely T=int. In order for the

type analyser to infer this, we have to add a new rule that describes the interaction

of the two constraints, such as

int_or_float(X), int_or_long(X) <=> X = int.

More complex constraints can interact in many different ways and the number of

constraint handling rules necessary for capturing all interactions can be exponential

in the number of constraints. Given that we work with more than 50 different

constraints, it is not realistic to write up exhaustively all rules. If, on the other

hand, the arguments are sufficiently instantiated that the constraints can wake

up individually (not knowing about the others), then we only need to provide a

couple rules for each constraint. In the above example, if X is instantiated, then

either X=int and both constraints exit successfully or else at least one constraint

indicates an error.

For each user defined function, we have to copy its type to each occurrence of the

function. If the type is ground, copying is simple since we unify the type expressions.

This, however, does not work if the type of the function contains variables that are

possibly constrained. Let the type of f be X -> int where there is a constraint on

X ensuring that it is from the set {int, float}. Consider the following code:

x:f 2

y:f 3.1

If we unify the type variables for each occurrence of f with X -> int, then from

the first line X will be instantiated to int, which will make the type checker indicate

a type error in the second line, since it will try to unify int with float. What we

need is separate instances of the type of f with distinct variables, while holding

the same constraints, which is quite complicated. Fortunately, this problem does

not arise if all functions are provided with a type declaration, because the current

type language does not allow non-ground type declarations. So, mandatory type

declarations ensure that each function has a ground type.

14 Zsolt Zombori, János Csorba and Péter Szeredi

7 Evaluation and Future Work

The static type checking tool has been developed in Prolog in about 6 months by

the three authors of this paper. Having undergone some initial testing, it is now

being evaluated on real-life Q programs at Morgan Stanley Business and Technology

Centre. Even in this early stage of testing, the type checking tool pointed out several

type errors in real-life Q programs.

Implementation The DCG rule formalism of Prolog was extremely useful in imple-

menting the parser. Because no precise definition for the Q language is publicly

available, the syntax accepted by the tool often changed during the development.

Hence it was crucial that the parser is easy to modify. For this reason we believe

that DCG was a particularly good choice.

Similarly, we were satisfied with the choice of CHR for implementing the type

checking. The development of the constraint rules describing the types of the built-in

functions was fairly straightforward. Even without rules describing the interaction

of constraints, we experienced no performance problems in type checking (although

this may change if we move on to type inference).

From Type Checking towards Type Inference In Subsection 6.3 we gave justification

for requiring type information about variables and user defined functions. However,

it is often rather uncomfortable for the programmer to write so many declarations,

so it is worth trying to lift this restriction at least partially. First, (non-function)

variables that are initialised do not require a type declaration since the analyser can

infer the type from the code. For functions, in many cases it is enough to declare

the types of the input parameters, since from them the type of the output can be

inferred.

A related question is that of polymorphic types. The type definition language can

be extended in a straightforward way to allow polymorphism. In principle, it seems

to be feasible to use a variant of the Hindley-Milner algorithm (Milner 1978) for

type inference involving polymorphic types. However, it is yet unclear whether this

can be done with acceptable performance, given the large number of overloaded

function symbols.

In the immediate future, we plan to further examine and implement all possibil-

ities of omitting type declarations and allowing for polymorphic types.

8 Related Work

Use of Prolog for Parsing Prolog has been used for writing parsers and compil-

ers from its very conception. (Colmerauer 1978) defines Metamorphosis Grammars

as a Prolog extension to support the task of parsing, while (Pereira and Warren

1980) describe Definite Clause Grammars as a simplified form of Metamorphosis

Grammars. This extension is supported by practically all Prolog implementations

today.

(Cohen and Hickey 1987) give a comprehensive overview of parsing and compiling

Static Type Checking for the Q Functional Language in Prolog 15

techniques in the context of Prolog language. (Paakki 1991) reports on the Prolog

implementation of a compiler for a programming language called Edison.

Types and constraints Several dynamically typed languages have been extended

with a type system allowing for static type checking or type inference. (Mycroft

and O’Keefe 1984) describe a polymorphic type system for Prolog. (Marlow and

Wadler 1997) present a type system for Erlang, which is similar to Q in that they

are both dynamically typed functional languages. Several of the shortcomings of

this system were addressed in (Lindahl and Sagonas 2006). The tool presented in

this work differs from ours in its motivation. It requires no alteration of the code (no

type annotations) and infers function types from their usage. It does not provide

type safeness, instead aims to discover provable type errors. Whenever a type error

is not certain, the system will assume that it will not happen. We, on the other

hand, guarantee type safety by providing warnings in cases of potential errors. Be-

sides, type annotations are an important means to enhance program readability

and although we are working to reduce the number of mandatory annotations, it

is very unlikely that we would ever want to eliminate all of them. (Demoen et al.

1998) report on using constraints in type checking and inference for Prolog. They

transform the input logic program with type annotations into another logic pro-

gram over types, whose execution performs the type checking. They give an elegant

solution to the problem of handling infinite variable domains by not explicitly rep-

resenting the domain on unconstrained variables. We believe that their work can be

useful for us as we move from type checking towards type analysis. (Sulzmann and

Stuckey 2008) describe a generic type inference system for a generalisation of the

Hindley-Milner approach using constraints, and also report on an implementation

using Constraint Handling Rules.

9 Conclusions

We presented a type checking tool for the Q language as a Prolog application. We

developed a type description language for the type system of Q, which helps in

making Q programs easier to read and maintain. We implemented a parser, and a

constraint-based type checker. Using constraints enabled us to capture the highly

polymorphic nature of built-in functions due to overloading. The type checker pro-

vides type safeness: a program that is deemed type correct cannot produce type

errors during execution. The tool is now being deployed in an industrial environ-

ment, with positive initial feedback.

Acknowledgements

We acknowledge the support of Morgan Stanley Business and Technology Centre,

Budapest in the development of the Q type checker system. We are especially

grateful to Balázs G. Horváth and Ferenc Bodon for their encouragement and help.

16 Zsolt Zombori, János Csorba and Péter Szeredi

References

Borror, J. A. 2008. Q For Mortals: A Tutorial In Q Programming. CreateSpace,
Paramount, CA.

Cohen, J. and Hickey, T. J. 1987. Parsing and compiling using Prolog. ACM Trans-

actions on Programming Languages and Systems 9, 2, 125–163.

Colmerauer, A. 1978. Metamorphosis grammars. In Natural Language Communication

with Computers, L. Bolc, Ed. Lecture Notes in Computer Science, vol. 63. Springer,
133–189.

Demoen, B., Garćıa de la Banda, M., and Stuckey, P. 1998. Type constraint solving
for parametric and ad-hoc polymorphism. In Proceedings of Australian Workshop on

Constraints. 1–12.

Fruehwirth, T. 1998. Theory and Practice of Constraint Handling Rules. In Journal of

Logic Programming, P. Stuckey and K. Marriot, Eds. Vol. 37(1–3). 95–138.

Kx-Systems. Representative customers .
http://kx.com/Customers/end-user-customers.php.

Lindahl, T. and Sagonas, K. F. 2006. Practical type inference based on success typings.
In PPDP, A. Bossi and M. J. Maher, Eds. ACM, 167–178.

Marlow, S. and Wadler, P. 1997. A practical subtyping system for Erlang. SIGPLAN

Not. 32, 136–149.

Milner, R. 1978. A Theory of Type Polymorphism in Programming. Journal of Computer

and System Sciences 17, 3, 348–375.

Moore, R. C. 2000. Removing left recursion from context-free grammars. In Proceedings

of the first conference on North American chapter of the Association for Computational

Linguistics. 249–255.

Mycroft, A. and O’Keefe, R. A. 1984. A polymorphic type system for Prolog. Artificial
Intelligence 23, 3, 295–307.

Paakki, J. 1991. Prolog in practical compiler writing. The Computer Journal 34, 1,
64–72.

Pereira, F. C. N. and Warren, D. H. D. 1980. Definite clause grammars for lan-
guage analysis – a survey of the formalism and a comparison with augmented transition
networks. Artificial Intelligence 13, 3, 31–278.

SICS. 2010. SICStus Prolog Manual version 4.1.3. Swedish Institute of Computer Science.
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html.

Sulzmann, M. and Stuckey, P. J. 2008. HM(X) type inference is CLP(X) solving.
Journal of Functional Programming 18, 251–283.

TIOBE. 2010. TIOBE programming-community, TIOBE index. http://www.tiobe.com.

