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An Introduction to Prolog III

Alain Colmerauer
Professor at Aix-Marseille II University

Artificial Intelligence Group (GIA)
CNRS Laboratory 816

Faculté des Sciences de Luminy, Case 901
70 route Léon Lachamp,
13288 Marseille Cedex 9

Abstract. The Prolog III programming language extends Prolog by redefining the fundamental process at
its heart :  unification.  Into this mechanism, Prolog III integrates refined processing of trees and lists,
number processing, and processing of two-valued Boolean algebra.  We present the specification of this
new language and illustrate its capabilities by means of varied examples.  We also present the theoretical
foundations of Prolog III, which in fact apply to a whole family of programming languages.  The central
innovation is to replace the concept of unification by the concept of constraint solving.

Résumé. Le langage de programmation Prolog III est une extension de Prolog au niveau de ce qu'il a de
plus fondamental, le mécanisme d'unification. Il intègre dans ce mécanisme un traitement plus complet
des arbres et des listes, un traitement numérique et un traitement de l'algèbre de Boole à deux valeurs.
Nous présentons ici les spécifications de ce nouveau langage et illustrons ses possibilités au moyen
d'exemples variés. Nous présentons aussi le modèle théorique de Prolog III qui, en fait, s'applique à toute
une famille de langages de programmation. L'idée essentielle est de remplacer la notion d'unification par
celle de résolution de contraintes.
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INTRODUCTION

Prolog was initially designed to process natural languages.  Its application in various
problem solving areas  has brought out its qualities, but has also made clear its limits.
Some of these limitations have been overcome as a result of more and more efficient
implementations and ever richer environments.  The fact remains, however, that the core
of Prolog, namely, Alan Robinson's unification algorithm [22], has not fundamentally
changed since the time of the first Prolog implementations, and is becoming less and less
significant compared to the ever-increasing number of external procedures as, for
example, the procedures used for numerical processing. These external procedures are
not easy to use.  Their invocation requires that certain  parameters are completely
known, and this is not in line with the general Prolog philosophy that it should be
possible anywhere and at any time to talk about an unknown object x.

In order to improve this state of affairs, we have fundamentally reshaped Prolog by
integrating  at the unification level : (1) a refined manipulation of trees, including infinite
trees, together with a specific treatment of lists, (2) a complete treatment of two-valued
Boolean algebra, (3) a treatment of the operations of addition, subtraction, multiplication
by a constant and of the relations <, =, >, =,  (4) the general processing of the relation ? .
By doing so we replace the very concept of unification by the concept of constraint
solving in a chosen mathematical structure.  By mathematical structure we mean here a
domain equipped with operations and relations, the operations being not necessarily
defined everywhere.

The result of incorporating the above features into Prolog is the new programming
language Prolog III.  In this paper1 we establish its foundations and illustrate its
capabilities using representative examples.  These foundations, which in fact apply to a
whole family of "Prolog III like" programming languages, will be presented by means of
simple mathematical concepts without explicit recourse to first-order logic.

The research work on Prolog III is not an isolated effort; other research has resulted
in languages whose design shares features   with Prolog III.  The CLP(R) language
developed by J. Jaffar and S. Michaylov [19] emphasizes real number processing,
whereas the CHIP language developed by the team led by  M. Dincbas [13] emphasizes
processing of Boolean algebra and pragmatic processing of integers and elements of
finite sets.   Let us also mention the work by J. Jaffar et J-L. Lassez [18] on a general
theory of "Constraint Logic Programming".  Finally, we should mention Prolog II, the by
now well-established language which integrates infinite trees and the ?  relation, and

                                               
1 A very preliminary version of this paper has appeared in the Proceedings of the 4th Annual ESPRIT

Conference, Brussels, North Holland, pp. 611-629, 1987.
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whose foundations [8,9] were already presented in terms of constraint solving.  From a
historical point of view, Prolog II can thus be regarded as the first step towards the
development of the type of languages discussed here.

THE STRUCTURE UNDERLYING PROLOG III

We  now present the particular structure which is the basis of Prolog III and specify
the general concept of a structure at the same time. By structure we mean a triple (D, F,
R) consisting of a domain D, a set F of operations and a set of relations on D.

Domain

The domain D of a structure is any set. The domain of the structure chosen for Prolog
III is the set of trees whose nodes are labeled by one of the following :

(1) identifiers,
(2) characters,
(3) Boolean values, 0' and 1',
(4) real numbers,
(5) special signs <>α, where α is either zero or a positive irrational number.

Here is such a tree :

NameMarriedWeight

<> 1' 755/10

'D'   'u'   'p'   'o'   'n'   't'

0

The branches emanating from each node are ordered from left to right; their number is
finite and independent of the label attached to the node.  The set of nodes of the tree can
be infinite.  We do not differentiate between a tree having only one node and its  label.
Identifiers, characters, Boolean values, real numbers and special signs <>α will therefore
be considered to be particular cases of trees.

By real numbers we mean perfect real numbers and not floating point numbers.  We
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make use of the partition of the reals into two large categories, the rational numbers,
which can be represented by fractions (and of which the integers are a special case) and
the irrational numbers (as for example π and 2 ) which no fraction can represent. In
fact, the machine will compute with rational numbers only and this is related to an
essential property of the constraints that can be employed in Prolog III : if a variable is
sufficiently constrained to represent a unique real number then this number is necessarily
a rational number.

A tree a  whose initial node is labeled by <>α is called a list and is written
<a1,...,an>α,

where a1...an is the (possibly empty) sequence of trees constituting the immediate
daughters of a.  We may omit  α whenever α is zero.  The true lists are those for which
α is zero : they are used to represent sequences of trees (the sequence of their immediate
daughters). Lists in which α is not zero are improper lists that we have not been able to
exclude : they represent sequences of trees (the sequence of their immediate daughters)
completed at their right by something unknown of length  α. The length |a| of the list a is
thus the real n+α.  True lists have as their length a non-negative integer and improper
lists have as their length a positive irrational number. The list <> is the only list with
length zero, it is called the empty list. We define the operation of concatenation on a true
list and an arbitrary list by the following equality :

<a1,...,am>0 • <b1,...,bn>α  =  <a1,...,am,b1,...,bn>α.

This operation is associative, (a•a')•b  = a•(a'•b), and the empty list play the role of the
neutral element, a•<> = a et <>•b = b.  We observe that for any list b there exists one and
only one truer list  a and one and only one real α such that

b =  a • <>α.

This list a is called the prefix of b and is written b.

Operations

Let Dn denote the set of tuples a1...an constructed on the domain D of a structure.
An n-place operation f is a mapping from a subset E of Dn to D,

f :  a1...an  |→   f a1...an .

Note that if E is strictly included in Dn, the operation f is partial;  it is not defined for all
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tuples of size n.  Note also that in order to be systematic the result of the operation is
written in prefix notation. The 0-place operations are simply mappings of the form

f :  Λ |→   f,

where Λ is the empty tuple; they are also called constants since they can be identified
with elements of the domain.

As far as the chosen structure is concerned here is first of all a table listing the
operations which belong to F.  In this table we introduce a more graceful notation than
the prefix notation.
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Constants

id       : Λ  |→   id,
'c'      : Λ  |→   'c',
0' : Λ  |→   0',
1' : Λ  |→   1',
q : Λ  |→   q,
<>0 : Λ  |→   <>,
c1...cm : Λ  |→   "c1...cm".

Boolean operations

¬ : b1  |→   ¬b1,
⇒ : b1b2  |→   b1⇒ b2,
∨ : b1b2  |→   b1∨b2,
⊃ : b1b2  |→   b1⊃ b2,
+ : b1b2  |→   b1+ b2.

Numerical operations

+1 : r1  |→   +r1,

–1 : r1  |→   − r1,

+2 : r1r2  |→   r1+ r2,

–2 : r1r2  |→   r1–r2,
q× : r1  |→   q×r1,
/q' : r1  |→   r1/q'.

List operations

|| : l1  |→    |l1|,
<,>m     : a1...am  |→   <a1,...,am>,
a1...an• : l1  |→   <a1,...,an>•l1.

General operations

()n+2  : e1a2...an+2 |→   e1(a2,...,an+2),
[] : e1l2  |→    e1[l2].

Here id designates an identifier, c and ci a character, q et q' rational numbers represented
by fractions (or integers), with q' not zero, m a positive integer, n a non-negative integer
and  ai  an arbitrary tree.  The result of the different operations is defined only if  bi  is a
Boolean value, ri  a real number, li a list and ei a label not of the form <>α.
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To each label corresponds a constant, with the exception of irrational numbers and
labels of the form <>α, where α is not zero. The constant "c1...cm" designates the true
list whose immediate daughters make up the sequence of characters 'c1' ... 'cm'. The
operations ¬, ⇒ , ∨, ⊃ , + , correspond to the classical Boolean operations when they are
defined. The operations ±1, ±2, q×, when they are defined, are the 1-place ±, the 2-place
±, multiplication by the constant q  (when this does not lead to confusion we may omit
the sign ×) and division by the constant q'. By |l1| we designate the length of the list l1.
By <a1,...,am> we designate the true list whose immediate daughters make up the
sequence a1,...,am. The operation a1...an• applied to a list l1 consists in concatenating the
true list <a1,...,an> to the left of l1. By e1(a2,...,an+2) we designate the tree consisting of
an initial node labeled e1 and the sequence of immediate daughters a2,...,an+2. By e1[l2]
we designate the tree consisting of an initial node labeled e1 and of the sequence of
immediate daughters of the list l2.

We note the following equalities (provided the different operations used are indeed
defined) :

"c1...cm"  =  <'c1', ... ,'cm'>

a0(a1,...,am )   =   a0[<a1,...,am>].

Using the constants and the operations we have introduced, we can  represent our
previous example of a tree by

NameMarriedWeight("Dupont", 1', 755/10)

or by

NameMarriedWeight[<<'D','u'>•"pont",  0'∨1', 75+1/2>].

Relations

Let Dn again denote the set of tuples a1...an constructed on the domain D of a
structure.  An n-place relation r is a subset E of Dn to D.  To express that the tuple
a1...an  is in the relation r we write

r a1...an .

With respect to the structure chosen for Prolog III, here are the relations contained in F.
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We also introduce a more graceful notation than the prefix notation.

One-place relations

id      : a1 : id,
char : a1 : char,
bool : a1 : bool,
num : a1 : num,
irint : a1 : irint,
list      : a1 : list,
leaf : a1 : leaf.

Identity relations

= : a1 = a2,
? : a1 ?  a2.

Boolean relations

⇒ : a1⇒ a2.

Numerical relations

< : a1 < a2,
>    : a1 > a2,
= : a1 = a2,
= : a1 = a2,

Approximated operations

/3 : a3 =
.   a1 /

.  a2,

×n+1 : an+1 =
.   a1×... ×an,

•n+1 : an+1 =
.   a1 •

.  ... •.  an.

Here n designates an integer greater than 1 and ai an arbitrary tree.  The relations id,
char, bool, num, irint, list and leaf are used to specify that the tree a1 is an identifier, a
character, a Boolean value, a real number, an integer or irrational number, a list, a label
not of the form <>α.  The relations = et ?  correspond of course to the equality and
inequality of trees.  The pair of trees a1a2 is in the relation ⇒  only if a1 et a2 are Boolean
values and if a1 = 1' entails that a2 = 1'. The pair of trees a1a2 is in relation <, >, =, = only
if it is a pair of reals in the corresponding classical relation.

We use the relation /3 to approximate division and write
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a3 =
.   a1 /

.  a2

to express, on the one hand, that a1, a2 and a3 are real numbers, with a2 not equal to
zero and, on the other hand, that if at least one of the reals a2 et a3 is rational, it is true
that

a3 = a1/a2.

We use the relations ∞ n+1, with n = 2, to approximate a series of multiplications and
write

 an+1 =
.   a1 ×... ×an

to express, on the one hand, that the ai's are real numbers and, on the other hand, that if
the sequence a1...an contains n or n–1 rationals numbers,  it is true that

 an+1 = a1×...× an.

We use the relations •n+1, with n = 2, to approximate a series of concatenations and
write

an+1 =
.   a1 •

.  ... •.  an

to express that in all cases the ai's are lists such that

|an+1| = |a1| +...+ |an|

and that, according as the element a1•...•an is, or is not defined,

an+1 = a1•...•an

or

an+1 is of the form a1•...•ak •b,

where b is an arbitrary list and k is the largest integer such that the element a1•...•ak is
defined.

We recall that a1•...•ak is defined only if the lists a1, ..., ak–1 are all true lists. We also
recall also that a designates the prefix of a, that is to say, the true list obtained by
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replacing the initial label <>α of a  with the label <>0.

Terms and constraints

Let us suppose that we are working in a structure (D, F, R) and let V be a universal
set of variables, given once and for all, used to refer to the elements of its domain D .
We will assume that V is infinite and countable.  We can now construct syntactic objects
of two kinds, terms and constraints.  Terms  are sequences of juxtaposed elements from
V≈F of one of the two forms,

x   or   f t1...tn,

where x is a variable, f  an n-place operation and where the ti's are less complex terms.
Constraints are  sequences of juxtaposed elements from V≈F≈R of the form

r t1...tn,

where r  is an  n-place relation and the ti's are terms.  We observe that in the definition of
terms we have not imposed any restriction on the semantic compatibility between f and
the ti 's. These restrictions, as we will see, are part of the mechanism which takes a term
to its "value".

We introduce first the notion of an assignment σ to a subset W of variables : such an
assignment is simply a mapping from W into the domain D of the structure.  This
mapping σ extends naturally to a mapping  σ* from a set Tσ of terms into D specified by

σ*(x)  =  σ(x),
σ*(f t1...tn)  =  f σ*(t1)...σ*(tn).

The terms that are not members of Tσ are those containing variables not in W, and those
containing partial operations not defined for the arguments σ*(ti).   Depending on
whether a term t belongs or does not belong to Tσ the value of t under the assignment σ
is defined and equal to σ*(t) or is not defined.  Intuitively, the value of a term under an
assignment is obtained by replacing the variables by their values and by evaluating the
term. If this evaluation cannot be carried out, the value of the term is not defined for this
particular assignment.

We say that the assignment σ to a set of variables satisfies the constraint r t1...tn  if
the value σ*(ti) of each term ti  is defined and if the tuple σ*(t1)...σ*(tn) is in the relation
r, that is to say if
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r  σ*(t1)...σ*(tn).

Here are some examples of terms associated with the structure chosen for Prolog III.
Instead of using the prefix notation, we adopt the notations used when the different
operations where introduced.

<x>•y,
x[y],

<x>•10,
duo(+x, x∨y).

The first term represents a list consisting of an element x  followed by the list y.  The
second term represents a tree, which is not a list, whose top node is labeled by x and
whose list of immediate daughters is y.  The value of the third term is never defined,
since the concatenation of numbers is not possible. The value of the last term is not
defined under any assignment, since x cannot be a number and a Boolean value at the
same time.

Here are now some examples of constraints. Again we adopt the notations introduced
together with the different Prolog III relations.

z = y–x,
x∧¬y ⇒  x∨z,
i+j+k = 10,
¬x ?  y+z,
¬x ?  y+x.

We observe that there exist assignments to {x, y, z} which satisfy the next to the last
constraint (for example σ(x) = 0', σ(y) = 2, σ(z) = 2), but that there is no assignment
which satisfies the last constraint (the variable x cannot be a number and a Boolean value
at the same time).
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Systems of constraints

 Any finite set S of constraints is called a system of constraints.  An assignment σ to
the universal set V of variables which satisfies every constraint of S is a solution of S.  If
σ is a solution of S and W a subset of V, then the assignment σ' to W which is such that
for every variable x in W we have σ'(x) = σ(x) is called a solution of S on W. Two
systems of constraints are said to be equivalent if they have the same set of solutions and
are said to be equivalent on W if they have the same set of solutions on W.

We illustrate these definitions with some examples from our structure.
- The assignment σ to V where σ(x) = 1' for every variable x  is a solution of the  system
of constraints {x = y, y ?  0}, but it is not a solution of the system {x = y, +y ?  0}.
- The assignment σ to {y} defined by σ(y) = 4 is a solution on {y} of the system
{x = y, y ?  0}.
- The  systems  {x = y, +y ?  0} and {–x = –y, y ?  0} are equivalent.  Similarly, the system
{1 = 1, x = x} is equivalent to the empty constraint system.
- The systems {x = y, y = z, x ?  z} and {x < z} are not equivalent, but they are  equivalent
on the subset of variables {x, z}.

It should be noted that all solvable  systems of constraints are equivalent on the empty
set of variables, and that all the non-solvable systems are equivalent.  By solvable
system, we of course mean a system that has at least one solution.

The first thing Prolog III provides is a way to determine whether a system of
constraints is solvable and if so, to solve the system. For example, to determine the
number x of pigeons and the number y of rabbits such that together there is a total of 12
heads and 34 legs, the following query

{x+y = 12, 2x+4y = 34} ?

gives rise to the answer

{x = 7, y = 5}.

To compute the sequence z of 10 elements which results in the same sequence no matter
whether 1,2,3 is concatenated to its left or 2,3,1 is concatenated to its right, it will suffice
to pose the query

{|z| = 10,  <1,2,3>•z =.   z•
. <2,3,1>} ?

The unique answer is
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{z = <1,2,3,1,2,3,1,2,3,1>}.

If in the query the list <2,3,1> is replaced by the list <2,1,3> there is no answer, which
means that the system

{|z| = 10,  <1,2,3>•z =.   z•
. <2,1,3>}

is not solvable.  In these examples the lists are all of integer length and are thus true lists.
As a result, the approximated concatenations behave like true concatenations.

In this connection, the reader should verify that the system

{<1>•z =.   z•
. <2>}

is solvable (it suffices to assign to z any improper list having no immediate daughters),
whereas the system

{|z| = 10,  <1>•z =.   z•
. <2>},

which constraints z to be a true list, is not solvable. The same holds for approximated
multiplication and division.  Whereas the system

{z =.   x ∞.   y, x = 1, y =1, z < 0}

is solvable (because the approximated product of two irrational numbers is any number),
the system

{z =.   x ∞.   y, x = 1, y = 1, z < 0, y = 1},

which constrains y  to be a rational number, is not solvable.

Another example of the solving of systems is the beginning of a proof that God
exists, as formalized by George Boole [4].  The aim is to show that "something has
always existed" using the following 5 premises :
(1) Something is.
(2) If something is, either something always was, or the things that now are have risen
out of nothing.
(3) If something is, either it exists in the necessity of its own nature, or it exists by the
will of another Being.
(4) If it exists by the will of its own nature, something always was.
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(5) If it exists by the the will of another being, then the hypothesis, that the things which
now are have risen out of nothing, is false.

We introduce 5 Boolean variables with the following meaning :
a = 1'  for  " Something is",
b = 1'  for  " Something always was",
c = 1'   for  " The things which now are have risen from nothing",
d = 1'   for  " Something exists in the necessity of its own nature ",
e = 1'   for  "Something exists by the will of another Being".
The 5 premises are easily  translated into the system

{a = 1'  a ⇒  b∨c,  a ⇒  d∨e,  d ⇒  b,  e ⇒  ¬c}

which when executed as a query produces the  answer

{a =1',  b  = 1',  d∨e = 1' ,  e∨c = 1' }.

One observes  that the value b is indeed constrained to 1'.

After these examples, it is time to specify what we mean by "solving" a  system S of
constraints involving a set W of variables.  Intuitively, this means that we have to find all
the solutions of S on W.  Because there may be an infinite set of such solutions, it is not
possible to enumerate them all.  What is however possible is to compute a system in
solved  form equivalent to S and whose "most interesting" solutions are explicitly
presented.  More precisely by system in solved form, we understand a solvable system
such  that, for every variable x, the solution of S on {x} is explicitly given, whenever this
solution is unique.  One can verify that in the preceding examples the systems given as
answers were all in solved form.

Before we end this section let us mention a useful property for solving systems of
constraints in the chosen structure.

PROPERTY. If S a system of Prolog III constraints and W a set of variables, then the
two following propositions are equivalent :
(1) for every x  in W, there are several numerical solutions of S on {x};
(2) there exists a numerical irrational solution S on W.

By numerical solution, or irrational numerical solution, on a set of  variables, we
understand a solution in which all the variables in this set have real numbers as values, or
irrational numbers as values.
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SEMANTICS OF PROLOG III LIKE LANGUAGES

On the  basis of the structure we have chosen, we can now define the programming
language Prolog III.   As the method employed is independent of the chosen structure,
we define in fact the notion of a "Prolog III like" language associated  with a given
structure.  The only assumption that we will make is that the equality relation is included
in the set of relations of the structure in question.

Meaning of a program.

In a Prolog III type language, a program is a definition of a subset of the domain of
the chosen structure (the set of trees in the case of Prolog III).  Members of this subset
are called admissible elements.  The set of admissible elements is in general infinite and
constitutes - in a manner of speaking - an enormous hidden database.  The execution of a
program aims at uncovering a certain part of this database.

Strictly speaking, a program is a set of rules:  Each rule has the form

t0 →  t1...tn , S

where n can be zero, where the ti's are terms and where S is a possibly empty system of
constraints (in which case it is simply absent). The meaning of such a rule is roughly as
follows: "provided the constraints in S are satisfied,  t0  is an admissible element if t1 and
... and tn are admissible elements (or if n = 0) ".  Here is such a set of rules; this is our
first example of a Prolog III program.  It is an improvement on a program which is
perhaps too well-known, but which remains a useful pedagogical tool : the calculation of
well-balanced meals [9].
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LightMeal(h, m, d) →
HorsDœ uvre(h, i)
MainCourse(m, j)
Dessert(d, k),
{i = 0, j = 0, k = 0, i+j+k = 10};

MainCourse(m, i) →  Meat(m, i);
MainCourse(m, i) →  Fish(m, i);

HorsDœ uvre(radishes, 1) → ;
HorsDœ uvre(pâté, 6) → ;

Meat(beef, 5) → ;
Meat(pork, 7) → ;

Fish(sole, 2) → ;
Fish(tuna, 4) → ;

Dessert(fruit, 2) → ;
Dessert(icecream, 6) → .

The meaning of the first rule is: "provided the four conditions i = 0, j = 0, k = 0,
i+j+k = 10 are satisfied, the triple h,m,d constitutes a light meal, if h is an hors-d'œ uvre
with calorific value i, if m is a main course with caloric value j and if d is a dessert with
calorific value k ".  The meaning of the last rule is: " Ice-cream is a dessert with calorific
value 6 ".

Let us now give a precise definition of the set of admissible elements.  The rules in the
program are in fact rule schemas.  Each rule (of the above   form) stands for the set of
evaluated rules

σ*(t0)  →   σ*(t1)...σ*(tn)

obtained by considering all the solutions σ of S for which the values σ*(ti) are defined.
Each evaluated rule

a0 →  a1...an,

in which only elements ai of the domain occur, can be interpreted in two ways:
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(1) as a closure property of certain subsets E of the domain: if all of a1,...,an are
members of the subset E , then  a0 is also is a member of E   (when n = 0, this property
states that a0 is a member of E ),
(2) as a  rewrite  rule which, given a sequence of elements of the domain beginning with
a0, sanctions the  replacement of this first element a0 by the sequence a1...an (when
n = 0, this is the same as deleting the first element a0).

According to which of the two above interpretations is being considered,  we
formulate one or the other of the following definitions:

DEFINITION 1. The set of admissible elements is the smallest subset of the domain (in
the sense of inclusion)  which satisfies all the closure properties stemming from the
program.

DEFINITION 2. The admissible elements are the members of the domain which
(considered as unary sequences) can be deleted by applying rewrite rules stemming from
the program a finite number of times.

In [8,11] we show that the smallest subset in the first definition does indeed exist and
that the two definitions are equivalent.  Let us re-examine the previous program
example.  Here are some samples of evaluated rules:

......................
 LightMeal(pâté,sole,fruit) →

 HorsDœ uvre(pâté,6) MainCourse(sole,2) Dessert(fruit,2) ;
......................

......................
MainCourse(sole, 2) →  Fish(sole,2) ;
......................
......................
HorsDœ uvre(pâté,6) →  ;
......................
......................
Fish(sole,2) →  ;
......................
......................
Dessert(fruit,2) →  ;
......................

If we consider these rules to be closure properties of a subset of trees, we can
successively conclude that the following three subsets are sets of admissible elements,
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{HorsDœ uvre(pâté,6), Fish(sole,2), Dessert(fruit,2)},
{MainCourse(sole,2)},

{LightMeal(pâté,sole,fruit)}

and therefore that the tree

LightMeal(pâté,sole,fruit)

is an admissible element.  If we take these evaluated rules to be rewrite rules, the
sequence constituted solely by the last tree can be deleted in the following rewrite steps

LightMeal(pâté,sole,fruit) →
HorsDœ uvre(pâté,6) MainCourse(sole,2) Dessert(fruit,2) →

MainCourse(sole,2) Dessert(fruit,2) →
Fish(sole,2) Dessert(fruit,2) →

Dessert(fruit,2) → ,

which indeed confirms that the above is an admissible element.

Execution of a program

We have now described the information implicit in a Prolog III like program, but we
have not yet explained how such a program is executed. The aim of the program's
execution is to solve the following problem: given a sequence of terms t1...tn and a
system S of constraints, find the values of the variables which transform all the terms ti
into admissible elements, while satisfying all the constraints in S. This problem is
submitted to the machine by writing the query

t1.... tn , S ?

Two cases are of particular interest. (1) If the sequence t1...tn is empty, then the query
simply asks wether the system S is solvable and if so to solve it.  We have already seen
examples of such queries. (2) If the system S is empty (or absent) and the sequence of
terms is reduced to one term only, the request can be summarized as: "What are the
values of the variables which transform this term into an admissible element?".  Thus
using the preceding program example, the query

LightMeal(h, m, d)?

will enable us to obtain all the triples of values for h, m, and d which constitute a light
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meal. In this case, the replies will be the following simplified systems :

{h = radishes, m = beef, d = fruit},
{h = radishes, m = pork, d = fruit},
{h = radishes, m = sole, d = fruit},
{h = radishes, m = sole, d = icecream},
{h = radishes, m = tuna, d = fruit},
{h = pâté, m = sole, d = fruit}.

The method of computing these answers is explained by introducing an abstract
machine. This is a non-deterministic machine whose state transitions  are described by
these three formulas :

(1)     (W,  t0 t1...tn , S),

(2)     s0 →  s1....sm , R

(3)     (W,  s1...sm t1...tn , S≈R≈{t0=s0}).

Formula (1) represents the state of the machine at a given moment. W is a set of
variables whose values we want to determine, t0t1...tn is a sequence of terms which we
are trying to delete and S is a system of constraints which has to be satisfied. Formula (2)
represents the rule in the program which is used to change the state. If necessary, the
variables of (2) are renamed, so that none of them are shared with (1).  Formula (3) is
the new state of the machine after the application of rule (2). The transition to this new
state is possible only if the system of constraints in (3) possesses at least one solution
σ with respect to which all the values σ*(si) and σ*(ti) are defined.

In order to provide an answer to the query given above, the machine starts from the
initial state

(W, t0...tn, S),

where W is the set of variables appearing in the query, and goes through all the states
which can be reached by authorized transitions.  Each time it arrives at a state containing
the empty sequence of terms Λ,  it simplifies the system of constraints associated with it
and presents it as an answer.  This simplification can also be carried out on all the states
it passes through.
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Let us now reconsider our first  program example, and apply this process to the query

LightMeal(h, m, d)?

The initial state of the machine is
({h,m,d},  LightMeal(h,m,d),  {}).

By applying the rule
LightMeal(h', m', d') →
HorsDœ uvre(h', i) MainCourse(m', j) Dessert(d', k),
{i = 0, j = 0, k = 0, i+j+k = 10}

we proceed to the state
({h,p,d},  HorsDœ uvre(h',i) MainCourse(m',j) Dessert(d',k),
{i=0, j=0, k=0, i+j+k=10, LightMeal(h,m,d)=LightMeal(h',m',d')})

which in turn simplifies to
({h,p,d},  HorsDœ uvre(h',i) MainCourse(m',j) Dessert(d',k),

     {i=0, j=0, k=0, i+j+k=10, h=h', p=p', d=d'}),
and  to

({h,p,d},  HorsDœ uvre(h,i) MainCourse(m,j) Dessert(d,k),
{i=0, j=0, k=0, i+j+k=10}).

By applying the rule
HorsDœ uvre(pâté, 6) →

and simplifying the result, we progress to the state
({h,p,d},  MainCourse(p,j) Dessert(d,k),  {h=pâté, j=0, k=0, j+k=4}).

By applying the rule
MainCourse(p', i) →  Fish(p', i)

and simplifying the result, we proceed to the state
({h,m,d},  Fish(m',i) Dessert(d,k),
{h=pâté, j=0, k=0, j+k=4, m=m', j=i}).

which then simplifies  to
({h,m,d},  Fish(m,j) Dessert(d,k),  {h=pâté, j=0, k=0, j+k=4}).

By applying the rule
Fish(sole, 2) →

we obtain
({h,m,d},  Dessert(d,k),  {h=pâté, m=sole, k=0, k=2}).

Finally, by applying the rule
Dessert(fruit, 2) →

We obtain
({h,m,d},  Λ,  {h=pâté, m=sole, d=fruit}).

We can conclude that the system

{h = pâté, m = sole, d = fruit}
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constitutes one of the answers to the query.

To obtain the other answers, we proceed in the same way, but by using the other
rules. In [11] we prove that this method is complete and correct.  To be more exact,
given the abstract machine MP associated to a program P, we show that the following
property holds.

PROPERTY. Let {t1,...,tn} be a set of terms, S a  system of constraints, and W the set
of variables occurring in them. For any assignment σ to W, the following two
propositions are equivalent :
(1) the assignment σ is a solution of S on W and each σ*(pi) is an admissible element for
P;
(2) starting from state (W, Λ , S') the abstract machine MP can reach a state of the form
(W, t1...tn , S), where S' admits σ as solution on W.

 It should be pointed out that there are a thousand ways of simplifying the states of the
abstract machine and checking whether they contain solvable  systems of constraints. So
we should not always expect that the machine, which uses very general algorithms,
arrives at the same simplifications as those that are shown above.   In [11] we show that
the only principle that   simplifications must all conform to is that states of the abstract
machine are  transformed into equivalent states in the following meaning :

DEFINITION. Two states are equivalent if they have the form

(W, t1...tn , S)  and  (W, t1'...tn', S'),

and if, by introducing n new variables  x1,...,xn , the systems

S≈{x1=t1,...,xn=tn }  and  S'≈{x1=t1',...,xn=tn' },

are equivalent on the subset of variables  W≈{x1,...,xn}.

TREATMENT OF NUMBERS

AIl that remains to be done is to illustrate the possibilities of Prolog III in connection
with different program examples.  We will consider one after the other the treatment of
numbers, the treatment of Boolean values, the treatment of trees and lists and finally the
treatment of integers.
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Computing instalments

The first task is to calculate a series of instalments made to repay capital borrowed at
a certain interest rate. We assume identical time periods between two instalments and an
interest rate of 10% throughout. The admissible trees will be of the form :

InstalmentsCapital(x,c),

where x is the sequence of instalments necessary to repay the capital c with an interest
rate of 10% between two instalments.  The program itself is given by two rules :

InstalmentsCapital(<>, 0) → ;
InstalmentsCapital(<i>•x, c) →

InstalmentsCapital(x, (110/100)c–i);

The first rule expresses the fact that it is not necessary to pay instalments to repay
zero capital.  The second rule expresses the fact that the sequence of n+1 instalments to
repay capital c consists of an instalment i and a sequence of n instalments to repay capital
c increased by 10% interest, but the whole reduced by instalment i.   

This program can be used in different ways.  One of the most spectacular is to ask
what value of i is required to repay $1000 given the sequence of instalments <i,2i, 3i> .
All we need to do is to put the query

 InstalmentsCapital(<i, 2i, 3i>, 1000) ?

to obtain the answer
{i = 207 + 413/641}.

Here is an abbreviated trace of how the computation proceeds. Starting from the
initial state

({i}, InstalmentsCapital(<i,2i,3i>,1000), {}).
and applying the rule

InstalmentsCapital(<i'>•x,c) →  InstalmentsCapital(x,(1+10/100)c–i')
we progress to the state

({i}, InstalmentsCapital(x,(1+10/100)c–i'),
{InstalmentsCapital(<i,2i,3i>,1000)=InstalmentsCapital (<i'>•x,c)}),

which simplifies to
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({i}, InstalmentsCapital(x,(11/10)c-i'), {i'=i, x=<2i,3i>, c=1000}),
then to

({i}, InstalmentsCapital(<2i,3i>,1100–i), {}).
The reader can verify that when the same rule is applied two more times, we obtain, after
simplification, the states

({i}, InstalmentsCapital(<3i>,1210–(31/10)i), {}),
({i}, InstalmentsCapital(<>,1331–(641/100)i), {}).

By applying the rule
InstalmentsCapital (<>,0) →

to the last state, we finally obtain
({i},  , {1331–(641/100)i=0}

which simplifies to
({i},  , {i=207+413/641 }).

Here again the reader should be aware that the simplifications presented above are not
necessarily those the machine will perform.

Computing scalar products

As an example of approximated multiplication, here is a small program which
computes the scalar product x1∞y1+...+xn∞yn of two vectors <x1,...,xn> and <y1,...,yn>.

ScalarProduct(<>, <>, 0) → ;
 ScalarProduct(<x>•X, <y>•Y, u+z) →

ScalarProduct(X, Y, z),
{u  =.   x× y};

The query

ScalarProduct(<1,1>, X, 12) ScalarProduct(X, <2,4>,  34) ?

produces the answer
{X = <7,5>}.

Computing the periodicity of a sequence

This problem was proposed in [5].  We consider the infinite sequence of real numbers
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defined by

xi+2 = |xi+1| – xi

where x1 and x2 are arbitrary numbers.  Our aim is to show that this sequence is always
periodic and that the period is 9, in other words, that the sequences

x1, x2, x3, ...    and    x1+9 , x2+9 , x3+9 , ...

are always identical.

Each of these two sequences is completely determined if its first two elements are
known.  To show that the sequences are equal, it is therefore sufficient to show that in
any sequence of eleven elements

x1, x2, x3, ... , x10, x11

we have

x1 = x10    and    x2 = x11.

To begin with, here is the program that enumerates all the finite sequences x1,x2,...,xn
which respect the rule given above :

Sequence(<+y, +x>) → ;
Sequence(<z,y,x>•s) →

Sequence(<y,x>•s)
AbsoluteValue(y, y'), {z = y'–x};

AbsoluteValue(y, y) → , {y = 0};
AbsoluteValue(y, –y) → , {y < 0};

The + signs in the first rule constrain x and y to denote numbers.  It will be observed that
the sequences are enumerated from left to right, that is, trees of the form Sequence(s) are
only admissible if s has the form <xn,...,x2,x1>. If we run this program by asking

Sequence(s), {|s| = 11, s =.   w•
. v•

. u, |u| = 2, |w| = 2, u ?  w} ?

execution ends without providing an answer.  From this we deduce that there is no
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sequence of the form  x1,x2,...,x10,x11 such that the subsequences x1,x2 and x10,x11
(denoted by u and v) are different, and therefore that in any sequence x1,x2,...,x10,x11 we
have indeed x1 = x10 and x2 = x11.

Computing a geometric covering

Here is a last example which highlights the numerical part of Prolog III.  Given an
integer n, we want to know whether it is possible to have n squares of different sizes
which can be assembled to form a rectangle.  If this is possible, we would in addition like
to determine the sizes of these squares and of the rectangle thus formed.  For example,
here are two solutions to this problem, for n=9.

15 18

8 7
4

14

1

109

33

32

33 36

28

5
2

9

25

7

16

69

61

We will use a to denote the ratio between the length of the longest side of the
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constructed rectangle, and the length of its shortest side.  Obviously, we can suppose
that the length of the shortest side is 1, and therefore that the length of the longest side is
a.  Thus, we have to fill a rectangle having the size 1∞a with n squares, all of them
different.  With reference to the diagram below, the basis of the filling algorithm will
consist of
(1) placing a square in the lower left-hand corner of the rectangle,
(2) filling zone A with squares,
(3) filling zone B with squares.
Provided zones A and B are not empty, they will be filled recursively in the same way:
placing a square in the lower left-hand corner and filling two subzones.

A

B

1

a

The zones and subzones are separated by jagged lines in the shape of steps, joining the
upper right corner of the squares and the upper right corner of the rectangle.  These
jagged lines never go downwards, and if several can be plotted to go from one point to
another, the lowest one is the one which is considered.  Here are for example all the
separation lines corresponding to the first solution of the problem for n = 9 :
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To be more precise, a zone or subzone has the form given in the left diagram below,
whereas the entire rectangle is itself identified with the particular zone drawn on the
right.

P

Q

L'

L

Q
L'

L

P

The zone is delimited below by a jagged line L joining a point P to a point Q, and above
by a jagged line L' joining the same point P to the same point Q.   Point P is placed
anywhere in the rectangle to be filled, and Q denotes the upper right corner of the
rectangle. These jagged lines are represented by alternating sequences of vertical and
horizontal segments

v0, h1, v1, ... , hn, vn,

where vi denotes the length of a vertical segment, and hi the length of a horizontal
segment.  The hi's are always strictly positive.  The vi's are either zero, either positive to
denote ascending segments, or negative to denote descending segments.  The vi's  of the
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upper lines are never negative, and if a zone is not empty, only the first vertical segment
v0 in its lower line is negative.

If theses conventions are applied to the entire rectangle (right diagram above), the
lower line L can be represented by the sequence  -1,a,1 and the upper line L'  by a
sequence having the form 0,h1,0,...,hn,0, where  h1+...+hn = a, and the hi's are positive.

 The heart of the program consists in admitting trees of the form

FilledZone(L, L', C, C')

only if the zone delimited below by L can be filled with squares and can be bounded
above by L'.  The squares are to be taken from the beginning of the list C, and C' has to
be the list of squares which remain.  We also need to introduce trees of the form

PlacedSquare(b, L, L')

which are admitted only if it is possible to place a square of size  bxb at the very
beginning of line L and if L' is the line making up the right vertical side of the square
continued by the right part of L (see diagram below).    In fact L denotes the lower line
of a zone from which the first vertical segment has been removed.   The diagram below
shows the three cases that can occur and which will show up in three rules.  Either the
square overlaps the first step, which in fact was a pseudo step of height zero, or the
square fits against the first step, or the square is not big enough to reach the first step.

L'

L L

L'

L

L'

 The program itself is constituted by the following ten rules:
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FilledRectangle(a, C) →
DistinctSquares(C)
FilledZone(<–1,a,1>, L, C, <>),
{a = 1};

DistinctSquares(<>) → ;
DistinctSquares(<b>•C) →

DistinctSquares(C)
OutOf(b, C),
{b > 0};

OutOf(b, <>) → ;
OutOf(b, <b'>•C) →

OutOf(b, C),
{b ?  b'};

FilledZone(<v>•L, <v>•L, C, C) → ,
{v = 0};

FilledZone(<v>•L, L''', <b>•C, C'') →
PlacedSquare(b, L, L')
FilledZone(L', L'', C, C')
FilledZone(<v+b,b>•L'', L''', C', C''),
{v < 0};

PlacedSquare(b, <h,0,h'>•L, L') →
PlacedSquare(b, <h+h'>•L, L'),
{b > h};

PlacedSquare(b, <h,v>•L, <–b+v>•L) → ,
{b = h};

PlacedSquare(b, <h>•L, <–b,h–b>•L) → ,
{b < h};

The call to the program is made with the query

FilledRectangle(a, C), {|C| = n} ?

where n, the only known parameter, is the number of squares of different sizes that are to
fill the rectangle. The program computes the possible size 1∞a of the rectangle (a=1) and
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the list C of the sizes of each of the n squares.  The computation begins by executing the
first rule, which at the same time constrains a to be greater than or equal to 1, creates n
different squares (of unknown size) and starts filling the zone constituted by the entire
rectangle. Even if the line L constituting the upper limit of this zone is unknown at the
beginning, given that this line must join - without itself descending - two points at the
same height, this line will necessarily be a horizontal line (represented by steps of height
zero).  If we ask the query

FilledRectangle(a, C), {|C| = 9} ?

we obtain 8 answers. The first two

{a = 33/32, C = <15/32, 9/16, 1/4, 7/32, 1/8, 7/16, 1/32, 5/16, 9/32>},

{a = 69/61, C = <33/61, 36/61, 28/61, 5/61, 2/61, 9/61, 25/61, 7/61, 16/61>}.

correspond to the two solutions we have drawn earlier.  The other 6 answers describe
solutions which are symmetrical to these two.  In order to locate the positions of the
various squares in the rectangle we can proceed as follows. One fills the rectangle using
one after the other all the squares of the list C in their order of appearance. At each stage
one considers all the free corners having the same orientation as the lower left corner of
the rectangle and one chooses the rightmost one to place the square.

There is a vast literature concerning the problem that we have just dealt with. Let us
mention to important results. It has been shown in [25] that for any rational number a =
1 there always exists an integer n such that the rectangle of size 1∞a can be filled with n
distinct squares.  For the case of a = 1, that is when the rectangle to be filled is a square,
it has been shown in [14] that the smallest possible n is n = 21.

TREATMENT OF BOOLEANS VALUES

Computing faults

In this example we are interested in detecting the defective components in an adder
which calculates the binary sum of three bits x1, x2, x3 in the form of a binary number
given in two bits y1y2. As we can see below, the circuit proposed in [16] is made up of 5
components numbered from 1 to 5: two and gates (marked And), one or gate (marked
Or) and two exclusive or gates (marked Xor). We have also used three variables u1, u2,
u3 to represent the output from gates 1, 2 and 4.
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x1

x2

x3

y1

y2

u1

u3

4 
Xor

5 
Xor

1 
And 2 

And

3 
Or

u2

We introduce 5 more Boolean variables di to express by di = 1' that "gate number i is
defective". If we adopt the hypothesis that at most one of the five components has a
defect, the program connecting the values xi , yi and di  is :

Circuit(<x1,x2,x3>,  <y1,y2>,  <d1,d2,d3,d4,d5>) →
AtMostOne(<d1,d2,d3,d4,d5>),
{¬d1 => (u1 +  x1∧ x3),
¬d2  => (u2 +  x2∧u3),
¬d3  => (y1 +  u1∨u2),
¬d4  => (u3 +  ¬(x1+ x3)),
¬d5  => (y2 +  ¬(x2+ u3))};

AtMostOne(D) →
OrInAtMostOne(D, d);

OrInAtMostOne(<>, 0') → ;
OrInAtMostOne(<d>•D,  d∨e) →

OrInAtMostOne(D, e),
{d∧ e = 0'};

In this program the admissible trees of the form

AtMostOne(D)

are those in which D is a list of Boolean elements containing at most one 1'. The
admissible trees of the form

OrInAtMostOne(D, d)

are those in which D is a list of Boolean elements containing at most one 1' and where d
is the disjunction of these elements.
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If the state of the circuit leads us to write the query

Circuit(<1', 1', 0'>, <0', 1'>, <d1, d2, d3, d4, d5> )?

the diagnosis will be that component number 4 is defective :

{ d1= 0',  d2 = 0',  d3 = 0', d4 = 1', d5 = 0' }.

If the state of the circuit leads us to write the query

Circuit(<1', 0', 1'>, <0', 0'>, <d1, d2, d3, d4, d5> ) ?

the diagnosis will then be that either component number 1 or component number 3 is the
defective one:

{ d1∨d3 = 1', d1∧d3 = 0', d2 = 0',  d4 = 0', d5 = 0'}.

Computing inferences

We now consider  the 18 sentences of a puzzle due to Lewis Carroll [7], which we
give below. Questions of the following type are to be answered : "what connection is
there between being clear-headed, being popular and being fit to be a Member of
Parliament?" or "what connection is there between being able to keep a secret, being fit
to be a Member of Parliament  and being worth one's weight in gold ?".

1.  Any one, fit to be an M.P., who is not always speaking, is a public benefactor.

2. Clear-headed people, who express themselves well, have a good education.

3. A woman, who deserves praise, is one who can keep a secret.

4. People, who benefit the public, but do not use their influence for good purpose, are not fit to go into

Parliament.

5. People, who are worth their weight in gold and who deserve praise, are always unassuming.

6. Public benefactors, who use their influence for good objects, deserve praise.

7. People, who are unpopular and not worth their weight in gold, never can keep a secret.
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8. People, who can talk for ever and are fit to be Members of Parliament, deserve praise.

9. Any one, who can keep a secret and who is unassuming, is a never-to-be-forgotten public benefactor.

10. A woman, who benefits the public, is always popular.

11. People, who are worth their weight in gold, who never leave off talking, and whom it is impossible

to forget, are just the people whose photographs are in all the shop-windows.

12. An ill-educated woman, who is not clear-headed, is not fit to go to Parliament.

13. Any, one, who can keep a secret and is not for ever talking, is sure to be unpopular.

14. A clear-headed person, who has influence and uses it for good objects, is a public benefactor.

15. A public benefactor, who is unassuming, is not the sort of person whose photograph is in every shop-

window.

16. People, who can keep a secret and who who use their influence for good purposes, are worth their

weight in gold.

17. A person, who has no power of expression and who cannot influence others, is certainly not a

woman.

18. People, who are popular and worthy of praise, either are public benefactors ore else are unassuming.

Each of these 18 statements is formed from basic propositions and logical
connectives.  To each basic proposition corresponds a name, in the form of a character
string, and a logical value represented by a Boolean variable.  The information contained
in the 18 statements can then be expressed in a single rule formed by a large head term,
an empty body, and a sizeable constraint part :
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PossibleCase(<
<a,"clear-headed">,
<b,"well-educated">,
<c,"constantly talking">,
<d,"using one's influence for good objects">,
<e,"exhibited in shop-windows">,
<f,"fit to be a Member of Parliament">,
<g,"public benefactors">,
<h,"deserving praise">,
<i,"popular">,
<j,"unassuming">,
<k,"women">,
<l,"never-to-be-forgotten">,
<m,"influential">,
<n,"able to keep a secret">,
<o,"expressing oneself well">,
<p,"worth one's weight in gold">>)      →  ,

{(f ∧  ¬c) ⇒  g,
(a ∧  o) ⇒  b,
(k ∧  h) ⇒  n,
(g ∧  ¬d) ⇒  ¬f,
(p ∧  h) ⇒  j,
(g ∧  d) ⇒  h,
(¬i ∧  ¬p) ⇒  ¬n,
(c ∧  f) ⇒  h,
(n ∧  j) ⇒  (g ∧  l),
(k ∧  g) ⇒  i,
(p ∧  c ∧  l) ⇒  e,
(k ∧  ¬a ∧  ¬ b) ⇒  ¬f,
(n ∧  ¬c) ⇒  ¬i,
(a ∧  m ∧  d) ⇒  g,
(g ∧  j) ⇒  ¬e,
(n ∧  d) ⇒  p,
(¬o ∧  ¬m) ⇒  ¬k,
(i ∧  h) ⇒  (g ∨ j)};

To be able to deal with subcases, we introduce :
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PossibleSubCase(x) →
 PossibleCase(y)

SubSet(x, y);

SubSet(<>, y) → ;
SubSet(<e>•x, y) →

ElementOf(e, y)
SubSet(x, y);

ElementOf(e, <e>•y) → ;
ElementOf(e, <e'>•y) →

ElementOf(e, y),  {e ?  e' };

In order to compute the connection which exists between "clear-headed",
"popular"and "fit to be a Member of Parliament" it suffices to write the query

PossibleSubCase(<
<p,"clear-headed">,
<q,"popular">,
<r,"fit to be a Member of Parliament">>)?

The answer is the set of constraints

{p : bool, q : bool, r : bool},

which means that there is no connection between "clear-headed", "popular" and "fit to be
a Member of Parliament".

To compute the connection which exists between  "able to keep a secret", "fit to be a
Member of Parliament" and "worth one's weight in gold" it suffices to write the query

PossibleSubCase(<
<p,"able to keep a secret">,
<q,"fit to be a Member of Parliament">,
<r,"worth one's weight in gold">>) ?

The answer is
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{p∧q => r},

which means that persons who can keep a secret and are fit to be a Member of
Parliament are worth their weight in gold.

In fact in these two examples of program execution we have assumed that Prolog III
yields as answer very simplified solved systems, in particular, systems not containing
superfluous Boolean variables. If this head not been the case, to show (as opposed to
find) that persons who can keep a secret and are fit to be a Member of Parliament are
worth their weight in gold, we would have had to pose the query

PossibleSubCase(<
<p,"able to keep a secret">,
<q,"fit to be a Member of Parliament">,
<r,"worth one's weight in gold">>),

{x = (p∧q ⊃ r)} ?

and obtain a response of the form {x = 1', ... } or obtain no answer to the query

PossibleSubCase(<
<p,"able to keep a secret">,
<q,"fit to be a Member of Parliament">,
<r,"worth one's weight in gold">>),

{(p∧q ⊃ r) = 0'} ?

TREATMENT OF TREES AND LISTS

 Computing the leaves of a tree

Here is first of all an example where we access labels and daughters of a tree by the
operation [].  We want to calculate the list of the leaves of a finite tree without taking
into account the leaves labeled <>α. Here is the program :
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Leaves(e[u], <e>) → ,
{u = <>};

Leaves(e[u], x) →
Leaves(u, x),

     {u ?  <>};
Leaves(<>, <>) → ;
Leaves(<a>•u, z) →

     Leaves(a, x)
     Leaves(u, y),

{z =.   x•
. y};

Trees of the form

Leaves(a, x)

are admissible only if x  is the list of leaves of the finite tree a (not including the leaves
labeled <>α). The query

Leaves(height("Max",<180/100,meters>,1'), x)?

produces the answer

{x = <'M', 'a', 'x', 9/5, meters, 1'>}.

Computing decimal integers

Our second example shows how approximated concatenation can be used to access
the last element of a list.  We want to transform a sequence of digits into the integer it
represents.  Here is the program without comments :

Value(<>, 0) →  ;
Value(y, 10m+n) →

Value(x, m),
{y =.   x•

. <n>};
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As a reply to the query

Value(<1,9,9,0>, x) ?

we obtain

{x = 1990}.

Computing the reverse of lists

If one knows how to access the first and the last element of a list it must be possible
to write an elegant program computing the reverse of a list.  Here is the one I propose :

Reverse(x, y) →
Palindrome(u),
{u =.   x•

. y, |x| = |y|};

Palindrome(<>) →  ;
Palindrome(v) →

Palindrome(u),
{v =.   <a>•

. u•
. <a>};

Each of the two queries

Reverse(<1,2,3,4,5>, x) ?
Reverse(x, <1,2,3,4,5>) ?

produces the same answer

{x = <5,4,3,2,1>}.

For the query

Reverse(x, y) Reverse(y, z), {x ?  z, |x| = 10} ?

we get no answer at all, which confirms that reversing a list twice yields the initial list.
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Context-free recognizer

The treatment of concatenation provides a systematic and natural means of relating
"context-free" grammar rules with Prolog III rules, thus constructing a recognizer. Let
us for example consider the grammar

{S →  AX,  Α →  Λ,  Α →  aA,  X →  Λ,  X →  aXb}

which defines the language consisting of sequences of symbols of the form   ambn  with
m = n.  The following program corresponds to the grammar :

Sform(u) →
Aform(v)
Xform(w),
{u =.   v•

. w};

 Aform(u) →
{u = <>};

Aform(u) →
Aform(v),
{u = "a"•v};

Xform(u) →
{u = <>};

Xform(u) →
Xform(v),
{u =.   "a"•

. v•
. "b"};

The query

Sform("aaabb") ?

produces the answer

{}

which signifies that the string "aaabb" belongs to the language, whereas the query
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Sform("aaabbbb") ?

produces no response, which means that the string "aaabbbb" does not belong  to the
language.

TREATMENT OF INTEGERS

The algorithms used for solving constraints on integers are complex and quite often
inefficient. It is for this reason that the structure underlying Prolog III does not contain a
relation restricting a number to be only an integer. We have however considered a way
of enumerating integers satisfying the set of current constraints.

Enumeration of integers

The Prolog III abstract machine is modified in such a way as to behave as if the
following infinite set of rules

enum(0) → ;
enum(–1) → ;
enum(1) → ;
enum(–2) → ;
enum(2) → ;

.....................

had been added to every program. Moreover the abstract machine is implemented in such
a way as to guarantee that the search for applicable rules takes a finite among of time
whenever this set is itself finite. In connection with the definition of the abstract machine
this can be regarded as adding all the transitions of the form

(W, t0 t1...tm , S)   →    (W, t1...tm , S≈{t0=enum(n)}),

where n is an integer such that the system S≈{p0=enum(n)} admits at least one solution
in which the values of the ti 's are all defined.

For example, if in the current state of the abstract machine the first term to be deleted
is  « enum(x) » and if the system S of constraints is equivalent on {x} to
{3/4 = x, x = 3+1/4}, then they will be two transitions : one to a state with a system
equivalent to S≈{x=1}, the other to a state with a system equivalent to S≈{x=2}.
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Let us add in this connection that if S is a system forcing the variable x to represent a
number, then, in the most complex case, the system S is equivalent on {x} to a system of
the form

{x = a0, x ?  a1, ... , x ?  an, x  = an+1},

where the ai 's are rational numbers.

A problem, taken from one of the many books of M. Gardner [15], illustrates nicely
the enumeration of integers.  The problem goes like this.  In times when prices of farm
animals were much lower than today, a farmer spent $100 to buy 100 animals of three
different kinds, cows, pigs and sheep. Each cow cost $10, each pig $3 and each sheep 50
cents.  Assuming that he bought at least one cow, one pig and one sheep, how many of
each animal did the farmer buy ?

Let x, y and z be the number of cows, pigs and sheep that the farmer bought.  The
query

enum(x) enum(y) enum(z),
{x+y+z = 100, 10x+3y+z/2 = 100, x = 1, y = 1, z = 1} ?

produces the answer

{x = 5, y = 1, z = 94}.

This problem reminds us of a problem mentioned at the beginning of this paper.  Find the
number x of pigeons and the number y of rabbits such that together there is a total of 12
heads and 34 legs.  It was solved by putting the query

{x+y = 12, 2x+4y = 34} ?

But, given that, a priori, we have no guarantee that the solutions of this system are non-
negative and integer numbers, it is more appropriate to put the query

enum(x) enum(y), {x+y = 12, 2x+4y = 34, x = 0, y = 0} ?

which produces the same answer

{x = 7, y = 5}.



AN INTRODUCTION TO PROLOG III     43

Cripto-arithmetic

Here is another problem that illustrates the enumeration of integers.  We are asked to
solve a classical cripto-arithmetic puzzle : assign the ten digits  0,1,2,3,4,5,6,7,8,9 to the
ten letters D,G,R,O,E,N,B,A,L,T in such a way that the addition DONALD + GERALD =
ROBERT holds.  We deterministically install the maximal number of constraints on the
reals and use the non-determinism to enumerate all the integers which are to satisfy these
constraints.  Here is the program without any comments :

Solution(i, j, i+j) →
Value(<D,O,N,A,L,D>, i)
Value(<G,E,R,A,L,D>, j)
Value(<R,O,B,E,R,T>, i+j)
DifferentAndBetween09(x)
Integers(x),
{<D,G,R,E,N,B,A,L,T,O> = x,
D ?  0, G ?  0, R ?  0};

Value(<>, 0)→  ;
Value(y, 10i+j) →

Value(x, i), {y =.   x•
. <j>};

DifferentAndBetween09(<>) → ;
DifferentAndBetween09(<i>•x) →

OutOf(i, x)
DifferentAndBetween09(x),
{0 = i, i = 9};

OutOf(i, <>) → ;
OutOf(i, <j>•x) →

OutOf(i, x), {i ?  j};

Integers(<>) → ;
Integers(<i>•x) →

enum(i) Integers(x);

The answer to the query
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Solution(i, j, k) ?

is

{i = 526485, j = 197485, k = 723970}.

Self-referential puzzle

The last example is a typical combinatorial problem that is given a natural solution by
enumeration of integers in a involving approximated concatenation and multiplication.
Given a positive integer  n, we are asked to find n integers x1, .., xn such that the
following property holds :

"In the sentence that I am presently uttering, the number 1 occurs x1 times, the number 2
occurs x2 times, ... , the number n occurs xn times".

We proceeds as if one were using true (and not approximated) concatenation and one
writes the program whose admissible trees are of the form

Counting(<x1,...,xm>, <y1+1,...,yn+1>),

each xi being an integer between 0 and m, each yi being the number of occurrences of the
integer i in the list <x1,...,xm>. This is the program :

Counting(<>, Y) → ,
{<1>•Y = Y•<1>};

Counting(<x>•X, U•<y+1>•V) →
Counting(X, U•<y>•V),
{|U | = x–1};

Here the constraint  {<1>•Y = Y•<1>} is an elegant way of forcing Y to be a list of 1's.  If
everything were perfect, it would suffice to ask the query "Counting(X, X), {|X| = n}" to
obtain the list of the desired n integers. Prolog III not being perfect, we have to
substitute approximated concatenation for true concatenations. We must therefore
complete the program with an enumeration of the integers x1, .., xn that we are looking
for.  All the lists are thus constrained to be of integer length, that is to say, to be true lists
and as a result all the approximated concatenations become true concatenations.  The
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first property is

x1+ ... +xn = 2n,

which expresses that the total number of occurrences of numbers in the sentences is both
x1+...+xn and 2n. The second is

0x1+1x2+ ... +(n–1)xn = n(n+1)/2,

which expresses that the sum of numbers which appear in the sentences is both
1x1+2x2+...+nxn and x1+... +xn + 1+...+n.  From all these considerations the following
final program results :
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Solution(X) →
Sum(X, 2n)
WeightedSum(X, m)
Counting(X, X)
Integers(X),
{n = |X|, m =.   n∞. (n+1) /2};

Sum(<>, 0) → ;
Sum(<x>•X, x+y) →

Sum(X, y);

WeightedSum(<>, 0) → ;
WeightedSum(X•<x>, z+y) →

WeightedSum(X, y),
{z =.   |X|∞.  x};

Counting(<>, Y) → ,
{<1>•Y =.   Y•

. <1>};
Counting(<x>•X, Y') →

Counting(X, Y),
{Y' =.   U•

. <y+1>•
. V,

Y =.   U•
. <y>•

. V,
|U | = x–1};

Integers(<>) → ;
Integers(<x>•X) →

Integers(X)
enum(x);

Assigning successively to n the values 1,2, ... , 20 and asking the query

Solution(X), {|X| = n} ?

we obtain as answers

{X = <3,1,3,1>},
{X = <2,3,2,1>},
{X = <3,2,3,1,1>},
{X = <4,3,2,2,1,1,1>},



AN INTRODUCTION TO PROLOG III     47

{X = <5,3,2,1,2,1,1,1>},
{X = <6,3,2,1,1,2,1,1,1>},
{X = <7,3,2,1,1,1,2,1,1,1>},
{X = <8,3,2,1,1,1,12,1,1,1>},
..................................................
{X = <16,3,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1>},
{X = <17,3,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1>}.

The regularity in the answer gives rise to the idea of proving that for n = 7 there always
exists a solution of the form

x1, ... , xn    =    n–3, 3, 2, 1, .... , 1, 2, 1, 1, 1.

PRACTICAL REALIZATION

Prolog III is of course more than an intellectual exercise. A prototype of a Prolog III
interpreter has been running in our laboratory since the end of 1987.  A commercial
version based on this prototype is now being distributed by the company PrologIA at
Marseilles  (Prolog III version 1.0).  This product incorporates the functionalities
described in the present paper as well as facilities calculating maximum and minimum
values of numerical expressions. We have been able to use it to test our examples and to
establish the following benchmarks (on a Mac II, first model).
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Light meals 4 sec
Instalments, n = 3 2 sec
Instalments, n = 50 6 sec
Instalments, n = 100 23 sec
Periodic sequence 3 sec
Squares, n = 9 13 min 15 sec
Squares, n = 9, 1st solution 1 min 21 sec
Squares, n = 10, 1st solution 6 min 36 sec
Squares, n = 11, 1st solution 1 min 38 sec
Squares, n = 12, 1st solution 5 min 02 sec
Squares, n = 13, 1st solution 4 min 17 sec
Squares, n = 14, 1st solution 13 min 05 sec
Squares, n = 15, 1st solution 11 min 29 sec
Faults detection, 2nd query 3 sec
Lewis Carrol, 2nd query 3 sec
Donald+Gerald... 68 sec
Self-referential-puzzle, n = 4 3 sec
Self-referential-puzzle, n = 5 4 sec
Self-referential-puzzle, n = 10 11 sec
Self-referential-puzzle, n = 15 36 sec
Self-referential-puzzle, n = 20 1 min 54 sec
Self-referential-puzzle, n = 25 5 min 51 sec
Self-referential-puzzle, n = 30 17 min 55 sec

All the above figures, except when stated otherwise, are the execution times of complete
programs including the input and output of queries and answers.   The instalment
calculation consist in computing a sequence of instalments i, 2i, 3i, ... ,ni needed to
reimburse a capital of 1000.  In order to do justice to these results one must take into
account the fact that all the calculations are carried out in infinite precision.  In the
instalment example with n=100 a simplified fraction with a numerator and a denominator
with more than 100 digits is produced !

We finish this paper with information on the implementation of Prolog III.  The kernel
of the Prolog III interpreter consists of a two-stack machine which explores the search
space of the abstract machine via backtracking.  These two stacks are filled and emptied
simultaneously.  In the first stack one stores the structures representing the states
through which one passes.  In the second stack one keeps track of all the modifications
made on the first stack by address-value pairs in order to make the needed restorations
upon backtracking. A general system of garbage collection [23] is able to detect those
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structures that have become inaccessible and to recuperate the space they occupy by
compacting the two stacks.  During this compaction the topography of the stacks is
completely retained.  The kernel of the interpreter also contains the central part of the
solving algorithms for the = and ?  constraints.  These algorithms are essentially an
extension of those already used in Prolog II and described in [10].  The extension
concerns the treatment of list concatenation and the treatment of linear numerical
equations containing at least one variable not restricted to represent a non-negative
number. A general mechanism for the delaying of constraints, which is used to implement
approximated multiplication and concatenation, is also provided in the kernel.  Two
submodules are called upon by the interpreter, one for the treatment of Boolean algebra,
the other for the remaining numerical part.

The Boolean algebra module works with clausal forms. The algorithms used [2] are
an incremental version of those developed by P. Siegel [24], which are themselves based
on SL-resolution [20]. On the one hand they determine if a set of Boolean constraint is
solvable and on the other they simplify these constraints into a set of constraints
containing only a minimal subset of variables.  Related experiments have been performed
with an algorithm based on model enumeration  [21].  Although significant improvement
has been achieved as far as solvability tests are concerned a large part of these
ameliorations is lost when it comes to simplifying the constraints on output. Let us
mention that W. Büttner and H. Simonis approach the incremental solving of Boolean
constraints with quite different algorithms [6].

The numerical module treats linear equations the variables of which are constrained to
represent non-negative numbers.  (These variables x are introduced to replace constraints
of the form p = 0 by the constraints x = p and x = 0).  The module consists essentially in
an incremental implementation of G. Dantzig's simplex algorithm [12].  The choice of
pivots follows a method proposed in  M. Balinski et R. Gomory [1] which, like the well-
known method of  R. Bland [3], avoids cycles.  The simplex algorithm is used  both to
verify if the numerical constraints have solutions and to detect those variables having
only one possible value.  This allows to simplify the constraints by detecting the hidden
equations in the original constraints.  For example the hidden equation x = y will be
detected in {x = y, y = x}.  The module also contains various subprograms needed for
addition and multiplication operations in infinite precision, that is to say, on fractions
whose numerators and denominators are unbounded integers. Unfortunately we have not
included algorithms for the systematic elimination of useless numerical variables in the
solved systems of constraints. Let us mention in this connection the work of J-L. Imbert
[17].
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