The Semantic Web Introducing Semantic Technologies

Part V

The Semantic Web

- Declarative Programming with Prolog
- **Declarative Programming with Constraints**
- The Semantic Web

The Semantic Web

Contents

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The ALCN language family
- TBox reasoning

The Semantic Web

Introducing Semantic Technologies

【□▶ 【□▶

Semantic and Declarative Technologies

347/378

The Semantic Web Introducing Semantic Technologies

Semantic Technologies

- Semantics = meaning
- Semantic Technologies = technologies building on (formalized) meaning
- Declarative Programming as a semantic technology
 - A procedure definition describes its intended meaning
 - e.g. intersect(L1, L2) :- member(X, L1), member(X, L2). Lists L1 and L2 intersect if there exists an X, which is a member of both L1 and L2.
 - The execution of a program can be viewed as a process of deduction
- The main goal of the Semantic Web (SW) approach:
 - make the information on the web processable by computers
 - machines should be able to understand the web, not only read it
- Achieving the vision of the Semantic Web
 - Add (computer processable) meta-information to the web
 - Formalize background knowledge build so called ontologies
 - Develop reasoning algorithms and tools

The vision of the Semantic Web

• The Semantic Web layer cake - Tim Berners-Lee

The Semantic Web Introducing Semantic Technologies The Semantic Web An example of the Semantic Web approach

Contents

The Semantic Web

- The goal: making the information on the web processable by computers
- Achieving the vision of the Semantic Web
 - Add meta-information to web pages, e.g.

(AIT hasLocation Budapest)
(AIT hasTrack Track:Foundational-courses)
(Track:Foundational-courses hasCourse Semantic-and-declarative...)

- Formalise background knowledge build so called terminologies
 - hierarchies of notions, e.g.
 a University is a (subconcept of) Inst-of-higher-education,
 the hasFather relationship is a special case of hasParent
 - definitions and axioms, e.g.
 a Father is a Male Person having at least one child
- Develop reasoning algorithms and tools
- Main topics
 - Description Logic, the maths behind the Semantic Web is the basis of Web Ontology Languages OWL 1 & 2 (W3C standards)
 - A glimpse at reasoning algorithms for Description Logic

5 The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The \mathcal{ALCN} language family
- TBox reasoning

Semantic and Declarative Technologies 2024 Spring Semester 350/378

The Semantic Web An example of the Semantic Web approach

Semantic and Declarative Technologies 2024 Spring Semester 351/378

The Semantic Web approach

An example of the Semantic Web approach

First Order Logic (recap)

- Syntax:
 - non-logical ("user-defined") symbols: predicates and functions, including constants (function symbols with 0 arguments)
 - terms (refer to individual elements of the universe, or interpretation),
 e.g. fatherOf(Susan)
 - formulas (that hold or do not hold in a given interpretation), e.g. $\varphi = \forall x. (Optimist(fatherOf(x)) \rightarrow Optimist(x))$
- Semantics:
 - determines if a closed formula φ is true in an interpretation \mathcal{I} : $\mathcal{I} \models \varphi$ (also read as: \mathcal{I} is a model of φ)
 - an interpretation *T* consists of a domain Δ and a mapping from non-logical symbols (e.g. *Optimist*, *fatherOf*, *Susan*) to their meaning
 - semantic consequence: $S \models \alpha$ means: if an interpretation is a model of all formulas in the set S, then it is also a model of α (note that the symbol \models is overloaded)
- Deductive system (also called proof procedure): an algorithm to deduce a consequence α of a set of formulas $S: S \vdash \alpha$
 - example: resolution

Soundness, completeness and decidability (recap)

- A deductive system is **sound** if $S \vdash \alpha \Rightarrow S \models \alpha$ (deduces only truths).
- A deductive system is **complete** if $S \models \alpha \Rightarrow S \vdash \alpha$ (deduces all truths).
- Resolution is a sound and complete deductive system for FOL
- Kurt Gödel was first to show such a system:
 Gödel's completeness theorem: there is a sound and complete deductive system for FOL
- FOL is not decidable: no decision procedure for the question "does S imply α ($S \vdash \alpha$)?" (Gödel's completeness theorem ensures that if the answer is "yes", then there exists a proof of α from S; but if the answer is "no", we have no guarantees this is called semi-decidability)
- Developers of the Semantic Web strive for using decidable languages
 - for languages with a sound and complete proof procedure
- Semantic Web languages are based on Description Logics, which are decidable sublanguages of FOL, i.e. there is an algorithm that delivers a yes or no answer to the question "does S imply α "

 The Semantic Web An example of the Semantic Web approach The Semantic Web An example of the Semantic Web approach

Ontologies

- Ontology: computer processable description of knowledge
- Early ontologies include classification system (biology, medicine, books)

2024 Spring Semester

- Entities in the Web Ontology Language (OWL):
 - classes describe sets of objects (e.g. optimists)
 - properties (attributes, slots) describe binary relationships (e.g. has parent)
 - objects correspond to real life objects (e.g. people, such as Susan, her parents, etc.)

◀□▶ ◀♬▶ Semantic and Declarative Technologies 2024 Spring Semester The Semantic Web An example of the Semantic Web approach

A sample ontology to be entered into Protégé

• There is a class of Animals, some of which are Male, some are Female.

Semantic and Declarative Technologies

The Semantic Web An example of the Semantic Web approach

- No one can be both Male and Female.
- There are Animals that are Human.
- There are Humans who are Optimists.
- There is a relationship hasP meaning "has parent". Relations hasFather and hasMother are sub-relations (special cases) of hasP.
- Let's define the class C1 as those who have an optimistic parent.
- State that everyone belonging to C1 is Optimistic.
- State directly that anyone having an Optimistic parent is Optimistic.
- There is a relation hasF, denoting "has friend". State that someone having a non-Optimistic friend must be Optimistic.
- There are individuals: Susan, and her parents Mother and Father.
- Mother has Father as her friend.

Knowledge Representation

- Natural Language:
 - Someone having a non-optimist friend is bound to be an optimist.
 - Susan has herself as a friend.
- First order Logic (unary predicate, binary predicate, constant):
 - $\bigvee x.(\exists y.(\mathsf{hasFriend}(x,y) \land \neg \mathsf{opt}(y)) \to \mathsf{opt}(x))$
 - hasFriend(Susan, Susan)
- Description Logics (concept, role, individual):
 - (∃hasFriend.¬ Opt) □ Opt (GCI – Gen. Concept Inclusion axiom)
 - hasFriend(Susan, Susan)

(role assertion)

- Web Ontology Language (Manchester syntax)⁵ (class, property, object):
 - (hasFriend some (not Opt)) SubClassOf: Opt Those having some not Opt friends must be Opt

(GCI – Gen. Class Inclusion axiom)

a hasFriend(Susan, Susan)

(object property assertion)

⁵protegeproject.github.io/protege/class-expression-syntax

355/378

The sample ontology in Description Logic and OWL/Protégé

	English	Description Logic	OWL (Manchester syntax)		
1	Male is a subclass of Animal.	Male ⊑ Animal	Male SubClassOf: Animal		
	Female is a subclass of Animal.	Female ⊑ Animal	Female SubClassOf: Animal		
2	Male and Female are disjoint.	Male ⊑ ¬ Female	Male DisjointWith: Female		
3	Human is a subclass of Animal.	Human ⊑ Animal	Human SubClassOf: Animal		
4	Optimist is a subclass of Human.	Opt ⊑ Human	Opt SubClassOf: Human		
5	hasFather is a subprop. of hasP.	hasFather <u>□</u> hasP	hasFather SubPropertyOf: hasP		
	hasMother is a subprop. of hasP.	hasMother <u>□</u> hasP	hasMother SubPropertyOf: hasP		
6	C1 = those having an Opt parent.	$C1 \equiv \exists hasP . Opt$	C1 EquivalentTo: hasP some Opt		
7	Everyone in C1 is Opt.	C1 ⊑ Opt	C1 SubClassOf: Opt		
8	Children of Opt parents are Opt.	\exists hasP . Opt \sqsubseteq Opt	hasP some Opt SubClassOf: Opt		
9	Those with a non-Opt friend are Opt.	\exists hasF . \neg Opt \sqsubseteq Opt	hasF some not Opt SubClassOf: Opt		
10	Susan has parents Mother and	hasP(Susan, Mother)	hasP(Susan, Mother)		
	Father.	hasP(Susan, Father)	hasP(Susan, Father)		
1	Mother has Father as a friend.	hasF(Mother, Father)	hasF(Mother, Father)		
(In Dusting Collect the "sources" forward on "I story ourstou" to obtain DI					

(In Protégé, select the "save as" format as "Latex syntax" to obtain DL notation.)

↓□▶ ↓♂▶

354/378

The Semantic Web An overview of Description Logics The Semantic Web An overview of Description Logics

Contents

Description Logic (DLs) – overview

DL, a subset of FOL, is the mathematical background of OWL

- Signature relation and function symbols allowed in DL
 - concept name (A) unary predicate symbol (cf. OWL class)
 - role name (R) binary predicate symbol (cf. OWL property)
 - individual name (a,...) constant symbol (cf. OWL object)
 - No non-constant function symbols, no preds of arity > 2, no vars
- Concept names and concept expressions represent sets, e.g. ∃hasParent.Optimist — the set of those who have an optimist parent
- Terminological axioms (TBox) stating background knowledge
 - A simple axiom using the DL language ALE: ∃hasParent.Optimist □ Optimist – the set of those who have an optimist parent is a subset of the set of optimists
 - Translation to FOL: $\forall x.(\exists y.(hasP(x,y) \land Opt(y)) \rightarrow Opt(x))$
- Assertions (ABox) stating facts about individual names
 - Example: Optimist(JACOB), hasParent(JOSEPH, JACOB)
- A consequence of these TBox and ABox axioms is: Optimist(JOSEPH)
- DLs behind OWL 1 and OWL 2 are decidable: there are bounded time algorithms for checking if a set of axioms implies a statement.

◀ □ ▶ ◀ 🗇 ▶

The Semantic Web

TBox reasoning

Introducing Semantic Technologies

An overview of Description Logics

• The ALCN language family

An example of the Semantic Web approach

Semantic and Declarative Technologies The Semantic Web An overview of Description Logics

358/378

◀□▶ ◀圖▶

Semantic and Declarative Technologies The Semantic Web An overview of Description Logics

359/378

Some further examples of terminological axioms

(1) A Mother is a Person, who is a Female and who has(a)Child.

Mother \equiv Person \sqcap Female \sqcap \exists hasChild. \top

(2) A Tiger is a Mammal.

(3) Children of an Optimist Person are Optimists, too.

Optimist □ Person □ ∀hasChild.Optimist

(4) Childless people are Happy.

∀hasChild.⊥ □ Person □ Happy

(5) Those in the relation has Child are also in the relation has Descendant.

hasChild has Descendant

(6) The relation hasParent is the inverse of the relation hasChild.

hasParent≡hasChild⁻

(7) The hasDescendant relationship is transitive.

Trans(hasDescendant)

Description Logics – why the plural?

- These logic variants were progressively developed in the last two decades
- As new constructs were proved to be "safe", i.e. keeping the logic decidable, these were added
- We will start with the very simple language AL, extend it to ALE, ALUand ALC
- As a side branch we then define ALCN
- We then go back to ALC and extend it to languages S, SH, SHI and SHIQ (which encompasses ALCN)
- We briefly tackle further extensions \mathcal{O} , (**D**) and \mathcal{R}
- OWL 1, published in 2004, corresponds to $\mathcal{SHOIN}(\mathbf{D})$
- OWL 2, published in 2012, corresponds to $\mathcal{SROIQ}(\mathbf{D})$

< □ **▶** < 🗇 **▶**

Semantic and Declarative Technologies

2024 Spring Semester

360/378

Semantic and Declarative Technologies

The Semantic Web The ALCN language family The Semantic Web The ALCN language family

Contents

• In ALCN a statement (axiom) can be

Overview of the \mathcal{ALCN} language

- • an equivalence, e.g. Woman ≡ Female □ Person,
- Mother \equiv Woman $\sqcap \exists$ hasChild. \top
- In general, an \mathcal{ALCN} axiom can take these two forms:
 - subsumption: $C \sqsubseteq D$
 - equivalence: $C \equiv D$, where C and D are concept expressions
- A concept expression C denotes a set of objects (a subset of the Δ universe of the interpretation), and can be:
 - an atomic concept (or concept name), e.g. Tiger, Female, Person
 - a composite concept, e.g. Female □ Person, ∃hasChild.Female
 - composite concepts are built from atomic concepts and atomic roles (also called role names) using some constructors (e.g. \Box , \Box , \exists , etc.)
- We first introduce language AL, that allows a minimal set of constructors (all examples on this page are valid AL concept expressions)
- Next, we discuss richer extensions named \mathcal{U} , \mathcal{E} , \mathcal{C} , \mathcal{N}

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The \mathcal{ALCN} language family
- TBox reasoning

◀ □ ▶ ◀ 🗇 ▶

Semantic and Declarative Technologies The Semantic Web The ALCN language family

2024 Spring Semeste

362/378

Semantic and Declarative Technologies

2024 Spring Semester

363/378

The Semantic Web The ALCN language family

The syntax of the AL language

Language AL (Attributive Language) allows the following concept expressions, also called concepts, for short:

A is an atomic concept, C, D are arbitrary (possibly composite) concepts R is an atomic role

DL concept	OWL class	Name	Informal definition
A A (class name)		atomic concept	those in A
Т	owl:Thing	top	the set of all objects
	owl:Nothing	bottom	the empty set
$\neg A$	not A	atomic negation	those not in A
$C \sqcap D$	C and D	intersection	those in both C and D
∀R.C	R only C	value restriction	those whose all Rs belong to C
∃ <i>R</i> .⊤	R some owl:Thing	limited exist. restr.	those having at least one R

Examples of AL concept expressions:

Person □ ¬Female Person and not Female

Person

∀hasChild.Female Person and (hasChild only Female) Person □ ∃hasChild. □ Person and (hasChild some owl:Thing)

The semantics of the AL language (as a special case of FOL)

- An interpretation \mathcal{I} is a mapping:
 - $\Delta^{\mathcal{I}} = \Delta$ is the universe, the **nonempty** set of all individuals/objects
 - for each concept/class name A, $A^{\mathcal{I}}$ is a (possibly empty) subset of Δ
 - for each role/property name R, $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ is a binary relation on Δ
- The semantics of AL extends I to composite concept expressions, i.e. describes how to "calculate" the meaning of arbitrary concept exprs:

$$\begin{array}{rcl}
\top^{\mathcal{I}} & = & \Delta \\
\bot^{\mathcal{I}} & = & \emptyset \\
(\neg A)^{\mathcal{I}} & = & \Delta \setminus A^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(\forall R.C)^{\mathcal{I}} & = & \{a \in \Delta | \forall b. (\langle a,b \rangle \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}})\} \\
(\exists R.\top)^{\mathcal{I}} & = & \{a \in \Delta | \exists b. \langle a,b \rangle \in R^{\mathcal{I}}\}
\end{array}$$

• Finally we define how to obtain the truth value of an axiom:

$$\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$
$$\mathcal{I} \models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}}$$

The AL language: limitations

Recall the elements of the language AL:

DL concept	OWL class	Name	Informal definition
Α	A (class name)	atomic concept	those in A
T	owl:Thing	top	the set of all objects
	owl:Nothing	bottom	the empty set
$\neg A$	not A	atomic negation	those not in A
$C \sqcap D$	C and D	intersection	those in both C and D
∀R.C	R only C	value restriction	those whose all Rs belong to C
∃ <i>R</i> .⊤	R some owl:Thing	limited exist. restr.	those having at least one R

What is missing from AL?

- We can specify the intersection of two concepts, but not the union, e.g. those who are either blue-eyed or tall.
- $\exists R. \top$ we cannot describe e.g. those having a female child. Remedy: allow for full exist. restr., e.g. \(\frac{1}{2}\)hasCh. \(Female\)
- $\neg A$ negation can be applied to atomic concepts only. Remedy: full negation, $\neg C$, where C can be non-atomic, e.g. $\neg (U \sqcap V)$

◀□▶ ◀圖▶

Semantic and Declarative Technologies The Semantic Web The ALCN language family

366/378

Semantic and Declarative Technologies The Semantic Web The ALCN language family

Summary table of the \mathcal{ALCUEN} language

DL	OWL	Name	Informal definition	
Α	Α	atomic concept	those in A	AL
T	owl:Thing	top	the set of all objects	\mathcal{AL}
	owl:Nothing	bottom	the empty set	\mathcal{AL}
$C \sqcap D$	C and D	intersection	those in both C and D	\mathcal{AL}
∀R.C	R only C	value restriction	those whose all R s belong to C	\mathcal{AL}
$\neg C$	not C	full negation	those not in C	\mathcal{C}
$C \sqcup D$	C or D	union	those in either C or D	\mathcal{U}
∃R.C	R some C	existential restr.	those with an R belonging to C	\mathcal{E}
(<i>≤ nR</i>)	$R \max n o:T$	unq. numb. restr.	those having at most <i>n R</i> s	\mathcal{N}
(<i>≥ nR</i>)	$R \min n o:T$	unq. numb. restr.	those having at least <i>n R</i> s	\mathcal{N}

The \mathcal{ALCN} language family: extensions $\mathcal{U}, \mathcal{E}, \mathcal{C}, \mathcal{N}$

Further concept constructors, OWL equivalents shown in [square brackets]:

- Union: $C \sqcup D$, [C or D] those in either C or D $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ (\mathcal{U})
- Full existential restriction: ∃R.C. [R some C]
 - those who have at least one R belonging to C

$$(\exists R.C)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} | \exists b. \langle a, b \rangle \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}} \}$$
 (\mathcal{E})

- (Full) negation: $\neg C$, [not C] those who do not belong to C $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ (\mathcal{C})
- Number restrictions (unqualified): $(\geqslant nR)$, $[R \min n \text{ owl: Thing}]$ and $(\leq nR)$, $[R \max n \text{ owl:Thing}]$
 - those who have at least n R-s, or have at most n R-s

$$(\geqslant nR)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid |\{b \mid \langle a, b \rangle \in R^{\mathcal{I}}\}| \ge n \right\}$$

$$(\leqslant nR)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid |\{b \mid \langle a, b \rangle \in R^{\mathcal{I}}\}| \le n \right\}$$

$$(\mathcal{N})$$

Note that qualified number restrictions, such as ($\geq nR.C$) (e.g., those having at least 3 blue-eyed children) are not covered by this extension

• E.g.: Person \sqcap ((\leqslant 1 hasCh) \sqcup (\geqslant 3 hasCh)) \sqcap \exists hasCh.Female Person and (hasCh max 1 or hasCh min 3) and (hasCh some Female)

◀□▶ ◀♬▶

Rewriting ALCN to first order logic

• Concept expressions map to predicates with one argument, e.g. $\mathsf{Tiger} \Longrightarrow \mathsf{Tiger}(x)$ $Mammal \implies Mammal(x)$

 $Person \Longrightarrow Person(x)$

Female \Longrightarrow Female(x)

• Simple connectives \sqcap , \sqcup , \neg map to boolean operations \wedge , \vee , \neg , e.g.

Person \sqcap Female \Longrightarrow Person(x) \land Female(x) Person $\sqcup \neg \mathsf{Mammal} \Longrightarrow \mathsf{Person}(x) \vee \neg \mathsf{Mammal}(x)$

• An axiom $C \sqsubseteq D$ is rewritten as $\forall x.(C(x) \rightarrow D(x))$, e.g.

Tiger \sqsubseteq Mammal $\Longrightarrow \forall x.(Tiger(x) \rightarrow Mammal(x))$

- An axiom $C \equiv D$ is rewritten as $\forall x.(C(x) \leftrightarrow D(x))$, e.g. Woman \equiv Person \sqcap Female \Longrightarrow $\forall x.(Woman(x) \leftrightarrow Person(x) \land Female(x))$
- Concept constructors involving a quantifier ∃ or ∀ are rewritten to an appropriate quantified formula, where a role name is mapped to a binary predicate (a predicate with two arguments), e.g.

 \exists hasParent.Opt \sqsubseteq Opt $\Longrightarrow \forall x.(\exists y.(hasParent(x,y) \land Opt(y)) \rightarrow Opt(x))$

Rewriting ALCN to first order logic, example

• Consider $C = \text{Person} \sqcap ((\leqslant 1 \text{ hasCh}) \sqcup (\geqslant 3 \text{ hasCh})) \sqcap \exists \text{hasCh.Female}$

- Let's outline a predicate C(x) which is true when x belongs to concept C: $C(x) \leftrightarrow Person(x) \land$ $(hasAtMost1Child(x) \lor hasAtLeast3Children(x)) \land$ hasFemaleChild(x)
- Class practice:
 - Define the FOL predicates hasAtMost1Child(x), hasAtLeast3Children(x), hasFemaleChild(x)
 - Additionally, define the following FOL predicates:
 - hasOnlyFemaleChildren(x), corresponding to the concept ∀hasCh.Female
 - hasAtMost2Children(x), corresponding to the concept $(\leq 2 \text{ hasCh})$

General rewrite rules $\mathcal{ALCN} \rightarrow \mathsf{FOL}$

Each concept expression can be mapped to a FOL formula:

- Each concept expression C is mapped to a formula $\Phi_C(x)$ (expressing that x belongs to C).
- Atomic concepts (A) and roles (R) are mapped to unary and binary predicates A(x), R(x, y).
- \sqcap , \sqcup , and \neg are transformed to their counterpart in FOL (\land, \lor, \neg) , e.g. $\Phi_{C \cap D}(x) = \Phi_C(x) \wedge \Phi_D(x)$
- Mapping further concept constructors:

$$\Phi_{\exists R.C}(x) = \exists y. (R(x,y) \land \Phi_C(y))$$

$$\Phi_{\forall R.C}(x) = \forall y. (R(x,y) \rightarrow \Phi_C(y))$$

$$\Phi_{\geqslant n\,R}(x) = \exists y_1,\ldots,y_n. \left(R(x,y_1)\wedge\cdots\wedge R(x,y_n)\wedge\bigwedge_{i< j}y_i\neq y_j\right)$$

$$\Phi_{\leqslant n\,R}(x) = \forall y_1,\ldots,y_{n+1}.\left(R(x,y_1)\wedge\cdots\wedge R(x,y_{n+1})\rightarrow\bigvee_{i< j}y_i=y_j\right)$$

◀□▶ ◀♂▶

Semantic and Declarative Technologies

370/378

Semantic and Declarative Technologies

The Semantic Web The ALCN language family

The Semantic Web The ALCN language family

Equivalent languages in the ALCN family

- Language AL can be extended by arbitrarily choosing whether to add each of \mathcal{UECN} , resulting in $\mathcal{AL}[\mathcal{U}][\mathcal{E}][\mathcal{C}][\mathcal{N}]$. Do these $2^4 = 16$ languages have different expressive power? Two concept expressions are said to be equivalent, if they have the same meaning, in all interpretations. Languages \mathcal{L}_1 and \mathcal{L}_2 have the same expressive power $(\mathcal{L}_1 \stackrel{e}{=} \mathcal{L}_2)$, if any
- vice versa. As a preparation for discussing the above let us recall that these axioms hold in all models, for arbitrary concepts C and D and role R:

expression of \mathcal{L}_1 can be mapped into an equivalent expression of \mathcal{L}_2 , and

$$C \sqcup D \equiv \neg(\neg C \sqcap \neg D)$$

$$\exists R.C \equiv \neg \forall R.\neg C$$

$$\neg \top \equiv \bot$$

$$\neg \bot \equiv \top$$

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg \exists R.\top \equiv \forall R.\bot$$

$$\neg \forall R.C \equiv \exists R.\neg C$$

Equivalent languages in the ALCN family

Let us show that ALUE and ALC are equivalent:

- As $C \sqcup D \equiv \neg (\neg C \sqcap \neg D)$ and $\exists R.C \equiv \neg \forall R.\neg C$, union and full existential restriction can be eliminated by using (full) negation. That is, to each \mathcal{ALUE} concept expression there exists an equivalent \mathcal{ALC} expression.
- The other way, each ALC concept can be transformed to an equivalent ALUE expression, by moving negation inwards, until before atomic concepts, and removing double negation; using the axioms from the right hand column on the previous slide
- Thus ALUE and ALC have the same expressive power, and so have the intermediate languages:

$$\mathcal{ALC}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCU}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCUE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALUE}(\mathcal{N}).$$

Further remarks:

- As \mathcal{U} and \mathcal{E} is subsumed by \mathcal{C} , we will use \mathcal{ALC} to denote the language allowing \mathcal{U} , \mathcal{E} and \mathcal{C}
- It can be shown that any two of AL, ALU, ALE, ALC, ALN, ALUN, ALEN, ALCN have different expressive power

The Semantic Web TBox reasoning The Semantic Web TBox reasoning

Contents

A special case of ontology: definitional TBox

• \mathcal{T}_{fam} : a sample definitional TBox for family relationships

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The ALCN language family
- TBox reasoning

 A definitional TBox consists of equivalence axioms only, the left hand sides being distinct concept names (atomic concepts)

Woman ≡ Person

Female

Parent ≡ Father ⊔ Mother

Man ≡ Person □ ¬Woman

Grandmother ≡ Woman □ ∃hasChild.Parent

Mother ≡ Woman □ ∃hasChild.Person

Father ≡ Man □ ∃hasChild.Person

• The concepts on the left hand sides are called name symbols

- The remaining atomic concepts are called base symbols, e.g. in our example the two base symbols are Person and Female.
- In a definitional TBox the meanings of name symbols can be obtained by evaluating the right hand side of their definition

◀ □ ▶ ◀ 🗇 ▶

Semantic and Declarative Technologies The Semantic Web TBox reasoning

2024 Spring Semester 374/378 **【□▶ 【□▶**

TBox reasoning tasks

Semantic and Declarative Technologies The Semantic Web TBox reasoning

375/378

Interpretations and semantic consequence

Recall the definition of assigning a truth value to TBox axioms in an interpretation \mathcal{I} :

$$\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$
$$\mathcal{I} \models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}}$$

Based on this we introduce the notion of "semantic consequence" exactly in the same way as for FOL

- We can naturally extend the above $\mathcal{I} \models \alpha$ notation – where α is either $C \sqsubseteq D$ or $C \equiv D$ – to a TBox (i.e. a set of α axioms) \mathcal{T}
 - $\mathcal{I} \models \mathcal{T}$ (\mathcal{I} satisfies \mathcal{T} , \mathcal{I} is a model of \mathcal{T}) iff for each $\alpha \in \mathcal{T}$, $\mathcal{I} \models \alpha$, i.e. \mathcal{I} is a model of α
- We now overload even further the " ⊨ " symbol: $\mathcal{T} \models \alpha$ (read axiom α is a semantic consequence of the TBox \mathcal{T}) iff
 - all models of \mathcal{T} are also models of α , i.e. • for all interpretations \mathcal{I} , if $\mathcal{I} \models \mathcal{T}$ holds, then $\mathcal{I} \models \alpha$ also holds

• A base assumption: the TBox is **consistent** (does not contain a contradiction), i.e. it has a model

Reasoning tasks on TBoxes only (i.e. no ABoxes involved)

- **Subsumption**: concept C is subsumed by concept D wrt. a TBox T. iff $\mathcal{T} \models (C \sqsubseteq D)$, i.e. $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds in all \mathcal{I} models of \mathcal{T} ($C \sqsubseteq_{\mathcal{T}} D$) e.g. $\mathcal{T}_{fam} \models (Grandmother \sqsubseteq Parent)$ (recall that \mathcal{T}_{fam} is the family TBox)
- Equivalence: concepts C and D are equivalent wrt. a TBox \mathcal{T} , iff $\mathcal{T} \models (C \equiv D)$, i.e. $C^{\mathcal{I}} = D^{\mathcal{I}}$ holds in all \mathcal{I} models of \mathcal{T} $(C \equiv_{\mathcal{T}} D)$. e.g. $\mathcal{T}_{fam} \models (Parent \equiv Person \sqcap \exists hasChild.Person)$
- **Disjointness**: concepts C and D are disjoint wrt. a TBox T, iff $\mathcal{T} \models (C \sqcap D \equiv \bot)$, i.e. $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ holds in all \mathcal{I} models of \mathcal{T} . e.g. $\mathcal{T}_{fam} \models (Woman \sqcap Man) \equiv \bot$
- Note that all these tasks involve two concepts, C and D

Reducing reasoning tasks to testing satisfiability

- We now introduce a simpler, but somewhat artificial reasoning task: checking the satisfiability of a concept
- Satisfiability: a concept C is satisfiable wrt. TBox \mathcal{T} , iff there is a model \mathcal{I} of \mathcal{T} such that $C^{\mathcal{I}}$ is non-empty (hence C is non-satisfiable wrt. \mathcal{T} iff in all \mathcal{I} models of \mathcal{T} $C^{\mathcal{I}}$ is empty)
- We will reduce each of the earlier tasks to checking non-satisfiability
- E.g. to prove: Woman \sqsubseteq Person, let's construct a concept C that contains all counter-examples to this statement: $C = Woman \sqcap \neg Person$
- If we can prove that C has to be empty, i.e. there are no counter-examples, then we have proven the subsumption
- Assume we have a method for checking satisfiability. Other tasks can be reduced to this method (usable in \mathcal{ALC} and above):
 - *C* is subsumed by $D \iff C \sqcap \neg D$ is not satisfiable
 - C and D are equivalent \iff $(C \sqcap \neg D) \sqcup (D \sqcap \neg C)$ is not satisfiable
 - C and D are disjoint $\iff C \sqcap D$ is not satisfiable
- In simpler languages, not supporting full negation, such as \mathcal{ALN} , all reasoning tasks can be reduced to subsumption

Semantic and Declarative Technologies

2024 Spring Semester

378/378

