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Abstract

Switchbox routing is one of the many problems arising in the field of VLSI routing.
It requires interconnecting given sets of terminals that are placed on the boundaries
of a rectangular circuit board using a 3-dimensional grid in a vertex-disjoint way.

An important special case is the Manhattan Switchbox Routing problem. Here
minimizing the number of layers of a routing (that is, the height of the grid) is
known to be NP-hard. In this paper we provide a linear time algorithm that solves
any such problem on a number of layers that is greater by at most 5 than the
optimum.
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1 Introduction

In the detailed routing phase of the design process of very large scale integrated
(or VLSI) circuits the task is to interconnect certain given subsets (or nets) of
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pins (or terminals) of the circuit elements that have already found their final
positions on the circuit board. Since a minimum distance is to be kept between
any two wires (corresponding to different nets), wires must go along the edges
of a rectangular grid. However, this grid is not planar, it consists of a few
planar layers (each parallel to the circuit board) and a wire can leave a layer
for an adjacent one at any grid point. In some cases, certain technological
constraints require that consecutive layers contain non-parallel wire segments
only; if such a restriction is imposed, we speak of a Manhattan routing.

In case of the switchbox routing problem, terminals are situated on the
boundaries of a rectangular circuit board. Minimizing the number of layers
needed for solving a switchbox routing problem in the Manhattan model is
known to be NP-hard; even very special cases of this problem are NP-hard.
(For example: deciding solvability on two layers is NP-complete even if ter-
minals are situated on two opposite boundaries only [5].) Consequently, and
due to the importance of the problem, many heuristics have been proposed.

In this paper we present a linear time algorithm with a provably good
performance: the number of layers used will be at most 5 greater than the
optimum. Considering that the number of layers allowed by the present state
of technology is typically not more than 10, this additive constant of 5 sug-
gests that the presented construction is not intended for designing ready-to-use
routing patterns for given specifications. Contrarily, we rather aim at under-
standing the nature of the problem and thus helping heuristics to be designed
and tested. We emphasize however, that the number of layers used will stay
within the realizable range of at most 10 for many realistic specifications.

2 Basic Definitions and Preliminary Results

The switchbox routing problem (or SRP for short) is defined as follows. Assume
that a (w+2)×(n+2) rectangular grid formed by w+2 horizontal line segments
numbered from 0 to w + 1 (called tracks) and n + 2 vertical line segments
numbered from 0 to n + 1 (called columns) is given. Non-corner boundary
points of the grid are called terminals. A net is a subset of terminals. An
instance of the SRP is a set N = {N1, . . . , Nt} of pairwise disjoint nets. The
left hand side part of Figure 1 shows an SRP instance with w = n = 5; sets
of terminals marked with a common number form the nets.

Terminals with a column number of 0 or n+1 are called western or eastern,
respectively; terminals with a track number of 0 or w + 1 are called southern

or northern, respectively. w and n are called the width and the length of the
SRP, respectively. The w × n grid obtained by deleting all terminals and



corners is called the routing area. Of course, w ≤ n can be assumed without
loss of generality; we will assume this throughout this paper. We will also
assume that every net has at least two terminals. A net is called trivial if it
consists of two terminals situated in a common column.

In order to define a k-layer solution of a SRP we first replace the w × n

routing area with a 3-dimensional w×n×k grid consisting of k parallel copies
(called layers) of the original routing area. In the resulting routing graph each
terminal is adjacent to all the k vertices of the k layers corresponding to its
single neighbour in the original (planar) routing area. (This is to ensure that
terminals are accessible from any layer.)

A k-layer solution (or routing) of a SRP instance N is a set H =
{H1, . . . , Ht} of pairwise vertex disjoint, connected subgraphs (called wires)
of the routing graph such that Hi contains all terminals of Ni for i = 1, . . . , t.
Edges of the wires that join adjacent vertices of two consecutive layers are
called vias. Since wires can be chosen to be trees (which usually happens in
every application), the SRP can be regarded as a special Steiner-tree packing
problem.

A solution of a SRP belongs to the Manhattan model (or is simply called
a Manhattan solution) if consecutive layers contain wire segments of different
directions only. Thus layers with horizontal (east-west) and with vertical
(north-south) wire segments alternate. In this paper we will restrict ourselves
to the Manhattan model.

Denote the ith column of the grid by e (for some 1 ≤ i ≤ n). A nontrivial
net N is separated by e if N has a terminal with a column number less than or
equal to i and another terminal with a column number greater than or equal
to i. The congestion of e, denoted by c(e), is the number of nontrivial nets
separated by e. The density of a SRP instance, denoted by d, is the maximum
congestion of all columns (of the routing area).

Assume that a SRP instance with density d is given that is solvable on
k layers in the Manhattan model with h layers reserved for horizontal wire
segments. Naturally, wires corresponding to all the d nontrivial nets separated
by a column e with congestion c(e) = d must intersect e on one of these h

layers. At most w wires can intersect e on a single layer, hence h · w ≥ d

must hold. This shows (by k ≥ 2h − 1) that the minimum number of layers
required for solving a SRP in the Manhattan model is at least 2⌈ d

w
⌉ − 1 (and

the corresponding lower bound is ⌈ d

w
⌉ if the Manhattan model is not assumed).

Hambrusch [2] observed that a SRP with d = n+w can be constructed by
letting the nets be terminal pairs, all separated by column ⌊n

2
⌋. This shows

that the number of layers required for a SRP can be as large as 2⌈ n

w
⌉ + 1 in



the Manhattan model (and ⌈ n

w
⌉+1 otherwise) in the worst case. In particular,

there is no fixed number of layers that would suffice for every SRP instance.

However, there is a general upper bound for the number of layers if the
ratio n

w
is fixed. This was first shown for the non-Manhattan case by Boros,

Recski and Wettl [1]: they provided an upper bound of max{18, 2 n

w
+ 14}.

This was later improved in [4] by giving an upper bound of 2⌈ n

w
⌉ + 4 in the

Manhattan model. (Both results involve an algorithm with a linear running
time.) Naturally, although the latter upper bound is only larger by 3 than
the lower bound of 2⌈ n

w
⌉ + 1 shown in the previous paragraph, the result

of [4] does not give an additive approximation for the optimum since the
lower bound of 2⌈ n

w
⌉ + 1 is for the worst case only. In this paper we improve

the algorithm presented in [4] to achieve an additive approximation for the
optimum. (However, we do not rely on the results of [4].)

3 Main Result

In the previous section we have seen that the number of layers required for a
SRP is at least 2⌈ d

w
⌉−1 in the Manhattan model, where d denotes the density

of the problem. This shows that the following theorem indeed guarantees a
solution within an additive constant of 5 compared to the optimum.

Theorem 3.1 There is a linear time algorithm that solves every switchbox

routing problem on at most 2⌈ d

w
⌉ + 4 layers in the Manhattan model.

Proof. Assume that a SRP instance N with density d is given. We start by
classifying its nets for easier reference: we say, for example, that a net is NE

type if it has terminals on the northern and eastern boundaries, but none on
the western and southern ones; we say that a net is N1W type if it has one
terminal on the north, some (maybe one) on the west and none elsewhere,
etc. Furthermore, denote by TW, TE, TN and TS the set of all western, eastern,
northern and southern terminals, respectively.

We can assume without loss of generality that out of NE, NW, SE and SW

type nets NE nets are (one of) the greatest in number.

Denote the set of S1W1 type nets by N0. Partition N0 into two subsets
N 1

0
and N 2

0
such that |N 1

0
| ≤ |N 2

0
| ≤ |N 1

0
|+ 1. We define two further subsets

of N , N1 and N2. Let a nontrivial net N ∈ N belong to N1 if

• |N ∩ (TN ∪ TS) | ≥ 2, but N is not NE type, or

• N is N1W type, or

• N ∈ N 1

0
.



Similarly, let N ∈ N belong to N2 if

• |N ∩ (TW ∪ TE) | ≥ 2, but N is not NE type, or

• N is SE1 type, or

• N ∈ N 2

0
.

We assign an interval to each net of N1 and N2: if N ∈ N1 then the
horizontal interval IH(N) stretches from the column of the westernmost to
the column of the easternmost terminal of N \ TE. Similarly, if N ∈ N2 then
the vertical interval IV (N) stretches from the track of the northernmost to the
track of the southernmost terminal of N \ TN. (In both cases, each boundary
is considered when determining the endpoints of the intervals, except for the
eastern boundary in case of N1 and the northern one in case of N2.) For
the SRP instance of Figure 1 nets of N1 together with the assigned intervals
IH(N) are shown in the middle part of the figure, while nets of N2 with the
intervals IV (N) are shown in the right hand side part.
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Figure 1

We claim that |N2| ≤ w. Denote by N 1

2
and N 2

2
the first two of the three

(pairwise disjoint) subsets of N that form N2 as listed on the top of this page
(in the same order). Let |N 1

2
| = x1, |N 2

2
| = x2, |N0| = y and let z be the

number of NE type nets. Since |TW∪TE| = 2w, obviously 2x1+x2+y+z ≤ 2w.
Because of the assumption made at the beginning of the proof, x2 ≤ z holds,
thus 2x1 + 2x2 + y ≤ 2w is also true. Dividing by 2 we get x1 + x2 + 1

2
y ≤ w,

which establishes the claim by |N2| = x1+x2+⌈1

2
y⌉. (We remark that |N1| ≤ n

is obviously also true with an analogous proof.)

After all this preparation we start describing the required routing. We say
that a layer is a W-comb if on that layer a horizontal wire segment leads from
each western terminal to the easternmost column of the routing area. The
terms E-comb, N-comb and S-comb are defined analogously; however, in case
of (say) N-combs we declare that if a column contains the two terminals of
a trivial net then the wire segment of that column is extended by one unit



to the south to connect these two terminals. (We remark that the usage of
comb layers simplifies the description of the construction, but obviously in
most cases wire segments on the comb layers need not stretch to the opposite
end of the routing area. Of course, unnecessary wire ends can be removed but
we will disregard this in the sequel.)

Number the layers from bottom upwards. We declare that layer 1 is a
W-comb, layer 3 is an E-comb, layers 4, 8, 12, . . . are N-combs and layers 6,
10, 14, . . . are S-combs. (Since the number of layers 2⌈ d

w
⌉ + 4 is even and at

least 6, the topmost layer is either a N-comb or a S-comb.)

Columns of layer 2 are used for holding vertical wire segments correspond-
ing to the intervals IV (N) assigned to the nets of N2. (We will also use the
notation IV (N) to refer to the wire segment corresponding to the interval
IV (N), this will cause no ambiguity.) We have seen that |N2| ≤ w and recall
that w ≤ n was assumed. Consequently, each net N ∈ N2 can be assigned a
separate column on layer 2 to hold IV (N). However, if N ∈ N2 and N∩TS 6= ∅
then IV (N) should be placed in the column of an (arbitrary) element of N∩TS;
this way the wire segment also reaches this southern terminal of N , see nets
3 and 4 in Figure 1.

Consider the interval graph G defined by the intervals IH(N) assigned to
the nets of N1. (That is, V (G) is the set of intervals IH(N) and edges of G

correspond to intersecting pairs of intervals. The intervals are assumed to be
closed, thus two intervals are adjacent in G even if they only have a common
endpoint.) By definition, the clique number ω(G) of G is the density d1 of the
SRP defined by N1. Since d1 ≤ d is obvious from N1 ⊆ N , vertices of G can
be coloured with d colours. (Here we use the well-known fact that interval
graphs are perfect; this result is usually dedicated to Tibor Gallai.) Denote
the colour classes by I1, . . . , Id.

Tracks of layers 5, 7, 9, 11, . . . are used for holding horizontal wire segments
corresponding to the intervals IH(N) assigned to the nets of N1. (Again, these
wire segments will also be denoted by IH(N).) However, as opposed to the
case of layer 2, we do not assign a separate track to each interval. Instead,
each track is assigned to one of the colour classes Ik and the track holds
wire segments corresponding to all the intervals of Ik. (This is possible since
intervals belonging to Ik are pairwise disjoint by the construction.) Again,
if N ∈ N1 and N ∩ TW 6= ∅ then the wire segments corresponding to the
colour class of IH(N) should be placed in the track of an (arbitrary) element
of N ∩ TW. (This is obviously possible since no colour class can contain more
than one intervals corresponding to nets having western terminals.) Since the
total number of layers is 2⌈ d

w
⌉+ 4, the number of layers 5, 7, 9, 11, . . . is ⌈ d

w
⌉;



hence the total number of tracks on these layers is at least d which shows that
each colour class Ik can be assigned an appropriate track.

The routing is now completed by introducing vias between consecutive
layers appropriately. For every N ∈ N2 the vertical wire segment IV (N) on
layer 2 can be connected to the horizontal wire segments of layers 1 and 3
coming from the terminals of N ∩ (TW ∪ TE). Similarly, for every N ∈ N1 the
horizontal wire segment IH(N) can be connected to the vertical wire segments
coming from the terminals of N ∩ (TN ∪ TS) in the layers below and above the
layer of IH(N). Finally, we introduce vias between layers 3 and 4 suitably:
for every s ∈ TN and t ∈ TE if s and t belong to the same net then the vertical
wire segment coming from s on layer 4 and the horizontal wire segment coming
from t on layer 3 can be connected through an appropriate via. (Evidently, it
is not necessary to take advantage of all the possibilities to introduce the above
mentioned vias between layers 3 and 4. Moreover, it is not only unnecessary,
but for certain SRP instances the number of – mainly needless – vias could
become so high that the algorithm would not be linear any more. We disregard
this detail in the sequel with mentioning that for each net N the number of
vias needed between layers 3 and 4 is at most |N ∩ (TN ∪ TE)|.)

We claim that the above described routing is good. Choose a net N ∈ N
and two terminals s, t ∈ N arbitrarily. It is sufficient to show that s and t

are connected by the routing. If N is trivial then s and t are joined in the
corresponding column of a N-comb. If N is NE type then the routing of N

is completely solved by the vias between layers 3 and 4. So we can assume
that N is neither trivial nor NE type; it is easy to check that this implies
N ∈ N1 ∪ N2. If {s, t} ⊆ TW ∪ TE then N ∈ N2 and hence s and t are
connected through IV (N). Similarly, if {s, t} ⊆ TN ∪ TS then N ∈ N1 and s

and t are connected through IH(N). So we can assume that s and t belong
to two adjacent boundaries.

Assume first that s ∈ TW and t ∈ TN. If N ∩ TE 6= ∅ and u ∈ N ∩ TE

then N ∈ N2, u and s are connected through IV (N), u and t are connected
through the vias between layers 3 and 4 and hence s and t are also connected
via u. If, on the other hand, N ∩ TE = ∅ then N ∈ N1 by definition and
hence t is connected to a terminal s′ ∈ N ∩ TW through IH(N). If s′ 6= s then
N ∈ N2 is also true, s and s′ are connected through IV (N) so s and t are
connected via s′. The case s ∈ TE, t ∈ TS is analogous. If s ∈ TW and t ∈ TS

then either N ∈ N1 and t is connected to a terminal s′ ∈ N ∩ TW through
IH(N) or N ∈ N2 and s is connected to a terminal t′ ∈ N ∩ TS through
IV (N); in the first case s 6= s′ implies N ∈ N2 and s and s′ are connected
through IV (N) while in the second case t 6= t′ implies N ∈ N1 and t and t′



are connected through IH(N). Finally, if s ∈ TE and t ∈ TN then s and t are
simply connected by the vias between layers 3 and 4.

We omit the proof that the above construction can be realized by a linear
time algorithm for space reasons. We restrict ourselves to mentioning that the
only nontrivial step is the colouring of the interval graph G defined above; the
reader is referred to [3] for the details. 2

4 Concluding Remarks

We remark that the above proof gives a slightly better upper bound on the
number of layers than the one claimed by Theorem 3.1: 2⌈d1

w
⌉+4, where d1 is

the density of the SRP N1 (defined in the proof). Observe that the maximum
value of d1 is n (since |N1| ≤ n was mentioned in the proof) while the value
of d can be as large as n+w (as mentioned in the Introduction). This implies
that the above upper bound of 2⌈d1

w
⌉ + 4 can indeed be less than the one

claimed in Theorem 3.1. Furthermore, it also shows that the construction of
the above proof generalizes the result of [4] mentioned in the Introduction by
2⌈d1

w
⌉ + 4 ≤ 2⌈ n

w
⌉ + 4.

It is also worth mentioning that although the additive constant guaranteed
by Theorem 3.1 is 5 in general, however, in certain special cases this can be
improved. For example, if d1 ≤ w holds (which is definitely true in the n = w

case) then the construction guarantees a routing on 6 layers; since a 1-layer
solution is clearly impossible (except for trivial cases), the additive constant
of approximation is 4 in this case.
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