
Using Constraint Handling Rules to Provide

Static Type Analysis for the Q Functional

Language

János Csorba, Zsolt Zombori, and Péter Szeredi

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

{csorba,zombori,szeredi}@cs.bme.hu

Abstract. We describe an application of Prolog: a type checking tool
for the Q functional language. Q is a terse vector processing language, a
descendant of APL, which is getting more and more popular, especially
in financial applications. Q is a dynamically typed language, much like
Prolog. Extending Q with static typing improves both the readability of
programs and programmer productivity, as type errors are discovered by
the tool at compile time, rather than through debugging the program
execution.
The type checker uses constraints that are handled by Prolog Constraint
Handling Rules. During the analysis, we determine the possible type
values for each program expression and detect inconsistencies. As most
built-in function names of Q are overloaded, i.e. their meaning depends
on the argument types, a quite complex system of constraints had to be
implemented.

Keywords: logic programming, types, static type checking, constraints, CHR

1 Introduction

Our paper presents ongoing work on the type analysis tool qtchk for the Q vector
processing language. The tool has been developed in a collaborative project
between Budapest University of Technology and Economics and Morgan Stanley
Business and Technology Centre, Budapest. We described our first results in [11].
That version provided type checking: the programmer was expected to provide
type annotations (in the form of appropriate Q comments) and our task was to
verify the correctness of the annotations. In the current version we move from
type checking towards type inference: we no longer require any type annotations
(although we allow them), but infer the possible types of all expressions from
the program code. Consequently, for any syntactically correct Q program the
analyser will detect type inconsistencies, as well as list the possible types for
consistent expressions.

In Section 2 we briefly introduce the Q language and provide an overview of
our type analysis tool. For more details, we refer the readers to [11]. Afterwards,

in Section 3 we present the constraint satisfaction problem (CSP) and argue
that type reasoning can be seen as a CSP. Section 4 introduces the type system
of the Q language. Section 5 is devoted to implementing type inference in the
qtchk program. In Section 6 we provide an evaluation of the tool developed and
give an outline of future work, while in Section 7 we review some approaches
related to our work. Finally, Section 8 concludes the paper.

2 Background

In this section we first present the Q programming language. Afterwards, we
provide an overview of the qtchk type analyser tool. Most of the text in the
section is taken directly from [11] which describes the first version of qtchk. For
more details about the Q language and the architecture of our system, we refer
the reader to [11].

2.1 The Q Programming Language

Q is a highly efficient vector processing functional language, which is well suited
to performing complex calculations quickly on large volumes of data. Conse-
quently, numerous investment banks (Morgan Stanley, Goldman Sachs, Deutsche
Bank, Zurich Financial Group, etc.) use this language for storing and analysing
financial time series [3]. The Q language first appeared in 2003 and is now (April
2011) so popular, that it is ranked among the top 30 programming languages by
the TIOBE Programming Community [10].

Types Q is a strongly typed, dynamically checked language. This means that
while each variable is associated with a well defined type, the type of a variable
is not declared explicitly, but stored along its value during execution. The most
important types are as follows:

– Atomic types in Q correspond to those in SQL with some additional date
and time related types that facilitate time series calculations. Q has the fol-
lowing 16 atomic types: boolean, byte, short, int, long, real, float, char,
symbol, date, datetime, minute, second, time, timespan, timestamp.

– Lists are built from Q expressions of arbitrary types.
– Dictionaries are a generalisation of lists and provide the foundation for

tables. A dictionary is a mapping that is given by exhaustively enumerating
all domain-range pairs. For example, (‘a‘b ! 1 2) is a dictionary that maps
symbols a,b to integers 1,2, respectively.

– Tables are lists of special dictionaries called records, that correspond to
SQL records.

Main Language Constructs Q being a functional language, functions form the
basis of the language. A function is composed of an optional parameter list
and a body comprising a sequence of expressions to be evaluated. Function

application is the process of evaluating the sequence of expressions obtained
after substituting actual arguments for formal parameters.

As an example, consider the expression

f: {[x] $[x>0;sqrt x;0]}

which defines a function of a single argument x, returning
√
x, if x > 0, and 0

otherwise. Note that the formal parameter specification [x] can be omitted from
the above function, as Q assumes x, y and z to be implicit formal parameters.

Input and return values of functions can also be functions: for example, a
special group of functions, called adverbs take functions and return a modified
version of the input.

Some built-in functions (dominantly mathematical functions) with one or
two arguments have a special behaviour called item-wise extension. Normally,
the built-in functions take atomic arguments and return an atomic result of
some numerical calculation. However, these functions extend to list arguments
item-wise. If a unary function is given a list argument, the result is the list
of results obtained by evaluating each argument element. A binary function
with an atom and a list argument evaluates the atom with each list element.
When both arguments are lists, the function operates pair-wise on elements in
corresponding positions. Item-wise extension applies recursively in case of deeper
lists, e.g. ((1;2); (3;4)) + (0.1; 0.2) = ((1.1;2.1); (3.2;4.2))

While being a functional language, Q also has imperative features, such as
multiple assignment variables, loops, etc.

Type restrictions in Q The program code environment can impose various kinds
of restrictions on types of expressions. In certain contexts, only one type is
allowed. For example, in the do-loop do[n;x*:2], the first argument specifies
how many times x has to be multiplied by 2 and it is required to be an integer.
In other cases we expect a polymorphic type. If, for example, function f takes
arbitrary functions for argument, then its argument has to be of type A ->

B (a function taking an argument of type A and returning a value of type B),
where A and B are arbitrary types. In the most general case, there is a restriction
involving the types of several expressions. For instance, in the expression x = y

+ z, the type of x depends on those of y and z. A type analyser for Q has to use
a framework that allows for formulating all type restrictions that can appear in
the program.

2.2 Overview of the Qtchk Type Analyser

The type analysis implemented in qtchk can be divided into three parts:

– Pass 1: lexical and syntactic analysis
The Q program is parsed into an abstract syntax tree structure.

– Pass 2: post processing
Some further transformations make the abstract syntax tree easier to work
with.

– Pass 3: type checking proper
The types of all expressions are processed, type errors are detected.

Abs Abs

TreeTree

Q program

Type comments

Lexical

Analyser Analyser

Syntactic Post

Processing

Errors

Type

Reasoning

types

Built-in Func

Fig. 1. Architecture of the type analyser

The algorithm is illustrated in Figure 1. The analyser receives the Q program
along with the user provided type declarations. The lexical analyser breaks the
text into tokens. The tokenizer recognises constants and hence their types are
revealed at this early stage. Afterwards, the syntactic analyser parses the tokens
into an abstract syntax tree representation of the Q program. Parsing is followed
by a post processing phase that encompasses various small transformation tasks.

In the post processing phase some context sensitive transformations are car-
ried out, such as filling in the omitted formal parameter parts in function def-
initions, and finding, for each variable occurrence, the declaration the given
occurrence refers to.

Finally, in pass 3, the type analysis component traverses the abstract syntax
tree and imposes constraints on the types of the subexpressions of the program.
This phase builds on the user provided type declarations and the types of built-
in functions. The latter are listed in a separate text file, that is parsed just
like any Q program. The predefined constraint handling rules trigger automatic
constraint reasoning, by the end of which the types (or the sets of potential
types) of all subexpressions are inferred.

Each phase of the type analyser detects and stores errors. At the end of the
analysis, the user is presented with a list of errors, indicating the location and
the kind of error. In case of type errors, the analyser also gives some justification,
in the form of conflicting constraints.

In the rest of the paper, we describe improvement on the type analysis com-
ponent. The other parts of the system remain unchanged.

3 Type Inference as a Constraint Satisfaction Problem

In this section we introduce the Constraint Satisfaction Problem (CSP). After-
wards we present some general considerations on translating type inference into
a CSP.

3.1 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) [2] can be described with a triple
(X,D,C), where

– X = {x1, . . . , xn} is a series of variables,
– D = {D1, . . . , Dn} is a series of finite sets called domains,
– variable xi can only take values from domain Di,
– C = {c1, . . . , ck} is a set of constraints, i.e., atomic relations whose arguments

are variables from X .

A solution to a CSP is an assignment to each xi ∈ X a domain element vi ∈ Di,
such that all constraints c ∈ C are satisfied.

A value di of a variable xi of a constraint c is superfluous in case there is
no assignment to the rest of the variables of c along with xi = di that satisfies
constraint c. Removing superfluous values from the corresponding domains yields
an equivalent CSP.

There are two mechanisms that lead to a solution of a CSP. First, constraints
constantly monitor the domains of their variables and remove superfluous val-
ues. Second, in case constraints fail to reduce some domain to a single value, we
apply labeling: we choose a variable xi and split its domain into two (or more)
parts, creating a choice point where each branch corresponds to a reduced do-
main. Through a backtracking search we explore the branches. During labeling,
constraints can wake up as the domains of their variables change and can further
eliminate superfluous values. In case a domain becomes empty, we roll back to
the last choice point. By the end of labeling, either we find a single value for
each variable such that all constraints are satisfied, or else we conclude that the
CSP is unsatisfiable.

3.2 Type Inference and the Constraint Satisfaction Problem

In this subsection we overview the requirements to transform type reasoning into
a CSP.

We start from a program code that can be seen as a complex expression
built out of simpler expressions. Our aim is to assign a type to each expression
appearing in the program in a coherent manner. The types of some expressions
are known immediately (atomic expressions, built-in function symbols), while
other types might be provided by the user (through a type declaration). Besides,
the program syntax imposes restrictions that can be interpreted as constraints
between the types of certain expressions. A coherent type assignment respects
all user declarations and all constraints.

To each expression we assign a variable. In case the set T of all possible
types is finite, we set the domain Di of variable xi to T . If however, there are
infinitely many types, we use type expressions that represent sets of types. For
example, the infinite set of all homogeneous lists might be represented with
the single polymorphic type expression list(X). This opens the possibility to
finitely represent infinite sets. For this, we have to design a type language such
that for any set of types that is relevant for the programming language at hand
we can provide a finite representation using type expressions. Let Tk denote the
set of types represented by type expression k. For each variable xi we maintain a
list Li of type expressions, and we set the domain of the variable Di to

⋃
l∈Li

Tl.

For an expression with known type, we immediately restrict the domain to the
given value. Other restrictions appear as constraints that monitor the domains of
their variables and eliminate superfluous values. Since a type expression stands
in general for a set of types and not for an individual type, narrowing the domain
does not always remove a type expression, but might also involve replacing it
with some other, depending on the particular constraint.

Even if we manage to finitely represent infinite sets of types, we might still run
into difficulty during labeling. By repeatedly splitting the domain of a variable,
we cannot guarantee that the domain eventually turns into a singleton. Hence,
instead of splitting the domain Di, we split the list of type expressions Li.
Once this list becomes a singleton, we terminate labeling. Consequently, we
obtain (potentially infinite) sets of types for our expressions. This is no problem,
however, if the type expressions are chosen carefully. Our first aim with labelling
is not to obtain a unique type for each expression, but to enable the constraints
to wake up and eliminate superfluous values. If the type expressions are “fine
grained” enough, such that constraints can exit once the types of their arguments
are all represented with a single type expression, then there will be no constraints
left by the end of labeling and we can return the set of types corresponding to
the type expression.

In conclusion, we formulate the following requirements towards a type lan-
guage to be used for type inference:

1. Each set of types that can be associated with an expression of the given
programming language should be representable with a finite list of type
expressions.

2. For each constraint c, if each of its variables xi is associated with a singleton
list Li of type expressions, then c can exit.

Given such a type language, we can treat the task of type inference as a CSP. The
only differences are that 1) instead of a set of types, we maintain a finite set of
type expressions to represent the domain of a variable and 2) constraints not only
remove, but sometimes replace type expressions when eliminating superfluous
values.

4 Type Inference for the Q Language

After the general remarks in the previous section, we now examine the Q specific
aspects of type inference in the context of CSP.

4.1 Type expressions

We describe the type language developed for Q. A significant improvement from
the first type language presented in [11] is that we allow polymorphic type ex-
pressions, i.e., any part of a complex type expression can be replaced with a
variable. Expressions are built from atomic types and variables using type con-
structors. The abstract syntax of the type language – which is at the same time
the Prolog representation of types – is as follows:

TypeExpr =

AtomicTypes
| TypeVariable

| list(TypeExpr)

| hlist

| tuple([TypeExpr, ... ,TypeExpr])

| stuple([Name, ... ,Name])

| dict(TypeExpr, TypeExpr)

| func(TypeExpr, TypeExpr)

where TypeVariable is a Prolog variable. Due to the presence of variables, a
type expression represents a (possibly infinite) set of types, which we take to be
the meaning of the expression. In the following, we list the meaning of all type
expressions:

AtomicTypes : This is shorthand for the 16 atomic types of Q.
TypeVariable The set of all expressions, with the restriction that the same

variables need to stand for the same type expression.
list(TE) The set of all lists whose elements are all from the set represented by

TE.
hlist The set of all lists.
tuple([TE1, . . . , TEk]) The set of all lists of length k, such that the ith ele-

ment is from the set represented by TEi.
stuple([name1, . . . , namek]) A singleton set consisting of the k long symbol

list whose ith element is namei.
dict(TE1, TE2) The set of all dictionaries, such that the domain and range

are from the sets represented by TE1 and TE2, respectively. Domains and
ranges are represented as a sequence of possible values, i.e., for example,
the dictionary (1.2 1.3 ! 1 2) has type dict(tuple([float, float]),

tuple([int, int])).
func(TE1, TE2) The set of all functions, such that the domain and range are

from the sets represented by TE1 and TE2, respectively.

Mapping Type Inference to CSP For each Q expression we maintain a set of
possible types, its domain. As described in Section 3, it is not the domain of the
Q expression that we keep track of, but a list type expressions. The domain can
be obtained by taking the union of the sets represented by the type expressions
in the list. It is this list that we try to narrow down as much as possible during
constraint reasoning.

Non-Overlapping Type Expressions While some type expressions correspond di-
rectly to Q language constructs (such as list, dict or func), others were “dis-
covered” in the process of trying to describe Q expressions. Such are the tuple

and stuple type expressions. Some built-in functions require list arguments with
fixed length. These lists might also have to be non-homogeneous, with well spec-
ified type for each list member. To be able to describe the type of such functions
(and that of their argument), we introduced the tuple type. Using the tuple

type, we can for example easily describe a function that takes a list consisting of
an integer and a symbol and returns another list consisting of two integers and
a float: func(tuple([int,symbol]),tuple([int,int,float])).

An stuple is a degenerate tuple as it represents a singleton set. This ex-
pression is necessary for manipulating tables: if for instance we want the type
checker to verify that a given record can be inserted into a given table, then we
have to know if the record and the table have the same column names. A record
is a dictionary that maps column names to values. By using the stuple type,
we can represent the domain type of the dictionary in such a way that contains
the names of all columns. Hence, instead of treating the dictionary ‘name‘age

! (‘jim;12) as a dict(tuple([symbol,symbol]),tuple([symbol,int])), we
represent its type as dict(stuple([name,age]),tuple([symbol,int])).

Introducing these types causes some difficulties, because type expressions
using different constructors are not necessarily disjoint. As we have seen, a tuple
is a special list, an stuple is a special tuple. In the course of type inference, as
constraints narrow down the domains of expressions, we cannot use unification
to obtain a narrower set of types. As an example, consider the next two type
expressions: T1 : list(X), T2 : tuple([int, Y]). Unification of these two terms
leads to failure, however, the two expressions are not disjoint. If expression E

has to satisfy T1 and T2 simultaneously, the domain of E has to be narrowed to
tuple([int, int]), with the substitutions X=int and Y=int.

4.2 Type Declarations

When we first developed a type checker tool for Q [12], the user was required
to provide every variable and user-defined function with a ground type descrip-
tion. Since then, we lifted both parts of the restriction: 1) type declarations are
not obligatory and 2) we allow polymorphic type expressions using variables.
However, the user can still opt to provide a type annotation for an arbitrary
expression. Such annotations appear as Q comments and hence do not interfere
with the Q compiler. A type declaration gets attached to the smallest expression

that it follows immediately. For example, in the code x + y //$: int variable
y is declared to be an integer.

Type declarations can be of two kinds, having slightly different semantics:
imperative (believe me that the type of expression E is T) or interrogative (I
think the type of E is T, but please do check). To understand the difference,
suppose the value of x is loaded from a file. This means that both the value
and the type is determined in runtime and the type checker will treat the type
of x as any. If the user gives an imperative type declaration that x is a list of
integers, then the type analyser will believe this and treat x as a list of integers.
If, however, the type declaration is interrogative, then the type analyser will
issue a warning, because there is no guarantee that x will indeed be a list of
integers (it can be anything). Interrogative declarations are used to check that a
piece of code works the way the programmer intended. Imperative declarations
provide extra information for the type analyser. A Q program is guaranteed to
be free of type errors in case the analyser issues no errors and all the imperative
declarations are indeed true.

Different comment tags have to be used for introducing the two kinds of
declarations. We give an example for each:

f //$: int -> boolean interrogative

g //!: int -> int imperative

5 Implementing Type Inference in the Qtchk program

The type checking tool has been implemented in SICStus Prolog 4.1 [8]. As it is
described in more detail in [12], we use a parser to build an abstract syntax tree
from the Q program, which is the input of the type analyser component. The
output is the list of expressions that contain type errors. During execution, we
try to assign a type to each program expression. Each expression is represented
by a node in the abstract syntax tree. In order to be able to comfortably refer
to various expressions, we extend each abstract syntax tree node with a globally
unique identifier. We use these identifiers instead of variables in the CSP, i.e.,
each identifier gets associated with a domain of type expressions. Besides, the
arguments of type constraints that we will formulate are identifiers. Identifiers
have to be provided to constraints in order to be able to provide error messages
pointing to a specific location, and in the presence of identifiers, introducing new
CSP variables is unnecessary.

5.1 Constraints

Constraints are handled using the Prolog CHR [7] library. As we have said ear-
lier, node identifiers play the role of CSP variables and our aim is to find a type
for each identifier. We represent domains using the CHR constraint dom(ID, T),
which associates identifier ID with the list of type expressions T. The constraint

means that the type of the expression identified by ID belongs to the set repre-
sented by T. In case an expression is unconstrained, we do not add the dom/2

constraint. This reduces the number of constraints.
In contrast to the earlier type checker tool, the order in which constraints

are added is irrelevant. It does not matter if some type declaration is missing
or if we first constrain an expression and then constrain its subexpressions, or
the other way around. Each constraint is bound to do some narrowing in the
domains of the identifiers it is attached to, whether it comes later or earlier.
Constraints that can be used for type inference can originate from the following
sources in a Q program:

Imperative type declarations If the user gives an imperative type declara-
tion, then the type analyser will accept this unconditionally. This means that
we add a dom/2 constraint on the given expression.

Built-in functions For every built-in function, there is a well-defined relation
between the types of its arguments and the type of the result. These rela-
tions are expressed by adequate CHR constraints. For each built-in function
we provide manually a number of constraint handling rules to describe how
the constraint is supposed to narrow domains. For example, we use the con-
straint sum c to capture the relation between the arguments of the built-
in function ‘+‘. So, if we see an expression c:a+b, we add the constraint
sum c(ida,idb,idc).

Atomic expressions The types of atomic expressions are revealed already by
the parser, so for example, 2.2f is immediately known to be a float.

Variables Local variables are made globally unique by the parser. This means,
that variables with same name are equal, hence their types are also equal.
We ensure this by equating their corresponding domains.

Program syntax Most syntactic constructs impose some constraints on the
types of their constituent constructs. For example, the first argument of
an if-then-else construct must be a boolean value. Another example is
function application: it has a subexpression with type func(a,b), another
subexpression with type a and the whole expression is of type b.

5.2 Item-wise List Extension of Built-in Functions

Capturing the item-wise extension of built-in functions requires further con-
siderations. When we see the expression c : a + b, then either a and b have
atomic types and the ′sum′ relation applies to them, or at least one of them
is a list and the relation applies to the list elements. One way to capture
this is to make the constraints clever enough, i.e., simply add the constraint
sum c(id(a),id(b),id(c)) and provide the adequate rules for the sum c con-
straint. The disadvantage of this approach is that the rules describing the list ex-
tension behaviour have to be repeated for each and every built-in function, which
is not productive. Instead, we introduced a metaconstraint listextension/3.
Let f be a binary built-in function, which extends item-wise to lists in both ar-
guments and which imposes constraint c on its atomic arguments and result. As

we traverse the abstract syntax tree, suppose we meet f with arguments identi-
fied by ID1, ID2 and result identified by ID3. We cannot add c(ID1,ID2,ID3)

to the constraint store until we know for sure that the the arguments are all of
atomic type. Instead, we use the metaconstraint listextension(Dir, Args,

Cons), where Dir specifies which arguments can be extended item-wise to lists,
Args is the list of arguments on which the list of constraints Cons will even-
tually have to be formulated. Hence, in our example, we add the constraint
listextension(both,[ID1,ID2,ID3],[c]). If we somehow infer that the in-
put arguments are atomic, then we simply add the constraint c(ID1,ID2,ID3)
and the metaconstraint can exit. If, on the other hand some argument turns
out to be a list, we replace the metaconstraint with another one. For example,
if we know that the type of ID1, ID2 are list(A), list(B), respectively, then
the type of ID3 must be a list as well and we replace our listextension con-
straint with the following two constraints: listextension(both,[A,B,C],[c]),
dom(ID3,[list(C)]).

Using the listextension/3 metaconstraint provides a recursive solution
that can handle lists of arbitrary depth and that treats all extendable functions
in a uniform manner.

We illustrate list extension with the simple Q program: c:c+1. The corre-
sponding abstract syntax tree is as follows:

assign

id(1)

/ \

var(c) app

id(2) id(3)

/ \

var(+) list

id(4) id(5)

/ \

var(c) int

id(6) id(7)

Table 1 summarises the added constraints. As we reach the assign node, we
know that the type of the left side (id(2)) is the same as the type of the right
side (id(3)) which also equals the type of the whole assignment (id(1)). Later,
when we find the second occurrence of variable c, we know that its type must
equal with the type of the first occurrence of c. Once we reach the + function,
we add the listextension/3 metaconstraint. The number 1 is immediately
recognised as an integer. Let us suppose that variable c later turns out to be a
list, i.e., of type list(X). Hence the result of the sum (id(3)) must also be a list
(list(Z)), and the metaconstraint has to be formulated on the list members.
Finally, suppose X turns out to be a float. Then, listextension can be replaced
with the sum c constraint, which will now have atomic arguments and which will
exit after setting the domain of Z to float.

Table 1. Constraints related to the expression c:c+1.

Reason Constraints

node assign eq(id(2),id(3)), eq(id(1),id(3))

node app dom(id(4), [func(id(6),id(7),id(3))])

variable c eq(id(2),id(6))

function + listextension(both,[id(6),id(7),id(3)],[sum c])

constant 1 dom(id(7),[int])

dom(id(6),[list(X)]) listextension(both,[X,id(7),Z],[sum c])

dom(id(3),[list(Z)])

dom(X,[float]) sum c(X,id(7),Z)

sum c(X,id(7),Z) dom(Z,[float])

5.3 Constraint Interaction

The CHR constraint dom/2 is used to represent the domains of constraint-
variables (that are represented in our solution with identifiers). The domain is
a list of type expressions, that are Prolog structures including variables. Other
constraints interact directly with the dom/2 constraints. Different constraints
work together through making changes in the dom/2 constraints. Changing the
domain always results in a domain, where the new list of Prolog expressions rep-
resents a narrower set of types than the original one. This does not necessarily
mean that the size of the domain list is reduced, as is the case when the type of
an expression is refined from list(X) to list(int) or even to tuple(int,int).

Constraints do not exclusively narrow variable domains. In some situations
it is necessary for constraints to invoke other constrains. For example, if one
argument of the sum c constraint turns out to be an integer, then the analyser
infers that the type of the other argument and the result must equal.

5.4 Labeling

The inferred type of a Q expression is described in a list of type expressions using
the dom/2 constraint. Once all constraints have been added, labeling might be
necessary. This subsection is somewhat speculative, because we have not yet
implemented labeling in our system.

The constraints might remain suspended, however, they are guaranteed to
exit once the domain lists of their arguments become singleton. We apply labeling
to ensure that the suspended constraints are not inconsistent. Hence, our aim
with labeling is not to assign an unique type to each expression, rather to split
the domains until all constraints exit. During labeling, we split the domain lists
and stop once all lists become singletons (note that in this case the real domain
associated with the expression is a set, which can as well be infinite). This much
labeling ensures that no constraints remain. For example, if the domain of an
expression is list(X), and there aren’t any constraints on X, then we do not
need further labeling on this domain.

Individual constraints control the labeling. Once labeling starts, the con-
straints examine the domains of their arguments and split them as much as they
need to in order to be able to exit. Hence, each constraint is equipped with ad-
equate rules for labeling. This solution ensures on one hand that labeling goes
on until active constraints remain, and on the other that labeling stops as soon
as there are no active constraints left.

After labeling, either we find that the suspended constraints are inconsistent
and issue an error message, or we collect the possible sets of types to each
expressions. We show these sets to the user.

5.5 Detection of Type Errors

A Q program is type correct if there can be no type errors during execution. In
case our type analyser issues neither error nor warning, the program is guaran-
teed to be type correct.

Type errors can be of two different kinds. On the one hand, the Q program
itself might contain an error (by using, for example, a float where integer is
expected). The type analyser detects these errors when some domain reduces
to the empty set. On the other hand, there might be a mismatch between the
inferred type of an expression and the type provided by the user through an
interrogative type declaration. We examine both cases.

Inferred Type Errors After having added all constraints, an empty domain
of an expression indicates a type error. However, type errors propagate upwards
in the abstract syntax tree, since if an expression is inconsistent, then so is
any superexpression as well. To avoid overburdening the user with unnecessary
details, we would like to point to the narrowest expression that contains the
error, so we will not list every expressions with empty domain. The narrowest
expression is the one furthest down the abstract syntax tree. Hence, we show the
expressions that are inconsistent (their domains are empty) and whose children
are all consistent (their domains are not empty).

We note that there exist one abstract node for which this solution is not fully
satisfactory, the assign node. The problem is that here the type error not only
propagates upwards, but sideways as well, toward a sibling. In the expression
a:b, if the domain of b reduces to the empty set, then so will the domain of a,
even though none is the child of the other. In this situation it is not necessary to
indicate type error for a. However, we cannot distinguish this case from the one
in which a contains a real type error (regardless of b), so we decided to allow
this unnecessary error message. As an example, consider the expression l[2]:

a+b. Let us suppose that variable a and variable b are lists with different length,
which implies a type error at the right side of the assign node. If the variable
l is a list, then it is not necessary to indicate type error on the left side of the
assignment. However, if variable l turns out to be a function, we have a real type
error in the subexpression l[2]. Note that in both cases we obtain the same set
of nodes with empty domains.

Some type errors might remain hidden until we do labeling. In this case,
labeling will fail and we will know there is some error, but we will not know its
location. We are still working to provide a useful error message for the user in
these situations.

Interrogative type declarations Interrogative declarations are used to check
that a piece of code works the way the programmer intended. The user can ask
for any expression if its type is guaranteed to be the one he expects.

Let T1 be the set of types inferred for expression E and T2 the set of types
provided by an interrogative type declaration. Type analyser has to distinguish
the following cases:

– T1 and T2 are disjoint. The analyser has to issue a type error.
– T1 and T2 intersect, but there exist some element of T1 which is not element

of T2. In this case, the programmight run correctly, but there is no guarantee.
We indicate this by issuing a type warning.

– T1 is subset of T2. This means that the program satisfies the expectations of
the programmer and no error message is necessary.

Sets T1 and T2 are represented with lists of type expressions that can be
polymorphic and that might further be constrained by all sorts of constraints.
In this generic scenario, it is very difficult to determine the exact relation of the
two sets and we have yet to come up with a satisfactory solution.

6 Evaluation and Future Work

A static type checking tool, described in [11], has been developed in Prolog in
about 6 months by the three authors of this paper. While that version is under
evaluation on real-life Q programs at Morgan Stanley Business and Technology
Centre, we have started developing a new mechanism for type analysis, that
allows us to move from type checking towards type inference. In the first version
we put the emphasis on completeness: our analyser could determine the unique
type of each program expression. To achieve this, the user was required to provide
type annotations for all user defined functions and all variables. In the new
version described currently, we ease the burden of the programmer and let him
declare as many types as he pleases. As a result, we cannot always determine
the exact type of all expressions. The program infers as much as can be inferred:
if there is a certain type error, we indicate the error; if there is a clash between
the inferred type and the declared type, we again issue an error; if there is an
expression whose type cannot be determined, we provide the set of types from
which it takes value. Our system can be used for checking type declarations as
well as for zero knowledge type inference, depending on the information provided
by the programmer.

Using CHR for type reasoning turned out to be very convenient. We can
represent the possible types for an expression using the dom/2 constraint. CHR

also allows us to change the type of an expression during reasoning – for instance,
what first was a list(int) later turns out to be a tuple(int,int,int) – which
would be very difficult to achieve in a unification based inference mechanism.

We also extended the type language by allowing polymorphic type expres-
sions, which allows the programmer to describe much more types. We further
plan to allow stating constraints on the variables of the type declaration, how-
ever, this task is yet to be explored.

There are still lots of open questions. Maybe most importantly, it is not
clear what to do once the types of some expressions remain ambiguous, with
suspended constraints attached to them. We can wake up the constraints with
some sort of labeling, however, it is not clear how to interpret the type of an
expression obtained after labeling, and how to compare it with the declared type
of the expression.

A lot of constraints related to various built-in functions still need to be im-
plemented, which promises to be a tedious, but rather straightforward work.

Working with ambiguous types can potentially result in lots of suspended
constraints and large search space to be explored during labeling. Our system is
not yet in the test phase, so it is still an open question what sort of performance
difficulties we will have to cope with.

7 Related Work

Several dynamically typed languages have been extended with a type system
allowing for static type checking or type inference. [6] describe a polymorphic
type system for Prolog. [5] present a type system for Erlang, which is similar
to Q in that they are both dynamically typed functional languages. Several of
the shortcomings of this system were addressed in [4]. The tool presented in this
work differs from ours in its motivation. It requires no alteration of the code (no
type annotations) and infers function types from their usage. Instead of well-
typing, it provides success typing: it aims to discover provable type errors. We,
on the other hand, search for potential errors. [1] report on using constraints in
type checking and inference for Prolog. They transform the input logic program
with type annotations into another logic program over types, whose execution
performs the type checking. They give an elegant solution to the problem of
handling infinite variable domains by not explicitly representing the domain on
unconstrained variables. We borrowed this idea and introduced type expressions
to finitely represent infinite domains. [9] describe a generic type inference system
for a generalisation of the Hindley-Milner approach using constraints, and also
report on an implementation using Constraint Handling Rules.

8 Conclusions

We are in the process of developing a type inference tool for the Q language as
a Prolog application. We build on our previous experiences with a type checker
for the same language. For type inference, we make no restriction as to how

much type information is provided by the user. We determine for each program
expression the set of possible types and indicate inconsistencies as well as clashes
with programmer provided type declarations. The type inference is constraint
based, using the Prolog CHR library. Using constraints enabled us to capture
the highly polymorphic nature of built-in functions due to overloading. The type
checker provides type safeness: a program that is deemed type correct cannot
produce type errors during execution.

Acknowledgements

We acknowledge the support of Morgan Stanley Business and Technology Centre,
Budapest in the development of the Q type checker system. We are especially
grateful to Balázs G. Horváth and Ferenc Bodon for their encouragement and
help.

References

1. Demoen, B., Garćıa de la Banda, M., Stuckey, P.: Type constraint solving for
parametric and ad-hoc polymorphism. In: Proceedings of Australian Workshop
on Constraints. pp. 1–12 (1998), http://www.cs.kuleuven.ac.be/cgi-bin-dtai/
publ_info.pl?id=18318

2. Hentenryck, P.V.: Incremental constraint satisfaction in logic programming. In:
ICLP. pp. 189–202 (1990)

3. Kx-Systems: Representative customers ,
http://kx.com/Customers/end-user-customers.php

4. Lindahl, T., Sagonas, K.F.: Practical type inference based on success typings. In:
Bossi, A., Maher, M.J. (eds.) PPDP. pp. 167–178. ACM (2006)

5. Marlow, S., Wadler, P.: A practical subtyping system for Erlang. SIGPLAN Not.
32, 136–149 (August 1997), http://doi.acm.org/10.1145/258949.258962

6. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for Prolog. Artificial In-
telligence 23(3), 295–307 (1984)

7. Schrijvers, T., Demoen, B.: The k.u.leuven chr system: implementation and appli-
cation. In: First Workshop on Constraint Handling Rules: Selected Contributions.
pp. 1–5 (2004)

8. SICS: SICStus Prolog Manual version 4.1.3. Swedish Institute of Computer Science
(September 2010),
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html

9. Sulzmann, M., Stuckey, P.J.: HM(X) type inference is CLP(X) solving. Journal
of Functional Programming 18, 251–283 (March 2008), http://portal.acm.org/
citation.cfm?id=1348945.1348948

10. TIOBE: TIOBE programming-community, TIOBE index (2010), http://www.

tiobe.com
11. Zombori, Z., Csorba, J., Szeredi, P.: Static type checking for the q functional

language in prolog. In: 27th International Conference on Logic Programming (ICLP
2011). Leibniz International Proceedings in Informatics (LIPIcs) (2011)

12. Zombori, Z., Csorba, J., Szeredi, P.: Static Type Checking for the
Q Functional Language in Prolog. Tech. rep., BME-SZIT (2011),
http://www.cs.bme.hu/∼zombori/publications/2011/iclp2011/iclp2011 full.pdf

