

Semantic	Technologies	
Jemanue	rechnologies	

Semantics = meaning

• Semantic Technologies = technologies building on (formalized) meaning

Introducing Semantic Technologies

- Declarative Programming as a semantic technology
 - A procedure definition describes its intended meaning

The Semantic Web

- e.g. intersect(L1, L2) :- member(X, L1), member(X, L2). Lists L1 and L2 intersect
 - if there exists an x, which is a member of both L1 and L2.
- The execution of a program can be viewed as a process of deduction
- The main goal of the Semantic Web (SW) approach:
 - make the information on the web processable by computers
 - machines should be able to understand the web, not only read it
- Achieving the vision of the Semantic Web
 - Add (computer processable) meta-information to the web
 - Formalize background knowledge build so called ontologies
 - Develop reasoning algorithms and tools

The vision of the Semantic Web

The Semantic Web Introducing Semantic Technologies

2024 Spring Semester

348/390

<□> <⊟>

The Semantic Web Introducing Semantic Technologies	The Semantic Web An example of the Semantic Web approach
The Semantic Web	Contents
 The goal: making the information on the web processable by computers Achieving the vision of the Semantic Web Add meta-information to web pages, e.g. (AIT hasLocation Budapest) (AIT hasTrack Track:Foundational-courses) (Track:Foundational-courses hasCourse Semantic-and-declarative) Formalise background knowledge – build so called terminologies hierarchies of notions, e.g. <i>University</i> is a (subconcept of) Inst-of-higher-education, the hasFather relationship is a special case of hasParent definitions and axioms, e.g. <i>a Father</i> is a Male Person having at least one child Develop reasoning algorithms and tools Main topics Description Logic, the maths behind the Semantic Web is the basis of Web Ontology Languages OWL 1 & 2 (W3C standards) A glimpse at reasoning algorithms for Description Logic 	 The Semantic Web Introducing Semantic Technologies An example of the Semantic Web approach An overview of Description Logics The ALCN language family TBox reasoning The SHIQ language family

<□ ► < @ ►	Semantic and Declarative Technologies	2024 Spring Semester	350/390	<□≻ <舂≻	Semantic and Declarative Technologies	2024 Spring Semester	351/390
The Semantic Web An example of the Semantic Web approach			The Semantic Web An example of the Sem	antic Web approach			

First Order Logic (recap)

• Syntax:

- non-logical ("user-defined") symbols: predicates and functions, including constants (function symbols with 0 arguments)
- terms (refer to individual elements of the universe, or interpretation), e.g. fatherOf(Susan)
- formulas (that hold or do not hold in a given interpretation), e.g. $\varphi = \forall x.(Optimist(fatherOf(x)) \rightarrow Optimist(x))$

Semantics:

- determines if a closed formula φ is true in an interpretation $\mathcal{I}: \mathcal{I} \models \varphi$ (also read as: \mathcal{I} is a model of φ)
- an interpretation \mathcal{I} consists of a domain Δ and a mapping from non-logical symbols (e.g. Optimist, fatherOf, Susan) to their meaning
- semantic consequence: $S \models \alpha$ means: if an interpretation is a model of all formulas in the set S, then it is also a model of α (note that the symbol \models is overloaded)
- Deductive system (also called proof procedure): an algorithm to deduce a consequence α of a set of formulas $S: S \vdash \alpha$

Semantic and Declarative Technologies

• example: resolution

<□> <⊡>

Soundness, completeness and decidability (recap)

- A deductive system is **sound** if $S \vdash \alpha \Rightarrow S \models \alpha$ (deduces only truths).
- A deductive system is **complete** if $S \models \alpha \Rightarrow S \vdash \alpha$ (deduces all truths).
- Resolution is a sound and complete deductive system for FOL
- Kurt Gödel was first to show such a system: Gödel's completeness theorem: there is a sound and complete deductive system for FOL
- FOL is not decidable: no decision procedure for the question "does S imply α (S $\vdash \alpha$)?" (Gödel's completeness theorem ensures that if the answer is "yes", then there exists a proof of α from S; but if the answer is "no", we have no guarantees - this is called semi-decidability)
- Developers of the Semantic Web strive for using decidable languages
 - for languages with a sound and complete proof procedure
- Semantic Web languages are based on Description Logics, which are decidable sublanguages of FOL, i.e. there is an algorithm that delivers a yes or no answer to the question "does S imply α "

< □ > < ⊕ >

Ontologies

Knowledge Representation

- Ontology: computer processable description of knowledge
- Early ontologies include classification system (biology, medicine, books)

- Entities in the Web Ontology Language (OWL):
 - classes describe sets of objects (e.g. optimists)
 - properties (attributes, slots) describe binary relationships (e.g. has parent)
 - objects correspond to real life objects (e.g. people, such as Susan, her parents, etc.)

Natural Language:

- Someone having a non-optimist friend is bound to be an optimist.
- Susan has herself as a friend.
- First order Logic (unary predicate, binary predicate, constant):
 - $\forall x.(\exists y.(\mathsf{hasFriend}(x, y) \land \neg \mathsf{opt}(y)) \to \mathsf{opt}(x))$
 - AssFriend(Susan, Susan)
- Description Logics (concept, role, individual):
 - (\exists hasFriend. \neg Opt) \Box Opt (GCI – Gen. Concept Inclusion axiom)
 - 2 hasFriend(Susan, Susan) (role assertion)
- Web Ontology Language (Manchester syntax)⁵ (class, property, object):
 - (hasFriend some (not Opt)) SubClassOf: Opt Those having some not Opt friends must be Opt
 - (GCI Gen. Class Inclusion axiom)
 - AssFriend (Susan, Susan)

(object property assertion)

				^o protegeproject.github.:	io/protege/class-expression-s	syntax	
<□▶ <♂►	Semantic and Declarative Technologies	2024 Spring Semester	354/390	< □ > < ☐ >	Semantic and Declarative Technologies	2024 Spring Semester	355/390
The Semantic Web An example of the Semantic Web approach				The Semantic Web An example of the Sema	antic Web approach		

-

A sample ontology to be entered into Protégé

- There is a class of Animals, some of which are Male, some are Female.
- 2 No one can be both Male and Female.
- There are Animals that are Human.
- There are Humans who are Optimists.
- There is a relationship hasP meaning "has parent". Relations hasFather and hasMother are sub-relations (special cases) of hasP.
- Let's define the class C1 as those who have an optimistic parent.
- State that everyone belonging to C1 is Optimistic.
- State directly that anyone having an Optimistic parent is Optimistic.
- There is a relation hasF, denoting "has friend". State that someone having a non-Optimistic friend must be Optimistic.
- O There are individuals: Susan, and her parents Mother and Father.
- Mother has Father as her friend.

The sample ontology	in Description L	Logic and OWL/Protégé
---------------------	------------------	-----------------------

English	Description Logic	OWL (Manchester syntax)
Male is a subclass of Animal.	Male 🗆 Animal	Male SubClassOf: Animal
Female is a subclass of Animal.	Female 드 Animal	Female SubClassOf: Animal
Male and Female are disjoint.	Male 🔄 🦳 Female	Male DisjointWith: Female
Human is a subclass of Animal.	Human 🗆 Animal	Human SubClassOf: Animal
Optimist is a subclass of Human.	Opt ⊑ Human	Opt SubClassOf: Human
hasFather is a subprop. of hasP.	hasFather ⊑ hasP	hasFather SubPropertyOf: hasP
hasMother is a subprop. of hasP.	hasMother 드 hasP	hasMother SubPropertyOf: hasP
C1 = those having an Opt parent.	$C1 \equiv \exists hasP . Opt$	C1 EquivalentTo: hasP some Opt
Everyone in C1 is Opt.	C1 ⊑ Opt	C1 SubClassOf: Opt
Children of Opt parents are Opt.	∃ hasP . Opt ⊑ Opt	hasP some Opt SubClassOf: Opt
Those with a non-Opt friend are Opt.	∃ hasF . ¬Opt ⊑ Opt	hasF some not Opt SubClassOf: Op
Susan has parents Mother and Father.	hasP(Susan, Mother) hasP(Susan, Father)	hasP(Susan, Mother) hasP(Susan, Father)
Mother has Father as a friend.	hasF(Mother, Father)	hasF(Mother, Father)

(In Protégé, select the "save as" format as "Latex syntax" to obtain DL notation.)

356/390

The Semantic Web An overview of Description Logics	The Semantic Web An overview of Description Logics	
Contents	Description Logic (DLs) – overview	
 The Semantic Web Introducing Semantic Technologies An example of the Semantic Web approach An overview of Description Logics The ALCN language family TBox reasoning The SHIQ language family 	 DL, a subset of FOL, is the mathematical background of OWL Signature – relation and function symbols allowed in DL concept name (A) – unary predicate symbol (cf. OWL class) role name (R) – binary predicate symbol (cf. OWL property) individual name (a,) – constant symbol (cf. OWL object) No non-constant function symbols, no preds of arity > 2, no vars Concept names and concept expressions represent sets, e.g. ∃hasParent.Optimist – the set of those who have an optimist parent Terminological axioms (TBox) – stating background knowledge A simple axiom using the DL language ALE: ∃hasParent.Optimist ⊆ Optimist – the set of those who have an optimist parent is a subset of the set of optimists Translation to FOL: ∀x.(∃y.(hasP(x, y) ∧ Opt(y)) → Opt(x)) Assertions (ABox) – stating facts about individual names Example: Optimist(JACOB), hasParent(JOSEPH, JACOB) A consequence of these TBox and ABox axioms is: Optimist(JOSEPH) DLs behind OWL 1 and OWL 2 are decidable: there are bounded time algorithms for checking if a set of axioms implies a statement. 	
▲ □ ▶ ▲ ☐ ▶ Semantic and Declarative Technologies 2024 Spring Semester 358/390 The Semantic Web An overview of Description Logics	Image: Constraint of the semantic and Declarative Technologies 2024 Spring Semester 359/390 The Semantic Web An overview of Description Logics	
Some further examples of terminological axioms	Description Logics – why the plural?	
 (1) A Mother is a Person, who is a Female and who has(a)Child. Mother ≡ Person □ Female □ ∃hasChild. ⊤ (2) A Tiger is a Mammal. Tiger ⊑ Mammal (3) Children of an Optimist Person are Optimists, too. Optimist □ Person ⊑ ∀hasChild.Optimist (4) Childless people are Happy. ∀hasChild.⊥ □ Person ⊑ Happy (5) Those in the relation hasChild are also in the relation hasDescendant. hasChild⊑hasDescendant (6) The relation hasParent is the inverse of the relation hasChild. hasParent≡hasChild[−] (7) The hasDescendant relationship is transitive. Trans(hasDescendant) 	 These logic variants were progressively developed in the last two decades As new constructs were proved to be "safe", i.e. keeping the logic decidable, these were added We will start with the very simple language AL, extend it to ALE, ALU and ALC As a side branch we then define ALCN We then go back to ALC and extend it to languages S, SH, SHI and SHIQ (which encompasses ALCN) We briefly tackle further extensions O, (D) and R OWL 1, published in 2004, corresponds to SHOIN(D) OWL 2, published in 2012, corresponds to SROIQ(D) 	
✓ □ ▶ ◀ ⓓ ▶ Semantic and Declarative Technologies 2024 Spring Semester 360/390	✓ □ ➤ ◀ ⓓ ➤ Semantic and Declarative Technologies 2024 Spring Semester 361 / 390	

The Semantic Web The ALCN language family	The Semantic Web The ALCN language family
Contents	Overview of the \mathcal{ALCN} language
	 In ALCN a statement (axiom) can be a subsumption (inclusion), e.g. Tiger <u>In ALCN</u> a statement (axiom), e.g. Tiger <u>In ALCN</u> a statement (axiom) can be a a subsumption (inclusion), e.g. Tiger <u>In Mammal</u>, or a an equivalence, e.g. Woman <u>In Female</u> <u>Person</u>, Mother <u>Woman</u> <u>In ALCN</u>
 5 The Semantic Web Introducing Semantic Technologies An example of the Semantic Web approach An overview of Description Logics The ALCN language family TBox reasoning The SHIQ language family 	 In general, an ALCN axiom can take these two forms: subsumption: C ⊑ D equivalence: C ≡ D, where C and D are concept expressions
	 A concept expression <i>C</i> denotes a set of objects (a subset of the ∆ universe of the interpretation), and can be: an atomic concept (or concept name), e.g. Tiger, Female, Person a composite concept, e.g. Female □ Person, ∃hasChild.Female composite concepts are built from atomic concepts and atomic roles (also called role names) using some constructors (e.g. □, ⊔, ∃, etc.)
	 We first introduce language AL, that allows a minimal set of constructors (all examples on this page are valid AL concept expressions)
	• Next, we discuss richer extensions named $\mathcal{U}, \mathcal{E}, \mathcal{C}, \mathcal{N}$

<□▶ <舂▶	Semantic and Declarative Technologies	2024 Spring Semester	362/390	<□> <∄>	Semantic and Declarative Technologies	2024 Spring Semester	363/390
	The Semantic WebThe \mathcal{ALCN} language	family			The Semantic Web The \mathcal{ALCN} language factors	amily	

The syntax of the \mathcal{AL} language

Language \mathcal{AL} (Attributive Language) allows the following concept expressions, also called concepts, for short:

A is an atomic concept, C, D are arbitrary (possibly composite) concepts R is an atomic role

DL concept	OWL class	Name	Informal definition
A	A (class name)	atomic concept	those in A
Т	owl:Thing	top	the set of all objects
1	owl:Nothing	bottom	the empty set
$\neg A$	not A	atomic negation	those not in A
$C \sqcap D$	C and D	intersection	those in both C and D
∀ <i>R</i> . <i>C</i>	R only C	value restriction	those whose all <i>R</i> s belong to <i>C</i>
∃ <i>R</i> .⊤	R some owl:Thing	limited exist. restr.	those having at least one R

Examples of \mathcal{AL} concept expressions:

Person 🗆 ¬Female	Person and not Female
Person □ ∀hasChild.Female	Person and (hasChild only Female)
Person □ ∃hasChild.⊤	Person and (hasChild some owl:Thing)

The semantics of the \mathcal{AL} language (as a special case of FOL)

- An interpretation \mathcal{I} is a mapping:
 - $\Delta^{\mathcal{I}} = \Delta$ is the universe, the **nonempty** set of all individuals/objects
 - for each concept/class name A, $A^{\mathcal{I}}$ is a (possibly empty) subset of Δ
 - for each role/property name $R, R^{\mathcal{I}} \subseteq \Delta \times \Delta$ is a binary relation on Δ
- The semantics of \mathcal{AL} extends \mathcal{I} to composite concept expressions, i.e. describes how to "calculate" the meaning of arbitrary concept exprs:

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg A)^{\mathcal{I}} &=& \Delta \setminus A^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta | \forall b.(\langle a, b \rangle \in R^{\mathcal{I}} \rightarrow b \in C^{\mathcal{I}})\} \\ (\exists R.\top)^{\mathcal{I}} &=& \{a \in \Delta | \exists b. \langle a, b \rangle \in R^{\mathcal{I}}\} \end{array}$$

• Finally we define how to obtain the truth value of an axiom:

$$\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \\ \mathcal{I} \models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}}$$

<□> <⊡>

Semantic and Declarative Technologies

hnologies 2024 Spring Semester

<□> <⊡>

364/390

The AL language: limitations

Recall the elements of the language \mathcal{AL} :

DL concept	OWL class	Name	Informal definition
A	A (class name)	atomic concept	those in A
Т	owl:Thing	top	the set of all objects
1	owl:Nothing	bottom	the empty set
$\neg A$	not A	atomic negation	those not in A
$C \sqcap D$	C and D	intersection	those in both C and D
∀R.C	R only C	value restriction	those whose all <i>R</i> s belong to <i>C</i>
∃ <i>R</i> .⊤	R some owl:Thing	limited exist. restr.	those having at least one R

What is missing from \mathcal{AL} ?

- We can specify the intersection of two concepts, but not the union, e.g. those who are either blue-eyed or tall.
- ∃*R*.⊤ we cannot describe e.g. those having a female child. Remedy: allow for full exist. restr., e.g. ∃hasCh.*Female*
- ¬A negation can be applied to atomic concepts only.
 Remedy: full negation, ¬C, where C can be non-atomic, e.g. ¬(U □ V)

The Semantic WebThe \mathcal{ALCN} language family

The \mathcal{ALCN} language family: extensions $\mathcal{U}, \mathcal{E}, \mathcal{C}, \mathcal{N}$

Further concept constructors, OWL equivalents shown in [square brackets]:

- Union: $C \sqcup D$, [C or D] those in either C or D $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ (\mathcal{U})
- Full existential restriction: $\exists R.C, [R \text{ some } C]$ - those who have at least one R belonging to C $(\exists R.C)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} | \exists b. \langle a, b \rangle \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\}$ (\mathcal{E})
- (Full) negation: $\neg C$, [not C] those who do not belong to C $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ (C)
- Unqualified number restrictions: $(\leq nR)$, $[R \max n \text{ owl:Thing}]$ and $(\geq nR)$, $[R \min n \text{ owl:Thing}]$
 - those who have at most/at least n R-related objects

$$(\leqslant n R)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \right\} \mid \leq n \right\} \\ (\geqslant n R)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \right\} \mid \geq n \right\}$$
 (N)

Example: Person □ ((≤1 hasCh) □ (≥3 hasCh)) □ ∃hasCh.Female Person and (hasCh max 1 or hasCh min 3) and (hasCh some Female) Note that qualified number restrictions, e.g., "those having at least 3 blue-eyed children" are not covered by the extension N.

The Semantic Web The ALCN language family The Semantic Web	<□ ► < Ē ►	Semantic and Declarative Technologies	2024 Spring Semester	366/390	< □ ► < ♂ ►	Semantic and Declarative Technologies	2024 Spring Semester	367/390
		The Semantic WebThe \mathcal{ALCN} language family				The Semantic Web The \mathcal{ALCN} language factors	mily	

Summary table of the ALCUEN language

DL	OWL	Name	Informal definition	
A	A	atomic concept	those in A	$ \mathcal{AL} $
$\neg A$	not A	full negation	those not in A (cf. C)	$ \mathcal{AL} $
Т	owl:Thing	top	the set of all objects	$ \mathcal{AL} $
1	owl:Nothing	bottom	the empty set	$ \mathcal{AL} $
$C \sqcap D$	C and D	intersection	those in both C and D	$ \mathcal{AL} $
∃ <i>R</i> .⊤	R some	existential restr.	those having an R (cf. \mathcal{E})	$ \mathcal{AL} $
∀R.C	R only C	value restriction	those whose all <i>R</i> s belong to <i>C</i>	$ \mathcal{AL} $
$\neg C$	not C	full negation	those not in C	\mathcal{C}
$C \sqcup D$	C or D	union	those in either C or D	U
∃R.C	R some C	existential restr.	those with an R belonging to C	E
(<i>≤nR</i>)	$R \max n \circ: T$	unq. numb. restr.	those having at most <i>n R</i> s	\mathcal{N}
(<i>≥ nR</i>)	$R \min n \text{ o:T}$	unq. numb. restr.	those having at least <i>n R</i> s	\mathcal{N}

Rewriting \mathcal{ALCN} to first order logic

• Concept expressions map to predicates with one argument, e.g.

$Tiger \Longrightarrow Tiger(x)$	$Mammal \Longrightarrow Mammal(x)$
$Person \Longrightarrow Person(x)$	$Female \Longrightarrow Female(x)$

- Simple connectives □, □, ¬ map to boolean operations ∧, ∨, ¬, e.g.
 Person □ Female ⇒ Person(x) ∧ Female(x)
 Person □ ¬Mammal ⇒ Person(x) ∨ ¬Mammal(x)
- An axiom $C \sqsubseteq D$ is rewritten as $\forall x.(C(x) \rightarrow D(x))$, e.g. Tiger \sqsubseteq Mammal $\Longrightarrow \forall x.(Tiger(x) \rightarrow Mammal(x))$
- An axiom $C \equiv D$ is rewritten as $\forall x.(C(x) \leftrightarrow D(x))$, e.g. Woman \equiv Person \sqcap Female $\implies \forall x.(Woman(x) \leftrightarrow Person(x) \land Female(x))$
- Concept constructors involving a quantifier ∃ or ∀ are rewritten to an appropriate quantified formula, where a role name is mapped to a binary predicate (a predicate with two arguments), e.g.

 $\exists hasParent.Opt \sqsubseteq Opt \implies \forall x.(\exists y.(hasParent(x, y) \land Opt(y)) \rightarrow Opt(x))$

368/390

369/390

Rewriting ALCN to first order logic, example

- Consider $C = \text{Person} \sqcap ((\leq 1 \text{ hasCh}) \sqcup (\geq 3 \text{ hasCh})) \sqcap \exists \text{hasCh}.\text{Female}$
- Let's outline a predicate C(x) which is true when x belongs to concept C:
 C(x) ↔ Person(x) ∧
 - $(hasAtMost1Child(x) \lor hasAtLeast3Children(x)) \land hasFemaleChild(x)$
- Class practice:
 - Define the FOL predicates hasAtMost1Child(x), hasAtLeast3Children(x), hasFemaleChild(x)
 - Additionally, define the following FOL predicates:
 - hasOnlyFemaleChildren(x), corresponding to the concept ∀hasCh.Female
 - hasAtMost2Children(x), corresponding to the concept
 (≤ 2 hasCh)

General rewrite rules $\mathcal{ALCN} \rightarrow \text{FOL}$

Each concept expression can be mapped to a FOL formula:

- Each concept expression C is mapped to a formula Φ_C(x) (expressing that x belongs to C).
- Atomic concepts (A) and roles (R) are mapped to unary and binary predicates A(x), R(x, y).
- \sqcap , \sqcup , and \neg are transformed to their counterpart in FOL (\land , \lor , \neg), e.g. $\Phi_{C \sqcap D}(x) = \Phi_{C}(x) \land \Phi_{D}(x)$
- Mapping further concept constructors:

$$\begin{array}{lll} \Phi_{\exists R.C}(x) &=& \exists y. \left(R(x,y) \land \Phi_{C}(y)\right) \\ \Phi_{\forall R.C}(x) &=& \forall y. \left(R(x,y) \rightarrow \Phi_{C}(y)\right) \\ \Phi_{\geqslant nR}(x) &=& \exists y_{1}, \ldots, y_{n}. \left(R(x,y_{1}) \land \cdots \land R(x,y_{n}) \land \bigwedge_{i < j} y_{i} \neq y_{j}\right) \\ \Phi_{\leqslant nR}(x) &=& \forall y_{1}, \ldots, y_{n+1}. \left(R(x,y_{1}) \land \cdots \land R(x,y_{n+1}) \rightarrow \bigvee_{i < j} y_{i} = y_{j}\right) \end{array}$$

<□≻ <∄≻	Semantic and Declarative Technologies	2024 Spring Semester	370/390	<□ → < //> </th <th>Semantic and Declarative Technologies</th> <th>2024 Spring Semester</th> <th>371/390</th>	Semantic and Declarative Technologies	2024 Spring Semester	371/390
	The Semantic Web The \mathcal{ALCN} language	amily			The Semantic WebThe \mathcal{ALCN} language family		

Equivalent languages in the \mathcal{ALCN} family

 Language AL can be extended by arbitrarily choosing whether to add each of UECN, resulting in AL[U][E][C][N].

Do these $2^4 = 16$ languages have different expressive power?

Two concept expressions are said to be equivalent, if they have the same meaning, in all interpretations.

Languages \mathcal{L}_1 and \mathcal{L}_2 have the same expressive power ($\mathcal{L}_1 \stackrel{e}{=} \mathcal{L}_2$), if any expression of \mathcal{L}_1 can be mapped into an equivalent expression of \mathcal{L}_2 , and vice versa.

• As a preparation for discussing the above let us recall that these axioms hold in all models, for arbitrary concepts *C* and *D* and role *R*:

$$\begin{array}{rcl} C \sqcup D &\equiv \neg (\neg C \sqcap \neg D) & \neg \neg C &\equiv & C \\ \exists R.C &\equiv \neg \forall R.\neg C & \neg \top &\equiv & \bot \\ & \neg \bot &\equiv & \top \\ & \neg (C \sqcap D) &\equiv & \neg C \sqcup \neg D \\ & \neg \exists R.\top &\equiv & \forall R.\bot \\ & \neg \forall R.C &\equiv & \exists R.\neg C \end{array}$$

Equivalent languages in the \mathcal{ALCN} family

Let us show that \mathcal{ALUE} and \mathcal{ALC} are equivalent:

- As $C \sqcup D \equiv \neg(\neg C \sqcap \neg D)$ and $\exists R.C \equiv \neg \forall R.\neg C$, union and full existential restriction can be eliminated by using (full) negation. That is, to each \mathcal{ALUE} concept expression there exists an equivalent \mathcal{ALC} expression.
- The other way, each \mathcal{ALC} concept can be transformed to an equivalent \mathcal{ALUE} expression, by moving negation inwards, until before atomic concepts, and removing double negation; using the axioms from the right hand column on the previous slide
- Thus \mathcal{ALUE} and \mathcal{ALC} have the same expressive power, and so have the intermediate languages:

 $\mathcal{ALC}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCU}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCUE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALUE}(\mathcal{N}).$

Further remarks:

- As \mathcal{U} and \mathcal{E} is subsumed by \mathcal{C} , we will use \mathcal{ALC} to denote the language allowing \mathcal{U}, \mathcal{E} and \mathcal{C}
- It can be shown that any two of *AL*, *ALU*, *ALE*, *ALC*, *ALN*, *ALUN*, *ALEN*, *ALCN* have different expressive power

The Semantic Web The ALCN language family	The Semantic Web TBox reasoning
Another \mathcal{ALC} example requiring case analysis	Contents
 Some facts about the Oedipus family (ABox A_{OE}): hasChild(IOCASTE, OEDIPUS) hasChild(IOCASTE, POLYNEIKES) hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS) Patricide (OEDIPUS) (¬Patricide) (THERSANDROS) Let us call a person "special" if they have a child who is a patricide and who, in turn, has a child who is not a patricide: Special = ∃hasChild.(Patricide □ ∃hasChild.¬Patricide) Let TBox T_{OE} contain the above axiom only. Consider the instance check "Is locaste special?": 	 5 The Semantic Web Introducing Semantic Technologies An example of the Semantic Web approach An overview of Description Logics The ALCN language family TBox reasoning The SHIQ language family
 A_{OE} ⊨_{ToE} Special(IOCASTE)? The answer is "yes", but proving this requires case analysis 	
 ✓ □ ▶ < ✓ □ ▶ ✓ □ ▶	90
The Semantic Web TBox reasoning	The Semantic Web TBox reasoning
A special case of entology: definitional TRey	Interpretations and compatio consequence

A special case of ontology: definitional TBox

• T_{fam} : a sample definitional TBox for family relationships

Woman	≡	Person 🗆 Female
Man	≡	Person □ ¬Woman
Mother	≡	Woman □ ∃hasChild.Person
Father	≡	Man ⊓ ∃hasChild.Person
Parent	≡	Father \sqcup Mother
Grandmother	≡	Woman ⊓ ∃hasChild.Parent

- A TBox is definitional if it contains equivalence axioms only, where the left hand sides are distinct concept names (atomic concepts)
- The concepts on the left hand sides are called name symbols
- The remaining atomic concepts are called base symbols, e.g. in our example the two base symbols are Person and Female.
- In a definitional TBox the meanings of name symbols can be obtained by evaluating the right hand side of their definition

Interpretations and semantic consequence

Recall the definition of assigning a truth value to TBox axioms in an interpretation \mathcal{I} :

 $\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \\ \mathcal{I} \models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}}$

Based on this we introduce the notion of "semantic consequence" exactly in the same way as for FOL

- We can naturally extend the above $\mathcal{I} \models \alpha$ notation
 - where α is either $C \sqsubseteq D$ or $C \equiv D$ –

to a TBox (i.e. a set of α axioms) \mathcal{T}

- *I* ⊨ *T* (*I* satisfies *T*, *I* is a model of *T*) iff
 for each α ∈ *T*, *I* ⊨ α, i.e. *I* is a model of α
- We now overload even further the " \models " symbol:
 - $\mathcal{T} \models \alpha$ (read axiom α is a semantic consequence of the TBox \mathcal{T}) iff
 - all models of \mathcal{T} are also models of α , i.e.
 - for all interpretations \mathcal{I} , if $\mathcal{I} \models \mathcal{T}$ holds, then $\mathcal{I} \models \alpha$ also holds

TBox reasoning tasks

The Semantic Web

TBox reasoning

Reducing reasoning tasks to testing satisfiability

• We now introduce a simpler, but somewhat artificial reasoning task: checking the satisfiability of a concept Reasoning tasks on TBoxes only (i.e. no ABoxes involved) • Satisfiability: a concept C is satisfiable wrt. TBox \mathcal{T} , iff A base assumption: the TBox is consistent (does not contain a there is a model \mathcal{I} of \mathcal{T} such that $C^{\mathcal{I}}$ is non-empty contradiction), i.e. it has a model (hence C is non-satisfiable wrt. \mathcal{T} iff in all \mathcal{I} models of $\mathcal{T} C^{\mathcal{I}}$ is empty) • **Subsumption**: concept C is subsumed by concept D wrt. a TBox \mathcal{T} , iff • We will reduce each of the earlier tasks to checking non-satisfiability $\mathcal{T} \models (\mathcal{C} \sqsubseteq \mathcal{D}), \text{ i.e. } \mathcal{C}^{\mathcal{I}} \subseteq \mathcal{D}^{\mathcal{I}} \text{ holds in all } \mathcal{I} \text{ models of } \mathcal{T} (\mathcal{C} \sqsubseteq_{\mathcal{T}} \mathcal{D})$ • E.g. to prove: Woman \sqsubseteq Person, let's construct a concept C that contains e.g. $\mathcal{T}_{fam} \models (Grandmother \sqsubseteq Parent)$ (recall that \mathcal{T}_{fam} is the family TBox) all counter-examples to this statement: $C = Woman \sqcap \neg Person$ • Equivalence: concepts C and D are equivalent wrt. a TBox T, iff • If we can prove that C has to be empty, i.e. there are no $\mathcal{T} \models (C \equiv D)$, i.e. $C^{\mathcal{I}} = D^{\mathcal{I}}$ holds in all \mathcal{I} models of \mathcal{T} ($C \equiv_{\mathcal{T}} D$). counter-examples, then we have proven the subsumption e.g. $\mathcal{T}_{fam} \models (Parent \equiv Person \sqcap \exists hasChild.Person)$ • Assume we have a method for checking satisfiability. • **Disjointness**: concepts *C* and *D* are disjoint wrt. a TBox T, iff Other tasks can be reduced to this method (usable in ALC and above): $\mathcal{T} \models (\mathcal{C} \sqcap \mathcal{D} \equiv \bot)$, i.e. $\mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}} = \emptyset$ holds in all \mathcal{I} models of \mathcal{T} . • *C* is subsumed by $D \iff C \sqcap \neg D$ is not satisfiable e.g. $\mathcal{T}_{fam} \models (Woman \sqcap Man) \equiv \bot$ • *C* and *D* are equivalent $\iff (C \sqcap \neg D) \sqcup (D \sqcap \neg C)$ is not satisfiable • Note that all these tasks involve two concepts, C and D • *C* and *D* are disjoint $\iff C \sqcap D$ is not satisfiable • In simpler languages, not supporting full negation, such as ALN, all reasoning tasks can be reduced to subsumption

<□▶ <♂►	Semantic and Declarative Technologies	2024 Spring Semester	378/390	<□> <∂>	Semantic and Declarative Technologies	2024 Spring Semester	379/390
	The Semantic Web The \mathcal{SHIQ} language fam	nily			The Semantic Web The \mathcal{SHIQ} language far	nily	
Contents				The SHIO Descripti	on Logic language – an	overview	

The SHIQ Description Logic language – an overview

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The ALCN language family
 - TBox reasoning
 - The SHIQ language family

- Expanding the abbreviation SHIQ
 - $S \equiv ALC_{R^+}$ (language ALC extended with transitive roles), i.e. one can state that certain roles (e.g. hasAncestor) are transitive.
 - $\mathcal{H} \equiv$ role hierarchies. Adds statements of the form $R \sqsubseteq S$, e.g. if a pair of objects belongs to the hasFriend relationship, then it must belong to the knows relationship too: hasFriend _ knows (could be stated in English as: everyone knows their friends)
 - $\mathcal{I} \equiv$ inverse roles: allows using role expressions R^- to denote the inverse of role R, e.g. hasParent \equiv hasChild⁻
 - $Q \equiv$ gualified number restrictions (a generalisation of \mathcal{N}): allows the use of concept expressions ($\leq nR.C$) and ($\geq nR.C$) e.g. those who have at least 3 tall children : (\geq 3 hasChild.Tall)

380/390

< 🗆 🕨 🔺 🗇 🕨

The Semantic Web The SHIQ language family

SHIQ language extensions – the details

- Language $S \equiv ALC_{R^+}$, i.e, ALC plus transitivity (cf. the index $_{R^+}$)
 - Concept axioms and concept expressions same as in ALC
 - An additional axiom type: **Trans**(R) declares role R to be transitive

The Semantic Web The SHIQ language famile

- Extension \mathcal{H} introducing role hierarchies
 - Adds role axioms of the form $R \sqsubset S$ and $R \equiv S$
 - $(R \equiv S \text{ can be eliminated, replacing it by } R \sqsubseteq S \text{ and } S \sqsubseteq R)$
 - In SH it is possible describe a weak form of transitive closure:

Trans(hasDescendant)

- This means that hasDescendant is a transitive role which includes hasChild
- What we cannot express in SH is that hasDescendant is the smallest such role. (This property cannot be described in FOL either.)

Extension \mathcal{I} – adding inverse roles

• Our first role constructor is $-: R^-$ is the inverse of role R

SHIQ language extensions – the details (2)

• Example: consider role axiom hasChild⁻ \equiv hasParent and:

GoodParent \equiv \exists hasChild. $\top \sqcap \forall$ hasChild.Happy MerryChild $\equiv \exists$ hasParent.GoodParent

A consequence of the above axioms: MerryChild \Box Happy

• Multiple inverses can be eliminated: $(R^{-})^{-} \equiv R, ((R^{-})^{-})^{-} \equiv R^{-}, \dots$

<□≻ <⊡→	Semantic and Declarative Technologies	2024 Spring Semester	382/390	<□▶ <▶	Semantic and Declarative Technologies	2024 Spring Semester	383/390
	The Semantic Web The \mathcal{SHIQ} language fan	nily			The Semantic WebThe $SHIQ$ language family		

SHIQ language extensions – the details (3)

- Extension Q qualified number restrictions generalizing extension \mathcal{N} :
 - ($\leq nR.C$) the set of those who have at most *n R*-related individuals belonging to C, e.g.
 - $(\leq 2hasChild.Female)$ those with at most 2 daughters
 - $(\ge nR.C)$ those with at least *n R*-related individuals belonging to *C*
- A role is simple if it is not transitive and does not even have a transitive sub-role
- Important: roles appearing in number restrictions have to be simple. (This is because otherwise the decidability of the language would be lost.)
 - Given Trans(hasDesc), hasDesc is not simple.
 - If we add further role axioms: $hasAnc \equiv hasDesc^{-}$, hasAnc L hasBloodRelation, then hasBloodRelation is not simple
 - hasAnc is transitive because its inverse hasDesc is such
 - hasBloodRelation has the transitive hasAnc as its sub-role

SHIQ syntax summary

Notation

- A atomic concept, C, C_i, D concept expressions
- R_A atomic role, R, R_i role expressions,
 - $R_{\rm S}$ simple role expression, i.e. a role with no transitive sub-role

Concept expressions

DL	OWL	Name	Informal definition	
A	A	atomic concept	those in A	$ \mathcal{AL} $
Т	owl:Thing	top	the set of all objects	\mathcal{AL}
	owl:Nothing	bottom	the empty set	\mathcal{AL}
$C \sqcap D$	${\cal C}$ and ${\cal D}$	intersection	those in both C and D	\mathcal{AL}
∀ <i>R</i> . <i>C</i>	R only C	value restriction	those whose all <i>R</i> s belong to <i>C</i>	\mathcal{AL}
$C \sqcup D$	C or D	union	those in either C or D	U
∃R.C	R some C	existential restr.	those with an R belonging to C	E
$\neg C$	not C	full negation	those not in C	С
$(\leq nR_S)$	$R_S \max n C$	qualif. num. restr.	those with at most $n R_S$ s in C	Q
(≥nR _S)	R_S min $n C$	qualif. num. restr.	those with at least $n R_S$ s in C	\mathcal{Q}

The Semantic Web The \mathcal{SHIQ} language family	The Semantic Web The \mathcal{SHIQ} language family
SHIQ syntax summary (2)	SHIQ semantics (ADVANCED)
• The syntax of role expressions $R \rightarrow R_A$ atomic role $ R^-$ inverse role • The syntax of terminological axioms	• The semantics of concept expressions $\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} &=& \emptyset \end{array}$ $(\mathcal{AL}) & (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (\mathcal{I}) & (C_1 \sqcap C_2)^{\mathcal{I}} &=& C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}} \\ (C_1 \sqcup C_2)^{\mathcal{I}} &=& C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}} \end{array}$
$egin{array}{llllllllllllllllllllllllllllllllllll$	
	 The semantics of role expressions
	$(\textit{\textbf{R}}^{-})^{\mathcal{I}} \hspace{.1 in} = \hspace{.1 in} \big\{ \langle \textit{\textbf{b}}, \textit{\textbf{a}} \rangle \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid \langle \textit{\textbf{a}}, \textit{\textbf{b}} \rangle \in \textit{\textbf{R}}^{\mathcal{I}} \big\}$

<□≻ <∄≻	Semantic and Declarative Technologies	2024 Spring Semester	386/390	<□≻ <∄≻	Semantic and Declarative Technologies	2024 Spring Semester	387/390
	The Semantic Web The \mathcal{SHIQ} language family				The Semantic Web The \mathcal{SHIQ} language family		
SHIO semantics (2) (ADVANCED)			Negation normal forn	n (NNF)			

• The semantics of terminological axioms

• Read $\mathcal{I} \models T$ as: " \mathcal{I} satisfies axiom T" or as " \mathcal{I} is a model of T"

- Various normal forms are used in reasoning algorithms
- The tableau algorithms use NNF: only atomic negation allowed
- To obtain NNF, apply the following rules to subterms repeatedly while a subterm matching a left hand side can be found:

$$\neg \neg C \quad \rightsquigarrow \quad C$$

$$\neg (C \sqcap D) \quad \rightsquigarrow \quad \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \quad \rightsquigarrow \quad \neg C \sqcap \neg D$$

$$\neg (\exists R.C) \quad \rightsquigarrow \quad \forall R.(\neg C)$$

$$\neg (\forall R.C) \quad \rightsquigarrow \quad \exists R.(\neg C)$$

$$\neg (\leqslant nR.C) \quad \rightsquigarrow \quad (\geqslant kR.C) \text{ where } k = n + 1$$

$$\neg (\geqslant 1R.C) \quad \rightsquigarrow \quad \forall R.(\neg C)$$

$$\neg (\geqslant nR.C) \quad \rightsquigarrow \quad (\leqslant kR.C) \text{ if } n > 1, \text{ where } k = n - 1$$

<□>

The Semantic Web The SHIQ language family

Going beyond SHIQ

- Extension Ø introduces nominals, i.e. concepts which can only have a single element. Example: {EUROPE} is a concept whose interpretation must contain a single element
 FullyEuropean ≡ ∀hasSite.∀hasLocation.{EUROPE}
- Extension (**D**): concrete domains, e.g. integers, strings etc, whose interpretation is fixed, cf. data properties in OWL
- The Web Ontology Language OWL 1 implements $\mathcal{SHOIN}(\mathbf{D})$
- OWL 2 implements *SROIQ*(**D**)
- The main novelty in R wrt. H is the possibility to use role composition (○): hasParent ○ hasBrother ⊑ hasUncle i.e. one's parent's brother is one's uncle
- To ensure decidability, the use of role composition is seriously restricted (e.g. it is not allowed to have ≡ instead of ⊑ in the above example)

Semantic and Declarative Technologies

2024 Spring Semester 390/390