
Two Phase Description Logic Reasoning for
Efficient Information Retrieval

Zsolt Zombori

Budapest University of Technology and Economics, Hungary
zombori@cs.bme.hu

1 Overview

Description Logics (DLs) [1] is family of logic languages designed to be a conve-
nient means of knowledge representation. They can be embedded into FOL, but
– contrary to the latter – they are decidable which gives them a great practical
applicability. A DL knowledge base consists of two parts: the TBox (terminol-
ogy box) and the ABox (assertion box). The TBox contains general background
knowledge in the form of rules that hold in a specific domain. The ABox stores
knowledge about individuals. For example, let us imagine an ontology about
the structure of a university. The TBox might contain statements like “Every
department has exactly one chair”, “Departments are responsible for at least 4
courses and for each course there is a department responsible for it”. In contrast,
the ABox might state that “The Department of Computer Science is responsi-
ble for the course Information Theory” or that “Andrew is the chair of the the
Department of Music”.

As DL languages are being used more and more frequently, there is an in-
creasing demand for efficent automated reasoning services. Some reasoning tasks
involve the TBox only. This is the case, for example, when we want to know what
rules follow from the ones that we already know, or we want to verify that the
model of a certain domain does not contain obvious mistakes in the form of con-
tradictions and unsatisfiable concepts. We might want to make sure that there
are not so many restrictions on the chair that it is impossible to be one (which is
the case if he has to spend 70 percent of his time on research an another 70 per-
cent on teaching). Other reasoning problems use both the ABox and the TBox:
in such cases we might ask if a certain property holds for a certain individual
(instance check – Is Andrew a chair?) or we might want to collect all individuals
satisfying a given property (instance retrieval – What are the courses taught by
the Department of Music?).

The Tableau Method [1] has long provided the theoretical background for
DL reasoning and most existing DL reasoners implement some of its variants.
Typical DL reasoning tasks can be reduced to concept consistency checking
and this is exactly what the Tableau Method provides. While the Tableau itself
has proven to be very efficient, the reduction to consistency check is rather
costly for some ABox reasoning tasks. In particular, instance retrieval (i.e., to
enumerate those individuals that belong to a given concept) requires running the



Tableau Method for every single individual that appears in the knowledge base.
Several techniques have been developed to make tableau-based reasoning more
efficient on large data sets, (see e.g. [2]), that are used by the state-of-the-art
DL reasoners, such as RacerPro [3] or Pellet [4].

Other approaches use first-order resolution for reasoning. A resolution-based
inference algorithm is described in [5] which is not as sensitive to the increase of
the ABox size as the tableau-based methods. The system KAON2 [6] is an im-
plementation of this approach, providing reasoning services over the description
logic language SHIQ. The algorithm used in KAON2 in itself is not any more
efficient for instance retrieval than the Tableau, but several steps that involve
only the TBox can be performed before accessing the ABox, after which some
axioms can be eliminated because they play no further role in the reasoning.
This yields a qualitatively simpler set of axioms which then can be used for an
efficient, query driven data reasoning. For the second phase of reasoning KAON2
uses a disjunctive datalog engine and not the original calculus. Thanks to the
preprocessing, query answering is very focused, i.e., it accesses as little part of
the ABox as possible. However, in order for this to work, KAON2 still needs to
go through the whole ABox once at the end of the first phase.

2 Research Direction

In my PhD work I try to develop algorithms that can be used for reasoning
over large ABoxes while the TBox is relatively small. These assumptions do not
hold for all ontologies, but there are some very important examples when this is
the case: one can, for instance, think of searching the WEB in the context of a
specific, well characterized domain.

It seems that the complexity comes from two sources: on one hand the TBox
contains complex background knowledge that requires sophisticated reasoning,
and on the other the size of the ABox makes the sophisticated algorithm too
slow in practice. An important lesson to be learned from KAON2 is that we
might be able to cope with these two sources separately: let us perform the
complex reasoning on the TBox – which we assume to be small – and turn it
into a syntactically simpler set of rules before accessing the ABox. Afterwards,
the simpler rules can be used for a focused, query driven ABox reasoning.

It is not clear how to separate the reasoning for the Tableau. This algorithm
tries to build a model of the knowledge base, but a model of a small part of the
knowledge base is not necessarily useful for constructing a model of the whole.
Resolution approaches are more suitable: we can deduce implicit consequences
of the axioms in one way at the beginning and then deduce further consequences
in another way. In particular, we will be interested in solutions where we start
with a bottom-up strategy and finish with a focused top-down strategy.

To perform first-order resolution, we need to transform the initial axioms to
first-order clauses. While the initial knowledge base does not contain function
symbols (there are no functions in DLs), existential restrictions and minimum
restrictions in the TBox translate to existential quanifiers, which are eliminated



by introducing new function symbols, called skolem functions. This is problem-
atic, because termination is hard to guarantee if we can obtain terms of ever
increasing depth. Furthermore, some top-down reasoning algorithms (top-down
reasoning is a must if the ABox is really large), such as datalog only work if
there are no function symbols. For this reason, it is very important to find some
way to eliminate function symbols before performing the data reasoning. Note
that this is intuitively very possible: the ABox does not contain any knowledge
about functions since they were introduced by us during clausifying the axioms
from the TBox. Hence, everything that is to know about function symbols is in
the clauses derived from the TBox and whatever role they play, they should be
able to play it at the beginning of the reasoning.

3 Two Phase Reasoning

The above considerations motivate a two phase reasoning algorithm. In the first
phase we only work with the clauses derived from the TBox. We use a bottom-up
algorithm, deduce lots of consequences of the TBox, in particular all the impor-
tant consequences of the clauses containing function symbols. By the end of the
first phase, function symbols can play no further role and hence the clauses con-
taining them can be eliminated. The second phase now begins and the reduced
clause set can be used for a focused, top-down reasoning on the ABox.

This separation of TBox and ABox reasoning is only partially achieved in
[6]. By the end of the first phase, we can only eliminate clauses with term depth
greater than one. So, while function symbols persist, there is no more nesting
of functions into each other. In order for the second phase to work, all function
symbols are eliminated using a syntactic transformation: for every function sym-
bol and every constant in the ABox a new constant is introduced. Note that this
step involves scanning through the ABox and results in adding new constants
whose number is linear in the size of the ABox.

Reading the whole ABox even once is not a feasible option in case the ABox
contains billions of assertions or the content of the ABox changes so frequently
that on-the-fly ABox access is an utmost necessity. Such scenarios include reason-
ing on web-scale or using description logic ontologies directly on top of existing
information sources, such as in a DL based information integration system.

4 Results

I started my PhD at Budapest University of Technology in September 2009. I
work as member of a team developing the DLog DL data reasoner [7], available
to download at http://www.dlog-reasoner.org. This is a resolution based
reasoner, built on principles similar to KAON2. One difference is that instead of
a datalog engine, we use the reasoning mechanism of the Prolog language [8] to
perform the second phase [9]. Reasoning with function symbols using Prolog is
possible, unlike the datalog engine, but for considerations about termination it
is equally important to eliminate function symbols during the first phase.



I work to provide DLog with a purely two phase reasoning algorithm. In [10]
I presented a modified resolution calculus for the SHIQ language that allows us
to perform more inferences in the first phase (compared with KAON2), yielding a
simpler TBox to work with in the second phase. Namely, the new calculus ensures
that no function symbols remain at all, without the need to go through the ABox.
The modification makes the first phase somewhat slower, however, the speed of
the second phase becomes independent of the amount of data that is irrelevant to
the query. The greater the ABox the better DLog performs compared to its peers.
Another great advantage of DLog is that its architecture allows for storing the
ABox in an external database that is assessed through direct database queries.

Afterwards, I worked on a new DL calculus ([11] and [12]) where we move res-
olution from first-order clauses to DL axioms, saving many intermediary trans-
formation steps. Even if the speed of the first phase is not as critical as that
of the second, this optimisation is important. With the increase of the TBox
the first phase can become hopelessly slow, such that DLog is impossible to
use. Making the first phase faster slightly increases the critical TBox size within
which it is still worth reasoning with DLog. On the other hand, the DL calculus
is a complete algorithm for TBox reasoning. It is novel in that the metodology is
still resolution, but the inference rules are given directly for DL expressions. It
is not as fast for TBox reasoning as the Tableau, but it provides an alternative
and I hope that it will motivate research in the area. I tried to extend the DL
calculus to ABox reasoning, but I have not yet been successful in doing that.

5 Current Work

I am currently working to extend the DLog for more expressive ontologies. In
particular, I try to extend [10] from SHIQ to SHOIQ, i.e., provide reasoning
support for nominals. [13] presents a resolution based algorithm for reasoning
over SHOIQ, but it is not clear if the desired separation of TBox and Abox
reasoning can be achieved using their algorithm. In longer terms, I hope to
develop purely two phase reasoning for even more expressive languages such as
RIQ and SROIQ, the logic of the new web ontology language OWL 2.

I am working to better explore the complexity of our algorithms. Bottom up
reasoning in the first phase is very costly: it is at most triply exponential in the
size of the TBox, although our experiments indicate that there could be a better
upper bound. We also need to better explore the clauses that are deduced from
the TBox. While our main interest is to eliminate function symbols, we deduce
other consequences as well. Some of them make the data reasoning faster, some
of them do not, and we cannot yet well characterize them.

6 Concluding Remarks

With the proliferation of knowledge intensive applications, there is a vivid re-
search in the domain of knowledge representation. Description Logics are de-
signed to be a convenient means for such representation task. One of the main



advantages over other formalisms is a clearly defined semantics. This opens the
possibility to provide reasoning services with mathematical rigorousness.

My PhD work is concerned with Description Logic reasoning. I am particu-
larly interested in ABox reasoning when the available data is really large. This
domain is much less explored than TBox reasoning. Nevertheless, reasoning over
large ABoxes is useful for problems like web-based reasoning.

I am one of the developers of the DLog data reasoner which implements a
two phase reasoning: the first phase uses complex reasoning to turn the TBox
into simple rules, while the second phase is geared towards fast query answering
over large ABoxes. DLog currently supports the SHIQ DL language, but we
plan to extend it as far as SROIQ, the logic behind OWL 2.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2004)

2. Haarslev, V., Möller, R.: Optimization techniques for retrieving resources described
in OWL/RDF documents: First results. In: Ninth International Conference on the
Principles of Knowledge Representation and Reasoning, KR 2004, Whistler, BC,
Canada, June 2-5. (2004) 163–173

3. Haarslev, V., Möller, R., van der Straeten, R., Wessel, M.: Extended Query Fa-
cilities for Racer and an Application to Software-Engineering Problems. In: Pro-
ceedings of the 2004 International Workshop on Description Logics (DL-2004),
Whistler, BC, Canada, June 6-8. (2004) 148–157

4. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semant. 5(2) (2007) 51–53

5. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a resolution framework. Technical report, FZI, Karlsruhe (2004)

6. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Universität Karlsruhe (TH), Karlsruhe, Germany (Jan-
uary 2006)

7. Lukácsy, G., Szeredi, P., Kádár, B.: Prolog based description logic reasoning. In
de la Banda, M.G., Pontelli, E., eds.: Proceedings of 24th International Conference
on Logic Programming (ICLP’08),Udine, Italy. (December 2008) 455–469

8. Colmerauer, A., Roussel, P.: The birth of Prolog. ACM, New York, NY, USA
(1996)

9. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: the DLog
system. Theory and Practice of Logic Programming 09(03) (May 2009) 343–414

10. Zombori, Z.: Efficient two-phase data reasoning for description logics. In Bramer,
M., ed.: IFIP AI. Volume 276 of IFIP., Springer (2008) 393–402

11. Zombori, Zs., Lukácsy, G.: A resolution based description logic calculus. In
Bernardo Cuenca Grau, Ian Horrocks, B.M., Sattler, U., eds.: Proceedings of the
22nd International Workshop on Description Logics (DL 2009), Oxford. Volume
477 of CEUR Workshop Proceedings., Oxford, UK (July 27-30 2009)

12. Zombori, Z.: A resolution based description logic calculus. Submitted to Acta
Cybernetica (2009)

13. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. Journal
of Automated Reasoning 40(2-3) (2008) 89–116


