
Part V

The Semantic Web

1 Course overview

2 Introduction to Logic

3 Declarative Programming with Prolog

4 Declarative Programming with Constraints

5 The Semantic Web

The Semantic Web Introducing Semantic Technologies

Contents

5 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning

Semantic and Declarative Technologies 2024 Spring Semester 347 / 378

The Semantic Web Introducing Semantic Technologies

Semantic Technologies

Semantics = meaning
Semantic Technologies = technologies building on (formalized) meaning
Declarative Programming as a semantic technology

A procedure definition describes its intended meaning
e.g. intersect(L1, L2) :- member(X, L1), member(X, L2).
Lists L1 and L2 intersect
if there exists an X, which is a member of both L1 and L2.

The execution of a program can be viewed as a process of deduction
The main goal of the Semantic Web (SW) approach:

make the information on the web processable by computers
machines should be able to understand the web, not only read it

Achieving the vision of the Semantic Web
Add (computer processable) meta-information to the web
Formalize background knowledge – build so called ontologies
Develop reasoning algorithms and tools

Semantic and Declarative Technologies 2024 Spring Semester 348 / 378

The Semantic Web Introducing Semantic Technologies

The vision of the Semantic Web

The Semantic Web layer cake – Tim Berners-Lee

Semantic and Declarative Technologies 2024 Spring Semester 349 / 378

The Semantic Web Introducing Semantic Technologies

The Semantic Web

The goal: making the information on the web processable by computers
Achieving the vision of the Semantic Web

Add meta-information to web pages, e.g.
(AIT hasLocation Budapest)
(AIT hasTrack Track:Foundational-courses)
(Track:Foundational-courses hasCourse Semantic-and-declarative...)

Formalise background knowledge – build so called terminologies
hierarchies of notions, e.g.
a University is a (subconcept of) Inst-of-higher-education,
the hasFather relationship is a special case of hasParent
definitions and axioms, e.g.
a Father is a Male Person having at least one child

Develop reasoning algorithms and tools
Main topics

Description Logic, the maths behind the Semantic Web is the basis
of Web Ontology Languages OWL 1 & 2 (W3C standards)
A glimpse at reasoning algorithms for Description Logic

Semantic and Declarative Technologies 2024 Spring Semester 350 / 378

The Semantic Web An example of the Semantic Web approach

Contents

5 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning

Semantic and Declarative Technologies 2024 Spring Semester 351 / 378

The Semantic Web An example of the Semantic Web approach

First Order Logic (recap)

Syntax:
non-logical (“user-defined”) symbols: predicates and functions,
including constants (function symbols with 0 arguments)
terms (refer to individual elements of the universe, or interpretation),
e.g. fatherOf (Susan)
formulas (that hold or do not hold in a given interpretation), e.g.
φ = ∀x .(Optimist(fatherOf (x))→ Optimist(x))

Semantics:
determines if a closed formula φ is true in an interpretation I: I |= φ
(also read as: I is a model of φ)
an interpretation I consists of a domain ∆ and a mapping from
non-logical symbols (e.g. Optimist , fatherOf , Susan) to their meaning
semantic consequence: S |= α means: if an interpretation is a model
of all formulas in the set S, then it is also a model of α
(note that the symbol |= is overloaded)

Deductive system (also called proof procedure):
an algorithm to deduce a consequence α of a set of formulas S: S ⊢ α

example: resolution
Semantic and Declarative Technologies 2024 Spring Semester 352 / 378

The Semantic Web An example of the Semantic Web approach

Soundness, completeness and decidability (recap)

A deductive system is sound if S ⊢ α⇒ S |= α (deduces only truths).
A deductive system is complete if S |= α⇒ S ⊢ α (deduces all truths).
Resolution is a sound and complete deductive system for FOL
Kurt Gödel was first to show such a system:
Gödel’s completeness theorem: there is a sound and complete deductive
system for FOL
FOL is not decidable: no decision procedure for the question
“does S imply α (S ⊢ α)?” (Gödel’s completeness theorem ensures that if
the answer is “yes”, then there exists a proof of α from S; but if the
answer is “no”, we have no guarantees – this is called semi-decidability)
Developers of the Semantic Web strive for using decidable languages

for languages with a sound and complete proof procedure
Semantic Web languages are based on Description Logics, which are
decidable sublanguages of FOL, i.e. there is an algorithm that delivers a
yes or no answer to the question “does S imply α”

Semantic and Declarative Technologies 2024 Spring Semester 353 / 378

The Semantic Web An example of the Semantic Web approach

Ontologies

Ontology: computer processable description of knowledge
Early ontologies include classification system (biology, medicine, books)

Entities in the Web Ontology Language (OWL):
classes – describe sets of objects (e.g. optimists)
properties (attributes, slots) – describe binary relationships
(e.g. has parent)
objects – correspond to real life objects
(e.g. people, such as Susan, her parents, etc.)

Semantic and Declarative Technologies 2024 Spring Semester 354 / 378

The Semantic Web An example of the Semantic Web approach

Knowledge Representation

Natural Language:
1 Someone having a non-optimist friend is bound to be an optimist.
2 Susan has herself as a friend.

First order Logic (unary predicate, binary predicate, constant):
1 ∀x .(∃y .(hasFriend(x , y) ∧ ¬opt(y))→ opt(x))
2 hasFriend(Susan,Susan)

Description Logics (concept, role, individual):
1 (∃hasFriend.¬ Opt) ⊑ Opt (GCI – Gen. Concept Inclusion axiom)
2 hasFriend(Susan,Susan) (role assertion)

Web Ontology Language (Manchester syntax)5 (class, property, object):
1 (hasFriend some (not Opt)) SubClassOf: Opt

Those having some not Opt friends must be Opt
(GCI – Gen. Class Inclusion axiom)

2 hasFriend(Susan,Susan) (object property assertion)

5protegeproject.github.io/protege/class-expression-syntax
Semantic and Declarative Technologies 2024 Spring Semester 355 / 378

protegeproject.github.io/protege/class-expression-syntax

The Semantic Web An example of the Semantic Web approach

A sample ontology to be entered into Protégé

1 There is a class of Animals, some of which are Male, some are Female.
2 No one can be both Male and Female.
3 There are Animals that are Human.
4 There are Humans who are Optimists.
5 There is a relationship hasP meaning “has parent”. Relations hasFather

and hasMother are sub-relations (special cases) of hasP.
6 Let’s define the class C1 as those who have an optimistic parent.
7 State that everyone belonging to C1 is Optimistic.
8 State directly that anyone having an Optimistic parent is Optimistic.
9 There is a relation hasF, denoting “has friend”. State that someone

having a non-Optimistic friend must be Optimistic.
10 There are individuals: Susan, and her parents Mother and Father.
11 Mother has Father as her friend.

Semantic and Declarative Technologies 2024 Spring Semester 356 / 378

The Semantic Web An example of the Semantic Web approach

The sample ontology in Description Logic and OWL/Protégé

English Description Logic OWL (Manchester syntax)
1 Male is a subclass of Animal. Male ⊑ Animal Male SubClassOf: Animal

Female is a subclass of Animal. Female ⊑ Animal Female SubClassOf: Animal
2 Male and Female are disjoint. Male ⊑ ¬ Female Male DisjointWith: Female
3 Human is a subclass of Animal. Human ⊑ Animal Human SubClassOf: Animal
4 Optimist is a subclass of Human. Opt ⊑ Human Opt SubClassOf: Human
5 hasFather is a subprop. of hasP. hasFather ⊑ hasP hasFather SubPropertyOf: hasP

hasMother is a subprop. of hasP. hasMother ⊑ hasP hasMother SubPropertyOf: hasP
6 C1 = those having an Opt parent. C1 ≡ ∃ hasP . Opt C1 EquivalentTo: hasP some Opt
7 Everyone in C1 is Opt. C1 ⊑ Opt C1 SubClassOf: Opt
8 Children of Opt parents are Opt. ∃ hasP . Opt ⊑ Opt hasP some Opt SubClassOf: Opt
9 Those with a non-Opt friend are Opt. ∃ hasF . ¬Opt ⊑ Opt hasF some not Opt SubClassOf: Opt
10 Susan has parents Mother and

Father.
hasP(Susan,aMother)
hasP(Susan,aFather)

hasP(Susan,aMother)
hasP(Susan,aFather)

11 Mother has Father as a friend. hasF(Mother,aFather) hasF(Mother,aFather)

(In Protégé, select the “save as” format as “Latex syntax” to obtain DL
notation.)

Semantic and Declarative Technologies 2024 Spring Semester 357 / 378

The Semantic Web An overview of Description Logics

Contents

5 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning

Semantic and Declarative Technologies 2024 Spring Semester 358 / 378

The Semantic Web An overview of Description Logics

Description Logic (DLs) – overview

DL, a subset of FOL, is the mathematical background of OWL
Signature – relation and function symbols allowed in DL

concept name (A) – unary predicate symbol (cf. OWL class)
role name (R) – binary predicate symbol (cf. OWL property)
individual name (a, . . .) – constant symbol (cf. OWL object)
No non-constant function symbols, no preds of arity > 2, no vars

Concept names and concept expressions represent sets, e.g.
∃hasParent.Optimist – the set of those who have an optimist parent
Terminological axioms (TBox) – stating background knowledge

A simple axiom using the DL language ALE :
∃hasParent.Optimist ⊑ Optimist – the set of those who have an
optimist parent is a subset of the set of optimists
Translation to FOL: ∀x .(∃y .(hasP(x , y) ∧Opt(y))→ Opt(x))

Assertions (ABox) – stating facts about individual names
Example: Optimist(JACOB), hasParent(JOSEPH, JACOB)

A consequence of these TBox and ABox axioms is: Optimist(JOSEPH)

DLs behind OWL 1 and OWL 2 are decidable: there are bounded time
algorithms for checking if a set of axioms implies a statement.

Semantic and Declarative Technologies 2024 Spring Semester 359 / 378

The Semantic Web An overview of Description Logics

Some further examples of terminological axioms

(1) A Mother is a Person, who is a Female and who has(a)Child.
Mother ≡ Person ⊓ Female ⊓ ∃hasChild.⊤

(2) A Tiger is a Mammal.
Tiger ⊑ Mammal

(3) Children of an Optimist Person are Optimists, too.
Optimist ⊓ Person ⊑ ∀hasChild.Optimist

(4) Childless people are Happy.
∀hasChild.⊥ ⊓ Person ⊑ Happy

(5) Those in the relation hasChild are also in the relation hasDescendant.
hasChild⊑hasDescendant

(6) The relation hasParent is the inverse of the relation hasChild.
hasParent≡hasChild−

(7) The hasDescendant relationship is transitive.
Trans(hasDescendant)

Semantic and Declarative Technologies 2024 Spring Semester 360 / 378

The Semantic Web An overview of Description Logics

Description Logics – why the plural?

These logic variants were progressively developed in the last two
decades
As new constructs were proved to be “safe”, i.e. keeping the logic
decidable, these were added
We will start with the very simple language AL, extend it to ALE , ALU
and ALC
As a side branch we then define ALCN
We then go back to ALC and extend it to languages S, SH, SHI and
SHIQ (which encompasses ALCN)
We briefly tackle further extensions O, (D) and R
OWL 1, published in 2004, corresponds to SHOIN (D)

OWL 2, published in 2012, corresponds to SROIQ(D)

Semantic and Declarative Technologies 2024 Spring Semester 361 / 378

The Semantic Web The ALCN language family

Contents

5 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning

Semantic and Declarative Technologies 2024 Spring Semester 362 / 378

The Semantic Web The ALCN language family

Overview of the ALCN language

In ALCN a statement (axiom) can be
a subsumption (inclusion), e.g. Tiger ⊑ Mammal, or
an equivalence, e.g. Woman ≡ Female ⊓ Person,
Mother ≡Woman ⊓ ∃hasChild.⊤

In general, an ALCN axiom can take these two forms:
subsumption: C ⊑ D
equivalence: C ≡ D, where C and D are concept expressions

A concept expression C denotes a set of objects
(a subset of the ∆ universe of the interpretation), and can be:

an atomic concept (or concept name), e.g. Tiger, Female, Person
a composite concept, e.g. Female ⊓ Person, ∃hasChild.Female
composite concepts are built from atomic concepts and atomic roles
(also called role names) using some constructors (e.g. ⊓, ⊔, ∃, etc.)

We first introduce language AL, that allows a minimal set of constructors
(all examples on this page are valid AL concept expressions)
Next, we discuss richer extensions named U , E , C, N

Semantic and Declarative Technologies 2024 Spring Semester 363 / 378

The Semantic Web The ALCN language family

The syntax of the AL language

Language AL (Attributive Language) allows the following concept
expressions, also called concepts, for short:
A is an atomic concept, C,D are arbitrary (possibly composite) concepts
R is an atomic role

DL concept OWL class Name Informal definition

A A (class name) atomic concept those in A
⊤ owl:Thing top the set of all objects
⊥ owl:Nothing bottom the empty set
¬A not A atomic negation those not in A

C ⊓ D C and D intersection those in both C and D
∀R.C R only C value restriction those whose all Rs belong to C
∃R.⊤ R some owl:Thing limited exist. restr. those having at least one R

Examples of AL concept expressions:

Person ⊓ ¬Female Person and not Female
Person ⊓ ∀hasChild.Female Person and (hasChild only Female)
Person ⊓ ∃hasChild.⊤ Person and (hasChild some owl:Thing)

Semantic and Declarative Technologies 2024 Spring Semester 364 / 378

The Semantic Web The ALCN language family

The semantics of the AL language (as a special case of FOL)

An interpretation I is a mapping:
∆I = ∆ is the universe, the nonempty set of all individuals/objects
for each concept/class name A, AI is a (possibly empty) subset of ∆
for each role/property name R, RI ⊆ ∆×∆ is a binary relation on ∆

The semantics of AL extends I to composite concept expressions, i.e.
describes how to “calculate” the meaning of arbitrary concept exprs:

⊤I = ∆

⊥I = ∅
(¬A)I = ∆ \ AI

(C ⊓ D)I = CI ∩ DI

(∀R.C)I = {a ∈ ∆|∀b.(⟨a,b ⟩ ∈ RI → b ∈ CI)}
(∃R.⊤)I = {a ∈ ∆|∃b.⟨a,b ⟩ ∈ RI}

Finally we define how to obtain the truth value of an axiom:

I |= C ⊑ D iff CI ⊆ DI

I |= C ≡ D iff CI = DI

Semantic and Declarative Technologies 2024 Spring Semester 365 / 378

The Semantic Web The ALCN language family

The AL language: limitations

Recall the elements of the language AL:
DL concept OWL class Name Informal definition

A A (class name) atomic concept those in A
⊤ owl:Thing top the set of all objects
⊥ owl:Nothing bottom the empty set
¬A not A atomic negation those not in A

C ⊓ D C and D intersection those in both C and D
∀R.C R only C value restriction those whose all Rs belong to C
∃R.⊤ R some owl:Thing limited exist. restr. those having at least one R

What is missing from AL?

We can specify the intersection of two concepts, but not the union, e.g.
those who are either blue-eyed or tall.
∃R.⊤ – we cannot describe e.g. those having a female child.
Remedy: allow for full exist. restr., e.g. ∃hasCh.Female
¬A – negation can be applied to atomic concepts only.
Remedy: full negation, ¬C, where C can be non-atomic, e.g. ¬(U ⊓ V)

Semantic and Declarative Technologies 2024 Spring Semester 366 / 378

The Semantic Web The ALCN language family

The ALCN language family: extensions U , E , C, N

Further concept constructors, OWL equivalents shown in [square brackets]:
Union: C ⊔ D, [C or D] – those in either C or D

(C ⊔ D)I = CI ∪ DI (U)
Full existential restriction: ∃R.C, [R some C]
– those who have at least one R belonging to C

(∃R.C)I = {a ∈ ∆I |∃b.⟨a,b ⟩ ∈ RI ∧ b ∈ CI} (E)
(Full) negation: ¬C, [not C] – those who do not belong to C

(¬C)I = ∆I \ CI (C)
Number restrictions (unqualified): (⩾nR), [R min n owl:Thing] and

(⩽nR), [R max n owl:Thing]
– those who have at least n R-s, or have at most n R-s

(⩾ n R)I =
{

a ∈ ∆I | |
{

b | ⟨a,b ⟩ ∈ RI} | ≥ n
}

(N)

(⩽ n R)I =
{

a ∈ ∆I | |
{

b | ⟨a,b ⟩ ∈ RI} | ≤ n
}

Note that qualified number restrictions, such as (⩾ n R.C) (e.g., those
having at least 3 blue-eyed children) are not covered by this extension
E.g.: Person ⊓ ((⩽ 1 hasCh) ⊔ (⩾ 3 hasCh)) ⊓ ∃hasCh.Female

Person and (hasCh max 1 or hasCh min 3) and (hasCh some Female)
Semantic and Declarative Technologies 2024 Spring Semester 367 / 378

The Semantic Web The ALCN language family

Summary table of the ALCUEN language

DL OWL Name Informal definition

A A atomic concept those in A AL
⊤ owl:Thing top the set of all objects AL
⊥ owl:Nothing bottom the empty set AL

C ⊓ D C and D intersection those in both C and D AL
∀R.C R only C value restriction those whose all Rs belong to C AL
¬C not C full negation those not in C C

C ⊔ D C or D union those in either C or D U
∃R.C R some C existential restr. those with an R belonging to C E
(⩽nR) R max n o:T unq. numb. restr. those having at most n Rs N
(⩾nR) R min n o:T unq. numb. restr. those having at least n Rs N

Semantic and Declarative Technologies 2024 Spring Semester 368 / 378

The Semantic Web The ALCN language family

Rewriting ALCN to first order logic

Concept expressions map to predicates with one argument, e.g.
Tiger =⇒ Tiger(x) Mammal =⇒ Mammal(x)
Person =⇒ Person(x) Female =⇒ Female(x)

Simple connectives ⊓, ⊔, ¬ map to boolean operations ∧, ∨, ¬, e.g.
Person ⊓ Female =⇒ Person(x) ∧ Female(x)
Person ⊔ ¬Mammal =⇒ Person(x) ∨ ¬Mammal(x)

An axiom C ⊑ D is rewritten as ∀x .(C(x)→ D(x)), e.g.
Tiger ⊑ Mammal =⇒ ∀x .(Tiger(x)→ Mammal(x))

An axiom C ≡ D is rewritten as ∀x .(C(x)↔ D(x)), e.g.
Woman ≡ Person ⊓ Female =⇒ ∀x .(Woman(x)↔ Person(x) ∧ Female(x))

Concept constructors involving a quantifier ∃ or ∀ are rewritten to an
appropriate quantified formula, where a role name is mapped to a binary
predicate (a predicate with two arguments), e.g.

∃hasParent.Opt⊑Opt =⇒ ∀x .(∃y .(hasParent(x , y) ∧Opt(y))→ Opt(x))

Semantic and Declarative Technologies 2024 Spring Semester 369 / 378

The Semantic Web The ALCN language family

Rewriting ALCN to first order logic, example

Consider C = Person ⊓ ((⩽ 1 hasCh) ⊔ (⩾ 3 hasCh)) ⊓ ∃hasCh.Female
Let’s outline a predicate C(x) which is true when x belongs to concept C:
C(x)↔ Person(x) ∧

(hasAtMost1Child(x) ∨ hasAtLeast3Children(x)) ∧
hasFemaleChild(x)

Class practice:
Define the FOL predicates hasAtMost1Child(x),
hasAtLeast3Children(x), hasFemaleChild(x)
Additionally, define the following FOL predicates:

hasOnlyFemaleChildren(x), corresponding to the concept
∀hasCh.Female
hasAtMost2Children(x), corresponding to the concept
(⩽ 2 hasCh)

Semantic and Declarative Technologies 2024 Spring Semester 370 / 378

The Semantic Web The ALCN language family

General rewrite rules ALCN → FOL

Each concept expression can be mapped to a FOL formula:
Each concept expression C is mapped to a formula ΦC(x) (expressing
that x belongs to C).
Atomic concepts (A) and roles (R) are mapped to unary and binary
predicates A(x),R(x , y).
⊓, ⊔, and ¬ are transformed to their counterpart in FOL (∧,∨,¬), e.g.
ΦC⊓D(x) = ΦC(x) ∧ ΦD(x)
Mapping further concept constructors:

Φ∃R.C(x) = ∃y . (R(x , y) ∧ ΦC(y))
Φ∀R.C(x) = ∀y . (R(x , y)→ ΦC(y))

Φ⩾n R(x) = ∃y1, . . . , yn.

R(x , y1) ∧ · · · ∧ R(x , yn) ∧
∧
i<j

yi ̸= yj

Φ⩽n R(x) = ∀y1, . . . , yn+1.

R(x , y1) ∧ · · · ∧ R(x , yn+1)→
∨
i<j

yi = yj

Semantic and Declarative Technologies 2024 Spring Semester 371 / 378

The Semantic Web The ALCN language family

Equivalent languages in the ALCN family

Language AL can be extended by arbitrarily choosing whether to add
each of UECN , resulting in AL[U][E][C][N].
Do these 24 = 16 languages have different expressive power?
Two concept expressions are said to be equivalent, if they have the same
meaning, in all interpretations.
Languages L1 and L2 have the same expressive power (L1

e
= L2), if any

expression of L1 can be mapped into an equivalent expression of L2, and
vice versa.
As a preparation for discussing the above let us recall that these axioms
hold in all models, for arbitrary concepts C and D and role R:

C ⊔ D ≡ ¬(¬C ⊓ ¬D)

∃R.C ≡ ¬∀R.¬C
¬¬C ≡ C
¬⊤ ≡ ⊥
¬⊥ ≡ ⊤

¬(C ⊓ D) ≡ ¬C ⊔ ¬D
¬∃R.⊤ ≡ ∀R.⊥
¬∀R.C ≡ ∃R.¬C

Semantic and Declarative Technologies 2024 Spring Semester 372 / 378

The Semantic Web The ALCN language family

Equivalent languages in the ALCN family

Let us show that ALUE and ALC are equivalent:
As C ⊔ D ≡ ¬(¬C ⊓ ¬D) and ∃R.C ≡ ¬∀R.¬C, union and full existential
restriction can be eliminated by using (full) negation. That is, to each
ALUE concept expression there exists an equivalent ALC expression.
The other way, each ALC concept can be transformed to an equivalent
ALUE expression, by moving negation inwards, until before atomic
concepts, and removing double negation; using the axioms from the right
hand column on the previous slide
Thus ALUE and ALC have the same expressive power, and so have the
intermediate languages:
ALC(N)

e
= ALCU(N)

e
= ALCE(N)

e
= ALCUE(N)

e
= ALUE(N).

Further remarks:
As U and E is subsumed by C, we will use ALC to denote the language
allowing U , E and C
It can be shown that any two of
AL,ALU ,ALE ,ALC,ALN ,ALUN ,ALEN ,ALCN have different
expressive power

Semantic and Declarative Technologies 2024 Spring Semester 373 / 378

The Semantic Web TBox reasoning

Contents

5 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning

Semantic and Declarative Technologies 2024 Spring Semester 374 / 378

The Semantic Web TBox reasoning

A special case of ontology: definitional TBox

Tfam: a sample definitional TBox for family relationships

Woman ≡ Person ⊓ Female
Man ≡ Person ⊓ ¬Woman

Mother ≡ Woman ⊓ ∃hasChild.Person
Father ≡ Man ⊓ ∃hasChild.Person
Parent ≡ Father ⊔Mother

Grandmother ≡ Woman ⊓ ∃hasChild.Parent

A definitional TBox consists of equivalence axioms only, the left hand
sides being distinct concept names (atomic concepts)
The concepts on the left hand sides are called name symbols
The remaining atomic concepts are called base symbols, e.g. in our
example the two base symbols are Person and Female.
In a definitional TBox the meanings of name symbols can be obtained by
evaluating the right hand side of their definition

Semantic and Declarative Technologies 2024 Spring Semester 375 / 378

The Semantic Web TBox reasoning

Interpretations and semantic consequence

Recall the definition of assigning a truth value to TBox axioms in an
interpretation I:

I |= C ⊑ D iff CI ⊆ DI

I |= C ≡ D iff CI = DI

Based on this we introduce the notion of “semantic consequence” exactly in
the same way as for FOL

We can naturally extend the above I |= α notation
– where α is either C ⊑ D or C ≡ D –
to a TBox (i.e. a set of α axioms) T
I |= T (I satisfies T , I is a model of T) iff
for each α ∈ T , I |= α, i.e. I is a model of α

We now overload even further the “ |= ” symbol:
T |= α (read axiom α is a semantic consequence of the TBox T) iff

all models of T are also models of α, i.e.
for all interpretations I, if I |= T holds, then I |= α also holds

Semantic and Declarative Technologies 2024 Spring Semester 376 / 378

The Semantic Web TBox reasoning

TBox reasoning tasks

Reasoning tasks on TBoxes only (i.e. no ABoxes involved)
A base assumption: the TBox is consistent (does not contain a
contradiction), i.e. it has a model
Subsumption: concept C is subsumed by concept D wrt. a TBox T , iff
T |= (C ⊑ D), i.e. CI ⊆ DI holds in all I models of T (C ⊑T D)
e.g. Tfam |= (Grandmother ⊑ Parent) (recall that Tfam is the family TBox)
Equivalence: concepts C and D are equivalent wrt. a TBox T , iff
T |= (C ≡ D), i.e. CI = DI holds in all I models of T (C ≡T D).
e.g. Tfam |= (Parent ≡ Person ⊓ ∃hasChild.Person)
Disjointness: concepts C and D are disjoint wrt. a TBox T , iff
T |= (C ⊓ D ≡ ⊥), i.e. CI ∩ DI = ∅ holds in all I models of T .
e.g. Tfam |= (Woman ⊓Man) ≡ ⊥
Note that all these tasks involve two concepts, C and D

Semantic and Declarative Technologies 2024 Spring Semester 377 / 378

The Semantic Web TBox reasoning

Reducing reasoning tasks to testing satisfiability

We now introduce a simpler, but somewhat artificial reasoning task:
checking the satisfiability of a concept
Satisfiability: a concept C is satisfiable wrt. TBox T , iff
there is a model I of T such that CI is non-empty
(hence C is non-satisfiable wrt. T iff in all I models of T CI is empty)
We will reduce each of the earlier tasks to checking non-satisfiability
E.g. to prove: Woman ⊑ Person, let’s construct a concept C that contains
all counter-examples to this statement: C = Woman ⊓ ¬Person
If we can prove that C has to be empty, i.e. there are no
counter-examples, then we have proven the subsumption
Assume we have a method for checking satisfiability.
Other tasks can be reduced to this method (usable in ALC and above):

C is subsumed by D ⇐⇒ C ⊓ ¬D is not satisfiable
C and D are equivalent⇐⇒ (C ⊓ ¬D) ⊔ (D ⊓ ¬C) is not satisfiable
C and D are disjoint⇐⇒ C ⊓ D is not satisfiable

In simpler languages, not supporting full negation, such as ALN , all
reasoning tasks can be reduced to subsumption

Semantic and Declarative Technologies 2024 Spring Semester 378 / 378

