
Semantic and Declarative Technologies

László Kabódi, Péter Tóth, Péter Szeredi

kabodil@gmail.com
peter@toth.dev

szeredi@cs.bme.hu

Aquincum Institute of Technology

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

2024 Spring Semester

Revision 3503M | Generated: 2024. ápr. 23., kedd, 23:48:05 CEST

Course information

Course layout
Introduction to Logic Weeks 1–2
Declarative Programming

Prolog – Programming in Logic Weeks 3–7
Constraint Programming Weeks 8–12

Semantic Technologies
Logics for the Semantic Web Weeks 13–14

Requirements
2 assignments (150 points each) 300 points
2 tests (mid-term and final, 200 points each) 400 points total
many small exercises + class activity 300 points total

Course webpage: http://cs.bme.hu/~szeredi/ait
Course rules: http://cs.bme.hu/~szeredi/ait/course-rules.pdf

(AIT) Semantic and Declarative Technologies 2024 Spring Semester 2 / 378

Part I

Course overview

1 Course overview

2 Introduction to Logic

3 Declarative Programming with Prolog

4 Declarative Programming with Constraints

5 The Semantic Web

Course overview

Part I – practical mathematical logic

Propositional Logic
Basic Boolean functions (bitwise ops in C, Python, etc.)

and: ∧ (&)
or: ∨ (|)
not: ¬ (~)
implies: → A→ B (A implies B) is the same as (¬A ∨ B)

The puzzle below is cited from “What Is The Name Of This Book?” by
Raymond M. Smullyan, chapter “From the cases of Inspector Craig”
Puzzles in this chapter involve suspects of a crime, named A, B, etc.
Some of them are guilty, some innocent.
Example:
An enormous amount of loot had been stolen from a store. The criminal (or criminals)
took the heist away in a car. Three well-known criminals A, B, C were brought to
Scotland Yard for questioning. The following facts were ascertained:

1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Is A innocent or guilty?
Semantic and Declarative Technologies 2024 Spring Semester 4 / 378



Course overview

Inspector Craig puzzle – transforming to formal logic

Let’s recall the facts
1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Transform each statement into a formula involving the letters A, B, C as
atomic propositions. Proposition A stands for “A is guilty”, etc.

1 A is guilty or B is guilty or C is guilty: A ∨ B ∨ C
2 If C is guilty then A is guilty: C → A
3 It cannot be the case that only B is guilty: B → (A ∨ C)

Transform each propositional formula into conjunctive normal form (CNF),
then show the clauses in simplified form:

Original formula CNF Simplified clausal form
1 A ∨ B ∨ C A ∨ B ∨ C +A +B +C.
2 C → A ¬C ∨ A -C +A.
3 B → (A ∨ C) ¬B ∨ A ∨ C -B +A +C.

A clause is a set of signed atomic propositions, called literals
Semantic and Declarative Technologies 2024 Spring Semester 5 / 378

Course overview

Inspector Craig puzzle – resolution proof

Collect the clauses, giving each a reference number:
(1) +A +B +C. Only A, B, C was involved in the robbery.
(2) -C +A. C never works without A as an accomplice.
(3) -B +A +C. B does not know how to drive.

A resolution step requires two input clauses which have opposite literals
e.g. literal 3 of clause (1) is +C while lit 1 of clause (2) is -C
The resolution step creates a new clause, called the resolvent, by taking
the union of the literals in the inputs and removing the opposite literals
e.g. resolving (1) lit 3 with (2) lit 1 results in +A +B
The resolvent follows from (is a consequence of) the input clauses, as
(U ∨ V ) ∧ (¬U ∨W )→ (V ∨W ) always holds (is a tautology)
A sample resolution proof:

resolve (1) lit 2 with (3) lit 1 resulting in (4)
(4) +A +C. resolve (4) lit 2 with (2) lit 1 resulting in (5)
(5) +A.
We deduced that A is true, so the solution of the puzzle is: A is guilty

Semantic and Declarative Technologies 2024 Spring Semester 6 / 378

Course overview

Clauses in First Order Logic (FOL)

Example: There is an island where some people are optimistic (opt)
The following statements hold on this island:

1 Someone having an opt parent is bound to be opt.
2 Someone having a non-opt friend is also bound to be opt.
3 Susan’s mother has Susan’s father as a friend.

To formalize this in FOL we introduce some task-specific symbols:
X has a parent Y −→ hasP(X ,Y ); X has a friend Y −→ hasF(X ,Y )
X is opt −→ opt(X ); s, f, m stand for Susan, her father and her mother, resp.

The FOL form and the clausal form of the above statements:
1 For all X and Y , X is opt if X has a parent Y and Y is opt:
∀X ,Y .(opt(X )← hasP(X ,Y ) ∧ opt(Y ))

+opt(X) -hasP(X,Y) -opt(Y).
2 For all X and Y , X is opt if X has a friend Y and Y is not opt:
∀X ,Y .(opt(X )← hasF(X ,Y ) ∧ ¬opt(Y ))

+opt(X) -hasF(X,Y) +opt(Y).
3 hasP(s, m) hasP(s, f) hasF(m, f)

+hasP(s,m). +hasP(s,f). +hasF(m,f).
We will also learn FOL resolution, on which Prolog execution is based

Semantic and Declarative Technologies 2024 Spring Semester 7 / 378

Course overview

Part II – Prolog

Example 1: checking if an integer is a prime
A Prolog program consists of predicates (functions returning a Boolean)
Let’s write a predicate, which is true if and only if the argument is a prime
Programming by specification: first describe when the predicate is true,
then transform the decription to Prolog code

prime(P) :- % P is a prime if
integer(P), P > 1, % P is an integer and P > 1 and
P1 is P-1, % P1 = P-1 and
\+ ( % it is not the case that

% (there exists an integer I such that)
between(2, P1, I), % 2 =< I =< P1 and
P mod I =:= 0 % P is divisible by I

). %

Are you convinced of the correctness of the code? :-)

Semantic and Declarative Technologies 2024 Spring Semester 8 / 378



Course overview

Example 2: append - multiple uses of a single predicate

app(L1, L2, L3) is true if L3 is the concatenation of L1 and L2.

app([], L, L). % appending an empty list with L gives L.
app([H|L1], L2, [H|L3]) :- % appending a list composed of

% head H and tail L1 with a list L2
% gives a list with head H and tail L3 if

app(L1, L2, L3). % appending L1 and L2 gives L3.

app can be used, for example,
to check whether the relation holds:
| ?- app([1,2], [3,4], [1,2,3,4]). yes
to append two lists:
| ?- app([1,2], [3,4], L). L = [1,2,3,4] ? ; no
to split a list into two:
| ?- app(L1, L2, [1,2,3]). L1 = [], L2 = [1,2,3] ? ;

L1 = [1], L2 = [2,3] ? ;
L1 = [1,2], L2 = [3] ? ;
L1 = [1,2,3], L2 = [] ? ; no

The above app predicate is available as the built-in append/3
Semantic and Declarative Technologies 2024 Spring Semester 9 / 378

Course overview

Example 3: Countdown

Given the list of numbers Is and the target number T, obtain a solution E

countdown(Is, T, E) :- % E is a solution of the task
% with ints Is and target T if

subseq(Is, Is1, _), % Is has a subsequence Is1 and
permutation(Is1, Is2), % Is1 has a permutation Is2 and
expr_leaves(E, Is2), % E is a formula with

% list of leaves Is2 and
E =:= T. % E evaluates to T.

subseq/3 and permutation/2 are available from the lists library
The third argument of subseq/3 contains the remaining elements from
the first argument. Using _ there means we do not care about that list.
We only have to write expr_leaves/2

Semantic and Declarative Technologies 2024 Spring Semester 10 / 378

Course overview

Countdown – expr_leaves/2

We need expr_leaves/2 to generate the valid expressions in a tree form:

expr_leaves(E, Is) :- % E is a valid formula with
% list of leaves Is if

append(LIs, RIs, Is), % Is is the concatenation of
% LIs and RIs and

LIs \== [], % LIs is not an empty list and
RIs \== [], % RIs is not an empty list and
expr_leaves(LE, LIs), % LE is a formula with leaves LIs and
expr_leaves(RE, RIs), % RE is a formula with leaves RIs and
build_expr(LE, RE, E). % combining LE and RE may yield E.

expr_leaves(I, [I]) :- % I is a valid formula with
% list of leaves [I] if

integer(I). % I is an integer.

Semantic and Declarative Technologies 2024 Spring Semester 11 / 378

Course overview

Countdown – build_expr/3

We still need build_expr/3 to define the operations we can use:

build_expr(X, Y, X+Y). % combining exprs X and Y may yield X+Y.
build_expr(X, Y, X*Y). % combining exprs X and Y may yield X*Y.
build_expr(X, Y, X-Y) :- % combining exprs X and Y may yield X-Y if

X > Y. % X > Y.
build_expr(X, Y, X/Y) :- % combining exprs X and Y may yield X/Y if

X mod Y =:= 0. % X divided by Y gives a 0 remainder.

This program may give the same (or equivalent) solution several times
because of the commutativity and associativity of the operators

Semantic and Declarative Technologies 2024 Spring Semester 12 / 378



Course overview

Part III – Constraint technology

Example 4: a cryptarithmetic puzzle in Prolog
Solve SEND+MORE=MONEY, where the letters represent different digits, and
there are no leading zeroes
We are using the permutation technique from the countdown example to
make sure that the letters represents different numbers

sendmoney([S,E,N,D,M,O,R,Y]) :-
subseq([0,1,2,3,4,5,6,7,8,9],L,_),
permutation(L,[S,E,N,D,M,O,R,Y]),
S > 0, M > 0,
1000*S+100*E+10*N+D + 1000*M+100*O+10*R+E

=:= 10000*M+1000*O+100*N+10*E+Y.

This works, but is very slow
However, we can use constraints to speed up the process

Semantic and Declarative Technologies 2024 Spring Semester 13 / 378

Course overview

SEND MORE MONEY – Prolog and CLPFD solutions

Prolog: generate and test (check)

send0(SEND, MORE, MONEY) :-
Ds = [S,E,N,D,M,O,R,Y],
subseq([0,1,2,3,4,5,6,7,8,9],L,_),
permutation(L,[S,E,N,D,M,O,R,Y]),
S =\= 0, M =\= 0,
SEND is 1000*S+100*E+10*N+D,
MORE is 1000*M+100*O+10*R+E,
MONEY is
10000*M+1000*O+100*N+10*E+Y,
SEND+MORE =:= MONEY.

CLPFD: test (constrain) and generate

:- use_module(library(clpfd)).
send_clpfd(SEND, MORE, MONEY) :-

Ds = [S,E,N,D,M,O,R,Y],
domain(Ds, 0, 9),
all_different(Ds),
S #\= 0, M #\= 0,
SEND #= 1000*S+100*E+10*N+D,
MORE #= 1000*M+100*O+10*R+E,
MONEY #=
10000*M+1000*O+100*N+10*E+Y,
SEND+MORE #= MONEY,
labeling([], Ds).

How does it work?

Variables have domains.

Constraints can prune domains or
cause failure.

Semantic and Declarative Technologies 2024 Spring Semester 14 / 378

Course overview

Part IV – Semantic Web

The main goal of the Semantic Web (SW) approach:
make the information on the web processable by computers
machines should be able to understand the web, not only read it

Achieving the vision of the Semantic Web
Adding (computer processable) meta-information to the web
Formalizing background knowledge – building so called ontologies
Developing reasoning algorithms and tools

The Semantic Web layer cake – Tim Berners-Lee

Semantic and Declarative Technologies 2024 Spring Semester 15 / 378

Course overview

Making Susan Optimistic using OWL and Protégé

Recall a statement from the Susan example discussed earlier
English: Someone having an opt parent is bound to be opt.
FOL: ∀X ,Y .(opt(X )← hasP(X ,Y ) ∧ opt(Y ))
clausal form: +opt(X) -hasP(X,Y) -opt(Y).
OWL (Web Ontology Language): hasParent some Opt SubClassOf Opt

(The set of those having some parents who are Opt is a subset of Opt)

OWL (Web Ontology Language) repre-
sents a subset of FOL: e.g. predicates
can have one or two arguments only,
but efficient reasoners are available for
this subset
Protégé is a free, open source ontology
editor and knowledge-base framework:

Semantic and Declarative Technologies 2024 Spring Semester 16 / 378


