
The Semantic Web Introducing Semantic Technologies

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 346 / 414

The Semantic Web Introducing Semantic Technologies

Semantic Technologies

Semantics = meaning
Semantic Technologies = technologies building on (formalized) meaning
Declarative Programming as a semantic technology

A procedure definition describes its intended meaning
e.g. intersect(L1, L2) :- member(X, L1), member(X, L2).
Lists L1 and L2 intersect
if there exists an X, which is a member of both L1 and L2.

The execution of a program can be viewed as a process of deduction
The main goal of the Semantic Web (SW) approach:

make the information on the web processable by computers
machines should be able to understand the web, not only read it

Achieving the vision of the Semantic Web
Add (computer processable) meta-information to the web
Formalize background knowledge – build so called ontologies
Develop reasoning algorithms and tools

Semantic and Declarative Technologies 2024 Fall Semester 347 / 414

The Semantic Web Introducing Semantic Technologies

The vision of the Semantic Web

The Semantic Web layer cake – Tim Berners-Lee

Semantic and Declarative Technologies 2024 Fall Semester 348 / 414

The Semantic Web Introducing Semantic Technologies

The Semantic Web

The goal: making the information on the web processable by computers
Achieving the vision of the Semantic Web

Add meta-information to web pages, e.g.
(AIT hasLocation Budapest)
(AIT hasTrack Track:Foundational-courses)
(Track:Foundational-courses hasCourse Semantic-and-declarative...)

Formalise background knowledge – build so called terminologies
hierarchies of notions, e.g.
a University is a (subconcept of) Inst-of-higher-education,
the hasFather relationship is a special case of hasParent
definitions and axioms, e.g.
a Father is a Male Person having at least one child

Develop reasoning algorithms and tools
Main topics

Description Logic, the maths behind the Semantic Web is the basis
of Web Ontology Languages OWL 1 & 2 (W3C standards)
A glimpse at reasoning algorithms for Description Logic

Semantic and Declarative Technologies 2024 Fall Semester 349 / 414

The Semantic Web An example of the Semantic Web approach

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 350 / 414

The Semantic Web An example of the Semantic Web approach

First Order Logic (recap)

Syntax:
non-logical (“user-defined”) symbols: predicates and functions,
including constants (function symbols with 0 arguments)
terms (refer to individual elements of the universe, or interpretation),
e.g. fatherOf (Susan)
formulas (that hold or do not hold in a given interpretation), e.g.
φ = ∀x .(Optimist(fatherOf (x))→ Optimist(x))

Semantics:
determines if a closed formula φ is true in an interpretation I: I |= φ
(also read as: I is a model of φ)
an interpretation I consists of a domain ∆ and a mapping from
non-logical symbols (e.g. Optimist , fatherOf , Susan) to their meaning
semantic consequence: S |= α means: if an interpretation is a model
of all formulas in the set S, then it is also a model of α
(note that the symbol |= is overloaded)

Deductive system (also called proof procedure):
an algorithm to deduce a consequence α of a set of formulas S: S ⊢ α

example: resolution
Semantic and Declarative Technologies 2024 Fall Semester 351 / 414

The Semantic Web An example of the Semantic Web approach

Soundness, completeness and decidability (recap)

A deductive system is sound if S ⊢ α⇒ S |= α (deduces only truths).
A deductive system is complete if S |= α⇒ S ⊢ α (deduces all truths).
Resolution is a sound and complete deductive system for FOL
Kurt Gödel was first to show such a system:
Gödel’s completeness theorem: there is a sound and complete deductive
system for FOL
FOL is not decidable: no decision procedure for the question
“does S imply α (S ⊢ α)?” (Gödel’s completeness theorem ensures that if
the answer is “yes”, then there exists a proof of α from S; but if the
answer is “no”, we have no guarantees – this is called semi-decidability)
Developers of the Semantic Web strive for using decidable languages

for languages with a sound and complete proof procedure
Semantic Web languages are based on Description Logics, which are
decidable sublanguages of FOL, i.e. there is an algorithm that delivers a
yes or no answer to the question “does S imply α”

Semantic and Declarative Technologies 2024 Fall Semester 352 / 414

The Semantic Web An example of the Semantic Web approach

Ontologies

Ontology: computer processable description of knowledge
Early ontologies include classification system (biology, medicine, books)

Entities in the Web Ontology Language (OWL):
classes – describe sets of objects (e.g. optimists)
properties (attributes, slots) – describe binary relationships
(e.g. has parent)
objects – correspond to real life objects
(e.g. people, such as Susan, her parents, etc.)

Semantic and Declarative Technologies 2024 Fall Semester 353 / 414

The Semantic Web An example of the Semantic Web approach

Knowledge Representation

Natural Language:
1 Someone having a non-optimist friend is bound to be an optimist.
2 Susan has herself as a friend.

First order Logic (unary predicate, binary predicate, constant):
1 ∀x .(∃y .(hasFriend(x , y) ∧ ¬opt(y))→ opt(x))
2 hasFriend(Susan,Susan)

Description Logics (concept, role, individual):
1 (∃hasFriend.¬ Opt) ⊑ Opt (GCI – Gen. Concept Inclusion axiom)
2 hasFriend(Susan,Susan) (role assertion)

Web Ontology Language (Manchester syntax)5 (class, property, object):
1 (hasFriend some (not Opt)) SubClassOf: Opt

Those having some not Opt friends must be Opt
(GCI – Gen. Class Inclusion axiom)

2 hasFriend(Susan,Susan) (object property assertion)

5protegeproject.github.io/protege/class-expression-syntax
Semantic and Declarative Technologies 2024 Fall Semester 354 / 414

protegeproject.github.io/protege/class-expression-syntax

The Semantic Web An example of the Semantic Web approach

A sample ontology to be entered into Protégé

1 There is a class of Animals, some of which are Male, some are Female.
2 No one can be both Male and Female.
3 There are Animals that are Human.
4 There are Humans who are Optimists.
5 There is a relationship hasP meaning “has parent”. Relations hasFather

and hasMother are sub-relations (special cases) of hasP.
6 Let’s define the class C1 as those who have an optimistic parent.
7 State that everyone belonging to C1 is Optimistic.
8 State directly that anyone having an Optimistic parent is Optimistic.
9 There is a relation hasF, denoting “has friend”. State that someone

having a non-Optimistic friend must be Optimistic.
10 There are individuals: Susan, and her parents Mother and Father.
11 Mother has Father as her friend.

Semantic and Declarative Technologies 2024 Fall Semester 355 / 414

The Semantic Web An example of the Semantic Web approach

The sample ontology in Description Logic and OWL/Protégé

English Description Logic OWL (Manchester syntax)
1 Male is a subclass of Animal. Male ⊑ Animal Male SubClassOf: Animal

Female is a subclass of Animal. Female ⊑ Animal Female SubClassOf: Animal
2 Male and Female are disjoint. Male ⊑ ¬ Female Male DisjointWith: Female
3 Human is a subclass of Animal. Human ⊑ Animal Human SubClassOf: Animal
4 Optimist is a subclass of Human. Opt ⊑ Human Opt SubClassOf: Human
5 hasFather is a subprop. of hasP. hasFather ⊑ hasP hasFather SubPropertyOf: hasP

hasMother is a subprop. of hasP. hasMother ⊑ hasP hasMother SubPropertyOf: hasP

6
C1 = those having an Opt parent. C1 ≡ ∃ hasP . Opt C1 EquivalentTo: hasP some Opt

7 Everyone in C1 is Opt. C1 ⊑ Opt C1 SubClassOf: Opt
8 Children of Opt parents are Opt. ∃ hasP . Opt ⊑ Opt hasP some Opt SubClassOf: Opt
9 Those with a non-Opt friend are Opt. ∃ hasF . ¬Opt ⊑ Opt hasF some not Opt SubClassOf: Opt
10 Susan has parents Mother and

Father.
hasP(Susan,aMother)
hasP(Susan,aFather)

hasP(Susan,aMother)
hasP(Susan,aFather)

11 Mother has Father as a friend. hasF(Mother,aFather) hasF(Mother,aFather)

(In Protégé, select the “save as” format as “Latex syntax” to obtain DL notation.)

Semantic and Declarative Technologies 2024 Fall Semester 356 / 414

The Semantic Web An overview of Description Logics

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 357 / 414

The Semantic Web An overview of Description Logics

Description Logic (DLs) – overview

DL, a subset of FOL, is the mathematical background of OWL
Signature – relation and function symbols allowed in DL

concept name (A) – unary predicate symbol (cf. OWL class)
role name (R) – binary predicate symbol (cf. OWL property)
individual name (a, . . .) – constant symbol (cf. OWL object)
No non-constant function symbols, no preds of arity > 2, no vars

Concept names and concept expressions represent sets, e.g.
∃hasParent.Optimist – the set of those who have an optimist parent
Terminological axioms (TBox) state background knowledge

A simple axiom using the DL language ALE :
∃hasParent.Optimist ⊑ Optimist – the set of those who have an
optimist parent is a subset of the set of optimists
Translation to FOL: ∀x .(∃y .(hasP(x , y) ∧Opt(y))→ Opt(x))

Assertions (ABox) state facts about individual names
Example: Optimist(JACOB), hasParent(JOSEPH, JACOB)

A consequence of these TBox and ABox axioms is: Optimist(JOSEPH)

DLs behind OWL 1 and OWL 2 are decidable: there are bounded time
algorithms for checking if a set of axioms implies a statement.

Semantic and Declarative Technologies 2024 Fall Semester 358 / 414

The Semantic Web An overview of Description Logics

Some further examples of terminological axioms

(1) A Mother is a Person, who is a Female and who has(a)Child.
Mother ≡ Person ⊓ Female ⊓ ∃hasChild.⊤

(2) A Tiger is a Mammal.
Tiger ⊑ Mammal

(3) Children of an Optimist Person are Optimists, too.
Optimist ⊓ Person ⊑ ∀hasChild.Optimist

(4) Childless people are Happy.
∀hasChild.⊥ ⊓ Person ⊑ Happy

(5) Those in the relation hasChild are also in the relation hasDescendant.
hasChild⊑hasDescendant

(6) The relation hasParent is the inverse of the relation hasChild.
hasParent≡hasChild−

(7) The hasDescendant relationship is transitive.
Trans(hasDescendant)

Semantic and Declarative Technologies 2024 Fall Semester 359 / 414

The Semantic Web An overview of Description Logics

Description Logics – why the plural?

These logic variants were progressively developed in the last two
decades
As new constructs were proved to be “safe”, i.e. keeping the logic
decidable, these were added
We will start with the very simple language AL, extend it to ALE , ALU
and ALC
As a side branch we then define ALCN
We then go back to ALC and extend it to languages S, SH, SHI and
SHIQ (which encompasses ALCN)
We briefly tackle further extensions O, (D) and R
OWL 1, published in 2004, corresponds to SHOIN (D)

OWL 2, published in 2012, corresponds to SROIQ(D)

Semantic and Declarative Technologies 2024 Fall Semester 360 / 414

The Semantic Web The ALCN language family

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 361 / 414

The Semantic Web The ALCN language family

Overview of the ALCN language

In ALCN a statement (axiom) can be
a subsumption (inclusion), e.g. Tiger ⊑ Mammal, or
an equivalence, e.g. Woman ≡ Female ⊓ Person,
Mother ≡Woman ⊓ ∃hasChild.⊤

In general, an ALCN axiom can take these two forms:
subsumption: C ⊑ D
equivalence: C ≡ D, where C and D are concept expressions

A concept expression C denotes a set of objects
(a subset of the ∆ universe of the interpretation), and can be:

an atomic concept (or concept name), e.g. Tiger, Female, Person
a composite concept, e.g. Female ⊓ Person, ∃hasChild.Female
composite concepts are built from atomic concepts and atomic roles
(also called role names) using some constructors (e.g. ⊓, ⊔, ∃, etc.)

We first introduce language AL, that allows a minimal set of constructors
(all examples on this page are valid AL concept expressions)
Next, we discuss richer extensions named U , E , C, N

Semantic and Declarative Technologies 2024 Fall Semester 362 / 414

The Semantic Web The ALCN language family

The syntax of the AL language

Language AL (Attributive Language) allows the following concept
expressions, also called concepts, for short:
A is an atomic concept, C,D are arbitrary (possibly composite) concepts
R is an atomic role

DL concept OWL class Name Informal definition

A A (class name) atomic concept those in A
⊤ owl:Thing top the set of all objects
⊥ owl:Nothing bottom the empty set
¬A not A atomic negation those not in A

C ⊓ D C and D intersection those in both C and D
∀R.C R only C value restriction those whose all Rs belong to C
∃R.⊤ R some owl:Thing limited exist. restr. those having at least one R

Examples of AL concept expressions:

Person ⊓ ¬Female Person and not Female
Person ⊓ ∀hasChild.Female Person and (hasChild only Female)
Person ⊓ ∃hasChild.⊤ Person and (hasChild some owl:Thing)

Semantic and Declarative Technologies 2024 Fall Semester 363 / 414

The Semantic Web The ALCN language family

The semantics of the AL language (as a special case of FOL)

An interpretation I is a mapping:
∆I = ∆ is the universe, the nonempty set of all individuals/objects
for each concept/class name A, AI is a (possibly empty) subset of ∆
for each role/property name R, RI ⊆ ∆×∆ is a binary relation on ∆

The semantics of AL extends I to composite concept expressions, i.e.
describes how to “calculate” the meaning of arbitrary concept exprs:

⊤I = ∆

⊥I = ∅
(¬A)I = ∆ \ AI

(C ⊓ D)I = CI ∩ DI

(∀R.C)I = {a ∈ ∆|∀b.(⟨a,b ⟩ ∈ RI → b ∈ CI)}
(∃R.⊤)I = {a ∈ ∆|∃b.⟨a,b ⟩ ∈ RI}

Finally we define how to obtain the truth value of an axiom:

I |= C ⊑ D iff CI ⊆ DI

I |= C ≡ D iff CI = DI

Semantic and Declarative Technologies 2024 Fall Semester 364 / 414

The Semantic Web The ALCN language family

The AL language: limitations

Recall the elements of the language AL:
DL concept OWL class Name Informal definition

A A (class name) atomic concept those in A
⊤ owl:Thing top the set of all objects
⊥ owl:Nothing bottom the empty set
¬A not A atomic negation those not in A

C ⊓ D C and D intersection those in both C and D
∀R.C R only C value restriction those whose all Rs belong to C
∃R.⊤ R some owl:Thing limited exist. restr. those having at least one R

What is missing from AL?

We can specify the intersection of two concepts, but not the union, e.g.
those who are either blue-eyed or tall.
∃R.⊤ – we cannot describe e.g. those having a female child.
Remedy: allow for full exist. restr., e.g. ∃hasCh.Female
¬A – negation can be applied to atomic concepts only.
Remedy: full negation, ¬C, where C can be non-atomic, e.g. ¬(U ⊓ V)

Semantic and Declarative Technologies 2024 Fall Semester 365 / 414

The Semantic Web The ALCN language family

The ALCN language family: extensions U , E , C, N

Further concept constructors, OWL equivalents shown in [square brackets]:
Union: C ⊔ D, [C or D] – those in either C or D

(C ⊔ D)I = CI ∪ DI (U)
Full existential restriction: ∃R.C, [R some C]
– those who have at least one R belonging to C

(∃R.C)I = {a ∈ ∆I |∃b.⟨a,b ⟩ ∈ RI ∧ b ∈ CI} (E)
(Full) negation: ¬C, [not C] – those who do not belong to C

(¬C)I = ∆I \ CI (C)
Unqualified number restrictions: (⩽nR), [R max n owl:Thing] and

(⩾nR), [R min n owl:Thing]
– those who have at most/at least n R-related objects

(⩽n R)I =
{

a ∈ ∆I | |
{

b | ⟨a,b ⟩ ∈ RI} | ≤ n
}

(⩾n R)I =
{

a ∈ ∆I | |
{

b | ⟨a,b ⟩ ∈ RI} | ≥ n
}

(N)

Example: Person ⊓ ((⩽1 hasCh) ⊔ (⩾3 hasCh)) ⊓ ∃hasCh.Female
Person and (hasCh max 1 or hasCh min 3) and (hasCh some Female)

Note that qualified number restrictions, e.g., “those having at least 3 blue-eyed
children” are not covered by the extension N .

Semantic and Declarative Technologies 2024 Fall Semester 366 / 414

The Semantic Web The ALCN language family

Summary table of the ALCUEN language

DL OWL Name Informal definition

A A atomic concept those in A AL
¬A not A full negation those not in A (cf. C) AL
⊤ owl:Thing top the set of all objects AL
⊥ owl:Nothing bottom the empty set AL

C ⊓ D C and D intersection those in both C and D AL
∃R.⊤ R some existential restr. those having an R (cf. E) AL
∀R.C R only C value restriction those whose all Rs belong to C AL
¬C not C full negation those not in C C

C ⊔ D C or D union those in either C or D U
∃R.C R some C existential restr. those with an R belonging to C E
(⩽nR) R max n o:T unq. numb. restr. those having at most n Rs N
(⩾nR) R min n o:T unq. numb. restr. those having at least n Rs N

Semantic and Declarative Technologies 2024 Fall Semester 367 / 414

The Semantic Web The ALCN language family

Rewriting ALCN to first order logic

Concept expressions map to predicates with one argument, e.g.
Tiger =⇒ Tiger(x) Mammal =⇒ Mammal(x)
Person =⇒ Person(x) Female =⇒ Female(x)

Simple connectives ⊓, ⊔, ¬ map to boolean operations ∧, ∨, ¬, e.g.
Person ⊓ Female =⇒ Person(x) ∧ Female(x)
Person ⊔ ¬Mammal =⇒ Person(x) ∨ ¬Mammal(x)

An axiom C ⊑ D is rewritten as ∀x .(C(x)→ D(x)), e.g.
Tiger ⊑ Mammal =⇒ ∀x .(Tiger(x)→ Mammal(x))

An axiom C ≡ D is rewritten as ∀x .(C(x)↔ D(x)), e.g.
Woman ≡ Person ⊓ Female =⇒ ∀x .(Woman(x)↔ Person(x) ∧ Female(x))

Concept constructors involving a quantifier ∃ or ∀ are rewritten to an
appropriate quantified formula, where a role name is mapped to a binary
predicate (a predicate with two arguments), e.g.

∃hasParent.Opt⊑Opt =⇒ ∀x .(∃y .(hasParent(x , y) ∧Opt(y))→ Opt(x))

Semantic and Declarative Technologies 2024 Fall Semester 368 / 414

The Semantic Web The ALCN language family

Rewriting ALCN to first order logic, example

Consider C = Person ⊓ ((⩽ 1 hasCh) ⊔ (⩾ 3 hasCh)) ⊓ ∃hasCh.Female
Let’s outline a predicate C(x) which is true when x belongs to concept C:
C(x)↔ Person(x) ∧

(hasAtMost1Child(x) ∨ hasAtLeast3Children(x)) ∧
hasFemaleChild(x)

Class practice:
Define the FOL predicates hasAtMost1Child(x),
hasAtLeast3Children(x), hasFemaleChild(x)
Additionally, define the following FOL predicates:

hasOnlyFemaleChildren(x), corresponding to the concept
∀hasCh.Female
hasAtMost2Children(x), corresponding to the concept
(⩽ 2 hasCh)

Semantic and Declarative Technologies 2024 Fall Semester 369 / 414

The Semantic Web The ALCN language family

General rewrite rules ALCN → FOL

Each concept expression can be mapped to a FOL formula:
Each concept expression C is mapped to a formula ΦC(x) (expressing
that x belongs to C).
Atomic concepts (A) and roles (R) are mapped to unary and binary
predicates A(x),R(x , y).
⊓, ⊔, and ¬ are transformed to their counterpart in FOL (∧,∨,¬), e.g.
ΦC⊓D(x) = ΦC(x) ∧ ΦD(x)
Mapping further concept constructors:

Φ∃R.C(x) = ∃y . (R(x , y) ∧ ΦC(y))
Φ∀R.C(x) = ∀y . (R(x , y)→ ΦC(y))

Φ⩾n R(x) = ∃y1, . . . , yn.

R(x , y1) ∧ · · · ∧ R(x , yn) ∧
∧
i<j

yi ̸= yj

Φ⩽n R(x) = ∀y1, . . . , yn+1.

R(x , y1) ∧ · · · ∧ R(x , yn+1)→
∨
i<j

yi = yj

Semantic and Declarative Technologies 2024 Fall Semester 370 / 414

The Semantic Web The ALCN language family

Equivalent languages in the ALCN family

Language AL can be extended by arbitrarily choosing whether to add
each of UECN , resulting in AL[U][E][C][N].
Do these 24 = 16 languages have different expressive power?
Two concept expressions are said to be equivalent, if they have the same
meaning, in all interpretations.
Languages L1 and L2 have the same expressive power (L1

e
= L2), if any

expression of L1 can be mapped into an equivalent expression of L2, and
vice versa.
As a preparation for discussing the above let us recall that these axioms
hold in all models, for arbitrary concepts C and D and role R:

C ⊔ D ≡ ¬(¬C ⊓ ¬D)

∃R.C ≡ ¬∀R.¬C
¬¬C ≡ C
¬⊤ ≡ ⊥
¬⊥ ≡ ⊤

¬(C ⊓ D) ≡ ¬C ⊔ ¬D
¬∃R.⊤ ≡ ∀R.⊥
¬∀R.C ≡ ∃R.¬C

Semantic and Declarative Technologies 2024 Fall Semester 371 / 414

The Semantic Web The ALCN language family

Equivalent languages in the ALCN family

Let us show that ALUE and ALC are equivalent:
As C ⊔ D ≡ ¬(¬C ⊓ ¬D) and ∃R.C ≡ ¬∀R.¬C, union and full existential
restriction can be eliminated by using (full) negation. That is, to each
ALUE concept expression there exists an equivalent ALC expression.
The other way, each ALC concept can be transformed to an equivalent
ALUE expression, by moving negation inwards, until before atomic
concepts, and removing double negation; using the axioms from the right
hand column on the previous slide
Thus ALUE and ALC have the same expressive power, and so have the
intermediate languages:
ALC(N)

e
= ALCU(N)

e
= ALCE(N)

e
= ALCUE(N)

e
= ALUE(N).

Further remarks:
As U and E is subsumed by C, we will use ALC to denote the language
allowing U , E and C
It can be shown that any two of
AL,ALU ,ALE ,ALC,ALN ,ALUN ,ALEN ,ALCN have different
expressive power

Semantic and Declarative Technologies 2024 Fall Semester 372 / 414

The Semantic Web The ALCN language family

Another ALC example requiring case analysis

Some facts about the Oedipus family (ABox AOE):
hasChild(IOCASTE,OEDIPUS)
hasChild(IOCASTE,POLYNEIKES)
hasChild(OEDIPUS,POLYNEIKES)
hasChild(POLYNEIKES,THERSANDROS)

Patricide(OEDIPUS)

(¬Patricide)(THERSANDROS)

Let us call a person “special” if they have a child who is a patricide and
who, in turn, has a child who is not a patricide:

Special ≡ ∃hasChild.(Patricide ⊓ ∃hasChild.¬Patricide)

Let TBox TOE contain the above axiom only.
Consider the instance check “Is Iocaste special?”:
AOE |=TOE Special(IOCASTE)?
The answer is “yes”, but proving this requires case analysis

Semantic and Declarative Technologies 2024 Fall Semester 373 / 414

The Semantic Web TBox reasoning

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 374 / 414

The Semantic Web TBox reasoning

A special case of ontology: definitional TBox

Tfam: a sample definitional TBox for family relationships

Woman ≡ Person ⊓ Female
Man ≡ Person ⊓ ¬Woman

Mother ≡ Woman ⊓ ∃hasChild.Person
Father ≡ Man ⊓ ∃hasChild.Person
Parent ≡ Father ⊔Mother

Grandmother ≡ Woman ⊓ ∃hasChild.Parent

A TBox is definitional if it contains equivalence axioms only, where the left
hand sides are distinct concept names (atomic concepts)
The concepts on the left hand sides are called name symbols
The remaining atomic concepts are called base symbols, e.g. in our
example the two base symbols are Person and Female.
In a definitional TBox the meanings of name symbols can be obtained by
evaluating the right hand side of their definition

Semantic and Declarative Technologies 2024 Fall Semester 375 / 414

The Semantic Web TBox reasoning

Interpretations and semantic consequence

Recall the definition of assigning a truth value to TBox axioms in an
interpretation I:

I |= C ⊑ D iff CI ⊆ DI

I |= C ≡ D iff CI = DI

Based on this we introduce the notion of “semantic consequence” exactly in
the same way as for FOL

We can naturally extend the above I |= α notation
– where α is either C ⊑ D or C ≡ D –
to a TBox (i.e. a set of α axioms) T
I |= T (I satisfies T , I is a model of T) iff
for each α ∈ T , I |= α, i.e. I is a model of α

We now overload even further the “ |= ” symbol:
T |= α (read axiom α is a semantic consequence of the TBox T) iff

all models of T are also models of α, i.e.
for all interpretations I, if I |= T holds, then I |= α also holds

Semantic and Declarative Technologies 2024 Fall Semester 376 / 414

The Semantic Web TBox reasoning

TBox reasoning tasks

Reasoning tasks on TBoxes only (i.e. no ABoxes involved)
A base assumption: the TBox is consistent (does not contain a
contradiction), i.e. it has a model
Subsumption: concept C is subsumed by concept D wrt. a TBox T , iff
T |= (C ⊑ D), i.e. CI ⊆ DI holds in all I models of T (C ⊑T D)
e.g. Tfam |= (Grandmother ⊑ Parent) (recall that Tfam is the family TBox)
Equivalence: concepts C and D are equivalent wrt. a TBox T , iff
T |= (C ≡ D), i.e. CI = DI holds in all I models of T (C ≡T D).
e.g. Tfam |= (Parent ≡ Person ⊓ ∃hasChild.Person)
Disjointness: concepts C and D are disjoint wrt. a TBox T , iff
T |= (C ⊓ D ≡ ⊥), i.e. CI ∩ DI = ∅ holds in all I models of T .
e.g. Tfam |= (Woman ⊓Man) ≡ ⊥
Note that all these tasks involve two concepts, C and D

Semantic and Declarative Technologies 2024 Fall Semester 377 / 414

The Semantic Web TBox reasoning

Reducing reasoning tasks to testing satisfiability

We now introduce a simpler, but somewhat artificial reasoning task:
checking the satisfiability of a concept
Satisfiability: a concept C is satisfiable wrt. TBox T , iff
there is a model I of T such that CI is non-empty
(hence C is non-satisfiable wrt. T iff in all I models of T CI is empty)
We will reduce each of the earlier tasks to checking non-satisfiability
E.g. to prove: Woman ⊑ Person, let’s construct a concept C that contains
all counter-examples to this statement: C = Woman ⊓ ¬Person
If we can prove that C has to be empty, i.e. there are no
counter-examples, then we have proven the subsumption
Assume we have a method for checking satisfiability.
Other tasks can be reduced to this method (usable in ALC and above):

C is subsumed by D ⇐⇒ C ⊓ ¬D is not satisfiable
C and D are equivalent⇐⇒ (C ⊓ ¬D) ⊔ (D ⊓ ¬C) is not satisfiable
C and D are disjoint⇐⇒ C ⊓ D is not satisfiable

In simpler languages, not supporting full negation, such as ALN , all
reasoning tasks can be reduced to subsumption

Semantic and Declarative Technologies 2024 Fall Semester 378 / 414

The Semantic Web The SHIQ language family

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 379 / 414

The Semantic Web The SHIQ language family

The SHIQ Description Logic language – an overview

Expanding the abbreviation SHIQ
S ≡ ALCR+ (language ALC extended with transitive roles),
i.e. one can state that certain roles (e.g. hasAncestor) are transitive.
H ≡ role hierarchies. Adds statements of the form R ⊑ S,
e.g. if a pair of objects belongs to the hasFriend relationship, then it
must belong to the knows relationship too: hasFriend ⊑ knows
(could be stated in English as: everyone knows their friends)
I ≡ inverse roles: allows using role expressions R− to denote the
inverse of role R, e.g. hasParent ≡ hasChild−

Q ≡ qualified number restrictions (a generalisation of N):
allows the use of concept expressions (⩽ nR.C) and (⩾ nR.C)
e.g. those who have at least 3 tall children : (⩾ 3 hasChild.Tall)

Semantic and Declarative Technologies 2024 Fall Semester 380 / 414

The Semantic Web The SHIQ language family

SHIQ language extensions – the details

Language S ≡ ALCR+ , i.e, ALC plus transitivity (cf. the index R+)
Concept axioms and concept expressions – same as in ALC
An additional axiom type: Trans(R) declares role R to be transitive

Extension H – introducing role hierarchies
Adds role axioms of the form R ⊑ S and R ≡ S
(R ≡ S can be eliminated, replacing it by R ⊑ S and S ⊑ R)
In SH it is possible describe a weak form of transitive closure:

Trans(hasDescendant)
hasChild ⊑ hasDescendant

This means that hasDescendant is a transitive role which includes
hasChild
What we cannot express in SH is that hasDescendant is the smallest
such role. (This property cannot be described in FOL either.)

Semantic and Declarative Technologies 2024 Fall Semester 381 / 414

The Semantic Web The SHIQ language family

SHIQ language extensions – the details (2)

Extension I – adding inverse roles
Our first role constructor is −: R− is the inverse of role R
Example: consider role axiom hasChild− ≡ hasParent and:

GoodParent ≡ ∃hasChild.⊤ ⊓ ∀hasChild.Happy
MerryChild ≡ ∃hasParent.GoodParent

A consequence of the above axioms: MerryChild ⊑ Happy
Multiple inverses can be eliminated: (R−)− ≡ R, ((R−)−)− ≡ R−,

Semantic and Declarative Technologies 2024 Fall Semester 382 / 414

The Semantic Web The SHIQ language family

SHIQ language extensions – the details (3)

Extension Q – qualified number restrictions – generalizing extension N :
(⩽ nR.C) – the set of those who have at most n R-related individuals
belonging to C, e.g.
(⩽ 2hasChild.Female) – those with at most 2 daughters
(⩾ nR.C) – those with at least n R-related individuals belonging to C

A role is simple if it is not transitive and does not even have a transitive
sub-role
Important: roles appearing in number restrictions have to be simple.
(This is because otherwise the decidability of the language would be lost.)

Given Trans(hasDesc), hasDesc is not simple.
If we add further role axioms: hasAnc ≡ hasDesc−,
hasAnc ⊑ hasBloodRelation, then hasBloodRelation is not simple

hasAnc is transitive because its inverse hasDesc is such
hasBloodRelation has the transitive hasAnc as its sub-role

Semantic and Declarative Technologies 2024 Fall Semester 383 / 414

The Semantic Web The SHIQ language family

SHIQ syntax summary

Notation

A – atomic concept, C,Ci ,D – concept expressions

RA – atomic role, R,Ri – role expressions,
RS – simple role expression, i.e. a role with no transitive sub-role

Concept expressions

DL OWL Name Informal definition

A A atomic concept those in A AL
⊤ owl:Thing top the set of all objects AL
⊥ owl:Nothing bottom the empty set AL

C ⊓ D C and D intersection those in both C and D AL
∀R.C R only C value restriction those whose all Rs belong to C AL
C ⊔ D C or D union those in either C or D U
∃R.C R some C existential restr. those with an R belonging to C E
¬C not C full negation those not in C C

(⩽nRS) RS max n C qualif. num. restr. those with at most n RSs in C Q
(⩾nRS) RS min n C qualif. num. restr. those with at least n RSs in C Q

Semantic and Declarative Technologies 2024 Fall Semester 384 / 414

The Semantic Web The SHIQ language family

SHIQ syntax summary (2)

The syntax of role expressions
R → RA atomic role (AL)

| R− inverse role (I)

The syntax of terminological axioms
T → C1 ≡ C2 concept equivalence axiom (AL)

| C1 ⊑ C2 concept subsumption axiom (AL)
| R1 ≡ R2 role equivalence axiom (H)
| R1 ⊑ R2 role subsumption axiom (H)
| Trans(R) transitivity axiom (R+)

Semantic and Declarative Technologies 2024 Fall Semester 385 / 414

The Semantic Web The SHIQ language family

SHIQ semantics (ADVANCED)

The semantics of concept expressions

⊤I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C1 ⊓ C2)
I = CI

1 ∩ CI
2

(C1 ⊔ C2)
I = CI

1 ∪ CI
2

(∀R.C)I =
{

a ∈ ∆I | ∀b.⟨a,b ⟩ ∈ RI → b ∈ CI}
(∃R.C)I =

{
a ∈ ∆I | ∃b.⟨a,b ⟩ ∈ RI ∧ b ∈ CI}

(⩾ n R.C)I =
{

a ∈ ∆I | |
{

b | ⟨a,b ⟩ ∈ RI ∧ b ∈ CI} | ≥ n
}

(⩽ n R.C)I =
{

a ∈ ∆I | |
{

b | ⟨a,b ⟩ ∈ RI ∧ b ∈ CI} | ≤ n
}

The semantics of role expressions

(R−)I =
{
⟨b,a ⟩ ∈ ∆I ×∆I | ⟨a,b ⟩ ∈ RI}

Semantic and Declarative Technologies 2024 Fall Semester 386 / 414

The Semantic Web The SHIQ language family

SHIQ semantics (2) (ADVANCED)

The semantics of terminological axioms

I |= C1 ≡ C2 ⇔ CI
1 = CI

2

I |= C1 ⊑ C2 ⇔ CI
1 ⊆ CI

2

I |= R1 ≡ R2 ⇔ RI
1 = RI

2

I |= R1 ⊑ R2 ⇔ RI
1 ⊆ RI

2

I |= Trans(R) ⇔ (∀a,b, c ∈ ∆I)

(⟨a,b ⟩ ∈ RI ∧ ⟨ b, c ⟩ ∈ RI → ⟨a, c ⟩ ∈ RI)

Read I |= T as: “I satisfies axiom T ” or as “I is a model of T ”

Semantic and Declarative Technologies 2024 Fall Semester 387 / 414

The Semantic Web The SHIQ language family

Negation normal form (NNF)

Various normal forms are used in reasoning algorithms
The tableau algorithms use NNF: only atomic negation allowed
To obtain NNF, apply the following rules to subterms repeatedly while a
subterm matching a left hand side can be found:

¬¬C ; C
¬(C ⊓ D) ; ¬C ⊔ ¬D
¬(C ⊔ D) ; ¬C ⊓ ¬D
¬(∃R.C) ; ∀R.(¬C)

¬(∀R.C) ; ∃R.(¬C)

¬(⩽ nR.C) ; (⩾ kR.C) where k = n + 1
¬(⩾ 1R.C) ; ∀R.(¬C)

¬(⩾ nR.C) ; (⩽ kR.C) if n > 1, where k = n − 1

Semantic and Declarative Technologies 2024 Fall Semester 388 / 414

The Semantic Web The SHIQ language family

Going beyond SHIQ

Extension O introduces nominals, i.e. concepts which can only have a
single element. Example: {EUROPE} is a concept whose interpretation
must contain a single element
FullyEuropean ≡ ∀hasSite.∀hasLocation.{EUROPE}

Extension (D): concrete domains, e.g. integers, strings etc, whose
interpretation is fixed, cf. data properties in OWL
The Web Ontology Language OWL 1 implements SHOIN (D)

OWL 2 implements SROIQ(D)

The main novelty in R wrt. H is the possibility to use role composition (◦):
hasParent ◦ hasBrother ⊑ hasUncle
i.e. one’s parent’s brother is one’s uncle
To ensure decidability, the use of role composition is seriously restricted
(e.g. it is not allowed to have ≡ instead of ⊑ in the above example)

Semantic and Declarative Technologies 2024 Fall Semester 389 / 414

The Semantic Web ABox reasoning

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 390 / 414

The Semantic Web ABox reasoning

The notion of ABox

The ABox contains assertions about individuals, referred to by individual
names a,b, c etc.
Convention: concrete individual names are written in ALL_CAPITALS

concept assertions: C(a), e.g. Father(ALEX), (∃hasJob.⊤)(BOB)
role assertions: R(a,b), e.g. hasChild(ALEX,BOB).

Individual names correspond to constant symbols of first order logic
The interpretation function has to be extended:

to each individual name a, I assigns aI ∈ ∆I

The semantics of ABox assertions is straightforward:
I satisfies a concept assertion C(a) (I |= C(a)), iff aI ∈ CI ,
I satisfies a role assertion R(a,b) (I |= R(a,b)), iff ⟨aI ,bI ⟩ ∈ RI ,
I satisfies an ABox A (I |= A) iff I satisfies all assertions in A,
i.e. for all α ∈ A, I |= α holds

Semantic and Declarative Technologies 2024 Fall Semester 391 / 414

The Semantic Web ABox reasoning

Reasoning on ABoxes

ABox A is consistent wrt. TBox T
if and only if
there is an interpretation I which satisfies both A and T
i.e. I |= A and I |= T
Is the ABox {Mother(S),Father(S)} consistent wrt. an empty TBox?
Is this ABox consistent wrt. the family TBox (slide 375)?
Assertion α is said to be a consequence of the ABox A wrt. TBox T
(A |=T α):

whenever an interpretation I satisfies both the ABox A and the TBox
T (I |= A and I |= T)
α is bound to hold in interpretation I (I |= α)

Semantic and Declarative Technologies 2024 Fall Semester 392 / 414

The Semantic Web ABox reasoning

Reasoning on ABoxes – example

Let T refer to the family TBox from slide 375:
Woman ≡ Person ⊓ Female

Man ≡ Person ⊓ ¬Woman
Mother ≡ Woman ⊓ ∃hasChild.Person
Father ≡ Man ⊓ ∃hasChild.Person
Parent ≡ Father ⊔Mother

Grandmother ≡ Woman ⊓ ∃hasChild.Parent

Consider the ABox A:
hasChild(SAM, SUE) Person(SAM) Person(SUE) Person(ANN)
hasChild(SUE, ANN) Female(SUE) Female(ANN)

Which of the assertions below is a consequence of A wrt. T ?
1 Mother(SUE)
2 Mother(SAM)
3 ¬Mother(SAM)
4 Father(SAM)
5 (Mother⊔Father)(SAM)
6 (⩽ 1 hasChild)(SAM)

Semantic and Declarative Technologies 2024 Fall Semester 393 / 414

The Semantic Web ABox reasoning

ABoxes and databases

An ABox may seem similar to a relational database, but
Querying a database uses the closed world assumption (CWA): is
the query true in the world (interpretation) where the given and only
given facts hold?
Contrastingly, ABox reasoning uses logical consequence, also called
open world assumption (OWA): is it the case that the query holds in
all interpretations satisfying the given facts

At first one may think that with CWA one can always get more deduction
possibilities
However, case-based reasoning in OWA can lead to deductions not
possible with CWA (e.g. Susan being optimistic)

Semantic and Declarative Technologies 2024 Fall Semester 394 / 414

The Semantic Web ABox reasoning

Some important ABox reasoning tasks

Instance check: Decide if assertion α is a consequence of ABox A wrt. T .
Example: Check if Mother(SUE) holds wrt. the example ABox A and the
family TBox on slide 393.
Instance retrieval:
Given a concept expression C find the set of all individual names x such
that A |=T C(x)
Example: Find all individual names known to belong to the concept Mother

Semantic and Declarative Technologies 2024 Fall Semester 395 / 414

The Semantic Web ABox reasoning

The optimists example as an ABox reasoning task

Our earlier example of optimists:
(1) If someone has an optimistic parent, then she is optimistic herself.
(2) If someone has a non-optimistic friend, then she is optimistic.
(3) Susan’s maternal grandfather has her maternal grandmother as a

friend.
Consider the following TBox T :
∃hP.Opt ⊑ Opt (1)
∃hF.¬Opt ⊑ Opt (2)
Consider the following ABox A, representing (3):
hP(S,SM) hP(SM,SMM) hP(SM,SMF) hF(SMF,SMM)

An instance retrieval task: find the set of all individual names x such that
A |=T Opt(x)

Semantic and Declarative Technologies 2024 Fall Semester 396 / 414

The Semantic Web The tableau algorithm for ALCN – a simple example

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 397 / 414

The Semantic Web The tableau algorithm for ALCN – a simple example

Tableau algorithms

Various TBox and ABox reasoning tasks have been presented earlier
In ALC and above, any TBox task can be reduced to checking
satisfiability
Principles of the ALCN tableau algorithm

It checks if a concept is satisfiable, by trying to construct a model
Uses NNF, i.e. “¬” can appear only in front of atomic concepts
The model is built through a series of transformations

The data structure representing the model is called the tableau (state):
a directed graph
the vertices can be viewed as the domain of the interpretation
edges correspond to roles, each edge is labelled by a role
vertices are labelled with sets of concepts, to which the vertex is
expected to belong

Example: If a person has a green-eyed and a blonde child, does it follow
that she/he has to have a child who is both green-eyed and blonde?
Formalize the above task as a question in the Description Logic ALC:
Does the axiom (∃hC.B) ⊓ (∃hC.G)⊑∃hC.(B ⊓G) hold?6

6(hC = has child, B = blonde, G = green-eyed)
Semantic and Declarative Technologies 2024 Fall Semester 398 / 414

The Semantic Web The tableau algorithm for ALCN – a simple example

An introductory example, using ALC

Question: Does the axiom (∃hC.B) ⊓ (∃hC.G)⊑∃hC.(B ⊓G) hold? (1)
Transform to an unsatisfiability task (U ⊑ V ⇔ U ⊓¬V is not satisfiable):
C = (∃hC.B) ⊓ (∃hC.G) ⊓ ¬(∃hC.(B ⊓G)) is not satisfiable
The neg. normal form of C is: C0 = (∃hC.B) ⊓ (∃hC.G) ⊓ ∀hC.(¬B ⊔ ¬G)

Goal: build an interpretation I such that CI
0 ̸= ∅. Thus we try to have a b

such that b ∈ (∃hC.B)I ,b ∈ (∃hC.G)I , and b ∈ (∀hC.(¬B ⊔ ¬G))I .
From b ∈ (∃hC.B)I =⇒ ∃c such that ⟨b, c ⟩ ∈ hCI and c ∈ BI .
Similarly, b ∈ (∃hC.G)I =⇒ ∃d , such that ⟨b,d ⟩ ∈ hCI and d ∈ GI .
As b belongs to ∀hC.(¬B ⊔ ¬G), and both c and d are hC relations of b,
we obtain constraints: c ∈ (¬B ⊔ ¬G)I and d ∈ (¬B ⊔ ¬G)I .
c ∈ (¬B ⊔ ¬G)I means that either c ∈ (¬B)I or c ∈ (¬G)I . Assuming
c ∈ (¬B)I contradicts c ∈ BI . Thus we have to choose the option
c ∈ (¬G)I . Similarly, we obtain d ∈ (¬B)I .
We arrive at: ∆I = {b, c,d};
hCI = {⟨b, c ⟩, ⟨b,d ⟩};
BI = {c} and GI = {d}.
Here b ∈ CI

0 , thus (1) does not hold.

.

. b

c d

hC hC

GB

Semantic and Declarative Technologies 2024 Fall Semester 399 / 414

The Semantic Web The tableau algorithm for ALCN – a simple example

Extending the example to ALCN

Question: If a person having at most one child has a green-eyed and a
blonde child, does it follow that she/he has to have a child who is both
green-eyed and blonde?

DL question: (⩽ 1hC) ⊓ (∃hC.B) ⊓ (∃hC.G)
?
⊑ ∃hC.(B ⊓G)) (2)

Reformulation: “Is C not satisfiable?”, where
C = (⩽ 1hC) ⊓ (∃hC.B) ⊓ (∃hC.G) ⊓ ¬(∃hC.(B ⊓G))

Negation normal form:
C0 = (⩽ 1hC) ⊓ (∃hC.B) ⊓ (∃hC.G) ⊓ ∀hC.(¬B ⊔ ¬G))

We first build the same tableau as for (1):
b

c d

hC hC

{B,~G}

{C0}

{G,~B}

From (⩽ 1hC)(b), hC(b, c), and hC(b,d) it follows that c = d has to be
the case. However merging c and d results in an object being both B and
¬B which is a contradiction (clash)
Thus we have shown that C0 cannot be satisfied, and thus the answer to
question (2) is yes.

Semantic and Declarative Technologies 2024 Fall Semester 400 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Contents

4 The Semantic Web
Introducing Semantic Technologies
An example of the Semantic Web approach
An overview of Description Logics
The ALCN language family
TBox reasoning
The SHIQ language family
ABox reasoning
The tableau algorithm for ALCN – a simple example
Further reading: the ALCN tableau algorithm

Semantic and Declarative Technologies 2024 Fall Semester 401 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

The ALCN tableau algorithm for empty TBoxes – outline

“Is C satisfiable?” =⇒ Let’s build a model satisfying C, exhaustively.
First, bring C to negation normal form C0.
The main data structure, the tableau structure T = (V ,E ,L, I)
where (V ,E ,L) is a finite directed graph (more about I later)

Nodes of the graph (V) can be thought of as domain elements.
Edges of the graph (E) represent role relationships between nodes.
The labeling function L assigns labels to nodes and edges:

∀x ∈ V , L(x) ⊆ sub(C0), the set of subexpressions of C0
∀⟨ x , y ⟩ ∈ E , L(⟨ x , y ⟩) is a role within C (in SHIQ: set of roles)

The initial tableau has a single node, the root: ({x0}, ∅,L, ∅), where
L(x0) = {C0}. Here C0 is called the root concept.

The algorithm uses transformation rules to extend the tableau
Certain rules are nondeterministic, creating a choice point; backtracking
occurs when a trivial clash appears (e.g. both A and ¬A ∈ L(x))
If a clash-free and complete tableau (no rule can fire) is reached =⇒

C is satisfiable.
When the whole search tree is traversed =⇒ C is not satisfiable.

Semantic and Declarative Technologies 2024 Fall Semester 402 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Outline of the ALCN tableau algorithm (2)

The tableau tree is built downwards from the root (edges are always
directed downwards)

A node b is called an R-successor (or simply successor) of a iff
there is an edge from a to b with R as its label, i.e. L(⟨a,b ⟩) = R

Handling equalities and inequalities
To handle (⩽ n R) we need to merge (identify) nodes
In handling (⩾ n R) we will have to introduce n R-successors which
are pairwise non-identifiable (x ̸ .= y : x and y are not identifiable)
The component I of the tableau data structure T = (V ,E ,L, I) is a
set of inequalities of the form x ̸ .= y

Semantic and Declarative Technologies 2024 Fall Semester 403 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Transformation rules of the ALCN tableau algorithm (1)

⊓-rule
Condition: (C1 ⊓ C2) ∈ L(x) and {C1,C2} ̸⊆ L(x)
New state T′: L′(x) = L(x) ∪ {C1,C2}.
⊔-rule
Condition: (C1 ⊔ C2) ∈ L(x) and {C1,C2} ∩ L(x) = ∅.
New state T1: L′(x) = L(x) ∪ {C1}.
New state T2: L′(x) = L(x) ∪ {C2}.
∃-rule
Condition: (∃R.C) ∈ L(x), x has no R-successor y s.t. C ∈ L(y).
New state T′: V ′ = V ∪ {y} (y is a new node),

E ′ = E ∪ {⟨ x , y ⟩}, L′(⟨ x , y ⟩) = R, L′(y) = {C}.
∀-rule
Condition: (∀R.C) ∈ L(x), x has an R-successor y s.t. C ̸∈ L(y).
New state T′: L′(y) = L(y) ∪ {C}.

Semantic and Declarative Technologies 2024 Fall Semester 404 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Transformation rules of the ALCN tableau algorithm (2)

⩾-rule
Condition: (⩾ n R) ∈ L(x) and x has no n R-successors such that

any two are non-identifiable.

New state T′: V ′ = V ∪ {y1, . . . , yn} (yi new nodes),

E ′ = E ∪ {⟨ x , y1 ⟩, . . . , ⟨ x , yn ⟩},
L′(⟨ x , yi ⟩) = R, L′(yi) = ∅, for each i = 1 ≤ i ≤ n,

I′ = I ∪ {yi ̸
.
= yj | 1 ≤ i < j ≤ n}.

Semantic and Declarative Technologies 2024 Fall Semester 405 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Transformation rules of the ALCN tableau algorithm (3)

⩽-rule
Condition: (⩽ n R) ∈ L(x) and x has R-successors y1, . . . , yn+1

among which there are at least two identifiable nodes.

For each i and j , 1 ≤ i < j ≤ n + 1, where yi and yj are identifiable:

New state Tij : V ′ = V \ {yj}, L′(yi) = L(yi) ∪ L(yj),

E ′ = E \ {⟨ x , yj ⟩} \ {⟨ yj ,u ⟩|⟨ yj ,u ⟩ ∈ E} ∪
{⟨ yi ,u ⟩|⟨ yj ,u ⟩ ∈ E},

L′(⟨ yi ,u ⟩) = L(⟨ yj ,u ⟩), ∀u such that ⟨ yj ,u ⟩ ∈ E ,

I′ = I[yj → yi] (every occurrence of yj is replaced by yi).

Semantic and Declarative Technologies 2024 Fall Semester 406 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

The ALCN tableau algorithm – further details

There is clash at some node x of a tableau state iff
{⊥} ⊆ L(x); or
{A,¬A} ⊆ L(x) for some atomic concept A; or
(⩽ nR) ∈ L(x) and x has R-successors y1, . . . , yn+1 where for any
two successors yi and yj it holds that yi ̸

.
= yj ∈ I.

A tableau state is said to be complete, if no transformation rules can be
applied at this state (there is no rule the conditions of which are satisfied)

Semantic and Declarative Technologies 2024 Fall Semester 407 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

The ALCN tableau algorithm

In this version the algorithm handles a set of tableau states, one for each yet
unexplored subtree of the search space.

1 Intialise the variable States = {T0} (a singleton set containing the initial
tableau state)

2 If there is T ∈ States such that T contains a clash, remove T from States
and continue at step 2

3 If there is T ∈ States such that T is complete (and clash-free), exit the
algorithm, reporting satisfiability

4 If States is empty, exit the algorithm, reporting non-satisfiability
5 Choose an arbitrary element T ∈ States and apply to T an arbitrary

transformation rule, whose conditions are satisfied7 (don’t care
nondeterminism). Remove T from States, and add to States the
NewStates resulting from the applied transformation, where NewStates =
{T1,T2} for the ⊔-rule, NewStates = {Tij| · · · } for the ⩽-rule, and
NewStates = {T′} for all other (deterministic) rules. Continue at step 2

7Such a tableau state T and such a rule exist, because States is nonempty, and none of its
elements is a complete tableau

Semantic and Declarative Technologies 2024 Fall Semester 408 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

The ALCN tableau algorithm – an example

Consider checking the satisfiability of concept C0 (hC = has child, B =
blonde):

C0 = C1 ⊓ C2 ⊓ C3 ⊓ C4

C1 = (⩾ 2 hC)

C2 = ∃hC.B
C3 = (⩽ 2 hC)

C4 = C5 ⊔ C6

C5 = ∀hC.¬B
C6 = B

The tableau algorithm completes with the answer: concept C0 is
satisfiable
The interpretation constructed by the tableau algorithm:
∆I = {b, c,d};hCI = {⟨b, c ⟩, ⟨b,d ⟩};BI = {b, c}

Semantic and Declarative Technologies 2024 Fall Semester 409 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Extending the tableau algorithm to ABox reasoning

To solve an ABox reasoning task (with no TBox), we transform the ABox
to a graph, serving as the initial tableau state, e.g. for the IOCASTE
family ABox:

hC(IOCASTE,OEDIPUS)
hC(OEDIPUS,POLYNEIKES)
Ptrc(OEDIPUS)

hC(IOCASTE,POLYNEIKES)
hC(POLYNEIKES,THERSANDROS)
(¬ Ptrc)(THERSANDROS)

Individual names become nodes of the graph, labelled by a set of
concepts, and each role assertion generates an edge, labelled (implicitly)
by hC:

Semantic and Declarative Technologies 2024 Fall Semester 410 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Handling ABox axioms in the tableau algorithm (ctd.)

Given the Iocaste ABox, we want to prove that IOCASTE is special, i.e.
she belongs to the concept ∃hC.(Ptrc ⊓ ∃hC.¬Ptrc)
We do an indirect proof: assume that IOCASTE is not special, i.e.
IOCASTE belongs to (∀hC.(¬Ptrc ⊔ ∀hC.Ptrc)) (1)
Let’s introduce an abbreviation: ACP ≡ ∀hC.Ptrc
To prove that Iocaste is special, we add concept (1) to the IOCASTE
node:

The tableau algorithm, with this initial state, will detect non-satisfiability

Semantic and Declarative Technologies 2024 Fall Semester 411 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Handling TBox axioms in the tableau algorithm

An arbitrary ALCN TBox can be transformed to a set of subsumptions of
the form C ⊑ D (C ≡ D can be replaced by {C ⊑ D,D ⊑ C})
C ⊑ D can be replaced by ⊤ ⊑ ¬C ⊔ D
cf. (α→ β) is the same as (¬α ∨ β)

An arbitrary TBox {C1 ⊑ D1,C2 ⊑ D2, . . . ,Cn ⊑ Dn} can be transformed
to a single equivalent axiom: ⊤ ⊑ CT , where

CT = (¬C1 ⊔ D1) ⊓ (¬C2 ⊔ D2) ⊓ · · · ⊓ (¬Cn ⊔ Dn).

Concept CT is called the internalisation of TBox T
An interpretation I is a model of a TBox T (I |= T) iff each element of
the domain belongs to the CT internalisation concept

This observation can be used in the tableaux reasoning algorithm,
which tries to build a model
To build a model which satisfies the TBox T we add the concept CT
to the label of each node of the tableau

Semantic and Declarative Technologies 2024 Fall Semester 412 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Handling TBoxes in the tableau algorithm – problems

Example: Consider the task of checking the satisfiability of concept
Blonde wrt. TBox {⊤ ⊑ ∃hasFriend.Blonde}

Concept ∃hasFriend.Blonde will appear in each node
thus the ∃-rule will generate an infinite chain of hasFriend successors

To prevent the algorithm from looping the notion of blocking is introduced.

Semantic and Declarative Technologies 2024 Fall Semester 413 / 414

The Semantic Web Further reading: the ALCN tableau algorithm

Blocking

Definition: Node y is blocked by node x , if y is a descendant of x and the
blocking condition L(y) ⊆ L(x) holds (subset blocking).
When y is blocked, we disallow generator rules
(∃- and ⩾-rules, creating new successors for y)
This solves the termination problem, but raises the following issue

How can one get an interpretation from the tableau?
Solution (approximation, for ALC only): identify blocked node y with
blocking node x , i.e. redirect the edge pointing to y so that it points to
x . This creates a model, as

all concepts in the label of y are also present in x
thus x belongs to all concepts y is expected to belong to

Is Happy ⊓ Blonde satisfiable wrt. TBox {⊤ ⊑ ∃hasFriend.Blonde} ?
x o {Happy,Blonde,∃hasFriend.Blonde}

hasFriend |
y o {Blonde, ∃hasFriend.Blonde}

x blocks y , the tableau is clash-free and complete
The model:
∆I = {x};HappyI = {x};BlondeI = {x};hasFriendI = {⟨ x , x ⟩}

Semantic and Declarative Technologies 2024 Fall Semester 414 / 414

