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Preface
These notes serve for an advanced course on the mathematical theory of stochastic population dynamics, in
particular adaptive dynamics.

This course is first offered at the Goethe-Universität Frankfurt in the summer semester of 2024, where
I am spending one month as a guest lecturer, which is part of the International Campus Program of the
university. Since one of the goals of this program is to build and reinforce connections between the Goethe-
Universität Frankfurt and foreign academic institutions (just like the Budapest University of Technology
and Economics, where I am currently working), I will present a rather personal view of the area, focusing
on some concrete biological examples, some of which belong to the subject of my own research with Jochen
Blath and other coauthors.

There are various lecture notes of past courses by other authors on this subject, e.g. by Bansaye and
Méléard [BM15] and by Bovier [B21], and these also represent somewhat personal perspectives of the area.
These are great sources of knowledge about various general (and often abstract) models of the field, any they
also include particular examples and applications from the authors’ own particular research area. In order
to be able to fit the particular biological examples that we are interested in into the time frame of my course,
I need to provide lecture notes with a restricted amount of general theory compared to the aforementioned
references. We will nevertheless get to know some relatively general models as well (such as the individual-
based models of adaptive dynamics scaling to a trait substitution sequence, introduced by Champagnat [C06]
right at the beginning). Still, these lecture notes should not be seen as an exhaustive reference on adaptive
dynamics and population dynamics, neither from the biological nor from the mathematical perspective. The
main goal of the lecture notes is to cover and sort the material of the course, including a small number of
exercises.

Taking into account that some of the readers may and some other readers may not be familiar e.g. with
the theory of multitype branching processes or qualitative systems of ODEs, I will sometimes present the
methods for the concrete examples that we are interested in, without a general formalism but in a way that
hopefully clarifies how to treat further examples. To some extent, my inductive approach will be similar
to the way how my coauthors and I got to know this subject, coming from the related but different area
of mathematical population genetics. But I also intend to be precise in presenting the technical details
of at least some of the crucial steps, and for didactic reasons I will often provide more details than the
corresponding articles.
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1 Invasion models of adaptive dynamics and convergence to a trait
substitution sequence

1.1 Introduction: a few words about population dynamics and adaptive dy-
namics

In population dynamics, we model populations of living creatures (or sometimes also viruses etc.) and
investigate the fate of phenotypic traits (types). The population size is regulated by logistic competition
between individuals, which does not allow the number of individuals to grow larger than constant times the
carrying capacity of the population. This contrasts with population genetics (which the reader might be
familiar with from e.g. Jochen Blath’s courses), where the population size is often assumed to be constant,
one investigates genotypes (often determined by a difference at one single genetic locus).

In simple invasion models of population dynamics, a frequently studied scenario is that the population is
described by a continuous-time Markov chain with values in Nn0 for some n ≥ 2,1 there is initially a resident
population of a single type or multiple coexisting types, and a mutant arrives. We are interested in the fate
of the mutant: Will it survive with asymptotically positive probability as the population size (equivalently,
the carrying capacity) tend to infinity? If yes, what happens after a successful invasion: Will the mutant
fix, making the previous resident population go extinct, or will it coexist with (some of) the former resident
types?

We will soon see that due to classical results by Ethier and Kurtz [EK86], if the sizes of all subpopulations
are of the order of the carrying capacity, one can approximate the subpopulation sizes divided by the carrying
capacity via deterministic systems of ordinary differential equations (ODEs) on compact time intervals. In
this field, we often refer to these systems of ODEs as dynamical systems, although they do not have too much
to do with the (measure-preserving) dynamical systems known from ergodic theory. Understanding the qual-
itative behaviour of these systems (existence and local/global stability of its equilibria, possible bifurcations
etc.) provides valuable information on the behaviour of the stochastic population models themselves when
the carrying capacity is large, and in fact, many models of population dynamics were first introduced in the
form of a system of ODEs. However, one should emphasize that this approximation is true without rescaling
time, only on finite time intervals, and only if all subpopulation sizes are sufficiently large.

The invasion of a mutant in a single-type resident population in a stochastic individual-based model often
consists of (up to) three phases. At the moment when a single mutant arrives into the population, the mutant
subpopulation is clearly not large enough for an ODE approximation. In chance, if one can guarantee that
the resident population size stays close to its equilibrium (in a well-defined sense) for a sufficiently long time,
one may be able to approximate the mutant population size via a branching process (in continuous time)
as long as it either dies out or becomes macroscopic, which ends the first phase out of three phases of the
invasion.

If case the branching process is supercritical, the mutant may survive the first phase with nonvanishing
probability, and afterwards the second, shorter phase starts, where now the dynamical system approximation
is applicable. Depending on the properties of the dynamical system, the second phase leads the rescaled
resident population size of the former resident close to extinction, or it leads the rescaled system to the
vicinity of a stable coexistence equilibrium between resident and mutant, and there are also other possibilities
(namely, periodic or chaotic behaviour). The third phase occurs in case the former resident has already gone
almost extinct by the end of the second phase. Now the mutant stays close to its equilibrium population size
for a long time, while the former resident can be approximated by a subcritical branching process, which
tends to decay exponentially fast and dies out after an amount of time that is of the same order as the
duration of the first phase.

One usually says that in population dynamics one observes populations in the ecological time scale (which
contrasts with the evolutionary time scale studied in population genetics, where one typically rescales time by
the constant population size in order to obtain interesting scaling limits such as the Wright–Fisher diffusion

1We write N0 = {0, 1, 2, . . .} and N = {1, 2, . . .} throughout these lecture notes, for which we apologize to the Hungarian
readers.
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or the Kingman coalescent). In some cases, the approach of the areas of population genetics and population
dynamics can be united in some sense, so that a series of consecutive mutations can be studied and via
a suitable scaling of time a (deterministic or random) scaling limit can be obtained. This is the goal of
adaptive dynamics, which is a simplified theoretical approach to meso-evolution, i.e., the study of phenotypic
traits under the assumption of a separation of the time scales of ecology and evolution, i.e., a low rate of
trait-changing, beneficial mutations (see [B21, Section 1.3] for more details).

While the biological motivation of the stochastic individual-based (or microscopic) models informally
sketched above is clear, in the 1990s it became popular to study a different kind of models in adaptive
dynamics: the so-called trait substitution sequence (TSS) models. See e.g. [M96, DL96, CFB01] and the
references therein. In the latter type of models, under the assumption that no coexistence is possible
between different traits, most of the time the population consists of one single resident trait, and at random
times the trait of the population jumps to a new, randomly chosen value. This kind of model had no clear
microscopic interpretation before the work by Champagnat [C06], which explained TSS models as the limit
of individual-based models in the limit of a large carrying capacity coupled with rare mutations. Taking
the consecutive limit of mutations of small effects, the TSS converges to the so-called canonical equation of
adaptive dynamics (CEAD) [CFB01]. Many common proof techniques in population dynamics and adaptive
dynamics are based on Champagnat’s paper [C06], whence it will be the starting point of these lectures.
Another fundamental work on stochastic adaptive dynamics was the (even earlier) paper by Fournier and
Méléard [FM04], which we will also often refer to in these lecture notes, but we will not consider its model
directly.

Our last caveat before turning to the mathematics is that often, our models will be biologically oversimpli-
fied or even caricaturistic compared to the complexity of living creatures, even in the case of microorganisms.
We do not intend to make the impression that real-world living organisms are as simple as assumed in and
suggested by these models, since this would be wrong, but we believe that even such simple models may be
suitable for predicting the evolution of microbial traits or in some cases even traits of much more complex
species of creatures in certain situations.

1.2 Organization of these lecture notes
In the rest of Section 1 we lay the groundwork of individual-based stochastic models of adaptive dynamics, we
state the main result of [C06], and we sketch its proof, going into details regarding some proof techniques that
are also essential for many other population-dynamic models, in particular regarding stability of equilibria of
dynamical systems, the Poissonian construction and coupling methods, the problem of diffusion exit from a
domain and Freidlin–Wentzell type large deviations, and some basic properties of one-dimensional branching
processes.

Sections 2 and 3 explain the behaviour of more concrete examples of stochastic individual-based population-
dynamic models based on the papers [BT20, BK98, BT23] and relying heavily on proof techniques of the
papers [CCLS18, CCLLS21]. These sections investigate the effect of dormancy (see the beginning of Sec-
tion 2 for an explanation) in two different models: a competitive Lotka–Volterra type model and an epidemic
model where viruses attack microbial hosts. In these sections, we study only one single mutation and we
can rely on some methods from Section 1, but we still need to expand our toolbox of proof techniques. In
Section 2 the main novelty will be the multitype nature of the hosts, which brings techniques related to
multitype branching processes (e.g., the Kesten–Stigum theorem) into play, and particular methods will also
be needed to show global stability properties of the dynamical system. Multitype branching processes are
also important for Section 3, while that section is rather heavy on methods related to systems of ODEs. In
addition to the basic tools from Section 1, here also Hopf bifurcations, the Routh–Hurwitz criterium, and
Lyapunov function type arguments will play a role.

In Section 4 we will again study the scaling limit of an individual-based model with multiple muta-
tions [CMT21], in a regime where the frequency of mutations decays much slower than in [C06] as the
population size diverges. Here, the main new biological feature is horizontal gene transfer, and the sizes
of subpopulations converge to a deterministic and piecewise affine function under a logarithmic scaling of
population sizing and a suitable scaling of time. The subarea of adaptive dynamics where such piecewise
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affine limiting processes emerge has been researched very actively in the last 15 years. Here, proof techniques
are based on branching processes, also logistic ones and ones with immigration. The description and analysis
of the behaviour of the limiting process is also interesting and somewhat involved.

Section 4 is essentially independent of Sections 2 and 3, and hence the sections can also be read in the
order 1 → 4 → 2 → 3. We might follow the latter order in some editions of this course.

1.3 Champagnat’s individual-based model
Champagnat [C06] considered a finite number of quantitative traits in a population of one-cell organisms
with asexual and haploid reproduction (in other words: clonal reproduction, binary fission) and assumed
that the trait space X is a compact subset of Rl, l ≥ 1.

Champagnat’s microscopic model involves the three basic mechanisms of Darwinian evolution: heredity,
which transmits traits to new offsprings, mutation, driving a variation in the trait values in the population,
and selection between these different trait values. The selection process in this model is a consequence of
the competition between individuals in the population for limited resources or area. The model is defined
as follows2.

For any x, y ∈ X , we introduce the following biological parameters:

• λ(x) > 0 is the rate of birth from an individual with trait x,

• µ(x) > 0 is the rate of natural mortality (death by age) of an individual of trait x,

• α(x, y) > 0 describes the competitive pressure exerted by an individual with trait y affecting an
individual of trait x,

• a(x) ∈ [0, 1] is the probability that a mutation occurs when an individual with trait x gives birth,

• M(x, dh) is the law of h = y − x where the mutant of trait y is born from an individual of trait x.
M(·,dh) is a probability kernel from Rl to the Borel σ-algebra Bl of Rl to Rl, i.e., x 7→ M(x,A) is
measurable for all A ∈ Bl and A 7→ M(x,A) is a probability measure for all x ∈ Rl.3 Since y must
belong to the trait space X , the support of M(x, ·) must be a subset of

X − x = {y − x : y ∈ X}.

• K ∈ N is the carrying capacity of the population. In this model, it will serve as a parameter rescaling
α(·, ·), and later we will see that large K means a large population (provided that the initial condition
is proportional to K).

• uK ∈ [0, 1] is a parameter depending on K rescaling the probability of mutation a(·). Small uK means
rare mutations.

At any time t ≥ 0, we consider a finite number Nt of individuals, each of them having a trait value in X .
Let us denote by x1, . . . , xNt the trait values of these individuals. The state of the population at time t ≥ 0,
rescaled by K, can be described by the following empirical measure:

νKt =
1

K

Nt∑
i=1

δxi
, (1.1)

2Here we follow Champagnat’s paper [C06], often word by word, but our notation will be somewhat different from his one
in order to align with the notations of certain further models better.

3If you are not familiar with probability kernels, think about M(x,A) = P(the mutant trait is in A| the parent trait is x).
E.g. if the parent trait has an absolutely continuous distribution, this is formally defined via the usual conditional distribution
function/conditional density.
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where δx is the Dirac measure at x. This is a random element of the set of finite nonnegative measures (in
other words, finite point measures) on X defined as

MK =
{ 1

K

n∑
i=1

δyi : n ≥ 0, y1, . . . , yn ∈ X
}
.

Then, somewhat informally speaking, our individual-based model is defined as follows. It is a continuous-
time Markov chain with (exponential waiting times and) the following transition rates: In the population
νKt ,

• an individual with trait x gives birth to another individual with rate λ(x). The newborn has the
same trait value as its progenitor’s one with probability 1− uKa(x), and with probability uKa(x), the
newborn is a mutant whose trait value y is chosen according to y = x+h where h is a random variable
with law M(x, dh).

• an individual with trait x dies with rate

µ(x) +

∫
α(x, y)νKt (dy) = µ(x) +

1

K

Nt∑
i=1

α(x, xi).

The parameter K scales the strength of competition, thus allowing the simultaneous presence of more
individuals in the population.

More formally, the process (νKt )t≥0 is an MK-valued Markov process with infinitesimal generator (Q-matrix)
defined for any bounded measurable function ϕ : MK → R by

LKϕ(ν) =

∫
X

(
ϕ(ν +

δx
K

)− ϕ(ν)
)
(1− uKa(x))λ(x)Kν(dx)

+

∫
X

∫
Rl

(
ϕ(ν +

δx+h
K

)− ϕ(ν)
)
uKa(x)M(x,dh)λ(x)Kν(dx)

+

∫
X

(
ϕ(ν − δx

K
)− ϕ(ν)

)(
µ(x) +

∫
X
α(x, y)ν(dy)

)
Kν(dx).

(1.2)

When the measure ν is of the form (1.1), the integrals with respect to Kν(dx) in (1.2) correspond to sums
over all individual in the population. The first (linear) term describes the births without mutation, the
second (linear) term corresponds to the births with mutation, and the third (nonlinear) term accounts for
the deaths by age or competition. This logistic density-dependence models the competition in the population
and hence drives the selection process.

1.4 Equilibrium population sizes, invasion fitnesses, and convergence to a TSS
model

Let us denote by (A) Champagnat’s following three assumptions.

(A1) x 7→ λ(x), x 7→ µ(x), and (x, y) 7→ α(x, y) are measurable functions, and there exist λ̄, µ̄, ᾱ < ∞ such
that

λ(·) ≤ λ̄, µ(·) ≤ µ̄, α(x, y) ≤ ᾱ.

(A2) For all x ∈ X , M(x,dh) is absolutely continuous with respect to the Lebesgue measure on Rl with
density m(x, h), and there exists a function m̄ : Rl → [0,∞) such that m(x, h) ≤ m̄(h) for all x ∈ X
and h ∈ Rl, and

∫
m̄(h)dh <∞.

(A3) For all x ∈ X , a(x) > 0 and λ(x)− µ(x) > 0, and there exists α > 0 such that α(·, ·) ≥ α.
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Let us introduce the notation ⟨ν, f⟩ for the integral of the measurable function f against the measure ν, and
let 1 denote the constant 1 function. Let further MF denote the set of finite nonnegative Borel measures
on X .

Then, for fixed K, under (A1) and (A2) and assuming that E(⟨νK0 ,1⟩) <∞, the existence and uniqueness
in law of a process with infinitesimal generator LK was proven in another, even earlier pioneering work on
stochastic adaptive dynamics by Fournier and Méléard [FM04]; we omit the details here. (When K → ∞,
they also proved, under more restrictive assumptions and assuming the convergence of the initial condition,
the convergence on the space D([0,∞),MF ) (of càdlàg paths on MF with the usual Skorokhod topology 4)
of the process νK to a deterministic process being solution to a nonlinear integro-differential equation. Here
we will only use particular cases of some of their results, stated in Section 1.7 below, that can be proved
under assumptions (A1) and (A2).)

[C06] focused on the case where the coexistence between two different traits is impossible on the long
time scale. To state this assumption mathematically, we first introduce and interpret a couple of further key
quantities. For x, y ∈ X , we denote by

n̄x =
λ(x)− µ(x)

α(x, x)

the equilibrium population size of trait x. Vaguely speaking, it is called equilibrium population size because
under suitable conditions (which we will spell out later), in absence of mutations, the size of a monomorphic
population consisting only of individuals of trait x divided by K converges on any fixed finite time interval
to the solution to the logistic ODE

ṅx(t) = nx(t)(λ(x)− µ(x)− α(x, x)nx(t)). (1.3)

If λ(x) > µ(x) (which we assume in (A3)), then this quadratic ODE has two equilibria (i.e., points where the
right-hand side becomes zero and thus the solution started from the point stays there for all times), namely
0 and n̄x > 0. We will see that in this case, 0 is unstable, and n̄x is globally asymptotically stable in the
sense that any solution with a positive initial condition converges to it as t→ ∞.

Exercise 1. 1. Prove that this convergence is monotone in t for any positive initial condition.

2. Solve the ODE (1.3) via a separation of variables.

Next, we put
β(x) = a(x)λ(x)n̄x. (1.4)

This can be interpreted as the mutation rate in a population of trait x living in equilibrium. Finally, we
define

f(y, x) = λ(y)− µ(y)− α(y, x)n̄x. (1.5)

In more recent works in stochastic adaptive dynamics and population dynamics, this quantity is commonly
referred to as the invasion fitness of a mutant of type y in a monomorphic resident population of type x
(although this expression did not yet appear in [C06]). To interpret this quantity, imagine that K is very
large and there are K(1 ± o(1))n̄x residents of trait x in a population living close to equilibrium, and now
a mutant of trait y emerges. Then, the progeny of this mutant will have birth rate λ(y) and natural death
rate µ(y). Further, since the competitive pressure exerted by one single individual on another individual is
of order 1/K, mutants feel essentially no competitive pressure coming from each other but only from the
residents, whose population size rescaled by K is nearly constant equal to n̄x. This competitive pressure is
expressed by the term α(y, x)n̄x. Hence, f(y, x) is the approximate net growth rate of the mutant population.

The approximation described here (resident population divided by K nearly constant, mutant population
competing only with residents) will be the basis of the branching process approximation of the mutant
population during the initial phase of an invasion, which we will get to know soon. We will see that the

4Here we mean the usual Skorokhod topology on the space of càdlàg paths on MF , see e.g. [EK86, Section 5.3] for the
definition and main properties of this topology and the Skorokhod J1 metric generating it.
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positivity of the invasion fitness is often equivalent to a positive probability of mutant invasion. Under
a further assumption excluding coexistence, invasion will also lead to fixation, i.e., mutants will reach a
population size of K(1± o(1))n̄y and residents will die out. Let us now provide this assumption.

(B) Given any x ∈ X , Lebesgue almost any y ∈ X satisfies one of the following two conditions:

either (λ(y)− µ(y))α(x, x)− (λ(x)− µ(x))α(y, x) < 0, (1.6)

or (λ(y)−µ(y))α(x, x)− (λ(x)−µ(x))α(y, x) > 0 and (λ(x)−µ(x))α(y, y)− (λ(y)−µ(y))α(x, y) < 0.
(1.7)

Exercise 2. Check that condition (1.6) is equivalent to f(y, x) < 0, whereas condition (1.7) is equivalent to
f(y, x) > 0 and f(x, y) < 0.

The TSS (trait substitution sequence) model of evolution that we obtain from this individual-based model
is a Markov jump process in the trait space X with infinitesimal generator

Aφ(x) =

∫
Rl

(φ(x+ h)− φ(x))β(x)
(f(x+ h, x))+
λ(x+ h)

m(x, h)dh (1.8)

for any bounded measurable function φ : X → R, where (b)+ = [b]+ denotes the positive part of b ∈ R, and
where β(x) and f(y, x) are defined in (1.4) and (1.5), respectively. The existence and uniqueness in law of a
process with generator A holds as soon as β(x)(f(y, x))+/λ(y) is bounded (see [EK86]), which is true under
assumption (A) (which yields (f(y, x))+/λ(y) ≤ 1). In biological terms, thanks to the positive part function
in (1.8), the TSS process can only jump from a trait x to traits x+ h such that f(x+ h, x) > 0, i.e. to traits
fitter than x.

For any two functions f, g : (0,∞) → R, we write f(K) ≪ g(K) (or g(K) ≫ f(K)) if and only if
f(K)/g(K) → 0 as K → ∞. In terms of standard Landau notation, this is expressed as f(K) = o(g(K))
(or g(K) = ω(f(K))), but it is often convenient to use the notation involving the “≪” or “≫” symbols. We
further write [n] = {1, 2, . . . , n} for n ∈ N0, in particular, [0] = ∅. We are now able to state the main result
of [C06].

Theorem 1.1 ([C06]). Assume (A) and (B). Fix a sequence (uK)K∈N in [0, 1]N such that

∀V > 0, exp(−V K) ≪ uK ≪ 1

K logK
. (1.9)

Fix also x ∈ X , γ > 0, and a sequence of N-valued random variables (γK)K∈N such that (γK/K)K∈N
converges in probability to γ and is bounded in L1. Consider the process (νKt )t≥0 with generator (1.8) with
initial state (γK/K)δx. Then, for any n ≥ 1, ε > 0, and 0 < t1 < t2 < . . . < tn <∞, and for any measurable
subsets Γ1, . . . ,Γn of X ,

lim
K→∞

P
(
∀i ∈ [n],∃xi ∈ Γi : supp(ν

K
ti/(KuK)) = {xi} and |⟨νKti/(KuK),1⟩ − n̄xi

| < ε
)
= P(∀i ∈ [n], XTi

∈ Γi
)

(1.10)
where for all ν ∈ MF , supp(ν) denotes the support of ν and (Xt)t≥0 is the TSS process with generator (1.8)
and initial state x.

Remark 1.2. Let us interpret certain ingredients of Theorem 1.1.

(i) The time scale 1/(KuK) is the time scale of the mutation events for the process νK (the population
size is proportional to K and the individual mutation rate to uK).

(ii) The second inequality in Assumption (1.9) leads to the separation of the ecological time scale (i.e., the
time scale of birth and death events) and the evolutionary one (i.e., the one of mutations). This will
guarantee that each mutation goes to fixation or extinction with high probability before the appearance
of the next mutant. Such a rareness of mutations ensures that in the scaling limit, clonal interference,
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i.e., the competitive interaction between multiple beneficial mutations fighting simultaneously for sur-
vival plays no role. For population-dynamic models with some outlook to a possible scaling limit in
the case of recurrent mutations, we refer the reader to [BS17, BS19]. We will discuss mutation regimes
with less rare mutations in more general in Section 4.1.

(iii) The limit in (1.10) means that, when this time scale separation occurs, the population is monomorphic
at any time with high probability, and the transition periods corresponding to the invasion of a mutant
trait in the resident population (between the appearance of a mutant that invades successfully and the
extinction of the former resident) are infinitesimal on this mutation time scale.

(iv) Unlike in classical population-genetic models like the Wright–Fisher or the Moran model, in our model
the population size is not constant. This leads to an almost sure extinction of the population in the
case of any (finite) initial condition, and the typical time scale until extinction is exponential in K. The
first inequality in (1.9) is needed (unlike in the case of a constant population size) in order to ensure
that mutations do not come so rarely that the population is likely to die out between them. We will
discuss this assumption in more detail in Remark 1.18.

(v) Note also that the convergence in (1.10) is a convergence of finite-dimensional distributions.

Theorem 1.1 has the following corollary.

Corollary 1.3 ([C06]). Assume additionally in Theorem 1.1 that (γK/K)K∈N is bounded in Lp for some
p > 1. Then the process (νt/(KuK))t≥0 converges in the sense of finite-dimensional distributions for the
topology on MF induced by the functions ν 7→ ⟨ν, f⟩ with f bounded and measurable on X , to the process
(Yt)t≥0 defined by

Yt =

{
γδx, if t = 0,

n̄Xt
δXt

, if t > 0.

This corollary is a consequence of the following long-time moment estimates:

Lemma 1.4 ([C06]). Assume (A) and that supK≥1 E(⟨νK0 ,1⟩p) <∞ for some p ≥ 1, then we have

sup
K≥1

sup
t≥0

E(⟨νKt ,1⟩p) <∞,

and therefore, if p > 1, then the family of random variables (⟨νKt ,1⟩K≥1,t≥0 is uniformly integrable.

The proof of this lemma can be found in Appendix A. Based on the lemma, the proof of the corollary
goes as follows.

Proof of Corollary 1.3. Let Γ be a measurable subset of X . Let us prove that

lim
K→∞

E
(
⟨νKt/(KuK),1Γ⟩

)
= E

(
n̄Xt1{Xt∈Γ}

)
. (1.11)

Fix ε > 0, and observe that by Assumption (A) we have n̄x ∈ [0, b̄/α]. Write [0, b̄/α] ⊆
⋃q
i=1 Ii, where q is

the smallest integer greater than b̄/εα and Ii = [(i − 1)ε, iε). Define Γi = {x ∈ X : n̄x ∈ Ii} for 1 ≤ i ≤ q,
and apply (1.10) to the sets Γ ∩ Γ1, . . . ,Γ ∩ Γq with n = 1, t1 = t and ε as above. Then, by Lemma 1.4,
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there exists C > 0 such that

lim sup
K→∞

E(⟨νKt/(KuK),1Γ⟩) ≤ lim sup
K→∞

E(⟨νKt/(KuK),1Γ⟩1{⟨νK
t/(KuK )

,1⟩≤C}) + ε

≤
q∑
i=1

lim sup
K→∞

E
(
⟨νKt/(KuK),1Γ∩Γi

⟩1{⟨νK
t/(KuK )

,1⟩≤C}
)
+ ε

≤
q∑
i=1

(i+ 1)εP(Xt ∈ Γ ∩ Γi) + ε

≤
q∑
i=1

(
E(n̄Xt

1{Xt∈Γ∩Γi}) + 2εP(Xt ∈ Γi)
)
+ ε

≤ E(n̄Xt1{Xt∈Γ}) + 3ε.

A similar estimate for the lim inf finishes the proof of (1.11), which implies the convergence of one-dimensional
laws for the required topology (is the latter conclusion clear?). The same method gives the required limit
when we consider a finite number of times t1, . . . , tn.

Remark 1.5. It is not claimed in Corollary 1.3 that the convergence holds in distribution in the space of
càdlàg paths from [0,∞) to MF w.r.t. the Skorokhod topology, and that assertion is actually not true.
The problem is the missing continuity of the limit at time 0+. Regarding this, we do not go into detail
here; we refer the interested reader to [C06, Proposition 1] and its proof. We find the interpretation of this
discontinuity more important: Started at any initial condition γK/K tending to γ > 0 in probability, the
process reaches an arbitrarily small (fixed) neighbourhood of the equilibrium n̄X0 = n̄x in o(KuK) time.
Remark 1.6 (The canonical equation of adaptive dynamics). In Theorem 1.1, the TSS model is obtained
in the limit of a large carried capacity combined with rare mutations from the individual-based model. As
mentioned earlier, taking the limit of small mutational effects in the TSS model, under suitable additional
assumptions, we obtain the canonical equation of adaptive dynamics (CEAD), see [CFB01, Theorem 2]. The
canonical equation reads

dŝ

dt
= u(ŝ)

σ2
0(ŝ)

2
n(ŝ)∂1f(ŝ, ŝ),

where s denotes a scalar trait, ŝ(t) denotes the mean of the distribution of the trait value s at time t ≥ 0,
u(s) is the probability that a birth from an individual of trait s gives rise to a mutation, σ2

0(s) denotes
the variance of the distribution of the mutant trait s′ born from an individual of trait s, whose probability
density function is denoted by M(s, s′ − s) and supposed to be symmetric with respect to s′ − s, n(s) is
the equilibrium population size (which is supposed to exist and be positive) in a population composed only
of individuals of trait s, ∂1f(s, s) denotes the first partial derivative of the fitness function f(s′, s) of a
mutant individual of trait s′ in a population composed only of individuals with trait s. Fixed points of the
canonical equation are the points where the fitness gradient ∂1f(s, s) vanishes, these are called evolutionary
singularities.

While [C06] gave a clear microscopic interpretation to the TSS model, the relation between the original
individual-based model and the CEAD was still not that clear based on his paper because of the two
separate, consecutive limits. Later, in a paper by Baar, Bovier and Champagnat [BBC17] it was showed
that the two consecutive limits in [C06] can be coupled in order to obtain the same convergence in one step.
In models with multiple mutations and coupled limits, the traces of methods based on dynamical systems
and branching processes can still be found, but the approximating objects often become more complex than
in single-mutation models.

1.5 Stability of equilibria of the dynamical systems
In order to explain the idea of the proof of Theorem 1.1, we need to introduce some further definitions
and notations. While the theorem tells about the empirical measure (νKt )t≥0 scaled properly, the following
definition provides the necessary notation for the corresponding birth-and-death processes.
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Definition 1.7. (a) For any K ≥ 1, λ, µ, α ≥ 0 and for any N/K-valued random variable Z, we will
denote by PK(λ, µ, α, Z) the law of the N/K-valued Markov birth-and-death process with initial state
Z and with transitions

i/K → (i+ 1)/K at rate iλ,
i/K → (i− 1)/K at rate i(µ+ αi/K).

(b) For any K ≥ 1, λk, µk, αkl ≥ 0 with k, l ∈ {1, 2}, and for any N/K-valued random variables Z1 and
Z2, we will denote by

QK(λ1, λ2, µ1, µ2, α11, α12, α21, α22, Z1, Z2)

the law of the (N/K)2-valued Markov birth-and-death process with initial state (Z1, Z2) and with
transition rates

(i/K, j/K) → ((i+ 1)/K, j/K) at rate iλ1,
(i/K, j/K) → ((i− 1)/K, j/K) at rate i(µ1 + (α11i+ α12j)/K),

(i/K, j/K) → (i/K, (j + 1)/K) at rate jλ2,
(i/K, j/K) → (i/K, (j − 1)/K) at rate j(µ2 + (α21i+ α22j)/K),

These two Markov chains have absorbing states at 0 and (0, 0), respectively. Observe also that, when
α = 0, the Markov process of point (a) is a continuous-time binary branching process divided byK. Similarly,
if each αij equals zero, the two coordinates of the Markov process of point (b) are independent binary
branching processes divided by K. Now we make the connection between the rescaled birth-and-death
processes appearing in Definition 1.7 and (systems of) logistic ODEs precise. The proof of the following
results can be found in [EK86, Chapter 11].

Proposition 1.8 ([EK86, C06]). Let T > 0.

(a) Assume that a ≡ 0 and νK0 = NK
x (0)δx. Then, for any t ≥ 0, νKt = NK

x (t)δx, where NK
x has the law

PK(λ(x), µ(x), α(x, x), NK
x (0)).

Assume that NK
x (0) → nx(0) in probability when K → ∞. Then, the sequence (NK

x )K≥1 = ((NK
x (t))t≥0)K≥1

converges in probability in [0, T ] in the uniform norm (supremum norm) when K → ∞ to the deter-
ministic function nx = (nx(t))t≥0 that is solution to the ODE (1.3) with initial condition nx(0).

(b) Assume that a ≡ 0 and νK0 = NK
x (0)δx +NK

y (0)δy. Then, for any t ≥ 0, νKt = NK
x (t)δx +NK

y (t)δy,
where (NK

x , N
K
y ) has the law

QK(λ(x), λ(y), µ(x), µ(y), α(x, x), α(x, y), α(y, x), α(y, y), NK
x (0), NK

y (0)).

Assume that NK
x (0) → nx(0) and NK

y (0) → ny(0) in probability when K → ∞. Then, (NK
x , N

K
y ) con-

verges in probability in [0, T ] in the uniform norm to the deterministic function (nx, ny) = ((nx(t), ny(t))t≥0

when K → ∞ with initial condition (nx(0), ny(0)), which is the solution to the two-dimensional com-
petitive Lotka–Volterra system

ṅx(t) = (λ(x)− µ(x)− α(x, x)nx(t)− α(x, y)ny(t))nx(t),

ṅy(t) = (λ(y)− µ(y)− α(y, x)nx(t)− α(y, y)ny(t))ny(t).
(1.12)

It is easy to see that the corresponding positive orthant is positively invariant under both systems, i.e., if
the initial condition is coordinatewise positive, so is the solution at each positive time. If this did not hold,
the system would not be biologically reasonable because (rescaled) population sizes could eventually turn
negative. This property will be true for all systems of ODEs that appear in these lecture notes as large-K
limits of rescaled population sizes.5

5It is well-known that in general for one-dimensional ODEs (like (1.3)), local stability of an equilibrium and global stability
of the same equilibrium on a positively invariant set containing the equilibrium coincide. It is also classical that a nonnegative
solution to a one-dimensional ODE under which [0,∞) is positively invariant either tends to +∞ or to an equilibrium.
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We have already discussed the question of (global) stability of the equilibria (0 and n̄x) of the ODE (1.3).
The system (1.12) has at least three equilibria: (0, 0), (n̄x, 0), and (0, n̄y). The reader may already be
aware of the fact that for higher-dimensional systems of ODEs, local and global stability may not coincide.
The question of local stability can often be determined via linearization: One determines the Jacobi matrix
consisting of the partial derivatives of the right-hand sides of the equation w.r.t. all variables and writes it
in matrix form. For example, in the case of (1.12), the Jacobi matrix around an equilibrium of the form
(ñx, ñy) ∈ [0,∞)2 reads as

A(ñx, ñy) =

(
λ(x)− µ(x)− 2α(x, x)ñx − α(x, y)ñy −α(x, y)ñx

−α(y, x)ñy λ(y)− µ(y)− α(y, x)ñx − 2α(y, y)ñy

)
. (1.13)

The following summary of (Lyapunov) stability theory may also be a repetition for some readers.

• We say that the equilibrium is (locally) asymptotically stable if there exists ε > 0 such that started
from anywhere in an ε-ball around the equilibrium, the solution converges to the respective equilibrium
as t→ ∞.

• We say that the equilibrium is unstable if there exists ε > 0 such that for any δ > 0 there exists an
initial condition within the δ-ball around the equilibrium starting from which the solution eventually
leaves the ε-ball forever.

• Finally, the equilibrium is (locally) stable if for any ε > 0 there exists δ > 0 such that if the initial
condition lies within a δ-neighbourhood of the equilibrium, then the solution will be within the ε-
neighbourhood of the equilibrium for all sufficiently large times.6

If all eigenvalues of the corresponding Jacobi matrix have negative real parts, then the equilibrium is asymp-
totically stable. If all eigenvalues have nonzero real parts and there is an eigenvalue with positive real part,
then the equilibrium is unstable. Finally, if the equilibrium is non-hyperbolic, i.e., at least one eigenvalue has
zero real part (otherwise we call it hyperbolic), then both stability and instability are possible. In the case
of stability, it may also be the case that the equilibrium is asymptotically stable, but unlike for hyperbolic
stable equilibria, the convergence to the equilibrium typically does not happen at an exponential speed but
slower. Finally, (in the non-hyperbolic case) stability does not imply asymptotic stability.7

Summarizing, for hyperbolic equilibria, the local stability of equilibria can be determined by linearization,
and the linearized version of the system, i.e., the linear system of ODEs with the same Jacobi matrix at the
given equilibrium, exhibits the same local stability properties. If the equilibrium is non-hyperbolic, then the
stability properties of the linearized and the original system may not be the same. Further, local asymptotic
stability is necessary but not sufficient in order to guarantee the convergence of solutions to the system
started from distant initial conditions (which is an assertion that one often needs in population dynamics,
as we will see).

In the case of the system (1.12), we have

A(0, 0) =

(
λ(x)− µ(x) 0

0 λ(y)− µ(y).

)
By Assumption (A3), λ(x) > µ(x) and λ(y) > µ(y), and hence (0, 0) is unstable. (The eigenvalues are of
course the diagonal entries and hence they are real. An equilibrium of a two-dimensional system with two
positive real eigenvalues for the Jacobi matrix is called (locally) a source.)

The question of stability of the other eigenvalues depends also on the competition parameters. If we have
symmetric competition, i.e., α(x, x) = α(x, y) = α(y, x) = α(y, y) = α > 0, then λ(x)−µ(x) = λ(y)−µ(y) is

6Formally, the definition of stability is not exactly the opposite of the one of instability, but in practice it can be thought of
like that.

7A typical example is given by the linear system ẋ(t) = y(t), ẏ(t) = −ωx(t), ω > 0, where at (0, 0) the Jacobi matrix has two
purely imaginary eigenvalues, and trajectories of the system not started from (0, 0) are concentric circles around (0, 0). Such an
equilibrium is called a (stable) center. Note that the aforementioned example is nothing but the reformulation of the harmonic
oscillator ODE ẍ(t) = −ωx(t) as a two-dimensional system of ODEs.
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a critical case. Then, it is not only the case that (n̄x, 0) and (0, n̄y) are non-hyperbolic equilibria, but even
any convex combination of these two eigenvalues is again a non-hyperbolic equilibrium. We will typically
exclude this case, and the case of zero invasion fitnesses is difficult to treat in general. In the hyperbolic
case, the following assertion of [I00] (mentioned also in [C06]) guarantees instability resp. a certain sense of
global stability for some of the equilibria.

Proposition 1.9 ([I00]). If x and y satisfy (1.6), then (n̄x, 0) is a stable equilibrium of (1.12). If x and y
satisfy (1.7), then (n̄x, 0) is unstable, (0, n̄y) is stable, and any solution to (1.12) with initial condition in
(0,∞)2 converges to (0, n̄y) when t→ ∞.

Exercise 3. Assume that both invasion fitnesses f(x, y) and f(y, x) are nonzero. Under what conditions can
both equilibria (n̄x, 0) and (0, n̄y) be simultaneously stable? Under what conditions can they be simultaneously
unstable? Can the latter happen in the case of symmetric competition?

Exercise 4. Verify that in the case of symmetric competition, (1.12) cannot have any coordinatewise positive
coexistence equilibrium apart from the critical case λ(x) − µ(x) = λ(y) − µ(y). This assertion is known as
competitive exclusion principle.8

1.6 Outline of the proof of Theorem 1.1: the three phases of an invasion
The main ideas of the proof of Theorem 1.1 in [C06] are based on two ingredients. First, when a ≡ 0 and
νK0 is monomorphic with trait x, it follows from Proposition 1.8 (a) that νK converges to n(t)δx, where n(t)
is the solution to (1.3). Any solution to this equation with a positive initial condition converges to n̄x as
t → ∞. We will employ Freidlin–Wentzell type large-deviation arguments [FW84] to this convergence in
order to show that the time during which the stochastic process stays in a small neighbourhood of its limit
is of order exp(KV ) for a certain V > 0. Now, when uK is small, the process νK with a monomorphic
initial condition of trait x equals the same process with a ≡ 0 until the first time a mutant occurs. Thanks
to the first inequality in (1.9), we will be able to prove that with high probability, the first mutation event
(occurring on the time scale t/(KuK)) occurs before the total density drifts away from n̄x.

The second ingredient of Champagnat’s proof is the study of the invasion of the mutant trait y that
has just appeared in a monomorphic resident population of trait x. This invasion can be divided into three
steps9 as follows.

• Phase I : Firstly, as long as the mutant population size ⟨νKt ,1{y}⟩ (initially equal to 1/K) is smaller
than some fixed but small ε > 0, the resident dynamics is very close to what it was before the mutation,
so ⟨νKt ,1{x}⟩ stays close to n̄x. Then, as already anticipated, the death rate of a mutant individual is
close to the constant µ(y)+α(y, x)n̄x. Since its birth rate is constant equal to λ(y), we can approximate
the dynamics of the (non-rescaled!) mutant population size K⟨νKt ,1{y}⟩ by a binary branching process
(whose transition rates are linear in the number of individuals). Hence, the probability that ⟨νKt ,1{x}⟩
reaches ε is approximately equal to the probability that this branching process reaches εK, which
converges when first K → ∞ and then ε ↓ 0 to the probability of non-extinction of the branching
process.
One computes the survival probability of a continuous-time branching process using the same first-step
analysis as one does it for a Galton–Watson process in discrete time (since the latter is the embedded
discrete-time chain of the former), and hence this probability equals [f(y, x)]+/λ(y), which is positive
whenever the first inequality of (1.7) is satisfied; see Section 1.9 for a proof sketch. In that case, the
branching process is supercritical. In case (1.6) holds, the branching process is (strictly) subcritical.
Due to the aforementioned large-deviation results, it will follow that the resident population stays close
to equilibrium at least until the mutant population size reaches εK or 0. In the presence of mutants,
in the case of a successful mutant invasion, the rescaled resident population size will leave the vicinity

8It can also be shown that if (1.7) or the same set of inequalities with the roles of x and y swapped holds, then the
system (1.12) cannot have any coordinatewise positive equilibrium.

9See [C06, Section 3] for references to similar results in population-genetic settings.
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of n̄x in Θ(logK) time, due to the competitive disadvantage of residents compared to the mutants (cf.
the first equation of (1.7)).

• Phase II : Secondly, once ⟨νKt ,1{y}⟩ has reached ε, by Proposition 1.8 (b), for large K, νK is close to
the solution to (1.12) with initial state (n̄x, ε) with high probability. By Proposition 1.9, this solution
will be shown to reach the ε-neighbourhood of (0, n̄y) in finite time.

• Phase III : Finally, once ⟨νKt ,1{y}⟩ is close to n̄y and ⟨νKt ,1{x}⟩ is small, one can approximate the
resident population size K⟨νKt ,1{x}⟩ by a binary branching process, which is subcritical whenever the
second inequality of (1.7) holds, and thus it gets extinct almost surely.

We will see that the first phase takes Θ(logK) time; the precise prefactor of logK does depend on ε but it
can be chosen uniformly bounded over all sufficiently small ε > 0, and the prefactor converges to a positive
number as ε ↓ 0. Where does this logK come from? Conditional on survival, the approximating branching
process grows roughly exponentially at a certain rate, and hence reaching a size of order K takes an order of
logK time. The same time scaling (with a possibly different limiting prefactor) applies to the third phase;
there, a subcritical branching process with initially order K individuals decays exponentially and then dies
out.

The time scale of the dynamical system (1.12) is finite (independently of K), but the common folklore
statement that Phase II takes O(1) time is not entirely correct because even though the duration of Phase
II stays bounded as K → ∞ for any fixed ε > 0, it tends to infinity as ε ↓ 0. Taking K → ∞ (with uK ↓ 0
according to (1.9)), the total duration of a successful invasion is Θ(logK) with a precise limiting prefactor,
and unsuccessful invasions take o(logK) time (in fact, even o(h(K)) time for any h : (0,∞) → (0,∞)
increasing that tends to infinity as K → ∞).

Vaguely speaking, thanks to the second inequality of (1.9), all mutants will reach fixation or go extinct
(leaving the current resident untouched) until the birth of the next mutant with high probability as K → ∞,
i.e., clonal interference plays no role in the limit. Scaling time by 1/(KuK), the duration of the three phases
of an invasion (where both the resident and the mutant are present) vanishes, and we indeed obtain a jump
process, namely the TSS model, as scaling limit.

Remark 1.10 (More general initial conditions). It was observed in [M96] that the biological heuristics leading
to the TSS model extend to the case of a polymorphic initial condition where the population is composed of a
finite number of distinct traits. The mathematical methods of [C06] can also be extended easily to n-morphic
initial conditions, expect for one difficulty: One has to replace assumption (B) with another assumption
stating that, for n under consideration, any solution to the n-morphic logistic system generalizing (1.12)
converges to an equilibrium (as in Proposition 1.9), and that the equilibria of these systems are hyperbolic,
in the sense that the branching processes in the first and third steps above are not critical, or, equivalently,
that a first-order linear analysis of these equilibria allows to determine their local stability. Then, one could
construct a polymorphic TSS model in which the number of coexisting traits is not fixed. However, the
asymptotic analysis of n-dimensional logistic systems is non-trivial and may exhibit cyclic behaviour or
chaos, except when n = 1 or n = 2, and analytical assumptions ensuring the condition above are difficult to
find.

Remark 1.11 (More frequent mutations and clonal interference). According to the above observations re-
garding scaling, if one wants to study the effects of clonal interference, the most interesting scaling regime is
when uK ≍ 1/(K logK). Then, the duration of a successful invasion is of the same order as the time between
two consecutive mutations. Therefore, the number of mutants trying to fix in the population is typically
of finite order, but not almost always 0 or 1. A mutant surviving initial fluctuations may still not become
resident in case there is an even fitter mutant who “overtakes” it and reaches the size εK earlier. Further, a
mutant who has become resident may as well be wiped out from the population by another mutant who is
fitter but was born too late to become resident first. Such effects were investigated in [BS17], also in the case
of asymmetric competition, where the interaction between three traits was studied. The authors showed that
under certain conditions, one can e.g. observe a “rock–paper–scissors cycle”, where three mutants of traits are
periodically resident. Such a cycle requires the lack of transitivity of competitive relations, where transitivity
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means that f(y, x) > 0 and f(z, y) > 0 implies f(z, x) > 0 for all x, y, z ∈ X . Indeed, a rock–paper–scissors
cycle starting with the residency of, say, x, and followed by first y and then z, requires that f(y, x) > 0,
f(z, y) > 0, and f(x, z) > 0 (and further conditions).

In [BS19] it was mentioned that uK ≍ 1/(K logK) is the relevant mutation frequency regime in order to
see an interesting scaling limit, but the case of a diverging number of mutations was not studied there. We
will analyse settings with even more frequent mutations and arising interesting effects in Section 4.

The proof of Theorem 1.1 is too long and technical to present it completely at our course, but apart
from this overview, we will also go into detail regarding the large-deviation estimates, important properties
of branching processes (e.g., their growth rate, which determines the prefactor of logK at an invasion), and
some other key techniques. Interested readers can find the (greatly written) proof in [C06].

1.7 Comparison results and Poissonian construction
To provide the results on comparison and coupling of birth-and-death processes that are essential for the
proof of Theorem 1.1, let us first introduce the necessary notation and definitions. For any K ≥ 1 and
ν ∈ MK , we will denote by PKν the law of the process with generator (1.2) with initial state ν, and by EKν
the expectation with respect to PKν . The law of a stochastic process Z = (Zt)t≥0 will be denoted by L(Z).

Definition 1.12 (Stochastic domination of laws in the context of [C06]). We will denote by ⪯ the following
stochastic domination relation: If Q1 and Q2 are the laws of R-valued processes, we will write Q1 ⪯ Q2 if
we can construct on the same probability space (Ω,F ,P) two processes X1 = (X1

t )t≥0 and X2 = (X2
t )t≥0

such that L(Xi) = Qi (i = 1, 2) and ∀t ≥ 0, ∀ω ∈ Ω, X1
t (ω) ≤ X2

t (Ω).

Definition 1.13. If X1 = (X1
t )t≥0 and X2 = (X2

t )t≥0 are two stochastic processes and T is a random time
constructed on the same probability space as X1, we will write “X1

t ⪯ X2
t for t ≤ T ” if we can construct a

process X̂2 = (X̂2
t )t≥0 on the same probability space as X1, such that L(X̂2) = L(X2) and ∀t ≤ T , ∀ω ∈ Ω,

X1
t (ω) ≤ X̂2

t (ω).

The following theorem provides various stochastic domination results.

Theorem 1.14 ([C06]). (a) Assume (A). For any K ≥ 1 and any integrable initial condition νK0 of the
process νK ,

L(⟨νK , 1⟩) ⪯ PK(2λ̄, 0, α, ⟨νK0 ,1⟩),

where we recall the law PK from Definition 1.7.

(b) Under the same assumptions as in (a), let AKt denote the number of mutations occurring in νK between
times 0 and t, and let a, a1, a2 ≥ 0. Then, for t ≤ inf{s ≥ 0: ⟨νKs ,1⟩ ≥ a},

AKt ⪯ BKt ,

where BKt is a Poisson process with parameter KuKab̄. If further νK0 = ⟨νK0 , 1⟩δx, define τ1 = inf{t ≥
0: AKt = 1} (the first mutation time). Then, for t ≤ τ1 ∧ inf{s ≥ 0: ⟨νKs ,1⟩ /∈ [a1, a2]},

BKt ⪯ AKt ⪯ CKt , (1.14)

where BK = (BKt )t≥0 and CK = (CKt )t≥0 are Poisson processes with respective parameters KuKa1a(x)b(x)
and KuKa2a(x)b(x).

(c) Fix K ≥ 1 and take b, d, α, z as in Definition 1.7 (a). Then, for any ε1, ε2, ε3 ≥ 0 and any N/K-valued
random variable ε/4,

PK(b, d+ ε2, α+ ε3, z) ⪯ PK(b+ ε1, d, α, z + ε4).

Let (Z1, Z2) = ((Z1
t , Z

2
t ))t≥0 be a stochastic process with law

QK(b1, b2, d1, d2, α11, α12, α21, α22, z1, z2)
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where the parameters are as in Definition 1.7 (b). Fix a > 0 and define T = inf{t ≥ 0: Z2
t ≥ a}. Then,

for t ≤ T ,
M1
t ⪯ Z1

t ⪯M2
t ,

where L(M1) = PK(b1, d1 + aα12, α11z1) and L(M2) = PK(b1, d1, α11, z1).

(d) Take (Z1, Z2) as above, fix 0 ≤ a1 < a2 and a > 0, and define T = inf{t ≥ 0: Z1 /∈ [a1, a2] or Z2 ≥ a}.
Then, for t ≤ T ,

M2
t ⪯ Z2

t ⪯M2
t ,

where L(M1) = PK(b2, d2 + a2α21 + aα22, 0, z2) and L(M2) = PK(b2, d2 + a1α21, 0, z2).

Remark 1.15. Point (a) explains why it is necessary to combine simultaneously the limits K → ∞ and uK ↓ 0
in order to obtain the TSS process in Theorem 1.1. The limit K → ∞ taken alone leads to a deterministic
dynamics (which had already been shown in [FM04] before [C06] was written), so taking the limit of rare
mutations afterwards cannot lead to a stochastic process. Conversely, taking the limit of rare mutations
without letting the population size diverge would lead to an immediate extinction of the population on the
time scale of mutations, because the stochastic domination of Theorem 1.14 (a) is independent of uK and
because the process Z with law PK(2b̄, 0, α, γK/K) goes extinct a.s. in finite time.

Before proving Theorem 1.14, let us mention that Lemma 1.4 can be derived from part (a) of the theorem.
The proof can be found in Appendix A (or in [C06, Section 4.1]).

Proof of Theorem 1.14. The proof is essentially intuitive if one computes upper and lower bounds of the
birth and death rates for each process considered in the statement of the theorem. We will simply give an
explicit construction of the process νK , commonly known as the Poissonian construction10 of the process νK ,
and we will give the precise proof of (1.14) as an example. We leave the proofs of the remaining comparison
results to the reader (as it was also done in [C06]). We start via recalling the notion of Poisson point measure
and Poisson point process.

Definition 1.16. Let (S,S, ν) be an arbitrary σ-finite measure space, and (Ω,F ,P) a probability space.
Let P : S → {0, 1, 2, . . .} ∪ {∞} be such that the family {P (A) : A ∈ S} are random variables defined on
(Ω,F ,P). Then P is called a Poisson random measure or Poisson point measure on S with intensity measure
ν if

(i) for any n ∈ N, for mutually disjoint A1, A2, . . . , An ∈ S the random variables P (A1), . . . , P (An) are
independent,

(ii) for any A ∈ S, P (A) is Poisson distributed with parameter ν(S) ∈ [0,∞]11,

(iii) P-almost surely, P is a measure.

Let us consider the case when S is a topological space with Borel σ-algebra S, and ν is a measure on S,
which is not only σ-finite but also locally finite, see e.g. [BB09, Section 1.1]. When S = Rd, this automatically
implies that ν(K) <∞, and therefore P-a.s. N(K) <∞, for any bounded and measurable K ⊂ Rd. In this
case, almost surely there exists a (random!) collection of points Π = (Xi)i∈I (for some possibly also random
index set I) such that for all A ∈ S, N(A) = |{i ∈ I : Xi ∈ A}|, which we call a Poisson point process (or in
some sources simply Poisson process). A Poisson point process on Rd is called homogeneous if the intensity
measure µ has a constant density w.r.t. the d-dimensional Lebesgue measure, i.e., µ(dx) = λ dx for some
λ ≥ 0. A homogeneous Poisson process on [0,∞) with intensity λ ≥ 0 is just the usual Poisson process
with intensity measure equal to λ times the Lebesgue measure. For classical coursebooks on Poisson (point)
processes, we refer the reader to [K93, LP17].

10For readers familiar with the content of population-genetic courses given by Jochen Blath, such a construction may be
known from the topic of Λ-coalescents and their moment duals.

11Here, a Poisson(0) distributed random variable is defined to be almost surely equal to 0, and a Poisson(∞)-distributed
random variable is defined to be almost surely equal to ∞.
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For the process νK , a Poissonian construction was first given by Fournier and Méléard [FM04] as follows.
Let (Ω,F ,P) be a sufficiently large probability space, and on this space consider the following five independent
random objects:

(i) a MK-valued random variable νK0 (the initial distribution),

(ii) a Poisson point measure N1(ds,di,dv) on [0,∞) × N × [0, 1] with intensity measure q1(ds,di,dv) =
b̄ds

∑
k≥1 δk(di)dv (the Poisson point measure of birth without mutation),

(iii) a Poisson point measureN2(ds,di,dh,dv) on [0,∞)×N×Rl×[0, 1] with intensity measure q2(ds,di,dh,dv) =
b̄ds

∑
k≥1 δk(di)m̄(h)dhdv (the Poisson point measure of birth with mutation),

(iv) a Poisson point measure on N3(ds,di,dv) on [0,∞)×N× [0, 1] with intensity measure q3(ds,di,dv) =
d̄ds

∑
k≥1 δk(di)dv (the Poisson point process of natural death),

(v) a Poisson point measureN4(ds,di,dj,dv) on [0,∞)×N×N×[0, 1] with intensity measure q4(ds,di,dj,dv) =
(ᾱ/K)ds

∑
k≥1 δk(di)

∑
m≥1 δm(dj)dv (the Poisson point process of death by competition).

We will also need the following function, solving the purely notational problem of associating a number
to each individual in the population: For any K ≥ 1, let H = (H1, H2, . . . ,Hk, . . .) be the map from MK

into (Rl)N defined by

H
( 1

K

n∑
i=1

δxi

)
= (xσ(1), . . . , xσ(n), 0, 0, . . .),

where xσ(1) ⪯ . . . ⪯ xσ(n) for the lexicographic order ⪯ on Rl. For convenience, we omitted in our notation
the dependence of H and Hi on K.

Then a process νK with generator LK and initial state νK0 can be constructed as follows: For any t ≥ 0,

νKt = νK0 +

∫ t

0

∫
N

∫ 1

0

1{i≤K⟨νK
s−,1⟩}

δHi(νK
s−)

K
1{

v≤
[1−uKµ(Hi(νK

s−))]b(Hi(νK
s−)

b̄

}N1(ds,di,dv)

+

∫ t

0

∫
N

∫
Rl

∫ 1

0

1{i≤K⟨νK
s−,1⟩}

δHi(νK
s−)+h

K
1{

v≤
[uKµ(Hi(νK

s−))]b(Hi(νK
s−)

b

m(Hi(νK
s−),h)

m̄(h)

}N2(ds,di,dh,dv)

−
∫ t

0

∫
N

∫ 1

0

1{i≤K⟨νK
s−,1⟩}

δHi(νK
s−)

K
1
{v≤

µ(Hi(νK
s−))

d̄
}
N3(ds,di,dh)

−
∫ t

0

∫
N

∫
N

∫ 1

0

1{i≤K(νK
s−,1⟩}1{j≤K(νK

s−,1⟩}
δHi(νK

s−)

K
1{

v≤
α(Hi(νK

s−),Hj(νK
s−)

ᾱ

}N4(ds,di,dj,dv).

(1.15)
As written in [C06], although this formula is quite complicated, the principle is simple. For each type of
event, the corresponding Poisson point process jumps faster than νK has to. We decide whether a jump of
the process νK occurs by comparing v to a quantity related to the rates of the various events. The indicator
functions involving i and j ensure that the i-th and j-th individuals are alive in the population at time t
(because K⟨νKt ,1⟩ is the number of individuals at that time). Here, for brevity, we do not provide the formal
definition of the stochastic integral of a random integrand against a Poisson point measure, which can e.g.
be found in [E19].

Under (A1), (A2), and the assumption that E(⟨νK0 , 1⟩) < ∞, Fournier and Méléard [FM04] prove the
existence and uniqueness of the solution to (1.15), and that this solution is a Markov process with infinitesimal
generator (1.2).

Now, let us prove (1.14). The process AK can be written as

AKt =

∫ t

0

∫
N

∫
Rl

∫ 1

0

1{i≤K(νK
s−,1⟩}1

{
v≤

uKµ(Hi(νK
s−))b(Hi(νK

s−))

b̄

m(Hi(νK
s−),h)

m̄(h)

}N2(ds,di,dh,dv).
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In the case where νK0 = ⟨νK0 ,1⟩δx, as long as t < τ1, we have νKt = ⟨νKt ,1⟩δx. Therefore, for t ≤ τ1∧ inf{s ≥
0: ⟨νKs ,1⟩ /∈ [a1, a2]},∫ t

0

∫
N

∫
Rl

∫ 1

0

1{i≤Ka1}1{v≤uKa(x)b(x)

b̄

m(x,h)
m̄(h)

}N2(ds,di,dh,dv) ≤ AKt

≤
∫ t

0

∫
N

∫
Rl

∫ 1

0

1{i≤Ka2}1{v≤uKa(x)λ(x)

b̄

m(x,h)
m̄(h)

}N2(ds,di,dh,dv).

(1.16)

Since the intensity measure of N2 is

q2(ds,di,dh,dv) = b̄ds
∑
k≥1

δk(di))m̄(h)dhdv,

the left-hand side and the right-hand side of (1.16) are Poisson processes with parameters KuKa1a(x)λ(x)
and KuKa2a(x)λ(x), respectively.

1.8 The problem of exit from a domain and a crash-course on large deviations
Points (a) and (b) of the following result on the birth-and-death process with law PK(λ, µ, α, z) (cf. Defini-
tion 1.7 (b)) strengthen Proposition 1.8, while point (c) studies the problem of exit from a domain.

Theorem 1.17 ([C06]). (a) Let α, T > 0 and λ, µ ≥ 0, let C be a compact subset of (0,∞), and write
PKz = PK(λ, µ, α, z) for a deterministic initial condition z ∈ N/K. Let ϕz denote the solution to

ϕ̇ = (λ− µ− αϕ)ϕ (1.17)

with initial condition ϕz(0) = z. Then

r := inf
z∈C

inf
t∈[0,T ]

|ϕz(t)| > 0 and R := sup
z∈C

sup
t∈[0,T ]

|ϕz(t)| <∞.

Moreover, for any δ < r,
lim
K→∞

sup
z∈C

PKz
(

sup
t∈[0,T ]

|wt − ϕz(t)| ≥ δ
)
= 0, (1.18)

where (wt)t≥0 is the canonical process on D([0,∞),R) (i.e., wt(ω) = ω(t) for ω ∈ D([0,∞),R), which has
distribution PK

z under the probability measure PK(z)).

(b) Let T, αij > 0 and λi, µi ≥ 0 (for i, j ∈ {1, 2}), let C be a compact subset of (0,∞)2, and write
QKz1,z2 = QK(b1, b2, d1, d2, α11, α12, α21, α22, z1, z2) for deterministic initial conditions z1, z2 ∈ N/K. Let
ϕz1,z2 = (ϕ1z1,z2 , ϕ

2
z1,z2) denote the solution to

φ̇1 = (λ1 − µ1 − α11ϕ
1 − α12ϕ

2)ϕ1,

φ̇2 = (λ2 − µ2 − α21ϕ
1, α22ϕ

2)ϕ2

with initial conditions ϕ1z1,z2(0) = z1 and ϕ2z1,z2(0) = z2. Then

r := inf
z∈C

inf
t∈[0,T ]

∥ϕz1,z2(t)∥ > 0 and R := sup
z∈C

sup
t∈[0,T ]

∥ϕz1,z2(t)∥ <∞,

where ∥ · ∥ denotes an arbitrary norm on R2, which we fix for the rest of Section 1. Moreover, for any
δ < r,

lim
K→∞

sup
z∈C

QKz1,z2
(

sup
t∈[0,T ]

∥ŵt − ϕz1,z2(t)∥ ≥ δ
)
= 0,

where ŵt = (ŵ1
t , ŵ

2
t )t≥0 is the canonical process on D((0,∞),R2).
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(c) Let λ, α > 0 and 0 ≤ µ < λ. Observe that (λ − µ)/α is the unique stable equilibrium of (1.17). Fix
η1 ∈ (0, (λ− µ)/α) and η2 > 0, and define on D((0,∞),R)

TK = inf
{
t ≥ 0: wt /∈

[λ− µ

α
− η1,

λ− µ

α
+ η2

]}
. (1.19)

Then, there exists V > 0 such that, for any compact subset C of (λ−µα − η1,
λ−µ
α + η2),

lim
K→∞

sup
z∈C

PKz
(
TK < eKV

)
= 0.

Proof. First, we prove (a). Since ϕ̇ < 0 as soon as ϕ > (b − d)/a, any solution to (1.3) with positive initial
condition is bounded, which implies R <∞. Moreover, a solution to (1.3) can be written as

ϕ(t) = ϕ(0) exp
(∫ t

0

(λ− µ− αϕ(s))ds
)
≥ ϕ(0) exp((λ− µ− αR)t),

from which it follows that r > 0.
Equation (1.18) is a consequence of large-deviation estimates for the sequence of laws (PKz )K≥1. Choose

functions p, q : R → (0,∞) that are Lipschitz continuous, bounded and uniformly bounded away from 0 and
we consider the Z/K-valued Markov jump processes with transition rates

i/K → (i+ 1)/Kat rate Kp(i/K),

i/K → (i− 1)/Kat rate Kq(i/K),

Note that the process with law (PKz )K≥1 does not satisfy these assumptions, but its following variant with
truncated rates does:

p(z) = λχ(z) and q(z) = µχ(z) + αχ(z)2,

where χ(z) = z if z ∈ [r − δ,R + δ], χ(z) = r − δ if z < r − δ; χ(z) = R + δ if z > R + δ, then p and q
satisfy the assumptions above, and if RKz denotes the law of this process with initial condition z, then we
have RKz = PKz on the time interval [0, τ ], where τ = inf{t ≥ 0: wt /∈ [r − δ,R+ δ]}.

For the sequence of laws (RKz )K∈N, thanks to [DE97, Chap. 10, Theorem 10.2.6], the large deviation
principle holds with good rate function IT given as follows: For ϕ : [0, T ] → R2 càdlàg,

IT (ϕ) =

{∫ T
0
L(ϕ(t), ϕ̇(t)) dt if ϕ is absolutely continuous on [0, T ],

∞ otherwise,
(1.20)

for a certain function L : R2 → [0,∞) such that L(y, z) = 0 if and only if z = p(y)− q(y). See Appendix B
for the precise form of L. Therefore, IT (ϕ) = 0 if and only if ϕ is absolutely continuous and

ϕ̇ = p(ϕ)− q(ϕ). (1.21)

What does the above assertion mean? A rate function I is a mapping from a given topological space
M (here, M = D([0, T ],R) equipped with the Skorokhod J1 topology, cf. footnote 4) to [0,∞] that is lower
semicontinuous, i.e., the (sub-)level set {z ∈ M : I(z) ≤ α} is closed in the topology of M for all z ∈ R.
I is called a good rate function if the aforementioned level sets are all compact in the topology of M.12 A
good rate function always attains its infimum over closed sets. Let us note that if M is a metric space (more
precisely, its topology is induced by a metric), then lower semicontinuity is equivalent to the assertion that

lim inf
zn→z

I(zn) ≥ I(z), ∀z ∈ M.

12Hence, if the topological space M is Hausdorff, then every good rate function is a rate function (is that clear?).
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The large deviation principle states, very roughly speaking, that for certain measurable sets A ⊆ M, we
have

RKz (A) ≈ exp
(
−K(1± o(1)) inf

ψ∈A
IT (ψ)

)
,

or in other words,
1

K
logRKz (A) ≈ − inf

ψ∈A
IT (ψ).

That is, if the set A includes some ψ such that IT (ψ) = 0, then the RKz -probability of A does not decay
exponentially, whereas if A contains no such ψ, then A is a rare event whose probability decays exponentially
in K with rate approximately infψ∈A IT (ψ).

Let us make this more precise now: By definition, the fact that the large deviation principle with good
rate function IT holds for the sequence of probability measures (RKz )K∈N means that for all open sets
G ⊆ M = D([0, T ],R), the lower bound

lim inf
K→∞

1

K
logRKz (G) ≥ − inf

ψ∈G
IT (ψ)

is satisfied, whereas for all closed sets F ⊆ M, we have the upper bound

lim sup
K→∞

1

K
logRKz (F ) ≤ − inf

ψ∈F
IT (ψ).

In our particular case, it also follows from [DE97] that this large deviation principle is uniform with respect
to the initial condition in the sense that for any compact subset C of R and F,G as above, we have

lim inf
K→∞

1

K
log inf

z∈C
RKz (G) ≥ − sup

z∈C
inf

ψ∈G : ψ(0)=z
IT (ψ) (1.22)

and
lim sup
K→∞

1

K
log sup

z∈C
RKz (F ) ≤ − inf

ψ∈F : ψ(0)∈C
IT (ψ). (1.23)

Therefore, by (1.23),

lim sup
K→∞

1

K
logRKz

(
sup
t∈[0,T ]

|wt − ϕz(t)| ≥ δ
)
≤ − inf

ψ∈F δ
IT (ψ),

where
F δ =

{
ψ ∈ D([0, T ],R) : ψ(0) ∈ C and ∃t ∈ [0, T ] : |ψ(t)− ϕψ(0)(t)| ≥ δ

}
.

By the continuity of the flow z 7→ ϕz(t) of (1.21) (which is a consequence of the fact that z 7→ p(z) − q(z)
is Lipschitz and Gronwall’s lemma), the set F δ is closed. Since IT is a good rate function, it attains its
infimum on F δ at some function that cannot be a solution to (1.21), and thus is non-zero. This finishes the
proof of (1.18). The proof of (b) is very similar.

Let us now prove (c). Define the function χ on R by

χ(z) =


z, if z ∈ [(λ− µ)/α− η1, (λ− µ)/α+ η2],

(λ− µ)/α− η1, if z < (λ− µ)/α− η1,

(λ− µ)/α+ η2, if z > (λ− µ)/α+ η2.

As in the proof of (a), using the functions p(z) = λχ(z) and q(z) = µχ(z) + αz2 a family of laws (RKz )
such that RKz = PKz on the time interval [0, TK ] (cf. (1.19)), and such that the uniform large-deviation
estimates (1.22) and (1.23) hold for the good rate function IT defined analogously to (1.20).
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Observe that all solutions to (1.21) are monotonous and converge to (λ− µ)/α when t→ ∞. Therefore,
the following classical estimates for the time of exit from an attracting domain [FW84, Chapter 5, Section
4] apply: There exists V̂ ≥ 0 such that for any δ > 0,

lim
K→∞

inf
z∈C

RKz
(
eK(V̂−δ) < TK < eK(V̂+δ)

)
= 1, (1.24)

and hence in order to finish the proof of (c), it suffices to show that V̂ > 0.
Now, the constant V̂ is obtained as follows (see [FW84, pages 108–109]): for any y, z ∈ R, define

V (y, z) = inf
t>0: φ(0)=y,φ(t)=z

It(φ).

Then
V̂ := V

(λ− µ

α
,
λ− µ

α
− η1

)
∧ V

(λ− µ

α
,
λ− µ

α
+ η2

)
.

(In physical terms, e.g. V
(
λ−µ
α , λ−µα − η1

)
can be interpreted as the work that needs to be invested in order

to move a point of unit mass from the attractive equilibrium λ−µ
α of (1.21) to λ−µ

α −η1 despite the “potential”
attracting the mass point towards λ−µ

α .)
Now, [FW84, Theorem 5.4.3] states that, for any y, z ∈ R, the infimum defining V (y, z) is attained at some

function ϕ linking y to z. This means that either there exists an absolutely continuous function ϕ defined
on [0, T ] for some T > 0 such that ϕ(0) = y, ϕ(T ) = z, and V (y, z) = IT (ϕ) =

∫ T
0
L(ϕ(t), ϕ̇(t))dt, or there

exists an absolutely continuous function ϕ defined on (−∞, T ) for some T ∈ R such that limt→−∞ ϕ(t) = y,
ϕ(T ) = z, and V (y, z) =

∫ T
−∞ L(ϕ(t), ϕ̇(t))dt. Since any solution to (1.21) is decreasing as long as it stays in

[(λ − µ)/α,∞), a function ϕ defined on [0, T ] or (−∞, T ) linking (λ − µ)/α to (λ − µ)/α + η2 cannot be a
solution to (1.21), and thus V

(
λ−µ
α , λ−µα + η2

)
> 0. Similarly, V

(
λ−µ
α , λ−µα − η1

)
> 0, hence V̂ > 0, which

concludes the proof of Theorem 1.17.

Remark 1.18. We see in (1.24) that in case the resident population is type x, one needs the first mutation to
appear in at most eKV̂ (1+o(1)) time with high probability in order that the resident population is still close to
its equilibrium n̄x at the time when the mutant emerges. The value of Ṽ of course also depends on the value
of λ−µ and may tend to zero as λ−µ ↓ 0, and hence in the left inequality of (1.9) for simplicity we assume
that the first mutant appears in subexponential time. But for example, if we assume that λ(x)− µ(x) only
changes by a uniformly bounded number over all x if an individual of trait x suffers a mutation, then we
can find a suitable Ṽ > 0 such that assuming exp

(
−Ṽ K

)
≪ uK instead of exp(−V K) ≪ uK for all V > 0

suffices in order for Theorem 1.1 to hold (with all other assumptions unchanged).

1.9 Some results on branching processes
Although we do not provide all the details of the proof of Theorem 1.1, the following collection of assertions
on branching processes plays a crucial role in this proof, and it is also applicable for many other models of
stochastic population biology or even other fields of probability theory.

Let Qn denote the law of a binary branching process with initial state n ∈ N, with individual birth rate
λ and individual death rate µ. Regarding this process, we have the following theorem, where we recall the
canonical process (wt)t≥0 from part (a) of Theorem 1.17.

Theorem 1.19 ([C06]). Let λ, µ > 0. Define, for any ϱ ∈ R, on D([0,∞),R), the stopping time

Tϱ = inf{t ≥ 0: wt = ϱ}.

(In particular, T0 is the extinction time of the process.)
Finally, let (tK)K≥1 be a sequence of positive numbers such that tK ≫ logK.
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(a) If λ < µ (subcritical case), then for any ε > 0,

lim
K→∞

Q1

(
T0 ≤ tK ∧ T⌊εK⌋

)
= 1 (1.25)

and
lim
K→∞

Q⌊εK⌋(T0 ≤ tK) = 1. (1.26)

Moreover, for any K, k, n ≥ 1,

Qn(Tkn ≤ T0) ≤
1

k
. (1.27)

(b) If λ > µ (supercritical case), then for any ε > 0,

lim
K→∞

Q1

(
T0 ≤ tK ∧ T⌈εK⌉

)
=
µ

λ
(1.28)

and
lim
K→∞

Q1

(
T⌈εK⌉ ≤ tK

)
= 1− µ

λ
. (1.29)

Proof. Let q = Q1(T0 < ∞) denote the extinction probability of the branching process started with one
individual. Then it follows from classical first-step analysis (for the embedded discrete-time Galton–Watson
process where each individual has 2 offspring with probability λ

λ+µ and 0 offspring with probability µ
λ+µ )

that q is the smallest solution to the quadratic equation

q =
λ

λ+ µ
q2 +

µ

λ+ µ
· 1.

The roots of this equation are given by 1 and µ
λ , hence the smallest solution is 1 in the subcritical case and

µ
λ in the supercritical case.13

Assertion (1.29) follows easily from the extinction time for binary branching processes when λ ̸= µ (cf.
[AN72, p. 109]): For any t ≥ 0 and n ∈ N,

Qn(T0 ≤ t) =
(µ(1− e−(λ−µ)t)

λ− µe−(λ−µ)t

)n
.

Since tK → ∞, Q1(T0 ≤ tK ∧ T⌈εK⌉) → Q1(T0 <∞) = 1, which yields (1.25) and (1.28).
The inequality (1.27) follows from the fact that if (Zt)t≥0 is a branching process with law Qn, then

(Zt exp(−(λ− µ)t)t≥0 is a martingale (see [AN72, p. 111]). Applying Doob’s optimal stopping theorem
applied to the stopping time T0 ∧ Tkn, writing En for the expectation w.r.t. Qn, we obtain

En
(
kne−(λ−µ)Tkn1{Tkn<T0}

)
= n.

(This is the version of the optimal stopping theorem where the stopping time is a.s. finite and the stopped
martingale is bounded; in this case between 0 and kn.) Therefore, when λ ≤ µ, knQn(Tkn ≤ T0) ≤ n, and
thus we conclude (1.27).14

The limiting assertion (1.29) follows from the fact that if (Zt)t≥0 is a branching process with law Q1,
then the martingale (Zte

−(λ−µ)t)t≥0 converges a.s. when t → ∞ to a random variable W , where W = 0 on
the event {T0 < ∞} and W > 0 on the event {T0 = ∞} (see [AN72, p. 112]). Hence, when λ > µ, on the
event {T0 <∞} we have

logZt
t

→ λ− µ > 0 (1.30)

a.s. Therefore, since tK ≫ logK, for any ε > 0, Q1(T0 = ∞, T⌈εK⌉ ≥ tK) → 0 when K → ∞. Thus, using
the above observation that Q1(T0 = ∞) = 1− µ

λ , we conclude (1.29).
13Note that this also applies in the critical case λ = µ, where 1 and µ/λ coincide, although we do not treat this case here.
14Of course, this martingale property also holds in the critical case λ = µ; in this case, the process (Zt)t≥0 is itself a

martingale. Therefore (1.27) is also true in the critical case.
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Remark 1.20. We did not provide detailed proofs for the martingale property, the positivity of the almost
sure limit W of the martingale on {T0 = ∞}, and the fact that the limit is zero on {T0 <∞}; the interested
reader can consult [AN72]. Nevertheless, we would like to emphasize that (1.27) also has a more elementary
proof based on the fact that a binary branching process is nothing but a time-changed random walk on Z,
and we only need to use that this random walk is a martingale in the symmetric case λ = µ. Indeed, the
nearest-neighbour random walk on Z in continuous time that jumps one step up at rate λ and one step down
at rate µ has generator L defined via

Lf(n) = λ(f(n+ 1)− f(n)) + µ(f(n− 1)− f(n))

for all bounded measurable functions f : Z → R. Now, the binary branching process with individual birth
rate λ and individual death rate µ has generator L acting on all bounded measurable functions f : N0 → R
via

Lf(n) = n(λ(f(n+ 1)− f(n)) + µ(f(n− 1)− f(n))).

This is indeed a time-changed version of the random walk; the time change becomes zero (time stops, the
process gets absorbed) at the state 0, and thus the state can never get negative. Now, let us consider the
critical case λ = µ. Then it is clear that the random walk (St)t≥0 is itself a martingale and thus by Doob’s
optimal stopping theorem, defining the stopping time T = inf{t ≥ 0: St ∈ {0, kn}}, we have

n = E[ST |S0 = n] = knP(ST = kn),

which yields (1.27) for λ = µ. Now, for λ < µ, the probability under consideration can only get smaller.
Remark 1.21. Since (1.30) holds in the supercritical phase, we actually have that for any ε > 0,

T⌊εK⌋

logK

K→∞−→ 1

λ− µ

a.s. on {T0 = ∞}. Therefore, part (a) of Theorem 1.19 also applies when tK ̸≫ logK but there exists δ > 0
such that tK ≥ ( 1

λ−µ + δ) for all sufficiently large K, while it does not hold if there exists δ > 0 such that
tK ≤ ( 1

λ−µ − δ) for all sufficiently large K. The factor 1
λ−µ of logK is the reciprocal of the mean growth

rate of the branching process, and this will be similar in the case of multitype branching processes (see
Section 2.5). Similarly, part (b) of Theorem 1.19 also applies for the aforementioned choice of tK for which
part (a) applies. In the subcritical case, we have exponential decay instead of exponential growth. When
starting with ⌈εK⌉ individuals, reaching extinction takes approximately 1

µ−λ logK time.

Below (1.5) we already interpreted f(y, x) as the net growth rate of a mutant population of trait y
in a resident population of trait x when the mutant population is small compared to K. These mutants
have birth rate λ(y) and death rate approximately µ(y) + α(y, x)n̄x per individual. The branching process
approximating the mutant population is the binary branching process precisely with these parameters, which
is supercritical if and only if f(y, x) > 0. This branching process corresponds to Phase I of the invasion of
trait y against trait x. In case the branching process is supercritical, we have a nonvanishing probability of
a successful invasion of trait y, which also implies fixation (i.e. extinction of the former resident trait) due
to our non-coexistence assumption (B). Now, in Phase III, when the trait y population size rescaled by K is
close to n̄y and the population of the former resident trait x is small compared to K, the resident population
has birth rate µ(x) and death rate close to µ(y) + α(x, y)n̄y.15 Hence, it can be approximated by a binary
branching process with precisely these parameters, which is subcritical if and only if f(x, y) < 0. Under (B),
f(x, y) < 0 is satisfied whenever f(y, x) > 0.
Remark 1.22 (The case of symmetric competition). Assume that α(x, y) equals the same positive number α
for all x, y ∈ X . Then, we have

n̄x =
λ(x)− µ(x)

α
.

15Of course, with a suitable initial condition, this branching process also approximates a type x mutant population born
when type y is resident.
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Hence, the larger the “absolute fitness” (i.e., net growth rate) λ(x)−µ(x) of a trait x, the higher its equilibrium
population size. The invasion fitness of a mutant of trait y reads (cf. (1.5))

f(y, x) = λ(y)− µ(y)− αn̄(x) = λ(y)− µ(y)− (λ(x)− µ(x)),

i.e., mutants can invade with positive probability (the corresponding branching process is supercritical) if
and only if their net growth rate is positive. In other words, the invasion fitness is the difference between
the absolute fitness of mutant and resident. The later a mutant with a given absolute fitness comes, the
higher typically the resident fitness is, and therefore, the invasion of the mutant (if it is still possible at all)
will typically take a longer and longer time. This case is also antisymmetric w.r.t. the invasion fitnesses,
which by definition means that f(y, x) = −f(x, y), and transitive in the sense of Remark 1.11. Thanks to
the observations of Remark 1.21, antisymmetry implies that Phase I and Phase III of any invasion take the
same amount of time on the logK time scale. Without antisymmetry, the same is not true in general (see
e.g. the example presented in Section 2).
Remark 1.23. Apart from the nice connection of (1.27) to random walks, we should also explain at least
intuitively the role of this assertion in the proof of Theorem 1.1, even if we do not spell out all details of
this proof. Assertion (1.27) implies that for k ≥ 0 fixed, subcritical branching processes started from an
arbitrarily large initial condition n will go extinct before reaching size kn with probability at least 1 − 1/k
as n → ∞. In the setting of the invasion of trait y against trait x, this branching process consists of the
leftover individuals of trait x after the rescaled population size of trait y has already reached a vicinity of its
equilibrium population size n̄y. Now, one first has to show that the trait y mutants are sufficiently close to
a process to which the large-deviations machinery of Section 1.8 is applicable, as long as their population is
not too large, and then one has to prove that the trait x residents will go extinct with high probability before
their population could become too large or the population of the mutants could leave a small neighbourhood
of equilibrium. For the first item, an estimate like (1.27) is very useful: e.g. one can start with εK residents
and guarantee that with high probability, the resident population never goes beyond

√
εK before dying out,

and one can allow an error term of order
√
εK in the transition rates of the mutant and still apply the

Freidlin–Wentzell type large-deviation results (see [CCLLS21] for a similar argument).
Remark 1.24. It is also worth observing that for x, y ∈ X , the Jacobi matrix (cf. (1.13))

A(n̄x, 0) =

(
µ(x)− λ(x) −α(x, y)n̄x

0 λ(y)− µ(y)− α(y,x)(λ(x)−µ(x))
α(x,x)

)

has a positive eigenvalue if and only if the first inequality of (1.7) holds, while it has two negative eigenvalues
if (1.6) holds, and A(0, n̄y) has two negative eigenvalues if and only if the second inequality of (1.7) holds,
whereas it has a positive eigenvalue if and only if (1.6) holds with the roles of x and y swapped. In other
words, A(n̄x, 0) is unstable (resp. asymptotically stable) if and only if the branching process approximating
the population of a trait y mutant when trait x is resident is supercritical (resp. subcritical), and A(0, n̄y) is
asymptotically stable (resp. unstable) if and only if the branching process approximating the population of
a trait x mutant when trait y is resident is subcritical (resp. supercritical). Certainly, A(n̄x, 0) and A(0, n̄y)
are very simple matrices whose eigenvalues are their diagonal entries, but actually we will also see such
correspondences between the critical behaviour of branching processes and the stability of equilibria of ODE
systems in the sequel, see Remark 2.4 below.

2 Example 1: an invasion model with competition-induced dor-
mancy

2.1 Motivation
Champagnat’s work [C06] laid the fundament for analysing the invasion of mutants in the scaling regime of
rare mutations in adaptive dynamics without a coexistence between multiple traits. In this section as well as
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the following one, we will incorporate further biologically relevant and interesting phenomena into the model
and explain how Champagnat’s methods can be extended to these cases. In particular, the approximating
branching processes will often be multitype, and in some cases we will be able to treat some questions of global
stability of equilibria of the underlying dynamical systems. Since in the rare mutation regime, mutations
are separated from each other in time as K → ∞, it is possible to study the fate of one single mutation,
starting with a resident population near its equilibrium size and one single mutant (or a few mutants) at
time 0, excluding further mutations.16 The particular examples that we will focus on in these two sections
will not include multiple mutations but rather just one single invasion step. The same approach is of course
not applicable if we expect that the population that we want to model is substantially affected by clonal
interference.

In this section, we focus on dormancy, which is an evolutionary trait that has emerged independently at
various positions across the tree of life. It describes the ability of a microorganism to switch to a reversible
and metabolically inactive state that can withstand unfavorable conditions. However, maintaining such a
trait requires additional resources that could otherwise be used to increase e.g. reproductive rates. Examples
include among others winter sleep of mammals, sporulation of bacteria, or dormancy of cancer cells that
may eventually lead to therapy resistance and metastases. The reactivation of dormant individuals/cells is
referred to as resuscitation. For an overview on various forms of dormancy, see the survey article by Lennon,
den Hollander, Wilke Berenguer, and Blath [LdHWB21].

In what follows, we summarize the results and proofs of the paper [BT20], sometimes making excursions
to classical works that are necessary for the proofs of these results. To introduce the model of the paper infor-
mally, imagine that we have a resident population consisting of identically fit one-cell individuals performing
asexual and haploid reproduction (i.e., binary fission), death by age and by competition among individuals,
living close to its equilibrium population size, just as one typical trait in Champagnat’s model, and now a
mutant (or migrant) emerges. This mutant is able to switch into a dormant state under competitive pressure
(we will see in a moment what this mathematically means). Dormant mutants cannot reproduce, but they
are not affected by competition, eventually they will either die naturally or resuscitate. This should ease
competition for dormant individuals. The main questions are then the following:

• Are there choices of the parameters when the mutant can invade the resident population (with an
asymptotically positive probability as K → ∞)?

• If yes, what is the asymptotic probability of a successful invasion and how much time does it typically
take the mutant population to become macroscopic?

• What happens after a successful invasion? Will the mutant fix, making the former residents die out,
or will it coexist with the residents?

2.2 The base model for competition-induced dormancy
Let us now introduce the stochastic individual-based model of [BT20]. We have two traits (types), the
resident one (1) and the mutant one (2). Mutant individuals can have an active (2a) and a dormant (2d)
state. As an interpretation, we will sometimes say that the dormant individuals are in the seed bank.
Informally speaking, the model is defined as follows.

• A resident individual gives birth to another such individual at rate λ1 > 0.

• An active mutant individual gives birth to another such individual at rate λ2 ∈ (0, λ1).

• Any active individual has a natural death rate µ ∈ (0, λ1).
16In this sense, the mutant could as well be interpreted as a migrant arriving from somewhere else in the case of models

involving an underlying geographic space.
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1 1

†

λ1

µ

2a

2a 2a

†

λ2

µ

• K > 0 is the carrying capacity of the population.

• The competitive pressure felt by an active individual from another active individual is α/K > 0, where
α > 0. For any ordered pair (xi, xj) of active individuals, at rate α/K > 0 a competitive event affecting
xi happens. We fix p ∈ (0, 1). At a competitive event, in case xi is a resident individual, it dies. If xi
is a mutant individual, it dies with probability 1− p and becomes a dormant (mutant) individual with
probability p.
In other words, in a population with n1 ∈ N0 (active) resident individuals and n2a ∈ N0 active mutant
individuals, writing na = n1 + n2a for the total number of active individuals, a resident individual
dies by competition at rate αna/K, an active mutant dies by competition at rate (1 − p)αna/K and
switches to dormant mutant at rate pαna/K.

1 1 † 1α
K

1 2a † 2aα
K

2a 1

2d 1

p α
K

† 1
(1− p) α

K

2a 2a

2d 2a

p α
K

† 2a
(1− p) α

K

• For some κ ≥ 0, a dormant (mutant) individual dies at rate κµ.17

• A dormant (mutant) individual becomes an active (mutant) individual at rate σ > 0.

2d

2a

†

σ

κµ

Further necessary conditions on the parameters will be specified later in the sequel. Note that the
behaviour of trait 1 in absence of trait 2 fits into the framework of [C06] with a monomorphic initial state
and with mutations excluded. Actually, in Champagnat’s setting we were only describing the model in
terms of empirical measures because those are the right objects to study if one wants to prove some kind
of convergence to a TSS. In our model without further mutations, it will suffice to focus on frequencies of
subpopulations (rescaled by K if needed). To define the model more precisely, we consider, for t ≥ 0, a finite

17From a biological point of view, it is reasonable to assume that dormancy reduces natural death rate too, i.e., κ ≤ 1, but
κ > 1 does not make a big difference mathematically and neither does κ = 0.
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number Nt ∈ N0 of individuals {xi : i ∈ [Nt]}, where for all i ∈ [Nt] we have xi ∈ {1, 2a, 2d}. We define the
triple of frequency processes

(Nt)t≥0) = ((N1,t, N2a,t, N2d,t))t≥0,

where for x ∈ {1, 2a, 2d},
Nx,t = #{xi : i ∈ [Nt], xi = x}.

We will often consider the triple of rescaled frequency processes

(NK
t )t≥0 = ((NK

1,t, N
K
2a,t, N

K
2d,t))t≥0,

where for x ∈ {1, 2a, 2d},
NK
x,t =

1

K
Nx,t

is the number of individuals of type x rescaled by K. We also write

N2,t = N2a,t +N2d,t, NK
2,t = NK

2a,t +NK
2d,t

for the non-rescaled resp. rescaled total population size of mutant individuals and

Nt = N1,t +N2,t, NK
t = NK

1,t +NK
2,t =

Nt
K

for the total population size resp. 1/K times the same. Hence, (NK
t )t≥0 is a

(
1
KN0

)3-valued Markov process
with transitions

(n1, n2a, n2d) →



(n1 +
1
K , n2a, n2d) at rate Kn1λ1,

(n1, n2a +
1
K , n2d) at rate Kn2aλ2,

(n1 − 1
K , n2a, n2d) at rate Kn1(µ+ α(n1 + n2a)),

(n1, n2a − 1
K , n2d) at rate Kn2a(µ+ (1− p)α(n1 + n2a)),

(n1, n2a − 1
K , n2d +

1
K ) at rate Kn2apα(n1 + n2a),

(n1, n2a, n2d − 1
K ) at rate Kn2dκµ,

(n1, n2a +
1
K , n2d −

1
K ) at rate Kn2dσ.

The rates of (Nt)t≥0 can be described in an analogous way.

Exercise 5. Write down the infinitesimal generator of (NK
t )t≥0 (acting on all bounded measurable functions

f :
(

1
KN0

)3 → R).

The condition λ1 > λ2 > µ above implies that both residents and mutants are fit, i.e., they exhibit no
rapid extinction, when being on their own, but mutants have a lower reproductive rate than residents. We
have seen that λ1 > µ is equivalent to the long-term survival of residents if the initial condition is of order
K, and because of the dormancy it is not a priori clear that λ2 > µ is also necessary and sufficient for the
same for the mutants, but we will soon see that this is indeed the case.

2.3 The dynamical system(s)
From Section 1 we already know that if all subpopulation sizes are of order K, then the population size
process rescaled by K converges to the solution to the corresponding system of ODEs on any finite time
interval of the form [0, T ], given convergence of the initial conditions. This is also true for the model with
competition-induced dormancy; let us first investigate the situation when only one of the two traits is present
in the system, and only afterwards the joint dynamical system of the two traits.
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(1) In absence of mutants, for large K, the rescaled resident population NK
1,t can be approximated by n1(t),

where n1(·) solves the quadratic ODE

ṅ1(t) = n1(t)(λ1 − µ− αn1(t)), (2.1)

which is again the logistic equation (cf. (1.3)) with parameters adapted. Recall the equilibria of this
system and their (global) stability properties from Section 1.5. For λ1 > µ, the unique positive (and
stable) equilibrium of this system is given as

n̄1 =
λ1 − µ

α
.

Else, there is no stable positive equilibrium, and 0 is always an equilibrium of the ODE.

(2) Similarly, in absence of residents, for large K, the rescaled mutant population (NK
2a,t, N

K
2d,t) can be

approximated by (n2a(t), n2d(t)), where (n2a(·), n2d(·)) solves the two-dimensional system of ODEs

ṅ2a(t) = n2a(t)(λ2 − µ− αn2a(t)) + σn2d(t),

ṅ2d(t) = pαn2a(t)
2 − (κµ+ σ)n2d(t).

(2.2)

The Jacobi matrix at (n2a, n2d) ∈ R2 is given as

A(n2a, n2d) =
(
λ2−µ−2αn2a σ

2pαn2a −κµ−σ

)
. (2.3)

Clearly, the system has no equilibrium of the form (0, ·) or (·, 0) apart from (0, 0). Further, we have

A(0, 0) =
(
λ2−µ σ

0 −κµ−σ

)
. (2.4)

Let us now show that for λ2 > µ we have a unique (coordinatewise) positive equilibrium, which is
asymptotically stable. For an equilibrium (n2a, n2d) with n2a ̸= 0, dividing both equations in (2.2) by
n2a, we obtain

n2d
n2a

= −λ2 − µ− αn2a
σ

=
pαn2a
κµ+ σ

. (2.5)

From (2.5) we obtain that there is precisely one such equilibrium, with coordinates

n̄2a =
(λ2 − µ)(κµ+ σ)

α(κµ+ (1− p)σ)
> 0, n̄2d =

(λ2 − µ)2p(κµ+ σ)

α(κµ+ (1− p)σ)2
> 0.

It is worth emphasizing that since p > 0, n̄2a is strictly larger than λ2−µ
α . For p = 0 (and λ2 > µ), (n̄2a, 0)

would be the only coordinatewise nonnegative equilibrium apart from (0, 0), in accordance with (2.1).
Thus, we see that even if we disregard the seed bank and consider only the active population size, the
equilibrium population size of the mutant population is increased by competition-induced dormancy.
The above precise formula for n̄2d will be used less frequently; what is most important is that it is
positive whenever n̄2a is positive.
Let us now analyse the local stability of the equilibria (for λ2 > µ) via linearization. As before, we want
to identify the signs of the real parts of the eigenvalues of A(0, 0) and A(n2a, n2d). It is clear from (2.4)
that the eigenvalues of A(0, 0) are its diagonal entries λ2 − µ > 0 and −κµ− σ < 0. Hence, (0, 0) is an
unstable saddle point. As for the stability of (n̄2a, n̄2d), by (2.3) and (2.5), we obtain

detA(n̄2a, n̄2d) = (κµ+ σ)(λ2 − µ).

Since λ2 > µ, the right-hand side is positive. Further, the trace Tr A(n̄2a, n̄2d) is negative, which follows
from the fact that n̄2a > λ2 − µ and κµ+ σ > 0. Hence, the product of the two eigenvalues is positive
and their sum is negative. Therefore, if both eigenvalues are real, both must be negative, and if they are
complex, they have to be conjugate and hence their real parts must be negative. We conclude that both
eigenvalues have a strictly negative real part, which implies that (n̄2a, n̄2d) is asymptotically stable.
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Exercise 6 (Open problem because we have never checked it, but it should not be too difficult.). Are
the eigenvalues of A(n̄2a, n̄2d) always real?

In fact, the equilibrium (n̄2a, n̄2d) exhibits some more global stability properties, in some cases in a
certain sense even in presence of the residents, as we will see below.

Exercise 7. Show that for λ2 ≤ µ, the system (2.2) has no coordinatewise positive equilibrium. (For
λ2 < µ, (0, 0) is of course asymptotically stable.)

(3) Given the above observations, it is not surprising that if all non-rescaled subpopulation sizes are of order
K, NK

t can be approximated by the solution (n(t)) = (n1(t), n2a(t), n2d(t)) to the system of ODEs

ṅ1(t) = n1(t)(λ1 − µ− α(n1(t) + n2a(t)),

ṅ2a(t) = n2a(t)(λ2 − µ− α(n1(t) + n2a(t)) + σn2d(t),

ṅ2d(t) = pαn2a(t)(n1(t) + n2a(t))− (κµ+ σ)n2d(t).

(2.6)

If we put p = 0 and n2d(0) = 0, (n1(t), n2a(t))t≥0 would be a classical two-type competitive Lotka–
Volterra equation with symmetric competition. It is a well-known result that in that system, (λ1−µ

α , 0) =

(n̄1, 0) is asymptotically stable and (0, λ2−µ
α ) is unstable if λ1 > λ2 > µ and the roles of asymptotic

stability and instability are swapped if λ2 > λ1 > µ.This way, intuitively speaking, for λ2 < λ1 there
is no chance for a mutant invasion in absence of competition-induced dormancy, whereas for λ2 > λ1
mutants can invade even in absence of dormancy. Hence, we see that λ2 < λ1 is indeed the interesting
case to study in our system, where dormancy will actually have a new effect.

To see this, let us study the coordinatewise nonnegative equilibria of the system (2.6) (for p > 0). Clearly,
(0, 0, 0) is an equilibrium of the system.

Exercise 8. Show that (0, 0, 0) is unstable whenever λ2 > µ or λ1 > µ (even without the assumption
that λ1 > λ2 or that both λ1 and λ2 are larger than µ). Show further that for λ2 ̸= λ1, the system (2.6)
can have no equilibrium of the form (·, 0, 0) apart from (n̄1, 0, 0) and no equilibrium of the form (0, ·, ·)
apart from (0, n̄2a, n̄2d).

Moreover, we easily derive from our previous observations that (n̄1, 0, 0) and (0, n̄2a, n̄2d) are both equi-
libria of the system. The interesting question is what we can say about their stability and whether the
system can have further coordinatewise nonnegative equilibria. According to the statement of Exercise 8,
such an equilibrium must be coordinatewise positive. However, we have the following lemma.

Lemma 2.1 ([BT20]). Assume that

λ1 − λ2 ̸= p(λ1 − µ)
σ

κµ+ σ
. (2.7)

Then, (2.6) exhibits no coordinatewise positive equilibrium.18

Proof. Assume that there exists a coordinatewise positive equilibrium, say (n1, n2a, n2d). Expressing n1
from the first line of (2.6) and substituting it into the second and third line divided by n2a yields

n2d
n2a

=
λ1 − λ2

σ
=

1

κµ+ σ
p(λ1 − µ),

but the last inequality contradicts (2.7). We conclude the claim.

Exercise 9. Determine all equilibria of (2.6) in the degenerate case λ2 − λ1 = p(λ1 − µ) σ
κµ+σ (in case

our usual assumptions all hold).
18This lemma is only partially included in [BT20], but extending it does not requires any new ideas or computations.
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To provide a biological interpretation to Lemma 2.1, the competitive exclusion principle applies for the
system (2.6) (if (2.7) holds): Only one of the two subpopulations can remain asymptotically positive,
and the other has to vanish. This is in a certain sense not only true for the deterministic dynamical
system (2.6) but also for our stochastic individual-based model (NK

t )t≥0 in the limit K → ∞, as we
will see below; the interpretation with that respect is that invasion implies fixation, i.e., there is no
macroscopic coexistence between types 1 and 2. The competitive exclusion principle holds in general for
classical two-dimensional Lotka–Volterra systems with symmetric competition (without dormancy) apart
from some degenerate cases, but asymmetric competition may lead to a coexistence between the two
types. (This is also the reason why in Section 1 we needed Assumption (B) to exclude coexistence.) This
way, the advantage of type 2 gained from competition-induced dormancy does not qualify as asymmetric
competition (or the above interpretation is not valid for our model, which is strictly speaking not a
Lotka–Volterra model).

Given Lemma 2.1, the next question is which of the two equilibria (n̄1, 0, 0), (0, n̄2a, n̄2d) are (asymptot-
ically) stable. The following lemma will be crucial for our analysis.

Lemma 2.2 ([BT20]). Assume that the condition

λ1 − λ2 < p(λ1 − µ)
σ

κµ+ σ
= pαn̄1

σ

κµ+ σ
. (2.8)

holds. Then, (n̄1, 0, 0) is unstable and (0, n̄2a, n̄2d) is asymptotically stable. On the other hand, if

λ1 − λ2 > p(λ1 − µ)
σ

κµ+ σ
= pαn̄1

σ

κµ+ σ
, (2.9)

then (n̄1, 0, 0) is asymptotically stable and (0, n̄2a, n̄2d) is unstable.

Proof. Let us first assume that (2.8) holds. At any equilibrium (n1, n2a, n2d), the Jacobi matrix is given
as

B(n1, n2a, n2d) =

(
λ1 − µ− 2αn1 − αn2a −αn1 0

−αn2a λ2 − µ− 2αn2a − αn1 σ
pαn2a 2pαn2a + pαn1 −(κµ+ σ)

)
.

At (n̄1, 0, 0), since αn1 = λ1 − µ, the Jacobian matrix is

B(n̄1, 0, 0) =

−λ1 + µ −λ1 + µ 0
0 λ2 − λ1 σ
0 p(λ1 − µ) −(κµ+ σ)

 . (2.10)

We see that −λ1 + µ < 0 is an eigenvalue of this matrix (with eigenvector (1, 0, 0)). The determinant of
the matrix is

detB(n̄1, 0, 0) = −(λ1 − µ)((λ2 − λ1)(−κµ− σ)− p(λ1 − µ)σ).

Now, since λ1 > µ, further, thanks to (2.8),

(λ1 − λ2)(κµ+ σ)− p(λ1 − µ)σ < 0. (2.11)

Since −λ1 + µ < 0 is an eigenvalue of B(n̄1, 0, 0), the left-hand side of (2.11) is equal to the product of
the two other eigenvalues of B(n̄1, 0, 0) and also to the determinant of its last 2 × 2 block. Since it is
negative, this implies that the eigenvalues of that 2 × 2 block are real, and thus one of them must be
positive. This implies that (n̄1, 0, 0) is unstable. Finally, let us consider the equilibrium (0, n̄2a, n̄2d).
We have

B(0, n̄2a, n̄2d) =

λ1 − µ− αn̄2a 0 0
0 λ2 − µ− 2αn̄2a σ

pαn̄2a 2pαn̄2a −(κµ+ σ)

 .
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Now, note that
n̄2a > n̄1 ⇔ λ2 − µ > (λ1 − µ)

(
1− pσ

κµ+ σ

)
⇔ λ1 − λ2 < (λ1 − µ)p

σ

κµ+ σ
⇔ (2.8).

(2.12)

Thus, λ1 − µ− αn̄2a < 0 under condition (2.8), and this quantity is clearly an eigenvalue of the matrix
B(0, n̄2a, n̄2d). The other two ones are the eigenvalues of the last 2 × 2 block of the matrix, which is
the same as A(n̄2a, n̄2d) defined according to (2.3) (with n2a = n̄2a and n2d = n̄2d). We have already
seen that these eigenvalues have negative real parts for λ2 > µ. We conclude that B(0, n̄2a, n̄2d) has
three eigenvalues with negative real parts and hence the equilibrium (0, n̄2a, n̄2d) is asymptotically stable
under condition (2.8).
The proof in the case when (2.9) holds is analogous ((2.9) is equivalent to n̄2a < n̄1).

Under the assumption (2.8), the equilibrium (0, n̄2a, n̄2d) turns out to be not only locally asymptotically
stable, but it even attracts solutions with certain coordinatewise positive, more distant initial conditions,
see Lemma 2.18 below.

2.4 Overview of the three phases of an invasion
Thanks to Lemma 2.1, there are choices of the parameters such that (0, n̄2a, n̄2d) is asymptotically stable
and (n̄1, 0, 0) is unstable, in other words, when thanks to dormancy, type 2 is fitter than type 1 despite
λ2 < λ1, namely precisely the choices of parameters satisfying (2.8). This is a strong indication that for
such choices of the parameters, if we start our stochastic individual-based model with approximately Kn̄1
residents, one active mutant, and no dormant mutant, invasion and complete fixation of type 2 should be
possible with asymptotically positive probability as K → ∞, and we will soon be able to provide a biological
interpretation for condition (2.8) in terms of our stochastic process.

Since our main question is whether the probability that a mutant population started with a single mutant
individual is able to invade a resident population living in equilibrium is asymptotically positive as K → ∞,
we will be interested in initial conditions NK

0 = (NK
1,0, N

K
2a,0, N

K
2d,0) such that NK

1,0 ≈ n̄1 (in a sense that will
be clarified later) and (NK

2a,0, N
K
2d,0) = (1/K, 0), i.e., there is one active mutant and there are zero dormant

mutants at time zero. From the following analysis it is straightforward to derive how to handle the case
when one starts with one dormant mutant instead of one active one, see Exercise 10 below.

The analysis is then similar to what we have seen in Section 1 in the case of one single invasion, with the
main difference being that the mutant population is two-dimensional:

(I) The rescaled resident population size NK
1,t stays close to its equilibrium n̄1 for a sufficiently long time,

thanks to Freidlin–Wentzell type large-deviation results [FW84] analogous to Section 1.8. Given this,
we can approximate the two-type (non-rescaled) mutant population size process (N2a,t, N2d,t)t by a
two-type linear branching process until the total mutant population size N2a,t + N2d,t reaches 0 or
εK for some small ε > 0 (chosen independently of K). We will see that the latter happens with
asymptotically positive probability (i.e., the branching process is supercritical) under condition (2.8)
and it happens with vanishing probability (the branching process is subcritical) under condition (2.9) in
the limitK → ∞ followed by ε ↓ 0. (We will ignore the critical case when neither of the aforementioned
two conditions hold).
In the case of a successful invasion, reaching εK for fixed ε > 0 small takes Θ(logK) time as K → ∞;
in the limit ε ↓ 0 we will also be able to identify the asymptotic prefactor of logK. In the case of an
unsuccessful invasion, mutant extinction takes o(logK) time, and the rescaled resident subpopulation
size will stay close to n̄1 until this extinction with high probability.

(II) In the latter case, once N2a,t +N2d,t has reached εK, the three-type rescaled population size process
(NK

t )t can be approximated by the dynamical system (2.6). Our aim is to show that started from a suit-
ably chosen initial condition that (NK

2a,t, N
K
2d,t)t reaches with high probability conditional on the sur-

vival of the branching process, the solution to the dynamical system converges to (0, n̄2a, n̄2d). Given
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this, starting from such an initial condition, the dynamical system reaches a fixed ε̃-neighbourhood of
this equilibrium within O(1) time.19

(III) After Phase II, (NK
2a,t, N

K
2d,t) is close to (n̄2a, n̄2d) and N1,t is at most ε̃K for some ε̃ > 0. Similarly

to the rescaled case of the resident population during Phase I, we show that (NK
2a,t, N

K
2d,t) stays close

to (n̄2a, n̄2d) for a sufficiently large amount of time. Given this, N1,t can be approximated by a
branching process, which is subcritical under condition (2.8). This branching process does not become
much larger again before it dies out (cf. Remark 1.23), and its extinction takes Θ(logK) time starting
from the end of Phase II, where we will again be able to identify the prefactor of logK in the limit
ε̃ ↓ 0 following K → ∞.

2.5 Multitype branching processes I: general theory and particular heuristics
The key principles of the analysis of multitype branching processes (in continuous time) [AN72] are very
similar to the ones of single-type ones explained in Section 1.9, but some important new objects arise that
were trivial in the one-dimensional case, which are associated to the mean matrix of the branching process.
The principles of the branching process approximation of a small mutant population are also unchanged: We
assume that the resident population size divided by K stays close to its equilibrium and ignore non-linear
interactions among the mutants, which makes the transition rates for the mutant population linear in the
number of individuals. In this section, instead of presenting general results on multitype branching processes,
we will focus on the case of our particular example, hoping that given this and the general one-dimensional
theory presented in Section 1.9 the reader can also treat the case of other, mathematically similar examples.

The way these branching processes approximate our mutant subpopulation in Phase I resp. our resident
subpopulation in Phase III will be similar to the case of branching process approximations in Section 1. We
will not fully explain the couplings, but at least we will provide some crucial details in Section 2.7 below.
For the moment being, let us now provide a heuristic description of the branching process approximations
in Phases I and III.

Assuming that NK
1,t is close to n̄1, the principle of the branching process approximation is that we assume

that NK
1,t is constant equal to n̄1. As long as N2a,t and N2d,t are small compared to K, self-competition

of active mutant individuals can be ignored because competitive events involving two active mutants arise
at rate αN2a,t(N2a,t−1)

K , which is small compared to the approximate rate αN2a,tn̄1 of competitive events
affecting active mutants and caused by residents. Thus, the dynamics of the mutant population size process
(N2a,t, N2d,t) can be approximated by a two-type linear branching process (Ẑ2a(t), Ẑ2d(t)) with rates

(n2a, n2d) →



(n2a + 1, n2d) at rate n2aλ2,
(n2a − 1, n2d) at rate n2a(µ+ αn̄1(1− p)),

(n2a − 1, n2d + 1) at rate n2an̄1αp,
(n2a + 1, n2d − 1) at rate σn2d,
(n2a, n2d − 1) at rate κµn2d.

The continuous-time Markov chain with these rates is indeed a (two-type) branching process because every
individual gives birth to individuals reproducing according to the same rules independently of all the other
individuals (where the rates are linear in n2a resp. n2d). By classical results on multitype branching processes
[AN72, Section 7.2], the process is supercritical, i.e., there is no almost sure convergence to (0, 0), if and only
if the following mean matrix has a positive eigenvalue

J =

(
λ2 − µ− αn̄1 pαn̄1

σ −κµ− σ

)
=

(
λ2 − λ1 p(λ1 − µ)

σ −κµ− σ

)
. (2.13)

In general, the j-th element of the i-th row of the mean matrix of a multitype branching process with n
types is the expected number of type i individuals created by the actions of a type j individual (taking also

19It is not entirely correct to say that Phase II takes O(1) time in total, for the same reason as what we wrote in Section 1.6.
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deaths into account). Note that these rates may be negative in some cases, e.g. the diagonal entries λ2 − λ1
and −κµ− σ are negative in our model. (If there are negative off-diagonal elements, certain classical results
of the theory of multitype branching processes are not always applicable, but this is luckily not the case in
our model.)

In the interesting case λ2 < λ1, it is impossible that we have two positive eigenvalues because Tr J < 0
follows from the definition of n̄1. To describe the condition that J has a positive eigenvalue more explicitly,
let us first consider the sign of det J . In case there is precisely one positive eigenvalue, the determinant must
be negative, which is equivalent to

λ1 − λ2 < p(λ1 − µ)
σ

κµ+ σ
= pαn̄1

σ

κµ+ σ

which is precisely the condition (2.8) (under which (n̄1, 0, 0) was an unstable and (0, n̄2a, n̄2d) an asymptot-
ically stable equilibrium of (2.6)).

Indeed, since κ ≥ 0, the characteristic equation in the variable λ corresponding to the matrix J in (2.8)
is

λ2 + (λ1 − λ2 + κµ+ σ)λ+ det J = 0.

This quadratic equation always has two different real solutions if det J is negative, and hence one of the
eigenvalues of J must indeed be positive if (2.8) holds. The condition (2.8) turns out to be necessary and
sufficient for the invasion probability to be asymptotically positive.

Remark 2.3. The biological interpretation of the supercriticality condition (2.8) is that the selective advantage
λ1 − λ2 of trait 1 due to its higher reproduction rate (and thus by the same amount higher net growth rate
since the natural death rates of both traits equal µ) is smaller than the selective advantage n̄1 σ

κµ+σ of trait
2. The latter quantity is the mean amount of mutant (trait 2) individuals surviving competition with the
(trait 1) residents when the mutant population is small. Indeed, the per capita death rate of competitive
events is αn̄1 per mutant individual. While competitive events always cause instantaneous death for the
residents, mutants survive them with probability p and then with probability σ/(κµ + σ) they manage to
resuscitate before they would die in a dormant state, hence their aforementioned selective advantage.

It is also remarkable that (2.8) is equivalent to n̄1 > n̄2a (cf. (2.12)), i.e. that the active equilibrium
population size of the mutants is larger than the one of the residents. One interesting aspect of this is
that the dormant mutant equilibrium size n̄2d plays no direct role here. From the analogue of Section 1 it
is now at least intuitively clear that in our model there is no coexistence between residents and mutants
(apart from possibly some critical cases), and hence the probability of a successful mutant invasion stays
asymptotically positive as K → ∞ if and only if (2.8) holds, and from Lemma 2.1 one can also suspect that
such an invasion will also imply the fixation of mutants and the extinction of residents. Thus, a successful
mutant invasion always increases the active equilibrium population size, just as in the case of the model
of [C06] with symmetric competition (see Remark 1.22).

In the case κ = 0 of no death in the seed bank, condition (2.8) reduces to

λ1 − µ

1
<
λ2 − µ

1− p
,

where 1 − p is the probability that a mutant affected by a competitive event dies. On the complementary
event, this mutant will eventually become active again.20

We further note that the largest eigenvalue of the matrix J defined in (2.13) is given as follows:

λ̃ =
1

2

(
(λ2 − λ1 − κµ− σ) +

√
(λ1 − λ2 + κµ+ σ)2 − 4

(
(λ1 − λ2)(κµ+ σ)− p(λ1 − µ)σ

))
. (2.14)

20Note that λ2 > µ automatically follows from (2.8) given that λ1 > µ. Thus, our model is free from evolutionary suicide:
mutants who are not able to survive on their own will not make the resident population go extinct with asymptotically positive
probability. Models involving the possibility of evolutionary suicide will appear in Section 4.

Lecture notes on population dynamics by András Tóbiás, IN PROGRESS 33



According to [AN72, Section 7], λ̃ is equal to the mean exponential growth rate of the approximating
branching process (Ẑ2a(t), Ẑ2d(t)). What this precisely means will be clear when we have discussed the
Kesten–Stigum theorem (Theorem 2.13); right now we just enlighten that conditional on survival, as t→ ∞,
(Ẑ2a(t), Ẑ2d(t)) behaves approximately like eλ̃t times a deterministic vector with positive coordinates, modulo
subexponential correction terms. This way, the time it takes for the branching process to reach a population
size of order εK (where ε > 0 is small but independent of K) is about ( 1

λ̃
+ ϕ(ε)) logK, where ϕ(ε) is some

positive and increasing function tending to 0 as ε ↓ 0. Thanks to our branching process approximation, Phase
I of a successful invasion for our original stochastic individual-based model will also take approximately the
same amount of time conditional on survival. On the other hand, conditional on extinction, (Ẑ2a(t), Ẑ2d(t))
tends to (0, 0) almost surely, and hence in our model, an unsuccessful invasion will take o(logK) time as
K → ∞. All this is similar to Remark 1.21 in the case of single-type setting, where the largest eigenvalue of
the 1× 1 mean matrix is of course equal to its only entry.

Using our multitype branching process approach, now we can compute the extinction probability under
condition (2.8) with λ1 > λ2 > µ. Define

sa = P
(
∃t <∞ : Ẑ2a(t) + Ẑ2d(t) = 0

∣∣(Ẑ2a(0), Ẑ2d(0)) = (1, 0)
)
. (2.15)

By [AN72, Section 7], sa is the first coordinate of the unique solution to the system of equations

λ2(s
2
a − sa) + p(λ1 − µ)(sd − sa) + (µ+ (1− p)(λ1 − µ))(1− sa) = 0,

σ(sa − sd) + κµ(1− sd) = 0,
(2.16)

in [0, 1]2 \ {(1, 1)}, while the second coordinate of the same solution is the extinction probability given that
the branching process is started from (0, 1). The system of generating equations (2.16) is obtained via
the same first-step analysis as the extinction probability of a one-type branching process (cf. the proof of
Theorem 1.19).

• E.g., the term λ2(s
2
a − sa) is obtained as follows. If one starts the branching process with one active

individual and it reproduces first (which happens at rate λ2), then it will create another identical
individual, so that from the new state one has to kill two independent copies of the original process in
order to make the branching process extinct, which has probability s2a.

• The term p(λ1−µ)(sd−sa) expresses that if the first action an active individual takes is going dormant
(which happens at rate p(λ1−µ), then in the resulting state one has to kill a dormant individual instead
of an active one, which has probability sd.

• Finally, the term (µ + (1 − p)(λ1 − µ))(1 − sa) explains that if the first action the active individual
takes is death, which happens naturally at rate µ or via competition at rate (1− p)(λ1 − µ), then the
process immediately goes extinct, so the probability of extinction becomes 1.

The rates in the second line of (2.16) are obtained similarly, now starting with one dormant individual
instead of an active one.

Remark 2.4. It is worth observing that the mean matrix J (cf. (2.13)) is identical to the transpose of the
last 2 × 2 block of the Jacobi matrix B(n̄1, 0, 0) of the dynamical system (2.6) at the equilibrium (n̄1, 0, 0)
(cf. (2.10)). This is not a coincidence; in general the following is true in models of population dynamics.
Put a mutant into a (possibly multitype) resident population whose size rescaled by K is initially close to
an equilibrium whose projection to the resident coordinates is asymptotically stable w.r.t. the subsystem of
the corresponding dynamical system consisting of the resident types (here the equilibrium is (n̄1, 0, 0), its
projection is n̄1 and the sub-system is (2.1)). Then, the mean matrix of the branching process will be equal
to the transpose of the submatrix of the Jacobi matrix of the entire dynamical system at this equilibrium
given by the indices corresponding to the mutant types. The same was of course also true in the setting of
Remark 1.24, where the mean matrix was 1× 1.
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In general, apart from critical cases, the linearization of the dynamical system around the equilibrium
(consisting in deriving the Jacobi matrix at the equilibrium and determining its local stability) can be seen
as the same linearization as the transformation of the corresponding stochastic population process to the
branching process with the resident subpopulation sizes fixed and nonlinear interactions between mutants
ignored. Since the projection of the equilibrium was asymptotically stable, eigenvalues of the Jacobi matrix
corresponding only to the resident types all have negative real parts, and hence all eigenvalues of the Jacobi
matrix have negative real parts if and only if the branching process is subcritical, whereas there exists an
eigenvalue with positive real part if and only if the branching process is supercritical.

We should however emphasize right at the beginning that this is only a local correspondence between
the world of dynamical systems and stochastic individual-based models, which does not allow one to draw
any conclusion e.g. about the global stability of equilibria of the dynamical system or the corresponding
convergence of the rescaled stochastic process to the equilibria starting from distant initial conditions for
large K.

As for Phase III, after the second phase of invasion, the population rescaled by 1/K is close to the
equilibrium (0, n̄2a, n̄2d). To be more precise, the resident population size is of order εK for some ε > 0 small.
It remains to show that for large K, with probability tending to one, the resident population dies out within
Θ(logK) time, while the mutant population stays close to equilibrium, and to identify the corresponding
prefactor of logK. Now, as long as (NK

2a,t, N
K
2d,t) is near (n̄2a, n̄2d) and the resident population is small

compared to K, the competitive pressure that the resident individuals feel comes essentially only from the
mutant population. This implies that N1,t can be approximated by a branching process Ẑ1(t) with rates

n1 →

{
n1 + 1 at rate n1λ1,
n1 − 1 at rate n1(µ+ αn̄2a)

.

In order to show that this branching process goes extinct almost surely, we have to verify that it is subcritical,
i.e., the rate n→ n+1 is smaller than the rate n→ n− 1. But this assertion is equivalent to the inequality
(2.8).

The branching process decays approximately like Ẑ1(0)e
−λ̂t, where

λ̂ = αn̄2a + µ− λ1 = α(n̄2a − n̄1) > 0 (2.17)

can also be interpreted as the only element of the 1 × 1 mean matrix of the branching process. Hence, it
takes about 1/λ̂ time for the branching process (and the resident population in the individual-based model)
to go extinct, again with ε-dependent correction terms.

Summarizing, we expect that under condition (2.8), the duration Tfix of an entire successful mutant
invasion until complete fixation of the mutants and extinction of the residents satisfies

lim
K→∞

Tfix

logK
=

1

λ̃
+

1

λ̂

in probability (note that here, there is reference to ε anymore), and the probability of success of the invasion
tends to 1−q ∈ (0, 1). In the next section, we will state our main results, which include a somewhat stronger
version of this assertion and also treat the case of a failed mutant invasion.

Remark 2.5. Continuing Remark 2.4, it is again not a coincidence that all eigenvalues of the Jacobi matrix
B(0, n̄2a, n̄2d) have negative real parts if and only if the branching process (Ẑ1(t))t≥0 is subcritical, and
similarly, it is true that the Jacobi matrix has an eigenvalue with positive real part if and only if the
branching process is supercritical. In general, the conclusions of Remark 2.4 are also true for Phase III of
an invasion, with the caveat that linearization does not tell about global stability, and it is only reasonable
to study Phase III if Phase II indeed leads the dynamical system/the stochastic individual-based model to
the vicinity of the corresponding equilibrium. It could happen for example (not in the model of [BT20]
but in other ones) that the resident and the mutant stably coexist, whence with high probability, a small
neighbourhood of the one-type equilibrium of the mutant will never be reached.
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Of course, one could always study the reverse invasion direction, e.g. in the case of the competition-
induced dormancy model one could ask whether a trait 1 mutant can invade a trait 2 population initially
living in equilibrium. Then, Phase I would correspond to the original Phase III and vice versa, and therefore
it is straightforward to conjecture when invasion would be possible and when not. However, this invasion
direction was not studied in [BT20], and handling Phase II of the reverse invasion direction presumably
requires additional ideas that are not included in [BT20] (but likely follow from ideas of [BT21] corresponding
to the reverse invasion direction in an extended version of the model with the additional feature of horizontal
gene transfer).

2.6 Main results of [BT20] and discussion
Recall that we have assumed λ1 > λ2 > µ > 0, and recall also the stable equilibrium (n̄2a, n̄2d), which is the
unique solution to the system of equations (2.5) under the assumption λ2 > µ. For β > 0 define the invasion
set

Sβ = {0} × [n̄2a − β, n̄2a + β]× [n̄2d − β, n̄2d + β], (2.18)

a stopping time at which NK
t reaches this set:

TSβ
:= inf{t > 0: NK

t ∈ Sβ}, (2.19)

and the first time when the rescaled mutant population size reaches a threshold x ≥ 0 (from below or above):

T 2
x := inf{t > 0: N2,t = ⌊xK⌋}. (2.20)

In particular, T 2
0 is the extinction time of trait 2. Recall also the eigenvalue λ̃ defined in (2.14) and the

extinction probability sa from (2.16). The first main result of [BT20] characterizes the probability of mutant
invasion in the large-population limit.

Theorem 2.6 ([BT20]). Assume that (2.8) holds. Assume further that

NK
1 (0) →

K→∞
n̄1

in probability and
(NK

2a(0), N
K
2d(0)) = ( 1

K , 0).

Then for any 0 < β < min{n̄2a, n̄2d}, we have

lim
K→∞

P
(
TSβ

< T 2
0

)
= 1− sa.

Next, we identify the time of fixation of mutants in the case of a successful invasion.

Theorem 2.7 ([BT20]). Under the assumptions of Theorem 2.6, we have that on the event {TSβ
< T 2

0 },

lim
K→∞

TSβ

logK
=

1

λ̃
+

1

µ+ αn̄2a − λ1
=

1

λ̃
+

1

λ̂
(2.21)

in probability.

Finally, we show that in case of an unsuccessful mutation, with high probability, the extinction takes a
sub-logarithmic time (in particular, the extinction happens during the first phase of the invasion), and at
the time of extinction the resident population is close to its equilibrium population size.

Theorem 2.8 ([BT20]). Under the assumptions of Theorem 2.6, we have that on the event {T 2
0 < TSβ

},

lim
K→∞

T 2
0

logK
= 0 (2.22)

and
1{TSβ

> T 2
0 }
∣∣∣NK

T 2
0
− (n̄1, 0, 0)

∣∣∣ −→
K→∞

0, (2.23)

both in probability.
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Now we can see the precise meaning of “invasion implies fixation” in our model: With probability tending
to 1 as K → ∞, we either have a complete fixation of mutants and an extinction of residents (which happens
with probability tending to 1− sa) or a rapid extinction of mutants with nearly unaffected residents (which
occurs with probability tending to sa).

Exercise 10 (Starting with one dormant individual). Using the equation (2.16), provide the analogoues of
Theorems 2.6, 2.7, and 2.8 for the case when limK→∞NK

1,0 = n̄1 in probability and (NK
2a,0, N

K
2d,0) = (0, 1/K)

(and express sd in terms of sa).

Remark 2.9. We have seen that the two-type mutant population is able to survive on its own if λ2 > µ,
and if (2.8) holds, then the mutants will invade the population with positive probability even if λ2 < λ1.
We also noted that without the mutants having a dormancy trait (i.e., for p = 0), even though mutants can
still survive on their own as soon as λ2 > µ, invasion is not possible (because the branching process remains
subcritical) as long as λ2 < λ1.

For κ > 0, it is not even the case that mutants are fit on their own if the switching from activity
to dormancy is not competition-induced but spontaneous, i.e., if an active mutant individual switches to
dormancy at some fixed rate σ′ > 0. There, in absence of residents, for large K, the rescaled mutant
population is approximated by the system of ODEs

ṅ2a(t) = n2a(t)(λ2 − µ− αn2a(t)− σ′) + σn2d(t),

ṅ2d(t) = σ′n2a(t)− (κµ+ σ)n2d(t).
(2.24)

Hence, the origin is asymptotically stable if and only if (λ2 − µ− σ′)(−κµ− σ)− σσ′ < 0, i.e.,

λ2 < µ+
κµσ′

κµ+ σ
. (2.25)

I.e., there are values λ2 > µ such that the mutant population dies out with high probability if K → ∞.
The right-hand side of (2.25) is the effective death rate: indeed, an active individual dies at rate µ, but
additionally at rate σ′ it becomes dormant, where it dies with probability κµ

κµ+σ before ever becoming active
(and capable of reproduction) again.

2.7 Outline of the proof
The general strategy of the proof of the above three theorems is very similar to the treatment of the three
phases of one invasion step within the proof of [C06]; for example, the Freidlin–Wentzell type large deviations
and results on diffusion exit from a domain in Phase I are applied in a way that is similar to Section 1.8.
This leads to the following proposition, where for ε > 0 we define

Rε = inf{t ≥ 0:
∣∣NK

1,t − n̄1
∣∣ > ε},

the first time when the resident population leaves an ε-neighbourhood of its equilibrium size n̄1.

Proposition 2.10 ([BT20], based on methods of [CCLLS21]). Assume that (2.8) holds. Let K 7→ mK
1 be a

function from (0,∞) to [0,∞) such that mK
1 ∈ 1

KN0 and limK→∞mK
1 = n̄1. Then there exists a function

f : (0,∞) → (0,∞) tending to zero as ε ↓ 0 such that for any ξ ∈ [1/2, 1],

lim sup
K→∞

∣∣∣P(T 2
εξ < T 2

0 ∧R2ε,
∣∣∣ T 2

εξ

logK
− 1

λ̃

∣∣∣ ≤ f(ε)
∣∣∣NK

0 =
(
mK

1 ,
1

K
, 0
))

− (1− sa)
∣∣∣ = oε(1) (2.26)

and
lim sup
K→∞

∣∣∣P(T 2
0 < T 2

εξ ∧R2ε

∣∣∣NK
0 =

(
mK

1 ,
1

K
, 0
))

− sa

∣∣∣ = oε(1), (2.27)

where oε(1) tends to zero as ε ↓ 0.
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We refer the reader to [BT20] for a proof; many of the proof techniques applied here are borrowed
from Coron, Costa, Leman, Laroche, and Smadi [CCLLS21], who studied a mathematically similar invasion
model with a different biological motivation (namely, the emergence of homogamy in a two-loci stochastic
population model), given that the multitype setting of their paper is much more convenient to adapt than
the single-type methods of [C06]. A major step in the proof of Proposition 2.10 is the following lemma.

Lemma 2.11 ([BT20], based on methods of [CCLLS21]). Under the assumptions of Proposition 2.10, there
exists a positive constant ε0 such that for any ξ ∈ [1/2, 1] and 0 < ε ≤ ε0,

lim sup
K→∞

P
(
R2ε ≤ T 2

εξ ∧ T
2
0

)
= 0.

The proof of this lemma ([BT20, Lemma 4.2]) can be found in [BT20]. The first step of the proof is to use
the bound εξK on the mutant subpopulation sizes in order to couple the resident population size between
two (ε-dependent) birth-and-death processes scaling to two (ε-dependent) ODEs with qualitative behaviour
analogous to (2.1). Given this, we can perform a large-deviation analysis similar to Section (1.8) to show
that the rescaled resident population size stays close to equilibrium for a sufficiently long amount of time.
Having this, we borrow some additional moment estimates and arguments of linear algebra from [CCLLS21]
to finish the proof. Given the lemma, we can finally (at least informally) explain how the branching process
(Ẑ2a(t), Ẑ2d(t)) approximates (N2a,t, N2d,t) on [0, T 2

εξ ∧ T 2
0 ] on the event {R2ε > T 2

εξ ∧ T 2
0 }. We define

branching processes (ZK,ε,−2a,t , ZK,ε,−2d,t ) and (ZK,ε,+2a,t , ZK,ε,+2d,t ) on N2
0 depending on K and ε such that for all

υ ∈ {a, d},
ZK,ε,−2υ,t ≤ Ẑ2υ(t) ≤ ZK,ε,+2υ,t ,

ZK,ε,−2υ,t ≤ N2υ,t ≤ ZK,ε,+2υ,t .
(2.28)

That is, we do not directly compare (N2a,t, N2d,t) with (Ẑ2a(t), Ẑ2d(t)), but we sandwich both of them
between the two auxiliary branching processes, which are also supercritical for large K and small ε. Using
standard methods by [AN72] we can finish the proof of Proposition 2.10 (see [BT20, Section 4.1] for details).

Even if we do not present the full proof of Proposition 2.10 and Lemma 2.11, we would like to draw the
attention to the exponent ξ ∈ [1/2, 1] of ε in their statements. The assertion of the proposition tells that
one can even guarantee that the resident population size rescaled by K stays within a neighbourhood of size
at most 2ε of n̄1 as long as the total mutant population size is not yet extinct but still below

√
εK, which

is substantially larger than the bound 2εK on the error term of the resident population size (and similarly
for the lemma). It is not stated in the proposition but will also be important that the branching process
approximation of mutants is valid on the entire time interval [0, T 2

0 ∧ T 2√
ε
] on the event {T 2

0 < T 2
εξ ∧R2ε}.

Our multitype setting increases the dimension of the system ODEs to three. This makes it more difficult
to show global stability properties of equilibria that are strong enough to guarantee that given a successful
mutant invasion in Phase I, NK

t will reach a small neighbourhood of (0, n̄2a, n̄2d) in Phase II. We need to
find some set A of initial conditions (n1, n2a, n2d) such that the following two assertions are satisfied:

(i) The solution (n1(t), n2a(t), n2d(t))t≥0 to (2.6) started from A converges to (0, n̄2a, n̄2d), further, ε ≤
n2a + n2d ≤

√
ε, |n1 − n̄1| ≤ 2ε, and for large K, for any (n1, n2a, n2d) ∈ A, and

(ii) on the event {T 2√
ε
< T 2

0 }, NK
t reaches A with probability tending to 1 as K → ∞ followed by ε ↓ 0.

The idea of [CCLLS21] is to use the Kesten–Stigum theorem for the approximating branching process to
identify a set of initial conditions satisfying (i). As we will see below, this theorem guarantees that the
proportion between the number of active and dormant mutants gets close to a certain deterministic, positive
number at some time between T 2

ε and T 2√
ε

with high probability on the event {T 2√
ε
< T 2

0 }. Then, in order
to guarantee (i), we shall show that if we have this total size and active/dormant proportion of mutants and
residents are still close to equilibrium, then the dynamical system (2.6) started from a corresponding initial
condition tends to (0, n̄2a, n̄2d) as t → ∞. This convergence result was the part of the proof of [BT20] that
required some novel ideas, as we will explain below.
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The analysis of the third phase, where (NK
2a,t, N

K
2d,t) stays close to (n̄2a, n̄2d) and the former residents

go extinct, is rather similar to the one of the first phase. Here, apart from [CCLLS21], we also use some
proof techniques from the same authors without Laroche [CCLS18] on a stochastic individual-based model
for speciation via mating preferences. The main result of [BT20] corresponding to Phase III, the proof of
which we will also omit, is the following, where we recall the number λ̂ defined in (2.17).

Proposition 2.12 ([BT20], based on methods of [CCLS18]). There exist ε0, C0 > 0 such that for all
ε ∈ (0, ε0), under condition (2.8), if there exists η ∈ (0, 1/2) that satisfies∣∣NK

2a(0)− n̄2a
∣∣ ≤ ε and

∣∣NK
2d(0)− n̄2d| ≤ ε and ηε/2 ≤ NK

1 (0) ≤ ε/2,

then

∀C̃ > λ̂−1 + C0ε, P(TSε
≤ C̃ logK) −→

K→∞
1,

∀0 ≤ C̃ < λ̂−1 − C0ε, P(TSε ≤ C̃ logK) −→
K→∞

0.

2.8 Multitype branching processes II: the Kesten–Stigum theorem and its ap-
plication for our model

The Kesten–Stigum theorem can be found in various forms in the literature, let us now cite the variant
[GB03, Theorem 2.1] that was also cited by [CCLLS21]. Let (Zt)t≥0 = (Zi,t)i∈S,t≥0 be a continuous-time
supercritical branching process where the types of individuals are elements of a finite set S, and for i ∈ S
let Pi denote the probability measure under which Z0 = (0, . . . , 0, 1︸︷︷︸

i-th

, 0, . . . , 0), i.e., at time 0 there is one

single individual, which is of type i, and let Ei denote the expectation associated to Pi. For i, j ∈ S, let Nij
denote the expected number of type j offspring of a type i individual. We say that the mean matrix J of the
branching process (or any square matrix) is irreducible if it is not similar via a permutation to a block upper
triangular matrix (i.e., there exists no permutation matrix P and block upper triangular matrix U such that
J = PUP−1). The interpretation of irreducibility here is similar to that of irreducibility for Markov chains:
If the branching process is irreducible, than individuals of any type can create individuals of any other type
(perhaps indirectly, i.e. using multiple parent→child steps).

As we have seen, in the supercritical case, if T0 = inf{t ≥ 0: Zt = 0} denotes the extinction time of the
process, we have Pi(T0 < ∞) < 1, and the mean matrix has a positive eigenvalue λ > 0. Then it follows
from general Perron–Frobenius theory that J has a coordinatewise positive left eigenvalue π = (πi)i∈S and a
coordinatewise positive right eigenvalue h = (hi)i∈S associated with λ, i.e., πTJ = λπT and Jh = λh, which
are by convention normalized as ∑

i∈S
πi = 1 =

∑
i∈S

πihi.

The first equality here makes it possible to interpret π as a probability distribution of S. It is related to the
asymptotic proportion of types conditional on the survival of the branching process as follows.

Theorem 2.13 (Kesten–Stigum). Let us consider the supercritical case λ > 0 and assume that J is irre-
ducible.

(a) For all i, k ∈ S we have

Zk(t)∑
j∈S Zj(t)

−→
t→∞

πk, Pi-almost surely on {T0 = ∞}.

(b) There exists a nonnegative random variable W such that

lim
t→∞

Z(t)e−λt =Wπ, Pi-almost surely,
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and Pi(W > 0) > 0 for all i if and only if

E(Nij logNij) <∞ for all i, j ∈ S. (2.29)

In this case {W > 0} = {T0 = ∞} holds Pi-a.s., and hi = Ei(W ).

See the references in [GB03] for a proof.

Remark 2.14. In the one-dimensional case, of course π1 = h1 = 1 is the right choice. Given the proof of
Theorem 1.19, it is no surprise that t 7→ Z(t)e−λt is a nonnegative martingale. Under the condition (2.29),
started from one individual, we have that its almost sure limit W has expectation 1, which is exactly Z(0).
This means that the martingale converges in L1, equivalently, it is uniformly integrable. Thus, a consequence
of the Kesten–Stigum theorem is that uniform integrability holds if and only if (2.29) is satisfied.

Example 2.15. In the case of our approximating branching process (Ẑ2a(t), Ẑ2d(t)), we have S = {2a, 2d},
P(N2a,2a = 2, N2a,2d = 0) = λ1

λ1+µ+αn̄1
, P(N2a,2a = 0, N2a,2d = 0) = µ+(1−p)αn̄1

λ1+µ+αn̄1
, P(N2a,2a = 0, N2a,2d =

1) = pαn̄1

λ1+µ+αn̄1
, P(N2d,2a = 0, N2d,2d = 0) = κµ

κµ+σ , P(N2d,2a = 1, N2d,2d = 0) = σ
κµ+σ . Since all these

random variables take finitely many values, condition (2.29) is of course satisfied. In the supercritical case,
the normalized coordinatewise positive left eigenvector π = (π2a, π2d) is characterized by (with λ̃ given as in
(2.14))

π2a(λ2 − µ− αn̄1) + π2dσ = λ̃π2a,

π2apαn̄1 − π2d(κµ+ σ) = λ̃π2d,

π2a + π2d = 1.

Proposition 2.16 ([BT20]). There exists C > 0 sufficiently large such that for δ > 0 such that π2a ± δ ∈
(0, 1), under the same assumptions as Proposition 2.10,

lim inf
K→∞

P
(
∃t ∈

[
T 2
ε , T

2√
ε

]
,
εK

C
≤ N2,t ≤

√
εK,

π2a − δ <
N2a,t

N2a,t +N2d,t
< π2a + δ

∣∣∣T 2√
ε < T 2

0 ∧R2ε

)
≥ 1− oε(1).

(2.30)

Note also the factor of 1/C in the term εK
C : One cannot guarantee that after the total population size of

mutants has reached εK, it will never drop below it, but for C > 0 sufficiently small (and independent of ε
and K) one can guarantee it with high probability as K → ∞ followed by ε ↓ 0.

The full proof of this proposition ([BT20, Proposition 4.4]) uses a Poissonian construction similar to the
one that we saw in Section 1.7 and some ingredients of stochastic analysis for processes with jumps; it can
be found in Appendix D. Let us provide an informal outline of the proof here. The proof employs many
arguments from the one of [CCLLS21, Proposition 3.2]. It is based on the Kesten–Stigum theorem, but to
employ that theorem for the original individual-based model (and not just the approximating branching pro-

cess), one needs to use a semimartingale decomposition of the proportion
NK

2a,T2
ε

NK
2a,T2

ε
+NK

2d,T2
ε

. This decomposition

is of the form
NK

2a,T 2
ε

NK
2a,T 2

ε
+NK

2d,T 2
ε

=
NK

2a,t

NK
2a,t +NK

2d,t

+M2(t) + V2(t), t ≥ T 2
ε ,

where t 7→ M2(t) is a martingale and t 7→ V2(t) a finite-variation process, see Appendix D for the precise
form of M2(t) and V2(t) as well as an informal explanation regarding how this decomposition is obtained.
One first controls the predictable quadratic variation of the martingale21 between times T 2

ε and T 2√
ε
, which

21Quadratic variation. Let (Nt)t≥0 be any square-integrable martingale (in continuous time). Then,

[N ]t = lim
n→∞

∑
k≤n−1

(
N

t k+1
n

−N
t k
n

)2
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guarantees that with high probability, the martingale only fluctuates by at most ε on these time intervals.
On the other hand, the finite-variation process is deterministic and for large K close to the solution of a
one-dimensional ODE, whose unique equilibrium is precisely given by π2a. From this we can derive that with
high probability (as K → ∞ followed by ε ↓ 0), the proportion of active individuals will enter [π2a−δ, π2a+δ].

2.9 Convergence of the dynamical system
A particularly useful result in the context of the qualitative behaviour of two-dimensional autonomous sys-
tems of ODEs is the Bendixson criterion (see e.g. [DLA06, Theorem 7.10]), which tells that if the divergence
of a two-dimensional autonomous system of ODEs has constant and nonzero sign on a simply connected
domain of R2, then on that domain the system has no periodic orbit. (If the system is of the form

ẋ(t) = f(x(t), y(t)),

ẏ(t) = g(x(t), y(t)),

then its divergence at (x, y) ∈ R2 is given as ∂f
∂x (x, y) +

∂g
∂y (x, y), and for the assertion to hold, one has to

assume that f, g : R2 → R are totally differentiable.) It is also a classical result that solutions to any two-
dimensional autonomous systems of ODEs will always converge to ±∞, to an equilibrium or to a periodic
orbit as t→ ∞. On the other hand, solutions to three-dimensional ones can already show chaotic behaviour.
Therefore, before attacking the system (2.6) directly, it may be a good idea to learn about the global
qualitative behaviour of the sub-system

ṅ2a(t) = n2a(t)(λ2 − µ− αn2a(t)) + σn2d(t),

ṅ2d(t) = pαn22a(t)− (κµ+ σ)n2d(t), (2.31)

corresponding to types 2a and 2d, which we introduced in (2.2). Let us recall that this system has an
asymptotically stable equilibrium (n̄2a, n̄2d) and an unstable one (0, 0) under the assumption that λ2 > µ.

Lemma 2.17 ([BT20]). In case (n2a(0), n2d(0)) ∈ [0,∞)2 \ {(0, 0)}, we have

lim
t→∞

(n2a(t), n2d(t)) = (n̄2a, n̄2d).

Proof. Observe that the active coordinate of the stable equilibrium,

n̄2a =
(λ2 − µ)(κµ+ σ)

α(κµ+ (1− p)σ)
> 0

satisfies
λ2 − µ

α
< n̄2a ≤ λ2 − µ

(1− p)α
, (2.32)

where the second inequality is an equality if and only if κ = 0. Further, the dormant coordinate n̄2d is
positive. Note further that the divergence of the system is given as

λ2 − µ− 2αn2a(t)− (κµ+ σ).

This is certainly negative if n2a ≥ λ2−µ
2α , n2d ≥ 0, and at least one of the latter two inequalities is strict.

In particular, the Bendixson criterion implies that there is no nontrivial periodic solution in the open and
simply connected set

U =
{
(n2a, n2d) ∈ R2 : n2a >

λ2−µ
2α , n2d > 0

}
.

is called the quadratic variation of (Nt)t≥0. On the other hand, ⟨Nt⟩, the preditable quadratic variation is defined as the unique
process that is increasing and predictable (i.e. adapted to the filtration generated by the left-continuous processes) and such
that (N2

t − ⟨N⟩t)t≥0 is a martingale. (Its existence follows from the Doob–Meyer decomposition.) If the martingale (Nt)t≥0 is
continuous, then so is ([N ]t)t≥0, which is of course also adapted to the same filtration as the martingale itself, so that it is also
predictable. In this case, we have ⟨N⟩t = [N ]t. This footnote originates from Nicolas Perkowski’s lecture “Interacting particles
and stochastic PDEs” at HU Berlin in 2017/18.

Lecture notes on population dynamics by András Tóbiás, IN PROGRESS 41



Since this is a two-dimensional system and all solutions of the system with coordinatewise nonnegative
initial conditions are bounded, this implies that any solution starting from U converges to the equilibrium
(n̄2a, n̄2d) ∈ U . It remains to show that any solution started from [0,∞)2 \ ({(0, 0)}∪U) will enter the open
set U after finite time.

Now, observe that if n2a(0) > 0 and n2d(0) ≥ 0, then ṅ2a is positive and bounded away from zero until
n2a reaches λ2−µ

2α , hence n2a will reach this level. If n2d(0) > 0 and n2a(0) = 0, then there exists δ > 0 such
that n2a(δ) > 0 and n2d(δ) > 0, and hence n2a will also reach the level λ2−µ

2α in finite time. Further, for
t > 0, if n2a(t) = λ2−µ

2α and n2d(t) ≥ 0, then plugging in the first inequality of (2.32) to the first equation of
(2.31) implies that ṅ2a(t) > 0. This implies that if n2d(t) > 0, then

(n2a(t+ ε), n2d(t+ ε)) ∈ U, ∀ε > 0 sufficiently small. (2.33)

Else, ṅ2a(t) = 0 but ṅ2d(t) > 0, and hence the observations of the previous case imply that ṅ2a(t + ε) > 0
for all sufficiently small ε > 0, thus (2.33) also holds.

Now, we show convergence of the original 3-dimensional system to (0, n̄2a, n̄2d) as t → ∞ for initial
conditions corresponding to Proposition 2.16. In other words, we verify some global attractor properties of
this equilibrium, which are not as general as for the two-dimensional system but sufficient for the present
invasion analysis.

Lemma 2.18 ([BT20]). Let us consider the system of ODEs (2.6). If the initial condition (n1, n2a, n2d) =
(n1(0), n2a(0), n2d(0)) satisfies

pα(n1 + n2a)

κµ+ σ
>
n2d
n2a

>
µ− λ2 + α(n1 + n2a)

σ
, n1 ≥ 0, n2a, n2d > 0, (2.34)

then
lim
t→∞

(n1(t), n2a(t), n2d(t)) = (0, n̄2a, n̄2d). (2.35)

Before proving this lemma, let us mention how it corresponds to Proposition 2.16.

Lemma 2.19 ([BT20], based on methods of [CCLLS21]). Let C be chosen according to Proposition 2.16,
further, n1, n2a, n2d > 0 such that n1 ∈ (n̄1 − 2ε, n̄1 + 2ε), n2a + n2d ∈ (ε/C,

√
ε), and n2d

n2a
= π2d

π2a
. Then, if

ε > 0 is sufficiently small, then (n1, n2a, n2d) satisfies (2.34).

The proof of Lemma 2.19 is elementary and therefore we only present it in Appendix C. Let us now
proceed with the proof of Lemma 2.18.

Proof of Lemma 2.18. Let us assume that for some t ≥ 0, (n1(t), n2a(t), n2d(t)) = (n1, n2a, n2d). Then the
first inequality in (2.34) is equivalent to the statement that ṅ2d(t) > 0 and the second one is equivalent to the
statement that ṅ2a(t) > 0. Hence, as long as (2.34) holds, t 7→ n2a(t) and t 7→ n2d(t) are strictly increasing.

Let us assume that condition (2.34) holds for (n1, n2a, n2d) = (n1(0), n2a(0), n2d(0)). We claim that then
it also holds for all t > 0 with (n1, n2a, n2d) = (n1(t), n2a(t), n2d(t)), unless eventually n2a(t) = n̄2a and
n2d(t) = n̄2d. Indeed, let us assume that for some t > 0, (n1(t), n2a(t), n2d(t)) lies on the boundary of the
set

G = {(n1, n2a, n2d) ∈ [0,∞)× (0,∞)× (0,∞) : (n1, n2a, n2d) satisfies (2.34)} (2.36)

with n2a, n2d ≥ 0, in such a way that (n1(s), n2a(s), n2d(s)) is contained in the set G for all 0 ≤ s < t.
Then n2a(t), n2d(t) > 0 holds because n2a, n2d > 0 by assumption, moreover, s 7→ n2a(s) and s 7→ n2d(s) are
increasing on [0, t). Hence, one of the following conditions holds:

(i) ṅ2d(t) = 0, ṅ2a(t) > 0,

(ii) ṅ2a(t) = 0, ṅ2d(t) > 0,

(iii) ṅ2a(t) = ṅ2d(t) = 0.
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In case (i) we have
˙(n2d

n2a

)
(t) =

−ṅ2a(t)n2d(t)
n2a(t)2

< 0.

The case (ii) yields
˙(n2d

n2a

)
(t) =

ṅ2d(t)n2a(t)

n2a(t)2
> 0.

In case (iii) we have (thanks to the condition that n2a, n2d > 0) that (n2a, n2d) = (n̄2a, n̄2d). We conclude
that if (n1, n2a, n2d) = (n1(0), n2a(0), n2d(0)) satisfies (2.34), then t 7→ (n1(t), n2a(t), n2d(t)) never enters the
complement of the closure of the set G apart from (n̄2a, n̄2d), which implies the claim.

Now, given that condition (2.34) holds for (n1, n2a, n2d) = (n1(0), n2a(0), n2d(0)), t 7→ n2a(t) and
t 7→ n2d(t) are nonnegative, bounded, increasing, and strictly increasing unless (n2a(t), n2d(t)) = (n̄2a, n̄2d)
eventually, in which case both coordinates would immediately become constant. Further, t 7→ n1(t) is also
bounded and nonnegative. Hence, (n1(t), n2a(t), n2d(t)) converges along a subsequence to (n∗1, n̄2a, n̄2d) for
some n∗1 ≥ 0. Now we argue that n∗1 must be equal to zero. Indeed, taking limits of (2.34) implies that

pα(n∗1 + n̄2a)

κµ+ σ
≥ x̄d
x̄a

≥ µ− λ2 + α(n∗1 + n̄2a)

σ
. (2.37)

Observe that (2.37) holds for n∗1 = 0 thanks to (2.5). Taking this into account, any subsequential limit has
to satisfy

pαn∗1
κµ+ σ

≥ αn∗1
σ
.

Since by our assumptions, p
κµ+σ <

1
σ , we conclude that n∗1 = 0. Hence, (2.35) follows.

3 Example 2: the Beretta–Kuang host–virus model extended with
recovery and dormancy

In this section we will discuss another invasion model with an interesting biological motivation, namely a
host–virus model, also related to (a different kind of) dormancy. The underlying dynamical system has
features that are rather different from the properties of the system (2.6), which give a good opportunity to
discuss some further methods of stability theory and a well-known type of bifurcations during this course.
However, the qualitative behaviour of this system is tedious to investigate analytically, and many related
questions are still open.

3.1 The Beretta–Kuang host–virus model (with recovery, without dormancy)
The dynamical system corresponding to the three-dimensional, dormancy-free base variant of the model was
introduced by Beretta and Kuang [BK98]. They did not study its stochastic version, which we will explain
below (and which is derived analogously to the previous sections). We introduced this individual-based model
as well as its full, four-dimensional version with contact-mediated host dormancy in [BT23]. Our agenda
for Section 3 starts with the presentation of the individual-based model scaling to the dynamical system
introduced by Beretta and Kuang, and to explain some fundamental results on the qualitative behaviour of
this dynamical system as well as heuristics on its branching process counterpart. The full four-dimensional
dynamical system is more difficult to study and we only have partial results with regard to its behaviour;
this is one motivation to start with the dormancy-free model, another is that this way we can investigate the
effect of dormancy compared to the original model. The description of the full model starts in Section 3.5,
and the main results of [BT23] are presented in Section 3.7.

In the dormancy-free model, there is a host type (type 1) and a virus type (type 2). In absence of viruses,
type 1 only appears in its active form (type 1a), featuring binary reproduction and logistic competition,

Lecture notes on population dynamics by András Tóbiás, IN PROGRESS 43



just as in the case of the model of [C06] with mutations ignored. Type 1 can be thought of as a one-
cell microorganism featuring asexual and haploid (clonal) reproduction. However, type 1a individuals are
susceptible to an infection by a lytic virus of type 2. If a host meets a free virus particle (also called virion),
it will become infected (type 1i) and the virus will disappear (becoming part of the infected individual).
Infected hosts do not reproduce and do not feel competitive pressure, but they exert competitive pressure
on the active cells, and they will eventually either recover (i.e., become active again), or they will become
a virus factory, eventually ejecting a fixed number m ∈ N of new virus particles and dying. Such a kind
of virus reproduction is called lytic. Finally, virus particles cannot reproduce on their own, but they “die”
(degrade) at a certain rate.22

Informally speaking, the definition of the model is the following.

(i) An active (type 1a) individual gives birth to another such individual at rate λ1 > 0.

(ii) A type 1a individual has a natural death rate µ1 ∈ (0, λ2).

1a

1a 1a

†

λ1

µ1

(iii) K > 0 is the carrying capacity of the population.

(iv) For some C > 0, for any ordered pair consisting of one active (1a) host cell and one other host cell (of
either type 1a or 1i), at rate C/K, a death due to competition/overcrowding happens, affecting the
first active individual, which is removed from the population.23

1a 1a 1a†
C
K

1a 1i 1i†
C
K

(v) For any ordered pair of individuals containing one active (type 1a) cell and one virion (type 2), a virus
attack happens at rate D/K. In this case, the host cell gets infected (i.e. switches from 1a to 1i) and
the free virus (2) is ‘removed’ (in the sense that it enters the cell).

1a 1i
D
K

(vi) An infected (type 1i) individual recovers (i.e. switches back from 1i to 1a) at rate r ≥ 0.

(vii) An infected individual produces m ∈ N new virions and then gets removed (lysis), at rate v > 0. The
parameter m is called the burst size (a realistic value of m to imagine is several dozens or at most a
few hundreds).

22We will sometimes also call type 2 particles “individuals” for convenience, even though this is biologically not entirely
correct.

23Note that the competition parameter is now called C. Regarding the infected individuals, the above modelling choice
originates from [BK98, Section 1], where the authors argue that this is a reasonable assumption because the mortality of
infected individuals is almost completely due to lysis. (In contrast, if one considers chronically infected cells, their lifespan is
typically much longer than the one of lytically infected ones, and hence the competitive pressure that they feel is not negligible,
cf. [GW18].)
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1i

1a

r

†
1

v

2

· · ·
m

(viii) Virions (type 2) do not reproduce individually (but instead indirectly via infection of a host cell, see
below) and die/degrade at rate µ2 > 0.

†
µ2

The corresponding population process is formally defined as a continuous time Markov chain N = (Nt)t≥0

on N4
0, where

(Nt)t≥0 = (N1a,t, N1i,t, N2,t)t≥0 (3.1)

is interpreted as
Nx,t = #{individuals of type xi alive at time t}, (3.2)

for xi ∈ {1a, 1i, 2}. According to the above description, N is then the unique Markov process with transitions

(n1a, n1i, n2) →



(n1a + 1, n1i, n2) at rate λ1n1a,
(n1a − 1, n1i, n2) at rate (µ1 + C n1a+n1i

K )n1a,

(n1a − 1, n1i + 1, n2 − 1) at rate Dn1an2

K ,

(n1a + 1, n1i − 1, n2) at rate rn1i,
(n1a, n1i − 1, n2 +m) at rate vn1i,
(n1a, n1i, n2 − 1) at rate µ2n2.

Its only absorbing state is (0, 0, 0), which corresponds to the extinction of all the three types. The underlying
dynamical system is now easily seen to be

dn1a(t)

dt
= n1a(t)

(
λ1 − µ1 − C(n1a(t) + n1i(t))−Dn2(t)

)
+ rn1i(t),

dn1i(t)

dt
= Dn1a(t)n2(t)− (r + v)n1i(t),

dn2(t)

dt
= mvn1i(t)−Dn1a(t)n2(t)− µ2n2(t).

(3.3)

The positive orthant of R3 is invariant under this system. Note that in [BK98], recovery was absent (the
authors studied a “microbial virus epidemic with a mortality rate of 100%” 24), and the notation was different,
especially regarding the logistic competition. The qualitative differences between the cases r = 0 and r > 0
that we will mention below originate from [BT23].

24Note that there are some epidemics in nature that are nearly always fatal, e.g. untreated rabies in humans or dogs, or
certain variants of the African swine pest in swine. Also, the relevance of the case r > 0 is not entirely clear because while e.g.
humans can recover from influenza although some of their cells have died, it is not entirely clear if single cells can also survive
after having been infected, and hence the recovery of one-cell individuals is debatable.
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3.2 The dynamical system I: stability of simple equilibria and existence of a
coexistence equilibrium

(0, 0, 0) is clearly an equilibrium of the system (3.3), under which the positive orthant is again invariant, and
since we have assumed that λ1 > µ1, n̄1a := λ1−µ1

C is also an equilibrium. At (0, 0, 0) we have the Jacobi
matrix

A(0, 0, 0) =

λ1 − µ1 r 0
0 −(r + v) 0
0 mv −µ2

 .

The eigenvalues of this matrix are its diagonal entries, and since λ1−µ > 0, it follows that (0, 0, 0) is always
unstable.

On the other hand, at (n̄1a, 0, 0), the Jacobi matrix is given as follows

A(n̄1a, 0, 0) =

−(λ1 − µ1) r −Dn̄1a
0 −(r + v) Dn̄1a
0 mv −µ2 −Dn̄1a

 (3.4)

We see that −(λ1−µ1) < 0 is an eigenvalue of A(n̄1a, 0, 0) with eigenvector (1, 0, 0)T , and the remaining two
eigenvalues are the eigenvalues of the two eigenvalues of the last 2× 2 block of the matrix. Since the trace of
this block is negative, at least one eigenvalue has negative real part, and thus if there is an eigenvalue with
positive real part, then both eigenvalues must be real. This way, A(n̄1a, 0, 0) is asymptotically stable if and
only if the determinant of this block is positive. Whenever mv > r + v, this condition is equivalent to

n̄1a <
µ2(r + v)

D(mv − (r + v))
, (3.5)

and unstable if and only if this determinant is negative, i.e.,

n̄1a >
µ2(r + v)

D(mv − (r + v))
. (3.6)

Before we give a biological interpretation for condition (3.6), let us point out that the following.

Lemma 3.1 ([BK98] for r = 0, [BT23] for r > 0). Condition (3.6) together with the condition that mv >
r + v is equivalent to the existence of a coordinatewise positive equilibrium of the system (3.3). If such an
equilibrium (ñ1a, ñ1i, ñ2) exists, it is also unique, and its active coordinate is given by

ñ1a =
µ2(r + v)

D(mv − (r + v))
. (3.7)

If mv ≤ r + v, then there is no coordinatewise positive equilibrium.

Proof. A coexistence equilibrium (as in the lemma) needs to satisfy

ñ1i =
Dñ1añ2
r + v

(3.8)

and
ñ1i =

Dñ1añ2 − µ2ñ2
mv

.

This implies that we must have
Dñ1a
r + v

=
Dñ1a − µ2

mv
, (3.9)

in other words,

ñ1a =
µ2(r + v)

D(mv − (r + v))
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(which is the expression in (3.7)), provided that mv > r + v. The right-hand side equals the active (type
1a) coordinate of any coexistence equilibrium. It is clear from (3.9) that for mv ≤ r + v there can be no
coordinatewise positive equilibrium. If mv > r + v, then since ñ1a > 0, by (3.8), ñ1i and ñ2 have the same
sign. Using also the first equation of (3.3), we obtain

ñ1i
ñ1a

=
−(λ1 − µ1 − C(ñ1a + ñ1i)−Dñ2)

r
=

Dñ2
r + v

.

We see that if ñ1a > λ1−µ1

C = n̄1a, i.e., if the determinant of A(n̄1, 0, 0) is nonpositive, then ñ1i ≤ 0 and
therefore there can be no coexistence equilibrium. On the other hand, if ñ1a < n̄1a, then since by the first
equation of (3.3) we have

ñ1a(λ1 − µ1 − C(ñ1a + ñ1i)−Dñ2) + rñ1i = 0,

using also (3.8) we obtain

λ1 − µ1 − C(ñ1a + ñ1i)− (r + v)
ñ1i
ñ1a

+ r
ñ1i
ñ1a

= 0.

That is,

λ1 − µ1 − C(ñ1a + ñ1i) = v
ñ1i
ñ1a

.

Now, if the left-hand side was negative, this would imply that ñ1i > 0, but then the equality could not
be true. Hence, it must be the case that the right-hand side is positive, which implies that ñ1i > 0, and
therefore ñ2 is also positive thanks to (3.8). (These two coordinates can be expressed with the help of the
model parameters explicitly, but these expressions are rather involved, and therefore we omit them.)

Remark 3.2. Note that the last paragraph of the proof implies that if (3.6) holds, i.e., ñ1a < n̄1a, then we
even have ñ1a + ñ1i < n̄1a. This can be interpreted as follows: The coexistence with viruses reduces the
total host population, even if we take infected hosts into account. Intuitively speaking, the reason for this is
that the hosts cannot fully invest in their own reproduction but they are forced to use part of their energy
to produce viruses. We have seen that for mv ≤ r+ v there is no coexistence equilibrium. Heuristically, this
condition means that the “net growth rate” of viruses is negative due to inefficient lytic reproduction: Each
virus attack leads to the loss of one virus, and the host who gets infected during this attack will produce m
viruses with probability v

r+v and 0 viruses otherwise. Hence, the net increase in the number of viruses due
to this attack is on average m v

r+v − 1, which is positive if and only if mv > r + v.
Note also that if all parameters but λ1, µ1, C are fixed in such a way that mv > r + v, then one can

always make n̄1a so large (via choosing λ1, µ1, C suitably) that (3.6) becomes true. This can be interpreted
as follows: More host individuals yield more host–virus contacts and hence a higher danger of outbreak of a
large virus epidemic.

3.3 The branching process counterpart of the previous section
Similarly to Proposition 1.8, the dynamical system (3.3) describes the limit of the three-coordinate population
size process rescaled by K on compact time intervals. We have seen that the instability of the equilibrium
(n̄1a, 0, 0) is equivalent to the existence of the coordinatewise positive equilibrium (ñ1a, ñ1i, ñ2), and also to
condition (3.6). By now, given the results of Sections 1 and 2, it is not surprising that this is also equivalent
to the supercriticality of the two-type branching process that approximates the type 1i and 2 population
during the first phase of the invasion. The initial condition here consists of ≈ Kn̄1a type 1a individuals,
one type 2 individual, and no type 1i individuals. That is, we start with a large active and susceptible
host population at equilibrium, and we would like to see if one single virus can initiate a macroscopic virus
epidemic with asymptotically positive probability, and if yes, with what probability this happens and how
much time it takes asymptotically, and how the system will behave after a successful virus invasion. (We
could also start with one type 1i individual and no type 2 ones, cf. Exercise 13 below).
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Similarly to the branching process approximation in the previous sections, ignoring the precise details
of couplings, the idea is that the rescaled type 1a population size N1a,t/K stays close to n̄1a with high
probability as long as (N1i,t, N2,t) reaches εK for some small ε > 0 or 0, and hence, considering N1a,t/K as
constant equal to n̄1a, (N1i,t, N2,t)t≥0 can be approximated by the two-type branching process (Z1i,t, Z2,t)t≥0

with transitions

(n1i, n2) →


(n1i + 1, n2 − 1) at rate Dn̄1an2,
(n1i − 1, n2) at rate rn1i,
(n1i − 1, n2 +m) at rate vn1i,
(n1i, n2 − 1) at rate µ2n2

and with the same initial condition. This branching process has mean matrix

J =

(
−(r + v) mv
Dn̄1a −Dn̄1a − µ2

)
. (3.10)

This matrix has at least one eigenvalue with negative real part since its trace is negative. Thus, the matrix
has a positive eigenvalue if and only if its determinant is negative, which is equivalent to the condition (3.6),
as wanted. Again, the mean matrix J equals the transpose of the last 2 × 2 block of the Jacobi matrix
A(n̄1a, 0, 0).
Remark 3.3. From the point of view of the sub- or supercriticality of the branching process, the burst size
(number of viruses ejected at a lysis event) need not be constant equal to m, we could also have i.i.d. random
burst sizes (independent of everything else in the process) with expectation m and still obtain the same
mean matrix. This would yield a multitype branching process with more possible kinds of transitions, and it
is easy to imagine that all results we list in these lecture notes about the virus model (also with dormancy)
hold in this case as well, but we do not want to spell out any details.

We will focus on other key quantities (largest eigenvalue of the mean matrix, extinction probability etc.)
in Section 3.5, after introducing the full model with dormancy (there, the dormancy-free model corresponds
to the degenerate case q = 0, to which the results also apply after forgetting the dormant coordinate). Right
now, we will return to the study of the dynamical system, which is substantially easier in the case without
dormancy (due to the lack of a fourth dimension, as already mentioned), having the branching process
counterpart of the deterministic system (3.3) in mind.

3.4 The dynamical system II: Hopf bifurcations, the effect of recovery, and the
paradox of enrichment

In what follows, we will fix all model parameters but the burst size m, which we keep varying as a bifurcation
parameter. (We will see below why we call it like that.)25

If m is very small, namely, mv < r + v, then (ñ1a, ñ1i, ñ2) does not exist as a coordinatewise positive
equilibrium of (3.3) while (n̄1a, 0, 0) is not only locally asymptotically stable but it satisfies some global
attractive properties (the case where this is easiest to see is r = 0, see Section 3.6 for details).

Let us denote by m∗ the value of m such that (3.6) holds with an equality. For m = m∗, (n̄1a, 0, 0)
formally equals (ñ1a, ñ1i, ñ2), and for m > m∗, (ñ1a, ñ1i, ñ2) is coordinatewise positive (while it has a
negative coordinate for m < m∗). For m > m∗, (n̄1a, 0, 0) is not just not locally asymptotically stable but
repelling in a stronger sense, see Section 3.6 below. Further, we have the following two lemmas.

Lemma 3.4 ([BK98]). Under condition (3.6), the Jacobi matrix

A(ñ1a, ñ1i, ñ2) =

λ1 − µ1 − 2Cñ1a − ñ1i −Dñ2 r −Dñ1a
Dñ2 −(r + v) Dñ1a
−Dñ2 mv −Dñ1a − µ2.


of (3.3) has negative determinant and negative trace.

25Most results in this section originate from [BK98], but since they only treated the case r = 0 and the scaling of parameters
was a bit different there, we will often use somewhat different proofs here, which partially come from [BT23].
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Proof. The last 2× 2 block of A(ñ1a, ñ1i, ñ2) has zero determinant thanks to the definition of ñ1a (cf. (3.7)).
Hence, the determinant equals

− rD2ñ1añ2 + rDñ2(Dñ1a + µ2)−D2mvñ1añ2 +D2ñ1añ2(r + v) = rDñ2µ2 +D2(r + v −mv)ñ1añ2

= rDñ2µ2 −D(r + v)ñ2µ2 = −µ2vñ2. (3.11)

This implies that the determinant is negative.
As for the trace, it suffices to show that the first diagonal entry of the matrix is negative. Since

(ñ1a, ñ1i, ñ2) is an equilibrium of (3.3) with three positive coordinates, we have

λ1 − µ1 − Cñ1a − Cñ1i −Dñ2 = −r ñ1i
ñ1a

,

so that
λ1 − µ1 − 2Cñ1a − Cñ1i −Dñ2 < −r ñ1i

ñ1a
≤ 0.

We conclude the lemma.

Lemma 3.5 ([BK98]). For m∗ > m sufficiently close to m, (ñ1a, ñ1i, ñ2) is locally asymptotically stable.

Proof. In the extreme case m = m∗ when A(ñ1a, ñ1i, ñ2) = A(n̄1a, 0, 0), λ1 −µ1 −Cñ1a = λ1 −µ1 −Cn̄1a =
−(λ1−µ1). This number is negative and an eigenvalue of the matrix (cf. (3.4) and the paragraph thereafter).
For m = m∗, the determinant of the last 2 × 2 block of A(n̄1a, 0, 0) = A(ñ1a, ñ1i, ñ2) has zero determinant
and negative trace, meaning that its eigenvalues are 0 and a negative real number.

Now, as m ↓ m∗, by continuity, all eigenvalues of the Jacobi matrix tend to those corresponding to
m = m∗. The two eigenvalues that are negative and real for m = m∗ must therefore also have negative real
parts for m > m∗ sufficiently close to m∗. Thus, in order to prove the lemma, the last thing to exclude is
that the real part of the third eigenvalue tends to 0 from above as m ↓ m∗. If that was the case, then this
eigenvalue would be real for m > m∗ sufficiently close to m∗ (since the other two eigenvalues have negative
real parts). But then, the determinant of A(ñ1a, ñ1i, ñ2) would be positive, which is impossible thanks to
Lemma 3.4.

Exercise 11. Using arguments of the proof of Lemma 3.5, show that apart from the special choice of
parameters when the two negative eigenvalues of the Jacobi matrix A(ñ1a, ñ1i, ñ2) coincide for m = m∗, for
m > m∗ sufficiently close to m∗ the three eigenvalues have different real parts and must therefore be real.

The value m∗ is called the transcritical bifurcation point. In general, during a transcritical bifurcation, a
new stable equilibrium branches out of another equilibrium that stays present but loses its stability at this
point.

The crucial question is now whether (ñ1a, ñ1i, ñ2) preserves its stability for all m > m∗. If we write the
characteristic equation of a 3× 3 matrix B in variable λ as

λ3 + a1λ
2 + a2λ+ a3 = 0,

then a1 is minus the trace of the matrix, a3 is minus its determinant, and a2 is the coefficient of λ in
det(λI −B). The Routh–Hurwitz criterion tells that all eigenvalues of B have strictly negative real parts if
and only if a1, a3 > 0 and a1a2 < a3. Further, if a1, a3 > 0 and a1a2 > a3, then there exists an eigenvalue
with positive real part: Since its determinant and trace are negative, the eigenvalue with the largest absolute
value is real and negative, but the two other eigenvalues have positive real parts (they could both be real or
complex and conjugate). We already know from Lemma 3.4 that a1, a3 > 0 under condition (3.3).

Lemma 3.6 ([BK98] for r = 0, [BT23] for r > 0). If r = 0 or r > 0 is sufficiently small, then (ñ1a, ñ1i, ñ2) is
unstable for all sufficiently large m > m∗. In contrast, if r > v, then (ñ1a, ñ1i, ñ2) is stable for all sufficiently
large m > m∗.
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In words, a virus infection with very high mortality leads to the loss of stability for large m. In contrast,
if r > v, i.e. if the mortality is below 50%, then for large m the coexistence equilibrium stays stable. We
will see in the proof of the lemma below that the condition r > v can presumably be relaxed. Hence, we
have identified a qualitative effect of recovery on the behaviour of the model. Having Lemma 3.5, it is also
straightforward to conjecture that if (ñ1a, ñ1i, ñ2) is stable for m large, then in fact it is stable for all m > m∗,
but such an assertion has not been proven so far.

Proof of Lemma 3.6. Note that according to (3.7), we have limm→∞ ñ1a = 0. For m > m∗, letting the
right-hand side of the first equation of (3.3) be equal to zero, and dividing it with ñ1a > 0 we obtain

λ1 − µ1 − C(ñ1a + ñ1i)−Dñ2 =
r

r + v
Dñ2.

Hence, it follows that
lim
m→∞

λ1 − µ1 − Cñ1i −
v

r + v
Dñ2 = 0,

and thus in particular

lim sup
m→∞

ñ2 ≤ λ1 − µ1

D

r + v

v
.

In particular, ñ2 is bounded as a function of m. Hence, from (3.8) we conclude that limm→∞ ñ1i = 0 and
thus

lim
m→∞

ñ2 =
λ1 − µ1

D

r + v

v
.

Hence, we obtain

lim
m→∞

a1 = lim
m→∞

−(λ1 − µ1 −Dñ2) + r + v + µ2 = (λ1 − µ1)
r

v
+ (r + v) + µ2 > 0,

further,

lim
m→∞

a2 = lim
m→∞

−(λ1−µ1−Dñ2)(r+v)−Dñ2r+(λ1−µ1)
r

v
µ2+µ2(r+v)−Dñ1amv = (λ1−µ1)

r

v
µ2, (3.12)

and, using (3.11)

lim
m→∞

a3 = − lim
m→∞

detA(ñ1a, ñ1i, ñ2) = lim
m→∞

µ2vñ2 =
λ1 − µ1

D
(r + v)µ2 > 0

since λ1 > µ1.
In the case r = 0 of no recovery, we see that limm→∞ a1 = v + µ2, limm→∞ a2 = 0, limm→∞ a3 =

(λ1 − µ1)vµ2, and hence limm→∞ a1a2 − a3 < 0. Therefore for r = 0, for all sufficiently large m > m∗, the
Jacobi matrix at (ñ1a, ñ1i, ñ2) has two eigenvalues with positive real parts, and thus (ñ1a, ñ1i, ñ2) is unstable.
By continuity, the same assertion also holds for r > 0 sufficiently small, as asserted. On the other hand, for
r > v we obtain that

lim inf
m→∞

a1a2 − a3 > ((λ1 − µ1) + (r + v) + µ2)((λ1 − µ1)µ2)− (λ1 − µ1)(r + v)µ2

> (r + v)(λ1 − µ1)µ2 − (λ1 − µ1)(r + v)µ2 = 0.

Thus, for r > v, for all m > m∗ sufficiently large, (ñ1a, ñ1i, ñ2) is asymptotically stable, as claimed.

By Lemma 3.4, the only way (ñ1a, ñ1i, ñ2) can be (hyperbolically) unstable for m > m∗ is that it has a
negative real eigenvalue and a pair of complex eigenvalues with positive real parts. Indeed, by continuity,
since for m > m∗ sufficiently close to m all eigenvalues have negative real parts, to obtain two eigenvalues
with positive real parts, both such eigenvalues need to cross the imaginary axis of C at some values of
m > m∗. But if any of these eigenvalues became zero for some m > m∗, then the determinant would vanish
for such m, which would contradict Lemma 3.4. It also follows that for r ≥ 0 sufficiently small (given all
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the other parameters including v), there exists some m∗∗ > m∗ such that at m∗∗, the Jacobi matrix has a
negative (real) eigenvalue and a pair of purely imaginary eigenvalues. When this is not the case (since r is
relatively large compared to v), we will put m∗∗ = ∞.

We say that at m∗∗ < ∞ the system (3.3) undergoes a supercritical Hopf bifurcation. That is, a pair
of complex conjugate eigenvalues crosses the imaginary axes from negative to positive at a nonzero speed,
and the corresponding eigenvalue (here: (ñ1a, ñ1i, ñ2)) loses its stability, and instead a stable hyperbolic
periodic trajectory26 surrounding the equilibrium emerges and starts attracting solutions started close to
the equilibrium.27 Right before the bifurcation point, the eigenvalue is locally a stable focus, which means
coordinatewise oscillatory convergence of solutions to (3.3) started sufficiently close to (ñ1a, ñ1i, ñ2) as t→ ∞,
and right after it, the eigenvalue is locally an unstable focus, which means also spiral-like behaviour but
repellence of the equilibrium and convergence of the solutions from any sufficiently small neighbourhood of
the unstable equilibrium to the stable periodic orbit. That we indeed have a supercritical Hopf bifurcation in
this case follows from the fact that a1, a2 are positive whenever m > m∗ and a1a2 − a3 is a smooth function
of the parameter m (given all the other parameters) in (m∗,∞) under the conditions of Lemma 3.6 implying
m∗∗ <∞ with nonzero derivative at m∗∗, see the proof of [BK98, Proposition 3.1] for details.

This implies in particular that there exists m′ < m∗∗ such that the Jacobi matrix for m∗ < m < m′ the
eigenvalues of the Jacobi matrix of (3.3) at (ñ1a, ñ1i, ñ2) are all real, while for m > m′ two eigenvalues are
complex (and conjugate). This is always true when there is a Hopf bifurcation at m∗∗ <∞, apart from the
critical case when for m = m∗ two eigenvalues of the Jacobi matrix already coincide (cf. Exercise (11)). In
that case, it is not known if there is a complex pair of eigenvalues for all m > m∗.

Simulations indicate that the periodic behaviour is true for anym > m∗ whenever (ñ1a, ñ1i, ñ2) eventually
loses its stability, with increasing amplitude and minimal subpopulation sizes within the cycle tending to
0 as m → ∞. For r = 0 or r > 0 very small, this is actually also to prove theoretically, as shown by the
following remark.

Remark 3.7. Let us note that a1, a2, a3 are all increasing as functions ofm on [m∗,∞) (where in the boundary
case m = m∗ we identify (ñ1a, ñ1i, ñ2) with (n̄1a, 0, 0)). From this together with the fact that a1 > 0 and
a3 = 0 holds for m = m∗ and thus arguments of the proof of Lemma 3.5 imply that a2 < 0 for this choice
of m, we can deduce that a1a2 is decreasing in m. But then, if r = 0, since a3 tends to a positive limit as
m → ∞ but a2 tends to zero, it follows that a3 − a1a2 as a function of m has a unique zero in (m∗,∞),
i.e. there is a unique Hopf bifurcation point, see [BK98, Proposition 3.2] and its proof. By continuity, this
uniqueness also holds for r > 0 sufficiently small.

Although the solution to the autonomous system of ODEs (3.3) of course never hits 0, in the corresponding
stochastic system this phenomenon comes with an increased risk of extinction of all subpopulations, which
relates our model to the phenomenon of paradox of enrichment known from predator–prey models, cf.
Remark 3.8 below.

Is there also m′ > m∗ such that a pair of eigenvalues becomes complex at m′ also in case m∗∗ < ∞?
Numerical simulations suggest a positive answer (see Section 3.9). This suggests that while we have seen that
for m > m∗ close to m∗ the eigenvalues of the Jacobi matrix at (ñ1a, ñ1i, ñ2) are always real (and negative)
and therefore the convergence to this equilibrium from nearby initial conditions is eventually coordinatewise
monotone, increasing m leads to oscillatory convergence, which in the case of small r leads to divergence
from the equilibrium and convergence to the stable periodic trajectory above the Hopf bifurcation point.
Summarizing, we expect the behaviour of the system as shown in Tables 1 and 2 under the assumption that
the three eigenvalues of the Jacobi matrix are pairwise distinct for m = m∗. We should however note that
we have not proved the existence of m′ > m∗ such that for all m∗ < m < m′ the Jacobi matrix has three real
eigenvalues and for m > m′ it has a pair of complex eigenvalues. Simulations still support this conjecture,

26We will not define here what hyperbolicity for a stable periodic orbit means, see [K98, Section 2.2.3] for a definition, but we
note that hyperbolicity implies exponentially fast convergence to the periodic orbit started from all initial conditions sufficiently
close to the orbit w.r.t. a suitable notion of distance, similarly to how hyperbolicity of an asymptotically stable equilibrium
implies convergence of solutions started from nearby initial conditions to the equilibrium at an exponential speed.

27A subcritical Hopf bifurcation would correspond to a situation where right before the bifurcation, there is a stable equilibrium
and an unstable periodic orbit, and right after the bifurcation, there is an unstable equilibrium and no periodic orbit.
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Region I. II. III. IV.
Characterization 0 < m < m∗ m∗ < m < m′ m′ < m < m∗∗ m > m∗∗

Stability of
(n̄1a,0,0,0)

stable unstable unstable unstable
Existence of
(ñ1a,ñ1i,ñ2) does not exist exists exists exists
Stability of
(ñ1a,ñ1i,ñ2)

- stable stable unstable
Asymptotic
behaviour
of positive

solutions to (3.3)

eventually coord.
monotone convergence

to (n̄1a,0,0,0)

eventually coord.
monotone convergence

to (ñ1a,ñ1i,ñ2)

oscillatory convergence
to (ñ1a,ñ1i,ñ2)

periodic
behaviour

Table 1: Expected behaviour of the system (3.3) in the case when r is small compared to v (e.g. r = 0).

Region I. II. III.
Characterization 0 < m < m∗ m∗ < m < m′ m > m′ (m∗∗ = ∞)

Stability of
(n̄1a,0,0,0)

stable unstable unstable
Existence of(ñ1a,ñ1i,ñ2) does not exist exists exists
Stability of(ñ1a,ñ1i,ñ2) - stable stable
Asymptotic behaviour

of positive solutions to (3.3)

eventually coord.
monotone convergence

to (n̄1a,0,0,0)

eventually coord.
monotone convergence

to (ñ1a,ñ1i,ñ2)

oscillatory convergence
to (ñ1a,ñ1i,ñ2)

Table 2: Expected behaviour of the system (3.3) in the case when r is small compared to v (e.g. r > v or
larger).

see Figure 1. We have merely shown that for m∗∗ <∞ there is a complex pair of eigenvalues for all m > m∗∗

and also for m < m∗∗ sufficiently close to m∗∗.

Remark 3.8 (Paradox of enrichment). The fact that the coexistence equilibrium can lose its stability is
a variant of the phenomenon called paradox of enrichment in ecology, which was introduced by Rosen-
zweig [R71] and is well-known from the context of predator–prey type dynamical systems (see e.g. [MM90]
for an overview). It rests on a bifurcation that appears in the model studied in [BK98] (and also for r > 0 if
r is small compared to v) in the following way: When the burst size m reaches a critical threshold, the co-
existence equilibrium emerges and is initially stable. However, further increase in the burst size destabilizes
it, giving rise to periodic limiting behaviour.

In the predator–prey context, the analogue of the burst size expresses how much energy the predator can
gain out of a consumed unit prey, and the analogue of the equilibrium population size n̄1a of active hosts is
the carrying capacity of the prey population. An example for a system where this phenomenon occurs (see
e.g. [M72])

ẋ = x
(
1− x

K

)
− y

x

1 + x

ẏ = δy
x

1 + x
− γy,

for δ, γ > 0, where K > 0 is the carrying capacity of the prey population.
Now, increasing the carrying capacity of the system while keeping all other parameters constant leads

to periodic cycles with increasing amplitudes, where the lowest population size during a period approaches
zero for both for the prey and the predators. This corresponds to an increased danger of extinction due
to small stochastic fluctuations in the underlying individual-based model. The ‘paradox’ consists in the
counter-intuitive effect that increasing carrying capacities may actually increase the risk of extinction for the
whole system.

In our model, for r small compared to v and q not too close to 1, a similar high-amplitude periodicity
(with low minimum value) can be observed. While varying n̄1a (which can e.g. be achieved via fixing
λ1 − µ1 and varying C, or the other way around) would be analogous to the predator–prey setting, we used
m as a bifurcation parameter. Nevertheless, we know from [BK98, Sections 3 and 5] that under suitable
assumptions on the other parameters that we fix, a Hopf bifurcation can also be observed while varying n̄1a
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Figure 1: Behaviour of the system (3.3) for various values of m. First two rows: r = 0, v = 1.1. m = 1
(mv ̸> r + v): Case I, there is no coexistence equilibrium, coordinatewise eventually monotone convergence
to (n̄1a, 0, 0). m = 2: Case II, we have coordinatewise eventually monotone convergence to the stable
coexistence equilibrium (ñ1a, ñ1i, ñ2). m = 3: Case III, (ñ1a, ñ1i, ñ2) still stable but the convergence is
already oscillatory in each coordinate. m = 20: After (ñ1a, ñ1i, ñ2) lost its stability via the Hopf bifurcation,
the limiting behaviour of the system is periodic.
Last two rows: Same choice of the parameters apart from r, whose value is now 0.55 = v/2. m = 1: case I.
m = 2: still case I. m = 3: (still) case II. m = 20 (and any m > 20): (still) case III. We see that the effect of
recovery is not just hindering Hopf bifurcation but also increasing m∗ and m′, leading to a better scenario
for the hosts and a worse one for the viruses (not surprisingly).
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(more precisely, the analogue of n̄1a in a rescaled variant of the system (3.3) for r = 0). Note that if we use
n̄1a as a bifurcation parameter, fixing m, it is crucial to assume that mv > r + v, otherwise the coexistence
equilibrium will never exist and thus it cannot lose its stability.

It is further remarkable that as long as the coexistence equilibrium exists, its active coordinate ñ1a does
not depend on λ1, µ1, C (which are the only parameters n̄1a depends on) but on the other parameters of
the model. This is in analogy to the fact that in certain predator–prey models, the prey coordinate of the
coexistence equilibrium between predators and prey does not depend on the carrying capacity of the prey,
see e.g. [KC09, Section 2].

There are further, finer, and more global stability results regarding the system (3.3). However, at this
point we will not continue with these, but we will incorporate dormancy into our model and present the
main results of [BT23] regarding the full model, which will include some additional (partial) results about
the qualitative behaviour of the extended, four-dimensional version of the dynamical system, which will also
have some implications regarding the original system.

3.5 The full model of [BT23] with contact-mediated host dormancy
The form of dormancy that we will consider in an extension of the Beretta–Kuang model (with recovery)
is contact-mediated host dormancy. Informally speaking, this means that the host may inactivate due to a
contact with a virion. In mathematical terms, not all virus attacks will successfully lead to the infection
of the affected host cell, but with probability q ∈ (0, 1) they will make the host cell dormant, while the
virus particle will not be lost. Dormant cells can later resuscitate or die, but they cannot get infected before
resuscitation. Similarly to the infected cells, they do not reproduce and they feel no competitive pressure
from the other host cells, but they exert competitive pressure on the active hosts.

In the biological literature, it has been reported that infected bacteria can enter a dormant state as part
of a CRISPR-Cas immune response, thereby curbing phage epidemics (cf. [JF19] resp. [MNM19]). Moreover,
it has been suggested that dormancy of hosts may even be initiated upon mere contact of virus particles with
their cell hull, so that the dormant host may entirely avoid infection, cf. Bautista et al [BZW15]. Indeed, in
experiments, Bautista et al observed that Sulfolobus islandicus (an archeon) populations may switch almost
entirely into dormancy within hours after being exposed to the Sulfolobus spindle-shape virus SSV9, even
when the initial virus-to-host ratio is relatively small.

We now modify the model of Section 3.1 in order to introduce dormancy as follows. We keep (i)-(iii) and
(vi)-(viii) unchanged, whereas (iv) changes to

(iv’) For some C > 0, for any ordered pair consisting of one active (1a) host cell and one other host cell (of
either type 1a or 1i or 1d), at rate C/K, a death due to competition/overcrowding happens, affecting
the first active individual, which is removed from the population.28

1a 1a 1a†
C
K

1a 1d 1d†
C
K

1a 1i 1i†
C
K

Moreover, (v) changes to

(v’) We fix a number q ∈ (0, 1). For any ordered pair of individuals containing one active (type 1a) cell and
one virion (type 2), a virus attack happens at rate D/K. In this case, independently of the pre-history
of the process, with probability 1 − q the host cell gets infected (i.e. switches from 1a to 1i) and the
free virus (2) is ‘removed’ (in the sense that it enters the cell), whereas with probability q the host cell
becomes dormant (i.e. switches from 1a to 1d) and the free virus (2) stays unaffected.

28While the model presented in this section can be seen as an extension of the model of [BK98] with dormancy and recovery,
ODE-based preliminary models featuring contact-mediated dormancy and some other properties of the ODE (3.13) correspond-
ing to the full model were already considered in [GW16, GW18]. In [BT23] we opted to follow [GW16] in including competition
with dormant host individuals in order to stay close to their modeling frame, even though from the biological point of view this
is debatable.
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1a

1i

(1−q)D
K

1d
qD
K

Finally, we extend the model with the following two points on the fate of dormant individuals:

(ix) A dormant (type 1d) individual resuscitates (i.e. switches back from 1d to 1a) at rate σ > 0.

(x) For some κ ≥ 0, a dormant individual dies at rate κµ1 (where we recall that µ1 is the natural death
rate of the active host population).

1d

1a

†

σ

κµ1

Note that there is no competition-induced dormancy here; the presence of type 1d is merely due to the virus
attacks.

The corresponding Markov chain will still be denoted by (Nt)t≥0, but now it has four coordinates:
Nt = (N1a,t, N1d,t, N1i,t, N2,t), where N1d,t is defined analogously to (3.2) (it denotes the number of dormant
individuals at time t). It has state space N4

0 and transitions

(n1a, n1d, n1i, n2) →



(n1a + 1, n1d, n1i, n2) at rate λ1n1a,
(n1a − 1, n1d, n1i, n2) at rate (µ1 + C n1a+n1d+n1i

K )n1a,

(n1a − 1, n1d, n1i + 1, n2 − 1) at rate (1−q)Dn1an2

K ,

(n1a − 1, n1d + 1, n1i, n2) at rate qDn1an2

K ,

(n1a + 1, n1d, n1i − 1, n2) at rate rn1i,
(n1a, n1d, n1i − 1, n2 +m) at rate vn1i,
(n1a, n1d, n1i, n2 − 1) at rate µ2n2,

(n1a + 1, n1d − 1, n1i, n2) at rate σn1d,
(n1a, n1d − 1, n1i, n2) at rate κµ1n1d.

Its only absorbing state is (0, 0, 0, 0), which corresponds to the extinction of all the four types. We will write
NK
t = (NK

1a,t, N
K
1d,t, N

K
1i,t, N

K
2,t) for the rescaled process, where NK

x,t = Nx,t/K for x ∈ {1a, 1d, 1i, 2}. The
underlying dynamical system is clearly

dn1a(t)

dt
= n1a(t)

(
λ1 − µ1 − C(n1a(t) + n1i(t))−Dn2(t)

)
+ rn1i(t) + σn1d(t),

dn1d(t)

dt
= qDn1a(t)n2(t)− (κµ1 + σ)n1d(t),

dn1i(t)

dt
= (1− q)Dn1a(t)n2(t)− (r + v)n1i(t),

dn2(t)

dt
= mvn1i(t)− (1− q)Dn1a(t)n2(t)− µ2n2(t),

(3.13)

which gives back (3.3) for q = 0 after ignoring the dormant coordinate n1d(t), given that n1d(0) = 0. The posi-
tive orthant of R4 is obviously invariant under this system. We write (n(t))t≥0 = (n1a(t), n1d(t), n1i(t), n2(t))t≥0
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for the unique solution to (3.13) (given the initial condition). Arguing very similarly to Section 3.2, we obtain
the following result (for the missing bits of the proofs see [BT23]).

Proposition 3.9 ([BK98]). Let q = 0 and consider the dynamical system (3.13).

1. (0, 0, 0, 0) is always an unstable equilibrium of the system.

2. (n̄1a, 0, 0, 0) is asymptotically stable if the determinant of the Jacobi matrix at (n̄1a, 0, 0, 0) is positive,
which is equivalent to

n̄1a <
µ2(r + v)

(1− q)D(mv − (r + v))
(3.14)

and unstable if the determinant is positive, i.e.,

n̄1a >
µ2(r + v)

(1− q)D(mv − (r + v))
. (3.15)

3. If (3.14) holds, the system has no coordinatewise positive coexistence equilibrium. If (3.15) holds, there
is a unique coordinatewise positive equilibrium (ñ1a, ñ1d, ñ1i, ñ2), whose active coordinate satisfies

ñ1a =
µ2(r + v)

(1− q)D(mv − (r + v))
. (3.16)

In the initial phase of the epidemic, considering N1a,t/K as constant equal to n̄1a, (N1d,t, N1i,t, N2,t)t≥0

can be approximated by the two-type branching process (Z1d,t, Z1i,t, Z2,t)t≥0 with transitions

(n1d, n1i, n2) →



(n1d, n1i + 1, n2 − 1) at rate (1− q)Dn̄1an2,

(n1d + 1, n1i, n2) at rate qDn̄1an2,
(n1d, n1i − 1, n2) at rate rn1i,
(n1d, n1i − 1, n2 +m) at rate vn1i,
(n1d, n1i, n2 − 1) at rate µ2n2,

(n1d − 1, n1i, n2) at rate (κµ1 + σ)n1d

(3.17)

and with the same initial condition. This has mean matrix

J̃ =

−κµ1 − σ 0 0
0 −(r + v) mv

qDn̄1a (1− q)Dn̄1a −(1− q)Dn̄1a − µ2

 .

We immediately see that −κµ1 − σ < 0 is an eigenvalue of the matrix (with left eigenvector (1, 0, 0)).
The other two eigenvalues are therefore the eigenvalues of the last 2 × 2 block, which itself has a negative
trace, so that at least one eigenvalue is always negative. Not surprisingly given the results of Section 3.3
and Proposition 3.9, the third eigenvalue of J̃ is positive if and only if (3.15) holds, i.e. if and only if
the system (3.13) has a coexistence equilibrium and (n̄1a, 0, 0, 0) is unstable, while the third eigenvalue is
negative if and only if (3.14) holds, i.e. the system has no coexistence equilibrium and (n̄1a, 0, 0, 0) is locally
asymptotically stable.

Remark 3.10 (The effect of contact-mediated host dormancy). Note that condition (3.15) implies that large
reproduction rates λ1 can be hazardous when facing a virus infection (with or without dormancy mechanism).
This is analogous to the case q = 0, and the quantitative difference is that for q > 0, the threshold for n̄1a
above which the branching process is supercritical (i.e. there is an asymptotically positive chance of a major
epidemic) is 1

1−q times the same threshold for q = 0.
At first glance, there may be hypothetical scenarios where a population threatened by recurring virus

invasions might not realize its full reproductive potential in order to avoid persistent epidemics. The way
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to maximize its long-term average fitness in the face of virus epidemics could then be to invest remaining
resources into a dormancy-defence, which allows for higher carrying capacities during infections, and the
‘reproductive trade-off’ vanishes (at least to some degree). However, such a self-constraining strategy might
be vulnerable to the invasion of selfish cheaters, i.e. of other species investing in a higher reproduction rate
instead of dormancy. Investigating the balance of classical fitness (in competition with other species) and
strategies (e.g. dormancy-based) reducing reproductive rates in order to cope with recurring infections could
be a topic for future work.

Nevertheless, there are also some qualitative differences between the case q = 0 and the one q > 0.
Namely, the mean matrix J̃ is not irreducible, unlike J and the last 2×2 block of J̃ , which we will denote by
J2. This can be interpreted as follows. Starting the branching process (where we fix the active population
size and consider resuscitations as deaths) from an initial condition where there are dormant individuals only,
no infected individuals and no viruses will ever be created and the population size of the branching process
will tend monotonically to 0. Hence, one has to be careful when one wants to perform an invasion analysis
including a multitype branching process approximation similar to the one in Section 2. Indeed, e.g. knowing
just that the branching process reaches total population size εK, one cannot be sure if these individuals are
not all dormant, and therefore one cannot guarantee that the risk of extinction of the invading types (1d,
1i, and 2) is over on the short term.

Instead, we will work with the projection (Z1i,t, Z2,t)t≥0 of the branching process on its infected and virus
coordinate. Thanks to the fact that transitions in (3.17) depending on the value of n1d only influence the
transition rates in the dormant coordinate and that dynamics of the dormant individuals does not influence
the one of infected individuals and viruses, (Z1i,t, Z2,t)t≥0 is an autonomous Markov chain and itself a 2-type
branching process. Its mean matrix is the last 2× 2 block J2 of J̃ , which is the same as J in (3.10) but with
D replaced by (1− q)D everywhere. Thus,

the three-type branching process is supercritical (resp. subcritical) if and only if this two-dimensional
projection is supercritical (resp. subcritical).

If we can guarantee that this branching process approximates (N1i,t, N2,t) well until the latter dies out
or reaches total size ≈ εK, then we have a good chance for a useful branching approximation similarly
to Section 2, and the number of dormant host individuals will also reach the same order of magnitude as
the one of infected host individuals and virions. (Note however that such an autonomy is only true for
the branching process approximation, due to the assumption that the active population size is fixed. For
example, the behaviour (N1i,t, N2,t) is influenced by the one of N1d,t because the latter has an impact on
N1a,t via competition and resuscitation.)

Whenever J2 has a positive eigenvalue, we will denote it by λ̃ (there will be no clash with the same
notation in Section 2 ).

Exercise 12 (easy). In case J2 has no positive eigenvalue, what is the largest eigenvalue of J̃?

The survival probability of the branching process (either the full three-dimensional one or its projection
on the infected and virus coordinates) started with one single virus and no dormant or infected hosts will be
denoted by s2. Of course, s2 < 1 if the branching process is supercritical, i.e. (3.15) holds, whereas s2 = 1 if
the branching process is subcritical, i.e. (3.14) holds.

Exercise 13. Using a first-step analysis, derive the system of generating equations (analogous to (2.16)) for
s1d, s1i, and s2, where s1d (resp. s1i) denotes the survival probability of the branching process started with
one single dormant (resp. infected) individual.

1. Convince yourself that s1d = 1 follows from your system of equations.

2. Show that s2 < 1 if and only if s1i < 1, and show that these conditions are equivalent to (3.15).
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3.6 The dynamical system III: some global properties
Before stating the main results of [BT23], it is useful to formulate some related assertions on the global
behaviour of the dynamical system (3.13). This system is more difficult to study than (3.3) due to the extra
dimension, and in some cases we will have to restrict to partial results. E.g., is clear by continuity that for
r = 0 or for r > 0 very small compared to v the system (3.13) also exhibits a Hopf bifurcation, whereas for
r > 0 large enough compared to v it does not, but specifying which choices of parameters belong to which
of the two cases is tedious even numerically. Consequently, after a successful virus invasion, we will not
be able to fully determine the fate (stable coexistence vs. periodic behaviour) of the stochastic host–virus
system. Nevertheless, we have some global results (based on assertions of [BK98] for r = q = 0) that hold
regardless of the presence or absence of a Hopf bifurcation. The first one tells us that starting from an initial
condition with only positive coordinates, the mono-type equilibrium (n̄1a, 0, 0, 0) will never be reached under
the coexistence condition (3.15).

Proposition 3.11 (Non-extinction of the virus epidemic; [BK98, BT23]). Consider the dynamical system
(3.13). Assume that (3.15) holds, and (n1a(0), n1d(0), n1i(0), n2(0)) ∈ (0,∞)4. Then (n1a(t), n1d(t), n1i(t), n2(t))
does not tend to (n̄1a, 0, 0, 0) as t→ ∞, not even along a diverging subsequence of time-points.

Before we prove this proposition, let us mention some of its consequences. Since coordinatewise nonnega-
tive solutions of (3.13) are bounded, Proposition 3.11 together with a simple compactness argument implies
that started from any initial condition (n1a(0), n1d(0), n1i(0), n2(0)) ∈ (0,∞)4, there exists a ϱ > 0 such that

lim inf
t→∞

∥∥(n1a(t), n1d(t), n1i(t), n2(t))− (n̄1a, 0, 0, 0)
∥∥
1
≥ ϱ. (3.18)

This assertion is known as (n̄1a, 0, 0, 0) being a uniform strong repeller ; cf. [BK98, Corollary 4.2] for its
analogue in the recovery- and dormancy-free three-dimensional case. The following corollary is analogous
to [BK98, Lemma 2.3 and Theorem 4.2], but since that paper provides no explicit proof and our setting is
more complex, we present a proof for completeness in Appendix E.

Corollary 3.12 (Population bounds; [BK98, BT23]). Consider the dynamical system (3.13). Assume that
(3.15) holds, and (n1a(0), n1d(0), n1i(0), n2(0)) ∈ (0,∞)4. Then

lim inf
t→∞

nj(t) > 0

holds for all j ∈ {1a, 1d, 1i, 2}, and

lim sup
t→∞

n1a(t) + n1d(t) + n1i(t) < n̄1a.

Further,
lim sup
t→∞

n2(t) <
mvn̄1a
µ2

.

The positivity of the lim inf’s of the coordinates n1d(t), n1i(t), n2(t) is called the uniform strong persistence
of the system (3.13). By our uniform approximation result, in this case, the macroscopic virus epidemic will
also be present for long times (with high probability conditional on a successful invasion) in the stochastic
model with large enough carrying capacities K.

Exercise 14 (Initial conditions in Corollary 3.12). Coordinatewise positivity cannot be replaced by n1a(0)
and at least one of the coordinates n1d(0), n1i(0), n2(0) being positive. To see this, determine whether
lim inft→∞ nj(t) > 0 holds for all j ∈ {1a, 1d, 1i, 2} in case

1. if n1a(0) > 0, n1d(0) > 0, but n1i(0) = n2(0) = 0,

2. and if n1a(0) > 0 and (n1d(0), n1i(0), n2(0)) ∈ [0,∞)3 is such that max{n1i(0), n2(0)} > 0.

Now we proceed with the proof of Proposition 3.11.
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Proof of Proposition 3.11. Proposition 3.11 is the analogue of the assertion [BK98, Lemma 4.1] that treated
the case without dormancy or recovery and slightly with different competition. Our proof (which originates
from the proof of Proposition 2.4 in [BT23]) is indeed the analogue of the one in [BK98], which relies on the
idea of Chetaev’s instability theorem [C61].

Let V : [0,∞)4 → R, (n̂1a, n̂1d, n̂1i, n̂2) 7→ w1in̂1i + w2n̂2 for some w1i, w2 > 0. Let us write the system
(3.13) as ṅ(t) = f(n(t)) and fix ε > 0. Then, the standard Euclidean scalar product of the gradient of V
and f at (n̂1a, n̂1d, n̂1i, n̂2) ∈ [0,∞)4 with n̂1a > n̄1a − ε equals

⟨∇V, f⟩|(n̂1a,n̂1d,n̂1i,n̂2) = w1i((1− q)Dn̂1an̂2 − n̂1i(r + v)) + w2(−(1− q)Dn̂1an̂2 +mvn̂1i − µ2n̂2)

= n̂1i
[
mvw2 − w1i(r + v)

]
+ n̂2

[
(1− q)Dn̂1aw1i − (1− q)Dn̂1aw2 − µ2w2

]
> n̂1i

[
mvw2 − w1i(r + v)

]
+ n̂2

[
(1− q)D(n̄1a − ε)w1i − (1− q)Dn̂1aw2 − µ2w2

]
.

Hence, ⟨∇V, f⟩|(n̂1a,n̂1d,n̂1i,n̂2) is positive (in other words, V is positive definite w.r.t. the dynamical system)
once

mvw2 > (r + v)w1i and (1− q)w1iD(n̄1a − ε) > ((1− q)D(n̄1a − ε) + µ2)w2, (3.19)

in other words,

mv

r + v
w2 > w1i > w2

(1− q) + µ2

D(n̄1a−ε)

1− q
= w2

[
1 +

µ2

(1− q)D(n̄1a − ε)

]
.

Since w1i > 0, w2 > 0, this requires

n̄1a − ε >
µ2(r + v)

(1− q)D(mv − (r + v))
,

which holds whenever ε ∈ (0, n̄1a − n1a), where we recall that n̄1a > ñ1a under the condition (3.15). Then
we can indeed choose w1i, w2 > 0 satisfying (3.19), and thus we can find d > 0 such that for such a choice
of w1i, w2, and ε, we have

∇V > dV on Bε((n̄1a, 0, 0, 0)) ∩ (0,∞)4 (3.20)

where for x ∈ R4 and ϱ > 0, Bϱ(x) denotes the open ℓ2-ball of radius ϱ around x.
Now, let us assume that (n1a(0), n1d(0), n1i(0), n2(0)) ∈ (0,∞)4. Then it is clear that for all t > 0,

n1i(t) ̸= 0 and n2(t) ̸= 0. Now, if limt→∞(n1a(t), n1d(t), n1i(t), n2(t)) = (n̄1a, 0, 0, 0), there exists t0 >
0 such that for all t > 0, (n1a(t), n1d(t), n1i(t), n2(t)) ∈ Bε((n̄1a, 0, 0, 0)) ∩ (0,∞)4. Hence, by (3.20),
limt→∞ V (n1a(t), n1d(t), n1i(t), n2(t)) = ∞, which contradicts the assumption that limt→∞(n1i(t), n2(t)) =
(0, 0).

From this it is in fact easy to derive that (n1a(t), n1d(t), n1i(t), n2(t)) cannot even converge to (n̄1a, 0, 0, 0)
along any diverging sequence of times, but let us provide the details for completeness. Since V is positive
definite on B := Bε((n̄1a, 0, 0, 0)) ∩ (0,∞)4, the ω-limit set Ω0 of any solution to (3.13) (i.e., the set of
subsequential limits of the solution as t→ ∞) started from B satisfies

Ω0 ∩ B ⊆ {⟨∇V, f⟩ = 0}

where B is the closure of B. In terms of these objects, we have already verified that (n̄1a, 0, 0, 0) ∈ {⟨∇V, f⟩ =
0} and that (n̄1a, 0, 0, 0) ̸= Ω0 ∩ B.

Using the definition of V and the fact that [0,∞)4 is positively invariant under (3.13), we conclude that
Ω0 ∩ B contains only points of the form (n̂1a, n̂1d, 0, 0), where n̂1a, n̂1d > 0. However, if a coordinatewise
nonnegative solution to (3.13) started from (0,∞)4 is such that its infected and virus coordinate tend to
zero, then its dormant coordinate must also tend to zero and hence its active coordinate to n̄1a. We conclude
that Ω0 ∩ B ⊆ {(n̄1a, 0, 0, 0)}. But since (n̄1a, 0, 0, 0) ̸= Ω0 ∩ B, it follows that Ω0 ∩ B = ∅, and thus the
proposition is proven.
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To get a flavour of using Lyapunov functions to verify stability of an equilibrium, the reader can solve the
following exercise, which also explains the definition of a Lyapunov function and a strong Lyapunov function.
(The solution to this exercise can be found in [BK98], but it is presumably more tedious to reproduce that
proof than to solve the exercise independently.) The assertion in the exercise implies that the equilibrium
(n̄1a, 0, 0) of the 3-dimensional system (3.3) is globally asymptotically stable on (0,∞)3 for q = r = 0.

Exercise 15 (Global stability of (n̄1a, 0, 0) for q = r = 0 in case there is no coexistence equilibrium).
Consider the set

Ω =
{
(n1a, n1i, n2) ∈ [0,∞)3 : n1a + n1i ≤ n̄1a, n2 ≤ mvn̄1a

µ2

}
.

It was shown in [BK98, Proposition 2.2] that the set Ω is a global attractor on [0,∞)3 in the sense that any
solution to (3.3) started from [0,∞)3 will eventually either enter the interior Ωo of Ω or converge to a point
on ∂Ω. Using this, for w1i, w2 > 0 consider the function V : (0,∞)3 → R,

V (n1a, n1i, n2) = Cn1a − (λ1 − µ) log n1a + w1in1i + w2n2

Assume that (3.5) holds. Show that there exists a choice w1i, w2 > 0 such that

(A) ⟨∇V, f⟩ ≤ 0 on Ωo, and

(B) V has a unique strict global minimum w.r.t. Ω in (n̄1a, 0, 0).

The two properties are the defining properties of V being a Lyapunov function (corresponding to the equilib-
rium (n̄1a, 0, 0)), which implies that (n̄1a, 0, 0) is (Lyapunov) stable. Of course, we have already known this
before, but now observe that ⟨∇V, f⟩ = 0 holds only in the point (n̄1a, 0, 0).29 Thus, thanks to the positive
invariance of Ω, Lyapunov’s stability theorem (a.k.a. Lyapunov–Le Salle theorem) implies that (n̄1a, 0, 0) is
globally asymptotically stable on Ωo (see also [BK98, Section 4]). Thanks to the above mentioned attractivity
of Ω, it follows that (n̄1a, 0, 0) is globally asymptotically stable on (0,∞)3.30

3.7 Main results of [BT23] and discussion
What do we expect from the stochastic system started from ≈ Kn̄1a active hosts and one single virus
under the condition (3.15), i.e. when (3.13) has a coexistence equilibrium and the branching process is
supercritical? The first phase of the virus invasion should work similarly to the first phase of the invasions
studied in Sections 1 and 2. Dormant hosts, infected hosts, and virions should either die out rapidly (in
o(logK) time) or they should start growing exponentially and the total population size of infected hosts and
virions should reach εK (for K large and ε small) in 1

λ̃
(1 ± o(1)) logK time, where we recall that λ̃ is the

only positive eigenvalue of the mean matrix J2 in the supercritical case.
What happens after this first phase is less clear than in the case of Section 2 because we do not know

when precisely (ñ1a, ñ1d, ñ1i, ñ2) is asymptotically stable and how global this stability is, and similarly, in
the phase above the Hopf bifurcation point m∗∗ (preserving the notation from the three-dimensional case),
how global the stability of the stable hyperbolic periodic orbit is. However, based on Corollary 3.12, the
following three properties should also be satisfied with high probability (as K → ∞ followed by ε > 0). After
the end of the first phase, within an additional amount of time T , which can be chosen arbitrarily large but
not depending on K, for β > 0 sufficiently small,

• the rescaled sizes of all the four subpopulations should be bounded from below β,

• the rescaled total (active+dormant+infected) host population size should stay bounded by some num-
ber strictly smaller than n̄1a − β from above,

29When properties (A) and (B) hold with strict inequality in A apart from the corresponding equilibrium, we say that V is
a strong Lyapunov function.

30Of course, solutions started from certain points of the boundary of [0,∞)3 also tend to (n̄1a, 0, 0). From which points
precisely?
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• and the rescaled virus population size should be bounded by mvn̄1a

µ2
− β.

Hence, for β > 0 let us introduce the persistence set

Sβ :=
{
(ñ1a, ñ1d, ñ1i, ñ2) ∈ (0,∞)4 : nυ ≥ β,∀υ ∈ {1a, 1d, 1i, 2}, ñ1a + ñ1d + ñ1i ≤ n̄1a − β,

ñ2 ≤ mvn̄1a
µ2

− β
}
.

(3.21)

Note that Sβ is always well-defined and non-empty if β ∈ (0, n̄1amin{1, mvµ2
}) (since we assumed that

λ1 > µ1). Further,
TSβ

:= inf{t ≥ 0: (NK
1a,t, N

K
1d,t, N

K
1i,t, N

K
2,t) ∈ Sβ} (3.22)

is the hitting time for the persistence region Sβ (it is again a stopping time for the canonical filtration).
Define also

T 2
ε := inf

{
t ≥ 0: N1i,t +N2,t = ⌊εK⌋

}
, (3.23)

for ε ≥ 0. Then, in particular, T 2
0 is the extinction of the total population of infected individuals and viruses.

Finally, there should be no third phase of the invasion, since thanks to Corollary 3.12, after a successful
virus invasion no subpopulation should go extinct on the short term in the stochastic system either. Thus,
on the logK scale, an entire successful invasion should take about 1/λ̃ time.

Indeed, we have the following results (see [BT23, Section 2.5]). Our first theorem states that the proba-
bility of a succesful invasion of the virus particles, i.e. of reaching the set Sβ for some β > 0 before extinction
of the invaders, converges to the survival probability 1 − s2 ≥ 0 of the approximating branching process as
K → ∞.

Theorem 3.13 ([BT23]). Assume that λ̃ ̸= 0. Assume further that

NK
1a(0) →

K→∞
n̄1a

almost surely and
(NK

1d(0), N
K
1i (0), N

K
2 (0)) = (0, 0, 1

K ).

Then for all sufficiently small β > 0, we have

lim
K→∞

P
(
TSβ

< T 2
0

)
= 1− s2. (3.24)

The next theorem shows that in case of a macroscopic/persistent epidemic, the time until reaching the
set Sβ (which includes the coexistence equilibrium (ñ1a, ñ1d, ñ1i, ñ2) of the dynamical system) behaves like
logK/λ̃.

Theorem 3.14 ([BT23]). Under the assumptions of Theorem 3.13, in case (3.15) holds (equivalently, s2 <
1), for all sufficiently small β > 0 we have that on the event {TSβ

< T 2
0 },

lim
K→∞

TSβ

logK
=

1

λ̃
(3.25)

in probability.

The final theorem provides information on the time of extinction of the epidemic and implies that with
high probability, the rescaled active population size stays close to its virus-free equilibrium n̄1a and the
dormant population stays small until this extinction (after which it decreases to 0 if it is not yet extinct).
This theorem also holds for λ̃ > 0 where both persistence and non-persistence of the epidemic have a positive
probability.
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Theorem 3.15 ([BT23]). Under the assumptions of Theorem 3.13, for all sufficiently small β > 0 we have
that on the event {T 2

0 < TSβ
},

lim
K→∞

T 2
0

logK
= 0 (3.26)

and
1{TSβ

>T 2
0 }
∥∥(NK

1a,T 2
0
, NK

1d,T 2
0
)− (n̄1a, 0)

∥∥ −→
K→∞

0, (3.27)

both in probability, where ∥ · ∥ is an arbitrary (but fixed) norm on R2.

These theorems do not tell about the fate of our rescaled stochastic population process after time TSβ
, and

as already anticipated, we expect that the fate of the process will depend on the stability of the coexistence
equilibrium and possible Hopf bifurcations. While we already sketched in Section 3.4 what we expect for
q = 0, we will provide some additional simulations and conjectures (also for q > 0) below in Section 3.9.

Nevertheless, by virtue of Corollary 3.12, we can still provide an assertion on the long-term behaviour
of our stochastic system. Namely, if TSβ

< T 2
0 , then for T > 0 sufficiently large, with high probability, at

time TSβ
+ T the process will again be situated in Sβ . This is true because [EK86, Theorem 2.1, p. 456]

guarantees that (NTSβ
+t)t∈[0,T ] is well-approximated by the solution (nt)t∈[0,T ] of (3.13) given convergence

of the initial conditions, and Corollary 3.12 implies that started from anywhere in Sβ , nT will be situated in
Sβ for all T > 0 large enough. More precisely, we have the following result, whose proof is now immediate.

Corollary 3.16 ([BT23]). Assume that (3.15) holds. Then for all sufficiently small β > 0 and sufficiently
large T > 0, we have

lim
K→∞

P
(
NTSβ

+T ∈ Sβ
∣∣TSβ

< T 2
0

)
= 1. (3.28)

Note that (3.28) is equivalent to the fact that the assertions

lim
K→∞

P
(
NK

1a,TSβ
+T +NK

1d,TSβ
+T +NK

1i,TSβ
+T ≤ n̄1a − β

∣∣TSβ
< T 2

0

)
= 1,

lim
K→∞

P
(
NK

2,TSβ
+T ≤ mvn̄1a

µ2
− β

∣∣∣TSβ
< T 2

0

)
= 1,

and
lim
K→∞

P
(
NK
υ,TSβ

+T ≥ β
∣∣TSβ

< T 2
0

)
= 1, ∀υ ∈ {1a, 1d, 1i, 2}

hold. I.e., we have persistence of the epidemic on intervals starting at TSβ
whose length does not scale with

K.

Remark 3.17 (The reproduction number, relation to stochastic epidemic models). The distinction between
an initial stochastic phase, where an invader can be described by a branching process, followed by determin-
istic behaviour, where the whole system is well-described by a dynamical system, is of course reminiscent
of stochastic and deterministic epidemic modelling. In stochastic epidemic models like the standard SIR
(susceptible–infected–removed) model, the basic reproduction number R0 of the epidemic is defined as the

expected number of infections generated by one infectious individual in a large susceptible pop-
ulation,

cf. [AB00, Section 2.1]. Despite not treating pathogens as individuals and assuming that the population size
is constant (or decreases only due to deaths caused by the infectious disease), the quantity R0 can already
be introduced in the basic SIR model the same way as in our model.

Note that we can define R0 in our model in such a way that it still fulfills the heuristic definition of
[AB00] (where we always assume that λ1 > µ1). In order to obtain ‘a large susceptible population’, we will
have to assume that K is large, since the equilibrium population size scales like K(n̄1a + o(1)) as K → ∞.
Then, similarly to the branching process approximation of types 1d, 1i, and 2 during the initial phase of
the epidemic, we will assume that the rescaled susceptible population size is fixed as n̄1a (ignoring also the
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question of whether this number is an integer). Let us now look at an infected individual in this situation. It
either recovers with probability r/(r + v) or dies due to lysis, giving rise to m new virions, with probability
v/(r+v). Each of these new virions will eventually either degrade, which happens at rate µ2, or successfully
attack a susceptible individual. Since there are Kn̄1a susceptibles, the probability that the latter event
occurs is (1−q)Dn̄1a

(1−q)Dn̄1a+µ2
. The number of infected individuals emerging from attacks by these m viruses is the

average number of infections generated by the originally infected individual. Thus, we obtain the expression

R0 =
mv(1− q)Dn̄1a

(r + v)((1− q)Dn̄1a + µ2)

for the reproduction number in our model. Note that R0 depends on q but not on κ and µ, and in particular
it is the same as for a dormancy-free epidemic with lower infectivity if we replace q by 0 and D by (1− q)D.
This gives a rather natural interpetation of the effect of dormancy from an epidemiological point of view.
Indeed, R0 > 1 holds if and only if

(mv − (r + v))(1− q)Dn̄1a > (r + v)µ2,

which is precisely our coexistence condition (3.15).
Note further that R0 can also be interpreted as the average number viruses who are the ‘offspring’ of a

single given virus, obtained via infection of a susceptible individual producing secondary viruses via lysis.
We see that R0 > 1 is equivalent to condition (3.15), which we interpret as the average number of ‘offspring’
of a given virus being at least 1. This provides a heuristic reason why s1i ̸= 1 is equivalent to s2 ̸= 1
(cf. Exercise 13).

3.8 A few words about the proofs in [BT23]
Similarly to Sections 1 and 2, unfortunately we will once again not be able to provide the full proof for our
main convergence results. On the other hand, if we had seen the full proof of the results in Section 2.6, seeing
also the one of the results of Section 3.7 would not be that interesting anymore, given that many parts of
this proof again rely on techniques from [CCLLS21] and adaptations of these techniques first used in [BT20]
or [BT21]. But there are also some substantial differences between the competition-induced dormancy
model and the virus model. One issue is the richer and more complicated behaviour of the underlying
dynamical system, even in absence of dormancy (and recovery). The other one is strongly connected to
the phenomenon of contact-mediated dormancy, and we already mentioned it at the introduction of the
approximating branching processes: The mean-matrix J̃ of the full three-type branching process is not
irreducible.

To adapt the techniques of [CCLLS21] and their previous adaptations, we need to work with a branching
process that survives with positive probability from any initial condition with at least one positive coordinate,
and this is the original branching process restricted to the infected and dormant coordinates. Regarding the
first phase of the invasion, we then have the following analogue of Proposition 2.10 from the competition-
induced dormancy model, where we define the stopping time

Qε = inf
{
t ≥ 0: (NK

1a,t, N
K
1d,t) /∈ [n̄1a − ε, n̄1a + ε]× [0, ε]

}
,

the first time when the rescaled type 1a population leaves a neighbourhood of radius ε around the equilibrium
n̄1a or the rescaled 1d population reaches size ε.

Proposition 3.18 ([BT23], partially based on methods of [CCLLS21]). Assume that λ̃ ̸= 0. Let K 7→ mK
1a

be a function from (0,∞) to [0,∞) such that mK
1a ∈ 1

KN0 and limK→∞mK
1a = n̄1a. Then there exists a

constant b ≥ 2 and a function f : (0,∞) → (0,∞) tending to zero as ε ↓ 0 such that

lim sup
K→∞

∣∣∣P[T 2
ε < T 2

0 ∧Qbε,
∣∣∣ T 2

ε

logK
− 1

λ̃

∣∣∣ ≤ f(ε)
∣∣∣NK

0 =
(
mK

1a, 0, 0,
1

K

)]
− (1− s2)

∣∣∣ = oε(1) (3.29)

and
lim sup
K→∞

∣∣∣P[T 2
0 < T 2

ε ∧Qbε
∣∣∣NK

0 =
(
mK

1a, 0, 0,
1

K

)]
− s2

∣∣∣ = oε(1). (3.30)
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λ1 5 v 1.1
µ1 4 µ2 0.3
C 1 n1a(0) 1(= n̄1a)
κ 1 nI(0) 0.1
q 0.1 n1d(0) π1d · nI(0)
r 0.1 n1i(0) π1i · nI(0)
D 0.5 σ 2

Table 3: Default choice of the parameters for the simulations of the dynamical systems (3.13) and (3.3),
where nI(0) = n1d(0) + n1i(0) + n2(0).

The most important change compared to Proposition 2.10 is the change of roles in the invasion. Now,
even though naturally one would consider only type 1a as “resident” and types 1d, 1i, and 2 all as “invaders”,
due to the issues with the three-type branching process we will also consider type 1d as “resident”, with its
initial “equilibrium population size” being zero. We can then adapt the Freidlin–Wentzell type large-deviation
techniques so as to guarantee that NK

1d,t stays close to 0 (while NK
1a,t stays near n̄1a) until N1i,t+N2,t reaches

εK or goes extinct. See [BT23, Section 4.3] for details.

3.9 Further simulations and conjectures related to the dynamical system
To gain an understanding of the concrete behaviour of the dynamical system (3.13) and to analyse the
quantitative and qualitative effect of contact-mediated dormancy and its combination with recovery, we
provide a few more simulations of the solutions for some concrete choices of the parameters, following the
ones in Figure 1 for q = 0. The critical burst sizes m∗,m′,m∗∗ will have the same meaning as for the three-
dimensional system (3.3), with m∗∗ = ∞ if there is no Hopf bifurcation. We will work with the choice of
parameters presented in Table 3 (abbreviating nI(0) := n1d(0)+n1i(0)+n2(0)), apart from those parameters
that we vary in the given simulation.

Here, π1d, π1i, and π2 are the dormant, infected, and virus coordinates of the coordinatewise positive
(‘Kesten–Stigum’) left eigenvector of the mean matrix J associated to the eigenvalue λ̃ normalized so that
π1d + π1i + π2 = 1 (cf. Section 2.8). Heuristically, the reason why this initial condition is natural is that
for λ̃ > 0, conditional on survival of the approximating branching process (N̂(t))t≥0, the proportions of its
dormant, infected, and virus coordinates converge to the corresponding proportions of (π1d, π1i, π2) thanks
to the Kesten–Stigum theorem (Theorem 2.13).

Exercise 16. Using the irreducibility of the mean matrix J2, show that the assertion of the Kesten–Stigum
theorem holds for the three-dimensional branching process with mean matrix J̃ too (despite the lack of irre-
ducibility J̃).

Example 3.19 (Varying r for fixed q). With the default choice of parameters apart from r, in Figure 2 we
plot the transcritical bifurcation point m∗, the point m′ where a pair of eigenvalues of the Jacobi matrix
of (3.13) at (ñ1a, ñ1d, ñ1i, ñ2) becomes complex, and the Hopf bifurcation point m∗∗, as functions of r. Note
that the recovery-free case r = 0 is also included in the images (for this particular choice of q). Given that we
have fixed all other parameters, m∗ is a linear function of r (indeed, m∗ corresponds to m in the case when
we have an equality in (3.15)). Assuming that the assertions in Tables 1 and 2 hold true, we know that there
is precisely one value of m > m∗, namely m = m′, where a pair of eigenvalues of the Jacobi matrix becomes
complex, and for m∗∗ <∞ there is a unique value of m > m′, namely m = m∗∗, where these eigenvalues are
purely imaginary, while for m∗∗ = ∞ the real part of these eigenvalues remains negative for all m > m′. We
evaluate m′ and m∗∗ in a discrete set of points, and we conclude that the dependency of m′ on r also seems
linear. As expected, there exists r0(q) > 0 such that for r > r0(q), the Hopf bifurcation point m∗∗ explodes
and becomes infinite, i.e., (ñ1a, ñ1d, ñ1i, ñ2) stays locally asymptotically stable for all m > m∗ (despite the
fact that q is relatively small, while it is not necessarily small enough to deduce the lack of Hopf bifurcation
for large r from the case q = 0 by continuity). In this case we have r0(q) ≈ 0.69, given that for r above
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this value, as one increases m, the real parts of the two complex eigenvalues seem to converge to a strictly
negative value. We know from Lemma 3.6 that such r0(0) also exists for q = 0 and we have r0(0) ≤ v. It is
not included in the images, but its value is about 0.73 (so it is roughly two thirds of v).

Example 3.20 (Varying q for fixed r). With the default choice of parameters apart from q, in Figure 3 we
plot m∗,m′,m∗∗ as functions of q. Note that the dormancy-free case q = 0 is also included in the images (for
this particular choice of r). The equation (3.15) with an equality again gives an explicit formula for m∗ as
a function of q, which is finite for all q ∈ [0, 1), monotone increasing in q, and tends to ∞ as q ↑ 1. Also m′

seems to only explode in the limit q ↑ 1. In contrast, for q = 0.93, the Hopf bifurcation point m∗∗ already
seems to be infinite.

This provides numerical evidence that choosing the dormancy initiation probability q ∈ (0, 1) sufficiently
large eliminates the Hopf bifurcation, although recovery is relatively weak so that for q = 0 the Hopf
bifurcation is present. It is not included in the images, but we also checked the recovery-free case r = 0
with otherwise unchanged parameters, and for q = 0.97 we also found m∗∗ = ∞ there. In other words,
dormancy can help avoid Hopf bifurcations even in the absence of recovery, albeit this may require q to be
unrealistically high.

We complement our precise numerical results from Figure 3 with a schematic illustration of the critical
burst sizes m∗,m′, and m∗∗ as functions of q ∈ [0, 1) with all parameters but m and q fixed, for r small
resp. large compared to v (in the left resp. right picture of Figure 4). Note that this illustration is based
on our conjectures listed in Tables 1 and 2, while we have justified some of the properties of the curves
q 7→ m∗(q),m′(q),m∗∗(q) for q = 0 in Section 3.4, and most of those results generalize to the case q > 0.
The shape of the curves is not meant to be precise, but qualitatively correct, in particular we expect them
to be convex (and thus lower semicontinuous) as [0,∞]-valued functions.

Finally, let us comment on the case of quick resuscitation of dormant cells, that is, diverging σ.

Example 3.21 (Effects of large σ). The case of a very large σ corresponds to almost instantaneous resuscitation
of dormant individuals after falling dormant. Thus, it is plausible to think that the qualitative behaviour
of the active, infected, and virus coordinates of the system (3.13) behaves very similarly to the case where
there is no dormancy but the parameter D of virus attacks is reduced by a factor of 1 − q. In Figure 5 we
consider a solution to (3.13) with the default choice of parameters, apart from σ which we choose as very
large (σ = 100, as opposed to the default value σ = 2), also in comparison to the value of κ (being equal
to 1). We see that the behaviour of this solution is very similar to the one of (3.3) with the same initial
condition and with the same choice of the parameters apart from q being altered to 0 and D to (1− q)D.

4 The polynomial mutation regime and its piecewise affine scaling
limits

4.1 Introduction: different mutation regimes and horizontal gene transfer
Let us recall that the key features of the rare mutation regime of adaptive dynamics characterized uK ≪

1
K logK (plus the lower bound in (1.9)) are the following, assuming that the competitive advantage of the
mutants is independent ofK (the analogue of which is referred to as strong selection in the population-genetic
context).

(I) Clonal interference plays no substantial role: A mutant subpopulation that eventually becomes resident
sees typically no other mutant subpopulation before its fixation. If a mutant ever becomes resident,
it will also fix or reach long-term coexistence with some of the former resident traits eventually.

(II) Unique potential parent : Most of the time there is a unique resident, and every birth with mutation
originates from the current resident with high probability.

(III) Random genetic drift plays a significant role: The probability that a beneficial mutation becomes
resident/fixes stays below one in the limit K → ∞. However, stochasticity is only important at the
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Figure 2: Values of the critical burst sizes m∗,m∗∗,m′ as functions of r with all other parameters (in
particular q) fixed. At r ≈ 0.69 (orange dotted line) m∗∗ explodes and becomes infinite.
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Figure 3: Values of the critical burst sizes m∗,m′,m∗∗ as functions of q with all other parameters (in
particular r) fixed. At q ≈ 0.93 (orange dotted line), m∗∗ explodes and becomes infinite.
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Region I. II. III. IV.
Characterization 0 < m < m∗(q) m∗(q) < m < m′(q) m′(q) < m < m∗∗(q) m > m∗∗(q)

Stability of
(n̄1a,0,0,0)

stable unstable unstable unstable
Existence of

(ñ1a,ñ1d,ñ1i,ñ2) does not exist exists exists exists
Stability of

(ñ1a,ñ1d,ñ1i,ñ2)
- stable stable unstable

Asymptotic
behaviour
of positive

solutions to (3.13)

eventually coord.
monotone convergence

to (n̄1a,0,0,0)

eventually coord.
monotone convergence
to (ñ1a,ñ1d,ñ1i,ñ2)

oscillatory convergence
to (ñ1a,ñ1d,ñ1i,ñ2)

periodic
behaviour

Figure 4: Left: The case when r is small compared to v (e.g., r = 0). The Hopf bifurcation point m∗∗ reaches
+∞ at some value q ∈ (0, 1), Right: If r is large compared to v, m∗∗(q) = ∞ holds for all q ∈ [0, 1), thus
(ñ1a, ñ1d, ñ1i, ñ2) is stable for all m > m∗(q). In both cases, m∗ only diverge as q ↑ 1, and the same seems
true for m′. In the coloured regions, we expect the behaviour explained in the tabular below the images.
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Figure 5: Solution to (3.13) with large σ (σ = 100) (top) and the one of the corresponding solution to (3.3)
(bottom), for m = 5. In the solution to (3.3) there is no dormant coordinate, whereas the dormant coordinate
of the solution to (3.13) stays very close to zero.
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very beginning of Phase I of an invasion (which is followed by exponential mutant growth in the case
of survival).

(IV) No mutants of mutants: Before a mutant subpopulation fixes, with high probability none of its indi-
viduals suffer an additional mutation.

What happens if the mutation rate is higher?

• If uK ≍ 1
K logK , the duration of invasions of mutants surviving random genetic drift (i.e., initial

fluctuations) will be of the same order Θ(logK) as the typical waiting time between two mutations
surviving drift. Hence, clonal interference will play a crucial role. Even in the case of transitive
competitive relations, mutants may outcompete each other, and thus surviving drift will not imply
ever becoming resident, while ever becoming resident will also not imply fixation (i.e. all individuals in
the population carrying the mutation from some point in time on). Still, the “no mutants of mutants”
and the “unique potential parent” assertions will remain true. The total mutation rate in the entire
population still tends (slowly) to zero. Such a behaviour was conjectured in [BS19].

• The case uK ≍ 1/K was analysed in [S17]. In this model, mutations with the same selective advantage
occur repeatedly, as well as mutations back from this mutant type to the wild type, and hence among the
arising mutant families, evolution acts neutrally. The author showed that asymptotically as K → ∞,
there is a countably infinite family of potential parents for each mutation. However, there are still no
mutants of mutants. The total mutation rate in the population is essentially constant in K.

• Assume now that uK ≍ K−α for some α ∈ (0, 1). Then, the mutation rate per individual still tends to
zero but the total mutation rate in the population diverges. Now, if we assume a fixed countable set of
traits and a fixed mutation graph telling which trait can mutate towards which trait, we will observe
that mutant subpopulations of order Kβ , β > α already give rise to mutants of mutants whose order
is increasing polynomially in K, their amount is about the order Kβ−α.
To analyse this process, we will look at the logarithms of subpopulation sizes. This transformation
makes exponential growth/decay linear, and thus we will obtain a piecewise affine scaling limit as
K → ∞ via a suitable scaling of time and subpopulation sizes. In particular, the “continuous flow of
mutations” will wipe out the effect of random genetic drift, and the scaling limit will be deterministic.
Such a scaling limit was first obtained by Durrett and Mayberry [DM11] in a population-genetic model
with a very similar choice of parameters (but with a constant or exponentially growing total population
size).31

In this section we will study the lastly mentioned mutation regime, the so-called polynomial or power-law
mutation regime32, with the additional effect of horizontal gene transfer (HGT), following the paper by
Champagnat, Méléard, and Tran [CMT21]. Horizontal gene transfer is a phenomenon where non-parental
individuals of a bacterial population exchange genetic information during their lifetimes. Horizontal gene
transfer is a main factor of bacterial evolution, which helps the spread of beneficial genes within the popula-
tion, instead of e.g. a sexual reproduction, which is absent in their case. HGT can help e.g. the spread of a
bacterial epidemic and the development of antibiotic resistances. For mathematical models involving HGT
in the rare mutation regime prior to [CMT21], we refer the reader to [BCFMT16, BCFMT18].
Remark 4.1. In [BT21] we studied an extension of the competition-induced dormancy model that we saw in
Section 2, where the subpopulation lacking dormancy can additionally transform individuals of the dormancy
trait to ones lacking this trait via transferring additional genetic material to them. Due to the particular
form of HGT studied there (which is somewhat different from the one introduced in [CMT21] that we will
get to know in this section), HGT can in some cases change the direction of the evolution. Indeed, there

31Let us note that e.g. for uK ≍ 1/(K logK) one can also obtain a piecewise affine scaling limit of the logarithmic population
sizes, but this will be random due to the effect of drift, and also due to the sizes of mutations in case they are random.

32Since the probability of a mutation during birth still tends to zero in this regime, it is somewhat confusing not to call
mutations rare here. Some authors therefore (rightfully) call what we and many other authors colloquially called the rare
mutation regime here the regime of very rare mutations, see e.g. [EK23].
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are some parameter regimes when instead of the fixation of the dormancy trait, the other trait coexists with
it or even makes it go extinct. Stable coexistence of the two traits is in some cases possible even when the
trait benefiting from HGT is not fit enough to survive when being on its own. Further, there are instances
of founder control (a term borrowed from ecology), i.e. fixation of the initial resident and extinction of the
invader regardless of their types. Addendum to Exercise 3: Are there cases of founder control in the setting
of the exercise?

4.2 The Champagnat–Méléard–Tran model
The authors of [CMT21] studied a stochastic individual-based model for a population with individuals
characterized by some trait. The population features asexual and haploid reproduction (binary fission,
as before), death by age and due to logistic competition, one-sided transfer of traits between individuals.
K > 0 will denote the carrying capacity, as usual. The trait space is a grid of mesh size δ > 0 of [0, 4]:
X = [0, 4] ∩ δN0 = {0, δ, . . . , Lδ}, where L = ⌊4/δ⌋. The population is described by the vector

(NK
0 (t), . . . , NK

ℓ (t), . . . , NK
L (t))

where NK
ℓ (t) is the number of individuals of trait x = ℓδ at time t ≥ 0. We define the total population size

NK
t as

NK
t =

L∑
ℓ=0

NK
ℓ (t).

The population process then evolves as a continuous-time Markov chain with the following transition rates.

• An individual with trait x = ℓδ gives birth to another individual with birth b(x) = 4 − x. With
probability

pK = K−α with α ∈ (0, 1),

a mutation occurs and the offspring carries the mutant trait (ℓ+1)δ. With probability 1−pK = 1−K−α,
the new individual inherits the ancestral trait.

• An individual with trait x transfers its trait to a given individual of trait y in a population of total
size N at rate

τ(x, y,N) =
τ

N
1{x>y},

for some parameter τ > 0.

• An individual with trait x = ℓδ in a population of total size N dies with natural death rate dK(x,N) =
1 + CN

K , where C > 0.

Remark 4.2 (Interpretation of the trait value). The trait x may be interpreted in the biological setting as
a phenotypic value quantifying e.g. the pathogenic strength of bacteria or their antibiotic resistance. Such
a setting was first studied in [BCFMT18] (in the regime of rare mutations). However, direct advantages of
a higher trait do not appear in the model. The trait x may be assumed to be related to the quantity of
plasmids held by a bacterium. At a HGT event, the donor transfers plasmids to the recipient, thus increasing
its trait. This explains why an individual can only be a recipient if the donor has a higher trait value. The
recipient receives the donor trait, which is called conjugation in the biological setting (see [CMT21, Section
1] and the references therein). Reproduction favours small values of x, a reason for which could be that the
copying of plasmids and their maintenance requires additional resources, which could otherwise be used e.g.
for better reproduction. This explains why reproduction favours small values of x. Finally, mutation also
increases the value of the trait, which is beneficial from the point of view of HGT but disadvantageous from
the point of view of reproduction.
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Remark 4.3 (Unfit traits and evolutionary suicide). Traits x > 3 are not fit enough to survive when being
on their own since they satisfy b(x) − d(x) < 0. We will see that there are scenarios when such a trait can
become the trait with the largest population of the system, so that the total population starts decaying
exponentially. If no other trait can take back the lead from this trait, the entire population will become
extinct, which we will refer to as evolutionary suicide. Such a phenomenon was also observed in [BCFMT18],
whereas in the setting of [BT21] (without mutations, cf. Remark 4.1) it cannot occur.
Remark 4.4. Because of the factor 1/K, competition is governed only by traits with population size of order
K. Therefore, density-dependence of the death rate disappears when the total population size is negligible
with respect to K.
We need to consider in the sequel two different situations: Either there is a unique trait x with population
size of order K, which we will call the resident trait, or the total population size is o(K), mostly consisting
of one trait. In the latter case, the trait with the largest population size will be called the dominant trait.

When the trait x is the (unique) resident trait, we know from Section 1 (cf. [EK86]) that as K → ∞,
the total population size divided by K can be approximated on compact time intervals by (n(t))t≥0, which
is the unique solution to the ODE

ṅ(t) = n(t)(3− x− Cn(t)),

which has the unique nonnegative and stable equilibrium

n̄(x) =
(3− x) ∨ 0

C
.

The notion of invasion fitness that we know from Section 1 can be adapted to our setting. The invasion
fitness of a mutant individual of trait y in a resident population of trait x is given by

S(y;x) = b(y)− dK(y,Kn̄(x)) + τ1{x<y} − τ1{x>y} = x− y − τ sgn(y − x). (4.1)

Indeed, the total transfer rate from x to y is given by Kn̄(x)τ
Kn̄(x)+11{y>x} ∼ τ1{y>x} when K → ∞, and similarly

from y to x. Note that S(x;x) = 0, and for all x, y ∈ X , S(y;x) = −S(x; y). This implies in particular that
there is no long-term coexistence of two resident traits. We also define the fitness of an individual of trait
y in a population of negligable size (o(K)) with dominant trait x. As already mentioned, in this case the
density-dependency vanishes, and since NK

x (t)/NK
t ≈ 1, the fitness is now

Ŝ(y;x) = 3− y + τ1{x<y} − τ1{x>y}. (4.2)

The study of [CMT21] of the evolutionary dynamics of the model is based on a fine analysis of the order of
magnitude of size, as power of K, of each subpopulation corresponding to the different trait compartments.
These powers of K evolve on the time scale logK, as we already saw in the case of branching processes in
Section 1.9, but we will also cite a finer result in this direction later (see Lemma 4.12). We define βKℓ (t) for
0 ≤ ℓ ≤ L such that

NK
ℓ (t logK) = KβK

ℓ (t)−1, i.e. βKℓ (t) =
log
(
1 +NK

ℓ (t logK)
)

logK
. (4.3)

We assume that the trait x = 0 is initially resident, with density (i.e. population size normalized by K) equal
to 3/C. The initial condition is

NK(0) =
(
⌊3K
C

⌋, ⌊K1−α⌋, . . . , ⌊K1−ℓα⌋, . . . , ⌊K1−⌊1/α⌋α⌋, 0, . . . , 0
)
.

Due to mutations, this is close (on the logarithmic scale) to the population state reached instantaneously on
the time scale logK when the initial population is only composed of ⌊ 3K

C ⌋ individuals with trait 0.33 With
this initial condition, we have

βKℓ (0) −→
K→∞

(1− ℓα)1{0≤ℓ≤1/α}. (4.4)

33For a precise formulation and proof of the corresponding assertion, see [CMT21, Lemma B.4].
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The main result of [CMT21], Theorem 4.5 below, provides the asymptotic dynamics of the system of func-
tions βKℓ (t) when K → ∞. This limit is a system of deterministic, continuous, piecewise affine functions,
which can be described along successive phases determined by their resident or dominant traits. When
the resident/dominant trait changes, the fitnesses governing the slopes are modified. Moreover, inside each
phase, other kinks, i.e. changes of slopes are possible due to a delicate balance between mutations, transfer,
and growth of subpopulations. The aim of [CMT21] was to cover all the possible cases: local extinctions
of single traits34, re-emergence of subpopulations, changes of slopes due to mutation and selection (compe-
tition), dynamics when the total population size is o(K), extinction of the total population... The paper
provided from the asymptotic dynamics of βK(t) explicit criteria for the occurrence of the different evolu-
tionary outcomes (see Theorem 4.11 below) and provided a detailed study of the case of three traits. We
now present the main results on the paper and then we provide an outline of its proof.

4.3 The main convergence result of [CMT21]
The first result characterizes the asymptotic dynamics of (βK(t))t≥0 = (βK0 (t), . . . , βKL (t))t≥0 (whenK → ∞)
by a succession of deterministic time intervals [sk−1, sk], k ≥ 1, called phases and delimited by changes of
resident or dominant traits. The latter are unique except at times sk and denoted by ℓ∗kδ, k ≥ 1. The
asymptotic result holds until a possibly infinite stopping time T0, which guarantees that there is neither
ambiguity on the resident/dominant traits (Point (a) below) nor on the extinct subpopulations at the phase
boundaries (Point (c) below). See Figure 6 for simulations of the limiting process for three different choices
of the parameters.

Theorem 4.5 ([CMT21]). Assume that α ∈ (0, 1), δ ∈ (0, 4), 3/δ /∈ N, τ+3
δ /∈ N, and (4.4) holds.

(i) For all T > 0, the sequence (βK(t))t∈[0,T∧T0] converges in probability in D([0, T ∧T0], [0, 1]L) to a deter-
ministic piecewise affine continuous function β = (βℓ)0≤ℓ≤[L] = (β(t))t≥0 = (β1(t), . . . , βL(t))t∈[0,T∧T0],
such that βℓ(0) = (1 − ℓα)1{0≤ℓ≤1/α}. The functions β and T − 0 are parameterized by α, δ, and τ ,
defined as follows.

(ii) There exists an increasing nonnegative sequence (sk)k≥0 and a sequence (ℓ∗k)k≥1 in {0, . . . , L} defined
inductively as follows: s0 = 0, ℓ∗1 = 0, and for all k ≥ 1, assuming that sk−1 < T0 and ℓ∗k have been
constructed and that β(sk−1) ̸= 0, we can construct sk > sk−1 as follows:

sk = inf{t > sk−1 : ∃ℓ ̸= ℓ∗k : βℓ(t) = βℓ∗k(t)}.

We then decide whether we continue the induction after time sk (i.e. T0 > sk) or not as follows:

(a) If βℓ∗k(sk) > 0, we set
ℓ∗k+1 = argmax

ℓ ̸=ℓ∗k
βℓ(sk)

if the argmax is unique, or otherwise we set T0 = sk and we stop the induction;

(b) if βℓ∗k(sk) = 0, we set sk+1 = T0 = ∞ and β(t) = 0 for all t ≥ sk;

(c) if in one of the previous cases, we have for some ℓ ̸= ℓ∗k that βℓ(sk) = 0 and βℓ(sk − ε) > 0 for
all ε > 0 small enough, then we also set T0 = sk and stop the induction; otherwise, the induction
proceeds to the next step.

(iii) In (ii), the functions βℓ are defined, for all t ∈ [sk−1, sk], by

β0(t) =
[
1{β0(sk−1)>0}

(
β0(sk−1) +

∫ t

sk−1

S̃s,k(0; ℓ
∗
kδ)ds

)]
∨ 0 (4.5)

34Traits ℓδ for ℓ > 0 may go extinct and get “resurrected” via incoming mutations from their left neighbour (ℓ − 1)δ; this is
what we mean by local extinctions. In contrast, if trait 0 ever goes extinct, it will be lost forever.
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and, for all ℓ ∈ {1, L},

βℓ(t) =
(
βℓ(sk−1) +

∫ t

tℓ−1,k

S̃s,k(ℓδ; ℓ
∗
kδ)ds

)
∨ (βℓ−1(t)− α) ∨ 0, (4.6)

where, for all traits x, y ∈ X ,

S̃t,k(y;x) = 1{βℓ∗
k
(t)=1}S(y;x) + 1{βℓ∗

k
(t)<1}Ŝ(y;x) (4.7)

and

tℓ−1,k =

{
inf{t ≥ sk−1 : βℓ−1(t) = α}, if βℓ(sk−1) = 0,

sk−1, otherwise.

In addition, for all ℓ and a < b < T0 such that the time interval [a, b] is included in the interior of the
zero set of βℓ, we have

lim
K→∞

P
(
NK
ℓ (t logK) = 0,∀t ∈ [a, b]

)
= 1.

Remark 4.6. 1. It follows from the definition of sk and ℓ∗k+1 that maxℓ βℓ(t) = βℓ∗k(t) for all t ∈ [sk−1, sk).

2. In (4.7), when βℓ∗k(t) = 1 for t ∈ (sk−1, sk), there is a single resident trait ℓ∗kδ with population size of
order K and the function S defined in (4.1) is used. In the case where βℓ∗k(t) < 1, there is a single
dominant trait, the total population size is of order o(K), and the fitness function is Ŝ defined in (4.2).
During each phase, the function S̃t,k is actually constant, equal to S or Ŝ as above, expect when a
dominant population becomes resident in the same phase. In the first case, for all t ∈ [sk−1, sk),
Equations (4.5) and (4.6) take the simpler form

β0(t) =

{[
1{β0(sk−1)>0}

(
β0(sk−1) + S(ℓδ; ℓ∗kδ)(t− sk−1)

)]
∨ 0, if βℓ∗k(sk−1) = 1,[

1{β0(sk−1)>0}
(
β0(sk−1) + Ŝ(ℓδ; ℓ∗kδ)(t− sk−1)

)]
∨ 0 if βℓ∗k(sk−1) < 1

and for all ℓ ∈ [L],

βℓ(t) =

{(
βℓ(sk−1) + S(ℓδ; ℓ∗kδ)(t− tℓ−1,k)+

)
∨ (βℓ−1(t)− α) ∨ 0 if βℓ∗k(sk−1) = 1,(

βℓ(sk−1) + Ŝ(ℓδ; ℓ∗kδ)(t− tℓ−1,k)+
)
∨ (βℓ−1(t)− α) ∨ 0 if βℓ∗k(sk−1) < 1.

Otherwise, S̃t,k switches from S̃ to S at the first time when maxℓ′ βℓ′(t) = βℓ∗k(t) = 1. Therefore, since
S(ℓ∗kδ, ℓ

∗
kδ) = 0, we obtain in all cases

βℓ∗k(t) =

{
1, if βℓ∗k(sk−1) = 1,[(
βℓ∗k(sk−1) + Ŝ(ℓ∗kδ; ℓ

∗
kδ)(t− sk−1)

)
∧ 1
]
∨ 0, if βℓ∗k(sk−1) < 1.

3. It follows from the previous formula that maxℓ βℓ(t) ≤ 1 for all t ∈ [0, T0) (and even for t = T0 if
T0 <∞).

4. When βℓ(sk−1) = 0, the time tℓ−1,k corresponds to the first time when the incoming mutation rate in
subpopulation ℓδ (coming from subpopulation (ℓ− 1)δ) becomes significant. Therefore, for ℓ = 0 there
is no such time defined.

5. Note that Theorem 4.5 keeps track of populations of size Kβ for 0 < β ≤ 1, but not of populations of
smaller order, which go fast to extinction on the time scale logK.

It is instructive to look at [CMT21, Section 3], where the process β(t) is studied in detail in the case of
three traits 0, δ, 2δ. There, one can see examples of:
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1. In case τ < δ, there is no evolution: Neither δ nor 2δ is advantageous compared to 0, and therefore
trait 0 will stay resident forever.

2. For τ > δ, there will be multiple phases. Possible scenarios are:

(a) fixation of one of the traits, i.e. one trait stays resident forever,

(b) evolutionary cyclic behaviour, i.e. after some time, β(t) becomes periodic (and not constant) in
each coordinate. See e.g. Figure 6 (a). There are cases when this occurs in such a way that
there is always a resident trait, but it is also possible that there are (possibly also infinitely often
repeated) phases where there is only a dominant trait, and in that case, trait δ may go extinct
and then arise again thanks to incoming mutations from trait 0 (see Figure 6 (c)),

(c) evolutionary suicide (see e.g. Figure 6 (b)).

Exercise 17. What are the possible evolutionary outcomes in the case of two traits (L = 1)? At most how
many times can the resident change? Is cyclic behaviour possible? Is evolutionary suicide possible?

With a larger number of traits, it was also observed in [CMT21] numerically that the system may show
cyclic but not periodic behaviour (see [CMT21, Figure 2.1 (c)]).

Remark 4.7. Evolutionary cyclic behaviour implies infinitely many resident changes in β(t) given finitely
many traits. As already pointed out in Remark 1.11, such a behaviour is impossible if the mutation rate per
individual is o(1/K logK), but it may occur when it is weakly asymptotically equivalent to 1/K logK (cf.
the “rock–paper-scissors cycle” in [BS17] and the speculations of [BS19] about the case of multiple mutations,
which were mentioned in Remark 1.11). What is interesting here is that the cyclic behaviour is not due to
asymmetric competition (like in [BS17, BS19]) but to an interplay of the advantage of higher traits due to
horizontal gene transfer and incoming mutations and the one of lower traits due to better reproduction.
Symmetric competition with additional horizontal gene transfer is in fact not very far from asymmetric
competition, and in different settings it may also lead to a coexistence between different traits (see e.g.
[BT21]).

It is not clear whether T0 = +∞ holds for almost all parameters α, δ, and τ . However, the authors
of [CMT21] performed simulations of the limiting process (see [CMT21, Appendix D] for a description of
the algorithmic construction of the slopes βℓ(t)), and they did not encounter any case when T0 < ∞ in the
simulations. In Theorem 4.11 below, we will see that T0 is larger than the time of extinction or of first
re-emergence (i.e. returning to residency, see below for a precise definition) of a trait.

Remark 4.8. Coquille, Kraut, and Smadi [CKS21] studied a model similar to the one of [CMT21], on a
general mutation graph, i.e. with a general finite trait space as vertex set and the possible mutation directions
between the traits as the set of (directed) edges. Their model did not contain horizontal gene transfer, which
excludes evolutionary suicide and even the existence of phases where there is no resident trait, but in chance,
they also considered asymmetric competition, which gives rise to coexistence between multiple traits (which
does not occur in the original model of [CMT21]). In [CKS21, Theorem 3.6] they observed an interesting
example where the induction goes through over all k ∈ N because the stopping conditions in Theorem 4.5,
part (ii) cases (a) and (c) do not occur, and the resident traits follow each other (eventually) cyclically, but
the times of resident changes sk accumulate towards a finite time T0. That is, in the scaling limit, the whole
history of the population happens within a finite time interval. Certainly, this is not possible for the original
individual-based model, and thus the convergence to β(t) is not valid for t ≥ T0.

It is still generally believed that in the model of [CMT21], such an accumulation should not occur.
However, it does occur in an extension of the model where competition-induced dormancy is incorporated
along the lines of Section 2 studied in the paper [BPT23]. In one example ([BPT23, Example 3.2]) it
was shown rigorously that the times of resident changes accumulate towards a point T0 < ∞. In fact,
the fact that time points where the slopes change may have a finite accumulation was already observed
in the model of [DM11], see Lemma 1 of that paper. Moreover, [BPT23, Example 3.7] shows (at least
numerically) that it is also possible that T0 is an accumulation point of times of changes of dominant traits
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(a)

(b)

(c)

Figure 6: The processes β0(t) (blue), β1(t) (orange), and β2(t) (green) for different choices of the parameters
with three traits (L = 2). (a): δ = 1.4, α = 0.6, τ = 2. We see a periodic behaviour showing re-emergences
of all traits, in particular also of trait 0, the fittest one. (b): δ = 1.9, α = 0.4, τ = 3.7. The population is
directly driven to evolutionary suicide. (c): same choice of parameters as in the middle, apart from the fact
that τ now equals 3.43. When trait 2δ = 3.8 > 3 becomes dominant, the population size is of order o(K).
We see a re-emergence of trait 0 after a phase of apparent macroscopic extinction (i.e. a total population
size of o(K)). Although trait δ goes extinct while 2δ is dominant, it is recreated by mutations from trait 0.
The choices of parameters (a), (c) with corresponding images first appeared in [CMT21]. Here we reproduced
them via a code written by Tobias Paul, which was also used for creating the simulations in his master’s
thesis and the related paper [BPT23].
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and maxℓ lim supt↑T0
βℓ(t) < 1. In this case, the total population may be considered as unfit since it is not

able to maintain a size of order K at least periodically.
In the model of [BPT23], there are also choices of parameters (see e.g. [BPT23, Example 3.3]) where T0

seems infinite, but the behaviour of the system does not only look non-periodic (like in [CMT21, Figure 2.1
(c)] in the original model), but it is not even clear if the consecution of residents ever becomes cyclic.

4.4 Analytical and biological properties of the piecewise affine limiting process
The next theorem characterizes β as solution of a dynamical system.

Theorem 4.9 ([CMT21]). Under the assumptions of Theorem 4.5, we set

ℓ∗(t) =
∑
k≥1

ℓ∗k1[sk−1,sk](t) and S̃t(y;x) = 1{βℓ∗(t)=1}S(y;x) + 1{βℓ∗(t)<1}Ŝ(y;x).

The function β(t) is right-differentiable on [0, T0) and satisfies

β̇ℓ(t) = Σℓ(t)1{βℓ(t)>0 or (βℓ(t)=0 and βℓ−1(t)=α)}, (4.8)

where Σℓ is defined recursively by Σ0(t) = S̃t(0; δℓ
∗(t)) and ∀l ≥ 1

Σℓ(t) =

{
S̃t(ℓδ; ℓ

∗(t)δ) ∨ Σℓ−1(t), if βℓ(t) = βℓ−1(t)− α,

S̃t(ℓδ; ℓ
∗(t)δ), if βℓ(t) > βℓ−1(t)− α.

Remark 4.10. One may wonder if the system of ODEs (4.8) actually characterizes the function β. For
this we first need to characterize t 7→ ℓ∗(t) as an explicit function of β(t). One would like to define it
as ℓ∗(t) = argmax0≤ℓ≤L βℓ(t) and take it right-continuous. This is correct if there is a single argmax.
Otherwise, there are by definition of T0 two choices ℓ and ℓ′ and there is a single admissible choice in the
sense that the corresponding affine solution to (4.8) on [t, t+ε] satisfies ℓ∗(s) = argmax0≤ℓ≤L for ε > 0 small
enough. Indeed, if max0≤ℓ≤L βℓ(t) = 1, since S(ℓ′δ, ℓδ) = −S(ℓδ, ℓ′δ), one of the two fitnesses is positive, for
example S(ℓδ; ℓ′δ). If one takes the wrong choice ℓ∗(t) = ℓ′, then Σℓ(t) = S(ℓδ; ℓ′δ) > 0, hence the solution
to (4.8) gives βℓ(s) > 1 for s > t locally. If max0≤ℓ≤L βℓ(t) < 1, a similar argument with Ŝ consists in
choosing the trait with higher invasion fitness. Therefore, (4.8) can be expressed as an autonomous ODE
system and there is a unique admissible solution.

Exercise 18. Verify the statement of the penultimate sentence of Remark 4.10.

By re-emergence of a trait ℓδ, we mean that βℓ(s) = 1 on some time interval [t1, t2] with non-empty
interior, then βℓ(s) < 1 on some non-empty interval (t2, t3), and then βℓ(s) = 1 again on some interval [t3, t4]
with non-empty interior. We would like to predict the evolutionary outcome depending on the parameters
α, δ, τ . According to the case of three traits (L = 2) studied in [CMT21, Section 3], there are so many
possible situations that we are not able to fully characterize the outcomes. Therefore, [CMT21, Section 2.2]
focused on the beginning of the dynamics until either global extinction or re-emergence of one trait.

We assume that δ < 4/3 (so that L ≥ 3) and only consider the case δ < τ < 3.35 Let

k̃ := ⌈τ
δ
⌉ and k̄ = ⌊2τ

δ
⌋.

It turns out (it follows from the proof of Theorem 4.11 presented in [CMT21]) that, for the first few phases,

sk =
kα

τ − δ
,

35For τ < δ, the initial resident stays resident forever, see the case of three traits in [CMT21, Section 3].
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trait kδ is resident on [sk, sk+1) (i.e. βk(s) = 1) and for all s ∈ [sk, sk+1),

βℓ(s) =

{
[1− (ℓ− k)α+ (τ − δ)(s− sk)] ∨ 0, if k < ℓ ≤ L,

1− α−(k−ℓ−1)
τ−δ (τ − k−ℓ

2 δ)− (τ − (k − ℓ)δ)(s− sk), if 0 ≤ l < k.
(4.9)

These formulas stay valid until either β0(s) = 0 (loss of trait 0), or β0(s) = 1 for some s > s1 (re-emergence
of trait 0), or ℓ∗kδ > 3 (the population size becomes o(K)). The function β0(s) in (4.9) is piecewise affine
and its slope becomes positive at time sk̃. Hence, its minimal value is equal to

m0 = β0(sk̃) = 1− α(k̃ − 1)

τ − δ

(
τ − k̃

2
δ
)
.

Provided that the latter is positive, β0 reaches 1 again in phase [sk̄, sk̄+1) at time

τ̄ = sk̄ +
α(k̄ − 1)

τ − δ

τ − k̄
2 δ

kδ − τ
.

Theorem 4.11 ([CMT21]). Assume that δ < τ < 3, δ < 4/3, and the assumptions of Theorem 4.5 hold.
Then,

(a) if m0 > 0 and k̄δ < 3, then the first re-emerging trait is 0 and the maximal exponent is always 1 until
this re-emergence time,

(b) if m0 < 0, trait 0 gets lost before its re-emergence and there is global extinction of the population before
the re-emergence of any trait,

(c) if m0 > 0 and k̄δ > 3, there is re-emergence of some trait ℓ such that ℓδ < 3 and, for some time t before
the time of first re-emergence, max1≤ℓ≤L βℓ(t) < 1.

Biologically, Case (b) corresponds to evolutionary suicide. In Case (a), very few individuals with trait 0
remain, and they manage to return to residency after different traits having been resident, and until their
re-emergence, the entire population size remains Θ(K) (albeit possibly with a much smaller prefactor of K
than n̄(0)). In Case (c), trait 0 itself may be lost, and there is an intermediate time interval where the total
population size is o(K), and re-emergence occurs after subpopulations with too large traits become small
enough. In the latter two cases, one can expect successive re-emergences. However, it is not known if there
exists a limit cycle for the dynamics. In particular, there are also cases when a trait different from 0 stays
resident forever (see [CMT21, Section 3]). Cases (a), (b), (c) correspond to the examples (a), (b), (c) in
Figure 6, respectively.

Heuristically, using the approximation that k̃ ≈ τ/δ, we obtain that m0 ≈ 1 − ατ
2δ . Hence, we have

m0 > 0 (re-emergence) provided τ is less than approximately 2δ/α and extinction otherwise. Transfer rates
higher than 2δ/α favour extinction because the population is pushed to higher trait values. Small values of
δ or high values of α give more time for extinction of the small subpopulations. Note that, for m0 > 0, the
condition k̄δ < 3 is roughly τ < 3/2. Hence, for transfer rates smaller than 3/2, 0 re-emerges first, while
otherwise, other traits may re-emerge first and the population size will be o(K) on some time interval.

4.5 Main ideas of the proof of Theorem 4.5
We start from the stochastic birth-and-death process (NK

0 (t), . . . , NK
L (t))t≥0 with mutation, competition,

and transfer. Our goal is to study the limit behaviour of the vector-valued function (βK0 (t), . . . , βKL (t))t≥0

defined in (4.3).
Theorem 4.5 was obtained in [CMT21] by a fine comparison of the size of each subpopulation defined

by a given trait value with carefully chosen branching processes with immigration. The stochastic dynamics
consists in a succession of phases [σKk logK, θKk logK] followed by intermediate steps [θKk logK,σKk+1 logK].
They proved that θKk converge in probability to sk for k ≥ 1. In each phase there is a single resident or
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dominant subpopulation. When another trait reaches a comparable size, the intermediate step starts and
ends after the replacement of the resident or dominant trait. In the limit, intermediate steps vanish on the
time scale logK.

To control of the exponents βKℓ (t), the authors proceeded by a double induction, first on the phases,
and inside each phase, on the traits ℓδ, from ℓ = 0 to ℓ = L. The exponents are approximately piecewise
affine. Changes of slopes (kinks) may happen when a new trait emerges, when a trait dies out or when the
dynamics of a trait ℓ ≥ 1 becomes driven by incoming mutations from the trait ℓ − 1. The authors used
asymptotic results on branching processes with immigration to control the non-dominant subpopulations
within the phases. During intermediate steps, two subpopulations are of maximal order. The authors used
comparisons with dynamical systems and logistic branching processes for these phases.

Let us now describe in more detail how the stopping times θKk are constructed. In each phase, this time
may have two different definitions depending on whether the future emerging trait is dominant or resident.
For this, it is convenient to consider θK∗ and θ̃K∗ where the index is omitted. Consider a phase, starting at
time σK∗ logK with the largest subpopulation of trait ℓ∗δ. Two cases may occur: Either ℓ∗δ is a resident trait
with population size close to its equilibrium size (3 − ℓ∗δ)K/C, or ℓ∗δ is a dominant trait with population
size o(K).

In the first case, for the k-th step, we have σK∗ = σKk → sk−1 in probability when K → ∞ and ℓ∗ = ℓ∗K .
Other population sizes are negligible with respect to K. Given parameters ε∗ > 0 and given m > 0 to be
fixed later, we introduce

θK∗ = inf
{
t ≥ σK∗ : NK

ℓ∗ (t logK) /∈
[
(
3− ℓ∗δ

C
− 3ε∗)K, (

3− ℓ∗δ

C
+ 3ε∗)K

]
or
∑
ℓ ̸=ℓ∗

NK
ℓ (t logK) ≥ mε∗K

}
.

Roughly speaking, this is the first time when the trait ℓ∗ population size rescaled by K leaves a small
neighbourhood of its equilibrium or the total population size of all other traits reaches K times a significant
factor mε∗.

On the time interval [σK∗ logK, θK∗ logK], we proceed by induction on the traits. For ℓ ∈ [L], having
proved the convergence of βK0 (t), . . . , βKℓ−1(t) to β0(t), . . . , βℓ−1(t), we will bound the population size NK

ℓ (t)
for ℓ ̸= ℓ∗ from below and above by branching processes with immigration on each interval where βℓ−1 is
affine. Either θK∗ → ∞ when K → ∞ with probability tending to 1 and in the limit there is no further
change of the resident population. Or, θK∗ has a finite limit s∗ in probability (s∗ = sk for the k-th phase). In
this case, we will show that at time θK∗ , only two traits have sizes of order K and are then competing with
each other, or s∗ = T0 and we stop the analysis. In the first case, there is a transition step, with duration of
order 1, leading with high probability to the replacement of the resident population by the new trait.

In the second case, for the k-th phase, the time σK∗ is chosen such that σK∗ = σKk → sk−1 + s for some
small s > 0 in probability when K → ∞. We proceed similarly as before, replacing θK∗ with

θ̃K∗ = inf
{
t ≥ σK∗ : βKℓ∗ (t) /∈

[
βℓ∗(t)− ε∗, βℓ∗(t) + ε∗

]
or
∑
ℓ̸=ℓ∗

NK
ℓ (t logK) ≥ mε∗N

K
ℓ∗ (t logK)

}
.

The interpretation of the second condition is clear: When the total population size of all other traits ℓ ̸= ℓ∗

in total becomes significant compared to the size NK
ℓ∗ (t logK) of the dominant population, t must be close

to a time of change of dominant trait for the limiting process β. The first condition means that βKℓ∗ (t) leaves
a small neighbourhood of βℓ∗(t). Given the convergence assertion of Theorem 4.5 that we want to prove, it
is untypical that this occurs if ε is not too small. As long as it has not occurred, βKℓ∗ (t) is well-approximated
by βℓ∗(t).

The full proof of Theorem 4.5 can be found in [CMT21, Section 5]. It is too long and technical to present
it here, but it is a well-written proof that the reader may be interested to see. In the rest of Section 4, we
will present some results on branching processes under a logarithmic scaling together with their proofs, to
provide a flavour of the arguments. For similar (and for the proof of the theorem also essential) results on
branching processes with immigration and logistic branching processes, we refer the reader to the appendix
of [CMT21]. Although from the point of view of the proof of Theorem 4.5 these are just auxiliary results,
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they can be adapted in many other population-dynamic and population-genetic model as well. Their proofs
are also of independent interest; they use the weaponry of stochastic analysis.

4.6 Branching process in continuous time: scaling to a line
The following auxiliary result, [CMT21, Lemma A.1] is one of the important ingredients of the proof of
Theorem 4.5. Here, we consider a single population ZK = (ZKt )t≥0 following a linear birth-and-death
process, i.e. a branching process, with individual birth rate b ≥ 0, individual death rate d ≥ 0 and initial
value ZK0 = ⌊Kβ − 1⌋ ∈ N0. According to this initial condition, the population is initially extinct when
β = 0, and ZK0 ∼ Kβ when K → ∞ if β > 0. We denote the law of ZK by BP(b, d, β). In the sequel, we
denote the net growth rate of this process by r = b− d.

Lemma 4.12 ([CMT21]). Let ZK follow the law BP(b, d, β) where b, d ≥ 0 and β > 0. Then for any T > 0,

the process (
log(1+ZK

s log K)
logK )s≥0 converges in probability in L∞([0, T ],R) to ((β+ rs)∨ 0)s≥0 when K tends to

infinity. In addition, if b < d, then for all t > β/r,

lim
K→∞

P(ZKt logK = 0) = 1. (4.10)

Proof. Some of the ideas of this proof originate from [DM11].

Step 1 (Construction of a martingale). We have

ZKt = Kβ +MK
t +

∫ t

0

rZKs ds,

where MK is a square integrable martingale with predictable quadratic variation36 ⟨MK⟩t =
∫ t
0
(b+d)ZKs ds.

Taking the expectation, E(ZKt ) solves the linear ODE E(ZKt ) = Kβ +
∫ t
0
rE(ZKs )ds (written in integral

form), which yields that
E(ZKt ) = Kβert.

Now, we want to use Itô’s formula for semimartingales X = (Xt)t≥0 and Y = (Yt)t≥0, which in differential
form reads

d(XY )t = XtdYt + YtdXt + ⟨X,Y ⟩t,

with t 7→ ⟨X,Y ⟩t being their cross-covariation. In our case, this means

d(e−rtZKt ) = e−rtdZKt − e−rtrZKt dt = e−rtdMK
t + e−rtrZKt dt− rZKt e−rtdt = e−rtdMK

t

(the cross-covariation vanishes because the deterministic process t 7→ e−rt is of bounded variation). Taking
our initial condition into account, we obtain 1 + e−rtZKt = 1 +Kβ + M̂K

t , where M̂K
t =

∫ t
0
e−rsdMK

s is a
square integrable martingale with quadratic variation process

⟨M̂K
t ⟩ =

∫ t

0

e−2rs(b+ d)ZKs ds.

Using Doob’s maximal inequality, for any 0 < η < β,

P
(

sup
t≤T logK

∣∣e−rtZKt −Kβ
∣∣ ≥ Kη

)
= P

(
sup

t≤T logK
|M̂K

t

∣∣ ≥ Kη
)
≤ 4K−2ηE

(
⟨MK⟩T logK

)
≤ 4Kβ−2η(b+ d) ·

{
1
r (1−K−rT ) if b ̸= d,

T logK if b = d.

36See the footnote in Section 2.8 for a remark on the notion of predictable quadratic variation.
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Step 2 (Case r > 0). Fix T > 0 and η = 2β/3. On the event

ΩK1 =
{

sup
t≤T logK

∣∣e−rtZKt −Kβ
∣∣ ≤ K2β/3

}
,

whose probability tends to 1, we have

sup
t≤T

∣∣∣ log
(
1 + ZKt logK

)
logK

− (β + rt)
∣∣∣

= sup
t≤T

∣∣∣ log
(
1 + ZKt logK

)
logK

−
log
(
1 +Kβ+rt

)
logK

+
log
(
1 +Kβ+rt

)
logK

−
log
(
Kβ+rt

)
logK

∣∣∣
≤ sup
t≤T

[ 1

logK

∣∣∣ log(1 + ZKt logK
1 +Kβ+rt

)∣∣∣+ log
(
1 +K−β−rt)
logK

]
≤ sup
t≤T

[ 1

logK

∣∣∣ log(1 + ZKt logK ∨Kβ+rt

1 + ZKt logK ∧Kβ+rt

)∣∣∣+ K−β−rt

logK

]
≤ sup
t≤T

[ 1

logK

∣∣∣ log(1 + |ZKt logK −Kβ+rt|
1 + ZKt logK ∧Kβ+rt

)∣∣∣+ K−β−rt

logK

]
≤ sup
t≤T

[ 1

logK

∣∣∣ |ZKt logK −Kβ+rt|

1 +Kβ+rt −K
2β
3 +rt

∣∣∣+ K−β−rt

logK

]
≤ K−2β/3

logK
sup
t≤T

Krt

Kβ+rt −K2β/3+rt
+K−β logK,

≤ 2K−β/3 +K−β

logK
,

where the last inequality holds (only) for K large enough, and in the third and fifth step we used that
log(1 + ε) < ε for ε > 0 small enough. A simple adaptation of the previous argument gives the same
condition for b = d.

Exercise 19. Prove the latter statement.

Step 3 (Case r < 0). Since the function t 7→ β+ rt vanishes at time β/|r|, we need to consider three phases.
We fix ε ∈ (0, β) and set Tε = β−ε

r and η = β−ε/3. First we prove that before time Tε logK, the population
size remains large enough to use the same argument as in Step 2 (to show that the convergence of the
rescaled logarithmic frequency process to the respective line). Second, the population goes extinct with high
probability between times Tε logK and (Tε + 2ε/|r|) logK, and third, in order to obtain the convergence in

the L∞ norm, we prove that the supremum of the process (
log(1+ZK

t log K)
logK )t on the entire time interval under

consideration remains of the order Kpolynomial(ε). Since ε can be chosen arbitrarily small, the result follows.

Step 3(i). On the set
ΩK2 =

{
sup

t≤Tε logK
|e−rtZKt −Kβ | ≤ K−β−ε/3

}
whose probability tends to 1, using arguments analogous to Step 2, we have

sup
t≤Tε

∣∣∣ log
(
1 + ZKt logK

)
logK

− (β + rt)
∣∣∣ ≤ sup

t≤Tε

[ 1

logK

|ZKt logK −Kβ+rt|

1 + (Kβ+rt −K
2β
3 +rt)+

+
K−β−rt

logK

]
≤ Kβ−ε/3

logK
sup
t≤Tε

Krt

1 + (Kβ+rt −K
2β
3 +rt)+

+
K−ε

logK
≤ 2K−ε/3 +K−ε

logK
,
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with the last inequality again holding (only) for K large enough. The right-hand side also converges to zero
when K → ∞.
Step 3(ii). It follows from the previous step that, with probability converging to 1 as K → ∞, ZKTε logK ≤
2Kε. Now, it was shown in [M16, Section 5.4.5, p. 180] that the extinction time Text of a BP(b, d, 1) satisfies

P(Text > t) =
rert

bert − d
, r ≥ 0.

Hence, for a BP(b, d, 2Kε) branching process, thanks to the branching property, we have

P(Text > t) = 1−
(
1− rert

bert − d

)2Kε

.

Thus, for t = 2ε
|r| logK,

P
(
Text >

2ε

|r|
logK

)
∼ 2

|r|
d
K−ε.

Since this tends to 0 when K → ∞, we have completed the proof of (4.10).
Step 3(iii). Since the last two steps were true for any value of ε > 0, in order to complete the proof, it is
enough to check that

sup
s∈[Tε,Tε+2ε/|r|]

log
(
1 + ZKs logK

)
logK

≤ 2d

|r|
ε.

For this, we observe that the maximal sizes of families stemming from each individual alive at time Tε logK
on the time interval [Tε logK, (Tε + 2ε/|r|) logK] are bounded by the sum of sizes at time 2ε logK/|r| of
ZKTε logK many independent Yule processes with birth rate b, i.e., i.i.d. geometric random variables Gi with
expectation Kbε/|r|.37 Hence, with probability tending to 1,

sup
t∈[Tε,Tε+2ε/|r|]

ZKt logK ≤
2Kε∑
i=1

Gi ≤ K
2d
|r| ε.

Exercise 20 (easy). The last inequality stands without further explanation in [CMT21, Appendix A]. Fill
the gaps of the proof and show (using the footnote on Yule processes below) that this inequality is indeed true.
Which known inequality is implicitly used here?

This finishes the proof.

37Such a Yule process is defined as a BP(b, 0, 1), i.e., a binary pure birth process with individual birth rate b, started with
one single individual at time zero. It is a classical result that at time t > 0, the number of individuals of such a Yule process
follows a geometric distribution with expectation ebt.
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A Proof of Lemma 1.4
Proof of Lemma 1.4. By Theorem 1.14 part (a), it suffices to prove that

sup
K≥1

sup
t≥0

E
(
(ZKt )p

)
<∞,

where L(ZK) = PK(2b̄, 0, α, zK0 ) when supK≥1 E((zK0 )p) < ∞. Let us define vkt = P(ZKt = k/K). Then we
have

d

dt
E
(
(ZKt )p

)
=
∑
k≥1

( k
K

)p dvkt
dt

=
1

Kp

∑
k≥1

kp
[
2b̄(k − 1)vk−1

t + α
k

K

(
2b̄+ α

k

K

)
vkt
]

=
1

Kp

∑
k≥1

[
2b̄
((

1 +
1

k

)p
− 1
)
+ α

k

K

((
1− 1

k

)p
− 1
]
kp+1vkt .

Now, for k/K > 4b̄/α, the quantity inside the square brackets on the right-hand side can be bounded
from above by −2b̄[3 − 2(1 − 1/k)p − (1 + 1/k)p], which is asymptotically equivalent to −2b̄p/k as k →
∞. Therefore, there exists a constant k0 ∈ N that can be assumed bigger than 4b̄/α such that, for any
k ≥ k0, −2b̄[3 − 2(1 − 1/k)p − (1 + 1/k)p] ≤ −b̄p/k, thanks to Taylor’s formula. Then, using the fact that
(1 + x)p − 1 ≤ x(2p − 1) for any x ∈ [0, 1], we can write

d

dt
E
(
(ZKt )p

)
≤
Kk0−1∑
k=1

2b̄(2p − 1)
( k
K

)p
vkt −

∑
k≥Kk0

b̄p
( k
K

)p
vkt ≤ 2b̄(2p − 1)kp0 + b̄pkp0 − b̄pE((ZKt )p).

Writing C = (2(2p − 1) + p)kp0/p, this differential inequality has the solution

E
(
(ZKt )p

)
≤ C + E((zK0 )p − C)e−b̄pt,

which gives the desired boundedness of the p-th moments.

B The function L in the definition of the rate function in Section 1.8
This part of the proof of Theorem 1.17 was not spelt out in [C06], but there is an explanation for a somewhat
more general case in [BPT23, Appendix, Section B.1], which we follow here. For y, z ∈ R2 we define the
function L(y, z) = supα∈R2 (⟨α, z⟩ −H(y, α)) with

H(y, α) =

∫
R2

(exp(⟨α, x⟩)− 1) νy(dx),

where the measures νy, y ∈ R, are defined as follows:

νx(1) = p(x), νx(−1) = q(x).

Now, calculating the gradient of the function in the supremum with respect to α shows that L(y, z) = 0 if
and only if z = p(y)− q(y), as claimed in Section 1.8.

C Proof of Lemma 2.19
Proof of Lemma 2.19. Since (π2a, π2d) is a left eigenvector of J corresponding to the eigenvalue λ̃, we have

(λ2 − λ1) + σ
π2d
π2a

= λ̃ = p(λ1 − µ)
π2a
π2d

− (κµ+ σ).
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Hence, since λ̃ > 0, given that ε > 0 is small enough, we obtain

π2d
π2a

=
λ̃− λ2 + λ1

σ
=
λ̃− λ2 + µ+ α

(
λ1−µ
α

)
σ

>
−λ2 + µ+ α

(
λ1−µ
α + 3

√
ε
)

σ
≥ µ− λ2 + α(n1 + n2a)

σ

and

π2d
π2a

=
pα
(
λ1−µ
α

)
λ̃+ κµ+ σ

<
pα
(
λ1−µ
α − 2ε

)
κµ+ σ

≤ pα(n1 + n2a)

κµ+ σ
,

as asserted.

D Proof of Proposition 2.16

Proof of Proposition 2.16 from [BT20]. If π2a − δ <
NK

2a,T2
ε

NK
2a,T2

ε
+NK

2d,T2
ε

< π2a + δ, then there is nothing to show.

Let us assume that
NK

2a,T 2
ε

NK
2a,T 2

ε
+NK

2d,T 2
ε

≤ π2a − δ,

the symmetric case
N2a,T2

ε

N2a,T2
ε
+N2d,T2

ε

≥ π2a + δ can be treated similarly. Let us introduce the event

Ãε := {T 2√
ε < T 2

0 ∧R2ε}

on which we conditioned in (2.30). Our first goal is to show that for ε > 0 small, with high probability, once
the total mutant population size reaches εK, for sufficiently large C > 0 it will not decrease to a level lower
than εK/C again before it reaches

√
εK. To be more precise, for C > 0 we introduce the stopping time

Tε,ε/C = inf
{
t ≥ T 2

ε : N
K
2,t ≤ εK

C

}
.

Then our goal is to show that if C is large enough, then T 2√
ε

is larger than T 2
ε + log log(1/ε) and smaller

than Tε,ε/C . First of all, for all ε > 0 sufficiently small38, [CCLLS21, Lemma A.1] implies that for C large
enough,

lim
K→∞

P
(
Tε,ε/C < T 2√

ε

∣∣Ãε) = 0. (D.1)

On the other hand, note that the total size of mutant individuals is stochastically dominated from above by
a Yule process with birth rate λ2. Thus, by [CCLLS21, Lemma A.2], we have

lim
K→∞

P
(
T 2√

ε ≤ T 2
ε + log log(1/ε)

∣∣Ãε) ≤ √
ε(log(1/ε))λ2 . (D.2)

Using these, we want to show that the fraction NK
2a,t

NK
2a,t+N

K
2d,t

cannot stay below π2a − δ on [T 2
ε , T

2√
ε
] with

probability close to one. Let us define the following five independent Poisson random measures on [0,∞]2

with intensity measure dsdθ:

• P b
2a(ds,dθ) representing the birth events of the active mutant individuals,

• P d
2a(ds,dθ) representing the death events of the active mutant individuals,

• P s
2a→2d(ds,dθ) representing the active→dormant switching events,

38Here, we skip some details that can be found in [BT20, Section 4.1]: We use that the coupling (2.28) is satisfied on Ãε and
the branching process (Zε,−

2a,t, Z
ε,−
2d,t) is supercritical.
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• P d
2d(ds,dθ) representing the death events of the dormant mutant individuals (for κ = 0 this measure

can be omitted),

• P s
2d→2a(dsdθ) representing the dormant→active switching events.

The following assertion is often very useful in the context of Poisson point processes.

Theorem D.1 (Colouring Theorem, [K93]). Let Π be a Poisson point process on S with intensity measure µ. Let the
points of Π be randomly coloured by k colours, the probability that a point receives the i-th colour being pi (such that
pi ≥ 0,

∑k
i=1 pi = 1), and the colours of different points of Π being independent (of one another and of the position

of the points). Let Πi the set of the points that have the i-th colour. Then Π1, . . . ,Πk are independent Poisson point
processes on S, and Πi has intensity measure µi = piµ for all i ∈ {1, . . . , k}.

The set Πi is often called a(n independent) thinning of Π with survival probability pi, see e.g. [BB09, Section
1.3.2]. The interpretation for this is that one can consider i.i.d. Bernoulli random variables {IiX}X∈Π with common
survival probability pi, and then Πi equals {X ∈ Π|IiX = 1} in distribution, for all i = 1, . . . , k.

In our case, the reason why competitive death events can be assumed as independent of active→dormant switches
is that the corresponding Poisson random measures can be obtained as an independent thinning of a Poisson random
measure with survival probability 1− p respectively the complementary thinning (with survival probability p), which
are independent Poisson random measures according to [K93, Section 5.1]. Let

P̃ b
2a(ds,dθ) := P b

2a(ds,dθ)− dsdθ, . . . , P̃ s
2d→2a(ds,dθ) := P s

2d→2a(ds,dθ)− dsdθ

be the associated compensated measures (see the explanation below).

The fraction NK
2a,t

NK
2a,t+N

K
2d,t

is a semimartingale and can be decomposed as follows

NK
2a,t

NK
2a,t +NK

2d,t

=
NK

2a,T 2
ε

NK
2a,T 2

ε
+NK

2d,T 2
ε

+M2(t) + V2(t), t ≥ T 2
ε ,

with M2 being a martingale and V2 a finite-variation process such that

M2(t) =

∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ λ2N
K
2a,s−}

NK
2d,s−

NK
2,s−(N

K
2,s− + 1)

P̃ b
2a(ds,dθ)

−
∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ NK
2a,s−(µ+ α(1− p)(NK

1,s− +NK
2a,s−))}

×
NK

2d,s−

NK
2,s−(N

K
2,s− − 1)

P̃ d
2a(ds,dθ)

−
∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ NK
2a,s−(αp(N

K
1,s− +NK

2a,s−))}
1

NK
2,s−

P̃ s
2a→2d(ds,dθ)

+

∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ κµNK
2d,s−}

NK
2a,s−

NK
2,s−(N

K
2,s− − 1)

P̃ d
2d(ds,dθ)

+

∫ t

T 2
ε

∫
[0,∞)

1{θ ≤ σNK
2d,s−}

1

NK
2,s−

P̃ s
2d→2a(ds,dθ)

and

V 2(t) =

∫ t

T 2
ε

{
λ2N

K
2a,s

NK
2d,s

NK
2,s(N

K
2,s + 1)

−NK
2a,s(µ+ α(1− p)(NK

1,s +NK
2a,s))

NK
2d,s

NK
2,s(N

K
2,s − 1)

−NK
2a,sαp(N

K
1,s +NK

2a,s))
1

NK
2,s

ds+ κµNK
2d,s

NK
2a,s

NK
2,s(N

K
2,s − 1)

+ σNK
2d,s

1

NK
2,s

}
ds.
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Further, the predictable quadratic variation of the martingale M2 is given as follows

⟨M2⟩t =
∫ t

T 2
ε

λ2N
K
2a,s

(NK
2d,s)

2

(NK
2,s)

2(NK
2,s + 1)2

ds

+

∫ t

T 2
ε

µNK
2a,s(µ+ α(1− p)(NK

1,s− +NK
2a,s−))

(NK
2d,s)

2

(NK
2,s)

2(NK
2,s − 1)2

+NK
2a,sαp(N

K
1,s +NK

2a,s)
1

(NK
2,s)

2
ds+ κµNK

2d,s

(NK
2a,s)

2

(NK
2,s(N

K
2,s − 1))2

+ σNK
2d,s

1

(NK
2,s)

2
ds.

Although we do not want to go into formal details with stochastic integrals against processes with jumps
here (see again [E19] for a great overview), the principle is again simple. In the definition of M2(t), the
frequencies of events appearing in the indicators are tuned in such a way that they correspond to our process
NK
t , and they are multiplied by a factor expressing the change of the fraction of active individuals among

all trait 2 individuals after a given type of jump (exercise!). We integrate against the compensated Poisson
point process, which is a martingale, and thus the stochastic integral will also be a martingale, similarly to
how integrating against Brownian motion (which is a martingale itself) yields a martingale under suitable
assumptions on the integrand. One necessary condition on the integrand is predictability, which is achieved
via taking left limits (i.e. evaluation at time s−, i.e. before the jump) everywhere. The finite-variation
process is similar, but here the additional randomization via the indicator including θ is missing, and we
integrate against the Lebesgue measure, so that taking left limits is not necessary. A bit more precisely,
we integrate the aforementioned changes of trait 2a/(2a+2d) fractions against the intensity measure of the
Poisson point process rather than against the Poisson point process itself, where w.r.t. the θ-coordinate we
integrate over the whole space. The predictable quadratic variation (see also the corresponding footnote in
Section 2.7) looks again similar to the finite-variation process, but here the jump sizes are squared, and every
term appears with a positive sign. In the case of integrals against Poisson point processes, it is true that
the predictable quadratic variation is obtained via integrating the squares of jump sizes against the intensity
measure.

This yields that there exists C0 > 0 such that for all t ≥ T 2
ε ,

⟨M2⟩t ≤ C0(t− T 2
ε ) sup

T 2
ε ≤s≤t

1

NK
2,s − 1

.

This implies

⟨M2⟩(T 2
ε +log log(1/ε))∧Tε,ε/C

≤ C0 log log(1/ε)
εK
C − 1

(D.3)

and
lim sup
K→∞

P
(

sup
T 2
ε ≤t≤T 2

ε +log log(1/ε)

|M2(t)| ≥ ε
∣∣∣Ãε)

≤ lim sup
K→∞

(
P
(

sup
T 2
ε ≤t≤(T 2

ε +log log(1/ε))∧Tε,ε/C

|M2(t)| ≥ ε
∣∣∣Ãε)

+ P
(
Tε,ε/C < T 2

ε + log log(1/ε)
∣∣Ãε))

≤ lim sup
K→∞

1

ε2
E
[
⟨M2⟩(T 2

ε +log log(1/ε))∧Tε,ε/C

∣∣∣Ãε]+√
ε(log 1/ε)λ2

=
√
ε(log 1/ε)λ2 ,

(D.4)

where in the first inequality of the last line we used Doob’s martingale inequality for the first term and (D.1)
together with (D.2) for the second term, and the last inequality of the last line is due to (D.3).

Lecture notes on population dynamics by András Tóbiás, IN PROGRESS 86



Let us now consider the finite-variation process V2. This can be written as

V2(t) =

∫ t

T 2
ε

P
(NK

2a,s

NK
2,s

) NK
2,s

NK
2,s + 1

+Q(s)
(NK

2a,s

NK
2,s

) NK
2,s

NK
2,s − 1

+R(s)
(NK

2a,s

NK
2,s

)
ds, (D.5)

with

P (x) = λ2x(1− x), Q(s)(x) = (κµ− µ− α(1− p)(NK
1,s +NK

2a,s)))x(1− x),

R(s)(x) = σ(1− x)− pα
(
NK

1,s +NK
2a,s

)
x.

For ε > 0 small, on [T 2
ε , T

2√
ε
], Q(s) and R(s) are close on [0, 1], respectively, to the polynomial functions Q,R

given as follows

Q(x) = (κµ− µ− α(1− p)n̄1)x(1− x) = (κµ− µ− (1− p)(λ1 − µ))x(1− x),

R(x) = σ(1− x)− pαn̄1x = σ(1− x)− p(λ1 − µ)x.

Thus, for given ε > 0, for all sufficiently large K, the integrand in (D.5) is close to the polynomial function

S(x) = (λ2 + κµ− µ− (1− p)(λ1 − µ))x(1− x) + σ(1− x)− p(λ1 − µ)x.

Since S(0) > 0 and S(1) < 0, further, S is of degree 2, the equation ẋ = S(x) has a unique equilibrium
in (0, 1). Now, let (π2a, π2d) be the left eigenvector of the matrix J defined in (2.13) corresponding to the
eigenvalue λ̃ such that π2a + π2d = 1. A direct computation implies that π2a is a root of S and thus equal
to this equilibrium. Thus, we can choose δ > 0 and θ > 0 such that π2a − δ > 0 and for all x < π2a − δ,
S(x) > θ/2. By continuity, this implies that for all sufficiently small ε > 0 and accordingly chosen sufficiently
large K > 0, on the event Ãε the following relation holds for all s ∈

[
T 2
ε , T

2√
ε

]
and x ∈ (0, π2a − δ):

P (x)
NK

2,s + 1

NK
2,s

+Q(s)(x)
NK

2,s − 1

NK
2,s

+R(s)(x) ≥ θ

2
> 0. (D.6)

Let us define

t
(ε)
2a := inf

{
t ≥ T 2

ε :
NK

2a,t

NK
2d,t

≥ π2a − δ
}
.

From (D.4) and (D.6) we obtain that on the event Ãε, for any t ∈ [T 2
ε , (T

2
ε + log log(1/ε)) ∧ t

(ε)
2a ],

π2a − δ ≥
NK

2a,t

NK
2,t

≥ θ

2

(
log log(1/ε) ∧ (t

(ε)
2a − T 2

ε )
)
− ε

with a probability higher than 1 −
√
ε(log(1/ε))λ2 . Since θ

2 log log(1/ε) tends to ∞ as ε ↓ 0, it follows that
for ε > 0 small, t(ε)2a is smaller than T 2

ε + log log(1/ε) and thus smaller than T 2√
ε

with a probability close to

1 on the event Ãε, where we also used (D.2).
Lastly, note that each jump of the process NK

2a,t/N
K
2,t is smaller than (εK/C + 1)−1, and hence smaller

than δ for all K sufficiently large (given ε). Thus, after the time t
(ε)
2a , the process will be contained in the

interval [π2a − δ, π2a + δ] for some positive amount of time. Hence, we conclude the proposition.

E Proof of Corollary 3.12
The following proof is an almost verbatim quote of the proof of [BT23, Corollary 2.5].
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Proof of Corollary 3.12. According to the properties of the linearized variant of the system (3.13) near
(0, 0, 0, 0), if (n1a(0), n1d(0), n1i(0), n2(0)) ∈ [0,∞)4 with n1a(0) > 0, then lim inft→∞ n1a(t) > 0. (This
follows from the fact that the Jacobi matrix at (0, 0, 0, 0) has a positive eigenvalue with eigenvector (1, 0, 0, 0).)

Next, note that if n(0) ∈ [0,∞)4 with n1a(0) > 0, then there are two possibilities. Either max{n1i(0), n2(0)}
> 0 and hence n1d(t), n1i(t), n2(t) > 0 for all t > 0, or max{n1i(0), n2(0)} = 0 and hence limt→∞ n(t) =
(n̄1a, 0, 0, 0). Thanks to the invariance of ω-limit sets39, this implies that if the ω-limit set of (n(t))t≥0

contains a point with a zero coordinate (which is necessarily not the type 1a coordinate), then in fact the
ω-limit set contains (n̄1a, 0, 0, 0), i.e. the solution converges to (n̄1a, 0, 0, 0) at least along a subsequence of
times. But for a coordinatewise positive initial condition, that would contradict Proposition 3.11, hence the
positivity part of the proposition.

Next, let us verify that lim supt→∞ n1a(t)+n1d(t)+n1i(t) < n̄1a. Summing the first three lines of (3.13),
we obtain

ṅ1a(t) + ṅ1d(t) + ṅ1i(t) = n1a(t)(λ1 − µ1 − C(n1a(t) + n1d(t) + n1i(t))− κµn1d(t)− vn1i(t).

Let us choose ε > 0 such that lim inft→∞ κµn1d(t) + vn1i(t) > ε. Then if for some t > 0 we have n1a(t) +
n1d(t) + n1i(t) ≥ n̄1a, then we have

d

dt
(n1a(t) + n1d(t) + n1i(t)) < −ε.

Now, solutions of (3.13) are continuously differentiable thanks to the Picard–Lindelöf theorem, and hence
we obtain that there exists δ > 0 such that whenever n1a(t) + n1d(t) + n1i(t) ≥ n̄1a − δ, we have

d

dt
(n1a(t) + n1d(t) + n1i(t)) < −ε/2.

This implies the time
tn̄1a−δ = inf

{
t ≥ 0: n1a(t) + n1d(t) + n1i(t) < n̄1a − δ

}
is finite, and for all t > tn̄1a−δ we have n1a(t) + n1d(t) + n1i(t) ≤ n̄1a − δ < n̄1a. Thus, lim supt→∞ n1a(t) +
n1d(t) + n1i(t) < n̄1a.

Finally, the asymptotic upper bound on n2(t) as t → ∞ is the analogue of [BK98, Lemma 2.3] in our
model. Relying on the already proven parts of Corollary 3.12, we can now provide a short proof for it. Recall
that under the assumptions of the corollary we have

lim sup
t→∞

n1a(t) + n1d(t) + n1i(t) < n̄1a, lim inf
t→∞

nj(t) > 0,∀j ∈ {1a, 1i, 2},

and hence there exists β > 0 such that

lim sup
t→∞

n1i(t) ≤ n̄1a − β.

Thus, we obtain for all t sufficiently large

ṅ2(t) = −(1− q)Dn1a(t)n2(t) +mvn1i(t)− µ2n2(t) < mv(n̄1a − β)− µ2n2(t). (E.1)

This shows that for such t, if n2(t) ≥ mv(n̄1a−β)
µ2

, then s 7→ n2(s) is decreasing at t. Consequently,

lim sup
t→∞

n2(t) ≤
mv(n̄1a − β)

µ2
<
mvn̄1a
µ2

,

as wanted.
39The ω-limit set is the set of points to which n(t) accumulates along a sequence of diverging times, and it is a well-known

result that this set is invariant, i.e. starting from this set at time 0, the solution will stay in this set for all positive and even
for all negative times.
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F Declaration of exercise sheets (Frankfurt, 2024)
For the course in Frankfurt in July 2024, the exercises in these lecture notes have to be grouped into exercise
sheets for official reasons. The content of the six exercise sheets is the following:

1. Basics of Lotka–Volterra type ODEs and invasion fitnesses: Exercises 1–4.

2. The dynamical system corresponding to the competition-induced dormancy model: Exer-
cises 6–9.

3. Stochastic aspects of the competition-induced dormancy model: Exercises 5 and 10.

4. The dynamical system corresponding to the virus model: Exercises 11, 14, and 15.

5. Stochastic aspects of the virus model: Exercises 12, 13, and 16.

6. The piecewise affine limiting process in the Champagnat–Méléard–Tran model and related
convergence results: Exercises 17–20.

Lecture notes on population dynamics by András Tóbiás, IN PROGRESS 89



References
[AB00] H. Andersson and T. Britton, Stochastic epidemic models and their statistical analysis,

Lecture Notes in Statistics 151, Springer-Verlag (2000).

[AN72] K. B. Athreya and P. E. Ney, Branching processes, Springer (1972).

[BB09] F. Baccelli and B. Blaszczyszyn. Stochastic Geometry and Wireless Networks: Volume I: The-
ory. NoW Publishers, 2009, vol. 3, No 3-–4 & 4, No 1—2.

[BBC17] M. Baar, A. Bovier, and N. Champagnat. From stochastic, individual-based models to
the canonical equation of adaptive dynamics in one step. Ann. Appl. Probab. 27(2):1093–1170
(2017).

[BM15] Vincent Bansaye and Sylvie Méléard, Some stochastic models for structured populations:
scaling limits and long time behavior. arXiv:1506.04165 (2015).

[BZW15] M. A. Bautista, C. Zhang, and R. J. Whitaker Virus-induced dormancy in the archaeon
Sulfolobus islandicus, mBio 6(2):e02565-14. doi:10.1128/mBio.02565-14, (2015).

[BK98] E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection,
Mathematical Biosciences 149:1, 57–76 (1998).

[BCFMT16] S. Billiard, P. Collet, R. Ferrière, S. Méléard and V. C. Tran, The effect of com-
petition and horizontal trait inheritance on invasion, fixation, and polymorphism. J. Theoret.
Biol. 411, 48—58 (2016).

[BCFMT18] S. Billiard, P. Collet, R. Ferrière, S. Méléard, and V. C. Tran, Stochastic dynamics
for adaptation and evolution of microorganisms, Journal of the European Mathematical Society,
pages 527–552, special issue for the Proceedings ECM2016 (2018).

[BS17] S. Billiard and C. Smadi, The interplay of two mutations in a population of varying size: A
stochastic eco-evolutionary model for clonal interference. Stoch. Process. Their Appl. 127:3,
701–748 (2017).

[BS19] S. Billiard and C. Smadi, Stochastic dynamics of three competing clones: Conditions and
times for invasion, coexistence, and fixation. Am. Nat. 195:3, 463–484 (2019).

[BT20] J. Blath and A. Tóbiás, Invasion and fixation of microbial dormancy traits under competi-
tive pressure, Stoch. Proc. Appl. 130:12, 7363-7395 (2020).

[BPT23] J. Blath, T. Paul and A. Tóbiás, A stochastic adaptive dynamics model for bacterial
populations with mutation, dormancy and transfer, arXiv: 2105.09228 (2021).

[BT21] J. Blath and A. Tóbiás, The interplay of dormancy and transfer in bacterial populations:
Invasion, fixation and coexistence regimes, Theoret. Pop. Biol. 139 18–49 (2021).

[BT23] J. Blath and A. Tóbiás, Microbial virus epidemics in the presence of contact-mediated host
dormancy, ESAIM: PS 27 (2023).

[B21] A. Bovier, Stochastic models for adaptive dynamics. Scaling limits and diversity. In: Proba-
bilistic Structures in Evolution, A. Baake and A. Wakolbinger, Eds., EMS Series of Congress
Reports (2021).

[C06] N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution se-
quence models, Stochastic Process. Appl., 116(8):1127–1160 (2006).

Lecture notes on population dynamics by András Tóbiás, IN PROGRESS 90



[CFB01] N. Champagnat, R. Ferrière, and G. Ben Arous, The canonical equation of adaptive
dynamics: a mathematical view, Selection, 2, 73–83 (2001).

[CMT21] N. Champagnat, S. Méléard, and V. C. Tran, Stochastic analysis of emergence of evo-
lutionary cyclic behavior in population dynamics with transfer, Ann. Appl. Probab., 31(4):
1820–1867 (2021).

[C61] N. G. Chetaev, The Stability of Motion. English translation: Pergamon Press, Oxford (1961).

[CKS21] L. Coquille, A. Kraut, and C. Smadi, Stochastic individual-based models with power law
mutation rate on a general finite trait space, Electron. J. Probab., 26, 1–37 (2021).

[CCLS18] C. Coron, M. Costa, H. Leman, and C. Smadi, A stochastic model for speciation by
mating preferences, J. Math. Biol. 76, 1421–1463 (2018).

[CCLLS21] C. Coron, M. Costa, F. Laroche, H. Leman, and C. Smadi, Emergence of homogamy in
a two-loci stochastic population model, ALEA, Lat. Am. J. Probab. Math. Stat. 18, 469-–508
(2021).

[DE97] P. Dupuis and R. S. Ellis, A weak convergence approach to the theory of large deviations,
Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., New York (1997).

[DL96] U. Dieckmann and R. Law, The dynamical theory of coevolution: a derivation from stochas-
tic ecological processes. J. Math. Biol. 34, 579–612.

[DLA06] F. Dumortier, J. Llibre, and J. C. Artés, Qualitative Theory of Planar Differential
Systems. Springer (2006).

[DM11] R. Durrett and J. Mayberry, Traveling waves of selective sweeps, Ann. Appl. Probab.,
21:2, 699–744 (2011).

[E19] A. Eberle, Stochastic Analysis, lecture notes, see https://wt.iam.uni-bonn.de/
fileadmin/WT/Inhalt/people/Andreas_Eberle/StoAn_19/StochasticAnalysis2019.pdf
(2019).

[EK86] S. N. Ethier and T. G. Kurtz, Markov processes. Characterization and convergence, Wiley
Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics.
John Wiley & Sons Inc., New York (1986).

[EK23] M. Esser and A. Kraut, Effective growth rates in a periodically changing environment:
From mutation to invasion, arXiv:2310.20509 (2023).

[FM04] N. Fournier and S. Méléard, A microscopic probabilistic description of a locally regulated
population and macroscopic approximations. Ann. Appl. Probab., 14(4):1880–1919 (2004).

[FW84] M. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems,
Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical
Sciences), volume 260, Springer (1984).

[GB03] H-O. Georgii and E. Baake, Supercritical multitype branching processes: the ancestral
types of typical individuals. Adv. App. Probab. 35(4):1090-1110 (2003).

[GW16] H. Gulbudak and J. Weitz, A touch of sleep: Biophysical model of contact-
mediated dormancy of archaea by viruses, Proc. R. Soc. B, 283:20161037.
http://dx.doi.org/10.1098/rspb.2016.1037 (2016).

Lecture notes on population dynamics by András Tóbiás, IN PROGRESS 91

https://wt.iam.uni-bonn.de/fileadmin/WT/Inhalt/people/Andreas_Eberle/StoAn_19/StochasticAnalysis2019.pdf
https://wt.iam.uni-bonn.de/fileadmin/WT/Inhalt/people/Andreas_Eberle/StoAn_19/StochasticAnalysis2019.pdf


[GW18] H. Gulbudak and J. Weitz, Heterogeneous viral strategies promote co-
existence in virus-microbe systems, Journal of Theoretical Biology, 462,
http://dx.doi.org/10.1016/j.jtbi.2018.10.056 (2018).

[I00] J. Istas, Introduction aux modélisations mathématiques pour les sciences du vivant. Springer,
New York (2000).

[JF19] S. Jackson, P. Fineran, Bacterial dormancy curbs phage epidemics, Nature 570, Issue
5570, (2019).

[K93] J. F. C. Kingman, Poisson Processes. Oxford University Press, New York, 1993.

[K98] Yuri A. Kuznetsov, Elements of Applied Bifurcation Theory, second edition, volume 112 of the
series Applied Mathematical Sciences, Springer, 1998.

[KC09] M. Kuwamura and H. Chiba, Mixed-mode oscillations and chaos in a prey-predator system
with dormancy of predators, Chaos 19:4, (2009).

[LP17] G. Last and M. Penrose, Lectures on the Poisson Process. Cambridge University Press
(2017).

[LdHWB21] J. T. Lennon, F. den Hollander, M. Wilke Berenguer, J. Blath, Principles of seed
banks: Complexity emerging from dormancy, Nature Commun. 12, article number: 4807
(2021).

[M72] R. M. May, Limit cycles in predator–prey communities, Science 177(4052), 900–902 (1972).

[MM90] E. McCauley and William W. Murdoch, Predator–prey dynamics in environments rich
and poor in nutrients, Nature 343, 455–457 (1990).

[MNM19] J. Meeske, S. Nakandakari-Higa, and L. Marraffini, Cas13-induced cellular dormancy
prevents the rise of CRISPR-resistant bacteriophage, Nature 570, Issue 5570, 241–245, (2019).

[M16] S. Méléard, Modèles aléatoires en Ecologie et Evolution, Springer (2016).

[M96] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. A. J. Jacobs, and J. S. van Heer-
waarden, Adaptive Dynamics, a geometrical study of the consequences of nearly faithful
reproduction. In: S. J. van Strien, S. M. Verduyn Lunel (Eds.), Stochastic and Spatial
Structures of Dynamical Systems, North Holland, Amsterdam, pp. 183–221 (1996).

[R71] M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation ecosystems in
ecological time, Science 171(3969), 385–387.

[S17] C. Smadi, The effect of recurrent mutations on genetic diversity in a large population of
varying size, Acta Appl. Math., 149(1), 11–51 (2017).

Lecture notes on population dynamics by András Tóbiás, IN PROGRESS 92


	Invasion models of adaptive dynamics and convergence to a trait substitution sequence
	Introduction: a few words about population dynamics and adaptive dynamics
	Organization of these lecture notes
	Champagnat's individual-based model
	Equilibrium population sizes, invasion fitnesses, and convergence to a TSS model
	Stability of equilibria of the dynamical systems
	Outline of the proof of Theorem 1.1: the three phases of an invasion
	Comparison results and Poissonian construction
	The problem of exit from a domain and a crash-course on large deviations
	Some results on branching processes

	Example 1: an invasion model with competition-induced dormancy
	Motivation
	The base model for competition-induced dormancy
	The dynamical system(s)
	Overview of the three phases of an invasion
	Multitype branching processes I: general theory and particular heuristics
	Main results of BT19 and discussion
	Outline of the proof
	Multitype branching processes II: the Kesten–Stigum theorem and its application for our model
	Convergence of the dynamical system

	Example 2: the Beretta–Kuang host–virus model extended with recovery and dormancy
	The Beretta–Kuang host–virus model (with recovery, without dormancy)
	The dynamical system I: stability of simple equilibria and existence of a coexistence equilibrium
	The branching process counterpart of the previous section
	The dynamical system II: Hopf bifurcations, the effect of recovery, and the paradox of enrichment
	The full model of BT21 with contact-mediated host dormancy
	The dynamical system III: some global properties
	Main results of BT21 and discussion
	A few words about the proofs in BT21
	Further simulations and conjectures related to the dynamical system

	The polynomial mutation regime and its piecewise affine scaling limits
	Introduction: different mutation regimes and horizontal gene transfer
	The Champagnat–Méléard–Tran model
	The main convergence result of CMT19
	Analytical and biological properties of the piecewise affine limiting process
	Main ideas of the proof of Theorem 4.5
	Branching process in continuous time: scaling to a line

	Proof of Lemma 1.4
	The function L in the definition of the rate function in Section 1.8
	Proof of Lemma 2.19
	Proof of Proposition 2.16
	Proof of Corollary 3.12
	Declaration of exercise sheets (Frankfurt, 2024)

