Contents

The Semantic Web

Introducing Semantic Technologies

- An example of the Semantic Web approach
- An overview of Description Logics
- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

Semantic Technologies

- Semantics = meaning
- Semantic Technologies = technologies building on (formalized) meaning
- Declarative Programming as a semantic technology
 - A procedure definition describes its intended meaning
 - e.g. intersect(L1, L2) :- member(X, L1), member(X, L2). Lists L1 and L2 intersect if there exists an X, which is a member of both L1 and L2.
 - The execution of a program can be viewed as a process of deduction
- The main goal of the Semantic Web (SW) approach:
 - make the information on the web processable by computers
 - machines should be able to understand the web, not only read it
- Achieving the vision of the Semantic Web
 - Add (computer processable) meta-information to the web
 - Formalize background knowledge build so called ontologies
 - Develop reasoning algorithms and tools

The vision of the Semantic Web

• The Semantic Web layer cake - Tim Berners-Lee

The Semantic Web

- The goal: making the information on the web processable by computers
- Achieving the vision of the Semantic Web
 - Add meta-information to web pages, e.g.
 - (AIT hasLocation Budapest)
 - (AIT hasTrack Track:Foundational-courses)
 - (Track:Foundational-courses hasCourse Semantic-and-declarative...)
 - Formalise background knowledge build so called terminologies
 - hierarchies of notions, e.g.
 - a University is a (subconcept of) Inst-of-higher-education,
 - the hasFather relationship is a special case of hasParent
 - definitions and axioms, e.g.
 - a Father is a Male Person having at least one child
 - Develop reasoning algorithms and tools
- Main topics
 - Description Logic, the maths behind the Semantic Web is the basis of Web Ontology Languages OWL 1 & 2 (W3C standards)
 - A glimpse at reasoning algorithms for Description Logic

Contents

The Semantic Web

Introducing Semantic Technologies

An example of the Semantic Web approach

- An overview of Description Logics
- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

First Order Logic (recap)

- Syntax:
 - non-logical ("user-defined") symbols: predicates and functions, including constants (function symbols with 0 arguments)
 - terms (refer to individual elements of the universe, or interpretation),
 e.g. fatherOf(Susan)
 - formulas (that hold or do not hold in a given interpretation), e.g.

 $\varphi = \forall x. (Optimist(fatherOf(x)) \rightarrow Optimist(x))$

- Semantics:
 - determines if a closed formula φ is true in an interpretation I: I ⊨ φ
 (also read as: I is a model of φ)
 - an interpretation *I* consists of a domain ∆ and a mapping from non-logical symbols (e.g. *Optimist*, *fatherOf*, *Susan*) to their meaning
 - semantic consequence: S ⊨ α means: if an interpretation is a model of all formulas in the set S, then it is also a model of α (note that the symbol ⊨ is overloaded)
- Deductive system (also called proof procedure): an algorithm to deduce a consequence α of a set of formulas S: S ⊢ α
 - example: resolution

351/414

Soundness, completeness and decidability (recap)

- A deductive system is **sound** if $S \vdash \alpha \Rightarrow S \models \alpha$ (deduces only truths).
- A deductive system is **complete** if $S \models \alpha \Rightarrow S \vdash \alpha$ (deduces all truths).
- Resolution is a sound and complete deductive system for FOL
- Kurt Gödel was first to show such a system: Gödel's completeness theorem: there is a sound and complete deductive system for FOL
- FOL is not decidable: no decision procedure for the question
 "does S imply α (S ⊢ α)?" (Gödel's completeness theorem ensures that if
 the answer is "yes", then there exists a proof of α from S; but if the
 answer is "no", we have no guarantees this is called semi-decidability)
- Developers of the Semantic Web strive for using decidable languages
 - for languages with a sound and complete proof procedure
- Semantic Web languages are based on Description Logics, which are decidable sublanguages of FOL, i.e. there is an algorithm that delivers a yes or no answer to the question "does *S* imply α "

Ontologies

- Ontology: computer processable description of knowledge
- Early ontologies include classification system (biology, medicine, books)

- Entities in the Web Ontology Language (OWL):
 - classes describe sets of objects (e.g. optimists)
 - properties (attributes, slots) describe binary relationships (e.g. has parent)
 - objects correspond to real life objects (e.g. people, such as Susan, her parents, etc.)

Knowledge Representation

- Natural Language:
 - Someone having a non-optimist friend is bound to be an optimist.
 - Susan has herself as a friend.
- First order Logic (unary predicate, binary predicate, constant):
 - $\forall x.(\exists y.(\mathsf{hasFriend}(x,y) \land \neg \mathsf{opt}(y)) \to \mathsf{opt}(x))$
 - AsFriend(Susan, Susan)
- Description Logics (concept, role, individual):
 - (∃hasFriend.¬ Opt) ⊑ Opt (GCI Gen. Concept Inclusion axiom)
 hasFriend(Susan, Susan) (role assertion)
- Web Ontology Language (Manchester syntax)⁵ (class, property, object):
 - (hasFriend some (not Opt)) SubClassOf: Opt Those having some not Opt friends must be Opt
 - hasFriend(Susan,Susan)

(GCI – Gen. Class Inclusion axiom) (object property assertion)

⁵protegeproject.github.io/protege/class-expression-syntax

A sample ontology to be entered into Protégé

- There is a class of Animals, some of which are Male, some are Female.
- In the second second
- There are Animals that are Human.
- There are Humans who are Optimists.
- There is a relationship hasP meaning "has parent". Relations hasFather and hasMother are sub-relations (special cases) of hasP.
- Let's define the class C1 as those who have an optimistic parent.
- State that everyone belonging to C1 is Optimistic.
- State directly that anyone having an Optimistic parent is Optimistic.
- There is a relation hasF, denoting "has friend". State that someone having a non-Optimistic friend must be Optimistic.
- There are individuals: Susan, and her parents Mother and Father.
- Mother has Father as her friend.

The sample ontology in Description Logic and OWL/Protégé

English

6

- Male is a subclass of Animal. Female is a subclass of Animal.
- 2 Male and Female are disjoint.
- Buman is a subclass of Animal.
- Optimist is a subclass of Human.
- hasFather is a subprop. of hasP. hasMother is a subprop. of hasP. C1 = those having an Opt parent.
- Everyone in C1 is Opt.
- Children of Opt parents are Opt.
- Those with a non-Opt friend are Opt.
- Susan has parents Mother and Father.
- Mother has Father as a friend.

Description Logic

 $\mathsf{Female}\sqsubseteq\mathsf{Animal}$

Male $\sqsubseteq \neg$ Female

- Human 🖵 Animal
- Opt 드 Human
- hasFather \sqsubseteq hasP hasMother \sqsubset hasP

 $C1 \equiv \exists hasP . Opt$

C1 ⊆ Opt ∃ hasP . Opt ⊆ Opt ∃ hasF . ¬Opt ⊆ Opt hasP(Susan, Mother) hasP(Susan, Father) hasF(Mother, Father) OWL (Manchester syntax) Male SubClassOf: Animal Female SubClassOf: Animal Male DisjointWith: Female Human SubClassOf: Animal Opt SubClassOf: Human hasFather SubPropertyOf: hasP hasMother SubPropertyOf: hasP C1 EquivalentTo: hasP some Opt

C1 SubClassOf: Opt hasP some Opt SubClassOf: Opt hasF some not Opt SubClassOf: Opt hasP(Susan, Mother) hasP(Susan, Father) hasF(Mother, Father)

(In Protégé, select the "save as" format as "Latex syntax" to obtain DL notation.)

Contents

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach

An overview of Description Logics

- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

Description Logic (DLs) - overview

- DL, a subset of FOL, is the mathematical background of OWL
 - Signature relation and function symbols allowed in DL
 - concept name (A) unary predicate symbol (cf. OWL class)
 - role name (R) binary predicate symbol (cf. OWL property)
 - individual name (a,...) constant symbol (cf. OWL object)
 - No non-constant function symbols, no preds of arity > 2, no vars
 - Concept names and concept expressions represent sets, e.g. ∃hasParent.Optimist – the set of those who have an optimist parent
 - Terminological axioms (TBox) state background knowledge
 - A simple axiom using the DL language ALE: ∃hasParent.Optimist □ Optimist – the set of those who have an optimist parent is a subset of the set of optimists
 - Translation to FOL: $\forall x.(\exists y.(hasP(x, y) \land Opt(y)) \rightarrow Opt(x))$
 - Assertions (ABox) state facts about individual names
 - Example: Optimist(JACOB), hasParent(JOSEPH, JACOB)
 - A consequence of these TBox and ABox axioms is: Optimist(JOSEPH)
 - DLs behind OWL 1 and OWL 2 are decidable: there are bounded time algorithms for checking if a set of axioms implies a statement.

Some further examples of terminological axioms

- (1) A Mother is a Person, who is a Female and who has(a)Child. Mother \equiv Person \sqcap Female \sqcap \exists hasChild. \top
- (2) A Tiger is a Mammal.

Tiger ⊑ Mammal

(3) Children of an Optimist Person are Optimists, too.

Optimist ⊓ Person ⊑ ∀hasChild.Optimist

(4) Childless people are Happy.

 \forall hasChild. $\perp \sqcap$ Person \sqsubseteq Happy

- (5) Those in the relation hasChild are also in the relation hasDescendant. hasChild hasDescendant
- (6) The relation hasParent is the inverse of the relation hasChild.

hasParent=hasChild-

(7) The hasDescendant relationship is transitive.

Trans(hasDescendant)

Description Logics – why the plural?

- These logic variants were progressively developed in the last two decades
- As new constructs were proved to be "safe", i.e. keeping the logic decidable, these were added
- We will start with the very simple language \mathcal{AL} , extend it to \mathcal{ALE} , \mathcal{ALU} and \mathcal{ALC}
- As a side branch we then define \mathcal{ALCN}
- We then go back to ALC and extend it to languages S, SH, SHI and SHIQ (which encompasses ALCN)
- We briefly tackle further extensions \mathcal{O} , (**D**) and \mathcal{R}
- OWL 1, published in 2004, corresponds to SHOIN(D)
- OWL 2, published in 2012, corresponds to SROIQ(D)

Contents

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics

• The ALCN language family

- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

Overview of the \mathcal{ALCN} language

- In \mathcal{ALCN} a statement (axiom) can be
 - a subsumption (inclusion), e.g. Tiger \sqsubseteq Mammal, or
 - an equivalence, e.g. Woman = Female □ Person, Mother = Woman □ ∃hasChild. ⊤
- In general, an \mathcal{ALCN} axiom can take these two forms:
 - subsumption: $C \sqsubseteq D$
 - equivalence: $C \equiv D$, where C and D are concept expressions
- A concept expression C denotes a set of objects (a subset of the Δ universe of the interpretation), and can be:
 - an atomic concept (or concept name), e.g. Tiger, Female, Person
 - a composite concept, e.g. Female □ Person, ∃hasChild.Female
 - composite concepts are built from atomic concepts and atomic roles (also called role names) using some constructors (e.g. □, ⊔, ∃, etc.)
- We first introduce language \mathcal{AL} , that allows a minimal set of constructors (all examples on this page are valid \mathcal{AL} concept expressions)
- Next, we discuss richer extensions named $\mathcal{U},\,\mathcal{E},\,\mathcal{C},\,\mathcal{N}$

362/414

The syntax of the \mathcal{AL} language

Language \mathcal{AL} (Attributive Language) allows the following concept expressions, also called concepts, for short:

A is an atomic concept, C, D are arbitrary (possibly composite) concepts R is an atomic role

DL concept	OWL class	Name	Informal definition
A	A (class name)	atomic concept	those in A
Т	owl:Thing	top	the set of all objects
1	owl:Nothing	bottom	the empty set
$\neg A$	not A	atomic negation	those not in A
$C \sqcap D$	C and D	intersection	those in both C and D
∀R.C	R only C	value restriction	those whose all <i>R</i> s belong to <i>C</i>
∃ R .⊤	R some owl:Thing	limited exist. restr.	those having at least one R

Examples of AL concept expressions:

Person □ ¬Female	Person and not Female	
Person □ ∀hasChild.Female	Person and (hasChild only Female)	
Person □ ∃hasChild.⊤	Person and (hasChild some owl:Thing))

The semantics of the AL language (as a special case of FOL)

- An interpretation \mathcal{I} is a mapping:
 - $\Delta^{\mathcal{I}} = \Delta$ is the universe, the **nonempty** set of all individuals/objects
 - for each concept/class name $A, A^{\mathcal{I}}$ is a (possibly empty) subset of Δ
 - for each role/property name $R, R^{\mathcal{I}} \subseteq \Delta \times \Delta$ is a binary relation on Δ
- The semantics of \mathcal{AL} extends \mathcal{I} to composite concept expressions, i.e. describes how to "calculate" the meaning of arbitrary concept exprs:

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg A)^{\mathcal{I}} &=& \Delta \setminus A^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta | \forall b. (\langle a, b \rangle \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}})\} \\ (\exists R.\top)^{\mathcal{I}} &=& \{a \in \Delta | \exists b. \langle a, b \rangle \in R^{\mathcal{I}}\} \end{array}$$

• Finally we define how to obtain the truth value of an axiom:

$$\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \\ \mathcal{I} \models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}}$$

364/414

The \mathcal{AL} language: limitations

Recall the elements of the language AL:

DL concept	OWL class	Name	Informal definition
A	A (class name)	atomic concept	those in A
Т	owl:Thing	top	the set of all objects
L	owl:Nothing	bottom	the empty set
$\neg A$	not A	atomic negation	those not in A
$C \sqcap D$	C and D	intersection	those in both C and D
∀R.C	R only C	value restriction	those whose all <i>R</i> s belong to <i>C</i>
$\exists R. \top$	R some owl:Thing	limited exist. restr.	those having at least one R

What is missing from AL?

- We can specify the intersection of two concepts, but not the union, e.g. those who are either blue-eyed or tall.
- ∃*R*.⊤ we cannot describe e.g. those having a female child. Remedy: allow for full exist. restr., e.g. ∃hasCh.*Female*
- $\neg A$ negation can be applied to atomic concepts only. Remedy: full negation, $\neg C$, where C can be non-atomic, e.g. $\neg (U \sqcap V)$

The \mathcal{ALCN} language family: extensions $\mathcal{U},\,\mathcal{E},\,\mathcal{C},\,\mathcal{N}$

Further concept constructors, OWL equivalents shown in [square brackets]:

- Union: $C \sqcup D$, [C or D] those in either C or D $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- Full existential restriction: ∃R.C, [R some C]

 those who have at least one R belonging to C
 (∃R.C)^I = {a ∈ Δ^I |∃b.⟨a,b⟩ ∈ R^I ∧ b ∈ C^I}
- (Full) negation: $\neg C$, [not C] those who do not belong to C $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
- Unqualified number restrictions: $(\leq nR)$, $[R \max n \text{ owl:Thing}]$ and $(\geq nR)$, $[R \min n \text{ owl:Thing}]$
 - those who have at most/at least n R-related objects

$$(\leqslant n R)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \right\} \mid \le n \right\}$$
$$(\geqslant n R)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \right\} \mid \ge n \right\}$$
$$(\mathcal{N})$$

Example: Person □ ((≤1 hasCh) □ (≥3 hasCh)) □ ∃hasCh.Female Person and (hasCh max 1 or hasCh min 3) and (hasCh some Female) Note that qualified number restrictions, e.g., "those having at least 3 blue-eyed children" are not covered by the extension N.

< • • • 0 •

Semantic and Declarative Technologies

(U)

 (\mathcal{E})

 (\mathcal{C})

Summary table of the ALCUEN language

DL	OWL	Name	Informal definition	
A	A	atomic concept	those in A	\mathcal{AL}
¬A	not A	full negation	those not in A (cf. C)	$ \mathcal{AL} $
Т	owl:Thing	top	the set of all objects	$ \mathcal{AL} $
1	owl:Nothing	bottom	the empty set	$ \mathcal{AL} $
$C \sqcap D$	C and D	intersection	those in both C and D	$ \mathcal{AL} $
∃ R .⊤	R some	existential restr.	those having an R (cf. \mathcal{E})	$ \mathcal{AL} $
∀R.C	R only C	value restriction	those whose all <i>R</i> s belong to <i>C</i>	\mathcal{AL}
$\neg C$	not C	full negation	those not in C	С
$C \sqcup D$	C or D	union	those in either C or D	U
∃R.C	R some C	existential restr.	those with an R belonging to C	E
$(\leq nR)$	$R \max n \text{ o:T}$	unq. numb. restr.	those having at most <i>n R</i> s	\mathcal{N}
(<i>≥ nR</i>)	$R \min n \text{ o:T}$	unq. numb. restr.	those having at least <i>n R</i> s	\mathcal{N}

Rewriting \mathcal{ALCN} to first order logic

- Concept expressions map to predicates with one argument, e.g. Tiger \Rightarrow Tiger(x) Person \Rightarrow Person(x) Mammal \Rightarrow Mammal(x) Female \Rightarrow Female(x)
- Simple connectives ⊓, ⊔, ¬ map to boolean operations ∧, ∨, ¬, e.g. Person ⊓ Female ⇒ Person(x) ∧ Female(x) Person ⊔ ¬Mammal ⇒ Person(x) ∨ ¬Mammal(x)
- An axiom $C \sqsubseteq D$ is rewritten as $\forall x.(C(x) \rightarrow D(x))$, e.g. Tiger \sqsubseteq Mammal $\Longrightarrow \forall x.(Tiger(x) \rightarrow Mammal(x))$
- An axiom $C \equiv D$ is rewritten as $\forall x.(C(x) \leftrightarrow D(x))$, e.g. Woman \equiv Person \sqcap Female $\implies \forall x.(Woman(x) \leftrightarrow Person(x) \land Female(x))$
- Concept constructors involving a quantifier ∃ or ∀ are rewritten to an appropriate quantified formula, where a role name is mapped to a binary predicate (a predicate with two arguments), e.g.

 $\exists hasParent.Opt \sqsubseteq Opt \Longrightarrow \forall x.(\exists y.(hasParent(x, y) \land Opt(y)) \rightarrow Opt(x))$

Rewriting \mathcal{ALCN} to first order logic, example

- Consider $C = \text{Person} \sqcap ((\leq 1 \text{ hasCh}) \sqcup (\geq 3 \text{ hasCh})) \sqcap \exists \text{hasCh}.\text{Female}$
- Let's outline a predicate C(x) which is true when x belongs to concept C: C(x) ↔ Person(x) ∧ (hasAtMost1Child(x) ∨ hasAtLeast3Children(x)) ∧ hasFemaleChild(x)
- Class practice:
 - Define the FOL predicates *hasAtMost1Child(x)*, *hasAtLeast3Children(x)*, *hasFemaleChild(x)*
 - Additionally, define the following FOL predicates:
 - hasOnlyFemaleChildren(x), corresponding to the concept ∀hasCh.Female
 - hasAtMost2Children(x), corresponding to the concept
 (≤ 2 hasCh)

General rewrite rules $\mathcal{ALCN} \rightarrow \text{FOL}$

Each concept expression can be mapped to a FOL formula:

- Each concept expression C is mapped to a formula Φ_C(x) (expressing that x belongs to C).
- Atomic concepts (A) and roles (R) are mapped to unary and binary predicates A(x), R(x, y).
- \Box , \Box , and \neg are transformed to their counterpart in FOL (\land , \lor , \neg), e.g. • $\Phi_{C \sqcap D}(x) = \Phi_{C}(x) \land \Phi_{D}(x)$
- Mapping further concept constructors:

$$\begin{array}{lll} \Phi_{\exists R.C}(x) &=& \exists y. \left(R(x,y) \land \Phi_{C}(y)\right) \\ \Phi_{\forall R.C}(x) &=& \forall y. \left(R(x,y) \rightarrow \Phi_{C}(y)\right) \\ \Phi_{\geqslant nR}(x) &=& \exists y_{1}, \ldots, y_{n}. \left(R(x,y_{1}) \land \cdots \land R(x,y_{n}) \land \bigwedge_{i < j} y_{i} \neq y_{j}\right) \\ \Phi_{\leqslant nR}(x) &=& \forall y_{1}, \ldots, y_{n+1}. \left(R(x,y_{1}) \land \cdots \land R(x,y_{n+1}) \rightarrow \bigvee_{i < j} y_{i} = y_{j}\right) \end{array}$$

Equivalent languages in the \mathcal{ALCN} family

- Language AL can be extended by arbitrarily choosing whether to add each of UECN, resulting in AL[U][E][C][N].
 Do these 2⁴ = 16 languages have different expressive power?
 Two concept expressions are said to be equivalent, if they have the same meaning, in all interpretations.
 Languages L₁ and L₂ have the same expressive power (L₁ = L₂), if any
 - expression of \mathcal{L}_1 can be mapped into an equivalent expression of $\mathcal{L}_2,$ and vice versa.
- As a preparation for discussing the above let us recall that these axioms hold in all models, for arbitrary concepts *C* and *D* and role *R*:

Equivalent languages in the \mathcal{ALCN} family

Let us show that ALUE and ALC are equivalent:

- As $C \sqcup D \equiv \neg(\neg C \sqcap \neg D)$ and $\exists R.C \equiv \neg \forall R.\neg C$, union and full existential restriction can be eliminated by using (full) negation. That is, to each ALUE concept expression there exists an equivalent ALC expression.
- The other way, each *ALC* concept can be transformed to an equivalent *ALUE* expression, by moving negation inwards, until before atomic concepts, and removing double negation; using the axioms from the right hand column on the previous slide
- Thus \mathcal{ALUE} and \mathcal{ALC} have the same expressive power, and so have the intermediate languages:

 $\mathcal{ALC}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCU}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCUE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALUE}(\mathcal{N}).$

Further remarks:

- As \mathcal{U} and \mathcal{E} is subsumed by \mathcal{C} , we will use \mathcal{ALC} to denote the language allowing \mathcal{U}, \mathcal{E} and \mathcal{C}
- It can be shown that any two of

 $\mathcal{AL}, \mathcal{ALU}, \mathcal{ALE}, \mathcal{ALC}, \mathcal{ALN}, \mathcal{ALUN}, \mathcal{ALEN}, \mathcal{ALCN} \text{ have different expressive power}$

< • • • **•** •

Another \mathcal{ALC} example requiring case analysis

• Some facts about the Oedipus family (ABox A_{OE}):

hasChild(IOCASTE,OEDIPUS) hasChild(IOCASTE,POLYNEIKES) hasChild(OEDIPUS,POLYNEIKES) hasChild(POLYNEIKES,THERSANDROS)

Patricide (OEDIPUS)

```
(¬Patricide) (THERSANDROS)
```

• Let us call a person "special" if they have a child who is a patricide and who, in turn, has a child who is not a patricide:

Special $\equiv \exists$ hasChild.(Patricide $\sqcap \exists$ hasChild. \neg Patricide)

- Let TBox T_{OE} contain the above axiom only.
- Consider the instance check "Is locaste special?": $\mathcal{A}_{OE} \models_{\mathcal{T}_{OE}}$ Special(IOCASTE)?
- The answer is "yes", but proving this requires case analysis

Contents

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The ALCN language family

TBox reasoning

- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

A special case of ontology: definitional TBox

• T_{fam} : a sample definitional TBox for family relationships

Woman	\equiv	Person 🗆 Female
Man	\equiv	Person □ ¬Woman
Mother	\equiv	Woman □ ∃hasChild.Person
Father	≡	Man ⊓ ∃hasChild.Person
Parent	\equiv	Father U Mother
Grandmother	\equiv	Woman □ ∃hasChild.Parent

- A TBox is definitional if it contains equivalence axioms only, where the left hand sides are distinct concept names (atomic concepts)
- The concepts on the left hand sides are called name symbols
- The remaining atomic concepts are called base symbols, e.g. in our example the two base symbols are Person and Female.
- In a definitional TBox the meanings of name symbols can be obtained by evaluating the right hand side of their definition

Interpretations and semantic consequence

Recall the definition of assigning a truth value to TBox axioms in an interpretation \mathcal{I} :

 $\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \\ \mathcal{I} \models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}}$

Based on this we introduce the notion of "semantic consequence" exactly in the same way as for FOL

- - $\mathcal{I} \models \mathcal{T}$ (\mathcal{I} satisfies \mathcal{T}, \mathcal{I} is a model of \mathcal{T}) iff for each $\alpha \in \mathcal{T}, \mathcal{I} \models \alpha$, i.e. \mathcal{I} is a model of α
- We now overload even further the " \models " symbol:
 - $\mathcal{T} \models \alpha$ (read axiom α is a semantic consequence of the TBox \mathcal{T}) iff
 - all models of ${\cal T}$ are also models of $\alpha,$ i.e.
 - for all interpretations \mathcal{I} , if $\mathcal{I} \models \mathcal{T}$ holds, then $\mathcal{I} \models \alpha$ also holds

TBox reasoning tasks

Reasoning tasks on TBoxes only (i.e. no ABoxes involved)

- A base assumption: the TBox is **consistent** (does not contain a contradiction), i.e. it has a model
- **Subsumption**: concept *C* is subsumed by concept *D* wrt. a TBox \mathcal{T} , iff $\mathcal{T} \models (C \sqsubseteq D)$, i.e. $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds in all \mathcal{I} models of $\mathcal{T} (C \sqsubseteq_{\mathcal{T}} D)$ e.g. $\mathcal{T}_{fam} \models (Grandmother \sqsubseteq Parent)$ (recall that \mathcal{T}_{fam} is the family TBox)
- **Equivalence**: concepts *C* and *D* are equivalent wrt. a TBox \mathcal{T} , iff $\mathcal{T} \models (C \equiv D)$, i.e. $C^{\mathcal{I}} = D^{\mathcal{I}}$ holds in all \mathcal{I} models of $\mathcal{T} (C \equiv_{\mathcal{T}} D)$. e.g. $\mathcal{T}_{fam} \models (Parent \equiv Person \sqcap \exists hasChild.Person)$
- **Disjointness**: concepts *C* and *D* are disjoint wrt. a TBox \mathcal{T} , iff $\mathcal{T} \models (C \sqcap D \equiv \bot)$, i.e. $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ holds in all \mathcal{I} models of \mathcal{T} . e.g. $\mathcal{T}_{fam} \models (Woman \sqcap Man) \equiv \bot$
- Note that all these tasks involve two concepts, C and D

Reducing reasoning tasks to testing satisfiability

- We now introduce a simpler, but somewhat artificial reasoning task: checking the satisfiability of a concept
- Satisfiability: a concept C is satisfiable wrt. TBox T, iff there is a model I of T such that C^I is non-empty (hence C is non-satisfiable wrt. T iff in all I models of T C^I is empty)
- We will reduce each of the earlier tasks to checking non-satisfiability
- E.g. to prove: Woman ⊑ Person, let's construct a concept C that contains all counter-examples to this statement: C = Woman □ ¬Person
- If we can prove that *C* has to be empty, i.e. there are no counter-examples, then we have proven the subsumption
- Assume we have a method for checking satisfiability. Other tasks can be reduced to this method (usable in *ALC* and above):
 - *C* is subsumed by $D \iff C \sqcap \neg D$ is not satisfiable
 - *C* and *D* are equivalent $\iff (C \sqcap \neg D) \sqcup (D \sqcap \neg C)$ is not satisfiable
 - C and D are disjoint \iff C \sqcap D is not satisfiable
- In simpler languages, not supporting full negation, such as ALN, all reasoning tasks can be reduced to subsumption

Contents

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

The SHIQ Description Logic language – an overview

Expanding the abbreviation SHIQ

- $S \equiv ALC_{R^+}$ (language ALC extended with transitive roles), i.e. one can state that certain roles (e.g. hasAncestor) are transitive.
- *H* ≡ role hierarchies. Adds statements of the form *R* ⊑ *S*,
 e.g. if a pair of objects belongs to the hasFriend relationship, then it
 must belong to the knows relationship too: hasFriend ⊑ knows
 (could be stated in English as: everyone knows their friends)
- *I* ≡ inverse roles: allows using role expressions *R*[−] to denote the inverse of role *R*, e.g. hasParent ≡ hasChild[−]
- $Q \equiv$ qualified number restrictions (a generalisation of N): allows the use of concept expressions ($\leq nR.C$) and ($\geq nR.C$) e.g. those who have at least 3 tall children : (\geq 3 hasChild.Tall)

SHIQ language extensions – the details

- Language $S \equiv ALC_{R^+}$, i.e, ALC plus transitivity (cf. the index $_{R^+}$)
 - Concept axioms and concept expressions same as in ALC
 - An additional axiom type: **Trans**(*R*) declares role *R* to be transitive
- Extension \mathcal{H} introducing role hierarchies
 - Adds role axioms of the form $R \sqsubseteq S$ and $R \equiv S$
 - $(R \equiv S \text{ can be eliminated, replacing it by } R \sqsubseteq S \text{ and } S \sqsubseteq R)$
 - In \mathcal{SH} it is possible describe a weak form of transitive closure:

Trans(hasDescendant)

 $hasChild \sqsubseteq hasDescendant$

- This means that hasDescendant is a transitive role which includes hasChild
- What we cannot express in *SH* is that hasDescendant is the smallest such role. (This property cannot be described in FOL either.)

SHIQ language extensions – the details (2)

Extension \mathcal{I} – adding inverse roles

- Our first role constructor is -: *R*⁻ is the inverse of role *R*
- Example: consider role axiom hasChild⁻ \equiv hasParent and:

GoodParent \equiv \exists hasChild. $\top \sqcap \forall$ hasChild.Happy MerryChild $\equiv \exists$ hasParent.GoodParent

A consequence of the above axioms: MerryChild \Box Happy

• Multiple inverses can be eliminated: $(R^{-})^{-} \equiv R, ((R^{-})^{-})^{-} \equiv R^{-}, \dots$

SHIQ language extensions – the details (3)

- Extension Q qualified number restrictions generalizing extension N:
 - (≤ nR.C) the set of those who have at most n R-related individuals belonging to C, e.g.
 - $(\leq 2hasChild.Female)$ those with at most 2 daughters
 - $(\ge nR.C)$ those with at least n R-related individuals belonging to C
- A role is *simple* if it is not transitive and does not even have a transitive sub-role
- Important: roles appearing in number restrictions have to be simple. (This is because otherwise the decidability of the language would be lost.)
 - Given Trans(hasDesc), hasDesc is not simple.
 - If we add further role axioms: hasAnc = hasDesc⁻, hasAnc ⊑ hasBloodRelation, then hasBloodRelation is not simple
 - hasAnc is transitive because its inverse hasDesc is such
 - hasBloodRelation has the transitive hasAnc as its sub-role

\mathcal{SHIQ} syntax summary

Notation

- A atomic concept, C, C_i, D concept expressions
- R_A atomic role, R, R_i role expressions,
 - R_S simple role expression, i.e. a role with no transitive sub-role

Concept expressions

DL	OWL	Name	Informal definition	
A	A	atomic concept	those in A	\mathcal{AL}
Т	owl:Thing	top	the set of all objects	\mathcal{AL}
1	owl:Nothing	bottom	the empty set	\mathcal{AL}
$C \sqcap D$	${\cal C}$ and ${\cal D}$	intersection	those in both C and D	\mathcal{AL}
∀R.C	R only C	value restriction	those whose all <i>R</i> s belong to <i>C</i>	\mathcal{AL}
$C \sqcup D$	C or D	union	those in either C or D	U
∃R.C	R some C	existential restr.	those with an R belonging to C	E
$\neg C$	not C	full negation	those not in C	С
$(\leq nR_S)$	$R_S \max n C$	qualif. num. restr.	those with at most $n R_S$ s in C	Q
(≥nR _S)	$R_S \min n C$	qualif. num. restr.	those with at least $n R_S$ s in C	Q

SHIQ syntax summary (2)

The syntax of role expressions

R ightarrow	R_A	atomic role	(\mathcal{AL})
	R^{-}	inverse role	(\mathcal{I})

The syntax of terminological axioms

$$egin{array}{lll} T
ightarrow & C_1 \equiv C_2 \ & \mid & C_1 \sqsubseteq C_2 \ & \mid & R_1 \equiv R_2 \ & \mid & R_1 \sqsubseteq R_2 \ & \mid & \mathbf{Trans}(R) \end{array}$$

concept equivalence axiom concept subsumption axiom role equivalence axiom role subsumption axiom transitivity axiom

 (\mathcal{AL})

AL)

 (\mathcal{H})

 (\mathcal{H})

 (\mathcal{R}^+)

SHIQ semantics (ADVANCED)

• The semantics of concept expressions

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C_1 \sqcap C_2)^{\mathcal{I}} &=& C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}} \\ (C_1 \sqcup C_2)^{\mathcal{I}} &=& C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & \forall b. \langle a, b \rangle \in R^{\mathcal{I}} \rightarrow b \in C^{\mathcal{I}} \right\} \\ (\exists R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & \exists b. \langle a, b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \\ (\geqslant n R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \mid \geq n \right\} \\ (\leqslant n R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \mid \geq n \right\} \end{array}$$

• The semantics of role expressions

$$(\pmb{R}^-)^\mathcal{I} = \{ \langle \, \pmb{b}, \pmb{a} \,
angle \in \Delta^\mathcal{I} imes \Delta^\mathcal{I} \mid \langle \, \pmb{a}, \pmb{b} \,
angle \in \pmb{R}^\mathcal{I} \}$$

SHIQ semantics (2) (ADVANCED)

• The semantics of terminological axioms

• Read $\mathcal{I} \models T$ as: " \mathcal{I} satisfies axiom T" or as " \mathcal{I} is a model of T"

Negation normal form (NNF)

- Various normal forms are used in reasoning algorithms
- The tableau algorithms use NNF: only atomic negation allowed
- To obtain NNF, apply the following rules to subterms repeatedly while a subterm matching a left hand side can be found:

$$\neg \neg C \rightsquigarrow C$$

$$\neg (C \sqcap D) \rightsquigarrow \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \rightsquigarrow \neg C \sqcap \neg D$$

$$\neg (\exists R.C) \rightsquigarrow \forall R.(\neg C)$$

$$\neg (\forall R.C) \rightsquigarrow \exists R.(\neg C)$$

$$\neg (\leqslant nR.C) \rightsquigarrow (\geqslant kR.C) \text{ where } k = n + 1$$

$$\neg (\geqslant 1R.C) \rightsquigarrow \forall R.(\neg C)$$

$$\neg (\geqslant nR.C) \rightsquigarrow (\leqslant kR.C) \text{ if } n > 1, \text{ where } k = n - 1$$

Going beyond \mathcal{SHIQ}

- Extension O introduces nominals, i.e. concepts which can only have a single element. Example: {EUROPE} is a concept whose interpretation must contain a single element
 FullyEuropean ≡ ∀hasSite.∀hasLocation.{EUROPE}
- Extension (D): concrete domains, e.g. integers, strings etc, whose interpretation is fixed, cf. data properties in OWL
- The Web Ontology Language OWL 1 implements SHOIN(D)
- OWL 2 implements SROIQ(D)
- The main novelty in R wrt. H is the possibility to use role composition (○): hasParent ○ hasBrother ⊑ hasUncle i.e. one's parent's brother is one's uncle
- To ensure decidability, the use of role composition is seriously restricted (e.g. it is not allowed to have ≡ instead of ⊑ in the above example)

Contents

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The ALCN language family
- TBox reasoning
- The SHIQ language family

ABox reasoning

- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

The notion of ABox

• The ABox contains assertions about individuals, referred to by individual names *a*, *b*, *c* etc.

Convention: concrete individual names are written in ALL_CAPITALS

- concept assertions: C(a), e.g. Father(ALEX), $(\exists hasJob. \top)(BOB)$
- role assertions: *R*(*a*, *b*), e.g. hasChild(ALEX, BOB).
- Individual names correspond to constant symbols of first order logic
- The interpretation function has to be extended:
 - to each individual name a, $\mathcal I$ assigns $a^{\mathcal I}\in\Delta^{\mathcal I}$
- The semantics of ABox assertions is straightforward:
 - \mathcal{I} satisfies a concept assertion C(a) ($\mathcal{I} \models C(a)$), iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$,
 - \mathcal{I} satisfies a role assertion R(a, b) $(\mathcal{I} \models R(a, b))$, iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$,
 - *I* satisfies an ABox *A* (*I* ⊨ *A*) iff *I* satisfies all assertions in *A*, i.e. for all α ∈ *A*, *I* ⊨ α holds

Reasoning on ABoxes

- ABox \mathcal{A} is consistent wrt. TBox \mathcal{T} if and only if there is an interpretation \mathcal{I} which satisfies both \mathcal{A} and \mathcal{T} i.e. $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \models \mathcal{T}$
- Is the ABox {Mother(S), Father(S)} consistent wrt. an empty TBox?
- Is this ABox consistent wrt. the family TBox (slide 375)?
- Assertion α is said to be a consequence of the ABox \mathcal{A} wrt. TBox \mathcal{T} $(\mathcal{A} \models_{\mathcal{T}} \alpha)$:
 - whenever an interpretation \mathcal{I} satisfies both the ABox \mathcal{A} and the TBox \mathcal{T} ($\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \models \mathcal{T}$)
 - α is bound to hold in interpretation \mathcal{I} ($\mathcal{I} \models \alpha$)

Reasoning on ABoxes - example

• Let T refer to the family TBox from slide 375:

Woman	\equiv	Person 🗆 Female
Man	\equiv	Person ⊓ ¬Woman
Mother	\equiv	Woman □ ∃hasChild.Person
Father	\equiv	Man ⊓ ∃hasChild.Person
Parent	\equiv	Father 🗆 Mother
Grandmother	\equiv	Woman ⊓ ∃hasChild.Parent

• Consider the ABox \mathcal{A} :

hasChild(SAM, SUE) Person(SAM) Person(SUE) Person(ANN) hasChild(SUE, ANN) Female(SUE) Female(ANN)

- Which of the assertions below is a consequence of A wrt. T?
 - Mother(SUE)
 - Mother(SAM)
 - Mother(SAM)
 - Father(SAM)
 - (Mother⊔Father)(SAM)
 - (≤ 1 hasChild)(SAM)

ABoxes and databases

- An ABox may seem similar to a relational database, but
 - Querying a database uses the closed world assumption (CWA): is the query true in the world (interpretation) where the given and only given facts hold?
 - Contrastingly, ABox reasoning uses logical consequence, also called open world assumption (OWA): is it the case that the query holds in all interpretations satisfying the given facts
- At first one may think that with CWA one can always get more deduction possibilities
- However, case-based reasoning in OWA can lead to deductions not possible with CWA (e.g. Susan being optimistic)

394/414

Some important ABox reasoning tasks

- Instance check: Decide if assertion α is a consequence of ABox \mathcal{A} wrt. \mathcal{T} . Example: Check if Mother(SUE) holds wrt. the example ABox \mathcal{A} and the family TBox on slide 393.
- Instance retrieval:

Given a concept expression *C* find the set of all individual names *x* such that $A \models_{\mathcal{T}} C(x)$

Example: Find all individual names known to belong to the concept Mother

The optimists example as an ABox reasoning task

- Our earlier example of optimists:
 - (1) If someone has an optimistic parent, then she is optimistic herself.
 - If someone has a non-optimistic friend, then she is optimistic. (2)
 - (3) Susan's maternal grandfather has her maternal grandmother as a friend.
- Consider the following TBox T: $\exists hP Opt \Box Opt$ Ξ

(1)(2)

396/414

- Consider the following ABox A, representing (3): hP(S, SM)hP(SM, SMM) hP(SM, SMF) hF(SMF, SMM)
- An instance retrieval task: find the set of all individual names x such that $\mathcal{A} \models_{\mathcal{T}} \mathsf{Opt}(x)$

Contents

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

Tableau algorithms

- Various TBox and ABox reasoning tasks have been presented earlier
- In ALC and above, any TBox task can be reduced to checking satisfiability
- Principles of the ALCN tableau algorithm
 - It checks if a concept is satisfiable, by trying to construct a model
 - Uses NNF, i.e. "¬" can appear only in front of atomic concepts
 - The model is built through a series of transformations
- The data structure representing the model is called the tableau (state):
 - a directed graph
 - the vertices can be viewed as the domain of the interpretation
 - edges correspond to roles, each edge is labelled by a role
 - vertices are labelled with sets of concepts, to which the vertex is expected to belong
- Example: If a person has a green-eyed and a blonde child, does it follow that she/he has to have a child who is both green-eyed and blonde?
- Formalize the above task as a question in the Description Logic ALC: <u>Does the axiom (∃hC.B) □ (∃hC.G)</u>⊑∃hC.(B □ G) hold?⁶

 6 (hC = has child, B = blonde, G = green-eyed)

< • • • **•** •

An introductory example, using \mathcal{ALC}

- Question: Does the axiom $(\exists hC.B) \sqcap (\exists hC.G) \sqsubseteq \exists hC.(B \sqcap G) hold?$ (1)
- Transform to an unsatisfiability task (U ⊑ V ⇔ U □ ¬V is not satisfiable):
 C = (∃hC.B) □ (∃hC.G) □ ¬(∃hC.(B □ G)) is not satisfiable
- The neg. normal form of C is: $C_0 = (\exists hC.B) \sqcap (\exists hC.G) \sqcap \forall hC.(\neg B \sqcup \neg G)$
- Goal: build an interpretation *I* such that C₀^{*I*} ≠ Ø. Thus we try to have a b such that b ∈ (∃hC.B)^{*I*}, b ∈ (∃hC.G)^{*I*}, and b ∈ (∀hC.(¬B ⊔ ¬G))^{*I*}.
- From $b \in (\exists hC.B)^{\mathcal{I}} \implies \exists c \text{ such that } \langle b, c \rangle \in hC^{\mathcal{I}} \text{ and } c \in B^{\mathcal{I}}.$ Similarly, $b \in (\exists hC.G)^{\mathcal{I}} \implies \exists d$, such that $\langle b, d \rangle \in hC^{\mathcal{I}}$ and $d \in G^{\mathcal{I}}.$
- As *b* belongs to ∀hC.(¬B ⊔ ¬G), and both *c* and *d* are hC relations of *b*, we obtain constraints: *c* ∈ (¬B ⊔ ¬G)^{*I*} and *d* ∈ (¬B ⊔ ¬G)^{*I*}.
- $c \in (\neg B \sqcup \neg G)^{\mathcal{I}}$ means that either $c \in (\neg B)^{\mathcal{I}}$ or $c \in (\neg G)^{\mathcal{I}}$. Assuming $c \in (\neg B)^{\mathcal{I}}$ contradicts $c \in B^{\mathcal{I}}$. Thus we have to choose the option $c \in (\neg G)^{\mathcal{I}}$. Similarly, we obtain $d \in (\neg B)^{\mathcal{I}}$.

• We arrive at:
$$\Delta^{\mathcal{I}} = \{b, c, d\};$$

 $\mathbf{h}\mathbf{C}^{\mathcal{I}} = \{\langle b, c \rangle, \langle b, d \rangle\};$
 $\mathbf{B}^{\mathcal{I}} = \{c\}$ and $\mathbf{G}^{\mathcal{I}} = \{d\}.$
Here $b \in C_{1}^{\mathcal{O}}$, thus (1) does not hold.

hC hC d

Extending the example to \mathcal{ALCN}

- Question: If a person having at most one child has a green-eyed and a blonde child, does it follow that she/he has to have a child who is both green-eyed and blonde?
- DL question: (≤ 1hC) □ (∃hC.B) □ (∃hC.G) ⊆ ∃hC.(B □ G))
- Reformulation: "Is C not satisfiable?", where $C = (\leq 1hC) \sqcap (\exists hC.B) \sqcap (\exists hC.G) \sqcap \neg (\exists hC.(B \sqcap G))$
- Negation normal form:
 C₀ = (≤ 1hC) □ (∃hC.B) □ (∃hC.G) □ ∀hC.(¬B ⊔ ¬G))
- We first build the same tableau as for (1):

 (2)

- From (≤ 1hC)(b), hC(b, c), and hC(b, d) it follows that c = d has to be the case. However merging c and d results in an object being both B and ¬B which is a contradiction (clash)
- Thus we have shown that C₀ cannot be satisfied, and thus the answer to question (2) is yes.

< • • • **•** •

Contents

The Semantic Web

- Introducing Semantic Technologies
- An example of the Semantic Web approach
- An overview of Description Logics
- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN a simple example
- Further reading: the ALCN tableau algorithm

The \mathcal{ALCN} tableau algorithm for empty TBoxes – outline

- "Is C satisfiable?" \implies Let's build a model satisfying C, exhaustively.
- First, bring C to negation normal form C_0 .
- The main data structure, the tableau structure T = (V, E, L, I) where (V, E, L) is a finite directed graph (more about I later)
 - Nodes of the graph (V) can be thought of as domain elements.
 - Edges of the graph (*E*) represent role relationships between nodes.
 - $\bullet\,$ The labeling function ${\cal L}$ assigns labels to nodes and edges:
 - $\forall x \in V, \mathcal{L}(x) \subseteq sub(C_0)$, the set of subexpressions of C_0
 - $\forall \langle x, y \rangle \in E$, $\mathcal{L}(\langle x, y \rangle)$ is a role within *C* (in *SHIQ*: set of roles)
 - The initial tableau has a single node, the root: $(\{x_0\}, \emptyset, \mathcal{L}, \emptyset)$, where $\mathcal{L}(x_0) = \{C_0\}$. Here C_0 is called the root concept.
- The algorithm uses transformation rules to extend the tableau
- Certain rules are nondeterministic, creating a choice point; backtracking occurs when a trivial clash appears (e.g. both A and ¬A ∈ L(x))
- If a clash-free and complete tableau (no rule can fire) is reached \Longrightarrow

C is satisfiable.

• When the whole search tree is traversed $\implies C$ is not satisfiable.

Outline of the ALCN tableau algorithm (2)

- The tableau tree is built downwards from the root (edges are always directed downwards)
 - A node b is called an R-successor (or simply successor) of a iff there is an edge from a to b with R as its label, i.e. L(⟨a, b⟩) = R
- Handling equalities and inequalities
 - To handle ($\leq nR$) we need to merge (identify) nodes
 - In handling (≥ n R) we will have to introduce n R-successors which are pairwise non-identifiable (x ≠ y: x and y are not identifiable)
 - The component *I* of the tableau data structure *T* = (*V*, *E*, *L*, *I*) is a set of inequalities of the form *x* ≠ *y*

Transformation rules of the \mathcal{ALCN} tableau algorithm (1)

□-rule	
Condition:	$(\mathcal{C}_1 \sqcap \mathcal{C}_2) \in \mathcal{L}(x)$ and $\{\mathcal{C}_1, \mathcal{C}_2\} \not\subseteq \mathcal{L}(x)$
<i>New state</i> T' <i>:</i>	$\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_1, C_2\}.$
⊔-rule	
Condition:	$(\mathcal{C}_1 \sqcup \mathcal{C}_2) \in \mathcal{L}(x) ext{ and } \{\mathcal{C}_1, \mathcal{C}_2\} \cap \mathcal{L}(x) = \emptyset.$
New state T ₁ :	$\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_1\}.$
New state T ₂ :	$\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_2\}.$
∃-rule	
Condition:	$(\exists R.C) \in \mathcal{L}(x), x \text{ has no } R \text{-successor } y \text{ s.t. } C \in \mathcal{L}(y).$
New state T':	$V' = V \cup \{y\}$ (y is a new node),
	${\mathcal E}'={\mathcal E}\cup\{\langle x,y angle\},{\mathcal L}'(\langle x,y angle)={\mathcal R},{\mathcal L}'(y)=\{{\mathcal C}\}.$
∀- rule	
Condition:	$(\forall R.C) \in \mathcal{L}(x)$, x has an R-successor y s.t. $C \notin \mathcal{L}(y)$.
<i>New state</i> T' <i>:</i>	$\mathcal{L}'(\mathbf{y}) = \mathcal{L}(\mathbf{y}) \cup \{\mathbf{C}\}.$

Transformation rules of the \mathcal{ALCN} tableau algorithm (2)

≽-rule	
Condition:	$(\ge nR) \in \mathcal{L}(x)$ and x has no n R-successors such that any two are non-identifiable.
<i>New state</i> T':	$V' = V \cup \{y_1, \ldots, y_n\}$ (y _i new nodes),
	$E' = E \cup \{\langle x, y_1 \rangle, \ldots, \langle x, y_n \rangle\},\$
	$\mathcal{L}'(\langle x, y_i angle) = \textit{R}, \mathcal{L}'(y_i) = \emptyset, ext{for each } i = 1 \leq i \leq n,$
	$I' = I \cup \{y_i \neq y_j \mid 1 \le i < j \le n\}.$

Transformation rules of the ALCN tableau algorithm (3)

 $\begin{aligned} \leqslant \text{-rule} \\ \textbf{Condition:} & (\leqslant nR) \in \mathcal{L}(x) \text{ and } x \text{ has } R \text{-successors } y_1, \dots, y_{n+1} \\ \text{among which there are at least two identifiable nodes.} \\ \textbf{For each } i \text{ and } j, 1 \leq i < j \leq n+1, \text{ where } y_i \text{ and } y_j \text{ are identifiable:} \\ \textbf{New state } \textbf{T}_{ij} \textbf{:} & V' = V \setminus \{y_j\}, \mathcal{L}'(y_i) = \mathcal{L}(y_i) \cup \mathcal{L}(y_j), \\ E' = E \setminus \{\langle x, y_j \rangle\} \setminus \{\langle y_j, u \rangle | \langle y_j, u \rangle \in E\} \cup \\ \{\langle y_i, u \rangle | \langle y_j, u \rangle \in E\}, \\ \mathcal{L}'(\langle y_i, u \rangle) = \mathcal{L}(\langle y_j, u \rangle), \forall u \text{ such that } \langle y_j, u \rangle \in E, \\ I' = I[y_j \rightarrow y_i] \text{ (every occurrence of } y_j \text{ is replaced by } y_i). \end{aligned}$

The \mathcal{ALCN} tableau algorithm – further details

- There is clash at some node x of a tableau state iff
 - $\{\bot\} \subseteq \mathcal{L}(x);$ or
 - $\{A, \neg A\} \subseteq \mathcal{L}(x)$ for some atomic concept *A*; or
 - (≤ nR) ∈ L(x) and x has R-successors y₁,..., y_{n+1} where for any two successors y_i and y_i it holds that y_i ≠ y_i ∈ I.
- A tableau state is said to be complete, if no transformation rules can be applied at this state (there is no rule the conditions of which are satisfied)

The \mathcal{ALCN} tableau algorithm

In this version the algorithm handles a set of tableau states, one for each yet unexplored subtree of the search space.

- Intialise the variable $States = {T_0}$ (a singleton set containing the initial tableau state)
- 2 If there is $T \in \texttt{States}$ such that T contains a clash, remove T from <code>States</code> and continue at step 2
- If there is $T \in States$ such that T is complete (and clash-free), exit the algorithm, reporting satisfiability
- If States is empty, exit the algorithm, reporting non-satisfiability
- Schoose an arbitrary element T ∈ States and apply to T an arbitrary transformation rule, whose conditions are satisfied⁷ (don't care nondeterminism). Remove T from States, and add to States the NewStates resulting from the applied transformation, where NewStates = {T₁, T₂} for the □-rule, NewStates = {T_{ij} |···} for the ≤-rule, and NewStates = {T'} for all other (deterministic) rules. Continue at step 2

⁷Such a tableau state **T** and such a rule exist, because States is nonempty, and none of its elements is a complete tableau

The ALCN tableau algorithm – an example

Consider checking the satisfiability of concept C₀ (hC = has child, B = blonde):

$$C_0 = C_1 \sqcap C_2 \sqcap C_3 \sqcap C_4$$

$$C_1 = (\ge 2 hC)$$

$$C_2 = \exists hC.B$$

$$C_3 = (\le 2 hC)$$

$$C_4 = C_5 \sqcup C_6$$

$$C_5 = \forall hC.\neg B$$

$$C_6 = B$$

• The tableau algorithm completes with the answer: concept *C*₀ is satisfiable

• The interpretation constructed by the tableau algorithm: $\Delta^{\mathcal{I}} = \{b, c, d\}; \mathbf{h}\mathbf{C}^{\mathcal{I}} = \{\langle b, c \rangle, \langle b, d \rangle\}; \mathbf{B}^{\mathcal{I}} = \{b, c\}$

Extending the tableau algorithm to ABox reasoning

 To solve an ABox reasoning task (with no TBox), we transform the ABox to a graph, serving as the initial tableau state, e.g. for the IOCASTE family ABox:

hC(IOCASTE, OEDIPUS) hC(OEDIPUS, POLYNEIKES) Ptrc(OEDIPUS) hC(IOCASTE, POLYNEIKES) hC(POLYNEIKES, THERSANDROS) (¬ Ptrc)(THERSANDROS)

 Individual names become nodes of the graph, labelled by a set of concepts, and each role assertion generates an edge, labelled (implicitly) by hC:

Handling ABox axioms in the tableau algorithm (ctd.)

- Given the locaste ABox, we want to prove that IOCASTE is special, i.e. she belongs to the concept ∃hC.(Ptrc □ ∃hC.¬Ptrc)
- We do an indirect proof: assume that IOCASTE is not special, i.e. IOCASTE belongs to (∀hC.(¬Ptrc ⊔ ∀hC.Ptrc))
- Let's introduce an abbreviation: $ACP \equiv \forall hC.Ptrc$
- To prove that locaste is special, we add concept (1) to the IOCASTE node:

The tableau algorithm, with this initial state, will detect non-satisfiability

(1)

Handling TBox axioms in the tableau algorithm

- An arbitrary ALCN TBox can be transformed to a set of subsumptions of the form C ⊑ D (C ≡ D can be replaced by {C ⊑ D, D ⊑ C})
- C ⊆ D can be replaced by ⊤ ⊆ ¬C ⊔ D
 cf. (α → β) is the same as (¬α ∨ β)
- An arbitrary TBox {C₁ ⊆ D₁, C₂ ⊆ D₂,..., C_n ⊆ D_n} can be transformed to a single equivalent axiom: ⊤ ⊆ C_T, where

$$C_{\mathcal{T}} = (\neg C_1 \sqcup D_1) \sqcap (\neg C_2 \sqcup D_2) \sqcap \cdots \sqcap (\neg C_n \sqcup D_n).$$

- Concept $C_{\mathcal{T}}$ is called the internalisation of TBox \mathcal{T}
- An interpretation *I* is a model of a TBox *T* (*I* ⊨ *T*) iff each element of the domain belongs to the *C_T* internalisation concept
 - This observation can be used in the tableaux reasoning algorithm, which tries to build a model
 - To build a model which satisfies the TBox \mathcal{T} we add the concept $C_{\mathcal{T}}$ to the label of each node of the tableau

Handling TBoxes in the tableau algorithm - problems

- Example: Consider the task of checking the satisfiability of concept Blonde wrt. TBox {⊤ ⊑ ∃hasFriend.Blonde}
 - Concept ∃hasFriend.Blonde will appear in each node
 - thus the ∃-rule will generate an infinite chain of hasFriend successors
- To prevent the algorithm from looping the notion of blocking is introduced.

Blocking

- Definition: Node *y* is blocked by node *x*, if *y* is a descendant of *x* and the blocking condition L(y) ⊆ L(x) holds (*subset blocking*).
- When y is blocked, we disallow generator rules (∃- and ≥-rules, creating new successors for y)
- This solves the termination problem, but raises the following issue
 - How can one get an interpretation from the tableau?
 - Solution (approximation, for *ALC* only): identify blocked node *y* with blocking node *x*, i.e. redirect the edge pointing to *y* so that it points to
 - x. This creates a model, as
 - all concepts in the label of *y* are also present in *x*
 - thus x belongs to all concepts y is expected to belong to
- Is Happy □ Blonde satisfiable wrt. TBox {T ⊑ ∃hasFriend.Blonde}?

 $x \circ \{Happy, Blonde, \exists hasFriend.Blonde\}$

hasFriend

 $y \circ \{Blonde, \exists hasFriend.Blonde\}$

- x blocks y, the tableau is clash-free and complete
- The model:

$$\Delta^{\mathcal{I}} = \{x\}; \mathsf{Happy}^{\mathcal{I}} = \{x\}; \mathsf{Blonde}^{\mathcal{I}} = \{x\}; \mathsf{hasFriend}^{\mathcal{I}} = \{\langle x, x \rangle\}$$