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Abstract:

Two players, Alice and Bob play the following game. A list of positive numbers d1, d2, . . . , dn

and an integer 1  k  n are given. Alice chooses a k-element subset S of {1, 2, . . . , n} and,
simultaneously, Bob chooses an integer i 2 {1, 2, . . . , n}. If i /2 S then there is no payo↵. If,
on the other hand, i 2 S then Alice pays Bob the amount of di. This two-player, zero-sum
game was introduced in [6] as a means of analyzing the security (or detectability) of content-
adaptive steganography. A formula for computing a pair of Nash-equilibrium strategies was
also given in [6], but this formula was shown in [10] to be incorrect for certain choices of the
parameters. In [10], the game was also generalized to allow for costs, and this more general
version was solved in the sense that finding a Nash-equilibrium was shown to be possible
in polynomial time by solving an appropriate linear program. In this paper, we solve the
(generalized version of the) game in a stronger sense: we provide (correct) formulas that give
a pair of Nash-equilibrium strategies and thus show that these are possible to compute in
strongly-polynomial time.

Keywords: Steganography, Game Theory, Nash-equilibrium

1 Introduction

Steganography is closely related to cryptography, but its task is very di↵erent: while cryptography aims
at hiding the content of a message, steganography aims at hiding the very existence of the (possibly
encoded) message [5, 8]. In other words, while cryptography provides the code to encrypt a message with,
steganography provides the “invisible ink” to write it down with. The basis of a number of widespread
steganographic methods is to use some kind of a cover media – typically a video, an image or an audio file –
and modify certain bits in it. The modified media, called the stego, is indistinguishable to the naked eye or
ear from the original one, but the altered bits can carry the hidden message. For example, steganographic
algorithms that use image files as covers very often embed information in the least significant bits of pixel
values.

Obviously, a successful steganographic algorithm needs to be resistant to much more sophisticated
detection methods than plain human observation. The art and science of testing files for being stegos
is called steganalysis and it relies on various elaborate statistical methods. For example, in the case of
the above mentioned least significant bit steganography, steganalysis can be based on the fact that pixel
values can be predicted up to a certain accuracy from neighboring pixel values.

The idea behind content-adaptive steganography is that the predictability of a certain bit in a cover
file can depend on the position of the bit [1]. For example, in a natural image file a pixel in a smooth area
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is much more predictable than one on the boundary of a sharp edge or corner. Consequently, focusing
the embedding on less predictable parts of the cover might lead to more secure (that is, less detectable)
steganography. On the other hand, the steganalyst can also exploit this and focus the search on less
predictable spots.

Using game-theoretical tools for measuring steganographic capacity has become quite common, see
e.g. [4, 9, 10, 6, 7, 13, 15, 16, 2]. The (Basic) Steganography Game was introduced in [6] in order
to analyze the theoretical bounds of security or detectabiliy of content-adaptive steganography (from
the steganographer’s or the steganalyst’s perspective, respectively) and to determine optimal embedding
positions. The game is defined as follows. Assume that the steganographer (by the name of Alice) has n
embedding positions to choose from. Each of these positions corresponds to a bit of the cover file, and
pi for all 1  i  n denotes the probability that the value of the ith bit is equal to 1. We assume that
the probabilities pi are known to both players. The game is started by Alice, who chooses k embedding
positions (where 1  k  n is given) and creates the stego file by flipping the corresponding bits in the
cover file. Then comes Nature and chooses either the original cover file or the modified stego file by
flipping an unbiased coin and sends the chosen file through the communication channel. The steganalyst
(by the name of Bob) keeps the channel under surveillance, which means that he chooses an index i from

1 to n and queries the value of the bit correspoding to the ith position. Based on this information, Bob
must decide whether it was the cover or the stego file that Nature chose to send through the channel.
The game is over at this point: Bob’s payo↵ is 1 or (�1) depending on wheter his guess is right or wrong,
respectively, and Alice’s payo↵ is the negative of Bob’s payo↵ in both cases.

It is easy to show that Bob’s expected payo↵ is 2 · max{pi, 1� pi}� 1 or 0, depending on whether the

ith bit (i.e., the queried one) is or is not among the k bits chosen by Alice, respectively (see Lemma 2),
and the expected payo↵ for Alice is obviously the negative of Bob’s. Therefore, the Basic Steganography
Game is equivalent to the one described in the abstract (with di = 2 · max{pi, 1 � pi} � 1).

Since the above game is a two-player, zero-sum game, it has a unique Nash-equilibrium value (by
Neumann’s classic Minimax Theorem, see Section 2.1). It is argued in [6] that this value is a good
measure of security for content-adaptive steganography since it represents the maximum guaranteed
expected payo↵ the players can achieve. Furthermore, it is sensible for the steganographer (Alice) to
choose the embedding positions according to an optimum mixed strategy of the game.

The above game was generalized in [10] by incorporating the cost of steganalysis. The Extended
Steganography Game is defined as follows. Assume that besides the values that define the Basic Steganog-
raphy Game (that is, n, k and p1, p2, . . . , pn) a further value ci is given for all 1  i  n, which represents

the cost Bob has to pay for querying the ith bit. It is argued in [10] that this generalization makes sense:
steganalysis is obviously a costly procedure and since obtaining side information on various parts of a file
to estimate the values pi might not be equally easy, it is sensible to assume that the cost of steganalysis
is nonuniform. This means that the definition of the steganography game is modified in the following
way: if Bob queries the ith bit then his payo↵ is 1 � ci or �1 � ci if his guess (on whether the observed
file is a cover or a stego) is right or wrong, respectively. Since this modification could result in a negative
expected gain for Bob (if the cost of steganalysis is too high to make it worth), it is also sensible to
assume that he has the option not to engage in the game at all. Since the cost of steganalysis obviously
does not a↵ect Alice, her payo↵ is not modified: it is still �1 or 1 if Bob is right or wrong, respectively.
This means that the Extended Steganography Game is not a zero-sum game any more, but it has an
important property: the sum of the players’ payo↵s depends only on the choice of one of the players
(namely, Bob). We will see in Section 2.1 that this special property implies that the game can be treated
as a zero-sum game in most respects.

As mentioned in the abstract, a formula for computing the Nash-equilibrium value and an optimum
pair of mixed strategies of the basic version of the Steganography Game (where ci = 0 for all i) was given
in [6]. However, it was pointed out in [10] that for certain choices of the parameters, the formula of [6] is
incorrect and a family of counterexamples to the validity of the formula was also given. (The incorrectness
of the formula of [6] is unfortunately not only due to some minor technicality, their argument missed a
point that is nontrivial to resolve. See the comment after Theorem 7.) An e�cient method for solving
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the (extended) game was given in [10], but that relies on solving a linear program with O(n) variables
and O(n) constraints. This implies that, although the solution proposed in [10] yields a polynomial
algorithm, it is infeasible for a typical steganographic application, where the value of n can easily be
in the ranges of many thousands. Furthermore, since the main intended purpose of the Steganography
Game is to analyze the security/detectability of content-adaptive steganography, a solution in the spirit
of [6] (that is, a formula) serves this purpose much better since it opens up the possibility of analyzing
how the optimum reacts to changes in the input.

The main contribution of this paper is that it presents such a formula for the Extended Steganography
Game (see Theorem 7) and thus it shows that the game is solvable within a running time that can be
acceptable even for problem instances with a size corresponding to real-life applications (see Corollary 10).
It is also shown that it is optimal for Bob to reject the game if and only if

Pn
i=1

ci

di
� k; this statement

(which does not follow from the results of [10]) is also an example for the fact that a direct formula is
more appropriate for the purposes of analysis. The formula presented in Theorem 7 happens to contain
the (faulty) formula of [6] as a special case in the sense that it clearly shows the bounds within which the
formula of [6] is correct.

This paper is organized as follows: In Section 2, we summarize all necessary preliminariy results, both
on game theory in general and on the Steganography Game in particular. Then in Section 3, we present
and prove the main result of the paper. Finally, Section 4 concludes the paper. The paper is intended
to be self-contained, we reprove all necessary results from [10]. Furthermore, the proof presented here on
the main result of [10] is much simpler than the one given in [10] (as the theory of blocking polyhedra,
on which the argument of [10] was built, is completely avoided).

2 Preliminary Results

2.1 Preliminaries on Game Theory

We assume that the reader is acquainted with the most basic concepts of game theory (see [10, 14]).
Nevertheless, we still summarize the most relevant notions and results very briefly below with the main
intention of being able to state Lemma 1.

A two-player (finite) game is defined as a pair (A, B), where A and B are given m⇥ n matrices. The
first player, Alice chooses a row index 1  j  m, while the second player, Bob (simultaneously) chooses
a column index 1  i  n. Then the payo↵ for Alice and Bob is aj,i and bj,i, respectively (where aj,i and
bj,i denote the corresponding entry of the respective matrix).

A mixed strategy of Bob is a column vector x 2 Rn that defines a probability distribution on the
index set {1, 2, . . . , n} (meaning that the entries of x are non-negative and they add upp to 1). Similarly,
a mixed strategy of Alice is a row vector y 2 Rm that is a probability vector. Since for a given pair
of mixed strategies (y,x) the expected payo↵s for Alice and Bob are yAx and yBx, respectively, the
following fundamental definition makes sense. The pair of mixed strategies (y,x) is a Nash-equilibrium
if the following two conditions hold: (1) y0Ax  yAx for every y0 2 Rm and (2) yBx0  yBx for
every x0 2 Rn. In plain words: none of the two players could achieve a better expected payo↵ by
unilaterally switching to another mixed strategy. The classic theorem of Nash claims that there exists a
Nash-equilibrium for every finite game (even multiplayer ones, which will not be discussed here).

A two-player game (A, B) is called a zero-sum game if A+B = 0. The theory of two-player, zero-sum
games (as estabilished by Neumann’s Minimax Theorem) is much easier than that of general two-player
games. In particular, the notion of a Nash-equilibrium is simplified as follows: (y,x) is a Nash-equilibrium
of (�B, B) if and only if x maximizes the minimum entry of Bx over all probability vectors x, and y
minimizes the maximum entry of yB over all probability vectors y. This implies that the following
statements, which are false in general, hold for the game (�B, B): if (y1,x1) and (y2,x2) are both Nash-
equilibria then (1) so are (y1,x2) and (y2,x1); (2) y1Bx1 = y2Bx2. In other words, the notion of a
(unique) Nash-equilibrium value (with respect to a player) is a well-defined notion for zero-sum games (as
opposed to the general case) and it is also meaningful to say that a given mixed strategy is optimal for a
player. Furthermore, since the unique Nash-equlibrium values for Alice and Bob are obviously negatives
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of each other, it is also sensible to refer to the value of the game, by which we will mean Bob’s unique
Nash-equlibrium value.

Two-player, zero-sum games are also much easier to handle algorithmically: as it is shown in many
textbooks on linear programming (see e.g. [12]), optimal mixed strategies for the game (�B, B) can be
found e�ciently by solving the following linear program and its dual:

max{µ : Bx � µ · 1,1 · x = 1,x � 0} (1)

(where 1 denotes the all-1 vector).
We introduce the following notion for further reference: a two-player game (A, B) is quasi-zero-sum

if there exists an mi 2 R for every 1  i  n such that aj,i + bj,i = mi holds for every i and j; that is,
the sum of the payo↵s of the two players depends on i only.

Lemma 1 Let (A, B) be a quasi-zero-sum game. Then (y,x) is a Nash-equilibrium of (A, B) if and
only if (y,x) is a Nash-equilibrium of the zero-sum game (�B, B). Furthermore, Bob’s Nash-equilibrium
payo↵ in the game (A, B) is unique and it is equal to the (unique) Nash-equilibrium payo↵ of the zero-sum
game (�B, B).

Proof: Let A + B = M , where every entry in the ith column of M is mi. Substituting A = M � B we
get that (y,x) is a Nash-equilibrium of (A, B) if and only if

8y0 2 Rm : y0(M � B)x  y(M � B)x and (2a)

8x0 2 Rn : yBx0  yBx. (2b)

Expanding (2a) we get:
8y0 2 Rm : y0Mx � y0Bx  yMx � yBx. (3)

Since y0 and y are probability vectors, the definition of M implies y0M = yM = m, where m denotes
an arbitrary row of M . Hence, (3) becomes:

8y0 2 Rm : mx � y0Bx  mx � yBx.

This implies that (2a) is equivalent to the following:

8y0 2 Rm : yBx  y0Bx. (4)

Since (2b) and (4) together are equivalent to saying that (y,x) is a Nash-equilibrium of (�B, B) by
definition, this proves the first statement of the lemma. Furthermore, the second statement follows easily
by observing that if (y,x) is a common Nash-equilibrium of (A, B) and (�B, B) then yBx is Bob’s payo↵
in both games, but in case of (�B, B) that is known to be unique since (�B, B) is zero-sum. ⇤

The above lemma shows that quasi-zero-sum games are essentially equivalent to zero-sum games
(and thus justifies the name of this notion). However, it is also useful to point out the limits to this
equivalency: a statement analogous to the second one of the above lemma would not be true for Alice:
her Nash-equilibrium payo↵ in the quasi-zero-sum game (A, B) can depend on x.

2.2 Preliminaries on the (Extended) Steganography Game

We summarize the necessary results of [10] and [6] on the Extended Steganography Game (defined in
Section 1) below. Since none of these results are too long to show, we also give proofs for the sake of
completeness.

First, observe that Bob’s (the steganalyst’s) final decision on whether the queried bit comes from the
original cover or the stego is trivial to make. Recall that pi denotes the probability that the value of the
ith bit (the one that corresponds to the ith embedding position) is equal to 1. Denote by bpie the nearest
integer to pi (that is, bpie = 1 or bpie = 0 if pi � 1

2 or pi < 1
2 , respectively). Then it is only sensible for
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Bob to decide for “cover” if the value of the queried bit is equal to bpie and decide for “stego” otherwise
(since doing anything else would decrease his expected payo↵). We assume henceforth that Bob follows
this rule.

Let [n] denote the set {1, 2, . . . , n}, and let
�
[n]
k

�
denote the set of all k-element subsets of [n].

Lemma 2 Assume that an instance of the Extended Steganography Game (that is, n, k, and pi and ci

for all 1  i  n) is given, and let qi = max{pi, 1 � pi} for all i. Then, if Alice chooses the subset

S 2
�
[n]
k

�
and Bob chooses the index i 2 [n], then Bob’s expected payo↵ is 2qi � 1 � ci or �ci if i 2 S or

i /2 S, respectively; furthermore, Alice’s expected payo↵ is �(2qi � 1) or 0 if i 2 S or i /2 S, respectively.

Proof: We prove the statement for Bob’s payo↵, the proof for Alice’s is analogous. First assume i /2 S.
Then the queried bits of the cover and the stego are identical, so the result of the query conveys no
information whatever on which of the two was chosen by Nature. Therefore no matter how Bob guesses,
he has a chance of 1

2 of being correct. Consequently, his expected payo↵ is 1
2 (1 � ci) + 1

2 (�1 � ci) = �ci

as claimed.
Now assume i 2 S. Then what we said about Bob’s decision above implies that his declaration

of “cover” or “stego” will be correct if and only if the value of the queried bit in the original cover
file is equal to bpie. The probability that this is true is obviously qi. Hence Bob’s expected payo↵ is
qi(1 � ci) + (1 � qi)(�1 � ci) = 2qi � 1 � ci as stated. ⇤

Let di = 2qi � 1 = 2 max{pi, 1 � pi} � 1 henceforth. The above lemma implies that the Extended
Steganography Game is equivalent to the two-player game (A, B), where both A and B have n columns,

their rows are indexed with the elements of
�
[n]
k

�
and

aS,i =

⇢
�di, if i 2 S,

0, if i /2 S
and bS,i =

⇢
di � ci, if i 2 S,

�ci, if i /2 S
(5)

holds for all S and i. Observe that this two-player game is quasi-zero-sum (see Section 2.1) since aS,i +
bS,i = �ci for all S and i. Consequently, in what follows, we will focus on solving the zero-sum game
(�B, B) in accordance with Lemma 1. (Recall that in the definition of the Extended Steganography Game
Bob was guaranteed the chance to completely reject the game. So strictly speaking, an all-zero column
would be needed to be added to B to capture this choice. However, in order to avoid overcomplicating
our notations, we keep B as it is defined above and handle this issue separately.)

We mentioned in Section 2.1 that all two-player, zero-sum games are solvable via linear programming.
However, the approach shown in Equation (1) would not be e�cient here since B has

�
n
k

�
rows. Fortu-

nately, it is shown in [10] that (�B, B) is also solvable by a linear program that has O(n) variables and
constraints (and thus yields a polynomial algorithm). To see this, assume that ↵ is a mixed strategy of

Alice; in other words, it is a probability distribution (↵(S) : S 2
�
[n]
k

�
). Then if Bob chooses i 2 [n] then

Alice’s expected loss in the game (�B, B) is

X

S:i2S

↵(S)(di � ci) �
X

S:i/2S

↵(S)ci = di

X

S:i2S

↵(S) � ci

X

8S

↵(S) = di

X

S:i2S

↵(S) � ci, (6)

where all sums are meant over elements of
�
[n]
k

�
. This gives rise to the following definition.

Definition 3 Let (↵(S) : S 2
�
[n]
k

�
) be a probability distribution on

�
[n]
k

�
. Then for all i 2 [n] we call

tr↵(i) =
X⇢

↵(S) : i 2 S, S 2
✓

[n]

k

◆�

the trace of ↵ on i and we call the vector tr↵ = (tr↵(1), tr↵(2), . . . , tr↵(n)) the trace vector (or simply
the trace) of ↵.
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In other words, tr↵ is an element of the polytope spanned by the incidence vectors of the elements of�
[n]
k

�
.

The idea of the above mentioned simplification of the linear programming formulation is to express
Alice’s task in terms of tr↵ instead of ↵. This is made possible by Equation (6), which shows that mixed
strategies ↵ with a common trace tr↵ yield the same expected loss for Alice. Since Alice’s task is to
minimize her maximum expected loss in the game (�B, B), we get by Equation (6) that this is equivalent
to the following:

min
�

max
1in

{di · ai � ci} : a 2 Rn is the trace vector of some ↵
 
. (7)

In order to make use of this, we need to find a description for the set (or polytope) of trace vectors.
Although the main statement of the following theorem is a simple special case of Edmonds’s classic result
on the description of a matroid’s base polytope [3] (which is applied here on uniform matroids) or it can
be proved by various standard techniques (e.g. the Farkas-lemma), the proof given in [10] (and presented
below) is still important since it also yields an e�cient algorithm.

Theorem 4 ([10]) A vector a 2 Rn is the trace vector of an appropriate probability distribution (↵(S) :

S 2
�
[n]
k

�
) if and only if 0  a  1 and 1 · a = k (where 1 denotes the all-1 vector of appropriate

dimension). Furthermore, if a vector a satisfies these conditions, then a corresponding ↵ that assigns a
positive probability to at most n subsets can be found in O(n2) time.

Proof: Necessity is obvious: since incidence vectors of the elements of
�
[n]
k

�
fulfill the conditions, so

does an arbitrary convex combination of these. To show su�ciency, it will be convenient to prove the
following slight generalization:

Claim 5 Assume that 0  a  1·a
k ·1 holds for the vector a 2 Rn. Then a can be expressed as a positive

coe�cient linear combination of binary vectors containing exactly k 1’s such that the number of terms in

the linear combination is at most m(a) = max
n

1,
���{i : 0 < ai < 1·a

k }
���
o
.

To prove the claim, we proceed by induction on m(a). If m(a) = 1 then the statement is trivial.

(Note that
���{i : 0 < ai < 1·a

k }
��� = 1 is impossible.) So let m(a) � 2.

Assume a1  a2  . . .  an without loss of generality. Denote s = 1·a
k and let � = min{an�k+1, s �

an�k}. It is easy to check that � > 0. Now let

a0
i =

⇢
ai, if 1  i  n � k,

ai � �, if n � k + 1  i  n.

Then s0 = 1·a0

k = s � � and 0  a0
i  s0 follows directly from the definition of �. Furthermore, ai = 0

implies a0
i = 0 and ai = s implies a0

i = s0. Finally, if � = an�k+1 then a0
n�k+1 = 0 and if � = s � an�k

then a0
n�k = s0. All in all, a0 = (a0

1, . . . , a
0
n) fulfills all conditions of the claim and m(a0)  m(a) � 1.

Applying induction on a0 and using a = a0 + � · (0, . . . , 0, 1, . . . , 1) (where the 1’s appear in the last k
positions) proves the existence of the required linear combination.

It is straightforward that the above proof also yields an O(n2) algorithm. We start by sorting the
entries of the input vector a. The inductive proof above corresponds to at most n cycles (since m(a)
decreases by at least one in each iteration). Carrying out the modifications described above (and storing
the coe�cient � with the corresponding binary vector) is straightforward. At the end of each iteration
we need to sort the values of the modified vector again; however, that can be performed in linear time
by merging the two sorted arrays corresponding to the first n � k and the last k entries of the previous
vector. So the algorithm involves at most n cycles, each carried out in linear time which justifies the
O(n2) overall running time. ⇤
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Since k is typically much smaller than n in a steganographic application, it is useful to mention
that the above algorithm can easily be modified to achieve a running time of O(kn log n) by storing the

elements of a in a heap. This is clearly better if k = o
⇣

n
log n

⌘
.

The above theorem combined with Equation (7) gives that Alice’s task is equivalent to the following:

min
�

max
1in

{di · ai � ci} : 0  a  1,1 · a = k, a 2 Rn
 
. (8)

This, on the other hand, can easily be turned into a linear program by introducing an extra variable µ
for max1in{di · ai � ci}:

Minimize µ
subject to
8i 2 [n] : di · ai � ci  µ
1a = k
0  a  1

(9)

This completes the proof of the result of [10] that an optimum mixed strategy for Alice and thus
the value of the game (�B, B) can be computed in polynomial time: the minimum of the above linear
program is the value of the game (�B, B), and running the algorithm of Theorem 4 on an optimum
solution a yields an optimum mixed strategy for Alice. It is also stated in [10] (without proof) that the
dual of the above program gives an optimum mixed strategy for Bob too. Since we will need this result,
we prove it below. The dual of the linear program (9) is the following:

Maximize k · ⌫ � 1 · z � c · x
subject to
8i 2 [n] : di · xi + zi � ⌫
1x = 1
x � 0, z � 0,

(10)

where c = (c1, . . . , cn) is the vector composed of the input cost values ci and the variables of the program
are ⌫ and the entries of the vectors x, z 2 Rn.

Lemma 6 If (x, z, ⌫) is an optimum solution of the above linear program (10), then x is an optimum
mixed strategy for Bob in the game (�B, B).

Proof: It follows from the constraints of the program (10) that x is indeed a probability vector. Denote
by M the common optimum of the programs (9) and (10) (in other words, the value of the game).
The statement of the lemma is equivalent to saying that x guarantees Bob an expected gain of at
least M for all choices S 2

�
[n]
k

�
of Alice. If Alice chooses S 2

�
[n]
k

�
, then Bob’s expected payo↵ isP

i2S(di � ci)xi �
P

i/2S cixi. Therefore, the lemma follows from the following calculations:

X

i2S

(di � ci)xi �
X

i/2S

cixi =
X

i2S

dixi �
X

8i

cixi

�
X

i2S

(⌫ � zi) �
X

8i

cixi

= k⌫ �
X

i2S

zi �
X

8i

cixi

� k⌫ �
X

8i

zi �
X

8i

cixi

= M,

where the final equation follows from the fact that (x, z, ⌫) is optimal and all other steps follow from the
constraints of the program (10). ⇤
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3 Main Result

Assume that n, k, and di � 0, ci � 0 for all 1  i  n are given, and let the two-player, zero-sum game
(�B, B) be defined by the payo↵ matrix B given in Equation (5).

Let �i = di � ci for all i. Obviously, we can assume �i > 0 for all i, since �i  0 would imply that
choosing i guarantees Bob a nonpositive payo↵, so Bob would completely avoid that (as he also has the

option not to engage in the game at all), and the ith column of B could be deleted. We will also assume
�1  �2  . . .  �n without loss of generality.

Theorem 7 Let R =
nX

i=1

ci

di
. It is optimal for Bob to reject the game (�B, B) if and only if R � k. If

R < k, then introduce the following notations for all 1  j  n:

sj =
nX

i=j

1

di
, tj =

1

sj
·

0
@k � j + 1 �

nX

i=j

ci

di

1
A

and let m = min {i : �i � ti}. Then (assuming R < k) the following are true:

1. the value of the game is tm;

2. the following formula gives an optimum mixed strategy x for Bob:

xi =

8
<
:

0, if 1  i  m � 1

1

sm
· 1

di
, if m  i  n

3. the following formula gives the trace a of an optimum mixed strategy for Alice:

ai =

8
<
:

1, if 1  i  m � 1

tm + ci

di
, if m  i  n

Proof: We first show that it is optimal for Bob to reject the game if R � k. Indeed, if R � k then it is

easy to check that the vales µ =

✓
k

R
� 1

◆
· min
1in

ci and ai =
k

R
· ci

di
for all i fulfill all constraints of the

primal linear program (9) and give an objective function value of µ  0. Hence the value of the game,
the minimum value of the program (9) is also nonpositive, which justifies that it is optimal for Bob to
reject the game. The converse of this statement will follow from the fact that the value of the game is
positive for Bob if R < k, which we will show below.

So assume R < k henceforth. We start with the following two technical claims.

Claim 8 �k � tk

Proof: Using the definitions of �k, tk, and sk and after multiplying by sk, the claim is equivalent to
the following:

(dk � ck)

nX

i=k

1

di
� 1 �

nX

i=k

ci

di
.

Rewriting this:

1 � ck

dk
+ �k ·

nX

i=k+1

1

di
� 1 � ck

dk
�

nX

i=k+1

ci

di
.

Subtracting 1� ck

dk
from both sides and using the fact that all variables (including �k) denote nonnegative

numbers the claim is proved. ⇤
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Claim 9 For all 1  j  n � 1, tj � tj+1 if and only if �j � tj.

Proof: Let uj = k � j + 1 �Pn
i=j

ci

di
for all j. Then

tj+1 =
uj+1

sj+1
=

k � j �Pn
i=j+1

ci

diPn
i=j+1

1
di

=
uj +

cj

dj
� 1

sj � 1
dj

=
ujdj + cj � dj

sjdj � 1
=

�j � ujdj

1 � sjdj
.

Therefore, since 1 � sjdj < 0 is obvious and tj =
uj

sj
, multiplying the inequality tj � tj+1 by 1 � sjdj

(and using the above equation) gives that tj � tj+1 is equivalent to tj � ujdj  �j � ujdj , which proves
the claim. ⇤

Claim 8 implies that m  k, while Claim 9 (together with �1  �2  . . .  �n) implies that the
relations between the values ti and �i shown below are true:

0 < �1  �2  . . .  �m�1  �m  �m+1  . . .  �n

^ ^ ^   

0 < t1 < t2 < . . . < tm�1 < tm � tm+1 � . . . � tn

Observe that t1 > 0 follows from the assumption R =
Pn

i=1
ci

di
< k even in the m = 1 case.

All (remaining) statements of the theorem will be shown by giving appropriate values to the variables
µ, ⌫, and z = (z1, . . . , zn) such that these, together with the values a = (a1, . . . , an) and x = (x1, . . . , xn)
given in the statement of the theorem, describe a pair of solutions for the linear program (9) and its
dual (10), which yield the common objective function value of tm. This will indeed show that the
common optima of the two programs (and thus the value of the game) is tm and that both solutions are
optimum.

So let µ = tm, ⌫ = 1
sm

, and

zi =

(
1

sm
, if 1  i  m � 1

0, if m  i  n.

We need to check that the given solutions indeed fulfill all constraints of the programs (9) and (10)
and that they yield the common objective function value of tm > 0.

In case of the primal program (9), the constraints di · ai � ci  µ are trivial if i � m (since they give
tm  tm), while in the i  m � 1 case they are equivalent to �i = di � ci  tm, which is clearly true by
the above chart on the relations between �i and ti. The constraint 1a = k follows by

m�1X

i=1

1 +

nX

i=m

tm + ci

di
= (m � 1) + tm · sm +

nX

i=m

ci

di
=

(m � 1) +

 
k � m + 1 �

nX

i=m

ci

di

!
+

nX

i=m

ci

di
= k.

Furthermore, a � 0 is obvious (recall that tm > 0 is true even if m = 1, as mentioned above). Finally,
a  1 is trivial if i  m � 1 and it is equivalent to tm  di � ci = �i if i � m, which again follows from
the above chart on �i and ti.

In case of the dual program (10), the constraints di · xi + zi � ⌫ are trivial both in the i  m� 1 and
in the i � m case (and they are fulfilled with equation for all i). The constraint 1x = 1 follows by

m�1X

i=1

0 +

nX

i=m

1

sm
· 1

di
=

1

sm
· sm = 1.

Furthermore, x � 0 and z � 0 are straightforward.
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Finally, the objective function value of the primal program (9) is µ = tm by definition, while in case
of the dual (10) it is also equal to tm by

k · ⌫ � 1 · z � c · x = k · 1

sm
�

m�1X

i=1

1

sm
�

nX

i=m

ci · 1

sm
· 1

di
=

1

sm
·
 

k � (m � 1) �
nX

i=m

ci

di

!
= tm,

which completes the proof. ⇤
It might be interesting to mention that the faulty formulas given in [6] for the ci ⌘ 0 case (that is,

the Basic Steganography Game) coincide with the ones given by the above theorem if m = 1. However,
these formulas are obviously wrong if m > 1 (even if ci ⌘ 0 is assumed) since they define a1, the first
entry of the trace vector a, to be bigger than 1.

Corollary 10 The value of the game (�B, B) and an optimum mixed strategy for Bob can be obtained
by performing O(n log n) elementary operations on the input data, while an optimum mixed strategy for
Alice can be obtained by performing O(min{n2, kn log n}) elementary operations.

Proof: To apply Theorem 7, we need to start by sorting the values �1,�2, . . . ,�n (in accordance
with the assumption made before claiming the theorem). This obviously takes O(n log n) compar-
isons. After that, using the formulas of Theorem 7 to compute the values tm, x = (x1, x2, . . . , xn)
and a = (a1, a2, . . . , an) is clearly possible by performing O(n) elementary operations on the input data.
Finally, applying the algorithm described in the proof of Theorem 4 on a to obtain an optimum mixed
strategy for Alice takes O(min{n2, kn log n}) elementary operations (in accordance with the observation
made after Theorem 4). ⇤

4 Conclusion

In this paper, we solved the Basic and Extended Steganography Games. These game-theoretic models
were introduced in [6] and [10] for studying content-adaptive steganography; however, their previous
solutions were either incorrect or based on linear-programming tools. In this paper, we first provided
improved proofs for the previous results (e.g., Theorem 4) of [10]; then, as our main contribution, we
provided formulas describing Nash-equilibria of both the basic and the extended games.

Compared to the linear-programming solution of [10], the formulas presented in this paper have
multiple advantages. First, they allow us to solve the game for much larger instances, which opens up
the possibility of applying the Steganography Game in practice, where the value of n can easily be in
the ranges of thousands. Second, they allow us to express the condition for the steganalyst to reject
the game in the simple form of

Pn
i=1

ci

di
� k and to express the steganographic capacity of a channel

in a simple, almost closed form. These expressions let us gain insight into the security/detectability of
content-adaptive steganography, which previous results could not provide.

Our results can be extended in multiple directions. From a practical point of view, a natural extension
would be allowing the steganalyst to query multiple bits. In [7], such an extension of the Basic Steganog-
raphy Game (but not the Extended one) was considered, but without characterizing the equilibria of the
game.
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[16] P. Schöttle, A. Laszka, B. Johnson, J. Grossklags, R. Böhme, A game-theoretic analysis
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