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Abstract Two players, the Defender and the Attacker play the following game. A
matroid M = (S,I ), a weight function d : S→ R+ and a cost function c : S→ R are
given. The Defender chooses a base B of the matroid M and the Attacker chooses
an element s ∈ S of the ground set. In all cases, the Attacker pays the Defender
the cost of attack c(s). Besides that, if s ∈ B then the Defender pays the Attacker
the amount d(s); if, on the other hand, s /∈ B then there is no further payoff. Spe-
cial cases of this two-player, zero-sum game were considered and solved in various
security-related applications. In this paper we show that it is also possible to compute
Nash-equilibrium mixed strategies for both players in strongly polynomial time in
the above general matroid setting. We also consider a further generalization where
common bases of two matroids are chosen by the Defender and apply this to define
and efficiently compute a new reliability metric on digraphs.
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2 Dávid Szeszlér

1 Introduction

There is an abundance of recent books and papers on game-theoretical tools for mea-
suring and increasing security. Since all aspects of security are obviously of utmost
importance nowadays and game theory as a tool to address related problems presents
itself very naturally, the literature on this topic is extremely diverse. Much of the ar-
senal of game theory has been employed on various applications which very often
have little in common besides somehow being related to security. Interested readers
are referred to the following books and surveys: [1,7,9,10,14].

In this paper, however, only the theory of two player, zero-sum games, the sim-
plest and probably most widely known subfield of game theory will be relied on to
address various problems raised by applications concerning the measuring of secu-
rity. The basic idea is very natural: define a game between two virtual players, the
Attacker and the Defender, such that the rules of the game and the payoffs to be paid
capture the circumstances under which security is to be measured. Then analyzing
the game might give rise to an appropriate security metric: the better the Attacker
can do in the game, the lower the level of security is. If the game is zero-sum then
the maximum guaranteed expected gain the Attacker can achieve (by a mixed strat-
egy) is equal to the minimum guaranteed expected loss the Defender has to suffer
by Neumann’s classic Minimax Theorem [12]; hence the reciprocal of this common
optimum is a valid measure of security.

The following simple example might illuminate the above idea. Assume that a
connected graph G and two vertices s, t ∈ V (G) are given. The Defender chooses a
path P between s and t and the Attacker (simultaneously) chooses an edge e of G. If
e is not on P then there is no payoff; if, on the other hand, e is on P then the Defender
pays 1 to the Attacker. Then it is easy to see that the Nash-equilibrium payoff of this
two-player, zero-sum game is the reciprocal of the edge-connectivity between s and
t (that is, the maximum number of pairwise edge-disjoint paths between s and t or,
equivalently by Menger’s classic theorem [13, Section 9.1], the size of the minimum
cut separating s and t). In other words, the notion of edge-connectivity between two
vertices (viewed as a security metric) is well captured by this simple game.

In [5] the following Spanning Tree Game is considered. Given a connected graph
G and a cost function on its edges c : E(G)→ R, the Defender chooses a spanning
tree T of G (that can be viewed as some communication infrastructure), while the At-
tacker chooses (or “attacks”) an edge e ∈ E(G) . Then the payoff from the Defender
to the Attacker is 1− c(e) if e is in T and −c(e) otherwise. As the main result of
[5] a formula is presented for the Nash-equilibrium payoff of this game (which also
implies a description of Nash-equilibrium mixed strategies for the Attacker). Besides
allowing for a more general, matroidal setting, we will generalize the results of [5] in
the following ways. Firstly, we allow that the Attacker’s gain depends on the chosen
edge e: it will be d(e)−c(e) if e is in T (and−c(e) otherwise), where d : E(G)→R+

is a given positive weight function. Secondly, we show that the Nash-equilibrium pay-
off of the game, as well as optimum mixed strategies for both players are computable
in strongly polynomial time. We will also discuss a version of this game on digraphs.

It is also known that in the c(e)≡ 0 and d(e)≡ 1 case of the Spanning Tree Game
the Nash-equilibrium payoff is equal to the reciprocal of another interesting graph re-
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liability metric: the strength of a connected graph G, as defined by Gusfield [6], is
σ(G) = min

{
|U |

comp(G−U)−1 : U ⊆ E(G),comp(G−U)> 1
}

, where comp(G−U) is
the number of components of the graph obtained from G by deleting U . The equal-
ity between σ(G) and the reciprocal of the Nash-equilibrium payoff of the Span-
ning Tree Game is stated and proved in [4], however, an equivalent result (in a non-
game-theoretical setting) was derived in [2] from the classic edge-disjoint spanning
trees theorem of Nash-Williams and Tutte [13, Corollary 51.1a]. The notion of graph
strength was extended to a weighted version by Cunningham [2]:

σp(G) = min
{

p(U)

comp(G−U)−1
: U ⊆ E(G),comp(G−U)> 1

}
, (1)

where p : E(G)→ R+ is a positive weight function. (Here p(U) = ∑{p(e) : e ∈U};
we use this notation throughout.) In [2] a strongly polynomial algorithm was also
given for computing σp(G). It will follow from the results of this paper (see Theo-
rem 5) that σp(G) is the reciprocal of the Nash-equilibrium payoff of the Spanning
Tree Game if c(e)≡ 0 and d(e) = 1

p(e) for all e.
In [8] a similar looking, but essentially different game was considered, moti-

vated by an application in measuring the security of content-adaptive steganography.
(Steganography is the science of hiding a message in a cover file and content-adaptive
steganography is a subfield of this area that is sensitive to the varying predictability
of different parts of a cover file; see [8] for the details.) There the Defender chooses
any k-element subset H of an n-element ground set S and the Attacker chooses an
element s ∈ S. Then the payoff from the Defender to the Attacker is d(s)− c(s) if
s ∈ H and −c(s) otherwise. In [8] a strongly polynomial algorithm was given for
solving this game – meaning that the Nash-equilibrium payoff and optimum mixed
strategies for both players are computed. (In fact, the algorithm of [8] is not only
strongly polynomial, it is efficient even for problem instances corresponding to the
sizes of steganography-related applications, where the magnitude of n can easily be
in the tens of thousands; see the details in [8].)

Since spanning trees and k-element subsets are the bases of the cycle matroid
of a connected graph and the uniform matroid, respectively, the following definition
gives a common generalization of the above games. It also contains, for example,
the generalizations of the above mentioned Spanning Tree Game where spanning
edge sets of a given size or the unions of edge sets of a given number of pairwise
edge-disjoint spanning trees are chosen by the Defender (as these are the bases of
the matroid sums of the cycle matroid and a uniform matroid or copies of the cycle
matroid, respectively).

Definition 1 Assume that a matroid M = (S,I ), a positive valued weight function
d : S→ R+ and a real valued cost function c : S→ R are given. The Matroid Base
Game is played by two players, the Attacker and the Defender. The Attacker chooses
an element s ∈ S and (simultaneously) the Defender chooses a base B of M. Then the
payoff paid by the Defender to the Attacker is d(s)− c(s) or −c(s), if s ∈ B or s /∈ B,
respectively. (A negative payoff obviously means in practice that it is the Attacker
that pays the Defender the absolute value of the payoff.)
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We remark that it is a sensible assumption made in the definition of the above
mentioned security-related applications that the cost of attack c(s) paid by the At-
tacker should not be received by the Defender (as the Defender is indifferent to the
costs and efforts associated with an attack, she is only affected by the damage caused).
In other words, the payoffs given in the above definition should only correspond to
the Attacker while Defender’s loss should be d(s) or 0 if s ∈ B or s /∈ B, respectively.
This would also imply that the game is not zero-sum any more. However, it is eas-
ily shown that the thus-obtained non-zero-sum game is essentially equivalent to the
zero-sum game defined in Definition 1. This equivalency is due to the fact that the
sum of the payoffs only depends on the choice of the Attacker and it more precisely
means that Nash-equilibria of the two versions of the game are identical and the At-
tacker’s Nash-equilibrium payoff is unique in the non-zero-sum version of the game
and it is equal to the (unique) Nash-equilibrium payoff corresponding to the zero-sum
version. (An analogous statement would not be true for the Defender.) The proof of
this equivalency is a simple exercise that seems to be folklore (see [8, Lemma 1] for
a proof). We will disregard this point in the remainder of the paper and focus on the
zero-sum game defined above.

We also disregard the detail that the Attacker is granted the right to refrain from
the attack (that is, reject participating in the game) in the above security-related ap-
plications by observing that obviously, this is the rational decision for the Attacker if
and only if his Nash-equilibrium payoff (to be determined in general) is non-positive.

This paper is structured as follows. In Sect. 2 we list some necessary preliminary
results. In Sect. 3 we first derive some basic structural properties of an optimum so-
lution of the Matroid Base Game and then use these to present a strongly polynomial
algorithm to solve the game. In Sect. 4 we consider the generalization of the problem
where the Defender chooses a common base of two matroids. Although the algorithm
of Sect. 3 does not generalize to this case, we will give some partial results. These
will enable us to discuss a directed analogue of the above mentioned notion of graph
strength (1) and the corresponding Spanning Tree Game.

The main result of this paper is the strongly polynomial algorithm of Sect. 3 that
solves the Matroid Base Game in the sense that it computes the Nash-equilibrium
payoff and an optimum mixed strategy for both players (see Theorem 7). It should
be noted that the existence of such an algorithm is already known in an important
special case: it will follow from the results of Sect. 3.1 that if c ≡ 0 is assumed then
the problem is equivalent to the capacitated fractional base packing problem which
is discussed and solved in [13, Section 42.4]. Therefore the main contribution of this
paper is the generalization of that result to the case of an arbitrary cost function. This
generalization is non-trivial: in Sect. 4.1 we will present a version of the algorithm
of [13, Section 42.4] adapted to the case where common bases of two matroids are
considered and we will see that further constraints on the input data seem to be neces-
sary in order to prove a strongly polynomial running time (see Proposition 16). These
constraints are trivially fulfilled in the c ≡ 0 case, but not for a general c and d –
and the same problem would present itself if the algorithm of [13, Section 42.4] were
applied on the original game of Definition 1.

We follow the notation and terminology of [13]. All necessary background on
matroid theory and polyhedra is also to be found in [13]. We also use [13] as a source
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of citations for results considered to be classic and widely known. (In some other
cases, citations from [13] point to results that seem to be new in [13].) From game
theory we only rely on the basics of two-player, zero-sum games covered by many
textbooks on linear programming, see [11] for example.

2 Preliminary results

We will greatly rely on the descriptions of certain basic polyhedra associated with ma-
troids. Given a matroid M = (S,I ), the independent set polytope Pindependent set(M)
and the base polytope Pbase(M) are defined as the convex hulls of incidence vec-
tors of independent sets and bases, respectively. The rank function of the matroid
M = (S,I ) is denoted by r throughout the paper. The following theorem is due to
Edmonds [13, Corollaries 40.2c and 40.2d].

Theorem 1

Pindependent set(M) =
{

x ∈ RS :x(U)≤ r(U) for all U ⊆ S,

x(s)≥ 0 for all s ∈ S}

and

Pbase(M) =
{

x ∈ RS :x(U)≤ r(U) for all U ⊆ S,

x(S) = r(S),
x(s)≥ 0 for all s ∈ S} .

The following minimax theorem, also due to Edmonds, is an easy corollary of the
above description of Pindependent set(M) (see [13, Theorem 40.3] for a one-paragraph
proof).

Theorem 2 Let M =(S,I ) be a matroid and z∈RS, z≥ 0 an arbitrary non-negative
vector. Then

max{x(S) : x ∈ Pindependent set(M),x≤ z}= min{r(U)+ z(S−U) : U ⊆ S}.

The up-hull of a polyhedron P ⊆ RS is defined as P↑ = {z ∈ RS : ∃x ∈ P,x ≤ z}.
In other words, P↑ is the Minkowski-sum of P and the non-negative orthant of RS.
The above theorem immediately implies the following description of the up-hull of
the base polytope since z∈ P↑base(M) if and only if the maximum in Theorem 2 is r(S).

Corollary 3 P↑base(M) =
{

x ∈ RS : x(S−U)≥ r(S)− r(U) for all U ⊆ S
}
.

The above polyhedral results raise algorithmic questions: can one efficiently de-
cide if a given vector belongs to any of the above polyhedra? All these are answered in
the affirmative by Cunningham’s algorithm [3] that approaches Theorem 2 algorith-
mically. Observe that for an arbitrary x ∈ Pindependent set(M), x ≤ z and U ⊆ S the fol-
lowing holds: x(S) = x(U)+x(S−U)≤ r(U)+ z(S−U). This shows the max≤min
relation in Theorem 2 and also that x ∈ Pindependent set(M) and U ⊆ S are optimal for
Theorem 2 if and only if x(U) = r(U) and x(s) = z(s) for all s ∈ S−U . In other
words, Theorem 2 claims the existence of such a pair of x and U , but Cunningham’s
algorithm also finds them efficiently.
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Theorem 4 ([3]) Assume that a matroid M = (S,I ) is given by an independence
testing oracle and a vector z ∈ QS, z ≥ 0 is also given. Then there exists a strongly
polynomial algorithm that computes a vector x∈Pindependent set(M), x≤ z and a subset
U ⊆ S such that x(U) = r(U) and x(s) = z(s) for all s ∈ S−U hold. Furthermore, the
algorithm also computes a decomposition of x as a convex combination of incidence
vectors of independent sets of M.

It follows immediately that by Cunningham’s algorithm one can test the member-
ship of any given vector in Pindependent set(M), Pbase(M) or P↑base(M). A nice description
of the algorithm is given in [13, Theorem 40.4].

3 The Matroid Base Game

In this section we solve the Matroid Base Game. We start with some non-algorithmic
results and then, using these, we provide a strongly polynomial algorithm.

3.1 Non-algorithmic results

Theorem 5 Assume that the matroid M = (S,I ) and the vectors d,c ∈ RS, d > 0
are given. Then the Nash-equilibrium payoff of the Matroid Base Game is equal to

min
{

µ : µ · p+q ∈ P↑base(M)}= max
U⊆S,U 6=S

r(S)− r(U)−q(S−U)

p(S−U)
,

where p(s) = 1
d(s) and q(s) = c(s)

d(s) for all s ∈ S.

Proof Denote the set of bases of M by B and assume that a mixed strategy of the
Defender {δ (B) : B ∈B} is given. In other words, δ is a probability distribution on
B. Then assuming that the Attacker chooses a given fixed element s ∈ S in the game,
the Defender’s expected loss is

∑
s∈B∈B

δ (B) ·
(
d(s)− c(s)

)
− ∑

s/∈B∈B
δ (B) · c(s) = d(s) ·

(
∑

s∈B∈B
δ (B)

)
− c(s). (2)

Let x(s) = ∑{δ (B) : s∈ B∈B} for all s∈ S. Then the vector x∈RS is nothing but an
element of Pbase(M) by definition (since the values δ (B) form the set of coefficients of
a convex combination). Since, by definition, the Defender’s objective is to minimize
the maximum expected loss she has to suffer, her task amounts to the following by
(2):

min
{

µ : ∃x ∈ Pbase(M),d(s) · x(s)− c(s)≤ µ for all s ∈ S
}
.

Rearranging this gives that the Defender’s objective is equivalent to the following:

min
{

µ : ∃x ∈ Pbase(M),x≤ µ · p+q}.
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Using the definition of P↑base(M) this is further equivalent to the following:

min
{

µ : µ · p+q ∈ P↑base(M)}. (3)

This, together with Neumann’s Minimax Theorem [12] already proves that the
Nash-equilibrium payoff of the game is equal to the minimum in the theorem. How-
ever, by Corollary 3, µ · p+q ∈ P↑base(M) is true if and only if

µ · p(S−U)+q(S−U)≥ r(S)− r(U)

holds for all U ⊆ S. Then simple rearranging (and observing that this inequality is
trivial for U = S) immediately gives that µ · p+q ∈ P↑base(M) is true if and only if µ

is greater than or equal to the maximum on the right hand side of the equation in the
theorem. Hence the minimum of all such µ’s is exactly this maximum. ut

Since the minimum in Theorem 5 corresponds to the minimum expected loss the
Defender has to suffer and that, by Neumann’s Minimax Theorem, is equal to the
Attacker’s maximum guaranteed expected gain, it is not much of a surprise that the
maximum in Theorem 5 is related to the latter.

Proposition 6 Assume that the subset U ⊆ S maximizes the right hand side of the
equation in Theorem 5 and p is defined as in Theorem 5. Then

α(s) =


p(s)

p(S−U)
if s ∈ S−U

0 if s ∈U

defines an optimum mixed strategy for the Attacker in the Matroid Base Game.

Proof Denote by µ∗ the Nash-equilibrium payoff of the game which is equal to the
common optimum in Theorem 5. We need to show that no matter which base the
Defender chooses, α guarantees the Attacker an expected gain of at least µ∗. So
assume the Defender chooses the base B; then the Attacker’s expected gain is

∑
s∈B−U

p(s)
p(S−U)

·
(
d(s)− c(s)

)
− ∑

s∈S−U−B

p(s)
p(S−U)

· c(s) =

∑
s∈B−U

p(s)
p(S−U)

·d(s)− ∑
s∈S−U

p(s)
p(S−U)

· c(s) =

|B−U |
p(S−U)

− q(S−U)

p(S−U)
≥

r(S)− r(U)−q(S−U)

p(S−U)
= µ

∗,

where we used p(s) ·d(s) = 1, p(s) ·c(s) = q(s) and |B−U | ≥ r(S)− r(U). (The latter
is true since |B|= r(S) and |B∩U | ≤ r(U).) ut

The above proposition implies, for example, the slightly surprising fact that if
d(s) = 1 for all s ∈ S (and c is arbitrary) then the uniform distribution on a suitably
chosen subset U ⊆ S is an optimal mixed strategy for the Attacker.

Theorem 5 and Proposition 6 together already contain and generalize most results
of [5] on the Spanning Tree Game mentioned in Sect. 1 (although in [5] the results
are stated in a somewhat more extensive form and the proofs are much more lengthy
and complicated).
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3.2 A Strongly polynomial algorithm

As it is covered by many introductory textbooks on linear programming (see [11,
Section 8.1] for example), every two-player zero-sum game given by its payoff matrix
is solvable in polynomial time via linear programming. Obviously, this is not a viable
option in case of the Matroid Base Game since the number of the Defender’s possible
choices (that is, the number of bases of M) is typically exponential in |S|which makes
the size of the payoff matrix also exponential. The following theorem is the main
contribution of the paper.

Theorem 7 Assume that a matroid M = (S,I ) is given by an independence testing
oracle and the vectors d,c ∈ QS, d > 0 are also given. Then there exists a strongly
polynomial algorithm that computes the Nash-equilibrium payoff of the Matroid Base
Game and an optimum mixed strategy for both players.

As already mentioned in Sect. 1, the above theorem is essentially known in the
special case of c= 0: then, by the proof of Theorem 5, solving the Matroid Base Game
is equivalent to the capacitated fractional base packing problem discussed in [13,
Section 42.4], where a strongly polynomial algorithm is given in [13, Theorem 42.7].
However, that algorithm does not seem to generalize to the c 6= 0 case. Hence the
above theorem can also be regarded as a generalization of [13, Theorem 42.7].

Proof of Theorem 7. Denote p and q as in Theorem 5. By Theorem 5, we need to
compute a value µ and a subset U ⊆ S, U 6= S that are optimal for the minimax
relation in Theorem 5. Indeed, then µ is the Nash-equilibrium payoff of the game, an
optimum mixed strategy for the Attacker is given by U according to Proposition 6 and
running Cunningham’s algorithm (Theorem 4) on z= µ · p+q yields a decomposition
of an x ∈ Pbase(M), x ≤ z as a convex combination of incidence vectors of bases, the
coefficients of which describe an optimum mixed strategy for the Defender according
to the proof of Theorem 5.

(Note that x ∈ Pbase(M) holds for the x computed by Cunningham’s algorithm. In-
deed, according to Theorem 2, x maximizes x(S) over all vectors for which
x ∈ Pindependent set(M) and x ≤ z hold. But since z ∈ P↑base(M) implies the existence of
such an x with x(S) = r(S), the one computed by the algorithm must be in Pbase(M).
This also implies that in the convex combination computed by the algorithm all inci-
dence vectors correspond to bases.)

Let µ ∈ R, U ⊆ S and x ∈ Pbase(M) be arbitrary such that x≤ µ · p+q. Then

r(S) = x(S) = x(U)+ x(S−U)≤ r(U)+µ · p(S−U)+q(S−U) (4)

follows from the description of Pbase(M) (Theorem 1). Rearranging this gives µ ≥
r(S)−r(U)−q(S−U)

p(S−U) that is, the max≤min relation of Theorem 5. Furthermore, the opti-

mality conditions for Theorem 5 can also be extracted from (4): µ =
r(S)−r(U)−q(S−U)

p(S−U)

holds if and only if x(U) = r(U) and x(s) = µ · p(s)+q(s) for all s ∈ S−U .
The algorithm will maintain a value µ , a subset U ⊆ S, U 6= S and a vector z ∈RS

such that the following conditions are met throughout:
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1. 0≤ z≤ µ · p+q
2. z(s) = µ · p(s)+q(s) for all s ∈ S−U
3. z(U) = r(U)
4. z(S) = r(S)
5. z(W )≤ r(W ) for all subsets W ⊆U

In other words, almost all optimality conditions are maintained with the single ex-
ception being that z ∈ Pbase(M) is relaxed by not prescribing z(W )≤ r(W ) on subsets
W 6⊆U . The algorithm terminates when z ∈ Pbase(M) is achieved.

Initializing the algorithm is not at all trivial, we will come back to this at the end
of the proof. Instead, we assume for now that µ , z and U fulfill conditions 1–5 and
describe the steps the algorithm keeps iterating:

Algorithm 1.

Step 1. Run Cunningham’s algorithm (Theorem 4) on z. Assume it gives
x ∈ Pindependent set(M) and Y ⊆ S such that

x≤ z,x(Y ) = r(Y ) and x(s) = z(s) for all s ∈ S−Y. (5)

If x = z then STOP and output µ , U (and x).

Step 2. If x 6= z then let

U ′ :=U ∪Y,

µ
′ :=

r(S)− r(U ′)−q(S−U ′)
p(S−U ′)

and

z′(s) :=

{
x(s) if s ∈U ′

µ ′ · p(s)+q(s) if s ∈ S−U ′.

Continue at Step 1 with U ′, µ ′ and z′ instead of U , µ and z.

We will show that these steps maintain conditions 1–5. This is immediately true
for conditions 2 and 5: the former by the definition of z′ and the latter because z′(s) =
x(s) for all s ∈U ′ and x ∈ Pindependent set(M). We continue with condition 3.

Claim z′(U ′) = r(U ′)

Proof Using z(U) = r(U), x(Y ) = r(Y ) and the submodularity of the rank function
we get

z(U)+ x(Y ) = r(U)+ r(Y )≥ r(U ∪Y )+ r(U ∩Y )≥ x(U ∪Y )+ z(U ∩Y ). (6)

The last inequality follows since x ∈ Pindependent set(M), so x(U ∪Y ) ≤ r(U ∪Y ) and
because U ∩Y ⊆U , so z(U ∩Y ) ≤ r(U ∩Y ) by condition 5 (which is fulfilled by z).
Comparing the two ends of (6) we get z(U)+x(Y ) = z(U−Y )+z(U ∩Y )+x(Y ) and
x(U ∪Y )+ z(U ∩Y ) = x(U −Y )+ z(U ∩Y )+ x(Y ). However, z(U −Y ) = x(U −Y )
follows from (5). This implies that all inequalities in (6) are fulfilled with equation.
In particular, x(U ∪Y ) = r(U ∪Y ), which proves the claim by the definition of z′ and
U ′. ut
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This claim immediately implies condition 4:

z′(S) = z′(U ′)+ z′(S−U ′) = r(U ′)+µ
′ · p(S−U ′)+q(S−U ′) = r(S) (7)

by the definitions of z′ and µ ′. Next we show the following.

Claim µ < µ ′ and U 6=U ′ 6= S.

Proof Since U ⊆U ′ and because conditions 2 and 4 are fulfilled by z we get

r(S) = z(S) = z(U ′)+ z(S−U ′) = z(U ′)+µ · p(S−U ′)+q(S−U ′).

Comparing this with (7) we get

(µ ′−µ) · p(S−U ′) = z(U ′)− r(U ′) = z(U ′)− z′(U ′).

We know that x ≤ z and x 6= z (since the algorithm did not terminate in Step 1). This
together with (5) implies x(t) < z(t) for some t ∈ Y ⊆U ′. Since z′(s) = x(s) ≤ z(s)
for all s ∈U ′, we get z′(U ′) < z(U ′). Hence (µ ′− µ) · p(S−U ′) > 0 which proves
µ < µ ′ and U ′ 6= S by the positivity of p. Finally, r(U ′) = z′(U ′) was proved above, so
now we have r(U ′)< z(U ′). Since condition 5 was met by z, this implies U ′ 6⊆U . ut

Last, we show that the algorithm maintains condition 1. z(s)′ ≤ µ ′ · p(s)+ q(s)
is clear by the definition of z′ if s ∈ S−U ′. If, on the other hand, s ∈U ′ then by the
above claim and the positivity of p we have

z′(s) = x(s)≤ z(s)≤ µ · p(s)+q(s)< µ
′ · p(s)+q(s).

Similarly,
z′(s) = µ

′ · p(s)+q(s)> µ · p(s)+q(s) = z(s)≥ 0

is clear if s ∈ S −U ′ ⊆ S −U . And in the s ∈ U ′ case z′(s) = x(s) ≥ 0 by
x ∈ Pindependent set(M).

We have shown that the algorithm keeps maintaining all conditions 1–5 while it
also keeps strictly increasing U (by U ⊆U ′, U 6= U ′). Therefore it terminates after
at most |S| iterations and provides a µ , U and z such that these fulfill conditions 1–5
and z∈ Pbase(M). (The latter is true since z ∈ Pindependent set(M) and z(S) = r(S) follow
from Step 1 of the algorithm and condition 4, respectively, which together imply
z ∈ Pbase(M) by Theorem 1.) Hence all optimality conditions are met at termination.

To complete the proof we show how to initialize the process. Let

µ0 := max
s∈S

r(S)− r(S−{s})−q(s)
p(s)

and let s0 be an element on which this maximum is attained. Furthermore, let z0 :=
µ0 · p+q. Then z0(s)≥ r(S)− r(S−{s}) for all s ∈ S and z0(s0) = r(S)− r(S−{s0}).
These imply z0 ≥ 0 and that z0(s0) = 1 if s0 is a bridge (an element common to every
base) and z0(s0) = 0 otherwise. Run Cunningham’s algorithm (Theorem 4) on z0 and
assume it gives x0 ∈ Pindependent set(M) and U0 ⊆ S such that x0 ≤ z0, x0(U0) = r(U0)
and x0(s) = z0(s) for all s ∈ S−U0.
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First assume x0(S)= r(S). Then we claim that x := x0, µ := µ0 and U := S−s0 sat-
isfy all optimality criteria (see the first paragraph of the proof), therefore the process
can immediately stop and output these. To show this, first observe that x0(S) = r(S)
implies x0 ∈ Pbase(M). x0 ≤ µ0 · p+ q is evident by x0 ≤ z0. So we need to show
x0(U) = r(U) and x0(s0) = z0(s0) (since s0 is the single element of S−U). For this,
first assume that s0 is not a bridge. Then z0(s0) = 0, so x0(s0) = 0 by x0 ≤ z0. Fur-
thermore,

x0(U) = x0(S)−0 = r(S) = r(U)

since s0 is not a bridge. Now assume that s0 is a bridge. Then z0(s0) = 1. Since
x0 ∈ Pbase(M), x0(s0) = 1 must also hold (because s0 is present in every base so
x0(s0) is a convex combination of 1’s). Finally,

x0(U) = x0(S)−1 = r(S)−1 = r(U).

Now assume x0(S) < r(S). Then define µ ′ and z′ as in Step 2. of the algorithm
with U0 instead of U ′ and x0 instead of x. We claim that µ ′, z′ and U0 fulfill condi-
tions 1–5 above thus they correctly initialize the algorithm. This is again evident for
conditions 2 and 5. Condition 3 comes from z′(U0) = x0(U0) = r(U0). From this, con-
dition 4, z′(S) = r(S) is shown in the same way as in (7) above (substituting U ′ =U0).
Furthermore, comparing (7) with

r(S)> x0(S) = x0(U0)+ x0(S−U0) = r(U0)+µ0 · p(S−U0)+q(S−U0)

(where we used that x0(s) = z0(s) for all s ∈ S−U0) gives us µ0 < µ ′. From this,
condition 1 can be shown exactly the same way as above. ut

To obtain a running time analysis of Algorithm 1 we first mention that the running
time of every iteration is dominated by invoking Cunningham’s algorithm. However,
analyzing the running time of Cunningham’s algorithm is not that straightforward: in
its original form we get the not too appealing bound that it takes at most |S|9 itera-
tions, each of which consists of at most |S|6 independence oracle calls and O(|S|2)
further elementary operations. The only advantage of this form of the algorithm is
that it only performs additive arithmetic on the input data. However, a variant of Cun-
ningham’s algorithm is also mentioned in [3]: by applying Gaussian elimination in
each iteration, the number of iterations can be reduced to |S|6 such that each iteration
consists of at most |S|3 independence oracle calls and O(|S|3) further elementary op-
erations. Since Algorithm 1 uses non-additive arithmetics on the input data anyways,
it is obviously better to use this modified version of Cunningham’s algorithm for the
purposes of Algorithm 1. Since it was shown above that it terminates after at most |S|
iterations, we get that running Algorithm 1 takes at most |S|10 independence oracle
calls and O(|S|10) further elementary operations on the input data. This is obviously
still far from being appealing; however, it should be noted that substantially better
running times can probably be achieved in specific applications. Indeed, a single run-
ning of an independence oracle typically reveals much more about the underlying
matroid than just the question of independence of a certain subset and the extra in-
formation could be sufficient to reduce the necessary number of oracle calls in each
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iteration of Cunningham’s algorithm. Furthermore, since Algorithm 1 uses Cunning-
ham’s algorithm as a “black box”, it could be replaced by any other method with a
better running time that solves the problem of Theorem 4 for a certain, special class
of matroids.

We remark that in the minimax relation of Theorem 5 and the algorithm of the
proof of Theorem 7 we assumed the strict positivity of p (as it was motivated by the
Matroid Base Game). However, this could easily be relaxed to p ≥ 0 in both cases.
Then no µ corresponding to Theorem 5 may exist: if N = {s ∈ S : p(s) = 0} then
an appropriate µ exists if and only if q(S−U) ≥ r(S)− r(U) holds for all subsets
U for which U ∪N = S (as it can be read from the proof of Theorem 5). If that
condition is assumed then the maximum in Theorem 5 should be taken across subsets
U ∪N 6= S. The algorithm in the proof of Theorem 7 works with no modification, as
it also maintains the condition U ∪N 6= S. The only change in the proof of Theorem 7
would be that the maximum in the initialization step is taken across s /∈ N and if the
above necessary and sufficient condition on the existence of µ does not hold then that
is also easily revealed during initializaton.

4 The Common Base Game

The following generalization of Definition 1 is fairly natural.

Definition 2 Assume that the matroids M1 = (S,I1) and M2 = (S,I2) are given
that have a common base. Assume further that c,d ∈ RS, d > 0 are also given. In
the Common Base Game the Attacker chooses an element s ∈ S and (simultaneously)
the Defender chooses a common base B of M1 and M2. Then the payoff paid by the
Defender to the Attacker is d(s)− c(s) or −c(s), if s ∈ B or s /∈ B, respectively.

In this section we generalize some of the results on the Matroid Base Game to the
Common Base Game. This is made possible by the fact that the generalizations of the
results of Sect. 2 on matroid polyhedra exist for the intersection of two matroids too.
Denote by Pcommon independent set(M1,M2) and Pcommon base(M1,M2) the convex hulls of
incidence vectors of common independent sets and common bases of M1 and M2,
respectively. (Whenever we mention Pcommon base(M1,M2) below, we assume that it is
non-empty, that is, M1 and M2 have a base in common.) The following fundamental
result is again due to Edmonds [13, Corollary 41.12b].

Theorem 8

Pcommon independent set(M1,M2) = Pindependent set(M1)∩Pindependent set(M2).

Denote the rank functions of M1 and M2 by r1 and r2, respectively. Furthermore,
let r(U) = min{r1(Y )+ r2(U −Y ) : Y ⊆U} for all U ⊆ S. Then by Edmonds’ clas-
sic matroid intersection theorem [13, Theorem 41.1] r(U) is the maximum size of a
common independent set of M1 and M2 contained in U . The following descriptions
of Pcommon independent set(M1,M2) and Pcommon base(M1,M2) follow easily from Theo-
rem 8.
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Theorem 9

Pcommon independent set(M1,M2) =
{

x ∈ RS :x(U)≤ r(U) for all U ⊆ S,

x(s)≥ 0 for all s ∈ S}

and

Pcommon base(M1,M2) =
{

x ∈ RS :x(U)≤ r(U) for all U ⊆ S,

x(S) = r(S),
x(s)≥ 0 for all s ∈ S} .

Furthermore, the following generalization of Theorem 2 is also true (although it
is a much deeper result than Theorem 2):

Theorem 10 [13, Corollary 41.12h] Let M1 =(S,I1) and M2 =(S,I2) be matroids
and z ∈ RS, z≥ 0 an arbitrary non-negative vector. Then

max{x(S) : x ∈ Pcommon independent set(M),x≤ z}=
min{r(U)+ z(S−U) : U ⊆ S}.

This, in turn, yields a description of the up-hull of Pcommon base(M1,M2) the same
way as Theorem 2 implied Corollary 3.

Corollary 11 [13, Section 41.4b]

P↑common base(M1,M2) =
{

x ∈ RS : x(S−U)≥ r(S)− r(U) for all U ⊆ S
}
.

Finally, the extension of Cunningham’s algorithm of Theorem 4 corresponding to
Theorem 10 was also given by Cunningham.

Theorem 12 [3] Assume that the matroids M1 = (S,I1) and M2 = (S,I2)
are given by independence testing oracles and a vector z ∈ QS, z ≥ 0 is also given.
Then there exists a strongly polynomial algorithm that computes a vector
x ∈ Pcommon independent set(M1,M2), x ≤ z and a subset U ⊆ S such that x(U) = r(U)
and x(s) = z(s) for all s ∈ S−U hold.

Cunningham’s algorithm in its original form did not compute a decomposition of
x as a convex combination of incidence vectors of common independent sets, but that
hiatus is filled by [13, Theorem 41.13].

Based on all these results, the generalization of Theorem 5 also follows.

Theorem 13 Assume that the matroids M1 = (S,I1) and M2 = (S,I2) have a com-
mon base and let the vectors d,c ∈ RS, d > 0 be given. Then the Nash-equilibrium
payoff of the Common Base Game is equal to

min
{

µ : µ · p+q ∈ P↑common base(M1,M2)}= max
U⊆S,U 6=S

r(S)− r(U)−q(S−U)

p(S−U)
,

where p(s) = 1
d(s) and q(s) = c(s)

d(s) for all s ∈ S.
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Proof All steps of the proof of Theorem 5 extend straightforwardly to the Common
Base Game. In particular, the Defender’s task is equivalent to

min
{

µ : µ · p+q ∈ P↑common base(M1,M2)}.

From this, the minimax relation of the theorem follows the same way from Corol-
lary 11 as did Theorem 5 from Corollary 3. ut

We omit formulating the straightforward generalization of Proposition 6 which is
also true with an identical proof.

4.1 Algorithmic results on the Common Base Game

Unfortunately, the proof of Theorem 7 does not generalize to the common base case
since it relies on the submodularity of the rank function which is not true for r. On the
other hand, the polynomial time solvability of the game is immediate from the above
results by binary search.

Corollary 14 Assume that the matroids M1 = (S,I1) and M2 = (S,I2) have a com-
mon base and they are given by independence testing oracles. Assume further that
the vectors d,c ∈ QS, d > 0 are also given. Then the Nash-equilibrium payoff of the
Common Base Game and optimum mixed strategies for both players can be computed
in polynomial time.

Proof Testing whether the Nash-equilibrium payoff of the game is (strictly) bigger
than a given value ν amounts to testing whether the common optimum in Theo-
rem 13 is bigger than ν . This is equivalent to z := ν · p+ q /∈ P↑common base(M1,M2).
This, in turn, can be decided with Cunningham’s algorithm from Theorem 12:
z /∈ P↑common base(M1,M2) if and only if x(S)< r(S) holds for the vector x computed by
the algorithm. This proves the corollary by performing binary search on ν : after find-
ing the common optimum of Theorem 12 one can compute optimum mixed strategies
for both players analogously to what is written in the first paragraph of the proof of
Theorem 7. ut

Furthermore, we describe an algorithm below that is strongly polynomial in cer-
tain relevant special cases. The following algorithm is simpler than Algorithm 1 and
it is an adaptation of the one in the proof of [13, Theorem 42.7]. The algorithm can
be initialized with any subset U ⊆ S, U 6= S and then it keeps iterating the following
steps (with p and q being the same as above).

Algorithm 2.
Step 1. Let

µ :=
r(S)− r(U)−q(S−U)

p(S−U)

Step 2. Run Cunningham’s algorithm of Theorem 12 on z := µ · p+ q. Assume it
gives x ∈ Pcommon independent set(M1,M2) and U ′ ⊆ S such that x≤ z, x(U ′) = r(U ′) and
x(s) = z(s) for all s ∈ S−U ′.
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Step 3. If x(S) = r(S) then STOP and output µ and U ′. Otherwise continue at Step 1
with U ′ instead of U .

x(S) < r(S) and x(U ′) = r(U ′) show U ′ 6= S as long as the algorithm does not
terminate (implying that the definition of µ in Step 1 is valid). If the algorithm ter-
minates then it finds the optima of Theorem 13 (and thus it solves the Common Base
Game). Indeed,

r(S) = x(S) = x(U ′)+ x(S−U ′) = r(U ′)+µ · p(S−U ′)+q(S−U ′)

shows µ =
r(S)−r(U ′)−q(S−U ′)

p(S−U ′) and x(S) = r(S) implies x ∈ Pcommon base(M) and hence

z = µ · p+q ∈ P↑common base(M), so µ is the common optimum value in Theorem 13.
Although we cannot prove (in general) that the algorithm terminates in strongly poly-
nomial time, the following proposition at least implies that it is finite.

Proposition 15 The value of µ keeps strictly increasing during Algorithm 2.

Proof Assume that the process did not terminate in Step 3 with µ , U ′ and x (meaning
that x(S)< r(S)) and denote by µ ′ the value computed in Step 1 of the next iteration.
Then from the definition of µ ′ we have

r(S) = r(U ′)+µ
′ · p(S−U ′)+q(S−U ′)

and x(S)< r(S) implies

r(S)> x(S) = x(U ′)+ x(S−U ′) = r(U ′)+µ · p(S−U ′)+q(S−U ′).

Comparing the two proves µ < µ ′ as claimed. ut

Since the subset U determines the value of µ , the above proposition indeed shows
that the process is finite.

Note that in the following proposition the notation
∣∣{p(U) : U ⊆ S}

∣∣ refers to the
number of different values the sum ∑s∈U p(s) can attain if U ranges over all subsets
U ⊆ S (and analogously for q).

Proposition 16 Algorithm 2 is strongly polynomial if either
∣∣{p(U) : U ⊆ S}

∣∣ or∣∣{q(U) : U ⊆ S}
∣∣ is bounded from above by a fixed polynomial of |S|.

Proof Denote f (U) = r(U)+q(S−U) for all U ⊆ S. We will prove that, except for
the very last iteration, the value of p(U) keeps strictly increasing during the process
and the running of the algorithm can be separated into two phases (each possibly
empty) such that the value of f (U) keeps strictly decreasing during the first one and
it keeps strictly increasing during the second. Since

∣∣{ f (U) : U ⊆ S}
∣∣≤ |S| · ∣∣{q(U) :

U ⊆ S}
∣∣ is obvious, this will prove both statements of the proposition (as it will imply

that Algorithm 2 must terminate after at most min
{
|{p(U) : U ⊆ S}|,2 · |{ f (U) : U ⊆

S}|
}

iterations).
Denote by µ , x, U ′ and µ ′, x′, U ′′ the values of the corresponding parameters

generated in two consecutive iterations of the algorithm and assume that the process
did not terminate even in the second one.
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The properties of x′ written in Step 2 imply x′(S) = x(U ′′)+x(S−U ′′) = f (U ′′)+
µ ′ · p(S−U ′′). Furthermore, x′(S) < r(S) since the algorithm did not terminate with
U ′′. These, together with the definition of µ ′ give

f (U ′′)+µ
′ · p(S−U ′′)< f (U ′)+µ

′ · p(S−U ′). (8)

Next, we have x(S) = f (U ′)+µ · p(S−U ′) implied by properties of x written in Step
2. Furthermore, x ∈ Pcommon base(M1,M2) and x≤ µ · p+q give x(S) = x(U ′′)+x(S−
U ′′)≤ f (U ′′)+µ · p(S−U ′′). Together these yield

f (U ′)+µ · p(S−U ′)≤ f (U ′′)+µ · p(S−U ′′). (9)

From (8) and (9) we get

µ · (p(S−U ′)− p(S−U ′′))≤ f (U ′′)− f (U ′)< µ
′ · (p(S−U ′)− p(S−U ′′)). (10)

Comparing the ends of (10) and using µ < µ ′ from Proposition 15 we get p(S−U ′)−
p(S−U ′′)> 0 and thus p(U ′)< p(U ′′) as claimed. This, together with (10) implies
f (U ′′)− f (U ′)< 0 if µ ′ ≤ 0 and f (U ′′)− f (U ′)> 0 if µ > 0. This proves what was
claimed on the behaviour of f (U) above by Proposition 15. ut

Corollary 17 The Common Base Game is solvable in strongly polynomial time if
c(s)= 0 for all s∈ S (and d is arbitrary) or if d(s)= 1 for all s∈ S (and c is arbitrary).

Proof Immediately from Proposition 16.

Although Proposition 16 may guarantee the strongly polynomial time solvability
of the game in other special cases raised by applications, it remains open if the same
holds in general.

4.2 Directed strength and the Arborescence Game

To conclude this paper, we briefly discuss an application of the results of this section:
a directed version of the notion of graph strength (see Eq.(1)) and the corresponding
Spanning Tree Game mentioned in Sect. 1. (In [2, Section 6] a notion distantly related
to strength was considered on digraphs. The following version, which seems to be
new, is different from that and it is a direct analogue of the undirected notion.)

Assume a digraph D = (V,S) with vertex set V and arc set S is given. Call a subset
of the nodes R⊆V a source set if every node of D is reachable from a node in R via
a directed path. A vertex r ∈V is a source node if {r} is a single-element source set.
Assume that D has a source node. For every arc set U ⊆ S, denote by source(D−U)
the minimum cardinality of a source set in the digraph obtained from D by deleting
U . (In other words, source(D−U) is the number of weak components in a maximum
size branching of D−U .) Assume further that a positive weight function p : S→R+

is given on the arcs. Then we can define the directed strength−→σ p(D) in the following
way:

−→
σ p(D) = min

{
p(U)

source(D−U)−1
: U ⊆ S,source(D−U)> 1

}
.
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Recall that an arborescence of D is a subset A of the arcs that is a spanning tree
of the underlying undirected graph such that the digraph (V,A) has a source node. (It
is well-known and elementary that the existence of an arborescence is equivalent to
the existence of a source node.) Define the Arborescence Game, the straightforward
analogue of the Spanning Tree Game in the following way: given the cost function
c ∈ RS and the weight function d ∈ RS, d > 0, the Attacker chooses an arc s ∈ S, the
Defender chooses an arborescence A⊆ S and then the payoff paid by the Defender to
the Attacker is d(s)− c(s) or −c(s), if s ∈ A or s /∈ A, respectively.

Theorem 18 The Nash-equilibrium payoff of the Arborescence Game is

max
U⊆S,U 6= /0

source(D−U)−1−q(U)

p(U)
,

where p(s) = 1
d(s) and q(s) = c(s)

d(s) for all s ∈ S.

Proof It is well-known that arborescences can be described as the common bases of
two matroids (see [13, Section 52.10], for instance): let M1 = (S,I1) be the cycle
matroid of the underlying undirected graph of D and let M2 = (S,I2) be the partition
matroid in which U ∈I2 for an arc set U if no two arcs in U enter a common vertex.
One easily checks that the common bases of M1 and M2 are the arborescences of
D and r(S)− r(S−U) = source(D−U)− 1 for all subsets U ⊆ S (where r(U) is
the maximum size of a common independent set contained in U). Then the theorem
follows immediately from Theorem 13. ut

We remark that an optimum mixed strategy for the Attacker can be determined
from any subset U at which the maximum in Theorem 18 is attained by applying the
formula of Proposition 6 on S−U (see the remark after Theorem 13). The following
theorem shows the relation of the game to −→σ p(D).

Theorem 19 Assume that a digraph D = (V,S) is given that has a source node and
a weight function p ∈ RS, p > 0 is also given. Then −→σ p(D) is the reciprocal of the
Nash-equilibrium payoff of the Arborescence Game with d(s) = 1

p(s) and c(s) = 0 for

all s ∈ S. Furthermore, −→σ p(D) as well as optimum mixed strategies for both players
can be computed in strongly polynomial time.

Proof Immediately from Corollary 17 and the proof of Theorem 18. ut
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