
Part IV

Declarative Programming with Constraints

1 Course overview

2 Introduction to Logic

3 Declarative Programming with Prolog

4 Declarative Programming with Constraints

5 The Semantic Web

Declarative Programming with Constraints Motivation

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 223 / 378

Declarative Programming with Constraints Motivation

CLPFD – Constraint Logic Programming with Finite Domains

In this part of the course we get acquainted with CLPFD
within the huge area of CP – Constraint Programming
we will use Logic Programming, i.e. Prolog
for solving Finite Domain Problems

Examples for other, related approaches:
IBM ILog: Constraint Programming on Finite Domains using C++
https://www.ibm.com/products/ilog-cplex-optimization-studio
SICStus and SWI Prolog have further constraint libraries:

CLPR/CLPQ – Constraint Logic Programming on reals/rationals,
CLPB – Constraint Logic Programming on Booleans

CLP(FD) is part of a generic scheme CLP(X),
where X can also be R, Q, B, etc.
CLPFD solvers are based on the Constraint Satisfaction Problem (CSP)
approach, a branch of Artificial Intelligence (AI)

Semantic and Declarative Technologies 2024 Spring Semester 224 / 378

Declarative Programming with Constraints Motivation

The structure of CLPFD problems

Example: a cryptarithmetic puzzle such as SEND + MORE = MONEY
The task: consistently replace letters by different digits so that the
equation becomes true (leading zeros are not allowed)
The (unique) solution: 9567 + 1085 = 10652
Viewing this task as a CLPFD problem:

variables: S, E, N, D, M, O, R, Y
variable domains (values allowed): S and M: 1..9, all others 0..9
constraints: S ̸= E, S ̸= N, . . . , O ̸= R, O ̸= Y, R ̸= Y, (vars pairwise differ)
S*1000+E*100+N*10+D+M*1000+O*100+R*10+E = M*10000+O*1000+N*100+E*10+Y

A CLPFD task, as a mathematical problem, consists of:
variables X1, . . . ,Xn
domains D1, . . . ,Dn, each being a finite set of integers
(variable Xi can only take values from its domain, Di , i.e. Xi ∈ Di)
constraints (relations) between Xi -s that have to be satisfied,
e.g. X1 ̸= X2, X2 + X3 = X5, etc.

Solving a task requires assigning each variable a value from its domain
so that all the constraints are satisfied
(to obtain one/all solutions, possibly maximizing some variables, etc.)

Semantic and Declarative Technologies 2024 Spring Semester 225 / 378

Declarative Programming with Constraints Motivation

SEND MORE MONEY – Prolog and CLPFD solutions

Prolog: generate and test (check)

:- use_module(library(between)).
send0(SEND, MORE, MONEY) :-

Ds = [S,E,N,D,M,O,R,Y],
maplist(between(0, 9), Ds),
alldiff(Ds),
S =\= 0, M =\= 0,
SEND is 1000*S+100*E+10*N+D,
MORE is 1000*M+100*O+10*R+E,
MONEY is

10000*M+1000*O+100*N+10*E+Y,
SEND+MORE =:= MONEY.

% alldiff(+L):
% elements of L are all different
alldiff([]).
alldiff([D|Ds]) :-

\+ member(D, Ds), alldiff(Ds).

CLPFD: test (constrain) and generate

:- use_module(library(clpfd)).
send_clpfd(SEND, MORE, MONEY) :-

Ds = [S,E,N,D,M,O,R,Y],
domain(Ds, 0, 9),
all_different(Ds),
S #\= 0, M #\= 0,
SEND #= 1000*S+100*E+10*N+D,
MORE #= 1000*M+100*O+10*R+E,
MONEY #=

10000*M+1000*O+100*N+10*E+Y,
SEND+MORE #= MONEY,
labeling([], Ds).

New implementation features needed:

associating a domain with a variable

constraints performing repetitive
pruning

Run time: 13.1 sec Run time: 0.00011 sec

Semantic and Declarative Technologies 2024 Spring Semester 226 / 378

Declarative Programming with Constraints Motivation

The CLPFD approach

Calling a constraint is called posting
A constraint can be of two kinds:

primitive: prunes the domain (set of poss. values) of a var. and exits:
e.g. S #\= 0 simply removes 0 from the domain of S and exits
composite: performs an initial pruning, and then becomes a daemon,
e.g. SEND #= 1000*S+100*E+10*N+D

1 waits in the background (sleeps) until there is a change in the
domain of one of its variables

2 wakes up to possibly prune the domain of other variables
(in forward Prolog execution domains never grow, hence we speak of
pruning or narrowing of domains)

3 if the constraint is now bound to fail, it initiates a backtrack
4 if the constraint is now bound to hold, it exits with success
5 otherwise goes to step 1.

When all constraints are posted, the search phase, labeling, is started:
labeling repeatedly selects a var. and creates a choice point for it
prunes the domain of the var., causing constraints to wake up
eventually makes all variables bound, and thus finds solutions

Semantic and Declarative Technologies 2024 Spring Semester 227 / 378

Declarative Programming with Constraints Motivation

Another CLPFD example: the N-queens problem

Place N queens on an N × N chessboard, so that no two queens attack
each other

The Prolog list [Q1, ..., QN] is a compact representation of a placement:
row i contains a queen in column Qi , for each i = 1, . . . ,N.
The list encoding the above placement: [3,6,4,2,8,5,7,1]
Note that this modeling of the problem in itself ensures that no two
queens are present in any given row

Semantic and Declarative Technologies 2024 Spring Semester 228 / 378

Declarative Programming with Constraints Motivation

Constraints in the N-queens problem

It is enough to ensure that no queen threatens other queens below it
(as the “threatens” relation is symmetrical)
Queen Q threatens positions marked with *

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
------------- ------------- -------------

Q1 Q Q Q
Q2 * * * * * * * *
Q3 * * * * * * *
Q4 * * * * *
Q5 * * * *

Assume j < k , and let I = k − j . Queen Qj threatens Qk iff
Qk = Qj + I, or Qk = Qj - I, or Qk = Qj

The Prolog code for checking that two queens do not threaten each other:
% no_threat(QJ, QK, I): queens placed in column QJ of row m and
% in column QK of row m+I
% do not threaten each other.
no_threat(QJ, QK, I) :-

QK =\= QJ+I, QK =\= QJ-I, QK =\= QJ.

Semantic and Declarative Technologies 2024 Spring Semester 229 / 378

Declarative Programming with Constraints Motivation

Constraints in the N-queens problem (contd.)

Doubly nested loop needed: check each queen w.r.t. each queen below it
The structure of the code, demonstrated for the 4 queens case:
queens4([Q1,Q2,Q3,Q4]) :-

% Queen Q1 does not threaten the queens Q2, Q3, Q4 below it:
no_threat(Q1 , Q2, 1), no_threat(Q1 , Q3, 2), no_threat(Q1 , Q4, 3),
% Queen Q2 does not threaten the queens Q3, Q4 below it:
no_threat(Q2 , Q3, 1), no_threat(Q2 , Q4, 2),
no_threat(Q3, Q4, 1). % Queen Q3 does not threaten queen Q4 below it

An inner loop can be implemented via this predicate:
% no_attack(Q, Qs, I): Q is the placement of the queen in row m,
% Qs lists the placements of queens in rows m+I, m+I+1, ...
% Queen in row m does not attack any of the queens listed in Qs.
no_attack(_, [], _).
no_attack(X, [Y|Ys], I):-

no_threat(X, Y, I), J is I+1, no_attack(X, Ys, J).
Using no_attack/3, the 4 queens case can be simplified to:
queens4([Q1,Q2,Q3,Q4]) :-

no_attack(Q1, [Q2,Q3,Q4], 1),
no_attack(Q2, [Q3,Q4], 1),
no_attack(Q3, [Q4], 1).

Semantic and Declarative Technologies 2024 Spring Semester 230 / 378

Declarative Programming with Constraints Motivation

Plain Prolog solution: “generate and test”

% queens_gt(N, Qs): Qs is a valid placement of N queens on an NxN chessboard.
queens_gt(N, Qs):-

length(Qs, N), maplist(between(1, N), Qs), safe(Qs).

% safe(Qs): In placement Q, no pair of queens attack each other.
safe([]).
safe([Q|Qs]):-

no_attack(Q, Qs, 1), safe(Qs).

% no_attack(Q, Qs, I): Q is the placement of the queen in row k,
% Qs lists the placements of queens in rows k+I, k+I+1, ...
% Queen in row k does not attack any of the queens listed in Qs.
no_attack(_, [], _).
no_attack(X, [Y|Ys], I):-

no_threat(X, Y, I), J is I+1, no_attack(X, Ys, J).

% no_threat(X, Y, I): queens placed in column X of row k and in
column Y of row k+I

% do not attack each other.
no_threat(X, Y, I) :-

Y =\= X, Y =\= X-I, Y =\= X+I.

Semantic and Declarative Technologies 2024 Spring Semester 231 / 378

Declarative Programming with Constraints Motivation

Evaluation

Nice solution: declarative, concise, easy to validate
But...

N Time for all solutions in msec
(on an Intel i3-3110M, 2.40GHz CPU)

4 0
5 16
6 46
7 515
8 10,842
9 275,170

10 7,926,879

15 ∼ 10,000 years
20 ∼ 1000 bn years

Semantic and Declarative Technologies 2024 Spring Semester 232 / 378

Declarative Programming with Constraints CLPFD basics

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 233 / 378

Declarative Programming with Constraints CLPFD basics

The main steps of solving a CSP/CLPFD problem

Modeling – transforming the problem to a CSP
defining the variables and their domains
identifying the constraints between the variables

Implementation – the structure of the CSP program
Set up variable domains: N in {1,2,3}, domain([X,Y], 1, 5).
Post constraints. Preferably, no choice points should be created.
Label the variables, i.e. systematically explore all variable settings.

Optimization – redundant constraints, labeling heuristics, constructive
disjunction, shaving, etc.

Semantic and Declarative Technologies 2024 Spring Semester 234 / 378

Declarative Programming with Constraints CLPFD basics

library(clpfd) – basic concepts

To load the library, place this directive at the beginning of your program:
:- use_module(library(clpfd)).
Domain: a finite set of integers (allowing the restricted use of infinite
intervals for convenience)
Constraints:

membership, e.g. X in 1..5 (1 ≤ X ≤ 5)
arithmetic, e.g. X #< Y+1 (X < Y + 1)
reified, e.g. X#<Y+5 #<=> B (B is the truth value of X < Y + 5)
propositional, e.g. B1 #\/ B2

(at least one of the two Boolean values B1 and B2 is true)
combinatorial, e.g. all_distinct([V1,V2,...])

(variables [V1,V2,...] are pairwise different)
user-defined

Two main variants: formula constraints and global constraints
Formula constraints are written using operators, while global constraints
use the canonical Prolog term format.
Global constraints operate on lists of variables, most of the time.

Semantic and Declarative Technologies 2024 Spring Semester 235 / 378

Declarative Programming with Constraints CLPFD basics

Membership constraints

domain(+Vars, +Min, +Max) where
Min: ⟨ integer ⟩ or inf (−∞),
Max: ⟨ integer ⟩ or sup (+∞):
All elements of list Vars belong to the interval [Min,Max].
Example: domain([A,B,C], 1, sup) – variables A, B and C are positive
X in +ConstRange: X belongs to the set ConstRange, where:
ConstantSet ::= {⟨ integer ⟩,...,⟨ integer ⟩}
Constant ::= ⟨ integer ⟩ | inf | sup
ConstRange ::= ConstantSet

| Constant .. Constant (interval)
| ConstRange /\ ConstRange (intersection)
| ConstRange \/ ConstRange (union)
| \ ConstRange (complement)

Examples:
A in inf .. -1, B in \(0 .. sup), C in {1,4,7,2}.

Semantic and Declarative Technologies 2024 Spring Semester 236 / 378

Declarative Programming with Constraints CLPFD basics

Arithmetic formula constraints

In the division and remainder operations below truncated means rounded
towards 0, while floored means rounded towards −∞
Arithmetic formula constraints: Expr RelOp Expr where
RelOp ::= #= | #\= | #< | #=< | #> | #>=
Expr ::= ⟨ integer ⟩ | ⟨ variable ⟩

| - Expr | Expr + Expr | Expr - Expr | Expr * Expr
| Expr / Expr % truncated integer division
| Expr // Expr % // ≡ /
| Expr div Expr % floored integer division
| Expr rem Expr % truncated remainder
| Expr mod Expr % floored remainder
| min(Expr,Expr)
| max(Expr,Expr)
| abs(Expr)

Semantic and Declarative Technologies 2024 Spring Semester 237 / 378

Declarative Programming with Constraints CLPFD basics

Global arithmetic constraints

sum(+Xs, +RelOp, ?Value): Σ Xs RelOp Value.
scalar_product(+Coeffs, +Xs, +RelOp, ?Value[, +Options])
(last arg. optional): Σi Coeffsi*Xsi RelOp Value.
where Coeffs has to be a list of integers. Examples:
scalar_product([1,2,5], [X,Y,Z], #<, U) ≡ X + 2*Y + 5*Z #< U
scalar_product([1,1,1], [X,Y,Z], #=, U) ≡ sum([X,Y,Z], #=, U)
minimum(?V, +Xs), maximum(?V, +Xs): V is the minimum/maximum of the
elements of the list Xs. Example:

minimum(M, [X,Y,Z]) ≡ min(X,min(Y,Z)) #= M

Semantic and Declarative Technologies 2024 Spring Semester 238 / 378

Declarative Programming with Constraints CLPFD basics

Relational symbols

Standard Prolog relations and CLPFD relations should not be confused;
their meaning is in general quite different
Example: “equals”

Expr1#=Expr2: post a constraint that Expr1 and Expr2 must be equal
Term1=Term2: attempt to unify Term1 and Term2
domain([A,B],3,4), A+1#=B. =⇒ A=3, B=4
domain([A,B],3,4), A+1=B. =⇒ Type error
(This tries to unify B with the compound A+1. As domain variables can
only be unified with integers, an error is raised)

Example: “less than”
Expr1#<Expr2: post a constraint that Expr1 must be less than Expr2
Expr1<Expr2: checks if Expr1 is less than Expr2
domain([A,B],3,4), A#<B. =⇒ A=3, B=4
domain([A,B],3,4), A<B. =⇒ Instantiation error
(arguments in arithmetic comparison BIPs must be ground)

Semantic and Declarative Technologies 2024 Spring Semester 239 / 378

Declarative Programming with Constraints CLPFD basics

Global constraints

Some global constraints:
all_different([X1,...,Xn]): same as Xi #\= Xj for all 1 ≤ i < j ≤ n.
all_distinct([X1,...,Xn]): same as all_different, but does much
better pruning (guarantees so called domain-consistency, see later)

| ?- L=[A,B,C], domain(L, 1, 2), all_different(L).
=⇒ A in 1..2, B in 1..2, C in 1..2
| ?- L=[A,B,C], domain(L, 1, 2), all_distinct(L).
=⇒ no
And many many more...

Semantic and Declarative Technologies 2024 Spring Semester 240 / 378

Declarative Programming with Constraints CLPFD basics

Labeling – at a glance

In general, there are multiple solutions =⇒ labeling is necessary
(Even if there is a single solution, it often cannot be inferred directly from
the constraints)
Labeling: search by creating choice points and systematic assignment of
feasible values to variables
During labeling, narrowing the domain of a variable may wake up
constraints that in turn may prune the domain of other variables etc. This
is called propagation.
indomain(?Var): for variable Var, its feasible values are assigned one after
the other (in ascending order)
labeling(+Options, +Vars): assigns values to all variables in Vars.
The options control, for example, the order in which

variables are selected for labeling
the feasible values of the selected variable are tried

Most of the options impact only the efficiency of the algorithm,
not its correctness.

Semantic and Declarative Technologies 2024 Spring Semester 241 / 378

Declarative Programming with Constraints CLPFD basics

N-queens – the Prolog solution (recall)

% Qs is a valid placement of N queens on an NxN chessboard.
queens_gt(N, Qs):-

length(Qs, N), maplist(between(1, N), Qs) , safe(Qs), ,(true), .

% safe(Qs): In placement Q, no pair of queens attack each other.
safe([]).
safe([Q|Qs]):-

no_attack(Q, Qs, 1), safe(Qs).

% no_attack(Q, Qs, I): Q is the placement of the queen in row k,
% Qs lists the placements of queens in rows k+I, k+I+1, ...
% Queen in row k does not attack any of the queens listed in Qs.
no_attack(_, [], _).
no_attack(X, [Y|Ys], I):-

no_threat(X, Y, I), J is I+1, no_attack(X, Ys, J).

% no_threat(X, Y, I): queens placed in column X of row k and in column Y of row k+I
% do not attack each other.
no_threat(X, Y, I) :-

Y =\= X, Y =\= X-I, Y =\= X+I .

Semantic and Declarative Technologies 2024 Spring Semester 242 / 378

Declarative Programming with Constraints CLPFD basics

N-queens – the CLPFD solution

% Qs is a valid placement of N queens on an NxN chessboard.
queens_fd(N, Qs):-

length(Qs, N), domain(Qs, 1, N) , safe(Qs), labeling([ff],Qs) .

% safe(Qs): In placement Q, no pair of queens attack each other.
safe([]).
safe([Q|Qs]):-

no_attack(Q, Qs, 1), safe(Qs).

% no_attack(Q, Qs, I): Q is the placement of the queen in row k,
% Qs lists the placements of queens in rows k+I, k+I+1, ...
% Queen in row k does not attack any of the queens listed in Qs.
no_attack(_, [], _).
no_attack(X, [Y|Ys], I):-

no_threat(X, Y, I), J is I+1, no_attack(X, Ys, J).

% no_threat(X, Y, I): queens placed in column X of row k and in column Y of row k+I
% do not attack each other.
no_threat(X, Y, I) :-

Y #\= X, Y #\= X-I, Y #\= X+I .

Semantic and Declarative Technologies 2024 Spring Semester 243 / 378

Declarative Programming with Constraints CLPFD basics

Evaluation

Time for all solutions in msec (on an Intel i3-3110M, 2.40GHz CPU):

N Prolog CLPFD

4 0 0
5 16 0
6 46 0
7 515 0
8 10,842 0
9 275,170 31

10 7,926,879 94
11 ∼ 2 days 421
12 ∼ 2 months 2,168
13 ∼ 6 years 10,982
14 ∼ 250 years 54,242
15 ∼ 10,000 years 351,424

Semantic and Declarative Technologies 2024 Spring Semester 244 / 378

Declarative Programming with Constraints CLPFD basics

A simple practice task

Write a predicate that enumerates the solutions of the following task

% incr(L, Len, N): L is a strictly increasing list of length Len,
% containing integers in 1..N.
| ?- incr(L, 3, 3). ---> L = [1,2,3] ; no
| ?- incr(L, 3, 4). ---> L = [1,2,3] ; L = [1,2,4] ;

L = [1,3,4] ; L = [2,3,4] ; no
| ?- incr(L, 2, 5), L = [3|_]. ---> L = [3,4] ; L = [3,5] ; no

A solution:

incr(L, Len, N) :-
length(L, Len), % Determining the variables
domain(L, 1, N), % Setting up the domains
L = [H|T], incr_list(T, H), % Posting the constraints
labeling([], L). % Labeling

incr_list([X2|T], X1) :-
X1 #< X2, incr_list(T, X2).

incr_list([], _).

Semantic and Declarative Technologies 2024 Spring Semester 245 / 378

Declarative Programming with Constraints How does CLPFD work

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 246 / 378

Declarative Programming with Constraints How does CLPFD work

Infeasible values

A constraint C is implemented by a daemon, which ensures that C holds
Consider the constraint X+5 #= Y, which represents the relation
r = {⟨ x , y ⟩|x + 5 = y} = {. . ., ⟨−1,4 ⟩,⟨0,5 ⟩,⟨1,6 ⟩,⟨2,7 ⟩,. . .}
The CLPFD constraint X+5 #= Y has to ensure that r(X,Y) holds:

1 if both X and Y are bound : check if ⟨ X,Y ⟩ ∈ r holds, i.e. X+5=Y
2 if only X is bound: set Y to X+5, if possible, else fail
3 if only Y is bound: set X to Y-5 if possible, else fail
4 if X and Y are unbound: remove infeasible values from their domains:

E.g.: X in 1..6, Y in {1,6,7,9}, Infeasible for X: 3, 5, 6; for Y: 1
(case 4 covers 1 – 3 as well, assuming empty domain⇒ failure)

Let D(u) denote the domain of variable u.
With respect to a constraint/relation r(x , y):
a ∈ D(x) is infeasible iff there is no b ∈ D(y) such that r(a,b) holds;
b ∈ D(y) is infeasible iff there is no a ∈ D(x) such that r(a,b) holds
In general: A value di ∈ D(xi) is infeasible w.r.t. r(x1, . . . , xi , . . .), if no
assignment can be found for the remaining variables – mapping each
xj , j ̸= i to some dj ∈ D(xj) – so that r(d1, . . . ,di , . . .) holds

Semantic and Declarative Technologies 2024 Spring Semester 247 / 378

Declarative Programming with Constraints How does CLPFD work

Implementation of constraints

The main data structure: the backtrackable constraint store – maps
variables to their domains.
Simple constraints: e.g. X in inf..9 or X #< 10 modify the store and exit,
e.g. add X #< 10 to store X in 5..20 =⇒ X in 5..9 (= inf..9∩ 5..20)
Composite constraints are implemented as daemons, which keep
removing infeasible values from argument domains
Example store content: X in 1..6, Y in {1,6,7,9}

Daemon for X+5#=Y may remove 3, 5, 6 from X and 1 from Y
Resulting store content: X in {1,2,4}, Y in {6,7,9}

A constraint C is said to be entailed (or implied) by the store iff:
C holds for ANY variable assignment allowed by the store

For example, store X in {1,2}, Y in {6,7} does not entail X + 5 #= Y,
as the constraint does not hold for the assignment X = 1, Y = 7
However, store X in {1}, Y in {6} does entail X + 5 #= Y,
and store U in 5..10, V in 30..40 entails 2*U+9 #< V
A daemon may exit (die), when its constraint is entailed by the store (as
entailment implies that the constraint will never be able to do any pruning)

Semantic and Declarative Technologies 2024 Spring Semester 248 / 378

Declarative Programming with Constraints How does CLPFD work

Strength of reasoning for composite constraints

Domain-consistency, also called arc-consistency:
all infeasible values are removed

Example store: X in 0..6, Y in {1,6,8,9}
Daemon for X+5#=Y removes 0,2,5,6 from X and 1 from Y
Resulting store: X in {1,3,4}, Y in {6,8,9}

Cost: exponential in the number of variables
Bound-consistency: reasoning views domains as intervals, only removes
bounds, possibly repeatedly
(a middle element, such as 2 in the domain of X above, is not removed)

Weaker than domain-consistency, examples:
store: X in 0..6, Y in {1,6,8,9}, constraint X+5#=Y =⇒
removes 0, 6 and 5 from X, and 1 from Y (2 is kept in X)
new store: X in 1..4, Y in {6,8,9}
X in 1..6, Y in {100,200}, Z in inf..sup, constraint X+Y#=Z
=⇒
only Z is pruned: Z in 101..206 (107..200 are not feasible)

Cost: linear in the number of variables
Semantic and Declarative Technologies 2024 Spring Semester 249 / 378

Declarative Programming with Constraints How does CLPFD work

Bound-consistency, further details (ADVANCED)

Bound-consistency relies on the interval closure of the store, obtained by
removing all ‘holes’ from the domains:

Store: S0 = A in {0,1,2,3,4,6}, V in {-1,1,3,4,5}
Interval closure of the store: IC(S0) = A in 0..6, V in -1..5

In general: the interval closure of the store maps each variable X to
MinX..MaxX, where MinX/MaxX is the smallest/largest value in X’s domain
Bound-consistency reasoning repeatedly removes all boundary values
that are infeasible w.r.t. the interval closure of the store
Example: A #= abs(V) in store S0:
| ?- A in (0..4)\/{6}, V in {-1}\/{1}\/(3..5), A #= abs(V).
=⇒ A in 0..4, V in {-1}\/{1}\/(3..4) ?

boundary value 6 is removed from the domain of A, as V cannot be 6
nor -6 in IC(S0) =⇒ S1 = A in 0..4, V in {-1,1,3,4,5}
boundary value 5 is removed from V, as A cannot be 5 in IC(S1)
=⇒ S2 = A in 0..4, V in {-1,1,3,4}
A’s boundary value 0 is kept, as in IC(S2) V’s domain is -1..4 ∋ 0

Semantic and Declarative Technologies 2024 Spring Semester 250 / 378

Declarative Programming with Constraints How does CLPFD work

Consistency levels guaranteed by SICStus Prolog

Membership constraints (trivially) ensure domain-consistency.
Linear arithmetic constraints ensure at least bound-consistency.
Nonlinear arithmetic constraints do not guarantee bound-consistency.
For all constraints, when all the variables of the constraint are bound, the
constraint is guaranteed to deliver the correct result (success or failure).

| ?- X in {4,9}, Y in {2,3}, Z #= X-Y. =⇒ Z in 1..7 ?
Bound consistent

| ?- X in {4,9}, Y in {2,3},
scalar_product([1,-1], [X,Y], #=, Z, [consistency(domain)]).
/* not available in SWI, scalar_product can only have 4 arguments*/

=⇒ Z in(1..2)\/(6..7) ?
Domain consistent

| ?- domain([X,Y],-9,9), X*X+2*X+1 #= Y.=⇒ X in -4..4, Y in -7..9 ?
Not even bound consistent

| ?- domain([X,Y],-9,9), (X+1)*(X+1)#=Y.=⇒ X in -4..2, Y in 0..9 ?
Bound consistent

Semantic and Declarative Technologies 2024 Spring Semester 251 / 378

Declarative Programming with Constraints How does CLPFD work

Implementation of constraints

A constraint C is implemented by:
transforming C (possibly at compile time) to a series of elementary
constraints,
e.g. X*X #> Y⇒ A #= X*X, A #> Y (formula constraints only).
posting C, or each of the primitive constraints obtained from C

To see the the pending constraints in SICStus execute the code below
(pending constraints are always shown in SWI):

| ?- assert(clpfd:full_answer).
Examples (with some editing for better readability):

SICStus Prolog

| ?- domain([X,Y],-9,9), X*X+2*X+1#=Y.
A#=X*X,
Y#=2*X+A+1,
X in -4..4,
Y in -7..9,
A in 0..16 ?

SWI Prolog

?- [X,Y] ins -9..9, X*X+2*X+1#=Y.
2*X#=B, X^2#=A, B+A#=C, C+1#=Y,
X in -4..4, A in 0..16,
B in -8..8, C in -8..8,
Y in -7..9.

Semantic and Declarative Technologies 2024 Spring Semester 252 / 378

Declarative Programming with Constraints How does CLPFD work

Execution of constraints

To execute a constraint C:
execute completely (e.g. X #< 3); or
create a daemon for C:

specify the activation conditions
(how to set the ‘‘alarm clock’’ to wake up the daemon)
prune the domains
until the termination condition becomes true do

go to sleep (wait for activation)
prune the domains

enduntil

A #\= B (domain-consistent)
Activation: when A or B is instantiated.
Pruning: remove the value of the instantiated variable from the
domain of the other.
Termination: when A or B is instantiated.
Example: | ?- A in 1..5, A #\= B, B = 3.

Semantic and Declarative Technologies 2024 Spring Semester 253 / 378

Declarative Programming with Constraints How does CLPFD work

Execution of constraints, continued

Activation condition: the domain of a variable X changes in SOME way
SOME can be:

Any change of the domain
Lower bound change
Upper bound change
Lower or upper bound change
Instantiation
. . .

The termination condition is constraint specific
earliest: when the constraint is entailed by the constraint store
i.e. it is bound to hold in the given constraint store
latest: when all its variables are instantiated
In most of the cases it does not pay off waking up a constraint quite
often, just to check if it can terminate. . .

Semantic and Declarative Technologies 2024 Spring Semester 254 / 378

Declarative Programming with Constraints How does CLPFD work

Implementation of some constraints

A #< B (domain-consistent)
Activation: when min(A) (the lower bound of A) or

when max(B) (the upper bound of B) changes.
Pruning:
(the highest feasible value for A, given B’s domain? max(B)-1)
(the lowest feasible value for B, given A’s domain? min(A)+1)
remove from the domain of A all integers ≥ max(B) (max(B)..sup)
remove from the domain of B all integers ≤ min(A) (inf..min(A))
Termination: when one of A and B is instantiated (not optimal)
Example: | ?- domain([A,B], 1, 5), A #< B, B in 1..4, A = 2.

Semantic and Declarative Technologies 2024 Spring Semester 255 / 378

Declarative Programming with Constraints How does CLPFD work

Implementation of some constraints (contd.)

X+Y #= T (bound-consistent)
Activation: at lower or upper bound change of X, Y, or T.
Pruning:
(the lowest possible T, given the domains of X and Y? min(X)+min(Y))
narrow the domain of T to (min(X)+min(Y))..(max(X)+max(Y))
(the lowest possible X, given the domains of T and Y? min(T)-max(Y))
narrow the domain of X to (min(T)-max(Y))..(max(T)-min(Y))
narrow the domain of Y to (min(T)-max(X))..(max(T)-min(X))
Termination: if all three variables are instantiated (after the pruning)
Example: | ?- domain([X,Y,T], 1, 5), T #= X+Y, X #> 2.

all_distinct([A1,...]) (domain-consistent)
Activation: at any domain change of any variable.
Pruning: remove all infeasible values from the domains of all
variables (using an algorithm based on maximal matchings in
bipartite graphs)
Termination: when at most one of the variables is uninstantiated.
Example: | ?- L=[W,X,Y,Z], domain(L,1,4), all_distinct(L), W#<3, Z#<3.

Semantic and Declarative Technologies 2024 Spring Semester 256 / 378

Declarative Programming with Constraints How does CLPFD work

Interplay of multiple constraints

A simple example:
| ?- domain([X,Y], 0, 100), X+Y #= 10, X-Y #= 4.
=⇒ X in 4..10, Y in 0..6
Another example:
| ?- domain([X,Y], 0, 100), X+Y #= 10, X+2*Y #= 14.
=⇒ X = 6, Y = 4
More examples in the practice tool https://ait.plwin.dev/C1-1

Semantic and Declarative Technologies 2024 Spring Semester 257 / 378

Declarative Programming with Constraints FDBG

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 258 / 378

Declarative Programming with Constraints FDBG

FDBG – a dedicated CLPFD debugger

Created as an MSc Thesis by Dávid Hanák and Tamás Szeredi at
Budapest University of Technology and Economics back in 2001
Now part of SICStus
Shows details of all important CLPFD events

Constraints waking up
Pruning
Constraints exiting
Labeling

Highly customizable
Output can be written to a file

Semantic and Declarative Technologies 2024 Spring Semester 259 / 378

Declarative Programming with Constraints FDBG

Example: tracking the life-cycle of constraints

| ?- use_module([library(clpfd),library(fdbg)]).
| ?- Xs=[X1,X2], fdbg_assign_name(Xs, ’X’), fdbg_on, domain(Xs, 1, 6),

X1+X2 #= 8, X2 #>= 2*X1+1.

domain([<X_1>,<X_2>],1,6) X_1 = inf..sup -> 1..6
X_2 = inf..sup -> 1..6
Constraint exited.

<X_1>+<X_2> #= 8 X_1 = 1..6 -> 2..6
X_2 = 1..6 -> 2..6

<X_2> #>= 2*<X_1>+1 X_1 = 2..6 -> {2}
X_2 = 2..6 -> 5..6
Constraint exited.

<X_1>+<X_2> #= 8 X_1 = {2}
X_2 = 5..6 -> {6}
Constraint exited.

Xs = [2,6], X1 = 2, X2 = 6 ?

(This example is available as https://ait.plwin.dev/C1-1/c.)
Semantic and Declarative Technologies 2024 Spring Semester 260 / 378

Declarative Programming with Constraints FDBG

Example: labeling

| ?- X in 1..3, labeling([bisect], [X]).
<fdvar_1> in 1..3

fdvar_1 = inf..sup -> 1..3
Constraint exited.

Labeling [2, <fdvar_1>]: starting in range 1..3.
Labeling [2, <fdvar_1>]: bisect: <fdvar_1> =< 2

Labeling [4, <fdvar_1>]: starting in range 1..2.
Labeling [4, <fdvar_1>]: bisect: <fdvar_1> =< 1

X = 1 ? ;
Labeling [4, <fdvar_1>]: bisect: <fdvar_1> >= 2

X = 2 ? ;
Labeling [4, <fdvar_1>]: failed.

Labeling [2, <fdvar_1>]: bisect: <fdvar_1> >= 3

X = 3 ? ;
Labeling [2, <fdvar_1>]: failed.

no

Semantic and Declarative Technologies 2024 Spring Semester 261 / 378

Declarative Programming with Constraints Reified constraints

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 262 / 378

Declarative Programming with Constraints Reified constraints

Reification – introductory example

Given X in 0..9, Y in 0..9, define constraint “exactly one of X and Y is > 0”
Hint: let the 0-1 variable XP (for X Positive) reflect the truth value of X #> 0.
Use the // integer division op to define this relationship between X and XP

XP #= (X+9) // 10
With this trick it is easy to achieve our goal:
exactly_1_pos(X, Y) :- X in 0..9, Y in 0..9,

(X+9)//10 #= XP, (Y+9)//10 #= YP, XP+YP #= 1.
| ?- X #> 3, exactly_1_pos(X, Y). =⇒ Y = 0
| ?- Y #= 0, exactly_1_pos(X, Y). =⇒ X in 1..9
Constraint XP #= (X+9) // 10 reflects (or reifies)
the truth value of X #> 0 in the boolean variable XP
library(clpfd) supports reified constraints using this syntax:

X #> 0 #<=> XP or in general:
<reifiable constraint> #<=> B

This does not rely on knowing the domain of X.
(SWI Prolog CLPFD uses the #<==> operator instead of #<=>)

Semantic and Declarative Technologies 2024 Spring Semester 263 / 378

Declarative Programming with Constraints Reified constraints

Reification – what is it?

Reification = reflecting the truth value of a constraint into a 0/1-variable
Form: C #<=> B (in SWI #<==>), where C is a reifiable constraint
and B is a 0/1-variable
Meaning: C holds if and only if B=1
E.g.: (X #> 5) #<=> B (X > 5 holds iff B is true (B = 1)) (*)
Four implications:

If C holds, then B must be 1
If ¬C holds, then B must be 0

If B=1, then C must hold
If B=0, then ¬C must hold

Which constraints can be reified?
Arithmetic formula constraints (#=, #=<, etc.) can be reified
The X in ConstRange membership constraint can be reified,
e.g. rewrite (*) to a membership constraint: (X in 6..sup) #<=> B
In SICStus, scalar_product can be reified
All other global constraints (e.g. all_different/1, sum/3) cannot
be reified: all_different([X,Y]) #<=> B causes an error

Having introduced Boolean vars, it’s feasible to allow propositional ops
Semantic and Declarative Technologies 2024 Spring Semester 264 / 378

Declarative Programming with Constraints Reified constraints

Propositional constraints – working with Boolean variables

Propositional connectives allowed by SICStus Prolog CLPFD:

Format Meaning Priority Kind SWI notation
#\ Q negation 710 fy (same)
P #/\ Q conjunction 720 yfx (same)
P #\ Q exclusive or 730 yfx (same)
P #\/ Q disjunction 740 yfx (same)
P #=> Q implication 750 xfy P #==> Q
Q #<= P implication 750 yfx Q #<== P
P #<=> Q equivalence 760 yfx P #<==> Q

The operand of a propositional constraint can be
a variable B, whose domain automatically becomes 0..1; or
an integer (0 or 1); or
a reifiable constraint; or
recursively, a propositional constraint

Example: (X#>5) #\/ (Y#>7)
implemented via reification: (X#>5) #<=> B1, (Y#>7) #<=> B2, B1 #\/ B2
Note that reification is a special case of equivalence

Semantic and Declarative Technologies 2024 Spring Semester 265 / 378

Declarative Programming with Constraints Reified constraints

Using 0/1-variables in arithmetic constraints

0/1-variables can be used just like any other FD-variable, e.g., in
arithmetic calculations
Typical usage: counting the number of times a given constraint holds
Example:
% pcount(L, N): list L has N positive elements.
pcount([], 0).
pcount([X|Xs], N) :-

(X #> 0) #<=> B,
N #= N1+B,
pcount(Xs, N1).

Semantic and Declarative Technologies 2024 Spring Semester 266 / 378

Declarative Programming with Constraints Reified constraints

Executing reified constraints

Recall: a constraint C is said to be entailed (or implied) by the store:
iff C holds for any variable assignment allowed by the store
e.g.: store X in 5..10, Y in 12..15 entails the constraint X #< Y as
for arbitrary X in 5..10 and arbitrary Y in 12..15, X #< Y holds

Posting the constraint C #<=> B immediately enforces B in 0..1
The execution of C #<=> B requires three daemons:

When B is instantiated:
if B=1, post C; if B=0, post ¬C

When C is entailed, set B to 1
When C is disentailed (i.e. ¬C is entailed), set B to 0

Semantic and Declarative Technologies 2024 Spring Semester 267 / 378

Declarative Programming with Constraints Reified constraints

Detecting entailment – levels of precision

Consider a reified constraint of the form C #<=> B
If C is a membership constraint, detecting domain-entailment is
guaranteed, i.e. B is set as soon as C or ¬C is entailed by the store, e.g.
| ?- X in 1..3, X in {1,3} #<=> B, X #\= 2. =⇒ B = 1, X in {1}\/{3}
| ?- X in 2..4, X in {1,3} #<=> B, X #\= 3. =⇒ B = 0, X in {2}\/{4}

If C is a linear arithmetic constraint, detecting bound-entailment is
guaranteed, i.e. B is set as soon as C or ¬C is entailed by the interval
closure of the store. (Recall: The interval closure of the store maps each
variable X to MinX..MaxX, where MinX/MaxX is the smallest/largest value in
X’s domain)

Store: X in {1,3}, Y in {2,4}, Z in {2,4}
Interval closure of the store: X in 1..3, Y in 2..4, Z in 2..4

E.g. X in {1,3}, Y in {2,4}, Z in {2,4}, (X+Y#\=Z) #<=> B =⇒ B in 0..1
The store entails X+Y ̸=Z (odd+even̸=even), but its intv. closure does not!
No guarantee is given for non-linear arithmetic constraints, but when a
constraint becomes ground, its (dis)entailment is always detected

Semantic and Declarative Technologies 2024 Spring Semester 268 / 378

Declarative Programming with Constraints Reified constraints

Detecting entailment – some further examples in SICStus

Bound-entailment is guaranteed for linear arithmetic constraints
However, for certain constraints you can obtain better entailment
detection in SICStus Prolog

Domain entailment is detected in an inequality between two variables:
| ?- X in {1,3,7,9}, Y in {2,8,10}, X #\= Y #<=> B. =⇒ B = 1

Domain entailment can be obtained for linear arithmetic constraints by
replacing the formula constraint by the scalar_product/4 global
constraint, with the consistency(domain) option

Bound entailment, using a formula constraint:
| ?- X in {1,3}, Y in {2,4}, Z in {2,4}, X+Y #\= Z #<=> B.

=⇒ B in 0..1

Domain entailment, using scalar_product/4:
| ?- X in {1,3}, Y in {2,4}, Z in {2,4},

scalar_product([1,1], [X,Y], #\=, Z, [consistency(domain)]) #<=> B.
=⇒ B = 1

Semantic and Declarative Technologies 2024 Spring Semester 269 / 378

Declarative Programming with Constraints Reified constraints

Knights and knaves – a CLPFD example using Booleans

Knights and knaves puzzle (“What is the name of this book” by R. Smullyan)
A remote island is inhabited by two kinds of natives:
knights always tell the truth, knaves always lie.
One day I meet two natives, A and B. A says: “One of us is a knave”.
What are A and B?

Operators used in the controlled natural language syntax below:
:- op(100,fy,a), op(700,fy,not), op(800,yfx,and), op(900,yfx,or), op(950,xfy,says).

Prolog representation: knave (liar) −→ 0, knight (truthful) −→ 1.
Example runs:
| ?- holds(A says A is a knave or B is a knave).

=⇒ A = knight, B = knave ? ; no
| ?- holds((A says B is a knight) and (B says C is a knight)).

=⇒ A = knave, B = knave, C = knave ? ;
A = knight, B = knight, C = knight ? ; no

0 and 1 are displayed as knave and knight via callback pred. portray/1:
:- multifile portray/1. % clauses for portray can be scattered over multiple files

portray(0) :- write(knave).
portray(1) :- write(knight).

Semantic and Declarative Technologies 2024 Spring Semester 270 / 378

Declarative Programming with Constraints Reified constraints

Knights and knaves – CLPFD solution

:- use_module(library(clpfd)).
:- op(100, fy, a), op(700, fy, not), op(800, yfx, and), op(900, yfx, or), op(950, xfy, says).

holds(Stmt) :- % Statement Stmt is true.
term_variables(Stmt, Vars),
% term_variables(+T, -Vs): Vs is the list of vars that occur in term T
domain(Vars, 0, 1),
has_value(Stmt, 1), labeling([], Vars).

% native(Nat, V): The truth value of sentences spoken by native Nat is V.
native(knave, 0).
native(knight, 1).

% has_value(Stmt, Val): The truth value of statement Stmt is Val.
has_value(X is a Nat, V) :- native(Nat, N), V #<=> X #= N.
has_value(X says S, V) :- has_value(S, V0), V #<=> X #= V0.
has_value(S1 and S2, V) :- has_value(S1, V1),

has_value(S2, V2), V #<=> V1 #/\ V2.
has_value(S1 or S2, V) :- has_value(S1, V1),

has_value(S2, V2), V #<=> V1 #\/ V2.
has_value(not S1, V) :- has_value(S1, V1), V #<=> #\ V1.

Semantic and Declarative Technologies 2024 Spring Semester 271 / 378

Declarative Programming with Constraints Global constraints

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 272 / 378

Declarative Programming with Constraints Global constraints

Global constraints – an overview

Category Constraint
Counting count/4

global_cardinality/[2,3]
nvalue/2

Sorting sorting/3
lex_chain/[1,2]

Distinctness all_different/[1,2]
all_distinct/[1,2]

Permutation assignment/[2,3]
circuit/[1,2]

Scheduling cumulative/[1,2]
cumulatives/[2,3]

Geometric disjoint1/[1,2]
disjoint2/[1,2]
geost/[2,3,4]

Arbitrary relation automaton/[3,8,9]
case/[3,4]
relation/3
table/[2,3]

Other element/3

Semantic and Declarative Technologies 2024 Spring Semester 273 / 378

Declarative Programming with Constraints Global constraints

Arguments of global constraints

It is important to differentiate between two kinds of arguments:
Arguments that can be FD-variables (or lists of such)
Arguments that can only be integers (or lists of such)

It is always possible to write an integer where an FD-variable is expected,
but not the other way around
Convention: in this section, FD-variables (and lists of such) are written in
italics.

Semantic and Declarative Technologies 2024 Spring Semester 274 / 378

Declarative Programming with Constraints Global constraints

Simple counting: count/4

count/4 can be used to count the occurrences of a given integer, e.g.
count(0, L, #=, N). ≡ there are exactly N zero elements in L.
count(Int, List, RelOp, Count): Int occurs in List n times,
and (n RelOp Count) holds. (Not available in SWI-Prolog)
| ?- length(L, 3), % L is a list of 3 elements

domain(L, 6, 8), % all elements of L are between 6 and 8
count(7, L, #=, 3). % There are exactly 3 occurences of 7 in L
=⇒ L = [7,7,7] ? ; no

| ?- length(L, 3), domain(L, 1, 100),
count(3, L, #=, _C),
_C #>= 1, % There is at least one 3 in L
count(2, L, #>, _C), % There are more 2’s than 3’s in L
labeling([], L).
=⇒ L = [2,2,3] ? ; L = [2,3,2] ? ; L = [3,2,2] ? ; no

count can be implemented using reification (this works in SWI):
count(Val, List, RelOp, Count) :- maplist(count1(Val), List, Bs),

sum(Bs, RelOp, Count).
count1(Val, X, B) :- X #= Val #<==> B.

Semantic and Declarative Technologies 2024 Spring Semester 275 / 378

Declarative Programming with Constraints Global constraints

Counting multiple values: global_cardinality/2

This constraint can be used to describe the exact composition of a list.
E.g., L contains ints 0, 1, and 2 only, the count of 1’s and 2’s is the same:
| ?- L=[_,_], global_cardinality(L, [0-C0,1-C,2-C]), labeling([], L).
L = [0,0], C0 = 2, C = 0 ? ;
L = [1,2], C0 = 0, C = 1 ? ;
L = [2,1], C0 = 0, C = 1 ? ; no
The definition of global_cardinality(Vars, [K1-V1, ...Kn-Vn]):

K1, ..., Kn are distinct integers,
each of the Vars takes a value from {K1, ..., Kn},
each integer Ki occurs exactly Vi times in Vars , for all 1 ≤ i ≤ n.

| ?- length(L, 3), global_cardinality(L, [6-_,7-3,8-_]).
L = [7,7,7] ? ; no

| ?- length(L,3), domain(L,1,100), global_cardinality(L,[2-_X,3-_Y]),
_X#>_Y, _Y#>0, labeling([], L).
=⇒ L = [2,2,3] ? ; L = [2,3,2] ? ; L = [3,2,2] ? ; no

There is a variant global_cardinality/3 with a 3rd, Options argument,
where pruning strength can be specified

Semantic and Declarative Technologies 2024 Spring Semester 276 / 378

Declarative Programming with Constraints Global constraints

Distinctness

all_distinct(Vars, Options)
all_different(Vars, Options): Variables in Vars are pairwise different.
The two predicates differ only in Options defaults.
An empty Options argument can be omitted.
| ?- L = [A,B,C], domain(L,1,2), all_different(L).=⇒ A in 1..2,...
| ?- L = [A,B,C], domain(L,1,2), all_distinct(L). =⇒ no
The Options argument is a list of options. In the option consistency(Cons),
Cons controls the strength of the pruning:

Cons = domain (the default for all_distinct):
strongest possible pruning (domain consistency)
Cons = value (the default for all_different):
strength equivalent to posting #\= for all variable pairs
Cons = bounds: bounds consistency

In SICStus other options are also available
SWI-Prolog only supports the 1-argument version (no options argument)

Semantic and Declarative Technologies 2024 Spring Semester 277 / 378

Declarative Programming with Constraints Global constraints

Permutation (ADVANCED)
assignment([X1,...,Xn],[Y1,...,Yn]): all Xi , Yi are in 1..n and Xi=j iff Yj=i.
Equivalently: [X1,...,Xn] is a permutation of 1..n and [Y1,...,Yn] is the
inverse permutation.
| ?- length(Xs, 3), assignment(Xs, Ys), Ys = [3|_], labeling([], Xs).

=⇒ Xs = [2,3,1], Ys = [3,1,2] ? ;
=⇒ Xs = [3,2,1], Ys = [3,2,1] ? ; no

circuit([X1,...,Xn]):
Edges i→ Xi form a single (Hamiltonian) circuit of nodes {1, ..., n}.
Equivalently: [X1,...,Xn] is a permutation of 1..n that consists of a single
cycle of length n.
| ?- length(Xs, 4), circuit(Xs), Xs = [2|_], labeling([], Xs).

=⇒ Xs = [2,3,4,1] ? ;
=⇒ Xs = [2,4,1,3] ? ; no

1 2

3 4

[2,3,4,1]:

1 2

3 4

[2,4,1,3]:

1 2

3 4

[2,1,3,4]:

1 2

3 4

[2,1,4,3]:

1 2

3 4

[2,3,1,4]:

1 2

3 4

[2,4,3,1]:

Semantic and Declarative Technologies 2024 Spring Semester 278 / 378

Declarative Programming with Constraints Global constraints

Specifying arbitrary finite relations

table([Tuple1,...,TupleN], Extension): each Tuple belongs to the
relation described by Extension. Extension is a list of all the valid tuples
that form the relation. Available in SWI-Prolog as tuples_in/2.
% times(X, Y, Z): X * Y = Z, for 1 =< X, Y =< 4
times(X, Y, Z) :- table([[X,Y,Z]], [[1,1,1], [1,2,2], [1,3,3], [1,4,4],

[2,1,2], [2,2,4], [2,3,6], [2,4,8],
[3,1,3], [3,2,6], [3,3,9], [3,4,12],
[4,1,4], [4,2,8], [4,3,12],[4,4,16]]).

| ?- times(X, 4, Z), Z #> 10. =⇒ X in 3..4, Z in {12}\/{16} ? ; no
If the 1st arg. contains several tuples, each has to belong to the relation.
Example: find paths X-Y-Z in the graph {1→3, 4→6, 3→5, 6→8}
| ?- table([[X,Y],[Y,Z]], [[1,3],[4,6],[3,5],[6,8]]), labeling([], [X,Y,Z]).
X = 1, Y = 3, Z = 5 ? ; X = 4, Y = 6, Z = 8 ? ; no

table/2 produces the same solutions as a collection of member/2 goals:
| ?- Ext = [[1,3],[4,6],[3,5],[6,8]], member([X,Y], Ext), member([Y,Z], Ext).
X = 1, Y = 3, Z = 5 ? ; X = 4, Y = 6, Z = 8 ? ; no

table/2 provides domain consistency:
| ?- table([[X,Y],[Y,Z]], [[1,3],[4,6],[3,5],[6,8]]).
X in {1}\/{4}, Y in {3}\/{6}, Z in {5}\/{8} ?

Semantic and Declarative Technologies 2024 Spring Semester 279 / 378

Declarative Programming with Constraints Global constraints

Specifying arbitrary finite relations, cntd.

A kakuro puzzle – a crossword using digits
instead of letters:
Each sequence (across or down)

contains different digits
sums to the number given as a clue

4 12 16 17
3 17

12
12 24

14
6

8 6

16
11

9
17 3

17 4

.

table/2 can be used for combining these two constraints, to make the
search more efficient:
% List L, containing integers between 1 and N, sums to Sum.
diffsum(L, N, Sum) :-

domain(L, 1, N), % all elements of L are between 1 and N
append(L, [Sum], L1),
findall(L1, (sum(L, #=, Sum), all_different(L), labeling([], L)),

Tuples),
table([L1], Tuples).

| ?- length(L, 3), diffsum(L, 9, 24).
=⇒ L = [_A,_B,_C], _A in 7..9, _B in 7..9, _C in 7..9 ?

Using diffsum, the above puzzle can be solved without labeling.

Semantic and Declarative Technologies 2024 Spring Semester 280 / 378

Declarative Programming with Constraints Global constraints

Getting an element of a list

element(X, List, Y):
Y is the X th element of List (counting from 1)
element/3 is the FD counterpart of the predicate nth1/3, library(lists)
Examples:

| ?- L=[A,B,C], domain(L, 1, 5),
B#<3, Y in 4..6,
element(X, L, Y).
=⇒ ..., X in {1}\/{3}, Y in 4..5 ?

% domain-consistent in X: only the 1st and 3rd elements belong to 4..5

| ?- L = [A,B], A in 1..2, B in 5..7,
element(X, L, Y).

=⇒ ..., X in 1..2, Y in 1..7 ?
% only bound-consistent in Y, as the exact domain is (1..2)\/(5..7)

Semantic and Declarative Technologies 2024 Spring Semester 281 / 378

Declarative Programming with Constraints Labeling

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 282 / 378

Declarative Programming with Constraints Labeling

Labeling – recap

Typical CLPFD program structure:
1 Define variables and domains
2 Post constraints (no choice points!)
3 Labeling
4 Optional post-processing

Labeling traverses the search tree – the search space of possible
variable assignments – using a depth-first strategy (cf. Prolog execution)
Labeling creates choice points (decision points), manages all the
branching and backtracking
Each decision is normally followed by propagation: constraints wake up,
perform pruning, further constraints may wake up etc.

Semantic and Declarative Technologies 2024 Spring Semester 283 / 378

Declarative Programming with Constraints Labeling

Labeling – overview

Possible aims of labeling:
Find a single solution (decide solvability)
Find all solutions
Find the best solution according to a given objective function (not
covered in detail)

In general, labeling guarantees a complete search, i.e. all solutions are
enumerated (advanced options, e.g. timeout may cause incompleteness)
A typical CLPFD program spends almost 100% of its running time in the
call to labeling =⇒ efficiency is critical
Efficiency largely depends on the main search options:

How to choose a variable to branch on
Way of splitting the domain of the chosen variable
Order of considering the possible values of the chosen variable

Semantic and Declarative Technologies 2024 Spring Semester 284 / 378

Declarative Programming with Constraints Labeling

Order of the variables to branch on

| ?- X in 1..4, Y in 1..2, XY #= 10*X+Y,
indomain(X), indomain(Y).

indomain(X) creates a choice point
enumerating all possible values for X

Y

11 12XY 21 22 31 32 41 42

X

| ?- X in 1..4, Y in 1..2, XY #= 10*X+Y,
indomain(Y), indomain(X). X

Y

11 21 31 41 12 22 32 42XY

The order of the variables can have significant impact on the number of
visited tree nodes
First-fail principle: start with the variable that has the smallest domain
Most-constrained principle: start with the variable that has the most
constraints suspended on it

Semantic and Declarative Technologies 2024 Spring Semester 285 / 378

Declarative Programming with Constraints Labeling

How to split the domain of the selected variable?

enumeration: | ?- X in 1..4,
labeling([enum], [X]).

1 2 3 4

bisection: | ?- X in 1..4,
labeling([bisect], [X]).

1 2 3 4

>2=<2

stepping: | ?- X in 1..4,
labeling([step], [X]).

43

> 1

> 2

> 3

1

2

Semantic and Declarative Technologies 2024 Spring Semester 286 / 378

Declarative Programming with Constraints Labeling

Labeling predicates

labeling(Options, VarList):
Enumerates all possible value assignments of the variables in VarList
All vars in VarList must have finite domains, otherwise an error is raised
The Options argument may contain at most one from each of the
following option categories (default values are in italics, options shown
in brown are available only in SICStus, and are not discussed in detail)

Variable selection: leftmost, min, max, ff, ffc, . . . ,
anti_first_fail, occurrence, max_regret, variable(Sel)
Type of splitting: step, enum, bisect, . . . , value(Enum)
Order of children: up, down, . . . , median, middle
Objective: satisfy, . . . , minimize(Var), maximize(Var)
Time limit: time_out(RunTimeInMSec,Result)

indomain(X): is equivalent to labeling([enum], [X]).

Semantic and Declarative Technologies 2024 Spring Semester 287 / 378

Declarative Programming with Constraints Labeling

Options for variable selection

leftmost (default) — use the order as the variables were listed
min — choose the variable with the smallest lower bound
max — choose the variable with the highest upper bound
ff — (‘first-fail’ principle): choose the variable with the smallest domain
occurrence — (‘most-constrained’ principle): choose the variable that
has the most constraints suspended on it
ffc — (combination of ‘first-fail’ and ‘most-constrained’ principles):
choose the variable with the smallest domain; if there is a tie, choose the
variable that has the most constraints suspended on it
anti_first_fail — choose the variable with the largest domain
. . .

For tie-breaking, leftmost is used

Semantic and Declarative Technologies 2024 Spring Semester 288 / 378

Declarative Programming with Constraints Labeling

Options for branching

Type of splitting:
step (default) — two-way branching according to X #= LB vs. X #\= LB,
where LB is the lower bound of the domain of X; or – if option down
applies, see below – according to X #= UB vs. X #\= UB, (upper bound)
enum — n-way braching, enumerating all n possible values of X
bisect — two way branching according to X #=< M vs. X #> M, where M
is the middle of the domain of X (M = (min(X)+max(X))//2)
. . .

Direction:
up (default) — the domain is enumerated in ascending order
down — the domain is enumerated in descending order
. . .

Semantic and Declarative Technologies 2024 Spring Semester 289 / 378

Declarative Programming with Constraints Labeling

Labeling – a simple example

Sample query:
X in 1..3, Y in 1..2, X#>=Y, labeling([min], [X,Y]).
Option min means: select the variable that has the smallest lower bound

If there is a tie, select the leftmost
No option provided for branching =⇒ defaults used (step and up)
The search tree:

X=1

X>=3

X>= 2

X=2

Y>= 2Y=1

X>=3X=2

<3,2><2,2><3,1><2,1>

X#>=Y

Y=1

<1,1>

Semantic and Declarative Technologies 2024 Spring Semester 290 / 378

Declarative Programming with Constraints Labeling

Impact on performance

Time for finding all solutions of N-queens for N = 13
(on an Intel i5-3230M 2.60GHz CPU):

Labeling options Runtime

[leftmost,step] 6.295 sec
[leftmost,enum] 5.604 sec
[leftmost,bisect] 6.281 sec
[min,step] 6.610 sec
[min,enum] 6.633 sec
[min,bisect] 12.081 sec
[ff,step] 5.134 sec
[ff,enum] 4.716 sec
[ff,bisect] 5.180 sec
[ffc,step] 5.264 sec
[ffc,enum] 4.854 sec
[ffc,bisect] 5.214 sec

Semantic and Declarative Technologies 2024 Spring Semester 291 / 378

Declarative Programming with Constraints

Class practice task

Write a constraint (predicate) according to the spec below
Partitioning a list
% partition(+L1, ?L2): L1 is a list of integers; L2 contains a subset of
% the elements of L1 (in the same order as in L1), such that the sum of
% elements in L2 is half of the sum of elements in L1.

| ?- partition([1,2,3,5,8,13], L2).
L2 = [3,13] ? ;
L2 = [3,5,8] ? ;
L2 = [1,2,13] ? ;
L2 = [1,2,5,8] ? ; no

Hint: it is helpful to use n binary variables (where n denotes the number
of elements of L1), with xi = 1 meaning that the i th element of L1 should
also be an element of L2 and xi = 0 otherwise. It is fairly easy to
formulate the constraint in terms of these variables. After labeling, do not
forget to create the desired output based on the values of the xi variables.

Semantic and Declarative Technologies 2024 Spring Semester 292 / 378

Declarative Programming with Constraints From plain Prolog to constraints

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 293 / 378

Declarative Programming with Constraints From plain Prolog to constraints

Transforming Prolog code to constraint code – an example

% pcountVT(L, N): L has N positive elements.
% Predicate naming convention:
% V = <single digit> version number
% T = p | c for plain Prolog vs. CLPFD

Step 1: ensure there is a single recursive call within the predicate

pcount0p([], 0).
pcount0p([X|Xs], N) :-

(X > 0 ->
pcount0p(Xs, N0),
N is N0+1

; pcount0p(Xs, N)
).

pcount1p([], 0).
pcount1p([X|Xs], N) :-

pcount1p(Xs, N0),
(X > 0 ->

N is N0+1
; N = N0
).

Note that the if-then-else contains arithmetic and equality BIPs only.
This is important when transforming to CLPFD.

Semantic and Declarative Technologies 2024 Spring Semester 294 / 378

Declarative Programming with Constraints From plain Prolog to constraints

Prolog to constraints – a simple example, ctd.

A scheme to convert Prolog if-then-else to CLPFD code using reification:
foo(...) :- NonrecTest.
foo(...) :-

foo(...),

(Cond -> Then
; Else
).

foo(...) :- NonrecTest#.
foo(...) :-

foo(...),
Cond# #<=> B,

B #=> Then#,
#\ B #=> Else#.

Step2: apply the above scheme to the Prolog predicate obtained in step 1:
pcount1p([], 0).
pcount1p([X|Xs], N) :-

pcount1p(Xs, N0),

(X > 0 -> N is N0+1
; N = N0
).

pcount2c([], 0).
pcount2c([X|Xs], N) :-

pcount2c(Xs, N0),
X #> 0 #<=> B,

B #=> N #= N0+1,
#\ B #=> N #= N0.

Note that pcount2c can be made tail recursive by simply reordering goals.

Semantic and Declarative Technologies 2024 Spring Semester 295 / 378

Declarative Programming with Constraints From plain Prolog to constraints

Prolog to constraints – a simple example, cont’d.

Notice that pcount2c has bad pruning behavior:

| ?- pcount2c([A,B], N).
(...) N in inf..sup ? % N could be pruned to 0..2
| ?- pcount2c([A,B], N), A #> 4.
(...) N in inf..sup ? % N could be pruned to 1..2

Exactly one LHS of these two implications is bound to be true:

B #=> N #= N0+1, % if B=1, N is 1 bigger then N0
#\ B #=> N #= N0. % if B=0, N is the same as N0

but Prolog is not aware of this. To make Prolog able to reason, replace these
two constraints by an equivalent constraint N #= N0+B.
Prolog is now aware that N is either equal to or 1 larger than variable N0!

pcount3c([], 0).
pcount3c([X|Xs], N) :-

X #> 0 #<=> B, N #= N0+B, pcount3c(Xs, N0).

| ?- pcount3c([A,B], N), A #> 4. ⇒ N in 1..2

Semantic and Declarative Technologies 2024 Spring Semester 296 / 378

Declarative Programming with Constraints From plain Prolog to constraints

Prolog to constraints – another example – X-Sums Sudoku.

Basic Sudoku rules apply. Additionally the clues outside the grid indicate the
sum of the first X numbers placed in the corresponding direction, where X is
equal to the first number placed in that direction.

This requires the following constraint:

nsum(L, N, Sum): The first N elements of list L add up to Sum.

Semantic and Declarative Technologies 2024 Spring Semester 297 / 378

Declarative Programming with Constraints From plain Prolog to constraints

The nsum constraint

We follow the same steps as for pcount
Common specification:
% nsumVT(Xs, N, Sum): The leftmost N elements of Xs add up to Sum.
First Prolog version:
nsum0p([], 0, 0).
nsum0p([X|Xs], N0, Sum0) :-

(N0 > 0 -> N1 is N0-1, Sum1 is Sum0-X, nsum0p(Xs, N1, Sum1)
; Sum0 = 0
).

We have an additional problem here: this recursion stops when N0
becomes 0. However, in the constraint version N0 may not be known yet.
Solution: we transform this code so that it always scans the whole list.
(This is an unnnecessary overhead in the Prolog version, but is needed
for the constraint version.)

Semantic and Declarative Technologies 2024 Spring Semester 298 / 378

Declarative Programming with Constraints From plain Prolog to constraints

The nsum constraint, cont’d.

Second Prolog version:
nsum1p([], 0, 0).
nsum1p([X|Xs], N0, Sum0) :-

(N0 > 0 -> N1 is N0-1, Sum1 is Sum0-X
; N1 = N0, Sum1 = Sum0
),
nsum1p(Xs, N1, Sum1).

Notice that when the counter N0 becomes 0 we keep the recursion
running, without changing the sum and the counter.
The two CLPFD versions:

nsum2c([], 0, 0).
nsum2c([X|Xs], N0, Sum0) :-

N0 #> 0 #<=> B,
B #=> N1 #= N0-1 #/\ Sum1 #= Sum0-X,
#\ B #=> N1 #= N0 #/\ Sum1 #= Sum0,
nsum2c(Xs, N1, Sum1).

nsum3c([], 0, 0).
nsum3c([X|Xs], N0, Sum0) :-

N0 #> 0 #<=> B,
N1 #= N0-B,
Sum1 #= Sum0-X*B,
nsum3c(Xs, N1, Sum1).

Semantic and Declarative Technologies 2024 Spring Semester 299 / 378

Declarative Programming with Constraints Improving efficiency

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 300 / 378

Declarative Programming with Constraints Improving efficiency

Techniques for improving efficiency of CLPFD programs

In most cases:
Avoiding choice points (other than labeling)
Finding the most appropriate labeling options

In some cases:
Reordering the variables before labeling
Introducing symmetry breaking rules to exclude equivalent solutions
Using global constraints instead of several ‘small’ constraints
Using redundant constraints for additional pruning
Using constructive disjunction and shaving to prune infeasible values
Trying alternative models of the problem

Further options (not discussed in detail):
Custom labeling heuristics
Experimenting with the possible options of library constraints
Implementing user-defined constraints with improved pruning capabilities

Semantic and Declarative Technologies 2024 Spring Semester 301 / 378

Declarative Programming with Constraints Improving efficiency

Reordering the variables before labeling

Example: in the N-queens problem, how many values can be pruned from the
domain of other variables, after instantiating a variable?

=⇒ 14 =⇒ 20

Idea: variables should be instantiated inside-out, starting from the middle

Semantic and Declarative Technologies 2024 Spring Semester 302 / 378

Declarative Programming with Constraints Improving efficiency

Reordering the variables before labeling

:- use_module(library(lists)).

% reorder_inside_out(+L1, -L2): L2 contains the same elements as L1
% but reordered inside-out, starting from the middle, going alternately
% up and down
reorder_inside_out(L1, L2) :-

length(L1,N),
Half1 is N//2, Half2 is N-Half1,
prefix_length(L1,FirstList,Half1), suffix_length(L1,SecondList,Half2),
reverse(FirstList,ReversedFirstList),
merge(ReversedFirstList,SecondList,L2).

% merge(+L1, +L2, -L3): the elements of L3 are alternately the
% elements of L1 and L2.
merge([],[],[]).
merge([X],[],[X]).
merge([],[Y],[Y]).
merge([X|L1],[Y|L2],[X,Y|L3]) :-

merge(L1,L2,L3).

Semantic and Declarative Technologies 2024 Spring Semester 303 / 378

Declarative Programming with Constraints Improving efficiency

Reordering the variables before labeling

:- use_module(library(clpfd)).

% queens_clpfd(N, Qs): Qs is a valid placement of N queens on an NxN
% chessboard.
queens_clpfd(N, Qs):-

placement(N, N, Qs),
safe(Qs),
reorder_inside_out(Qs,Qs2) ,
labeling([ffc,bisect],Qs2).

=⇒ Time in msec for finding all solutions of N-queens for N = 12 (on an
Intel i3-3110M, 2.40GHz CPU):

Without reordering With reordering

1,810 1,311

Semantic and Declarative Technologies 2024 Spring Semester 304 / 378

Declarative Programming with Constraints Improving efficiency

Symmetry breaking

Symmetry: a solution induces other – in a sense, equivalent – solutions
Symmetry breaking: narrowing the search space by eliminating some of
the equivalent solutions
Example: N-queens – mirrored solutions

Semantic and Declarative Technologies 2024 Spring Semester 305 / 378

Declarative Programming with Constraints Improving efficiency

Symmetry breaking

A simple symmetry-breaking rule for N-queens: the queen in the first row
must be in the left half of the row
Mid is (N+1)//2, Qs=[Q1|_], Q1#=<Mid
This will roughly halve the runtime
Only half of the solutions will be found
If all solutions are needed, the remaining ones must be created by
mirroring

Semantic and Declarative Technologies 2024 Spring Semester 306 / 378

Declarative Programming with Constraints Improving efficiency

Another case study: magic sequences

Definition: L = (x0, . . . , xn−1) is a magic sequence if
each xi is an integer from [0,n − 1] and
for each i = 0,1, . . . ,n − 1, the number i occurs exactly xi times in L

Examples for n = 4: (1, 2, 1, 0) and (2, 0, 2, 0)
Problem: write a CLPFD program that finds a magic sequence of a given
length, and enumerates all solutions on backtracking
% magic(+N, ?L): L is a magic sequence of length N.

Semantic and Declarative Technologies 2024 Spring Semester 307 / 378

Declarative Programming with Constraints Improving efficiency

Solution, main part

% magic(+N, ?L): L is a magic sequence of length N.
magic(N,L) :-

length(L,N),
N1 is N-1, domain(L,0,N1),
occurrences(L,0,L),
labeling([ffc],L).

% occurrences(Suffix, I, L): Suffix is the suffix of L starting at
% position I, and the magic sequence constraint holds for each element of
% Suffix.
occurrences([],_,_).
occurrences([X|Suffix],I,L) :-

exactly(I,L,X),
I1 is I+1,
occurrences(Suffix,I1,L).

% exactly(I,L,X): the number I occurs exactly X times in list L.

Semantic and Declarative Technologies 2024 Spring Semester 308 / 378

Declarative Programming with Constraints Improving efficiency

Variations for exactly/3

% exactly(I,L,X): the number I occurs exactly X times in list L.

Speculative solution (uses choice points in posting the constraints):
exactly_spec(I, [I|L], X) :- % next element is I

X#>0, X1 #= X-1, exactly_spec(I, L, X1).
exactly_spec(I, [J|L], X) :- % I is expected later

X#>0, J #\= I, exactly_spec(I, L, X).
exactly_spec(I, L, 0) :- % no I left in list

maplist(#\=(I), L).
A non-speculative solution using reification:
exactly_reif(_, [], 0).
exactly_reif(I, [J|L], X) :-

J#=I #<=> B, X#=X1+B,
exactly_reif(I, L, X1).

A non-speculative solution using a global library constraint:
exactly_glob(I, L, X) :-

count(I, L, #=, X).

Semantic and Declarative Technologies 2024 Spring Semester 309 / 378

Declarative Programming with Constraints Improving efficiency

Evaluation

Time for all solutions in msec (on an Intel i3-3110M, 2.40GHz CPU):

N Speculative Reification Global

6 0 0 0
7 31 0 0
8 93 0 0
9 344 0 0

10 1,669 0 0
11 8,767 0 0
12 49,109 0 0
13 293,594 15 16

20 94 31
25 203 47
30 422 93
35 843 234
40 1,716 405

Semantic and Declarative Technologies 2024 Spring Semester 310 / 378

Declarative Programming with Constraints Improving efficiency

Redundant constraints

Proposition 1: If L = (x0, . . . , xn−1) is a magic sequence, then

n−1∑

i=0

xi = n

Implementation using CLPFD:
sum(L, #=, N)
Proposition 2: If L = (x0, . . . , xn−1) is a magic sequence, then

n−1∑

i=0

i · xi = n

Implementation using CLPFD (using also library(between)):
N1 is N-1,
numlist(0, N1, Coeffs), % Coeffs = [0,1,...,N1]
scalar_product(Coeffs, L, #=, N)

Semantic and Declarative Technologies 2024 Spring Semester 311 / 378

Declarative Programming with Constraints Improving efficiency

The effect of redundant constraints on the global approach

Time for all solutions in msec (on an Intel i3-3110M, 2.40GHz CPU):

N None Proposition 1 Proposition 2 Proposition 1 + 2

40 405 15 15 16
50 874 78 31 31
60 2,372 109 47 31
70 3,885 202 63 47
80 8,081 390 140 109
90 12,589 499 172 140

100 19,438 686 187 109
120 42,151 1,279 296 203
140 73,273 2,324 546 313

200 11,058 2,044 1,466
250 21,223 2,871 2,043
300 37,287 4,931 3,182

Semantic and Declarative Technologies 2024 Spring Semester 312 / 378

Declarative Programming with Constraints Internal details of CLPFD

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 313 / 378

Declarative Programming with Constraints Internal details of CLPFD

FD variable internals – reflection predicates

(The slides in this section are specific to SICStus Prolog)
CLPFD stores for each finite domain (FD) variable:

the size of the domain
the lower bound of the domain
the upper bound of the domain
the domain as an FD-set (internal representation format)

The above pieces of information can be obtained (in constant time) using
fd_size(X, Size): Size is the size (number of elements) of the
domain of X (integer or sup).
fd_min(X, Min): Min is the lower bound of X’s domain;
Min can be an integer or the atom inf
fd_max(X, Max): Max is the upper bound of X’s domain (integer or sup).
fd_set(X, Set): Set is the domain of X in FD-set format
fd_degree(X, D): D is the number of constraints attached to X

Further reflection predicate
fd_dom(X, Range): Range is the domain of X in ConstRange format
(the format accepted by the constraint Y in ConstRange)

Semantic and Declarative Technologies 2024 Spring Semester 314 / 378

Declarative Programming with Constraints Internal details of CLPFD

FD reflection predicates – examples

| ?- X in (1..5)\/{9}, fd_min(X, Min), fd_max(X, Max),
fd_size(X, Size).

Min = 1, Max = 9, Size = 6, X in(1..5)\/{9} ?

| ?- X in (1..9)/\ \(6..8), fd_dom(X, Dom), fd_set(X, Set).
Dom = (1..5)\/{9}, Set = [[1|5],[9|9]], X in ... ?

To illustrate fd_degree here is a variant of N-queens without labeling:

% queens_nolab(N, Qs): Qs is a valid placement of N queens on
% an NxN chessboard. queens_nolab/2 does not perform labeling.
queens_nolab(N, Qs):-

length(Qs, N), domain(Qs, 1, N), safe(Qs).

| ?- queens_nolab(8, [X|_]), fd_degree(X, Deg).
Deg = 21, X in 1..8 ? % 21 = 7*3

Semantic and Declarative Technologies 2024 Spring Semester 315 / 378

Declarative Programming with Constraints Internal details of CLPFD

FD variable internals

ConstRange vs. FD-set format
| ?- X in 1..9, X#\=5, fd_dom(X,R), fd_set(X,S).

⇒ R = (1..4)\/(6..9), S = [[1|4],[6|9]]

FD-set is an internal format; user code should not make any assumptions
about it – use access predicates instead, see next slide
When do we need access to data associated with FD variables?

when implementing a user-defined labeling procedure
when implementing a user-defined constraint
for other special techniques, such as constructive disjunction or
shaving

To perform the above tasks efficiently, we need predicates for processing
FD-sets

Semantic and Declarative Technologies 2024 Spring Semester 316 / 378

Declarative Programming with Constraints Internal details of CLPFD

Manipulating FD-sets

Some of the many useful operations:
is_fdset(Set): Set is a proper FD-set.
empty_fdset(Set): Set is an empty FD-set.
fdset_parts(Set, Min, Max, Rest): Set consists of an initial interval
Min..Max and a remaining FD-set Rest.
fdset_interval(Set, Min, Max): Set represents the interval Min..Max.
fdset_union(Set1, Set2, Union): The union of Set1 and Set2 is Union.
fdset_union(Sets, Union): The union of the list of FD-sets Sets is Union.
fdset_intersection/[2,3]: analogous to fdset_union/[2,3]
fdset_complement(Set1, Set2): Set2 is the complement of Set1.
list_to_fdset(List, Set), fdset_to_list(Set, List): conversions
between FD-sets and lists
X in_set Set: Similar to X in Range but for FD-sets

Blue preds work back and forth, e.g. fdset_parts(+,-,-,-) decomposes an
FD-set, while fdset_parts(-,+,+,+) builds an FD-set,

Semantic and Declarative Technologies 2024 Spring Semester 317 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 318 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

Handling disjunctions

Example: scheduling two tasks, both take 5 units of time
intervals [x , x + 5) and [y , y + 5) are disjoint
(x + 5 ≤ y) ∨ (y + 5 ≤ x)

Reification-based solution
| ?- domain([X,Y], 0, 6), X+5 #=< Y #\/ Y+5 #=< X.

⇒ X in 0..6, Y in 0..6 no pruning

Speculative solution
| ?- domain([X,Y], 0, 6), (X+5 #=< Y ; Y+5 #=< X).

⇒ X in 0..1, Y in 5..6 ? ;
⇒ X in 5..6, Y in 0..1 ? ; no

max. pruning, but choice points created

A solution using domain-consistent arithmetic:
| ?- domain([X,Y], 0, 6),
scalar_product([1,-1],[X,Y],#=,D,[consistency(domain)]),
abs(D) #>= 5.
⇒ X in (0..1)\/(5..6), Y in (0..1)\/(5..6) ? max. pruning

Semantic and Declarative Technologies 2024 Spring Semester 319 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

Bent triples (Y-wings) – a sudoku solving technique

Consider the following sudoku solution state, using pencilmarks
(pencilmarks correspond to CLPFD variable domains)

The three framed cells form a bent triple or Y-wing.
The blue cell in r3c3 (call it X) has two possible values: 7 and 8.
What happens to the orange cell in r1c6 (call it Z) if X gets instantiated?

If X=7 r1c3 becomes 6 and so 6 gets removed from the cell Z
If X=8 r3c6 becomes 6 and so 6 gets removed from the cell Z

Either way Z cannot be 6, so we can remove 6 from Z
Can 6 be removed from r1c5? And from r2c6?
This type of reasoning is called constructive disjunction.

Semantic and Declarative Technologies 2024 Spring Semester 320 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

Constructive disjunction (CD)

Constructive disjunction is a case-based reasoning technique
Assume a disjunction C1 ∨ . . . ∨ Cn

Let D(X ,S) denote the domain of X in store S
The idea of constructive disjunction:

For each i , let Si be the store obtained by executing Ci in S
Proceed with store SU , the union of Si , i.e. for all X ,
D(X ,SU) = ∪iD(X ,Si)

Algorithmically:
For each i :

post Ci
save the new domains of the variables
undo Ci

Narrow the domain of each variable to the union of its saved domains

Semantic and Declarative Technologies 2024 Spring Semester 321 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

Implementing constructive disjunction (CD)

Computing the CD of a list of constraints Cs w.r.t. a single variable Var:
cdisj(Cs, Var) :-

findall(S, (member(C,Cs),C,fd_set(Var,S)), Doms),
fdset_union(Doms,Set),
Var in_set Set.

Example:
| ?- domain([X,Y],0,6), cdisj([X+5#=<Y,Y+5#=<X], X).

⇒ X in(0..1)\/(5..6), Y in 0..6 ?
Note that CD is not a constraint, but a one-off pruning technique.

Semantic and Declarative Technologies 2024 Spring Semester 322 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

Shaving – a special case of constructive disjunction

Basic idea: “What if” X = v? (. . . and hope for failure). If executing X = v
causes failure (without any labeling) =⇒ X ̸= v , otherwise do nothing.
Shaving an integer V off the domain of X:
shave_value(X, V) :- (\+ (X = V) -> X #\= V

; true
).

Shaving all values in X ’s domain {v1, . . . , vn} is the same as performing
a constructive disjunction for (X = v1) ∨ . . . ∨ (X = vn) w.r.t. X
shave_values0(X) :-

fd_set(X, FD), fdset_to_list(FD, L),
maplist(shave_value(X), L).
% i.e., if L = [A,B,...] this is equivalent to:
% shave_value(X, A), shave_value(X, B), ...

A (slightly more efficient) variant using findall:
shave(X) :- fd_set(X, FD),

findall(V, (fdset_member(V,FD), X=V), Vs),
list_to_fdset(Vs, FD1), X in_set FD1.

Semantic and Declarative Technologies 2024 Spring Semester 323 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

An example for shaving, from a kakuro puzzle

Recall the kakuro puzzle: like a crossword, but with distinct digits 1–9
instead of letters; sums of digits are given as clues.
% L is a list of N distinct digits 1..9 with sum Sum.
kakuro(N, L, Sum) :-

length(L, N), domain(L, 1, 9), all_distinct(L), sum(L,#=,Sum).
Example: a 4 letter “word” [A,B,C,D], the sum is 23, domains:
sample_domains(L) :- L = [A,_,C,D], A in {5,9}, C in {6,8,9}, D=4.
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L).

⇒ A in {5}\/{9}, B in (1..3)\/(5..8), C in {6}\/(8..9) ?
Only variable B gets pruned:

value 4 is removed by all_distinct
value 9 is removed by sum

Semantic and Declarative Technologies 2024 Spring Semester 324 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

An example for shaving, from a kakuro puzzle

Recall from prev. slide:
sample_domains(L) :- L = [A,_,C,D], A in {5,9}, C in {6,8,9}, D=4.

| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L).
⇒ A in{5}\/{9}, B in(1..3)\/(5..8), C in{6}\/(8..9) ?

Shaving 9 off C shows that the value 9 for C is infeasible:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L), shave_value(9,C).
⇒ A in{5}\/{9}, B in(2..3)\/(5..8), C in{6}\/{8}} ?

Shaving the whole domain of B leaves just three values:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L), shave(B).
⇒ A in{5}\/{9}, B in{2}\/{6}\/{8}, C in{6}\/(8..9) ?

These two shaving operations happen to achieve domain consistency:
| ?- kakuro(4, L, 23), sample_domains(L), labeling([], L).

⇒ L = [5,6,8,4] ? ;
L = [5,8,6,4] ? ;
L = [9,2,8,4] ? ; no

Semantic and Declarative Technologies 2024 Spring Semester 325 / 378

Declarative Programming with Constraints Disjunctions in CLPFD

When to perform shaving?

It’s often enough to do it just once, before labeling
Recall that labeling is performed for each variable, in a loop
It may be useful to do shaving in each such loop cycle

do your own loop, e.g. use indomain/1 instead of labeling/2
use the value(Goal) labeling option (not discussed in this course)

To make shaving efficient one may consider
shaving a single variable repeatedly, until a fixpoint is reached
(may not pay off)
limit it to variables with small enough domain (e.g. of size 2)
perform it only after every nth labeling step

Semantic and Declarative Technologies 2024 Spring Semester 326 / 378

Declarative Programming with Constraints Modeling

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 327 / 378

Declarative Programming with Constraints Modeling

Example: the domino puzzle

See e.g. http://www.puzzle-dominosa.com/
https://www.chiark.greenend.org.uk/˜sgtatham/puzzles/js/dominosa...

Rectangle of size (n + 1)× (n + 2)
A full set of n-dominoes: tiles marked with {⟨ i , j ⟩ | 0 ≤ i ≤ j ≤ n}
By using each domino exactly once, the rectangle can be covered with no
overlaps and no holes
Input: a rectangle filled with integers 0..n (domino boundaries removed)
Task: reconstruct the domino boundaries

% A puzzle (n=3): % The (only) solution:

1 3 0 1 2 | 1 | 3 0 | 1 | 2 |
| |-------| | |

3 2 0 1 3 | 3 | 2 0 | 1 | 3 |
|---------------|---|

3 3 0 0 1 | 3 3 | 0 0 | 1 |
|-------|-------| |

2 2 1 2 0 | 2 2 | 1 2 | 0 |

Semantic and Declarative Technologies 2024 Spring Semester 328 / 378

Declarative Programming with Constraints Modeling

Modeling – selecting the variables

Option 1: A matrix of solution variables, each having a value which
encodes n, w, s, e

non-trivial to ensure that each domino is used exactly once
Option 2: For each domino in the set have variable(s) pointing to its place
on the board

difficult to describe the non-overlap constraint
Option 3: Use both sets of variables, with constraints linking them

high number of variables and constraints add considerable overhead
Option 4: Map each gap between – horizontally or vertically – adjacent
numbers to a 0/1 variable, where 1 means the mid-line of a domino

this is the chosen solution

Semantic and Declarative Technologies 2024 Spring Semester 329 / 378

Declarative Programming with Constraints Modeling

Modeling – constraints for option 4

Let Syx and Eyx be the variables for the southern and eastern boundaries
of the matrix element in row y, column x.
Non-overlap constraint: the four boundaries of a matrix element sum up
to 1. E.g. for the element in row 2, column 4 (see blue diamonds below):
sum([S14,E23,S24,E24], #=, 1)
All dominoes used exactly once: of all the possible placements of each
domino, exactly one is used. E.g. for domino ⟨0,2 ⟩ (see red asterisks):
sum([E22,S34,E44], #=, 1)

1 3 0 1 2
⋄

3 2 * 0 ⋄ 1 ⋄ 3
⋄

3 3 0 0 1
*

2 2 1 2 * 0

Semantic and Declarative Technologies 2024 Spring Semester 330 / 378

Declarative Programming with Constraints Modeling

Example for option 4

Case of n = 1:

% Non-overlap constraint
E11 + S11 #= 1 % 1st row
E12 + S12 + E11 #= 1
S13 + E12 #= 1
S11 + E21 #= 1 % 2nd row
S12 + E22 + E21 #= 1
S13 + E22 #= 1

% Domino occurrence constraint
S11 + S12 + S13 + E12 + E22 #= 1 % 0-1 pairs
E11 #= 1 % 0-0 pairs
E21 #= 1 % 1-1 pairs

Semantic and Declarative Technologies 2024 Spring Semester 331 / 378

Declarative Programming with Constraints User-defined constraints (ADVANCED)

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 332 / 378

Declarative Programming with Constraints User-defined constraints (ADVANCED)

User-defined constraints (ADVANCED)

What should be specified when defining a new constraint:
Activation conditions: when should it wake up
Pruning: how should it prune the domains of its variables
Termination conditions: when should it exit

Additional issues for reifiable constraints:
How should its negation be posted?
How to determine whether it is entailed by the store?
How to determine whether its negation is entailed by the store?

Semantic and Declarative Technologies 2024 Spring Semester 333 / 378

Declarative Programming with Constraints User-defined constraints (ADVANCED)

Two possibilities for defining new constraints (ADVANCED)

FD predicates Global constraints

Number of arguments Fixed Arbitrary (lists of vari-
ables as arguments)

Specification of prun-
ing logic

Using indexicals, a set-
valued functional lan-
guage

In Prolog

Specification of acti-
vation and termination
conditions

Deduced automatically
from the indexicals

In Prolog

Support for reification Yes, using further in-
dexicals

No

Semantic and Declarative Technologies 2024 Spring Semester 334 / 378

Declarative Programming with Constraints User-defined constraints (ADVANCED)

FD predicates – a simple example (ADVANCED)

An FD predicate ’x=<y’(X,Y), implementing the constraint X #=< Y
FD clause with neck “+:” – pruning rules for the constraint itself:
’x=<y’(X,Y) +:

X in inf..max(Y), % intersect X with inf..max(Y)
Y in min(X)..sup. % intersect Y with min(X)..sup

FD clause with neck “-:” – pruning rules for the negated constraint:
’x=<y’(X,Y) -:

X in (min(Y)+1)..sup,
Y in inf..(max(X)-1).

FD clause with neck “+?” – the entailment condition:
’x=<y’(X,Y) +? % X=<Y is entailed if the domain of X

X in inf..min(Y). % becomes a subset of inf..min(Y)
FD clause with neck “-?” – the entailment condition for the negation:
’x=<y’(X,Y) -? % Negation X > Y is entailed when X’s

X in (max(Y)+1)..sup. % domain is a subset of (max(Y)+1)..sup

Semantic and Declarative Technologies 2024 Spring Semester 335 / 378

Declarative Programming with Constraints User-defined constraints (ADVANCED)

Defining global constraints (ADVANCED)

The constraint is written as two pieces of Prolog code:
1 The start-up code

an ordinary predicate with arbitrary arguments
should call fd_global/3 to set up the constraint

2 The wake-up code
written as a clause of the hook predicate dispatch_global/4
called by SICStus at activation
should return the domain prunings
should decide the outcome:

constraint exits with success
constraint exits with failure
constraint goes back to sleep (the default)

Semantic and Declarative Technologies 2024 Spring Semester 336 / 378

Declarative Programming with Constraints User-defined constraints (ADVANCED)

Global constraints – a simple example (ADVANCED)

Defining the constraint X #=< Y as a global constraint
1 The start-up code

lseq(X, Y) :-
fd_global(lseq(X,Y), void, [min(X),max(Y)]).
% ^^^^^^^^^ constraint name
% ^^^^ initial state
% ^^^^^^^^^^^^^^^ wake-up conditions

2 The wake-up code
:- multifile clpfd:dispatch_global/4.
:- discontiguous clpfd:dispatch_global/4.
clpfd:dispatch_global(lseq(X,Y), St, St, Actions) :-

fd_min(X, MinX), fd_max(X, MaxX), % get min of X in MinX, etc.
fd_min(Y, MinY), fd_max(Y, MaxY),
(number(MaxX), number(MinY), MaxX =< MinY
-> Actions = [exit]
; Actions = [X in inf..MaxY,Y in MinX..sup]
).

Semantic and Declarative Technologies 2024 Spring Semester 337 / 378

Declarative Programming with Constraints User-defined constraints (ADVANCED)

The start-up predicate fd_global/3 (ADVANCED)

fd_global(Constraint, State, Susp): start up constraint Constraint with
initial state State and wake-up conditions Susp.

Constraint is normally the same as the head of the start-up predicate
State can be an arbitrary non-variable term
Susp is a list of terms of the form:

dom(X) – wake up at any change of domain of variable X
min(X) – wake up when the lower bound of X changes
max(X) – wake up when the upper bound of X changes
minmax(X) – wake up when the lower or upper bound of X
changes
val(X) – wake up when X is instantiated

Semantic and Declarative Technologies 2024 Spring Semester 338 / 378

Declarative Programming with Constraints User-defined constraints (ADVANCED)

The wake-up hook predicate dispatch_global/4 (ADVANCED)

dispatch_global(Constraint, State0, State, Actions): When Constraint
is woken up at state State0 it goes to state State and executes Actions

Actions is a list of terms of the form:
exit – the constraint will exit with success
fail – the constraint will exit with failure
X=V, X in R, X in_set S – the given pruning will be performed
call(Module:Goal) – the given goal will be executed

No pruning should be done inside dispatch_global, instead the pruning
requests should be returned in Actions
States can be used to share information between invocations of the
constraint
Information about the domain variables can be queried using reflection
predicates

Semantic and Declarative Technologies 2024 Spring Semester 339 / 378

Declarative Programming with Constraints Some further global constraints (ADVANCED)

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 340 / 378

Declarative Programming with Constraints Some further global constraints (ADVANCED)

Specifying a relation using a DAG (ADVANCED)

case(Template, Tuples, Dag[, Options]): uses a directed acycylic graph
(DAG), the nodes of which correspond to variables in the same order as
they appear in Template and arcs are labeled with admissible intervals of
the variable of the arc’s starting node. For each tuple in Tuples, there
must be an appropriate path from the root node to a leaf node.
Example: A is in [1,6], B is in [0,1]; if dividing A by 3 gives remainder 1,
then B is even, otherwise B is odd.
?- case([X,Y],[[A,B]],[node(0,X,[(1..1)-1,(2..3)-2,(4..4)-1,(5..6)-2]),

node(1,Y,[0..0]),node(2,Y,[1..1])]),
labeling([],[A,B]),write(A-B),write(’ ’),fail.

=⇒ 1-0 2-1 3-1 4-0 5-1 6-1

1..1

4..4

2..3

5..6

0:X

1:Y

2:Y

0..0

1..1

Semantic and Declarative Technologies 2024 Spring Semester 341 / 378

Declarative Programming with Constraints Some further global constraints (ADVANCED)

Specifying a relation using an automaton (ADVANCED)

automaton(Signature, SourcesSinks, Arcs): SourcesSinks and Arcs define
a finite automaton that classifies ground instances as solutions or
non-solutions. The constraint holds if the automaton accepts the list
Signature.
Example: the first few elements (at least one) of L must be all 1, the
remaining elements (at least one) must be all 2.
| ?- length(L,4), automaton(L,[source(s0),sink(s2)],

[arc(s0,1,s1),arc(s1,1,s1),arc(s1,2,s2),arc(s2,2,s2)]),
labeling([],L).

L = [1,1,1,2] ? ;
L = [1,1,2,2] ? ;
L = [1,2,2,2] ? ;
no

s0 s1 s2
1

1

2

2

Semantic and Declarative Technologies 2024 Spring Semester 342 / 378

Declarative Programming with Constraints Closing remarks

Contents

4 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Internal details of CLPFD
Disjunctions in CLPFD
Modeling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Semantic and Declarative Technologies 2024 Spring Semester 343 / 378

Declarative Programming with Constraints Closing remarks

What else is there in SICStus Prolog?

Further constraint libraries:
CLPB – booleans
CLPQ/CLPR – linear inequalities on rationals/reals
Constraint Handling Rules: generic constraints

Other features
“Traditional” built-in predicates, e.g. sorting, input/output, exception
handling, etc.
Powerful data structures, e.g. AVL trees, multisets, heaps, graphs,
etc.
Definite clause grammars, an extension of context-free grammars
with Prolog terms
Interfaces to other programming languages, e.g. C/C++, Java, .NET,
Tcl/Tk
Integrated development environment based on Eclipse (Spider)
Execution profiling
...

Semantic and Declarative Technologies 2024 Spring Semester 344 / 378

Declarative Programming with Constraints Closing remarks

Some applications of (constraint) logic programming

Boeing Corp.: Connector Assembly Specifications Expert (CASEy) – an
expert system that guides shop floor personnel in the correct usage of
electrical process specifications.
Windows NT: \WINNT\SYSTEM32\NETCFG.DLL contains a small Prolog
interpreter handling the rules for network configuration.
Experian (one of the largest credit rating companies): Prolog for checking
credit scores. Experian bought Prologia, the Marseille Prolog company.
IBM bought ILOG, the developer of many constraint algorithms (e.g. that
in all_distinct); ILOG develops a constraint programming / optimization
framework embedded in C++.
IBM uses Prolog in the Watson deep Question-Answer system for parsing
and matching English text

Semantic and Declarative Technologies 2024 Spring Semester 345 / 378

