
A Resolution Based Description Logic Calculus

Zsolt Zombori and Gergely Lukácsy

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

1117 Budapest, Magyar tudósok körútja 2., Hungary
{zombori,lukacsy}@cs.bme.hu

Abstract. We present a resolution based reasoning algorithm called
DL calculus that decides concept satisfiability for the SHIQ language.
Unlike existing resolution based approaches, the DL calculus is defined
directly on DL expressions. We argue that working on this high level of
abstraction provides an easier to grasp algorithm with less intermediary
transformation steps and increased efficiency. We give a proof of the
completeness of our algorithm that relies solely on the SHIQ tableau
method, without requiring any further background knowledge.
Besides pure terminology reasoning, the DL calculus can be extended
to ABox reasoning, providing the basis for an efficient two-phase data
reasoning framework. Here, the DL calculus is used in the first phase
to simplify the content of the TBox by (1) performing those reasoning
steps that can be done independently of the ABox and (2) eliminating
the axioms that cannot participate in the ABox reasoning. The content of
the ABox is only accessed in the second phase when the simplified TBox
allows for answering instance retrieval queries in a focused, efficient way.
The above mentioned techniques are implemented in the SHIQ ABox
reasoner called DLog, available to download from SourceForge.

1 Introduction and background

The Tableau Method [1] has long provided the theoretical background for DL
reasoning and most existing DL reasoners implement some of its numerous vari-
ants. The typical DL reasoning tasks can be reduced to consistency checking and
this is exactly what the Tableau Method provides. While the Tableau itself has
proven to be very efficient, the reduction to consistency check is rather costly for
some reasoning tasks. In particular, the ABox reasoning task instance retrieval
requires running the Tableau Method for every single individual that appears in
the knowledge base. Several techniques have been developed to make tableau-
based reasoning more efficient on large data sets, (see e.g. [2]), that are used by
the state-of-the-art DL reasoners, such as RacerPro [3] or Pellet [4].

Other approaches use first-order resolution for reasoning. A resolution-based
inference algorithm is described in [5] which is not as sensitive to the increase
of the ABox size as the tableau-based methods. The system KAON2 [6] is an
implementation of this approach, providing reasoning services over the descrip-
tion logic language SHIQ. The algorithm used in KAON2 in itself is not any



more efficient for instance retrieval than the Tableau, but several steps that in-
volve only the TBox can be performed before accessing the ABox, after which
some axioms can be eliminated because they play no further role in the reason-
ing. This yields to a qualitatively simpler set of axioms which then can be used
for an efficient, query driven data reasoning. For the second phase of reasoning
KAON2 uses a disjunctive datalog engine and not the original calculus. Thanks
to the preprocessing, query answering is very focused, i.e., it accesses as little
part of the ABox as possible. However, in order for this to work, KAON2 still
needs to go through the whole ABox once at the end of the first phase.

Reading the whole ABox is not a feasible option in case the ABox is bigger
than the available memory or the content of the ABox changes so frequently
that on-the-fly ABox access is an utmost necessity. Typical such scenarios in-
clude reasoning on web-scale or using description logic ontologies directly on top
of existing information sources, such as in a DL based information integration
system.

We have developed a DL ABox reasoner called DLog [7], available to down-
load at http://dlog-reasoner.sourceforge.net, which is built on similar
principles to KAON2. We will only highlight two main differences. First, instead
of a datalog engine, we use the reasoning mechanism of the Prolog language [8]
to perform the second phase (see [9]). Second, we use a modified resolution cal-
culus (see [10]) that allows us to perform more inference steps in the first phase,
thanks to which more axioms can be eliminated, yielding to an even simpler set
of axioms to work with in the second phase. The important difference is that
while the approach of [6] can only guarantee that there are no nested functional
symbols, our calculus ensures that no function symbols remain at all. This makes
the subsequent reasoning easier and we can perform focused, query driven rea-
soning without any transformation that would require going through the ABox
even once.

Our current work with the DL calculus aims to improve on the calculus
presented in [10]. We move the resolution-based reasoning from the level of first-
order clauses to DL axioms, which saves us many intermediary transformation
steps, while preserving the main merit of the calculus, namely that we can elim-
inate a large part of the TBox before accessing the ABox.

This paper is structured as follows. In Section 2 we present the DL calculus
that performs consistency check for a SHIQ TBox, and show that it can also
be used to decide concept satisfiability. In Section 3 we prove that the calcu-
lus is complete. Section 4 extends the DL calculus to ABox reasoning. Finally,
Section 5 concludes by giving a brief summary of our results.

2 The DL Calculus

In this section we present a reasoning algorithm called DL calculus which decides
the consistency of a SHIQ TBox. Before doing so, however, we show that such
an algorithm can be used for deciding concept satisfiability as well.



Suppose we want to know whether concept C is satisfiable in the presence of
TBox T . Let R be a role that appears neither in T nor in C. Let us consider a
new TBox T ′ = T ∪{> v ∃R.C}. Given that R is a new role name, it is easy to
see that the newly added axiom will only introduce inconsistency to the TBox
if C is unsatisfiable. C is satisfiable in the presence of TBox T if and only if T ′

is consistent. Hence, by giving an algorithm for TBox consistency check, we also
provide an algorithm for concept satisfiability check.

The algorithm can be summarized as follows. We determine a set of concepts
that have to be satisfied by each individual of an interpretation in order for the
TBox to be true. Next, we introduce inference rules that derive a new concept
from one or two concepts. Using the inference rules, we saturate the knowledge
base, i.e., we apply the rules as long as possible and add the consequent to
the knowledge base. We also apply redundancy elimination: whenever a concept
extends another, it can be safely eliminated from the knowledge base [11]. It
can be shown that saturation terminates. We claim that the knowledge base is
inconsistent if and only if the saturated set contains the empty concept (⊥).

2.1 Example derivation

To illustrate our calculus, we show how to derive the empty concept from an
inconsistent SHIQ TBox T . Suppose that T forces the following concepts to be
true on all individuals (i.e. T contains the axioms > v Ci, 1 ≤ i ≤ 6):

C1 : ∃hasChild .Clever

C2 : ∃hasChild−.Rich
C3 : ≤ 1hasChild .Tall
C4 : ≤ 1hasChild .Fat
C5 : Fat t Tall
C6 : ∃hasFriend .(¬Clever u Fat u Tall)

The derivation proceeds through the following steps. To anticipate the DL calcu-
lus, we give the corresponding inference rules, together with the premise concepts
(for compactness we abbreviate hasChild with hc):

C7 : ∀hc.(Clever t ¬Tall) t ∃hc.(Clever u ¬Tall) (Rule4: C1,C3)
C8 : ∀hc.(Clever t ¬Tall) t ∃hc.(Clever u Fat) (Rule2: C7,C5)
C9 : ∀hc.(Clever t ¬Tall) t ∀hc.(Clever t ¬Fat) (Rule4: C8,C4)

C10 : ∀hc.(Clever t ¬Fat t ¬Tall) (Rule6: C9)
C11 : Clever t ¬Fat t ¬Tall (Rule5: C10,C2)
C12 : ∃hasFriend .⊥ (Rule2: C11,C6)
C13 : ⊥ (C12)

If someone has a clever child and has at most one tall child, then either he does
not have any tall and not clever children, or else he also has a clever and not



tall child (C1 + C3 → C7). If he has a clever and not tall child, then this child
is clever and fat (C7 + C5 → C8). Given that nobody can have more than one
fat child, the person having a clever and fat child can have no fat and not clever
children (C8 + C4 → C9). We obtain that for any individual, either he does not
have any tall and not clever children, or he does not have any fat and not clever
children. In particular, this entails that he cannot have any tall and fat and not
clever children (C9 → C10). We know that every individual has a rich parent
and it is true for the parent that he cannot have a child that is tall and fat and
not clever, so the individual itself cannot be tall and fat and not clever, so he is
either not tall or not fat or clever (C10 + C2 → C11). Hence, nobody can have
a child that is tall and fat and not clever (C11 + C6 → C12), so we obtained a
contradiction (C12 → C13).

2.2 Preprocessing

We first eliminate transitivity from the knowledge base as described in [6]. Next,
we internalize the TBox, i.e., we transform all axioms into a set of concepts that
have to be satisfied by each individual. This is followed by structural transfor-
mation which eliminates the nesting of composite concepts into each other [6].
Finally, we make a small syntactic transformation: concepts ∀R.C and ∃R.D are
replaced by their equivalent concepts (≤ 0R.¬C) and (≥ 1R.D), respectively. As
a result, we obtain the following types of concepts, where L is a possibly negated
atomic concept and R an arbitrary role expression:

L1 t L2 t · · · t Li

L1 t (≥ kR.L2)
L1 t (≤ nR.L2)

A derivation in the DL calculus generates concepts that are slightly more general.
We call this broader set SHIQ-concepts, defined as follows (C,D,E stand for
concepts containing no role expressions):

C

C t
⊔

(≤ nR.D)

C t (≥ kS.E) t
⊔

(≤ nR.D)

2.3 Notation

Before presenting the inference rules, we define some important notions. A literal
concept is a possibly negated atomic concept. A bool concept contains no role
expressions (only negation, union and intersection are allowed). In the following,
we will always assume that a bool concept is presented in a simplest disjunctive
normal form, i.e., it is the disjunction of conjunctions of literal concepts. So for
example, instead of A t A t (B u ¬B u C) we write A, and A u ¬A is replaced
with ⊥. We also impose a partial ordering (�) on DL concept expressions, as
follows:



Definition 1 (concept ordering).

1. A ≥-concept is greater than any ≤-concept or any bool concept.
2. A ≤-concept is greater than any bool concept.
3. C1 = (≤ n1R1.A1) is greater than C2 = (≤ n2R2.A2) if and only if:

– R1 � R2 or
– R1 = R2 and n1 > n2 or
– R1 = R2, n1 = n2 and A1 � A2

4. For atomic roles, R � S if R is lexicographically greater than S.
5. For atomic concepts, A � B if A is lexicographically greater than B.
6. ¬A � A
7. ¬A � B if A � B
8. A � ¬B if A � B
9.

⊔
Ai �

⊔
Bi if ∃i(∀j(Ai 6= Bj ∧ (Bj � Ai → ∃l(Al = Bj))))

10.
d

Ai �
d

Bi if ∃i(∀j(Ai 6= Bj ∧ (Bj � Ai → ∃l(Al = Bj))))

In the above we allow
⊔

Ai (
d

Ai) to be singular, i.e., it can stand for a non-
disjunctive (non-conjunctive) concept.

Definition 2 (maximal concept). In a set N of concepts, concept C ∈ N is
maximal if it is greater than any other concept in N .

The �-ordering given in Definition 1 is not total. However, any two disjuncts
of a SHIQ-concept (cf. Section 2.2) are comparable, hence, for any disjunctive
SHIQ-concept we can talk about the maximal disjunct.

2.4 Inference Rules

The inference rules are presented in Figure 1, where Li stand for literal con-
cepts, C,D,E are bool concepts and W is a SHIQ-concept without ≥-concept.
The rules manipulate on one disjunct of each premise and we make the further
restriction that the involved disjunct must be maximal. Some of the rules do
not preserve the DNF form of bool concepts. In such cases, an additional step is
required to transform the bool concepts appearing in the consequent into DNF
form. For the sake of simplicity, these additional steps are omitted from Figure 1.

It is straightforward to show that the inference rules are sound, i.e., that any
interpretation satisfying the premises will necessarily satisfy the conclusion as
well. We leave this to the reader.

2.5 Saturation

We saturate the knowledge base, i.e., we apply the rules in Figure 1 to deduce new
concepts as long as possible. We claim that saturation terminates. For any TBox
with finite signature, there can only be finitely many distinct role expressions and
bool concepts. Furthermore, note that each inference rule either leaves the arity
of a number restriction unaltered or reduces it. So in a (≤ nR.C) or (≥ nR.C)
expression the number of possible values for n, R and C is bound for a fixed
TBox. As all SHIQ-concepts are disjunctions of bool, ≤, and ≥-concepts, we
have an upper limit for the set of deducible SHIQ-concepts: generating every
possible SHIQ-concept still requires only finitely many steps.



Rule1
C t (LC1 u LC2 · · · u L) D t (LD1 u LD2 · · · u ¬L)

C tD

Rule2
W t (≥ nR.C) D

W t (≥ nR.(C u E))

where E is obtained by resolving C and D using Rule1

Rule3
W1 t (≤ nR.C) W2 t (≥ kS.D)

W1 tW2 t (≥ (k − n)S.(D u ¬C))

n < k, S v∗ R

Rule4
W1 t (≤ nR.C) W2 t (≥ kS.D)

W1 tW2 t (≤ (n− k)R.(C u ¬D)) t (≥ 1S.(D u ¬C)

n ≥ k, S v∗ R

Rule5
D t (≤ 0R.C) W t (≥ kS.E)

W t ¬C t (≥ kS.(E uD))

where inv(S) v∗ R and D is a bool concept

Rule6
W t (≤ 0R.C) t (≤ 0R.D)

W t (≤ 0R.(C uD))

Fig. 1. TBox inference rules of the DL calculus

3 The Completeness of the DL Calculus

In this section we prove that the method presented in Section 2 is complete,
i.e., whenever there is some inconsistency in a TBox T , the empty concept is
deduced. We prove completeness by showing that if a saturated set SatT does
not contain ⊥ then the axiom > v

d
SatT has a model. Instead of building the

model itself, we will prove that the SHIQ tableau method can find one such
model; in the course of the tableau method the concepts of SatT are added to
the label of every newly created node.

3.1 Building the Tableau Tree

We require the following ordering on the tableau rules: t-rule, u-rule, ∃-rule,
≥-rule, ∀-rule, ./-rule and ≤-rule. When applying the t-rule we proceed with
the branch1 that adds the minimal possible concept to the label of a node.

The concepts of SatT give rise to the appearance of literal concepts in labels
of nodes. Depending on what type of SHIQ-concept was involved, we say that
a literal concept was derived from a bool concept, a ≤-concept or a ≥-concept.

Whenever a node n contains a disjunctive concept W tC, the branch where
C is added to the label of n is only examined after each disjunct in W that is
smaller than C has been proved unsatisfiable. A clash occurs in the tableau tree

1 Throughout this paper, “branch” refers to a branch of the meta-tableau tree, i.e.,
one of the tableaux resulting from the application of a non-deterministic rule.



when an atomic concept name and its negation both appear in the label of some
node. In this case we roll back and proceed with another branch. A final clash
occurs when there are no branches left, i.e., the tableau proves the inconsistency
of SatT . We show that no final clash can be reached if SatT does not contain ⊥.

Let us assume that the tableau method reaches a final clash. Literal concepts
X and ¬X appear in the label of a node and there are no other branches to be
examined. We examine in turn the different concepts from which the clash could
have been derived and show contradiction.

3.2 Bool Concepts

Suppose that X and ¬X were derived from bool concepts, i.e., SatT contains
concepts

WC = C1 t (C2 uX) WD = D1 t (D2 u ¬X)

Since there are no more branches, (C2 uX) and (D2 u¬X) are maximal in WC

and WD, respectively, and each disjunct in C1 and D1 leads to a clash. WC and
WD are resolvable using Rule1, so SatT contains

W = C1 tD1

W cannot be empty because we assumed that SatT does not contain ⊥. Should
W contain X or ¬X, we can resolve it with either WC or WD resulting in
a concept W2 that makes W redundant. This follows from conditions 6-10 of
Definition 1 and the fact that X and ¬X are maximal in WC and WD. After
possibly several such inference steps we obtain a concept Wi that contains neither
X nor ¬X. Let us assume that W = Wi, i.e., we derived from WC and WD a
concept W that does not contain X or ¬X. Both X and ¬X are greater than any
disjunct in W . This means that before introducing X we have already examined
all branches corresponding to W . We assumed that each of these branches leads
to a clash, hence a final clash was reached before X appeared in the label. This
is a contradiction.

3.3 The Application of the ≥-rule

Let us now assume that one of the contradicting concepts, say X was derived
from a ≥-concept and ¬X from a bool concept. SatT contains concepts

WC = C1 t (≥ nR.(C2 t (C3 uX))) WD = D1 t (D2 u ¬X)

Since there are no more branches, (≥ nR.(C2 t (C3 uX))) and (D2 u ¬X) are
maximal in WC and WD, respectively, (C3 uX) is maximal in (C2 t (C3 uX))
and each disjunct in C1, C2 and D1 leads to a clash. WC and WD are resolvable
in the calculus using Rule2, so SatT contains

W = C1 t (≥ nR.(C2 t (D1 u C3 uX)))



W makes WC redundant, so the only way the latter can be present in SatT is
that WC = W , i.e., D1 is one of the conjuncts of C3. We know that C1, C2

and D1 all lead to clash, so we obtain a final clash on WC = W without WD,
contradicting our assumption.

3.4 The Application of the ∀-rule

We now examine the case when one of the concepts participating in the final
clash is derived from a (≤)-concept with zero arity, i.e., a ∀-concept. The ∀-rule
adds a concept to the label of either a successor or the predecessor.

In the first case some successors have been created, so the node containing
the ∀-concept also contains a ≥-concept, i.e., SatT contains concepts

WC = C1 t (≥ nS.C) WD = D1 t (≤ 0R.D)

where S v∗ R. As previously, we assume that (≥ nS.C) is maximal in WC ,
(≤ 0R.D) is maximal in WD and each disjunct in C1 and D1 leads to clash. WC

and WD can be resolved using Rule3, resulting in

W = C1 tD1 t (≥ nS.(C u ¬D))

By the time the ≥-concept from WC and the ≤-concept from WD appear in
the label of a node, the ≥-concept from W also appears in the label. Hence, we
create another set of n S-successors (the ≥-rule is applied prior to the ∀-rule),
with label (C u ¬D). Should this be inconsistent, we obtain a clash before the
∀-rule. Consequently, adding ¬D to the first set of n S-successors of the node
will not introduce any clash that would not have occurred otherwise.

In the second case the ∀-rule fires upwards and a bool concept is added to
the predecessor. This happens when a node contains concept (≥ nS.D) and one
of the thus created successors contains a concept (≤ 0R.C) where inv(S) v∗ R.
That is, SatT contains the following concepts:

WC = C1 t (≥ nS.C) WD = D1 t (≤ 0R.D)

(≥ nR.C) is maximal in WC , (≤ 0S.D) is maximal in WD, each disjunct in
C1 leads to clash in the parent and each disjunct in D1 leads to clash in the
successor. Either D1 does not contain any ≤-concepts, or Rule6 is applicable to
it yielding to a concept WD′ = D1′ t (≤ 0R.D′), where D1′ does not contain any
≤-concepts. In the latter case, let WD = WD′ . WC and WD can be resolved by
Rule7, resulting in

W = C1 t ¬D t (≥ nS.(C uD1))

By the time the ∀-rule in the successor fires, the t-rule has already been applied
on the parent, so one of the disjuncts of W appears in the label of the latter. It
cannot be a disjunct of C1 because they all lead to clash. If it is a disjunct of
¬D then the ∀-rule in the successor does not fire. Finally, if the parent contains
the concept (≥ nS.(C u D1)), that must have lead to a final clash because we
know that D1 together with C leads to clash in a successor. In conclusion, by the
time the ∀-rule would be applicable, it either does nothing or we have already
obtained a final clash.



3.5 Application of the ≤-rule

It remains to be seen if we might obtain a final clash through a ≤-rule, i.e.,
the identification of some nodes. Note that by the time a ≤-rule is applied, we
have already performed all possible ./-rules. We will show that in case of an
identification that could potentially lead to a final clash, the identification is not
only possible, but it can be performed simply by eliminating some successors,
without having to add any concepts to the label of the remaining nodes2.

Let some node contain concepts (≤ nR.D) and (≥ niSi.Ai), where 1 ≤ i ≤ l
and Si v∗ R. Suppose that Σl

i=1ni > n, so we need to perform identification
and failing to do so would lead to a final clash. This can only happen when SatT
contains concepts

W = E t (≤ nR.D) Wi = Fi t (≥ niSi.Ai) 1 ≤ i ≤ l

where (≤ nR.D) is maximal in W , (≥ niSi.Ai) is maximal in Wi, each disjunct
in E and Fi leads to clash and D can be deduced from each Ai (using the
bool concepts in SatT ). We will also consider the case when the node has an R-
predecessor, i.e., when it is the S0-successor of some node and inv(S0) v∗ R. By
using induction on n, i.e., the arity of the ≤ concept, we show that identification
is possible by simply deleting some nodes in the tableau.

The base case, when n = 0 has already been partly discussed in the section of
the ∀-rule. We have seen that whenever the ∀-rule would have to put a concept
C in the label of some successors, there are other successors having the same
label plus C. This means that we can simply delete the successors whose label
do not contain C. We also need to examine what happens when we have an
R-predecessor. Then, the node was created due to a (≥ kS0.X) concept in the
parent, where inv(S0) v∗ R. So, SatT contains concepts

W = E t (≤ 0R.D) V = G t (≥ kS0.X)

where E is false in the examined node and G is false in the parent. The above
two concepts can be resolved using Rule5, resulting in

G t ¬D t (≥ kS0.(X u E))

One disjunct of this concept is satisfied by the parent and it cannot be G. If
the parent satisfies ¬D then it is not affected by the (≤ 0R.D) concept. If the
concept (≥ kS0.(X uE)) appears in its label, there will be successor nodes with
label X uE. The examined node was created with concept X and we know that
the branch where E was added to the label failed, so X uE is not satisfiable. So,
should the label of the parent really contain (≥ kS0.(X u E)), we would have
obtained a clash even before applying the ≤-rule, contrary to our assumption.

For the inductive step, assume that any ≤-concept with arity smaller than
n can be satisfied by deleting some nodes. Concepts W and W1 in SatT are
2 We might, however, have to extend the label of an edge due to identification, but

this cannot lead to clash.



resolvable using Rule4, resulting in

E t F1 t (≤ (n− n1)R.(D u ¬A1)) t (≥ 1S1.(A1 u ¬D))

D is deducible from A1 using bool concepts of SatT , so the calculus also deduces

E t F1 t (≤ (n− n1)R.(D u ¬A1)) (1)

Due to the ./-rule, the label of every successor contains either A1 or ¬A1. n−n1 <
n, so the inductive hypothesis applies to (1), i.e., all the successors whose label
contains both D and ¬A1 can be identified into n − n1 nodes without altering
the labels of the remaining nodes. Further to this, there are n1 successors created
with the ≥-concept in W1 – we say that A1 is the creator concept of these nodes,
– plus some k other successors such that the ./-rule put A1 into their labels.

1. If k ≤ n1 then we can eliminate n1 − k nodes from those having A1 as their
creator concept, leaving exactly n1 successors whose label contains A1.

2. If k > n1 then each of the nodes whose creator concept is A1 can be elim-
inated since there are more then n1 other nodes satisfying A1. In case we
still have too many successors left, we repeat the above argument on the
successors originating from concepts W2,W3, . . . Wl. Again, either we find
that eliminating some of the successors with creator concept Ai gives a good
identification, or we can eliminate all the successors with creator concept
Ai. In the latter case we proceed with Ai+1 etc. until at most n successors
remain.

In case ni > n then Rule3 is applied instead of Rule4 when resolving W and
Wi, resulting in:

E t Fi t (≥ (ni − n)Si.(Ai u ¬D))

Since D is deducible from Ai, the calculus deduces EtFi. We know that all dis-
juncts in E and Fi are false, so we obtained a final clash even before introducing
the ≤- and ≥-concepts, contradicting our assumption.

4 The DL Calculus for ABox Reasoning

In this section we sketch an extension to the DL calculus that performs ABox
reasoning. Although the answers that we obtained in our test queries are identical
to those of other reasoners, we do not yet have a formal proof of completeness.
Accordingly, this section should be seen as an indication of our future work.
Currently, the DLog data reasoner uses the calculus described in [10] and the
DL calculus is only in test phase.

We restrict our attention to extensionally reduced ABoxes, i.e., we assume
that the concept assertions only contain literal concepts. An arbitrary knowledge
base can be easily transformed to satisfy this constraint. Furthermore, we use
the Unique Name Assumption (UNA): we assume that different names refer to
different individuals. The rules in Figure 2 are added to the 6 inference rules



7
C t (L1 u L2 · · · u L) ¬L(a)

C(a)
8

C t (L1 u L2 · · · u L(a)) ¬L(a)

C

9
W t (≤ nR.C) {R(a, bi)}n+1

i=1

W (a) t
Fn+1

i=1 ¬C(bi)
10

W t (≤ nR.C)(a) {R(a, bi)}n+1
i=1

W t
Fn+1

i=1 ¬C(bi)

Fig. 2. ABox inference rules

presented in Figure 1. As before, the resolved literals have to be maximal in
their respective concepts.

An important property of the ABox DL calculus is that the rules for data
axioms do not involve ≥-concepts. This suggests that all inference steps involving
≥-concepts can be performed before accessing the ABox, allowing us to break
the ABox reasoning into two parts: (1) an ABox independent DL calculus is
first applied to the TBox until all the consequences of ≥-concepts are inferred;
(2) next we perform the actual data reasoning using a much simpler TBox (as
all ≥-concepts can be eliminated). The output of the first phase is translated
to first-order clauses during data reasoning and ≥-concepts give rise to skolem
functions. Without ≥-concepts, we can work with function-free clauses, which
makes the reasoning task much easier [9].

5 Conclusion

We have presented the DL calculus, a resolution based algorithm for deciding
the consistency of a SHIQ TBox. The novelty of this calculus is that it is
defined directly on DL axioms. We hope that further research will reveal that
the DL calculus provides a reasonable alternative to the Tableau Method for
TBox reasoning.

We have extended the DL calculus to consider ABox axioms as well, providing
the basis of a two-phase ABox reasoning framework. The DL calculus is used
to perform the first phase involving the TBox only. Given that the TBox is
relatively permanent over time, the speed of this phase is not crucial as it has
to be performed only once. What really matters is that by the end of this phase
we can eliminate many axioms that make the knowledge base much simpler.
Thanks to the eliminations, we can translate the initial knowledge base into a
set of first-order clauses that are function-free. The absence of function symbols
enables us to use the query driven, highly efficient data reasoning techniques
implemented in the DLog ABox reasoner. It has to be noted, however, that the
ABox extension of the DL calculus requires further work.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2004)



2. Haarslev, V., Möller, R.: Optimization techniques for retrieving resources described
in OWL/RDF documents: First results. In: Ninth International Conference on the
Principles of Knowledge Representation and Reasoning, KR 2004, Whistler, BC,
Canada, June 2-5. (2004) 163–173

3. Haarslev, V., Möller, R., van der Straeten, R., Wessel, M.: Extended Query Fa-
cilities for Racer and an Application to Software-Engineering Problems. In: Pro-
ceedings of the 2004 International Workshop on Description Logics (DL-2004),
Whistler, BC, Canada, June 6-8. (2004) 148–157

4. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semant. 5(2) (2007) 51–53

5. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a resolution framework. Technical report, FZI, Karlsruhe (2004)

6. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Universität Karlsruhe (TH), Karlsruhe, Germany (Jan-
uary 2006)

7. Lukácsy, G., Szeredi, P., Kádár, B.: Prolog based description logic reasoning. In
de la Banda, M.G., Pontelli, E., eds.: Proceedings of 24th International Conference
on Logic Programming (ICLP’08),Udine, Italy. (December 2008) 455–469

8. Colmerauer, A., Roussel, P.: The birth of Prolog. ACM, New York, NY, USA
(1996)

9. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: the DLog
system. Theory and Practice of Logic Programming (in press) (April 2009)
http://arxiv.org/abs/0904.0578.

10. Zombori, Z.: Efficient two-phase data reasoning for description logics. In Bramer,
M., ed.: IFIP AI. Volume 276 of IFIP., Springer (2008) 393–402

11. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In Robinson, A.,
Voronkov, A., eds.: Handbook of Automated Reasoning. Volume 1. North Hol-
land (2001) 19–100


