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Abstract Description Logics are used more and more frequently for knowledge
representation, creating an increasing demand for efficient automated DL reason-
ing. However, the existing implementations are inefficient in the presence of large
amounts of data. We present an algorithm to transform DL axioms to a set of
function-free clauses of first-order logic which can be used for efficient, query ori-
ented data reasoning. The described method has been implemented in a module of
the DLog reasoner openly available on SourceForge to download.

Introduction

Description Logics (DL) consitute a family of languages designed for conveniently
describing domain specific knowledge of various applications. The existing imple-
mentations for automated DL reasoning are mostly based on the so called tableau
method which works just fine deducing new rules from existing ones, but it is rather
slow when it comes to dealing with large amounts of data. In practice, however, the
latter situation is becoming more and more typical.

We have developed the DLog system, an efficient DL data reasoner. This program
can handle a data quantity that is too much to be loaded into main memory and hence
can only be accessed through direct database queries. The reasoning task is broken
into two parts: in the first phase only the rules of the knowledge base are considered
and the second phase constitutes the data reasoning. The present paper deals with
the first phase.

Section 1 gives a summary of description logics and first-order resolution, as
well as a resolution based solution for DL theorem proving. Section 2 constitutes
the core of this paper: it presents the first phase of DLog, i.e., how to transform the
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rules of a DL knowledge base into a function-free set of clauses which forms the
basis of the subsequent efficient query driven data reasoning. Section 3 gives a brief
overview to the DLog system which is described in detail in [5].

1 Background

This section gives a recollection of some notions necessary to understand the paper
and gives references to relevant sources.

1.1 Description Logics

Description Logics (DLs) [3] is family of logic languages designed to be a conve-
nient means of knowledge representation. They can be embedded into FOL, but –
contrary to the latter – they are decidable which gives them a great practical appli-
cability. A DL knowledge base consists of two parts: the TBox (terminology box)
and the ABox (assertion box). The TBox contains rules that hold in a specific do-
main. The ABox stores knowledge about individuals. This paper is concerned with
a language called SHIQ which is a widespread DL language, thanks to a good com-
promise between complexity and expressivity.

We are interested in the following reasoning task: for a given SHIQ knowledge
base KB and a query expression Q, we would like to decide whether Q is a logical
consequence of KB. If Q contains no variables we expect a yes/no answer. If vari-
ables appear in the query, we would like to obtain the complete list of constants that,
when substituted for the variables, result in assertions that follow from KB.

1.2 Resolution

Resolution [7] is a complete method for proving first order theorems. Its two infer-
ence rules are summarised in Figure 1 where σ is the most general unifier of B and
C (σ = MGU(B,C). Ordered resolution [2] refines this technique by imposing an

A∨B ¬C∨D
Aσ∨Dσ

A∨B∨C
Aσ∨Cσ

Fig. 1 Binary Resolution and Positive Factoring

order in which the literals of a clause can be resolved. This reduces the search space
while preserving completeness. It is parametrised with an admissible ordering (�)
on literals and a selection function. Basic superposition [1] is an extension of or-
dered resolution with explicit rules for handling equality. The rules are summarised
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Hyperresolution (C1∨A1)...(Cn∨An) (D∨¬B1∨···∨¬Bn)
(C1∨···∨Cn∨D)σ

Positive factoring A∨B∨C
Aσ∨Cσ

Equality factoring C∨s=t∨s′=t ′
(C∨t 6=t ′∨s′=t ′)σ

Reflexivity resolution C∨s 6=t
Cσ

Superposition (C∨s=t) (D∨E)
(C∨D∨E[t]p)σ

Fig. 2 Inference rules of Basic Superposition

in Figure 2, where E|p is a subexpression of E in position p, E[t]p is the expression
obtained by replacing E |p in E with t, C and D denote clauses, A and B denote lit-
erals without equality and E is an arbitrary literal. The necessary conditions for the
applicability of each rule are given in the following list:

Hyperresolution: (i) σ is the most general unifier such that Aiσ = Biσ , (ii) each
Aiσ is maximal in Ciσ , and there is no selected literal in (Ci ∨Ai)σ , (iii) either
every ¬Bi is selected, or n = 1 and nothing is selected and ¬B1σ is maximal in
Dσ .
Positive factoring: (i) σ = MGU(A,B), (ii) Aσ is maximal in Cσ and nothing is
selected in Aσ ∨Bσ ∨Cσ .
Equality factoring: (i) σ = MGU(s,s′), (ii) tσ 6� sσ , (iii) t ′σ 6� s′σ , (iv) (s = t)σ
is maximal in (C∨ s′ = t ′)σ and nothing is selected in (C∨ s = t ∨ s′ = t ′)σ .
Reflexivity resolution: (i) σ = MGU(s, t), (ii) in (C∨ s 6= t)σ either (s 6= t)σ is
selected or nothing is selected and (s 6= t)σ is maximal in Cσ .
Superposition: (i) σ = MGU(s,E |p), (ii) tσ 6� sσ , (iii) if E = ′w = v′ and E |p
is in w then vσ 6� wσ and (sσ = tσ) 6� (wσ = vσ), (iv) (s = t)σ is maximal in
Cσ and nothing is selected in (C∨ s = t)σ , (v) in (D∨E)σ either Eσ is selected
or nothing is selected and Eσ is maximal, (vi) E|p is not a variable position.

An important feature of basic superposition is that it remains complete even if
we disallow superposition into variables or terms substituted for variables. Such po-
sitions are referred to as variable positions or marked positions and are surrounded
with ’[ ]’.

1.3 Resolution Based Reasoning for DL

In [6] a resolution based theorem proving algorithm for the SHIQ DL language is
presented. The knowledge base, together with the query expression is transformed
into a set of FOL clauses with a characteristic structure, called ALCHIQ clauses and
are summarised in Figure 3, where:
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• P(t) is a possibly empty disjunction (¬)P1(t)∨·· ·∨ (¬)Pn(t) of unary literals;
• P(f(x)): is a possibly empty disjunction P1( f1(x))∨·· ·∨Pn( fn(x));
• term t is not marked, [t] is marked and <t> may or may not be marked;
• # ∈ {=, 6=};

Fig. 3 ALCHIQ clauses

¬R(x,y)∨S(y,x) (1)

¬R(x,y)∨S(x,y) (2)

P(x)∨R(x,< f (x) >) (3)

P(x)∨R([ f (x)],x) (4)

P1(x)∨P2(< f(x) >)∨
∨

(< fi(x) > # < f j(x) >) (5)

P1(x)∨P2([g(x)])∨P3(< f([g(x)]) >)
∨

(< ti > # < t j >) (6)

where ti and t j are of the form f ([g(x)]) or of the form x

P1(x)∨
n∨

i=1

(¬R(x,yi)∨
n∨

i=1

P2(yi)∨
n×n∨

i, j=1

(yi = y j) (7)

R(< a >,< b >)∨P(< t >)∨
∨

(< ti > # < t j >) (8)

where t, ti and t j are either a constant or a term fi([a])

The reasoning task is reduced to deciding whether the obtained FOL clauses
are satisfiable. This is answered using basic superposition extended with a method
called decomposition. [6] shows that the set of ALCHIQ clauses is bounded and
that any inference with premises taken from a subset N of ALCHIQ results in either
(i) an ALCHIQ clause or (ii) a clause redundant in N1 or (iii) a clause that can be
decomposed to, i.e., substituted with two ALCHIQ clauses without affecting satis-
fiability. These results guarantee that the saturation of an ALCHIQ set terminates.

1.4 Separating TBox and ABox Reasoning

The drawback of the above resolution algorithm is that it can be painfully slow.
Resolution with saturation is a bottom-up strategy and computes all logical con-
sequences of the clause set, many of which are irrelevant to the current question.
It would be nice to use some query oriented, top-down mechanism, however, such
mechanisms are available only for more restrictive FOL languages, such as Horn
Clauses. One can get around this problem by breaking the reasoning into two tasks:

1 A redundant clause is a special case of other clauses in N and can be removed.
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first perform a resolution based preprocessing to deduce whatever could not be de-
duced otherwise and then use a fast top-down reasoner.

Note that complex reasoning is required because of the rules (TBox) and that in
a typical real life situation there is a small TBox and a large ABox. Furthermore, the
rules in the TBox are likely to remain the same over time while the ABox data can
change continuously. Hence we would like to bring forward all inferences involving
the TBox only, perform them separately and then let the fast reasoner (whatever that
will be) do the data related steps when a query arrives.

In the framework of basic superposition, when more than one inference steps are
applicable, we are free to choose an order of execution, providing a means to achieve
the desired separation. Elements from the ABox appear only in clauses of type (8).
[6] gives two important results about the role of ABox axioms in the saturation
process:

Theorem 1. An inference from ALCHIQ clauses results in a conclusion of type (8)
if and only if there is a premise of type (8).

Theorem 2. A clause of type (8) cannot participate in an inference with a clause of
type (4) or (6).

In light of Theorem 1, we can move forward ABox independent reasoning by
first performing all inference steps involving only clauses of type (1) – (7). [6] calls
this phase the saturation of the TBox. Afterwards, Theorem 2 allows us to eliminate
clauses of type (4) and (6). This elimination is crucial because in the remaining
clauses there can be no function symbol embedded into another. The importance of
this result comes out in the second phase of the reasoning, because the available top
down mechanisms are rather sensitive to the presence of function symbols.

By the end of the first phase DL reasoning has been reduced to deciding the
satisfiability of FOL clauses of type (1) - (3), (5), (7) and (8), where every fur-
ther inference involves at least one premise of type (8). For the second phase, [6]
uses a datalog engine which requires function-free clauses. Therefore (unary) func-
tional relations are transformed to new binary predicates and new constant names
are added: for each constant a and each function f the new constant a f is introduced
to represent f (a). Note that this transformation requires processing the whole ABox.

2 Towards Pure Two-Phase Reasoning

In this section we introduce modifications to the saturation of ALCHIQ clauses. We
do this to be able to perform more inferences before accessing the ABox. This is not
just a mere regrouping of tasks, we will see that the algorithm produces a crucially
simpler input for the second phase with a huge impact on its performance efficiency
and on the available data reasoning algorithms. The improvement is achieved by
eliminating function symbols from the clauses derived from the TBox.

The initial SHIQ DL knowledge base was function-free. Then, after translat-
ing TBox axioms to FOL we eliminatee existential quantifiers using Skolemisation
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which introduced new function symbols. The ABox remained function-free, hence
everything that is to know about the functions is contained in the TBox. This means
we should be able to perform all function-related reasoning before accessing the
ABox.

2.1 The Modified Calculus

We modify basic superposition presented in 1.2 by altering the necessary condi-
tions to apply each rule. The new conditions are given below, with the newly added
conditions underlined:

HyperresolutionTBox: (i) σ is the most general unifier such that Aiσ = Biσ , (ii)
each Aiσ is maximal in Ciσ , and either there is no selected literal in (Ci ∨Ai)σ
or Ai contains a function symbol, (iii) either every ¬Bi is selected, or n = 1 and
¬B1σ is maximal in Dσ , (iv) none of the premises contain constants.
HyperresolutionABox: (i) σ is the most general unifier such that Aiσ = Biσ ,
(ii) each Aiσ is maximal in Ciσ , and there is no selected literal in (Ci ∨Ai)σ ,
(iii) either every ¬Bi is selected, or n = 1 and nothing is selected and ¬B1σ is
maximal in Dσ , (iv) each Ai is ground, (v) Dσ is function-free.
Positive factoring: (i) σ = MGU(A,B), (ii) Aσ is maximal in Cσ and either
nothing is selected in Aσ ∨Bσ ∨Cσ or A contains a function symbol.
Equality factoring: (i) σ = MGU(s,s′), (ii) tσ 6� sσ , (iii) t ′σ 6� s′σ , (iv)
(s = t)σ is maximal in (C ∨ s′ = t ′)σ and either nothing is selected in Cσ

or s = t ∨ s′ = t ′ contains a function symbol.
Reflexivity resolution: (i) σ = MGU(s, t), (ii) in (C∨ s 6= t)σ either (s 6= t)σ is
selected or s 6= t contains a function symbol or nothing is selected and (s 6= t)σ
is maximal in Cσ .
Superposition: (i) σ = MGU(s,E|p), (ii) tσ 6� sσ , (iii) if E = ′w = v′ and E|p=
w|p′ then vσ 6� wσ and (sσ = tσ) 6� (wσ = vσ), (iv) (s = t)σ is maximal in Cσ

and either nothing is selected in (C∨s = t)σ or s = t contains a function symbol,
(v) in (D∨E)σ either Eσ is selected or nothing is selected and Eσ is maximal,
(vi) E|p is not a variable position.

Note that hyperresolution is broken into two rules (HyperrresolutionTBox and Hy-
perresolutionABox) which differ only in the necessary conditions. In the following
by original calculus we refer to the basic superposition presented in Section 1.2 and
by modified calculus we mean the rules of basic superposition with the restrictions
listed above. We will prove that the new calculus can be used to solve the reasoning
task.

Proposition 1. The modified calculus remains correct and complete.

Proof. The inference rules of basic superposition are all valid even if we do not
impose any restrictions on their applicability. Since in the new calculus only the
conditions are altered, it remains correct.
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The modifications that weaken the requirements to apply a rule only extend the
deducible set of clauses, so they do not affect completeness.

In case of hyperresolution, let us first consider only the new condition (iv) and
disregard condition (v) on HyperresolutionABox. The original hyperresolution step
has a main premise of type (7) and of the side premises some are of type (3) – (4) and
some of type (8). This can be broken into two by first resolving the main premise
with all side premises of type (3) and (4) (HyperresolutionTBox) and then resolving
the rest of selected literals with side premises of type (8) (HyperresolutionABox).
A hyperresolution step in the original calculus can be replaced by two steps in the
modified one, so completeness is preserved.

We now turn to condition (v) on HyperresolutionABox. Let us consider a refu-
tation in the original calculus that uses a hyperresolution step. If all side premises
are of type (3) and (4) then it can be substituted with a HyperresolutionTBox step.
Similarly, if all side premises are of type (8), then we can change it to Hyperreso-
lutionABox, as clauses of type (7) are function-free, satisfying condition (v). The
only other option is that there are both some premises of type (3) and of type (8)2.
The result of such step is a clause of the following type:

P1(x)∨
∨

P2(ai)∨
∨

P2([ fi(x)])∨

∨
∨

(ai = a j)∨
∨

([ fi(x)] = [ f j(x)])∨
∨

([ fi(x)] = a j)

At some point each function symbol is eliminated from the clause (by the time we
reach the empty clause everything gets eliminated). In the modified calculus we will
be able to build an equivalent refutation by altering the order of the inference steps:
we first apply HyperresolutionTBox which introduces all the function symbols, but
none of the constants, then we bring forward the inference steps that eliminate func-
tion symbols and finally we apply HyperresolutionABox. The intermediary steps
between HyperresolutionTBox and HyperresolutionABox are made possible by the
weakening of the corresponding necessary conditions. Notice, that by the time Hy-
perresolutionABox is applied, functions are eliminated so condition (v) is satisfied.

We conclude that for any proof tree in the original calculus we can construct a
proof tree in the modified calculus, so the latter is complete. ut

Proposition 2. Saturation of a set of ALCHIQ clauses with the modified calculus
terminates.

Proof. (sketch) We build on the results in [6], that clauses of type (8) are initially of
the form C(a),R(a,b),¬S(a,b),a = b or a 6= b, i.e., they do not contain any function
symbols. We will also use the fact that in the original calculus any inference with
premises taken from a subset N of ALCHIQ results in either (i) an ALCHIQ clause
or (ii) a clause redundant in N or (iii) a clause that can be substituted with two
ALCHIQ clauses via decomposition.

All modifications (apart from breaking hyperresolution into two) affect clauses
having both function symbols and selected literals, in that we can resolve with the

2 It is shown in [6] that clauses of type (8) and (4) participating in an inference result in a redundant
clause so we need not consider this case.
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literal containing the function symbol before eliminating all selected literals. Such a
clause can only arise as a descendant of a HyperresolutionTBox step. After applying
HyperresolutionTBox, we obtain a clause of the following form:

P1(x)∨
∨

(¬R(x,yi))∨
∨

P2(yi)∨
∨

P2([ fi(x)])∨ (9)

∨
∨

(yi = y j)∨
∨

([ fi(x)] = [ f j(x)])∨
∨

([ fi(x)] = y j)

In the following, it will be comfortable for us to consider a clause set that is some-
what broader than (9), in which function symbols can appear in inequalities as well.
This set is:

P1(x)∨
∨

(¬R(x,yi))∨
∨

P2(yi)∨
∨

P2([ fi(x)])∨ (10)

∨
∨

(yi = y j)∨
∨

(< fi(x) > # < f j(x) >)∨
∨

(< fi(x) > # y j)

where # ∈ {=, 6=}. Of course, every clause of type (9) is of type (10) as well.
Let us see what kind of inferences can involve clauses of type (10). First, it can

be an superposition with a clause of type (3) or (5). In the case of (3) the conclusion
is decomposed (in terms of [6]) into clauses of type (3) and (10), while in the case
of (5) we obtain a clause of type (10). Second, we can resolve clauses of type (10)
with clauses of type (10) or (5). The conclusion is of type (10). Finally, we can apply
HyperresolutionABox with some side premises of the form R(a,bi), but notice that
only if the literals with function symbols are missing. The result is of type (8). This
means that during saturation, we will only produce clauses of type (1) – (8) and (10).
It is easy to see that there can only be a limited number of clauses of type (10) over
a finite signature3. Hence the modified calculus will only generate clauses from a
finite set, so the saturation will terminate. ut

2.2 Implementing Two-Phase Reasoning

We use the modified calculus to solve the reasoning task in two phases. Our separa-
tion differs from that of [6] in that function symbols are eliminated during the first
phase, without any recourse to the ABox. The method is summarized in Algorithm
1, where steps (1) - (3) constitute the first phase of the reasoning and step (4) is the
second phase, i.e., the data reasoning.

Proposition 3. A function-free ground clause can only be resolved with function-
free clauses. Furthermore, the conclusion is ground and function-free.

Proof. It follows simply from the fact that a constant a cannot be unified with a term
f (x) and from condition (v) on HyperresolutionABox. ut

We are now ready to state our main claim:

3 We already know from [6] that the set of clauses of type (1) - (8) is finite.
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Algorithm 1 SHIQ reasoning
1. We transform the SHIQ knowledge base to a set of clauses of types (1) - (8), where clauses of

type (8) are function-free.
2. We saturate the TBox clauses (types (1) - (7)) with the modified calculus. The obtained clauses

are of type (1) - (7) and (10).
3. We eliminate all clauses containing function symbols.
4. We add the ABox clauses (type (8)) and saturate the set.

Proposition 4. Algorithm 1 is a correct, complete and finite DL theorem prover.

Proof. We know from Proposition 2 that saturation with the modified calculus ter-
minates. After saturating the TBox, every further inference will have at least one
premise of type (8), because the conclusions inferred after this point are of type (8)
(Proposition 3). From this follows, (using Proposition 3) that clauses with function
symbols will not participate in any further steps, hence they can be removed. In
light of this and taking into account that the modified calculus is correct and com-
plete (Proposition 1), so is Algorithm 1. ut

2.3 Benefits of Eliminating Functions

The following list gives some advantages of eliminating function symbols before
accessing the ABox.

1. It is more efficient. Whatever ABox independent reasoning we perform after
having accessed the data will have to be repeated for every possible substitution
of variables.

2. It is safer. A top-down reasoner dealing with function symbols is very prone to
fall into infinite loops. Special attention needs to be paid to ensure the reasoner
doesn’t generate goals with ever increasing number of function symbols.

3. ABox reasoning without functions is qualitatively easier. Some algorithms,
such as those for datalog reasoning, are not available in the presence of function
symbols. We have seen in Section 1.4 that [6] solves this problem by syntacti-
cally eliminating functions, but this requires scanning through the whole ABox,
which might not be feasible when we have a lot of data.

3 The DLog System

The DLog system is a complete SHIQ DL reasoner which incorporates the results
presented in this paper. As an input it takes a SHIQ knowledge base and the TBox is
first transformed to a set of function-free clauses based on [6] and Section 2.1. The
resulting clauses are next used to build a Prolog program. It is the execution of this
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program – run with an adequate query – that performs the data reasoning. The trans-
formation to Prolog uses the PTTP approach, a complete theorem prover technology
for FOL [8]. The readers interested in the DLog system should consult [5]. The pro-
gram is also available at http://dlog-reasoner.sourceforge.net.

We compared the performance of DLog with three description logic reasoning
engines: RacerPro 1.9.0, Pellet 1.5.0 and the latest version of KAON2. KAON2
implements the methods described in [6] and hence it is in many ways similar to
DLog. For a thorough performance evaluation see [5]. Here we only mention that
the larger the ABox, the better DLog performed compared to its peers. Also, to our
best knowledge, DLog is the only DL reasoner which doesn’t need to scan through
the whole ABox and load it to main memory, enabling it to reason over really large
amounts of data stored in external databases.

Summary

This paper showed how to extend the results in [6] to transform a SHIQ TBox into a
set of first-order clauses. The particularity of these clauses is that they have a rather
simple structure, namely they are function-free. This opens the way for fast query
oriented inference algorithms to perform data reasoning tasks originally formulated
in DL. The DLog system illustrates how this can be achieved, though it should be
noted that the transformation presented here doesn’t use anything specific to the
DLog and is available to other reasoning engines as well.
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5. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: the DLog sys-
tem. Tech. rep., Budapest University of Technology and Economics (2008). URL
http://sintagma.szit.bme.hu/lukacsy/publikaciok/dlog tplp submission.pdf. Submitted to The-
ory and Practice of Logic Programming

6. Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. Ph.D.
thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (2006)

7. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1),
23–41 (1965). DOI http://doi.acm.org/10.1145/321250.321253

8. Stickel, M.E.: A Prolog Technology Theorem Prover: A New Exposition and Implementation
in Prolog. Theor. Comput. Sci. 104(1), 109–128 (1992)


