
Part II

Declarative Programming with Prolog

1 Introduction to Logic

2 Declarative Programming with Prolog

3 Declarative Programming with Constraints

4 The Semantic Web

Declarative Programming with Prolog Prolog – first steps

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 86 / 414

Declarative Programming with Prolog Prolog – first steps

Prolog in the family of programming languages
Programming paradigms – programming languages

Imperative
Fortran
Algol
C
Java
Python
. . .

Declarative

Functional

LISP
ML
Haskell
. . .

Logic

SQL
Prolog
ConstraintxProg.
. . .Prolog

Birth date: 1972, designed by Alain Colmerauer, Robert Kowalski
First public implementation (Marseille Prolog):
1973, interpreter in Fortran, A. Colmerauer, Ph. Roussel
Second implementation (Hungarian Prolog):
1975, interpreter in CDL, Péter Szeredi

http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/szeredi.html

First compiler (Edinburgh Prolog, DEC-10 Prolog):
1977, David H. D. Warren (current syntax introduced)
Wiki: https://en.wikipedia.org/wiki/Prolog

Semantic and Declarative Technologies 2024 Fall Semester 87 / 414

http://dtai.cs.kuleuven.be/projects/ALP/newsletter/nov04/nav/articles/szeredi/szeredi.html
https://en.wikipedia.org/wiki/Prolog

Declarative Programming with Prolog Prolog – first steps

Prolog – PROgramming in LOGic: standard (Edinburgh) syntax

Standard syntax English Marseille syntax
has_p(b, c). % b has a parent c. +has_p(b, c).
has_p(b, d). % b has a parent d. +has_p(b, d).
has_p(d, e). % d has a parent e. +has_p(d, e).
has_p(d, f). % d has a parent f. +has_p(d, f).

% for all GC, GP, P holds
has_gp(GC, GP) :- % GC has grandparent GP if +has_gp(*GC, *GP)

has_p(GC, P), % GC has parent P and -has_p(*GC,*P)
has_p(P, GP). % P has parent GP. -has_p(*P,*GP).

FOL: ∀GC,GP. (has_gp(GC,GP)←∃P.(has_p(GC,P) ∧ has_p(P,GP)))

Program execution is SLD resolution, which can also be viewed as
pattern-based procedure invocation with backtracking
Dual semantics: declarative and procedural

Slogan: WHAT rather than HOW
(focus on the logic first, but then think over Prolog execution, too).

Semantic and Declarative Technologies 2024 Fall Semester 88 / 414

Declarative Programming with Prolog Prolog – first steps

Prolog clauses and predicates - some terminology

A Prolog program is a sequence of clauses
A clause represents a statement, it can be

a fact, of the form ‘head.’, e.g. has_parent(a,b).
a rule, of the form ‘head :- body. ’,
e.g. has_gp(GC, GP) :- has_p(GC, P), has_p(P, GP). (*)

Read ‘:-’ as ‘if’, ‘,’ as ‘and’
A fact can be viewed as having an empty body, or the body true

A body is comma-separated list of goals, also named calls
A head as well as a goal has the form name(argument,. . .), or just name
A functor of a head or a goal (or a term, in general) is F/N, where F is
the name of the term and N is the number of args (also called arity).
Example: the functor of the head of (*) is has_gp/2

The functor of a clause is the functor of its head.
The collection of clauses with the same functor is called a predicate or
procedure
Clauses of a predicate should be contiguous (you get a warning, if not)

Semantic and Declarative Technologies 2024 Fall Semester 89 / 414

Declarative Programming with Prolog Prolog – first steps

And what happened to the function symbols of FOL?

Recall: In FOL, atomic predicates have arguments that are terms, built
from variables using function symbols, e.g. lseq(plus(X ,2), times(Y ,Z))

In maths this is normally written in infix operator notation as X + 2 ≤ Y ·Z
In Prolog, graphic characters (and sequences of such) can be used for
both relation and function names: =<(+(X,2), *(Y,Z)) (1)
As a “syntactic sweetener”, Prolog supports operator notation in user
interaction, i.e. (1) is normally input and displayed as X+2 =< Y*Z.
However, (1) is the internal, canonical format
The built-in predicate (BIP) write/1 displays its arg. using operators,
while write_canonical/1 shows the canonical form
| ?- write(1 - 2 =< 3*4). =⇒ 1-2=<3*4
| ?- write_canonical(1 - 2 =< 3*4). =⇒ =<(-(1,2),*(3,4))

Notice that the predicate arguments are not evaluated, function names
act as data constructors (e.g. the op. - is used not only for subtraction)
Prolog is a symbolic language, e.g. symbolic derivation is easy
However, doing arithmetic requires special built-in predicates

Semantic and Declarative Technologies 2024 Fall Semester 90 / 414

Declarative Programming with Prolog Prolog – first steps

Prolog built-in predicates (BIPs) for unification and arithmetic

Unification. X = Y: unifies X and Y. Examples:
| ?- X = 1-2, Z = X*X. =⇒ X = 1-2, Z = (1-2)*(1-2)
| ?- U = X/Y, c(X,b)=c(a,Y). =⇒ U = a/b, X = a, Y = b
| ?- 1-2*3 = X*Y. =⇒ no (unification unsuccessful)

Arithmetic evaluation. X is A: A is evaluated, the result is unified with X. A
must be a ground arithmetic expression (ground: no free vars inside)
| ?- X = 2, Y is X*X+2. =⇒ X = 2, Y = 6 ?
| ?- X = 2, 7 is X*X+2. =⇒ no
| ?- X = 6, 7-1 is X. =⇒ no
| ?- X is f(1,2). =⇒ ’Type Error’

Arithmetic comparison. A =:= B: A and B are evaluated to numbers.
Succeeds iff the two numbers are equal.
(Both A and B have to be ground arithmetic expressions.)
| ?- X = 6, 7-1 =:= X. =⇒ X = 6
| ?- X = 6, X*X =:= (X+3)*(X-2). =⇒ X = 6
| ?- X = 6, X+3 =:= 2*(X-2). =⇒ no
| ?- X = 6, X+3 =:= 2*(Y-2). =⇒ ’Instantiation Error’

Further BIPs: A < B, A > B, A =< B (≤), A >= B (≥), A =\= B (̸=),
Semantic and Declarative Technologies 2024 Fall Semester 91 / 414

Declarative Programming with Prolog Prolog – first steps

An example: cryptarithmetic puzzle

Consider this cryptarithmetic puzzle: AD*AD = DAY.
Here each letter stands for a different digit, initial digits cannot be zeros.
Find values for the digits A, D, Y, so that the equation holds.
We’ll use a library predicate between/3 from library between.

% between(+N, +M, ?X): X is an integer such that N =< X =< M,
% Enumerates all such X values.

I/O mode notation for pred. arguments (used only in comments):
+: input (bound), -: output (unbound var.), ?: arbitrary.
To load a library: (in SICStus) include the line below in your program:
:- use_module(library(between)).

In SWI Prolog the predicate is loaded automatically.
The Prolog predicate for solving the AD*AD = DAY puzzle:
ad_day(AD, DAY) :-

between(1, 9, A), between(1, 9, D), between(0, 9, Y),
A =\= D, A =\= Y, D =\= Y,
DAY is D*100+A*10+Y, AD is A*10+D,
AD * AD =:= DAY.

Solve this puzzle yourself: GO+TO=OUT
Semantic and Declarative Technologies 2024 Fall Semester 92 / 414

Declarative Programming with Prolog Prolog – first steps

Data structures in Prolog

Prolog is a dynamically typed language, i.e. vars can take arbitrary values.
Prolog data structures correspond to FOL terms. A Prolog term can be:

var (variable), e.g. X, Sum, _a, _; the last two are void (don’t care) vars
(If a var occurs once in a clause, prefix it with _, or get a WARNING!!!
Multiple occurrences of a single _ symbol denote different vars.)
constant (0 argument function symbol):

number (integer or float), e.g. 3, -5, 3.1415
atom (symbolic constant, cf. enum type), e.g. a, susan, =<, ’John’

compound, also called record, structure (n-arg. function symbol, n > 0)
A compound takes the form: name(arg1,. . . ,argn), where

name is an atom, argi are arbitrary Prolog terms
e.g. employee(name(’John’,’Smith’),birthd(20,11,1994),’Sales’)

Compounds can be viewed as trees

name

arg1 . . . argn

employee

name

’John’ ’Smith’

birthd

20 11 1994

’Sales’

Semantic and Declarative Technologies 2024 Fall Semester 93 / 414

Declarative Programming with Prolog Prolog – first steps

Variables in Prolog: the logic variable

A variable cannot be assigned (unified with) two distinct ground values:
| ?- X = 1, X = 2. =⇒ no

Two variables may be unified and then assigned a (common) value:
| ?- X = Y, X = 2. =⇒ X = 2, Y = 2 ?

The above apply to a single branch of execution. If we backtrack over a
branch on which the variable was assigned, the assignment is undone,
and on a new branch another assignment can be made:

has_p(b, c). has_p(b, d). has_p(d, e).

| ?- has_p(b, Y). =⇒ Y = c ? ; Y = d ? ; no

A logic variable is a “first class citizen” data structure, it can appear inside
compound terms:
| ?- Emp = employee(Name,Birth,Dept), Dept = ’Sales’,

Name = name(First,Last), First = ’John’.
=⇒ Emp = employee(name(’John’,Last),Birth,’Sales’) ?

The Emp data structure represents an arbitrary employee with given name
John who works in the Sales department

Semantic and Declarative Technologies 2024 Fall Semester 94 / 414

Declarative Programming with Prolog Prolog – first steps

The logic variable (cont’d)

A variable may also appear several times in a compound, e.g. name(X,X)
is a Prolog term, which will match the first argument of the employee/3
record, iff the person’s first and last names are the same:
employee(1, employee(name(’John’,’John’),birthd(2000,12,21),’Sales’)).
employee(2, employee(name(’Ann’,’Kovach’),birthd(1988,8,18),’HR’)).
employee(3, employee(name(’Peter’,’Peter’),birthd(1970,2,12),’HR’)).

| ?- employee(Num, Emp), Emp = employee(name(_X,_X),_,_).
Num = 1, Emp = employee(name(’John’,’John’),birthd(2000,12,21),’Sales’) ? ;
Num = 3, Emp = employee(name(’Peter’,’Peter’),birthd(1970,2,12),’HR’) ? ; no

If a variable name starts with an underline, e.g. _X, its value is not
displayed by the interactive Prolog shell (often called the top level)

Semantic and Declarative Technologies 2024 Fall Semester 95 / 414

Declarative Programming with Prolog Prolog – first steps

Classification of Prolog terms

The taxonomy of Prolog terms – corresponding built-in predicates (BIPs)

XXXX

!!! aaa

!!! HH

�� aaa

Term

float

var nonvar

atomic compound

number atom

integer

var(X) X is a variable
nonvar(X) X is not a variable
atomic(X) X is a constant (atom or number)
compound(X) X is a compound
number(X) X is a number
atom(X) X is an atom
float(X) X is a floating point number
integer(X) X is an integer

The five coloured BIPs correspond to the five basic term types.
Two further type-checking BIPs:

simple(X): X is not compound, i.e. it is a variable or a constant.
ground(X): X is a constant or a compound with no (uninstantiated)
variables in it.

Semantic and Declarative Technologies 2024 Fall Semester 96 / 414

Declarative Programming with Prolog Prolog – first steps

Another syntactic “sweetener” – list notation

A Prolog list [a,b,...] represents a sequence of terms (cf. linked list)
| ?- L = [a,b,c], write_canonical(L).
’.’(a,’.’(b,’.’(c,[])))

•

Elem1 •

Elem2

•

ElemN []

-

-

Elem2 Tail2

Tail1Elem1 .(Elem1, Tail1)

ElemN

. . .

NULL []

(Since version 7, SWI Prolog uses ’[|]’, instead of ’.’ :-((((.)

The head of a list is its first element, e.g. L’s head: a
the tail is the list of all but the first element, e.g. L’s tail: [b,c]
One often needs to split a list to its head and tail: List = .(Head, Tail).
The “square bracketed” counterpart: List = [Head|Tail]
Further sweeteners: [E1,E2,...,En|Tail] ≡ [E1|[E2|...,[En|Tail]...]]

[E1,E2,...,En] ≡ [E1,E2,...,En|[]]
Semantic and Declarative Technologies 2024 Fall Semester 97 / 414

Declarative Programming with Prolog Prolog – first steps

Open ended and proper lists

Example:
% head0(L): L’s first element is 0.
head0(L) :- L = [0|_]. % ‘_’ is a void, don’t care variable

% singleton(L): L has a single element.
singleton([_]).

| ?- singleton(L1). ⇒ L1 = [_A] % L1 = [_A|[]] is a proper list
| ?- head0(L2). ⇒ L2 = [0|_A] % L2 is an open ended list

A Prolog term is called an open ended (or partial) list iff
either it is an unbound variable,
or it is a nonempty list structure (i.e. of the form [_|_])
and its tail is open ended,

i.e. if sooner or later an unbound variable appears as the tail.
A list is closed or proper iff sooner or later an [] appears as the tail
Further examples: [X,1,Y] is a proper list, [X,1|Z] is open ended.

Semantic and Declarative Technologies 2024 Fall Semester 98 / 414

Declarative Programming with Prolog Prolog – first steps

Working with lists – some practice

(Each occurrence of a void variable (_) denotes a different variable.)

| ?- [1,2] = [X|Y]. =⇒ X = 1, Y = [2] ?
| ?- [1,2] = [X,Y]. =⇒ X = 1, Y = 2 ?
| ?- [1,2,3] = [X|Y]. =⇒ X = 1, Y = [2,3] ?
| ?- [1,2,3] = [X,Y]. =⇒ no
| ?- [1,2,3,4] = [X,Y|Z]. =⇒ X = 1, Y = 2, Z = [3,4] ?
| ?- L = [a,b], L = [_,X|_]. =⇒ . . . , X = b ? % X = 2nd elem
| ?- L = [a,b], L = [_,X,_|_]. =⇒ no ? % length >= 3, X = 2nd elem
| ?- L = [1|_], L = [_,2|_]. =⇒ L = [1,2|_A] ? % open ended list

Semantic and Declarative Technologies 2024 Fall Semester 99 / 414

Declarative Programming with Prolog Prolog – first steps

Programming with lists – simple example

Recall: I/O mode notation for pred. arguments (only in comments):
+: input (bound), -: output (unbound var.), ?: arbitrary.
Write a predicate that checks if all elements in a list are the same. Let’s
call such a list A-boring, where A is the element appearing repeatedly.
Remember, you can read ‘:-’ as ‘if’, ‘,’ as ‘and’

% boring(+L, ?A): List L is A-boring.
boring([], _) % [] is A-boring for every A.
boring(L, A) :- % List L is A-boring, if

L=[A|L1], % L’s head equals A and
boring(L1, A). % L’s tail is A-boring.

Semantic and Declarative Technologies 2024 Fall Semester 100 / 414

Declarative Programming with Prolog Prolog – first steps

Programming with lists – further examples

Given a list of numbers, calculate the sum of the list elements.
Remember, you can do arithmetic calculations with ‘is‘

% sum(+L, ?Sum): L sums to Sum. (L is a list of numbers.)
sum([], 0). % [] sums to 0.
sum([H|T], Sum) :- % A list with head H and tail T sums to Sum if

sum(T, Sum0), % T sums to Sum0 and
Sum is Sum0+H. % Sum is the value of Sum0+H.

Given two arbitrary lists, check that they are of equal length.

% same_length(?L1, ?L2): Lists L1 and L2 are of equal length.
same_length([], []). % [] has the same length as []
same_length(L1, L2) :- % L1 and L2 are of equal length if

L1 = [_|T1], % the tail of L1 is T1 and
L2 = [_|T2], % the tail of L2 is T2 and
same_length(T1, T2). % the T1 and the T2 are of equal length.

Semantic and Declarative Technologies 2024 Fall Semester 101 / 414

Declarative Programming with Prolog Prolog – first steps

Another recursive data structure – binary tree

A binary tree data structure can be defined as being
either a leaf (leaf) which contains an integer (value)
or a node (node) which contains two subtrees (left,right)

Defining binary tree structures in C and Prolog:

% Declaration of a C structure
enum treetype Leaf, Node;
struct tree {

enum treetype type;
union {

struct { int value;
} leaf;

struct { struct tree *left;
struct tree *right;

} node;
} u;

};

% No need to define types in Prolog
% A type-checking predicate can be
% written, if this check is needed:

% is_tree(T): T is a binary tree
is_tree(leaf(Value)) :-

integer(Value).
is_tree(node(Left,Right)) :-

is_tree(Left),
is_tree(Right).

Recall: integer(Value) is a BIP which
succeeds if and only if V is an integer.

Semantic and Declarative Technologies 2024 Fall Semester 102 / 414

Declarative Programming with Prolog Prolog – first steps

Calculating the sum of numbers in the leaves of a binary tree

Calculating the sum of the leaves of a binary tree:
if the tree is a leaf, return the integer in the leaf
if the tree is a node, add the sums of the two subtrees

% C function (declarative)
int tree_sum(struct tree *tree) {

switch(tree->type) {
case Leaf:
return tree->u.leaf.value;

case Node:
return
tree_sum(tree->u.node.left) +
tree_sum(tree->u.node.right);
}

}

% Prolog procedure
% tree_sum(+T, ?S):
% The sum of the leaves
% of tree T is S.
tree_sum(leaf(Value), S) :-

S = Value.
tree_sum(node(Left,Right), S) :-

tree_sum(Left, S1),
tree_sum(Right, S2),
S is S1+S2.

Semantic and Declarative Technologies 2024 Fall Semester 103 / 414

Declarative Programming with Prolog Prolog – first steps

Sum of Binary Trees – a sample run

% sicstus
SICStus 4.3.5 (...)
| ?- consult(tree). % alternatively: compile(tree). or [tree].
% consulting /home/szeredi/examples/tree.pl...
% consulted /home/szeredi/examples/tree.pl in module user, (...)
| ?- tree_sum(node(leaf(5),

node(leaf(3), leaf(2))), Sum).
Sum = 10 ? ; no
| ?- tree_sum(leaf(10), 10).
yes
| ?- tree_sum(leaf(10), Sum).
Sum = 10 ? ; no
| ?- tree_sum(Tree, 10).
Tree = leaf(10) ? ;
! Instantiation error in argument 2 of is/2
! goal: 10 is _73+_74
| ?- halt.

The cause of the error: the built-in arithmetic is one-way: the goal 10 is S1+S2
causes an error!

Semantic and Declarative Technologies 2024 Fall Semester 104 / 414

Declarative Programming with Prolog Prolog execution models

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 105 / 414

Declarative Programming with Prolog Prolog execution models

Two Prolog execution models

The Goal Reduction model
a reformulation of the resolution proof technique
good for visualizing the search tree

The Procedure Box model
reflects actual implementation better
used by the Prolog trace mechanism

Semantic and Declarative Technologies 2024 Fall Semester 106 / 414

Declarative Programming with Prolog Prolog execution models

Goal reduction vs. resolution – a propositional example

get_fined :- driving_fast, raining. (1)
driving_fast :- in_a_hurry. (2)
...
in_a_hurry. (3)
raining. (4)

To show that the goal get_fined holds, goal reduction repeatedly reduces
it to other goals using clauses (1)–(4)

When an empty goal (true) is obtained the goal gets proved.

(g1) get_fined % (g1) is reduced, using (1), to (g2)
(g2) driving_fast, raining % (g2) is reduced, using (2), to (g3)
(g3) in_a_hurry, raining % (g3) is reduced, using (3), to (g4)
(g4) raining % (g4) is reduced, using (4), to (g5)
(g5) ■ (empty goal) ≡ true

Semantic and Declarative Technologies 2024 Fall Semester 107 / 414

Declarative Programming with Prolog Prolog execution models

Goal reduction vs. resolution (cnt’d)

+get_fined -driving_fast -raining. (1)
+driving_fast -in_a_hurry (2)
...
+in_a_hurry. (3)
+raining. (4)

To show that get_fined holds, resolution does an indirect proof
Assume get_fined does not hold, deduce false (contradiction) using
clauses (1)–(4)

(g1) -get_fined % (g1) and (1) implies (g2)
(g2) -driving_fast -raining % (g2) and (2) implies (g3)
(g3) -in_a_hurry -raining % (g3) and (3) implies (g4)
(g4) -raining % (g4) and (4) implies (g5)
(g5) □ (empty clause) ≡ false

Semantic and Declarative Technologies 2024 Fall Semester 108 / 414

Declarative Programming with Prolog Prolog execution models

The Goal Reduction model – the grandparent example

Goal reduction takes a goal, i.e. a conjunction of subgoals G and using a
clause C reduces it to goal G′,

so that G′ → G
E.g. reducing G = has_gp(b, X) using (gp1) gives

G′ = has_p(b, P1), has_p(P1, X)
has_p(b, c). % (p1)
has_p(b, d). % (p2)
has_p(d, e). % (p3)
has_p(d, f). % (p4)

has_gp(GC, GP) :-
has_p(GC, P),
has_p(P, GP). % (gp1)

| ?- has_gp(b, X).

(gp1)

P1=d

(p2) (p1)

X=f

 has_p(d, X)

(p4) (p3)

 X=e

 has_p(c,X)

 P1=c

 has_p(b, P1), has_p(P1, X)

 has_gp(b, X)

.

(blind alley −− backtrack)

(success) (success)

(empty conjunction = true) (empty conjunction)

Semantic and Declarative Technologies 2024 Fall Semester 109 / 414

Declarative Programming with Prolog Prolog execution models

Resolution – same example

Resolution takes a negated goal NG (which is a disjunction of neg.
literals) and using a clause C deduces new negated goal NG′,

so that NG → NG′

E.g. resolving NG = -has_gp(b, X) using (gp1) gives
NG′ = -has_p(b, P1) -has_p(P1, X)

+has_p(b, c). % (p1)
+has_p(b, d). % (p2)
+has_p(d, e). % (p3)
+has_p(d, f). % (p4)

+has_gp(GC, GP)
-has_p(GC, P),
-has_p(P, GP). % (gp1)

-has_gp(b, X).

(gp1)

P1=d

(p2) (p1)

X=f

 −has_p(d, X)

(p4) (p3)

 X=e

 −has_p(c,X)

 P1=c

−has_p(b, P1) −has_p(P1, X)

 −has_gp(b, X)

.

(blind alley −− backtrack)

 (empty clause = false) (empty clause)

(indirect success) (indirect success)

Semantic and Declarative Technologies 2024 Fall Semester 110 / 414

Declarative Programming with Prolog Prolog execution models

The Goal Reduction model (ADVANCED)

Goal reduction: a goal is viewed as a conjunction of subgoals
Given a goal G = A,B, . . . and a clause (A :- D, . . .)
G′ = B, . . . ,D, . . . is obtained as the new goal

Goal reduction is the same as resolution, but viewed as backwards reasoning
Resolution:

to prove A∧ B ∧ . . . , we negate it obtaining ¬G0 = -A -B . . .
resolution step : clause Cl = (+A -D ...) resolved with ¬G0
produces ¬G1 = -D ...-B . . .

¬Gn ∧ Cl → ¬Gn+1 (resolution)
success of indirect proof: reaching an empty clause □ ≡ false

Goal reduction:
to prove A∧ B ∧ . . . , we start with G0 = A, B, . . .
reduction step : using Cl = (A :- D, ...) one can reduce G0 to
G1 = D, ..., B, ...

Gn+1 ∧ Cl → Gn (reduction)
success of the reduction proof: reaching an empty goal ■ ≡ true

the (resolution) and (reduction) reasoning rules are equivalent!
Semantic and Declarative Technologies 2024 Fall Semester 111 / 414

Declarative Programming with Prolog Prolog execution models

The definition of a goal reduction step

Reduce a goal G to a new goal G′ using a program clause Cli :
Split goal G into the first subgoal GF and the residual goal GR

Copy clause Cli , i.e. rename all variables to new ones,
and split the copy to a head H and body B
Unify the goal GF and the head H

If the unification fails, exit the reduction step with failure
If the unification succeeds with a substitution σ, return the new goal
G′ = (B,GR)σ (i.e. apply σ to both the body and the residual goal)

E.g., slide 109: G = has_gp(b, X) using (gp1) ⇒ G′ = has_p(b, P1),has_p(P1, X)

Reduce a goal G to a new goal G′ by executing a built-in predicate (BIP)
Split goal G into the first, BIP subgoal GF and the residual goal GR

Execute the BIP GF

If the BIP fails then exit the reduction step with failure
If the BIP succeeds with a substitution σ then
return the new goal G′ = GRσ

Semantic and Declarative Technologies 2024 Fall Semester 112 / 414

Declarative Programming with Prolog Prolog execution models

The goal reduction model of Prolog execution – outline

This model describes how Prolog builds and traverses a search tree
A web app for practicing the model: https://ait.plwin.dev/P1-1

The inputs:
a Prolog program (a sequence of clauses), e.g. the has_gp program
a goal, e.g. :- has_gp(b, GP).
extended with a special goal, carrying the solution: answer(Sol):
:- has_gp(b, GP),answer(GP). % Who are the grandparents of a?
:- has_gp(Ch,GP),answer(Ch-GP). % Which are the child-gparent pairs?

When only an answer goal remains, a solution is obtained
Possible outcomes of executing a Prolog goal:

Exception (error), e.g. :- Y = apple, X is Y+1.
(This is not discussed further here)

Failure (no solutions), e.g. :- has_p(c, P), answer(P).
Success (1 or more solutions), e.g. :- has_p(d, P), answer(P).

Semantic and Declarative Technologies 2024 Fall Semester 113 / 414

https://ait.plwin.dev/P1-1

Declarative Programming with Prolog Prolog execution models

The main data structures used in the model

There are only two (imperative, mutable) variables in this model:
Goal: the current goal sequence, ChPSt the stack of choice points (ChPs)
If, in a reduction step, two or more clause heads unify (match) the first
subgoal, a new ChPSt entry is made, storing:

the list of clauses with possibly matching heads
the current goal sequence (i.e. Goal)

At a failure, the top entry of the ChPSt is examined:
the goal stored there becomes the current Goal,
the first element of the list of clauses is removed, the second is
remembered the as the “current clause”,
if the list of clauses is now a singleton, the top entry is removed,
finally the Goal is reduced, using the current clause.

If, at a failure, ChPSt is empty, execution ends.
Semantic and Declarative Technologies 2024 Fall Semester 114 / 414

Declarative Programming with Prolog Prolog execution models

The flowchart of the Prolog goal reduction model

Entry S1

answer is the only remaining goal?

First subgoal calls a built-in pred. (BIP)?

n clause heads “match” the 1st subgoal

S2

Creating a choice
point (ChP)

S3

Goal reduction

S4

Backtracking

S5

BIP reduction

S6

Solution found

S3 S1 S4 S3

S7

S1 S4 S4

Exit

no yes

yesno

n > 1 n = 1 n = 0

success failure ∃ a ChP

no ChPs

success failure

(Double arrows indicate a jump to the step in the pink circle, i.e. execution continues at the given red circle.)

Semantic and Declarative Technologies 2024 Fall Semester 115 / 414

Declarative Programming with Prolog Prolog execution models

Remarks on the flowchart

There are seven different execution steps: S1–S7, where S1 is the initial
(but also an intermediate) step, and S7 represents the final state.
The main task of S1 is to branch to one of S2–S6:

when Goal contains an answer goal only⇒ S6;
when the first subgoal of Goal calls a BIP⇒ S5;
otherwise the first subgoal calls a user predicate. Here a set of
clauses is selected which contains all clauses whose heads match
the first subgoal (this may be a superset of the matching ones).
Based on the number of clauses⇒ S2, S3 or S4.

S2 creates a new ChPSt entry, and⇒ S3 (to reduce with the first clause).
S3 performs the reduction. If that fails⇒ S4, otherwise⇒ S1.
S4 retrieves the next clause from the top ChPSt entry, if any (⇒ S3),
otherwise execution ends (⇒ S7).
In S5, similarly to S3, if the BIP succeeds⇒ S1, otherwise⇒ S4.
In S6, the solution is displayed and further solutions are sought (⇒ S4).

Semantic and Declarative Technologies 2024 Fall Semester 116 / 414

Declarative Programming with Prolog Prolog execution models

The Procedure Box execution model – example

The procedure box execution model of has_gp

has_gp(GC, GP) :- has_p(GC, P), has_p(P, GP). has_p(b, c).
has_p(b, d).
has_p(d, e).
has_p(d, f).

Call Exit

Fail Redo

has_p(P, GP)

has_gp(GC, GP)

has_p(GC, P)

Semantic and Declarative Technologies 2024 Fall Semester 117 / 414

Declarative Programming with Prolog Prolog execution models

Prolog tracing, based on the four port box model

| ?- consult(gp3).
% consulting gp3.pl...
% consulted gp3.pl ...
yes
| ?- listing.
has_gp(Ch, G) :-

has_p(Ch, P),
has_p(P, G).

has_p(b, c).
has_p(b, d).
has_p(d, e).
has_p(d, f).

yes
| ?- trace.
% The debugger will ...
yes

| ?- has_gp(Ch, f).
Det? BoxId Depth Port Goal

1 1 Call: has_gp(Ch,f) ?
2 2 Call: has_p(Ch,P) ?

? 2 2 Exit: has_p(b,c) ?
3 2 Call: has_p(c,f) ?
3 2 Fail: has_p(c,f) ?
2 2 Redo: has_p(b,c) ?

? 2 2 Exit: has_p(b,d) ?
4 2 Call: has_p(d,f) ?
4 2 Exit: has_p(d,f) ?

No choice left in box 4, box removed (no ?)
? 1 1 Exit: has_gp(b,f) ?
Ch = b ? ;

1 1 Redo: has_gp(b,f) ?
2 2 Redo: has_p(b,d) ?

? 2 2 Exit: has_p(d,e) ?
5 2 Call: has_p(e,f) ?
5 2 Fail: has_p(e,f) ?
2 2 Redo: has_p(d,e) ?
2 2 Exit: has_p(d,f) ?

No choice left in box 2, box removed (no ?)
6 2 Call: has_p(f,f) ?
6 2 Fail: has_p(f,f) ?
1 1 Fail: has_gp(Ch,f) ?

no
| ?-

Semantic and Declarative Technologies 2024 Fall Semester 118 / 414

Declarative Programming with Prolog Prolog execution models

The procedure-box of multi-clause predicates

‘Sister in law’ can be one’s spouse’s sister; or one’s brother’s wife:

has_sister_in_law(X, Y) :-
has_spouse(X, S), has_sister(S, Y).

has_sister_in_law(X, Y) :-
has_brother(X, B), has_wife(B, Y).

Call

Fail

Exit

Redo

wf(B,Y)

sp(X,S)

br(X,B)

si(S,Y)

has_sister_in_law(X,Y)

.

.

Semantic and Declarative Technologies 2024 Fall Semester 119 / 414

Declarative Programming with Prolog Prolog execution models

The procedure-box of a “database” predicate of facts

In general in a multi-clause predicate the clauses have different heads
A database of facts is a typical example:
has_p(b, c).
has_p(b, d).

These clauses can be massaged to have the same head:
has_p(Ch, P) :- Ch = b, P = c.
has_p(Ch, P) :- Ch = b, P = d.

Consequently, the procedure-box of this predicate is this:

Call

Fail

Exit

Redo

P = d

Ch = b

Ch = b

P = c

has_p(Ch,P)

.

.

Semantic and Declarative Technologies 2024 Fall Semester 120 / 414

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 121 / 414

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Summary – syntax of Prolog predicates, clauses

Example

% A predicate with two clauses, the functor is: tree_sum/2
tree_sum(leaf(Val), Val). % clause 1, fact
tree_sum(node(Left,Right), S) :- % head \

tree_sum(Left, S1), % goal \ |
tree_sum(Right, S2), % goal | body | clause 2, rule
S is S1+S2. % goal / /

Syntax
⟨program ⟩ ::= ⟨predicate ⟩ . . . {i.e. a sequence of predicates}
⟨predicate ⟩::= ⟨ clause ⟩ . . . {with the same functor}
⟨ clause ⟩ ::= ⟨ fact ⟩. |

⟨ rule ⟩.
⟨ fact ⟩ ::= ⟨head ⟩
⟨ rule ⟩ ::= ⟨head ⟩:-⟨body ⟩ {clause functor = head functor}
⟨body ⟩ ::= ⟨goal ⟩, . . . {i.e. a seq. of goals sep. by commas}
⟨head ⟩ ::= ⟨ callable term ⟩ {atom or compound}
⟨goal ⟩ ::= ⟨ callable term ⟩ {or a variable, if instantiated to a callable}

Semantic and Declarative Technologies 2024 Fall Semester 122 / 414

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Prolog terms (canonical form)

Example – a clause head as a term
% tree_sum(node(Left,Right), S) % compound term, has the
% ________ ________________ _ % functor tree_sum/2
% | | |
% compound name \ argument, variable
% \ - argument, compound term

Syntax
⟨ term ⟩ ::= ⟨ variable ⟩ | {has no functor}

⟨ constant ⟩ | {⟨ constant ⟩/0}
⟨ compound term ⟩ | {⟨ comp. name ⟩/⟨# of args ⟩}
. . . extensions . . . {lists, operators}

⟨ constant ⟩ ::= ⟨atom ⟩ | {symbolic constant}
⟨number ⟩

⟨number ⟩ ::= ⟨ integer ⟩ | ⟨ float ⟩

⟨ compound term ⟩::= ⟨ comp. name ⟩ (⟨argument ⟩, . . .)
⟨ comp. name ⟩ ::= ⟨atom ⟩
⟨argument ⟩ ::= ⟨ term ⟩
⟨ callable term ⟩ ::= ⟨atom ⟩ | ⟨ compound term ⟩

Semantic and Declarative Technologies 2024 Fall Semester 123 / 414

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Lexical elements

Examples

% variable: Fact FACT _fact X2 _2 _
% atom: fact ≡ ’fact’ ’István’ [] ; ’,’ += ** \= ≡ ’\\=’
% number: 0 -123 10.0 -12.1e8
% not an atom: !=, István
% not a number: 1e8 1.e2

Syntax
⟨ variable ⟩ ::= ⟨ capital letter ⟩⟨alphanum ⟩. . . |

_ ⟨alphanum ⟩. . .
⟨atom ⟩ ::= ’⟨quoted char ⟩. . . ’ |

⟨ lower case letter ⟩⟨alphanum ⟩. . . |
⟨ sticky char ⟩. . . | ! | ; | [] | {}

⟨ integer ⟩ ::= {signed or unsigned sequence of digits }
⟨ float ⟩ ::= { a sequence of digits with a compulsory decimal point

in between, with an optional exponent}
⟨quoted char ⟩ ::= {any non ’ and non \ character} | \ ⟨escaped char ⟩
⟨alphanum ⟩ ::= ⟨ lower case letter ⟩ | ⟨upper case letter ⟩ | ⟨digit ⟩ | _
⟨ sticky char ⟩ ::= + | - | * | / | \ | $ | ^ | < | > | = | ‘ | ~ | : | . | ? | @ | # | &

Semantic and Declarative Technologies 2024 Fall Semester 124 / 414

Declarative Programming with Prolog The syntax of the (unsweetened) Prolog language

Comments and layout in Prolog

Comments
From a % character till the end of line
From /* till the next */

Layout (spaces, newlines, tabs, comments) can be used freely, except:
No layout allowed between the name of a compound and the “(”
If a prefix operator (see later) is followed by “(”, these have to be
separated by layout
Clause terminator (.): a stand-alone full stop (i.e., one not preceded
by a sticky char), followed by layout

The recommended formatting of Prolog programs:
Write clauses of a predicate continuously, no empty lines between
Precede each pred. by an empty line and a spec (head comment)
% predicate_name(A1, ..., An): A declarative sentence (statement)
% describing the relationship between terms A1, ..., An

Write the head of the clause at the beginning of a line, and prefix
each goal in the body with an indentation of a few (8 recommended)
spaces.

Semantic and Declarative Technologies 2024 Fall Semester 125 / 414

Declarative Programming with Prolog Further control constructs

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 126 / 414

Declarative Programming with Prolog Further control constructs

Disjunctions

Disjunctions (i.e. subgoals separated by “or”) can appear as goals
A disjunction is denoted by semicolon (“;”)
Enclose the whole disjunction in parentheses, align chars (, ; and)

has_sister_in_law(X, Y) :-
(has_spouse(X, S), has_sister(S, Y)
; has_brother(X, B), has_wife(B, Y)
).

The above predicate is equivalent to:
has_sister_in_law(X, Y) :- has_spouse(X, S), has_sister(S, Y).
has_sister_in_law(X, Y) :- has_brother(X, B), has_wife(B, Y).

A disjunction is itself a valid goal, it can appear in a conjunction:
has_ancestor(X, A) :-

has_parent(X, P), (A = P
; has_ancestor(P, A)
).

Can you make an equivalent variant which does not use “;”?

Semantic and Declarative Technologies 2024 Fall Semester 127 / 414

Declarative Programming with Prolog Further control constructs

Disjunctions, continued

An example with multiple disjunctions:
% first_1(L): the first nonzero element of L is 1.
first_1([A,B,C]) :-

(A = 1
; A = 0,

(B = 1
; B = 0, C = 1
)

).

Note: the V=Term goals can no longer be got rid of in disjunctions
Comma binds more tightly than semicolon, e.g.
p :- (q, r ; s) ≡ p :- ((q, r) ; s).
Please, never enclose disjuncts (goals on the sides of ;) in parentheses!
You can have more than two-way “or”s:
p :- (a ; b ; c ; ...) which is the same as
p :- (a ; (b ; (c ; ...)))

Please, do not use the unnecessary parentheses (colored red)!
Semantic and Declarative Technologies 2024 Fall Semester 128 / 414

Declarative Programming with Prolog Further control constructs

Expanding disjunctions to helper predicates

Example: p :- q, (r ; s).

Distributive expansion inefficient, as it calls q twice:
p :- q, r.
p :- q, s.

For an efficient solution introduce a helper predicate. Example:
t(X, Z) :-

p(X,Y),
(q(Y,U), r(U,Z)
; s(Y, Z)
; t(Y), w(Z)
),
v(X, Z).

Collect variables that occur both inside and outside the disj. – Y,Z.
Define a helper predicate – aux(Y,Z) – with these vars as args, transform
each disjunct to a separate clause of the helper predicate:
aux(Y, Z) :- q(Y,U), r(U,Z).
aux(Y, Z) :- s(Y, Z).
aux(Y, Z) :- t(Y), w(Z).

Replace the disjunction with a call of the helper predicate:
t(X, Z) :- p(X, Y), aux(Y, Z), v(X, Z).

Semantic and Declarative Technologies 2024 Fall Semester 129 / 414

Declarative Programming with Prolog Further control constructs

The if-then-else construct

When the two branches of a disjunction exclude each other, use the
if-then-else construct (condition -> then ; else). Example:
% pow(A, E, P): P is A to the power E.
pow(A, E, P) :- pow1(A, E, P) :-

(E > 0, E1 is E-1, =⇒ (E > 0 -> E1 is E-1,
pow(A, E1, P1), pow(A, E1, P1),
P is A*P1 P is A*P1

; E = 0, P = 1 ; E = 0, P = 1
).).

pow1 is about 25% faster than pow and requires much less memory
The atom -> is a standard operator
The construct (Cond -> Then ; Else) is executed by first executing
Cond. If this succeeds, Then is executed, otherwise Else is executed.
Important: Only the first solution of Cond is used for executing Then. The
remaining solutions are discarded!
Note that (Cond -> Then ; Else) looks like a disjunction, but it is not
The else-branch can be omitted, it defaults to false.

Semantic and Declarative Technologies 2024 Fall Semester 130 / 414

Declarative Programming with Prolog Further control constructs

Defining “childless” using if-then-else

Given the has_parent/2 predicate, define the notion of a childless person
If we can find a child of a GIVEN person, then childless should fail,
otherwise it should succeed.
% childless(+Person): A given Person has no children
childless(Person) :- (has_parent(_, Person) -> fail

; true
).

What happens if you call childless(P), where P is an unbound var?
Will it enumerate childless people in P? No, it will simply fail.
The above if-then-else can be simplified to:
childless(Person) :- \+ has_parent(_, Person).

“\+” is called Negation by Failure, “\+ G” runs by executing G:
if G fails “\+ G” succeeds.
if G succeeds “\+ G” fails (ignoring further solutions of G, if any)

Since a failed goal produces no bindings, “\+ G” will never bind a variable.
Read “\+” as “not provable”, cf. ̸⊢ tilted slightly to the left.

Semantic and Declarative Technologies 2024 Fall Semester 131 / 414

Declarative Programming with Prolog Further control constructs

Open and closed world assumption

has_parent(a, b). has_parent(a, c). has_parent(c, d). (1)-(3)

Does (1)–(3) imply that a is childless: φ = ∀x .¬has_parent(x , a)?
No. Although has_parent(Ch, a) cannot be proven, φ does not hold!
But in the world of databases we do conclude that a is childless. . .
Databases use the Closed World Assumption (CWA): anything that
cannot be proven is considered false.
Mathematical logic uses the Open World Assumption (OWA)

A statement S follows from a set of statements P (premises),
if S holds in any world (interpretation) that satisfies P.
thus φ is not a logical consequence of (1)-(3)

Classical logic (OWA) is monotonic:
the more you know, the more you can deduce
Negation by failure (CWA) is non-monotonic:
add the fact “has_parent(e, a).” to (1)–(3) and \+ has_parent(_, a) will fail.

Semantic and Declarative Technologies 2024 Fall Semester 132 / 414

Declarative Programming with Prolog Further control constructs

Checking inequality – siblings and cousins

has_p(’Charles’, ’Elizabeth’). has_p(’Andrew’, ’Elizabeth’).
has_p(’William’, ’Charles’). has_p(’Beatrice’, ’Andrew’).
has_p(’Harry’, ’Charles’). has_p(’Eugenie’, ’Andrew’).

Recall homework L4, define predicate has_sibling/2, first attempt:
has_sibling0(A, B) :- \+ A = B, has_p(A, P), has_p(B, P).

has_sibling0 does not work properly, e.g. this goal fails:
| ?- has_sibling0(’Charles’, X).

because \+ ’Charles’ = X fails (as ’Charles’ = X succeeds)
Negated goals should be instantiated as much as possible,
therefore always place them at the end of the body:
has_sibling(A, B) :- has_p(A, P), has_p(B, P), \+ A = B.

Define has_cousin/2 (using has_gp/2, the “has grandparent” predicate)
has_cousin(A, B) :-

has_gp(A, GP), has_gp(B, GP), \+ has_sibling(A, B), A \= B.

Note that the BIP A \= B is equivalent to \+ A = B

Semantic and Declarative Technologies 2024 Fall Semester 133 / 414

Declarative Programming with Prolog Further control constructs

The relationship of if-then-else and negation

Negation can be fully defined using if-then-else
(p -> false

\+ p ≡ ; true
)

If-then-else can be transformed to a disjunction with a negation:
(cond -> then (cond, then
; else =⇒ ; \+ cond, else
))

These are equivalent only if cond succeeds at most once.
The if-then-else is more efficient (no choice point left).
As semicolon is associative, there is no need to use nested parentheses
(. . .) if multiple if-then-else branches are present (and please don’t):
(cond1 -> then1 (cond1 -> then1
; (cond2 -> then2 ; cond2 -> then2

; ((...)) =⇒ ; (...)
)

; else ; else
))

Semantic and Declarative Technologies 2024 Fall Semester 134 / 414

Declarative Programming with Prolog Further control constructs

The procedure-box of disjunctions

A disjunction can be transformed into a multi-clause predicate

has_sister_in_law(X, Y) :- has_sister_in_law(X, Y) :-
(has_spouse(X, S), has_sister(S, Y) has_spouse(X, S), has_sister(S, Y).
; has_sister_in_law(X, Y) :-

has_brother(X, B), has_wife(B, Y) has_brother(X, B), has_wife(B, Y).
).

Call

Fail

Exit

Redo

wf(B,Y)

sp(X,S)

br(X,B)

si(S,Y)

has_sister_in_law(X,Y)

.

.

Semantic and Declarative Technologies 2024 Fall Semester 135 / 414

Declarative Programming with Prolog Further control constructs

The procedure box for if-then-else

% ha(+N, ?D, ?A): D has A as their Nth generation ancestor (N>0 int)
% The 1st, 2nd, 3rd generation ancestors are
% parents, grandparents, great-grandparents etc.
ha(N, D, A) :-

(N = 1 -> hp(D, A) % hp(D, A): D has a parent A
; N > 1, M is N-1, hp(D, P), ha(M, P, A)
).

Call

Fail Redo

Exit

N > 1

N = 1 hp(D,A)

.

.

ha(N,D,A)

M is N−1 hp(D,P) ha(M,P,A)

Failure of the “then” part leads to failure of the whole if-then-else construct

Semantic and Declarative Technologies 2024 Fall Semester 136 / 414

Declarative Programming with Prolog Further control constructs

The if-then-else box, continued

When an if-then-else occurs in a conjunction, or there are multiple
clauses, then it requires a separate box
ha2(N, D, A) :- hp(D, P), (N = 1 -> A = P

; N > 1, M is N-1, ha2(M, P, A)
).

A = P

.

N > 1

N = 1

if−then−else

ha2(N,D,A)

Call

Fail

Exit

Redo

.

.

M is N−1 ha2(M,P,A)

hp(D,P)

Semantic and Declarative Technologies 2024 Fall Semester 137 / 414

Declarative Programming with Prolog Operators and special terms

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 138 / 414

Declarative Programming with Prolog Operators and special terms

Introducing operators

Example: S is -S1+S2 is equivalent to: is(S, +(-(S1),S2))
Syntax of terms using operators
⟨ comp. term ⟩ ::=

⟨ comp. name ⟩ (⟨argument ⟩, . . .) {so far we had this}
| ⟨argument ⟩ ⟨operator name ⟩ ⟨argument ⟩ {infix term}
| ⟨operator name ⟩ ⟨argument ⟩ {prefix term}
| ⟨argument ⟩ ⟨operator name ⟩ {postfix term}
| (⟨ term ⟩) {parenthesized term}

⟨operator name ⟩ ::= ⟨ comp. name ⟩ {if declared as an operator}
The built-in predicate for defining operators:
op(Priority, Type, Op) or op(Priority, Type, [Op1,Op2,...]):

Priority: an int. between 1 and 1200 – smaller priorities bind tighter
Type determines the placement of the operator and the associativity:
infix: yfx, xfy, xfx; prefix: fy, fx; postfix: yf, xf (f – op, x, y – args)
Op or Opi : an arbitrary atom

The call of the BIP op/3 is normally placed in a directive, executed
immediately when the program file is loaded, e.g.:
:- op(800, xfx, [has_tree_sum]). leaf(V) has_tree_sum V.

Semantic and Declarative Technologies 2024 Fall Semester 139 / 414

Declarative Programming with Prolog Operators and special terms

Characteristics of operators

Operator properties implied by the operator type
Type Class Interpretation

left-assoc. right-assoc. non-assoc.
yfx xfy xfx infix X f Y ≡ f(X, Y)

fy fx prefix f X ≡ f(X)
yf xf postfix X f ≡ f(X)

Parentheses implied by operator priorities and associativities
a/b+c*d ≡ (a/b)+(c*d) as the priority of / and * (400) is less than
the priority of + (500) smaller priority = stronger binding
a-b-c ≡ (a-b)-c as operator - has type yfx, thus it is left-associative, i.e. it
binds to the left, the leftmost operator is parenthesized first

(the position of y wrt. f shows the direction of associativity)
a^b^c ≡ a^(b^c) as ^ has type xfy, therefore it is right-associative
a=b=c =⇒ syntax error, as = has type xfx, it is non-associative
the above also applies to different operators of same type and priority:
a+b-c+d ≡ ((a+b)-c)+d

Semantic and Declarative Technologies 2024 Fall Semester 140 / 414

Declarative Programming with Prolog Operators and special terms

Standard built-in operators

Standard operators

1200 xfx :- -->
1200 fx :- ?-
1100 xfy ;
1050 xfy ->
1000 xfy ’,’

900 fy \+
700 xfx = \= =..

< =< =:= =\=
> >= is
== \==
@< @=< @> @>=

500 yfx + - /\ \/
400 yfx * / // rem

mod << >>
200 xfx **
200 xfy ^
200 fy - \

Further built-in operators
of SICStus Prolog

1150 fx mode public dynamic
volatile discontiguous
initialization multifile
meta_predicate block

1100 xfy do
900 fy spy nospy
550 xfy :
500 yfx \
200 fy +

Semantic and Declarative Technologies 2024 Fall Semester 141 / 414

Declarative Programming with Prolog Operators and special terms

Operators – additional comments

The “comma” is heavily overloaded:
it separates the arguments of a compound term
it separates list elements
it is an xfy op. of priority 1000, e.g.:
(p:-a,b,c)≡:-(p,’,’(a,’,’(b,c)))

Ambiguities arise, e.g. is p(a,b,c)
?≡ p((a,b,c))?

Disambiguation: if the outermost operator of a compound argument has
priority ≥ 1000, then it should be enclosed in parentheses

| ?- write_canonical((a,b,c)). ⇒ ’,’(a,’,’(b,c))

| ?- write_canonical(a,b,c). ⇒ Error: ! write_canonical/3 does not exist

| ?- write_canonical((hgp(A,B):-hp(A,C),hp(C,B))).

⇒ :-(hgp(A,B),’,’(hp(A,C),hp(C,B)))

Note: an unquoted comma (,) is an operator, but not a valid atom

Semantic and Declarative Technologies 2024 Fall Semester 142 / 414

Declarative Programming with Prolog Operators and special terms

Functions and operators allowed in arithmetic expressions

The Prolog standard prescribes that the following functions can be used
in arithmetic expressions:
plain arithmetic:

+X, -X, X+Y, X-Y, X*Y, X/Y,
X//Y (int. division, truncates towards 0),
X div Y (int. division, truncates towards −∞),
X rem Y (remainder wrt. //),
X mod Y (remainder wrt. div),
X**Y, X^Y (both denote exponentiation)

conversions:
float_integer_part(X), float_fractional_part(X), float(X),
round(X), truncate(X), floor(X), ceiling(X)

bit-wise ops:
X/\Y, X\/Y, xor(X,Y), \ X (negation), X<<Y, X>>Y (shifts)

other:
abs(X), sign(X), min(X,Y), max(X,Y),
sin(X), cos(X), tan(X), asin(X), acos(X), atan(X),
atan2(X,Y), sqrt(X), log(X), exp(X), pi

Semantic and Declarative Technologies 2024 Fall Semester 143 / 414

Declarative Programming with Prolog Operators and special terms

Uses of operators

What are operators good for?
to allow usual arithmetic expressions, such as in X is (Y+3) mod 4
processing of symbolic expressions (such as symbolic derivation)
for writing the clauses themselves
(:-, ’,’, ; . . . are all standard operators)

clauses can be passed as arguments to meta-predicates:
asserta((p(X):-q(X),r(X)))

to make Prolog data structures look like natural language sentences
(controlled English), e.g. Smullyan’s island of knights and knaves
(knights always tell the truth, knaves always lie):
We meet natives A and B, A says: one of us is a knave.
| ?- solve_puzzle(A says A is a knave or B is a knave).

to make data structures more readable:
acid(sulphur, h*2-s-o*4).

Semantic and Declarative Technologies 2024 Fall Semester 144 / 414

Declarative Programming with Prolog Operators and special terms

Classical symbolic computation: symbolic derivation

Write a Prolog predicate which calculates the derivative of a formula built
from numbers and the atom x using some arithmetic operators.

% deriv(Formula, D): D is the derivative of Formula with respect to x.
deriv(x, 1).
deriv(C, 0) :- number(C).
deriv(U+V, DU+DV) :- deriv(U, DU), deriv(V, DV).
deriv(U-V, DU-DV) :- deriv(U, DU), deriv(V, DV).
deriv(U*V, DU*V + U*DV) :- deriv(U, DU), deriv(V, DV).

| ?- deriv(x*x+x, D). =⇒ D = 1*x+x*1+1 ? ; no

| ?- deriv((x+1)*(x+1), D).
=⇒ D = (1+0)*(x+1)+(x+1)*(1+0) ? ; no

| ?- deriv(I, 1*x+x*1+1). =⇒ I = x*x+x ? ; no

| ?- deriv(I, 2*x+1). =⇒ no

| ?- deriv(I, 0). =⇒ no

Semantic and Declarative Technologies 2024 Fall Semester 145 / 414

Declarative Programming with Prolog Working with lists

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 146 / 414

Declarative Programming with Prolog Working with lists

Concatenating lists

Let L1 ⊕ L2 denote the concatenation of L1 and L2,
i.e. a list consisting of the elements of L1 followed by those of L2.
Building L1 ⊕ L2 in an imperative language
(A list is either a NULL pointer or a pointer to a head-tail structure):

Scan L1 until you reach a tail which is NULL
Overwrite the NULL pointer with L2

If you still need the original L1, you have to copy it, replacing its final NULL
with L2. A recursive definition of the ⊕ (concatenation) function:
L1 ⊕ L2 = if L1 == NULL return L2

else L3 = tail(L1) ⊕ L2
return a new list structure whose head is head(L1)

and whose tail is L3

Transform the above recursive definition to Prolog:
% app0(A, B, C): the conc(atenation) of A and B is C
app0([], L2, L2). % The conc. of [] and L2 is L2.
app0([X|L1], L2, L) :- % The conc. of [X|L1] and L2 is L if

app0(L1, L2, L3), % the conc. of L1 and L2 is L3 and
L = [X|L3]. % L’s head is X and L’s tail is L3.

Semantic and Declarative Technologies 2024 Fall Semester 147 / 414

Declarative Programming with Prolog Working with lists

Efficient and multi-purpose concatenation

Drawbacks of the app0/3 predicate:
Uses “real” recursion (needs stack space proportional to length of L1)
Cannot split lists, e.g. app0(L1,[3],[1,3]) ; infinite loop

Apply a generic optimization: eliminate variable assignments
Remove goal Var = T, and replace occurrences of variable Var by T

Not applicable in the presence of disjunctions or if-then-else
Apply this optimization to the second clause of app0/3:
app0([X|L1], L2, L) :- app0(L1, L2, L3), L = [X|L3].

The resulting code (renamed to app, also available as the BIP append/3)
% app(A, B, C): The conc. of A and B is C, i.e.C = A⊕B
app([], L2, L2). % The conc. of [] and L2 is L2.
app([X|L1], L2, [X|L3]) :- % The conc. of [X|L1] and L2 is [X|L3] if

app(L1, L2, L3). % the conc. of L1 and L2 is L3.

This uses constant stack space and can be used for multiple
purposes, thanks to Prolog allowing open ended lists

Semantic and Declarative Technologies 2024 Fall Semester 148 / 414

Declarative Programming with Prolog Working with lists

Tail recursion optimization

Tail recursion optimization (TRO), or more generally last call optimization
(LCO) is applicable if

the goal in question is the last to be executed in a clause body, and
no choice points exist in the given predicate.

LCO is applicable to the recursive call of app/3:
app([], L, L).
app([X|L1], L2, [X|L3]) :- app(L1, L2, L3).

This feature relies on open ended lists:
It is possible to build a list node before building its tail
This corresponds to passing to append a pointer to the location
where the resulting list should be stored.

Open ended lists are possible because unbound variables are first class
objects, i.e. unbound variables are allowed inside data structures.
(This type of variable is often called the logic variable).

Semantic and Declarative Technologies 2024 Fall Semester 149 / 414

Declarative Programming with Prolog Working with lists

Splitting lists using append

PPPPPP

�
�
�

��

A
A
A
AA
�
�
�

��

A
A
A
AA
�
�
�

��

A
A
A
AA
�

�
�
��

A
A
A
AA

?- app(A, B, [1,2,3,4]).
A=[]

B=[1,2,3,4] A=[1|A1]

A=[],B=[1,2,3,4]
?- app(A1, B, [2,3,4]).

A1=[2|A2]

?- app(A2, B, [3,4]).

B=[3,4]

B=[4]

A2=[]

A3=[]

B=[2,3,4]
A1=[]

A3=[4|A4]

?- app(A3, B, [4]).

?- app(A4, B, []).

A2=[3|A3]
A=[1], B=[2,3,4]

A=[1,2],B=[3,4]

A=[1,2,3],B=[4]

A4=[]
B=[]

A=[1,2,3,4],B=[]

% app(L1, L2, L3):
% L1 ⊕ L2 = L3.
app([], L, L).
app([X|L1], L2, [X|L3]) :-

app(L1, L2, L3).

| ?- app(A, B, [1,2,3,4]).
A = [], B = [1,2,3,4] ? ;
A = [1], B = [2,3,4] ? ;
A = [1,2], B = [3,4] ? ;
A = [1,2,3], B = [4] ? ;
A = [1,2,3,4], B = [] ? ;
no

Semantic and Declarative Technologies 2024 Fall Semester 150 / 414

Declarative Programming with Prolog Working with lists

How does the “openness” of arguments affect append(L1,L2,L3)?

L2 is never decomposed (“looked inside”) by append,
whether it is open ended, does not affect execution
If L1 is closed, append produces at most one answer
| ?- append([a,b], Tail, L). =⇒ L = [a,b|Tail] ? ; no
| ?- append([a,b], [c|T], L). =⇒ L = [a,b,c|T] ? ; no
| ?- append([a,b], [c|T], [_,_,d,_]). =⇒ no
If L3 is closed (of length n), append produces at most n + 1 solutions,
where L1 and L2 are closed lists (also see previous slide):
| ?- append(L1,L2,[1,2]). =⇒ L1=[], L2=[1,2] ? ; L1=[1], L2=[2] ? ;

L1=[1,2], L2=[] ? ; no
| ?- append([1,2], L, [1,2,3,4,5]). =⇒ L = [3,4,5] ? ; no
| ?- append(L1,[4|L2],[1,2,3,4,5]). =⇒ L1 = [1,2,3],L2 = [5] ? ; no
| ?- append(L1,[4,2],[1,2,3,4,5]). =⇒ no
The search may be infinite: if both the 1st and the 3rd arg. is open ended
| ?- append([1|L1], [a,b], L3). =⇒

L1 = [], L3 = [1,a,b] ? ;
L1 = [_A], L3 = [1,_A,a,b] ? ;
L1 = [_A,_B], L3 = [1,_A,_B,a,b] ? ; ad infinitum :-((((

| ?- append([1|L1], L2 , [2|L3]). =⇒ no
Semantic and Declarative Technologies 2024 Fall Semester 151 / 414

Declarative Programming with Prolog Working with lists

Eight ways of using append(L1,L2,L3) (safe or unsafe)

:- mode append(+, +, +). % checking if L1 ⊕ L2 = L3 holds
| ?- append([1,2], [3,4], [1,2,3,4]). =⇒ yes

:- mode append(+, +, -). % appending L1 and L2 to obtain L3
| ?- append([1,2], [3,4], L3). =⇒ L3 = [1,2,3,4] ? ; no

:- mode append(+, -, +). % checking if L1 is a prefix of L3, obtaining L2
| ?- append([1,2], L2, [1,2,3,4]). =⇒ L2 = [3,4] ? ; no

:- mode append(+, -, -). % prepending L1 to an open ended L2 to obtain L3
| ?- append([1,2], [3|L2], L3). =⇒ L3 = [1,2,3|L2] ? ; no

:- mode append(-, +, +). % checking if L2 is a suffix of L3 to obtain L1
| ?- append(L1, [3,4], [1,2,3,4]). =⇒ L1 = [1,2] ? ; no

:- mode append(-, -, +). % splitting L3 to L1 and L2 in all possible ways
| ?- append(L1, L2, [1]). =⇒ L1=[],L2=[1] ? ; L1=[1],L2=[] ? ; no

:- mode append(-, +, -). (see prev. slide) and :- mode append(-, -, -).
| ?- append(L1, L2, L3). =⇒ L1=[], L3=L2 ? ; L1=[A], L3=[A|L2] ? ;

L1=[A,B], L3=[A,B|L2] ? ...

Semantic and Declarative Technologies 2024 Fall Semester 152 / 414

Declarative Programming with Prolog Working with lists

Variation on append — appending three lists

Recall: append/3 has finite search space, if its 1st or 3rd arg. is closed.
append(L,_,_) completes in ≤ n + 1 reduction steps when L has length n
Let us define append(L1,L2,L3,L123): L1 ⊕ L2 ⊕ L3 = L123. First attempt:
append(L1, L2, L3, L123) :-

append(L1, L2, L12), append(L12, L3, L123).

Inefficient: append([1,...,100],[1,2,3],[1], L) – 203 and not 103 steps. . .
Not suitable for splitting lists – may create an infinite choice point

An efficient version, suitable for splitting a given list to three parts:
% L1 ⊕ L2 ⊕ L3 = L123,
% where either both L1 and L2 are closed, or L123 is closed.
append(L1, L2, L3, L123) :-

append(L1, L23, L123), append(L2, L3, L23).

L3 can be open ended or closed, it does not matter
Note that in the first append/3 call either L1 or L123 is closed.
If L1 is closed, the first append/3 produces an open ended list:
| ?- append([1,2], L23, L123). =⇒ L123 = [1,2|L23]

Semantic and Declarative Technologies 2024 Fall Semester 153 / 414

Declarative Programming with Prolog Working with lists

The BIP length/2 – length of a list

length(?List, ?N): list List is of length N

| ?- length([4,3,1], Len). Len = 3 ? ;
no

| ?- length(List, 3). List = [_A,_B,_C] ? ;
no

| ?- length([[4,1,3],[2,8,7]], Len). Len = 2 ? ;
no

| ?- length(L, N). L = [], N = 0 ? ;
L = [_A], N = 1 ? ;
L = [_A,_B], N = 2 ? ;
L = [_A,_B,_C], N = 3 ? ...

length/2 has an infinite search space if the first argument is an open
ended list and the second is a variable.

Semantic and Declarative Technologies 2024 Fall Semester 154 / 414

Declarative Programming with Prolog Working with lists

Appending a list of lists

Library lists contains a predicate append/2
see e.g. https://www.swi-prolog.org/search?for=append%2F2
% append(LL, L): LL is a closed list of lists.
% L is the concatenation of the elements of LL.

Conditions for safe use (finite search space):
Each element of LL is a closed list
| ?- append([[1,2],[3],[4,5]], L). =⇒ L = [1,2,3,4,5] ? ; no

L is a closed list
| ?- append([L1,L2,L3], [1,2]), L1 \= [],

=⇒ L1 = [1], L2 = [], L3 = [2] ? ;
L1 = [1], L2 = [2], L3 = [] ? ;
L1 = [1,2], L2 = [], L3 = [] ? ; no

Finding a sublist matching a given pattern:
| ?- Pattern = [_A,_,_A], append([_Pref,Pattern,_],[1,2,3,2,1,2]),

length(_Pref, Index). % obtain the index of the Pattern
Pattern = [2,3,2], Index = 1 ? ; % Index is zero-based
Pattern = [2,1,2], Index = 3 ? ; no

Semantic and Declarative Technologies 2024 Fall Semester 155 / 414

https://www.swi-prolog.org/search?for=append%2F2

Declarative Programming with Prolog Working with lists

Finding list elements – BIP member/2

% member(E, L): E is an element of list L
member(Elem, [Elem|_]). member1(Elem, [Head|Tail]) :-
member(Elem, [_|Tail]) :- (Elem = Head

member(Elem, Tail). ; member1(Elem, Tail)
).

Mode member(+,+) – checking membership
| ?- member(2, [2,1,2]). =⇒ yes BUT
| ?- member(2, [2,1,2]), R=yes. =⇒ R = yes ? ; R = yes ? ; no

Mode member(-,+) – enumerating list elements:
| ?- member(X, [1,2,3]). =⇒ X = 1 ? ; X = 2 ? ; X = 3 ? ; no
| ?- member(X, [1,2,1]). =⇒ X = 1 ? ; X = 2 ? ; X = 1 ? ; no

Finding common elements of lists – with both above modes:
| ?- member(X, [1,2,3]),

member(X, [5,4,3,2,3]). =⇒ X = 2 ? ; X = 3 ? ; X = 3 ? ; no

Mode member(+,-) – making a term an element of a list (infinite choice):
| ?- member(1, L). =⇒ L = [1|_A] ? ; L = [_A,1|_B] ? ;

L = [_A,_B,1|_C] ? ; ...

The search space of member/2 is finite, if the 2nd argument is closed.
Semantic and Declarative Technologies 2024 Fall Semester 156 / 414

Declarative Programming with Prolog Working with lists

Reversing lists

Naive solution (quadratic in the length of the list)
% nrev(L, R): List R is the reverse of list L.
nrev([], []).
nrev([X|L], R) :-

nrev(L, RL),
append(RL, [X], R).

A solution which is linear in the length of the list
% reverse(L, R): List R is the reverse of list L.
reverse(L, R) :- revapp(L, [], R).

% revapp(L1, L2, R): The reverse of L1 prepended to L2 gives R.
revapp([], R, R).
revapp([X|L1], L2, R) :-

revapp(L1, [X|L2], R).

In SICStus 4 append/3 is a BIP, reverse/2 is in library lists

To load the library place this directive in your program file:
:- use_module(library(lists)).

Semantic and Declarative Technologies 2024 Fall Semester 157 / 414

Declarative Programming with Prolog Working with lists

append and revapp — building lists forth and back (ADVANCED)

Prolog
app([], L, L).
app([X|L1], L2, [X|L3]) :-

app(L1, L2, L3).

revapp([], L, L).
revapp([X|L1], L2, L3) :-

revapp(L1, [X|L2], L3).

C++

struct link { link *next;
char elem;
link(char e): elem(e) {} };

typedef link *list;

list app(list L1, list L2)
{ list L3, *lp = &L3;

for (list p=L1; p; p=p->next)
{ list newl = new link(p->elem);

*lp = newl; lp = &newl->next;
}
*lp = L2; return L3;

}

list revapp(list L1, list L2)
{ list l = L2;

for (list p=L1; p; p=p->next)
{ list newl = new link(p->elem);

newl->next = l; l = newl;
}
return l;

}

Semantic and Declarative Technologies 2024 Fall Semester 158 / 414

Declarative Programming with Prolog Working with lists

Generalization of member: select/3 – defined in library lists

% select(E, List, Rest): Removing E from List results in list Rest.
select(E, [E|Rest], Rest). % The head is removed, the tail remains.
select(E, [X|Tail], [X|Rest]):- % The head remains,

select(E, Tail, Rest). % the element is removed from the Tail.

Possible uses:

| ?- select(1, [2,1,3,1], L). % Remove a given element
L = [2,3,1] ? ; L = [2,1,3] ? ; no

| ?- select(X, [1,2,3], L). % Remove an arbitrary element
L=[2,3], X=1 ? ; L=[1,3], X=2 ? ; L=[1,2], X=3 ? ; no

| ?- select(3, L, [1,2]). % Insert a given element!
L = [3,1,2] ? ; L = [1,3,2] ? ; L = [1,2,3] ? ; no

| ?- select(3, [2|L], [1,2,7,3,2,1,8,9,4]).
no % Can one remove 3 from [2|L]

% to obtain [1,...]?
| ?- select(1, [X,2,X,3], L).

L = [2,1,3], X = 1 ? ; L = [1,2,3], X = 1 ? ; no

The search space of select/3 is finite, if the 2nd or the 3rd arg. is closed.
Semantic and Declarative Technologies 2024 Fall Semester 159 / 414

Declarative Programming with Prolog Working with lists

Permutation of lists – two solutions (ADVANCED)

perm(+List, ?Perm): The list Perm is a permutation of List

perm0([], []).
perm0(L, [H|P]) :-

select(H, L, R), % Select H from L as the head of the output, R remaining.
perm0(R, P). % Permute R to become P, the tail of the output list.

| ?- perm0([a,b,c], L).
L = [a,b,c] ? ; L = [a,c,b] ? ; L = [b,a,c] ? ;
L = [b,c,a] ? ; L = [c,a,b] ? ; L = [c,b,a] ? ; no

perm1([], []).
perm1([H|T], P) :-

perm1(T, P1), % Permute T, the tail of the input list, obtaining P1.
select(H, P, P1). % Insert H, the head of the input list, into an arbitrary
% mode:+ - + % position within P1 to obtain the output list, P.

| ?- perm1([a,b,c], L).
L = [a,b,c] ? ; L = [b,a,c] ? ; L = [b,c,a] ? ;
L = [a,c,b] ? ; L = [c,a,b] ? ; L = [c,b,a] ? ; no

perm is symmetric, so the two predicates have the same meaning (WHAT)
But the second variant is much faster!

Semantic and Declarative Technologies 2024 Fall Semester 160 / 414

Declarative Programming with Prolog Term ordering

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 161 / 414

Declarative Programming with Prolog Term ordering

Principles of Prolog term ordering ≺

XXXX

!!! aaa

!!! HH

�� aaa

Term

float

var nonvar

atomic compound

number atom

integer

Different kinds ordered left-to-right:

var ≺ float ≺ integer ≺
≺ atom ≺ compound

Ordering of variables: system dependent
Ordering of floats and integers: usual (x ≺ y ⇔ x < y)
Ordering of atoms: lexicographical (abc≺abcd, abcv≺abcz)
Compound terms: namea(a1, . . . ,an) ≺ nameb(b1, . . . ,bm) iff

1 n < m, e.g. p(x,s(u,v,w)) ≺ a(b,c,d), or
2 n = m, and namea ≺ nameb (lexicographically), e.g. a(x,y) ≺ p(b,c), or
3 n = m, namea = nameb, and for the first i where ai ̸= bi , ai ≺ bi ,

e.g. r(1,u+v,3,x) ≺ r(1,u+v,5,a)

Semantic and Declarative Technologies 2024 Fall Semester 162 / 414

Declarative Programming with Prolog Term ordering

Built-in predicates for comparing Prolog terms

Comparing two Prolog terms:
Goal holds if
Term1 == Term2 Term1 ̸≺ Term2 ∧ Term2 ̸≺ Term1
Term1 \== Term2 Term1 ≺ Term2 ∨ Term2 ≺ Term1
Term1 @< Term2 Term1 ≺ Term2
Term1 @=< Term2 Term2 ̸≺ Term1
Term1 @> Term2 Term2 ≺ Term1
Term1 @>= Term2 Term1 ̸≺ Term2

The comparison predicates are not purely logical:
| ?- X @< 3, X = 4. =⇒ X = 4
| ?- X = 4, X @< 3. =⇒ no
as they rely on the current instantiation of their arguments
Comparison uses, of course, the canonical representation:
| ?- [1, 2, 3, 4] @< s(1,2,3). =⇒ yes
BIP sort(L, S) sorts (using @<) a list L of arbitrary Prolog terms, removing
duplicates (w.r.t. ==). Thus the result is a strictly increasing list S.
| ?- sort([1, 2.0, s(a,b), s(a,c), s, X, s(Y), t(a), s(a), 1, X], L).
L = [X,2.0,1,s,s(Y),s(a),t(a),s(a,b),s(a,c)] ?

Semantic and Declarative Technologies 2024 Fall Semester 163 / 414

Declarative Programming with Prolog Term ordering

Equality-like Prolog predicates – a summary

Recall: a Prolog term is ground if it contains no unbound variables

U = V : U unifies with V
No errors. May bind vars.

| ?- X = 1+2. =⇒ X = 1+2
| ?- 3 = 1+2. =⇒ no

U == V : U is identical to V , i.e.
U =V succeeds with no bindings
No errors, no bindings.

| ?- X == 1+2. =⇒ no
| ?- 3 == 1+2. =⇒ no
| ?- +(X,Y)==X+Y =⇒ yes

U =:= V : The value of U is
arithmetically equal to that of V .
No bindings. Error if U or V is not
a (ground) arithmetic expression.

| ?- X =:= 1+2. =⇒ error
| ?- 1+2 =:= X. =⇒ error
| ?- 2+1 =:= 1+2.=⇒ yes
| ?- 3.0 =:= 1+2.=⇒ yes

U is V : U is unified with the
value of V .
Error if V is not a (ground)
arithmetic expression.

| ?- X is 1+2. =⇒ X = 3
| ?- 3.0 is 1+2. =⇒ no
| ?- 1+2 is X. =⇒ error
| ?- 3 is 1+2. =⇒ yes
| ?- 1+2 is 1+2. =⇒ no

Semantic and Declarative Technologies 2024 Fall Semester 164 / 414

Declarative Programming with Prolog Term ordering

Nonequality-like Prolog predicates – a summary

Nonequality-like Prolog predicates never bind variables.

U \= V : U does not unify with V .
No errors.

| ?- X \= 1+2. =⇒ no
| ?- X \= 1+2, X = 1. =⇒ no
| ?- X = 1, X \= 1+2. =⇒ yes
| ?- +(1,2) \= 1+2. =⇒ no

U \== V : U is not identical to V .
No errors.

| ?- X \== 1+2. =⇒ yes
| ?- X \== 1+2, X=1+2. =⇒ yes
| ?- 3 \== 1+2. =⇒ yes
| ?- +(1,2)\==1+2 =⇒ no

U =\= V : The values of the
arithmetic expressions U and V
are different.
Error if U or V is not a (ground)
arithmetic expression.

| ?- X =\= 1+2. =⇒ error
| ?- 1+2 =\= X. =⇒ error
| ?- 2+1 =\= 1+2. =⇒ no
| ?- 2.0 =\= 1+1. =⇒ no

Semantic and Declarative Technologies 2024 Fall Semester 165 / 414

Declarative Programming with Prolog Term ordering

(Non)equality-like Prolog predicates – examples

Unification Identical terms Arithmetic

U V U = V U \= V U == V U \== V U =:= V U =\= V U is V

1 2 no yes no yes no yes no

a b no yes no yes error error error

1+2 +(1,2) yes no yes no yes no no

1+2 2+1 no yes no yes yes no no

1+2 3 no yes no yes yes no no

3 1+2 no yes no yes yes no yes

X 1+2 X=1+2 no no yes error error X=3

X Y X=Y no no yes error error error

X X yes no yes no error error error

Legend: yes – success; no – failure.

Semantic and Declarative Technologies 2024 Fall Semester 166 / 414

Declarative Programming with Prolog Higher order predicates

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 167 / 414

Declarative Programming with Prolog Higher order predicates

Higher order programming: using predicates as arguments

Example: collect all nonzero elements of a list
% nonzero_elems(Xs, Ys): Ys is a list of all nonzero elements of Xs
nonzero_elems([], []).
nonzero_elems([X|Xs], Ys) :-

(0 \= X -> Ys = [X|Ys1]
; Ys = Ys1
),
nonzero_elems(Xs, Ys1).

Generalize to a predicate where the condition is given as an argument
% include(Pred, Xs, Ys): Ys = list of elems of Xs that satisfy Pred
include(_Pred, [], []).
include(Pred, [X|Xs], Ys) :-

(call(Pred, X) -> Ys = [X|Ys1]
; Ys = Ys1
),
include(Pred, Xs, Ys1).

Specialize include for collecting nonzero elements:
nonz(X) :- 0 \= X.
nonzero_elems(L, L1) :- include(nonz, L, L1).

Semantic and Declarative Technologies 2024 Fall Semester 168 / 414

Declarative Programming with Prolog Higher order predicates

Higher order predicates

A higher order predicate (or meta-predicate) is a predicate with an
argument which is interpreted as a goal, or a partial goal
A partial goal is a goal with the last few arguments missing

e.g., a predicate name is a partial goal
(hence variable name Pred is often used for partial goals)

The BIP call(PG, X), where PG is a partial goal, adds X as the last
argument to PG and executes this new goal:

if PG is an atom⇒ it calls PG(X), e.g. call(number, X) ≡ number(X)
if PG is a compound Pred(A1,...,An)⇒ it calls Pred(A1,...,An,X),
e.g. call(\=(0), X) ≡ \=(0,X) ≡ 0 \= X

Predicate include(Pred, L, FL) is in library(lists)

| ?- L=[1,2,a,X,b,0,3+4],
include(number, L, Nums). % Nums = { x ∈ L | number(x) }

Nums = [1,2,0] ? ; no

| ?- L=[0,2,0,3,-1,0],
include(\=(0), L, NZs). % NZs = { x ∈ L | \=(0,x) }

NZs = [2,3,-1] ?

Semantic and Declarative Technologies 2024 Fall Semester 169 / 414

Declarative Programming with Prolog Higher order predicates

Calling predicates with additional arguments

Recall: a callable term is a compound or atom.
There is a group of built-in predicates call/N

call(Goal): invokes Goal, where Goal is a callable term
call(PG, A): Adds A as the last argument to PG, and invokes it.
call(PG, A, B): Adds A and B as the last two args to PG, invokes it.
call(PG, A1, . . ., An): Adds A1, . . . , An as the last n arguments to PG,
and invokes the goal so obtained.

PG is a partial goal, to be extended with additional arguments before
calling. It has to be a callable term.
even(X) :- X mod 2 =:= 0.

| ?- include(even, [1,3,2,9,6,4,0], FL).
=⇒ FL = [2,6,4,0] ; no

divisible_by(N, X) :- X mod N =:= 0.

| ?- include(divisible_by(3), [1,3,2,9,6,4,0], FL).
=⇒ FL = [3,9,6,0] ; no

In descriptions we often abbreviate call(PG, A1, . . ., An) to PG(A1, . . ., An)

Semantic and Declarative Technologies 2024 Fall Semester 170 / 414

Declarative Programming with Prolog Higher order predicates

An important higher order predicate: maplist/3

maplist(:PG, ?L, ?ML): for each X element of L and the corresponding Y
element of ML, call(PG, X, Y) holds, where PG is a partial goal requiring
two additional arguments
Annotation “:” (as in :PG above) marks a meta argument, i.e. a term to be
interpreted as a goal or a partial goal

maplist(_PG, [], []).
maplist(PG, [X|Xs], [Y|Ys]) :-

call(PG, X, Y),
maplist(PG, Xs, Ys).

| ?- maplist(reverse, [[1,2],[3,4]], LL). =⇒ LL = [[2,1],[4,3]] ? ; no

square(X, Y) :- Y is X*X.

mult(N, X, NX) :- NX is N*X.

| ?- maplist(square, [1,2,3,4], L). =⇒ L = [1,4,9,16] ? ; no
| ?- maplist(mult(2), [1,2,3,4], L). =⇒ L = [2,4,6,8] ? ; no
| ?- maplist(mult(-5), [1,2,3], L). =⇒ L = [-5,-10,-15] ? ; no

Semantic and Declarative Technologies 2024 Fall Semester 171 / 414

Declarative Programming with Prolog Higher order predicates

Variants of maplist

In SICStus, maplist can also be used with 2 and 4 arguments
maplist(:Pred, +Xs) is true if for each x element of Xs, Pred(x) holds.
Example: check if a condition holds for all elements of a list
all_positive(Xs) :- % all elements of Xs are positive

maplist(<(0), Xs). % ∀ X ∈ Xs, <(0, X), i.e. 0 < X holds

maplist(:Pred, ?Xs, ?Ys, ?Zs) is true when Xs, Ys, and Zs are lists of
equal length, and Pred(X, Y, Z) is true for corresponding elements X of
Xs, Y of Ys, and Z of Zs. At least one of Xs, Ys, Zs has to be a closed list.
Example: add two vectors
add_vectors(VA, VB, VC) :-

maplist(plus, VA, VB, VC). plus(A, B, C) :- C is A+B.

| ?- add_vectors([10,20,30], [3,2,1], V). =⇒ V = [13,22,31] ? ; no

The implementation of maplist/4 (easy to generalize :-):
maplist(_PG, [], [], []).
maplist(PG, [X|Xs], [Y|Ys], [Z|Zs]) :-

call(PG, X, Y, Z), maplist(PG, Xs, Ys, Zs).

Semantic and Declarative Technologies 2024 Fall Semester 172 / 414

Declarative Programming with Prolog Higher order predicates

Another important higher order predicate: scanlist (SWI: foldl)

Example: plus(A, S0, S) :- S is S0+A.

| ?- scanlist(plus, [1,3,5], 0, Sum). =⇒ Sum = 9 ? ; no
% 0+1+3+5 = 9

This executes as: plus(0, 1, S1), plus(S1, 3, S2), plus(S2, 5, Sum).

In general: scanlist(acc, [E1,E2,...,En], S0, Sn) is expanded as:
acc(S0, E1, S1), acc(S1, E2, S2), ..., acc(Sn−1, En, Sn)

scanlist(:PG, ?L, ?Init, ?Final):
PG represents the above accumulating predicate acc
scanlist applies the acc predicate repeatedly, on all elements of list
L, left-to-right, where Init = S0 and Final = Sn.

For processing two lists (of the same length), use scanlist/5, e.g.
prodsum(A, B, PS0, PS) :- PS is PS0 + A*B.

scalar_product(As, Bs, SP) :- scanlist(prodsum, As, Bs, 0, SP).
| ?- scalar_product([1,0,2], [3,4,5], SP). =⇒ SP = 13 ? ; no

In SICStus, there is also a scanlist/6 predicate, for processing 3 lists

Semantic and Declarative Technologies 2024 Fall Semester 173 / 414

Declarative Programming with Prolog All solutions predicates

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 174 / 414

Declarative Programming with Prolog All solutions predicates

All solutions built-in predicates – introduction

All solution BIPs are higher order predicates analogous to list
comprehensions in Haskell, Python, etc.
There are three such predicates: findall/3 (the simplest), bagof/3 and
setof/3; having the same arguments, but somewhat different behavior
Examples for findall/3:
| ?- findall(X, (member(X, [1,7,8,3,2,4]), X > 3), L).
% {X | X ∈ {1,7,8,3,2,4}, X > 3} = L

=⇒ L = [7,8,4] ? ; no
| ?- findall(X, (member(X, [1,7,8,3,2,4]), X > 8), L).
% {X | X ∈ {1,7,8,3,2,4}, X > 8} = L

=⇒ L = [] ? ; no
| ?- findall(X-Y, (between(1, 3, X), between(1, X, Y)), L).
% {X-Y | 1≤ X≤ 3, 1≤ Y≤ X } = L

=⇒ L = [1-1,2-1,2-2,3-1,3-2,3-3] ? ; no

Recall: between(+N, +M, ?X) enumerates in X the integers N, N+1, . . . , M.
In SICStus, it requires loading library(between).

Semantic and Declarative Technologies 2024 Fall Semester 175 / 414

Declarative Programming with Prolog All solutions predicates

Finding all solutions: the BIP findall(?Templ, :Goal, ?L)

Approximate meaning: L is a list of Templ terms for each solution of Goal

The execution of the BIP findall/3 (procedural semantics):
Interpret term Goal as a goal, and call it
For each solution of Goal:

store a copy of Templ (copy =⇒ replace vars in Templ by new ones)
Note that copying requires time proportional to the size of Templ
continue with failure (to enumerate further solutions)

When there are no more solutions (Goal fails)
collect the stored Templ values into a list, unify it with L.

When a solution contains (possibly multiple instances of) a variable (e.g. A),
then each of these will be replaced by a single new variable (e.g. _A):
| ?- findall(T, member(T, [A-A,B-B,A]), L).

=⇒ L= [_A-_A,_B-_B,_C] ? ; no

Semantic and Declarative Technologies 2024 Fall Semester 176 / 414

Declarative Programming with Prolog All solutions predicates

All solutions: the BIP bagof(?Templ, :Goal, ?L)

Exactly the same arguments as in findall/3.
bagof/3 is the same as findall/3, except when there are unbound
variables in Goal which do not occur in Templ (so called free variables)
% emp(Er, Ee): employer Er employs employee Ee.
emp(a,b). emp(a,c). emp(b,c). emp(b,d).
| ?- findall(E, emp(R, E), Es). % Es ≡ the list of all employees

=⇒ Es = [b,c,c,d] ? ; no i.e. Es = {E | ∃ R. (R employs E)}
bagof does not treat free vars as existentially quantified. Instead it
enumerates all possible values for the free vars (all employers) and for
each such choice it builds a separate list of solutions:
| ?- bagof(E,emp(R,E),Es). % Es ≡ list of Es employed by any possible R.

=⇒ R = a, Es = [b,c] ? ;
=⇒ R = b, Es = [c,d] ? ; no

Use operator ^ to achieve existential quantification in bagof:
| ?- bagof(E, R^emp(R, E), Es). % Collect Es for which ∃R.emp(R, E)

=⇒ Es = [b,c,c,d] ? ; no

bagof preserves variables (but it is slower than findall :-():
| ?- bagof(T, member(T, [A-A,B-B,A]), L). =⇒ L = [A-A,B-B,A] ? ; no

Semantic and Declarative Technologies 2024 Fall Semester 177 / 414

Declarative Programming with Prolog All solutions predicates

All solutions: the BIP setof/3

setof(?Templ, :Goal, ?List)

The execution of the procedure:
same as: bagof(Templ, Goal, L0), sort(L0, List)
recall: sort(+L, ?SL) is a built-in predicate which sorts L using the
@< built-in predicate removes duplicates and unifies the result with SL

Example:
graph([a-b,a-c,b-c,c-d,b-d]).

% Graph has a node V.
has_node(Graph, V) :- member(A-B, Graph), (V = A ; V = B).

% The set of nodes of G is Vs.
graph_nodes(G, Vs) :- setof(V, has_node(G, V), Vs).

| ?- graph(_G), graph_nodes(_G, Vs). =⇒ Vs = [a,b,c,d] ? ; no

Semantic and Declarative Technologies 2024 Fall Semester 178 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 179 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Causes of inefficiency – preview

Unnecessary choice points (ChPs) waste both time and space
Recursive definitions often leave choice points behind on exit, e.g.:

% fact0(+N, ?F): F = N!.
fact0(0, 1).
fact0(N, F) :- N > 0, N1 is N-1, fact0(N1, F1), F is N*F1.
Remedy: use if-then-else or the cut BIP (coming soon)
% last0(L, E): The last element of L is E.
last0([E], E).
last0([_|L], E) :- last0(L, E).
Remedy: rewrite to make use of indexing (or cut, or if-then-else)

General recursion, as opposed to tail recursion
As an example, see the fact0/2 predicate above
Remedy: re-formulate to a tail recursive form, using accumulators

Semantic and Declarative Technologies 2024 Fall Semester 180 / 414

Declarative Programming with Prolog Efficient programming in Prolog

The cut – the BIP underlying if-then-else and negation

The cut, denoted by !, is a BIP with no arguments, i.e. its functor is !/0.
Execution: the cut always succeeds with these two side effects:

Restrict to the first solution of a goal:
Remove all choice points created within the goal(s) preceding the !.
% is_a_parent(+P): check if a given P is a parent.
is_a_parent(P) :- has_parent(_, P), !.

Commit to the clause containting the cut:
Remove the choice of any further clauses in the current predicate.
fact1(0, F) :- !, F = 1. % Assign output vars only after the cut,

% both for correctness and efficiency
fact1(N, F) :- N > 0, N1 is N-1, fact1(N1, F1), F is N*F1.

Definition: if q :- ..., p, then
the parent goal of p is the goal matching the clause head q

Effects of cut in the search tree: removes all choice points up to and
including the node labelled with the parent goal of the cut.
In the procedure box model: Fail port of cut =⇒ Fail port of parent goal

Semantic and Declarative Technologies 2024 Fall Semester 181 / 414

Declarative Programming with Prolog Efficient programming in Prolog

How does “cut” prune the search tree – an example

a(X, Y) :- b(X), c(X, Y). b(s(1)).
a(X, Y) :- d(X, Y). b(s(2)).

c(s(X), Y) :- Y is X+10. d(s(3), 30).
c(s(X), Y) :- Y is X+20. d(t(4), 40).

a_cut(X, Y) :- b(X), !, c(X, Y).
a_cut(X, Y) :- d(X, Y).

test(Pred, X, Res) :-
findall(X-Y, call(Pred, X, Y), Res).

Sample runs:

| ?- test(a, s(_), Res). =⇒ Res = [s(1)-11,s(1)-21,s(2)-12,
s(2)-22,s(3)-30] ?

| ?- test(a, t(_), Res). =⇒ Res = [t(4)-40] ?
| ?- test(a_cut, s(_), Res). =⇒ Res = [s(1)-11,s(1)-21] ?
| ?- test(a_cut, s(3), Res). =⇒ Res = [s(3)-30] ?
| ?- test(a_cut, t(_), Res). =⇒ Res = [t(4)-40] ?

Semantic and Declarative Technologies 2024 Fall Semester 182 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Avoid leaving unnecessary choice points

Add a cut if you know that remaining branches are doomed to fail.
(These are so called green cuts, which do not remove solutions.)
Example of a green cut:
% last1(L, E): The last element of L is E.
last1([E], E) :- !.
last1([_|L], E) :- last1(L, E).

In the absence of the cut, the goal last1([1], X) will return the
answer X = 1, and leave a choice point. When this choice point is
explored last1([], X) will be called which will always fail.
Instead of a cut, one can use if-then-else:
last2([E|L], X) :- (L == [] -> X = E

; last2(L, X)
).

fact2(N, F) :- (N == 0 -> F = 1
; N > 0, N1 is N-1, fact2(N1, F1), F is N*F1
).

Semantic and Declarative Technologies 2024 Fall Semester 183 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Avoid leaving unnecessary choice points – indexing

Recall a simple example predicate, summing a binary tree:
% tree_sum(+Tree, ?Sum):
% Sum is the sum of integers in the leaves of Tree.
tree_sum(leaf(Value), Value). 1st head arg’s functor: leaf/1
tree_sum(node(Left, Right), S) :- 1st head arg’s functor: node/2

tree_sum(Left, S1), tree_sum(Right, S2), S is S1+S2.

Indexing groups the clauses of a predicate based on the outermost
functor of (usually) the first argument.
The compiler generates code (using hashing) to select the subset of
clauses that corresponds to this outermost functor.
If the subset contains a single clause, no choicepoint is created. (This is
the case in the above example.)

Semantic and Declarative Technologies 2024 Fall Semester 184 / 414

Declarative Programming with Prolog Efficient programming in Prolog

SICStus specific: avoid choice points in if-then-else (ADVANCED)

Consider an if-then-else goal of the form: (cond -> then ; else).
Before cond, a ChP is normally created (removed at -> or before else).
In SICStus Prolog no choice points are created, if cond only contains:

arithmetical comparisons (e.g., <, =<, =:=); and/or
built-in predicates checking the term type (e.g., atom, number); and/or
general comparison operators (e.g., @<, @=<, ==).

Analogously, no ChPs are made for head :- cond, !, then.,
if all arguments of head are distinct variables, and cond is just like above.
Further improved variants of fact2 and last2 with no ChPs created:

fact3(N, F) :- (N =:= 0 -> F = 1 % used to be N = 0
; N > 0, N1 is N-1, fact(N1, F1), F is N*F1
).

last3([E|L], X) :- (L == [] -> X = E % used to be L = []
; last3(L, X)
).

Semantic and Declarative Technologies 2024 Fall Semester 185 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Indexing – an introductory example

A sample (meaningless) program to illustrate indexing.
p(0, a). /* (1) */
p(X, t) :- q(X). /* (2) */
p(s(0), b). /* (3) */
p(s(1), c). /* (4) */
p(9, z). /* (5) */

q(1).
q(2).

For the call p(A, B), the compiler produces a case statement-like
construct, to determine the list of applicable clauses:

(VAR) if A is a variable: (1) (2) (3) (4) (5)
(0/0) if A = 0 (A’s main functor is 0/0): (1) (2)
(s/1) if A’s main functor is s/1: (2) (3) (4)
(9/0) if A = 9: (2) (5)
(OTHER) in all other cases: (2)

Example calls (do they create and leave a choice point?)
p(1, Y) takes branch (OTHER), does not create a choice point.
p(s(1), Y) takes branch (s/1), creates a choice point,
but removes it and exits without leaving a choice point.
p(s(0), Y) takes branch (s/1), and exits leaving a choice point.

Semantic and Declarative Technologies 2024 Fall Semester 186 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Indexing

Indexing improves the efficiency of Prolog execution by
speeding up the selection of clauses matching a particular call;
using a compile-time grouping of the clauses of the predicate.

Most Prolog systems, including SICStus, use only the main (i.e.
outermost) functor of the first argument for indexing, which is

C/0, if the argument is a constant (atom or number) C;
R/N, if the argument is a compound with name R and arity N;
undefined, if the argument is a variable.

Implementing indexing
Compile-time: collect the set of (outermost) functors of nonvar terms
occurring as first args, build the case statement (see prev. slide)
Run-time: select the relevant clause list using the first arg. of the call.
This is practically a constant time operation, as it uses hashing.

If the clause list is a singleton, no choice point is created.
Otherwise a choice point is created, which will be removed before
entering the last branch.

Semantic and Declarative Technologies 2024 Fall Semester 187 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Getting the most out of indexing

Get deep indexing through helper predicates (rewrite p/2 to q/2):
p(0, a).
p(s(0), b).
p(s(1), c).
p(9, z).

=⇒
q(0, a).
q(s(X), Y) :-

q_aux(X, Y).
q(9, z).

q_aux(0, b).
q_aux(1, c).

Pred. q(X,Y) will not create choice points if X is ground.
Indexing does not deal with arithmetic comparisons

E.g., N = 0 and N > 0 are not recognized as mutually exclusive.
Indexing and lists

Putting the (input) list in the first argument makes indexing work.
Indexing distinguishes between [] and [...|...]
(resp. functors: ’[]’/0 and ’.’/2).
For proper lists, the order of the two clauses is not relevant
For use with open ended lists: put the clause for [] first, to avoid an
infinite loop (an infinite choice may still remain)

Semantic and Declarative Technologies 2024 Fall Semester 188 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Indexing list handling predicates

Predicate app/3 creates no choice points
if the first argument is a proper list:
% app(L1, L2, L3): L1 ⊕ L2 = L3. % 1st arg funct:
app([], L, L). % []/0
app([X|L1], L2, [X|L3]) :- % . /2

app(L1, L2, L3).

The same is true for revapp/3:
% revapp(L1, L2, L3):
% appending the reverse of L1 and L2 gives L3
revapp([], L, L). % []/0
revapp([X|L1], L2, L3) :- % . /2

revapp(L1, [X|L2], L3).

Semantic and Declarative Technologies 2024 Fall Semester 189 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Indexing list handling predicates, cont’d

Getting the last element of a list: last0/2 leaves a choice point.
% last0(L, E): The last element of L is E.
last0([H], H). % . /2
last0([_|T], E) :- last0(T, E). % . /2

The variant last4/2 uses a helper predicate, creates no choice points:
last4([H|T], E) :- last4(T, H, E). (*)

% last4(T, H, E): The last element of [H|T] is E.
last4([], E, E). % []/0
last4([H|T], _, E) :- last4(T, H, E). % . /2

member0/2 (as defined earlier) always leaves a choice point.
% member0(E, L): E is an element of L.
member0(E, [E|_T]). % VAR
member0(E, [_H|T]) :- member0(E, T). % VAR

Write the head comment and the clauses of member1/3, so that member1/2
leaves no choice point when the last element of a (proper) list is returned.
member1(E, [H|T]) :- member1(T, H, E). % cf. (*)
% member1(T, H, E): ...

Semantic and Declarative Technologies 2024 Fall Semester 190 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Tail recursion

In general, recursion is expensive both in terms of time and space.
The special case of tail recursion can be compiled to a loop. Conditions:

1 the recursive call is the last to be executed in the clause body, i.e.:
it is textually the last subgoal in the body; or
the last subgoal is a disjunction/if-then-else, and the recursive
call is the last in one of the branches

2 no ChPs left in the predicate when the recursive call is reached
Example
% all_pos(+L): all elements of number list L are positive.
all_pos([]).
all_pos([X|L]) :-

X > 0, all_pos(L).

Tail recursion optimization, TRO: the memory allocated by the clause is
freed before the last call is executed.
This optimization is performed not only for recursive calls but for the last
calls in general (last call optimization, LCO).

Semantic and Declarative Technologies 2024 Fall Semester 191 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Making a predicate tail recursive – accumulators

Example: the sum of a list of numbers. The left recursive variant:
% sum0(+List, -Sum): the sum of the elements of List is Sum.
sum0([], 0).
sum0([X|L], Sum) :- sum0(L, Sum0), Sum is Sum0+X.

Note that sum0([a1,. . ., an], S) =⇒ S = 0+an+. . . +a1 (right to left)
For TRO, define a helper pred, with an arg. storing the “sum so far”:
% sum(+List, +Sum0, -Sum):
% (Σ List) + Sum0 = Sum, i.e. Σ List = Sum-Sum0.
sum([], Sum, Sum).
sum([X|L], Sum0, Sum) :-

Sum1 is Sum0+X, % Increment the ‘‘sum so far’’
sum(L, Sum1, Sum). % recurse with the tail and the new sum so far

Arguments Sum0 and Sum form an accumulator pair: Sum0 is an
intermediate while Sum is the final value of the accumulator.
The initial value is supplied when defining sum/2:
% sumlist(+List, ?Sum): Σ List = Sum. Available from library(lists).
sumlist(List, Sum) :- sum(List, 0, Sum).

Note that sumlist([a1,. . ., an], S) =⇒ S = 0+a1+. . . +an (left to right)
Semantic and Declarative Technologies 2024 Fall Semester 192 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Accumulators – making factorial tail-recursive

Two arguments of a pred. forming an accumulator pair: the declarative
equivalent of the imperative variable (i.e. a variable with a mutable state)
The two parts: the state of the mutable quantity at pred. entry and exit.
Example: making factorial tail-recursive. The mid-recursive version:
% fact0(N, F): F = N!.
fact0(N, F) :- (N =:= 0 -> F = 1

; N > 0, N1 is N-1, fact0(N1, F1), F is F1*N
).

| ?- fact0(4, F). =⇒ F = 24 ∼ 1*1*2*3*4

Helper predicate: fact(N, F0, F), F0 is the product accumulated so far.
% fact(N, F0, F): F = F0*N!.
fact(N, F0, F) :- (N =:= 0 -> F = F0

; N > 0, F1 is F0*N, N1 is N-1, fact(N1, F1, F)
).

fact(N, F) :-
fact(N, 1, F).

| ?- fact(4, F). =⇒ F = 24 ∼ 1*4*3*2*1

Semantic and Declarative Technologies 2024 Fall Semester 193 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Accumulating lists – higher order approaches (ADVANCED)

Recap predicate revapp/3:
% revapp(L, R0, R): The reverse of L prepended to R0 gives R.
revapp0([], R0, R) :- R = R0.
revapp0([X|L], R0, R) :- R1 = [X|R0], revapp0(L, R1, R).
Introduce the list construction predicate cons/3
% L1 is a list constructed from the head X and tail L0.
cons(X, L0, L1) :- L1 = [X|L0].
revapp1([], R0, R) :- R = R0.
revapp1([X|L], R0, R) :- cons(X, R0, R1), revapp1(L, R1, R).
A higher order (HO) solution (in SWI use foldl instead of scanlist):
revapp2(L, R0, R) :- scanlist(cons, L, R0, R).
Summing a list, HO solution (% sum2(L, Sum): list L sums to Sum.)
plus(X, S0, S1) :- S1 is S0+X.
sum2(L, Sum) :- scanlist(plus, L, 0, Sum).
(ADV2) Appending lists, HO sol. (% app(L1, L2, L): L1 ⊕ L2 = L.)
% decomp(X, C, B): List C can be decomposed to head X and tail B
decomp(X, C, B) :- C = [X|B].
app(A, B, C) :- scanlist(decomp, A, C, B).

Semantic and Declarative Technologies 2024 Fall Semester 194 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Accumulating lists – avoiding append

Example: calculate the list of leaf values of a tree. Without accumulators:
% tree_list0(+T, ?L): L is the list of the leaf values of tree T.
tree_list0(leaf(Value), [Value]).
tree_list0(node(Left, Right), L) :-

tree_list0(Left, L1), tree_list0(Right, L2), append(L1, L2, L).

Building the list of tree leaves using accumulators:
tree_list(Tree, L) :-

tree_list(Tree, [], L). % Initialize the list accumulator to []

% tree_list(+Tree, +L0, L): The list of the
% leaf values of Tree prepended to L0 is L.
tree_list(leaf(Value), L0, L) :- L = [Value|L0].
tree_list(node(Left, Right), L0, L) :-

tree_list(Right, L0, L1), tree_list(Left, L1, L).

| ?- tree_list(node(node(leaf(a),leaf(b)),leaf(c)), L). =⇒ L = [a,b,c]? ; no

Note that one of the two recursive calls is tail-recursive.
Also, there is no need to append the intermediate lists!

Semantic and Declarative Technologies 2024 Fall Semester 195 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Accumulators for implementing imperative (mutable) variables

Let L = [x1, . . . ,] be a number list. xi is left-visible in L, iff ∀j < i .(xj < xi)
Determine the count of left-visible elements in a list of positive integers:

Imperative, C-like algorithm

int viscnt(list L) {
int MV = 0; // max visible
int VC = 0; // visible cnt

loop:
if (empty(L)) return VC;

{ int H = hd(L), L = tl(L);
if (H > MV)

{ VC += 1; MV = H; }
// else VC,MV unchanged

}
goto loop;

}

Prolog code

% List L has VC left-visible elements.
viscnt(L, VC) :- viscnt(L,

0,
0, VC).

% viscnt(L, MV, VC0, VC): L has VC-VC0
% left-visible elements which are > MV.
viscnt([], _, VC0, VC) :- VC = VC0.
viscnt(L0, MV0, VC0, VC) :- % (1)

L0 = [H|L1],
(H > MV0
-> VC1 is VC0+1, MV1 = H
; VC1 = VC0, MV1 = MV0 % (2)
),
viscnt(L1, MV1, VC1, VC). % (3)

Semantic and Declarative Technologies 2024 Fall Semester 196 / 414

Declarative Programming with Prolog Efficient programming in Prolog

Mapping a C loop to a Prolog predicate

Each C variable initialized before the loop and used in it becomes an
input argument of the Prolog predicate
Each C variable assigned to in the loop and used afterwards becomes an
output argument of the Prolog predicate
Each occurrence of a C variable is mapped to a Prolog variable,
whenever the variable is assigned, a new Prolog variable is needed,
e.g. MV is mapped to MV0, MV1, . . . :

The initial values (L0,MV0, . . .) are the args of the clause head2 (1)
If a branch of if-then(-else) changes a variable, while others don’t,
then the Prolog code of latter branches has to state that the new
Prolog variable is equal to the old one, (2)
At the end of the loop the Prolog predicate is called with arguments
corresponding to the current values of the C variables, (3)

2References of the form (n) point to the previous slide.
Semantic and Declarative Technologies 2024 Fall Semester 197 / 414

Declarative Programming with Prolog Building and decomposing terms

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 198 / 414

Declarative Programming with Prolog Building and decomposing terms

Building and decomposing compounds: the univ predicate

BIP =.. /2 (pronounce univ) is a standard op. (xfx, 700; just as =, . . .)
Term =.. List holds if

Term = Fun(A1, . . ., An) and List = [Fun,A1,..., An],
where Fun is an atom and A1,..., An are arbitrary terms; or
Term = C and List = [C], where C is a constant.
(Constants are viewed as compounds with 0 arguments.)

Whenever you would like to use a var. as a compound name, use univ:
X = F(A1,. . .,An) causes syntax error, use X =.. [F,A1,. . .,An] instead
Call patterns for univ: +Term =.. ?List decomposes Term

-Term =.. +List constructs Term
Examples
| ?- edge(a,b,10) =.. L. =⇒ L = [edge,a,b,10]
| ?- Term =.. [edge,a,b,10]. =⇒ Term = edge(a,b,10)
| ?- apple =.. L. =⇒ L = [apple]
| ?- Term =.. [1234]. =⇒ Term = 1234
| ?- Term =.. L. =⇒ error
| ?- f(a,g(10,20)) =.. L. =⇒ L = [f,a,g(10,20)]
| ?- Term =.. [/,X,2+X]. =⇒ Term = X/(2+X)

Semantic and Declarative Technologies 2024 Fall Semester 199 / 414

Declarative Programming with Prolog Building and decomposing terms

An interesting Prolog task

A job interview question: construct an arithmetic expression containing
integers 1, 3, 4, 6 each exactly once, using the four basic arithmetic
operators +, -, *, /, 0 or more times, so that the expression evaluates to 24
Let’s write a Prolog program for solving this task:

:- use_module(library(lists), [permutation/2]).

% arith_expr(+L, +OpL, +Val, -Expr) :
% Expr is an arithmetic expression containing only operators present
% in the list OpL (operators may be used 0 or more times) and
% integers given in list L (each integer has to appear exactly once),
% so that the value of the expression is Val.
arith_expr(L, OpL, Val, Expr) :-

permutation(L, PL), % permute the list of integers into PL
leaves_ops_expr(PL, OpL, Expr), % build Expr with PL as the leaves-list
catch(Expr =:= Val, _, fail). % check if Expr evaluates to Val, fail

% if there is a division-by-0 error.

Semantic and Declarative Technologies 2024 Fall Semester 200 / 414

Declarative Programming with Prolog Building and decomposing terms

An interesting Prolog task, cont’d

% leaves_ops_expr(+L, +OpL, ?Expr): Expr is an arithmetic expression
% which uses operators from OpL (0 or more times each) whose leaves,
% read left-to-right, form the list L.
leaves_ops_expr(L, _OpL, Expr) :-

L = [Expr]. % If L is a singleton, Expr is the only element
leaves_ops_expr(L, OpL, Expr) :-

append(L1, L2, L), % Split L to nonempty L1 and L2,
L1 \= [], L2 \= [],
leaves_ops_expr(L1, OpL, E1), % generate E1 from L1 (using OpL),
leaves_ops_expr(L2, OpL, E2), % generate E2 from L2 (using OpL),
member(Op, OpL), % choose an operator Op from OpL,
Expr =.. [Op,E1,E2]. % build the expression ‘E1 Op E2’

| ?- solve(66).
(3*4-1)*6
(4*3-1)*6
6*(3*4-1)
6*(4*3-1)
yes

| ?- solve(67).
yes

Semantic and Declarative Technologies 2024 Fall Semester 201 / 414

Declarative Programming with Prolog Building and decomposing terms

A motivating symbolic processing example

Polynomial: built from the atom ‘x’ and numbers using ops ‘+’ and ‘*’
Calculate the value of a polynomial for a given substitution of x
% value_of(+Poly, +X, ?V): Poly has the value V, for x=X
value_of0(x, X, V) :- V = X.
value_of0(N, _, V) :-

number(N), V = N.

value_of0(P1+P2, X, V) :-
value_of0(P1, X, V1),
value_of0(P2, X, V2),
V is V1+V2.

value_of0(Poly, X, V) :-
Poly = *(P1,P2),
value_of0(P1, X, V1),
value_of0(P2, X, V2),
PolyV = *(V1,V2),
V is PolyV.

value_of(x, X, V) :- !, V = X.
value_of(N, _, V) :-

number(N), !, V = N.

value_of(Poly, X, V) :-
Poly =.. [Func,P1,P2],
value_of(P1, X, V1),
value_of(P2, X, V2),
PolyV =.. [Func,V1,V2],
V is PolyV.

Predicate value_of works for all binary functions supported by is/2.
| ?- value_of(exp(100,min(x,1/x)), 2, V). =⇒ V = 10.0 ? ; no

Semantic and Declarative Technologies 2024 Fall Semester 202 / 414

Declarative Programming with Prolog Building and decomposing terms

Building and decomposing compounds: functor/3

functor(Term, Name, Arity):
Term has the name Name and arity Arity, i.e.
Term has the functor Name/Arity.

(A constant C is considered to have the name C and arity 0.)
Call patterns:
functor(+Term, ?Name, ?Arity) – decompose Term
functor(-Term, +Name, +Arity) – construct a most general Term (*)
If Term is output (*), it is unified with the most general term with the
given name and arity (with distinct new variables as arguments)

Examples:
| ?- functor(edge(a,b,1), F, N). =⇒ F = edge, N = 3
| ?- functor(E, edge, 3). =⇒ E = edge(_A,_B,_C)
| ?- functor(apple, F, N). =⇒ F = apple, N = 0
| ?- functor(Term, 122, 0). =⇒ Term = 122
| ?- functor(Term, edge, N). =⇒ error
| ?- functor(Term, 122, 1). =⇒ error
| ?- functor([1,2,3], F, N). =⇒ F = ’.’, N = 2
| ?- functor(Term, ., 2). =⇒ Term = [_A|_B]

Semantic and Declarative Technologies 2024 Fall Semester 203 / 414

Declarative Programming with Prolog Building and decomposing terms

Building and decomposing compounds: arg/3

arg(N, Compound, A): the Nth argument of Compound is A

Call pattern: arg(+N, +Compound, ?A), where N ≥ 0 holds
Execution: The Nth argument of Compound is unified with A.
If Compound has less than N arguments, or N = 0, arg/3 fails
Arguments are unified – arg/3 can also be used for instantiating a
variable argument of the structure (as in the second example below).

Examples:
| ?- arg(3, edge(a, b, 23), Arg). =⇒ Arg = 23
| ?- T=edge(_,_,_), arg(1, T, a),

arg(2, T, b), arg(3, T, 23). =⇒ T = edge(a,b,23)
| ?- arg(1, [1,2,3], A). =⇒ A = 1
| ?- arg(2, [1,2,3], B). =⇒ B = [2,3]

Predicate univ can be implemented using functor and arg, and vice
versa, for example:

Term =.. [F,A1,A2] ⇐⇒ functor(Term, F, 2), arg(1,
Term, A1), arg(2, Term, A2)

Semantic and Declarative Technologies 2024 Fall Semester 204 / 414

Declarative Programming with Prolog Building and decomposing terms

Finding arbitrary subterms using arg/3 and functor/3

Given a term T0 with a (not necessarily proper) subterm Tn at depth n, the
position of Tn within T0 is described by a selector [I1,. . .,In] (n ≥ 0):
select_subterm(T0, [I1,...,In], Tn) :-

arg(I1, T0, T1), arg(I2, T1, T2), ..., arg(In, Tn−1, Tn).
E.g. within term a*b+f(1,2,3)/c, [1] selects a*b, [1,2] selects b,
[2,1,3] selects 3, [] selects the whole term
Given a term, enumerate all subterms and their selectors.

% subterm(?T, ?Sub, ?Sel): Sub is subterm in T at position Sel.
subterm(X, X, []).
subterm(X, Sub, [I|Sel]) :-

compound(X), % it is important that X is not a var.
functor(X, _, Arity), % because functor would raise an error
between(1, Arity, I),
arg(I, X, Y), subterm(Y, Sub, Sel).

| ?- subterm(f(1,[b]), T, S). =⇒ T = f(1,[b]), S = [] ? ;
=⇒ T = 1, S = [1] ? ;
=⇒ T = [b], S = [2] ? ;
=⇒ T = b, S = [2,1] ? ;
=⇒ T = [], S = [2,2] ? ; no

Semantic and Declarative Technologies 2024 Fall Semester 205 / 414

Declarative Programming with Prolog Building and decomposing terms

Decomposing and building atoms

atom_codes(Atom, Cs): Cs is the list of character codes comprising Atom.
Call patterns: atom_codes(+Atom, ?Cs)

atom_codes(-Atom, +Cs)
Execution:

If Cs is a proper list of character codes then Atom is unified with
the atom composed of the given characters
Otherwise Atom has to be an atom, and Cs is unified with the list
of character codes comprising Atom

Examples:
| ?- atom_codes(ab, Cs). =⇒ Cs = [97,98]
| ?- atom_codes(ab, [0’a|L]). =⇒ L = [98]
| ?- Cs="bc", atom_codes(Atom, Cs). =⇒ Cs = [98,99], Atom = bc3

| ?- atom_codes(Atom, [0’a|L]). =⇒ error

3A string "abc..." is treated as a list of character codes of a, b,
Semantic and Declarative Technologies 2024 Fall Semester 206 / 414

Declarative Programming with Prolog Building and decomposing terms

Decomposing and building numbers

number_codes(Number, Cs): Cs is the list of character codes of Number.
Call patterns: number_codes(+Number, ?Cs)

number_codes(-Number, +Cs)
Execution:

If Cs is a proper list of character codes which is a number
according to Prolog syntax, then Number is unified with the
number composed of the given characters
Otherwise Number has to be a number, and Cs is unified with the
list of character codes comprising Number

Examples:
| ?- number_codes(12, Cs). =⇒ Cs = [49,50]
| ?- number_codes(0123, [0’1|L]). =⇒ L = [50,51]
| ?- number_codes(N, " - 12.0e1"). =⇒ N = -120.0
| ?- number_codes(N, "12e1"). =⇒ error (no decimal point)
| ?- number_codes(120.0, "12e1"). =⇒ no (The first arg. is given :-)

Semantic and Declarative Technologies 2024 Fall Semester 207 / 414

Declarative Programming with Prolog Executable specifications

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 208 / 414

Declarative Programming with Prolog Executable specifications

Executable specifications – what are they?

An executable specification is a piece of non-recursive Prolog code which
is in a one-to-one correspondence with its specification
Example 1: Finding a contiguous sublist with a given sum
% sublist_sum(+L, +Sum, ?SubL): SubL is a sublist of L summing to Sum.
| ?- sublist_sum([1,2,3], 3, SL). =⇒ SL = [1,2] ? ; SL = [3] ? ; no

:- use_module(library(lists)). % To import sumlist/2, append/2
sublist_sum(L, Sum, SubL) :-

append([_,SubL,_], L), % SubL is a sublist of L
sumlist(SubL, Sum). % Σ SubL = Sum

Example 2: Finding elements occurring in pairs
% paired(+List, ?E, ?I): E is an element of List equal to its
% right neighbour, occurring at (zero-based) index I.
| ?- paired([a,b,b,c,d,d], E, I). =⇒ E = b, I = 1 ? ;

=⇒ E = d, I = 4 ? ; no

paired(L, E, I) :-
append(Pref, [E,E|_], L), % L starts with a sublist Pref,

% followed by two elements equal to E
length(Pref, I). % The length of Pref is I

Semantic and Declarative Technologies 2024 Fall Semester 209 / 414

Declarative Programming with Prolog Block declarations

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 210 / 414

Declarative Programming with Prolog Block declarations

Prolog extensions: coroutining (Prolog II)

Wikipedia: Coroutines are computer program components that allow
execution to be suspended and resumed, generalizing subroutines for
cooperative multitasking. Coroutines are well-suited for implementing
familiar program components such as cooperative tasks, exceptions,
event loops, iterators, infinite lists and pipes.
A typical example of coroutining, the Hamming problem:
Generate, in increasing order, the sequence of all positive integers
divisible by no primes other than 2, 3, 5.
We implement a simplified version: the only divisors allowed are 2 and 3,
using predicates times/3 and merge/3 in dataflow programming style
For this we add the block declaration

:- block times(-, ?, ?).
Meaning: suspend pred. times if the first arg. is an unbound variable
Also, suspend pred. merge if the first or second arg is unbound

:- block merge(-, ?, ?), merge(?, -, ?).

Semantic and Declarative Technologies 2024 Fall Semester 211 / 414

Declarative Programming with Prolog Block declarations

Helper predicates for the Hamming problem

Multiply each element of a list by a number:
% times(As, M, Bs): List Bs is obtained from number list As by
% multiplying each list element by M.
:- block times(-, ?, ?). % blocks if the 1st arg is a variable.
times([A|X], M, Bs) :-

B is M*A, Bs = [B|Cs], times(X, M, Cs).
times([], _, []).

Merge two sorted lists into a single sorted list
% merge(As, Bs, Cs): Sorted list Cs is obtained by
% collating sorted lists As and Bs, removing duplicates
:- block merge(-, ?, ?), merge(?, -, ?).
merge([A|As], [B|Bs], Cs) :-

(A < B -> Cs = [A|Ds], merge(As, [B|Bs], Ds)
; A > B -> Cs = [B|Ds], merge([A|As], Bs, Ds)
; Cs = [A|Ds], merge(As, Bs, Ds)
).

merge([], Bs, Bs).
merge(As, [], As).

Semantic and Declarative Technologies 2024 Fall Semester 212 / 414

Declarative Programming with Prolog Block declarations

Solving the Hamming problem via coroutining

% U is the list of the first N (2,3)-Hamming numbers
hamming(N, U) :-

U = [1|_], times(U, 2, X), times(U, 3, Y), merge(X, Y, Z),
prefix_length([1|Z], U, N). % A predicate from library(lists)

% prefix_length(L, P, N): L has a prefix P of length N

prefix

times 2

times 3

mergeU

X

Y

Z

1H

Semantic and Declarative Technologies 2024 Fall Semester 213 / 414

Declarative Programming with Prolog Further reading

Contents

2 Declarative Programming with Prolog
Prolog – first steps
Prolog execution models
The syntax of the (unsweetened) Prolog language
Further control constructs
Operators and special terms
Working with lists
Term ordering
Higher order predicates
All solutions predicates
Efficient programming in Prolog
Building and decomposing terms
Executable specifications
Block declarations
Further reading

Semantic and Declarative Technologies 2024 Fall Semester 214 / 414

Declarative Programming with Prolog Further reading

Additional slides

Subsequent slides were not presented in the class,
these are included as further reading and for
reference purposes

Semantic and Declarative Technologies 2024 Fall Semester 215 / 414

Declarative Programming with Prolog Further reading

Error handling in Prolog

A BIP for catching exceptions (errors): catch(:Goal, ?ETerm, :EGoal):
Recall: “:” marks a meta argument, i.e. a term which is a goal
BIP catch/3 runs Goal

If no exception is raised (no error occurs) during the execution of
Goal, catch ignores the remaining arguments
When an exception occurs, an exception term E is produced, which
contains the details of the exception

If E unifies with the 2nd argument of catch, ETerm, it runs EGoal
Otherwise catch propagates the exception further outwards,
giving a chance to surrounding catch goals
If the user code does not “catch” the exception, it is caught by
the top level, displaying the error term in a readable form.

| ?- X is Y+1.
! Instantiation error in argument 2 of (is)/2
! goal: _177 is _183+1
| ?- catch(X is Y+1, E, true).
E = error(instantiation_error,instantiation_error(_A is _B+1,2)) ? ; no
| ?- catch(X is Y+1, _, fail).
no

Semantic and Declarative Technologies 2024 Fall Semester 216 / 414

Declarative Programming with Prolog Further reading

Principles of the SICStus Prolog module system

Each module should be placed in a separate file
A module directive should be placed at the beginning of the file:

:- module(ModuleName, [ExportedFunc1, ExportedFunc2, ...]).
ExportedFunci – the functor (Name/Arity) of an exported predicate
Example
:- module(drawing_lines, [draw/2]). % line 1 of file draw.pl
Built-in predicates for loading module files:

use_module(FileName)
use_module(FileName, [ImportedFunc1,ImportedFunc2,...])

ImportedFunci – the functor of an imported predicate
FileName – an atom (with the default file extension .pl);
or a special compound, such as library(LibraryName)

Examples:
:- use_module(draw). % load the above module
:- use_module(library(lists), [last/2]). % only import last/2
Goals can be module qualified: Mod:Goal runs Goal in module Mod
Modules do not hide the non-exported predicates, these can be called
from outside if the module qualified form is used

Semantic and Declarative Technologies 2024 Fall Semester 217 / 414

Declarative Programming with Prolog Further reading

Meta predicates and modules

Predicate arguments in imported predicates may cause problems:

File module1.pl:
:- module(module1, [double/1]).

% (1)

double(X) :-
X, X.

p :- write(go).

File module2.pl:
:- module(module2, [q1/0,q2/0,r/0]).
:- use_module(module1).

q1 :- double(module1:p).

q2 :- double(module2:p).

r :- double(p). (2)

p :- write(ga).

Load file module2.pl, e,g, by | ?- [module2]., and run some goals:
| ?- q1. =⇒ gogo
| ?- q2. =⇒ gaga
| ?- r. =⇒ gogo :-(counter-intuitive

Solution: Tell Prolog that double has a meta-arg. by adding at (1) this:
:- meta_predicate double(:).

This causes (2) to be replaced by ‘r :- double(module2:p).’ at load time,
making predicates r and q2 identical.

Semantic and Declarative Technologies 2024 Fall Semester 218 / 414

Declarative Programming with Prolog Further reading

Meta predicate declarations, module name expansion

Syntax of meta predicate declarations
:- meta_predicate ⟨ pred. name ⟩(⟨ modespec1 ⟩, . . ., ⟨ modespecn ⟩),

⟨ modespeci ⟩ can be ‘:’, ‘+’, ‘-’, or ‘?’.
Mode spec ‘:’ indicates that the given argument is a meta-argument

In all subsequent invocations of the given predicate the given arg. is
replaced by its module name expanded form, at load time

Other mode specs just document modes of non-meta arguments.
The module name expanded form of a term Term is:

Term itself, if Term is of the form M:X or it is a variable which occurs in
the clause head in a meta argument position; otherwise
SMod:Term, where SMod is the current source module (user by default)

Example, ctd. (double is declared a meta predicate in module1_m)
:- module(module3, [quadruple/1,r/0]).
:- use_module(module1_m). % the loaded form:
r :- double(p). =⇒ r :- double(module3:p).4

:- meta_predicate quadruple(:).
quadruple(X) :- double(X), double(X). =⇒ unchanged4

4The imported goal double gets a prefix “module1:”, not shown here, to save space.
Semantic and Declarative Technologies 2024 Fall Semester 219 / 414

