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Introduction to Logic

Foundations of logic – overview

Main theme of the course:
How to use mathematical logic in

programming
intelligent web search

We start with a brief introduction to Logic
Propositional Logic:

Syntax and semantics
The notion of consequence
The resolution inference algorithm
Bonus: solving various logic puzzles

First Order Logic (FOL)
Syntax and Model oriented semantics
The notion of consequence for FOL
The resolution inference algorithm for FOL

Semantic and Declarative Technologies 2024 Fall Semester 16 / 414

Introduction to Logic Propositional Logic

Contents

1 Introduction to Logic
Propositional Logic
Propositional Resolution
Introduction to First Order Logic (FOL)
Syntax of First Order Logic
First order resolution

Semantic and Declarative Technologies 2024 Fall Semester 17 / 414

Introduction to Logic Propositional Logic

Atomic and compound propositions

Consider the sentence: It is raining and I’m staying at home
How many propositions (statements) are there in this sentence?
There are three:

two atomic propositions: A =“It is raining”, B =“I’m staying at home”
and the whole sentence is a compound proposition C = A ∧ B
read the symbol ∧ as “and”
C is called a conjunction, A and B are conjuncts

An atomic proposition is the basic building block of general propositions:
it can be assigned a truth value
it cannot be broken down to simpler propositions

Truth values: true and false, often represented by integers 1 and 0
The term propositional formula (or proposition for short) refers to both
atomic and compound propositions

Semantic and Declarative Technologies 2024 Fall Semester 18 / 414



Introduction to Logic Propositional Logic

Conjunction

Knowing the truth values of A and B, can you tell the truth value of A ∧ B?
Think of A =“It is raining”, B =“I’m staying at home”

A B A ∧ B
false false false
false true false
true false false
true true true

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

In brief: A ∧ B is true if and only if (iff) . . . both A and B are true

Is the ∧ operator commutative? I.e. A ∧ B ?
= B ∧ A. Why?

Because 0 ∧ 1 = 1 ∧ 0
Is ∧ associative? I.e. (A1 ∧ A2) ∧ A3

?
= A1 ∧ (A2 ∧ A3). Why?

Because both sides are 1 iff each of A1,A2,A3 is 1.
n-fold conjunction: Cn = A1 ∧ · · · ∧ An. When is Cn = 1? If all Ais are 1.
What value should be assigned to an empty conjunction C0 (Cn for n = 0)?
Hint: Describe the relationship between Cn−1 and Cn, use this for n = 1
Cn = Cn−1 ∧ An, C1 = A1, hence A1 = C0 ∧ A1. This is true iff C0 = 1.
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Disjunction and negation

Another example: It is not raining or (else) I’m staying at home
The two atomic propositions are the same as earlier:
A =“It is raining”, B =“I’m staying at home”
“It is not raining” converts to ¬A, where ¬ denotes negation,
read as “it is not the case that . . . ”
The whole sentence can be formalised as ¬A ∨ B
Read the symbol ∨ as “or”; A ∨ B is called a disjunction, A and B are
disjuncts
The truth tables for disjunction and negation (with 0 – 1 values only):

A B A ∨ B
0 0 0
0 1 1
1 0 1
1 1 1

A ¬A
0 1
1 0
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Implication

Example: If it is raining, then drive slower than 100 km/h
I obey this sign provided that If it is raining, then I drive slowly. . .
This is an implication, formally written as A→ B (A implies B)
the premise: A =“It is raining”, conclusion: B =“I drive slowly . . . ”
When it is not raining, does it matter whether I drive slowly?
The truth table for implication:

A B A→ B
0 0 1
0 1 1
1 0 0
1 1 1

Express implication using disjunction and negation: A→ B = ¬A ∨ B
A→ B evaluates to 0 iff A = 1,B = 0

Semantic and Declarative Technologies 2024 Fall Semester 21 / 414

Introduction to Logic Propositional Logic

Equivalence and exclusive or

Example 1: I use an umbrella if and only if it is raining
This is an equivalence, formally written as A↔ B or A ≡ B,
A =“I use an umbrella”, B =“It is raining”,
Example 2: We either go to movies or have dinner (but not both)
This is an exclusive or (XOR), formally written as A xor B or A ⊕ B,
A =“we go to movies”, B =“we have a dinner”
The truth tables for equivalence and exclusive or:

A B A ≡ B
0 0 1
0 1 0
1 0 0
1 1 1

A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Express equivalence using exclusive or, and the other way round:
(A ≡ B) = ¬(A ⊕ B), (A ⊕ B) = ¬(A ≡ B)
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Introduction to Logic Propositional Logic

Normal forms

A proposition has lots of equivalent formulations:
A→ B ≡ ¬A ∨ B ≡ ¬(A ∧ ¬B)

To design an efficient reasoning algorithm, it makes sense to use one of
normal forms (NF), such as:

DNF (Disjunctive Normal Form) or CNF (Conjunctive NF)
Both allow only three operations: ∧ , ∨ , and ¬
In both NFs ‘¬’ can only be used in front of atomic propositions.
A formula is called a literal if it is either A or ¬A, where A is atomic.
A DNF takes the form C1 ∨ . . . ∨ Cn, n ≥ 0, where each Ci is a
conjunction of literals Li1 ∧ . . . ∧ Limi

A CNF takes the form D1 ∧ . . . ∧ Dn, n ≥ 0, where each Di is a
disjunction of literals Li1 ∨ . . . ∨ Limi

Transform A ⊕ B (exclusive or) to both CNF and DNF formats
Notice that the DNF can be easily derived from a truth table
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Introduction to Logic Propositional Logic

Models and tautologies

Recall two kinds of algebraic formulas from high school:

x2 − 3x + 2 = 0 equation – true for some values of x

x2 − y2 = (x − y)(x + y) identity – true for all values of x (*)

Consider a propositional formula with n atomic propositions, e.g.

((A ∧ B)→ C) ≡ (A→ (B → C))

Here n = 3, so there are 2n = 8 valuations for atomic propositions:
(A,B,C) can be (0,0,0); (0,0,1); (0,1,0); . . . ; (1,1,0); (1,1,1)
Each such valuation is called a model or a universe
A model satisfies a propositional formula, if the formula is true when the
atomic propositions take the 0–1 values specified by the model.
E.g. the model (0,0,0) satisfies the above equivalence
A formula is called a tautology if all models satisfy the formula
(cf. the algebraic identity (*) being true for all possible values of x)
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Introduction to Logic Propositional Logic

Some important tautologies

Show that this formula is a tautology:

((A ∧ B)→ C) ≡ (A→ (B → C)) (1)

Let us find all the models in which the left hand side evaluates to 0:
There is only one such model (A,B,C) = (1,1,0)
Let us find all the models in which the right hand side evaluates to 0:
There is only one such model (A,B,C) = (1,1,0)
Hence the above formula is a tautology

Show that the following formulas are tautologies:
¬¬U ≡ U

¬(U ∧ V ) ≡ ¬U ∨ ¬V (2)
¬(U ∨ V ) ≡ ¬U ∧ ¬V (3)

(2) and (3) are called De Morgan’s laws.
Hint: use case-based reasoning for proving formulas (2) and (3):

1 Select an arbitrary atomic proposition in the formula, say U
2 Show that the formula to be proven holds for both U = 0 and U = 1
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Introduction to Logic Propositional Resolution

An automated inference system: resolution

The first order resolution inference algorithm was devised by Alan
Robinson around 1964
We now introduce resolution for propositional logic
Resolution uses CNF, conjunctive normal form (recall):

a CNF is a conjunction of clauses: Cl1 ∧ . . . ∧ Cln
a clause is a disjunction of literals: L1 ∨ . . . ∨ Lk
a literal is either A or ¬A, where A is an atomic proposition
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Translating propositions to clausal form

Steps needed to transform an arbitrary formula to CNF:
1 replace all connectives by equivalents using only ¬,∧,∨
2 move negations inside using De Morgan Laws
3 apply distributivity (repeatedly, if needed) to eliminate ∧ s inside ∨ s:

transform U ∨ (V ∧W ) to (U ∨ V ) ∧ (U ∨W )
4 transform ∧ and ∨ operators to sets, elminating duplicates

The result is thus a set of sets, e.g. {{A,B}, {B,C}} ≡ (A ∨ B) ∧ (B ∨ C)
(“Outer” set elements are conjuncts, “inner” set elements are disjuncts)
Simplified notation (used in first Prolog versions)

a literal is written as a signed atomic proposition, e.g. -A, +B (for ¬A, B)
a clause is written as a sequence of literals followed by a full stop,
e.g. ¬A ∨ ¬B ∨ D written as -A -B +D.

Example: transform ((A ∧ B)→ D) ∧ (C → (A ∧ B)) to to clausal form
The CNF form: (¬A ∨ ¬B ∨ D) ∧ (¬C ∨ A) ∧ (¬C ∨ B)
The CNF in set notation: {{¬A,¬B,D}, {¬C,A}, {¬C,B}}
The CNF in simplified notation: -A -B +D. -C +A. -C +B.
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The resolution inference rule – introduction

Consider these two clauses: +A -B -C. (1)
+A +D +B. (2)

Literal # 2 in clause (1) is -B, while literal # 3 in clause (2) is +B.
These literals are opposite, i.e. one is the negation of the other.
Given two clauses containing opposite literals, the resolution rule infers a
new clause, called the resolvent, containing the union of all literals of the
two clauses, except the two opposite literals.
In the example the resolvent clause is +A -C +D. (3)
Note that there is only one +A as A ∨ A = A.
Resolution is sound, i.e. (3) is implied by (1) and (2). This is due to the
resolution principle:

(¬U ∨ V )︸ ︷︷ ︸
(i)

∧ (U ∨W )︸ ︷︷ ︸
(ii)

→ (V ∨W ) (4)

Proof: Assume the LHS is true, so both (i) and (ii) are true.
If U is true V has to be true, for disjunction (i) to be true.
If U is false W has to be true, for disjunction (ii) to be true.

In either case the RHS is true.
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Introduction to Logic Propositional Resolution

The resolution inference rule – full definition (ADVANCED)

Input: two clauses C = L1 L2 . . . Ln.
D = M1 M2 . . . Mk .

where Li = +X and Mj = -X, or Li = -X and Mj = +X.
Let C′ = C \ {Li}, D′ = D \ {Mj}, where \ denotes set difference.
(The set difference S1 \ S2 is obtained by removing all elements of S2 – if
present – from S1)
Thus C′ = L1 . . . Li−1 Li+1 . . . Ln.

D′ = M1 . . . Mj−1 Mj+1 . . . Mk .
Resolution of C and D yields the clause E = C′ ∪ D′ (meaning C′ ∨ D′),
called the resolventij(C,D), or simply resolvent(C,D);
E = L1 . . . Li−1 Li+1 . . . Ln M1 . . . Mj−1 Mj+1 . . . Mk .
(with duplicates removed)

Note that only a single pair of opposite literals is removed by the
resolution step!
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Introduction to Logic Propositional Resolution

The resolution rule – remarks

Informally: the resolution rule can be interpreted as viewing the clauses
as arithmetic formulas, to be summed up and removing exactly one pair
of “summands” +X -X

Example: resolvent(+A-B-C, +B+D) = +A-C+D
Remark: this analogy does not work, if there is a literal which occurs
in both clauses,
e.g. resolvent(+A-B-C, +B+D+A) = +A-C+D (only one +A is kept)

The case of having two or more “summands” with opposite signs also
breaks the analogy

Here only one pair of such summands is removed
Example: resolvent21(+A-B-C, +B+D+C) = +A-C+D+C= 1 (true), or
resolvent33(+A-B-C, +B+D+C) = +A-B+B+D= 1
Thus resolution does not produce a meaningful clause in this case
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Introduction to Logic Propositional Resolution

Example: solving an inspector Craig puzzle using resolution

The puzzle below is cited from “What Is The Name Of This Book?” by
Raymond M. Smullyan, chapter “From the cases of Inspector Craig”
Puzzles in this chapter involve suspects of a crime, named A, B, etc.
Some of them are guilty, some innocent.
Example:
An enormous amount of loot had been stolen from a store. The criminal (or
criminals) took the heist away in a car. Three well-known criminals A, B, C were
brought to Scotland Yard for questioning. The following facts were ascertained:

1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Is A innocent or guilty?
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Introduction to Logic Propositional Resolution

Inspector Craig puzzle – solution

Let’s recall the facts
1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Transform each statement into a formula involving the letters A, B, C as
atomic propositions. Proposition A stands for “A is guilty”, etc.

1 A is guilty or B is guilty or C is guilty: A ∨ B ∨ C
2 If C is guilty then A is guilty: C → A
3 It cannot be the case that only B is guilty: B → (A ∨ C)

Transform each propositional formula into conjunctive normal form (CNF),
then show the clauses in simplified form:

Original formula CNF Simplified clausal form
1 A ∨ B ∨ C A ∨ B ∨ C +A +B +C.
2 C → A ¬C ∨ A -C +A.
3 B → (A ∨ C) ¬B ∨ A ∨ C -B +A +C.

(Note that in general a single formula can give rise to multiple clauses.)
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Introduction to Logic Propositional Resolution

Inspector Craig puzzle – resolution proof

Collect the clauses, give each a reference number and perform a
resolution proof:
(1) +A +B +C. Only A, B, C was involved in the robbery.
(2) -C +A. C never works without A as an accomplice.
(3) -B +A +C. B does not know how to drive.

resolve (1) lit 2 with (3) lit 1 resulting in (4)
(4) +A +C. resolve (4) lit 2 with (2) lit 1 resulting in (5)
(5) +A.
We deduced that A is true, so the solution of the puzzle is: A is guilty
Notice that +A occurs in each of the above clauses, hence each of
(1)–(4) follows from (5)
This, together with the fact that (5) follows from the input clauses
(1)–(3), means that (5) is equivalent to the set of input clauses
Hence the statements of the puzzle impose no restrictions on
propositions B and C
(either can be guilty or innocent – all 4 combinations allowed)
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Introduction to Logic Propositional Resolution

Removing trivial consequences

Consider this set of clauses: CS = { -B+C+D, +A+C, -A-B, +A-B+C }
Find a clause in CS that is a consequence of another clause in CS.
Hint: of these formulas, which implies which other? U ∨ V , U, V?

(If we know U ∨ V is true, can U be false?) Yes, it can.
(If we know U is true, can U ∨ V be false?) No

Hence U implies U ∨ V , and similarly V implies U ∨ V
Viewing clauses as sets, if C ⊆ D, then C → D (“subset” → “whole set”)
+A+C → +A-B+C, so +A-B+C is a trivial consequence of +A+C

Trivial consequences
A clause C ∨ D (D ̸= empty) is said to be a trivial consequence of C
Is it of interest to obtain the set of all consequences of CS?
No, we get marred by trivial consequences, e.g. -A-B-C, -A-B+C, . . .
It makes more sense to construct a maximal set of non-trivial
consequences, i.e. a set MCS which contains all consequences of CS,
except those that are a trivial consequence of a clause already in MCS
Removing a trivial consequence is valid because (C ∧ (C ∨ D)) ≡ C
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Maximal set of non-trivial consequences (ADVANCED)

For the mathematically minded, here is a precise definition of the maximal set
of non-trivial consequences

For a set of clauses CS, its maximal set of consequences is MCS iff:
each clause in MCS is a consequence of CS:
for each C ∈ MCS, CS → C
there are no trivial consequences in MCS:
for each C1,C2 ∈ MCS, C2 is not a trivial consequence of C1
MCS contains all non-trivial consequences:
for each clause C such that CS → C holds, either C ∈ MCS holds, or
else C is a trivial consequence of a C′ ∈ MCS.
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Constructing MCS – continuing the example

The set of input clauses:
(1) -B+C+D
(2) +A+C
(3) -A-B
(4) +A-B+C

Remove (4), as it is implied by (2)
Resolve (2) with (3) producing a new clause:

(5) -B+C
Remove (1), as it is implied by (5)
As no removal or resolution step can be applied, exit with the following
maximal set of (non-trivial) consequences:

(2) +A+C
(3) -A-B
(5) -B+C
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A saturation algorithm for obtaining MCS (ADVANCED)

Given a set of clauses CS0, you can obtain its maximal set of consequences
by performing the following algorithm:

1 set CS to CS0

2 (exit if inconsistency is detected)
if CS contains an empty clause, then exit reporting CS0 is inconsistent

3 (remove a trivial consequence)
if there are C1,C2 ∈ CS such that C2 is a trivial consequence of C1, then
remove C2 from CS, and repeat step 3

4 (perform a meaningful resolution step)
if there are C1,C2 ∈ CS such that C1 resolved with C2 yields C3 where
C3 ̸≡ true and C3 ̸∈ CS, then add C3 to CS, and continue at step 3

5 (exit when saturated)
as the conditions of both steps 3 and 4 failed, exit with MCS = CS
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Finding a single consequence using an indirect proof

For large sets of formulas finding all consequences is not viable
Recall the Inspector Craig puzzle discussed earlier:
(1) +A +B +C. Only A, B, C was involved in the robbery.
(2) -C +A. C never works without A as an accomplice.
(3) -B +A +C. B does not know how to drive.

To prove indirectly that (1)–(3) implies A, add ¬ A to the set of clauses:
(4) -A. . . . and perform resolutions, adding resolvents to the set

(4)/1 rw (1)/1 (cl. (4) lit. 1 resolved with cl. (1) lit. 1)⇒ (5)
(5) +B +C. (5)/1 rw (3)/1 ⇒ (6)
(6) +A +C. (6)/1 rw (4)/1 ⇒ (7)
(7) +C. (7)/1 rw (2)/1 ⇒ (8)
(8) +A. (8)/1 rw (4)/1 ⇒ (9)
(9) □ This denotes an empty disjunction ≡ false

Adding ¬A to (1)–(3) leads to contradiction, so {(1),(2),(3)} implies A
This indirect proof is focused on proving the given statement
Notice that the above proof is quite mechanical:

the first input clause is the result of the previous resolution step
we always resolve on the first literal of the first input clause
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Inspector Craig puzzle – further proof attempts (ADVANCED)

(1) +A +B +C.
(2) -C +A.
(3) -B +A +C.
We now try to prove indirectly that ¬C follows from (1)–(3), by adding C:
(4) +C. implied clauses removed: (1), (3)
(5) +A. (4)/1 rw (2)/1 implied clauses removed: (2)
The set {(4),(5)} is saturated, hence {(1)–(3)} does not imply ¬ C
Let’s now try to prove that C follows from (1)–(3), by adding ¬ C:
(6) -C. implied clauses removed: (2)
(7) +A +B. (6)/1 rw (1)/3 implied clauses removed: (1)
(8) -B +A. (6)/1 rw (3)/3 implied clauses removed: (3)
(9) +A. (7)/2 rw (8)/1 implied clauses removed: (7), (8)
The set {(6),(9)} is saturated, hence {(1)–(3)} does not imply C
We conclude that neither C nor its negation can be deduced from (1)–(3)
(However, the first unsuccessful proof shows that if C is true, so is A,
while the second proof demonstrates that if ¬C is true, A is true again,
so A has to be true. :-)
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More puzzles: knights and knaves

The puzzle below is also cited from the same Raymond M. Smullyan
book. It is about an island in which certain inhabitants called “knights”
always tell the truth, and others called “knaves” always lie. It is assumed
that every inhabitant of the island is either a knight or a knave.
Puzzle 1: There are two people, A and B. Suppose A says:
“Either I am a knave or B is a knight.” What are A and B?
Translate this puzzle to a prop. formula and solve it using resolution
Here is the syntax of a “controlled English” format for such puzzles:
⟨person ⟩ ::= knight | knave | A | B | C . . .
⟨ statement ⟩::= ⟨person ⟩ = ⟨person ⟩ |

⟨person ⟩ says ⟨ statement ⟩ |
not ⟨ statement ⟩ |
⟨ statement ⟩ and ⟨ statement ⟩ |
⟨ statement ⟩ or ⟨ statement ⟩ |
( ⟨ statement ⟩ )

A puzzle in this format can be fed to a Prolog program which solves it.
Can you convert Puzzle 1 to the controlled English format?
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Further knights and knaves puzzles

Puzzle 2: There are two people, A and B. A makes the following
statement: “If I am a knight, so is B.” What are A and B?
Puzzle 3: There are two people, A and B. A makes the following
statement: “At least one of us is a knave.” What are A and B?
Puzzle 4: Suppose A says, “I am a knave, but B isn’t.” What are A and B?
Puzzle 5: We now have three people, A, B, C. Two people are said to be
of the same type if they are both knights or both knaves. A and B make
the following statements:
A: B is a knave.
B: A and C are of the same type.
What is C?
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Summary of Propositional Logic

We had a quick overview of Propositional Logic
Connectives ∧,∨,¬,→,≡,⊕
Truth tables for each connective
Some simple “theorems”, e.g. De Morgan’s laws
The notions of semantic and syntactic consequence
Resolution as a proof system for Propositional Logic
Solving “knights and knaves” puzzles using propositional logic
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New features of First Order Logic (FOL) wrt. Propositional Logic

Propositions have a structure: a predicate name followed by a list of
arguments in parentheses.

English: “Nick has a parent Mary”
FOL: has_parent(Nick ,Mary)

Variable names and quantifiers
English: “All children of Mary are happy”
FOL: ∀z.(has_child(Mary , z)→ is_happy(z))
Read: for all z, if Mary has a child z, then z is happy.

Equality is available as a special “built-in” predicate
English: “Everyone has at most one mother”
FOL: ∀x .∀y .∀z.(has_mother(x , y)∧has_mother(x , z)→ y = z)
Read: for all x , y , z, if y and z are both mothers of x , then y = z.

Function expressions, e.g. mother(Nick), meaning mother of Nick
English: “A parent is either a father or a mother”
FOL: ∀x .∀y .(has_parent(x , y)↔ (y = mother(x)∨ y = father(x)))
Read: for all x , y : x has a parent y if and only if

y is either the mother of x, or y is the father of x.
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Representing general knowledge in FOL

Can you deduce that Z follows from A and B in propositional logic?
A =“Nick has a parent Mary”, B =“Mary has a parent Paul”,
Z =“Nick has a grandparent Paul”.
No, propositions are atomic objects, with no internal structure
In FOL, we can express the above facts in a structured form:
A = has_parent(Nick,Mary), B = has_parent(Mary,Paul),
Z = has_grandparent(Nick,Paul)
To be able to deduce Z from A and B, we have to formalize the general
knowledge that parents of parents are grandparents:
C = ∀x .∀z.( ∃y .(has_parent(x , y)∧has_parent(y , z))

→has_grandparent(x , z))
Read: for all x , z,
if there exists a y such that x has y as a parent, and y has z as a parent

then x has z as a grandparent.
(Note that implication→ could be replaced by an equivalence↔)
In FOL, given A, B and C, one can deduce Z
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Another example

Consider an island inhabited by at least one person
Some people (possibly none) are optimistic.
A person may have another person as a friend. There is no
restriction on the number of friends a person may have, this could be
0, 1, or more. Also, friendship may not be mutual.

We know the following facts
(a) If someone has a non-optimistic friend, then they are optimistic.
(b) There is at least one person, who has a friend.

Try convincing yourself that the following statement must hold:
(c) There is an optimistic person on the island.

Express statements (a), (b) and (c) in FOL using these predicates:
hasF (x , y): x has y as their friend
opt(x): x is optimistic

As an example, here is another statement and its FOL formulation.
Each optimistic person has a friend: ∀x .(opt(x)→∃y .hasF (x , y))
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Reasoning in First Order Logic

Recall: (a) Someone having a non-optimistic friend is optimistic.
(b) There is at least one person, who has a friend.
(c) There is an optimistic person on the island.

If (a) and (b) are true, can you argue that (c) has to be true?
(b) states that there is a person (say p1) who has a friend (say p2)
Do case-based reasoning: p2 is either optimistic or not

Case 1: p2 is optimistic. This implies that (c) is true
Case 2: p2 is not optimistic. As p1 has (the non-optimistic) p2 as
a friend, because of (a), p1 is optimistic. Thus (c) is true again.

As both cases lead to (c) being true, we can conclude that whenever
(a) and (b) hold on an island, (c) is bound to hold on this island.

Here (c) is said to be a semantic consequence of {(a), (b)}:
{(a), (b)} |= (c)

This is in contrast with syntactic consequence (to be discussed later),
which builds on symbolic transformations, such as modus ponens:
if U → V and U are true, one can conclude that V is true, as well.
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First Order Logic – Proving a consequence (cont’d)

The proof on the previous slide works for any island (math-speak:
model), e.g.

c

d

friends

(both ways)

e

b
a

f

optimists

non−optimists

A model for this example can be described by
a set ∆ containing the inhabitants of the island, e.g. {a, b, c, d, e, f}
the interpretation of the 1-argument predicate opt ⊆ ∆,
i.e. the subset of ∆ containing the optimists: {a, b, c, f}
the interpretation of the 2-argument predicate hasF ⊆ ∆×∆,
i.e. the set of pairs in ∆ that are in hasF relation:
{⟨ a, d ⟩, ⟨ d, a ⟩, ⟨ b, f ⟩, ⟨ f, b ⟩}

A model has all information needed to check whether a formula is true
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First Order Logic – an overview

First Order Logic (FOL)
Propositional Logic is a special case of FOL where all predicate symbols
have 0 arguments (and hence function symbols, variables and quantifiers
make no sense)
Views of logic

Syntax (What are the well-formed statements?)
Proofs (How can one obtain true statements?)
Semantics (What is the meaning of statements and their
components?)

Semantic and Declarative Technologies 2024 Fall Semester 50 / 414



Introduction to Logic Syntax of First Order Logic

Contents

1 Introduction to Logic
Propositional Logic
Propositional Resolution
Introduction to First Order Logic (FOL)
Syntax of First Order Logic
First order resolution

Semantic and Declarative Technologies 2024 Fall Semester 51 / 414

Introduction to Logic Syntax of First Order Logic

First Order Logic – Syntax

Building blocks of FOL
Symbols:

logical symbols: propositional connectives ∨, ¬, . . . ; quantifiers ∀ ∃ ,
punctuation etc.– these have a fixed meaning
non-logical symbols such as hasF – these have arbitrary meaning

An analogy with programming languages:
logical symbols – keywords, non-logical symbols – identifiers
Terms represent individual objects in our universe, e.g. if f(x) and m(x)
denote the father and the mother of x, and s() denotes an individual
named Susan, then m(f(s())) refers to Susan’s father’s mother, i.e. the
paternal grandmother of Susan
Formulas state truths, e.g. hasF(m(f(s())),m(s())) – meaning
Susan’s paternal grandmother has Susan’s mother as a friend.
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The alphabet of FOL – the symbols used in formulas

logical symbols
punctuation symbols: ( , ) .
logic connectives:
∧ (conjunction), ∨ (disjunction), ¬ (negation),
∃ (existential quantifier symbol – “exists such . . . that . . . ”),
∀ (universal quantifier symbol – “for all . . . holds that . . . ”),
= (equality predicate)
variable symbols: x1, . . . , xi , . . .

non-logical symbols (cf. identifiers in programming languages)
function symbols: f ,g,h, . . . , (including the special case of)
constant (nullary function) symbols: a,b, c, . . .
predicate symbols: p,q, r , . . .
each function and predicate symbol has a fixed arity (# of args) ≥ 0

a signature (cf. declaring vars in a program) specifies a set of function
and predicate symbols, together with their arities, e.g.
functions: f/1 (f (x) denotes the father of x), m/1 (“mother of”),
predicates: hasF/2,opt/1
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Syntax of FOL, computer scientists style
⟨ term ⟩ ::= ⟨ var symbol ⟩ |

⟨ function symbol ⟩(⟨arglist ⟩)
⟨arglist ⟩ ::= | % empty

⟨ term ⟩, . . . % comma sep. list

⟨atomic formula ⟩ ::= ⟨pred symbol ⟩(⟨arglist ⟩) |
⟨ term ⟩ = ⟨ term ⟩

⟨ formula ⟩ ::= ⟨atomic formula ⟩ |
(¬ ⟨ formula ⟩) |
(⟨ formula ⟩ ∧ ⟨ formula ⟩ ) |
(⟨ formula ⟩ ∨ ⟨ formula ⟩ ) |
∃ ⟨ var symbol ⟩ . (⟨ formula ⟩) |
∀ ⟨ var symbol ⟩ . (⟨ formula ⟩)

Mathematicians often
insert/delete parentheses and/or dots (in quantified formulas)
omit empty function arguments (), e.g. allow s as a shorthand for s()
use multiple vars after a single quantifier, e.g. ∀x , y .(. . .) ≡ ∀x .(∀y .(. . .))
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Syntax of FOL, mathematician style (ADVANCED)

A term is a text (a sequence of symbols) to name an object of the
universe of discourse

A variable symbol is a term
If t1, . . . , tn are terms and f is a function symbol of arity n, then
f (t1, . . . , tn) is a term
A term of FOL is obtained by applying the above two rules a finite
number of times

A well formed FOL formula (wff) is a text describing a statement
If t1, . . . , tn are terms and p is a predicate symbol of arity n, then
p(t1, . . . , tn) is an atomic formula
If t1 and t2 are terms, then t1=t2 is also an atomic formula.
If α and β are wffs, x is a variable symbol, then
(¬α), (α∧β), (α∨β), (∃x .α), (∀x .α) are wffs, too.
A well formed formula is obtained by applying the above rules a finite
number of times
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Syntax of FOL, remarks

Abbreviations – adding further propositional ops, as “syntactic sugar”:
(α→ β) is an abbreviation of: (¬α ∨ β)
(α ≡ β) is an abbreviation of: ((α→ β) ∧ (β → α))
note that formulas (α ∨ β) and (∃x .α) could also have been defined
as abbreviations, using De Morgan’s laws (extended to quantifiers):

(α ∨ β) ≡ ¬(¬α ∧ ¬β)
(∃x .α) ≡ ¬(∀x .¬α)

The scope of variables
An occurrence of variable x is bound if it appears inside a formula
∃x .α or ∀x .α
A variable occurrence x is free if it is not bound

A formula is a sentence (also called a closed formula)
if it contains bound variables only
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Some further practice

Formalize in FOL the statements below, using the signature:
function symbols: f/1 and m/1 (for father and mother), s/0 for Susan;
predicate symbols hasF/2 (has friend), and opt/1 (optimist).

1 Someone is an optimist. (recall)
2 Everyone is an optimist.
3 Everyone has a friend.
4 There is someone who is befriended with their father’s mother.
5 Someone is not an optimist.
6 Everyone is a friend of themselves.
7 If x ’s father or mother is an optimist, so is x , for any x
8 If x has a non-optimist friend, then x is an optimist, for any x . (recall)
9 Anyone whose all friends are optimists is bound to have a friend.

10 Susan is an optimist.
11 Susan’s maternal grandmother has Susan’s paternal grandmother as

a friend.
Try finding subsets of the above FOL sentences so that another sentence
above is a consequence of the given subset
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Clauses in First Order Logic

From now on we assume that there are no equality literals in the clauses
(these can be handled using the paramodulation technique, not
discussed in this course).
A FOL clause is

a set of literals (disjuncts),
each being a plain or negated atomic formula,
with all variables universally quantified.

An example: one’s female parent is their mother.
-hasParent(x,y) -female(y) +hasMother(x,y).
≡ ∀x, y.((hasParent(x, y) ∧ female(y))→ hasMother(x, y))
An arbitrary FOL statement can be transformed to a set of clauses by:

1 doing propositional transformations
expressing→, ≡ etc, using ¬, ∧, and ∨
bringing ¬ inside ∧ and ∨ (to appear in front of atomic formulas)

2 bringing quantifiers to the front of the formula
3 converting to CNF
4 getting rid of ∃ quantifiers by introducing so called Skolem functions

(not relevant in Logic Programming, not discussed further)
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A sample transformation to CNF

Example: if x has a non-optimist friend, then x is an optimist
FOL formula: ∀x .(∃y .(hasF (x , y) ∧ ¬opt(y))→ opt(x))
Eliminate implication (U → V ≡ ¬U ∨ V ):
∀x .(¬(∃y .(hasF (x , y) ∧ ¬opt(y))) ∨ opt(x))
Bring negation inside
(use ¬∃u.W ≡ ∀u.¬W , and standard De Morgan rules):
∀x .(∀y .(¬hasF (x , y) ∨ opt(y)) ∨ opt(x))
Bring ∀,∃ outside ∀x .(∀y .(φ1(x , y)) . . . φ2(x))≡ ∀x , y .(φ1(x , y) . . . φ2(x)):
∀x , y .(¬hasF (x , y) ∨ opt(y) ∨ opt(x))
Transform to Conjunctive Normal Form (CNF):
¬hasF (x , y) ∨ opt(y) ∨ opt(x)
Transform to Simplified CNF: -hasF(X,Y) +opt(Y) +opt(X).
In the simplified CNF format we use the convention that capitalized
identifiers denote variables (as is the case for Prolog)
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How to read the clausal form?

A general clause: −A1 . . . − Am + B1 . . . + Bn., m ≥ 0,n ≥ 0
The simplest readout (no ¬): the conjunction of negative literals implies
the disjunction of positive literals: (A1 ∧ . . . ∧ Am)→ (B1 ∨ . . . ∨ Bn)

Example: -hasF(X,Y) +opt(Y) +opt(X). can be read as

English FOL (with implicit ∀ quantifiers)
One of a pair of friends has to be opt . hasF (X ,Y )→ opt(Y ) ∨ opt(X )

Those with a non-opt friend are opt . hasF (X ,Y ) ∧ ¬opt(Y )→ opt(X )

A friend of a non-opt is an opt . hasF (X ,Y ) ∧ ¬opt(X )→ opt(Y )

Two non-opts cannot be friends. ¬opt(X ) ∧ ¬opt(Y )→ ¬hasF (X ,Y )

A pair of non-opt friends is impossible. ¬opt(X )∧¬opt(Y )∧ hasF (X ,Y )→ □
A pair is either non-friendly or at least
one of them is opt .

xxxxxxxxxxxxxxxxxxxxx
■→ ¬hasF (X ,Y ) ∨ opt(X ) ∨ opt(Y )

Recall: an empty conjunction (denoted by ■) is true, and an empty
disjunction (denoted by □) is false, as true ∧ A ≡ A and false ∨ A ≡ A.
In general: you can place any subset of literals into the RHS disjunction
and the remaining literals, each negated, into the LHS conjunction.
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From propositional resolution to FOL resolution

Assume we have the following clauses:

-opt(s). % s is non-optimistic. (1)
-opt(m). % m is non-optimistic. (2)
-hasF(s,m)+opt(m)+opt(s). % if s has m as a friend, either m or s is opt (3’)

Given (1)–(3’), can you deduce something using resolution?
Yes, one can deduce -hasF(s,m) using (propositional) resolution.
What if we consider this FOL clause instead of (3’):
-hasF(X,Y)+opt(Y)+opt(X) % if X has Y as a friend, either Y or X is opt (3)

Obviously, (3’) is a special case of (3), i.e. (3’) follows from (3).
Substitutions for variables X and Y are obtained through unification, a
two-way pattern matching algorithm.
Unification is an essential component of FOL resolution.
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FOL resolution – a small example

FOL resolution combines prop. resolution with minimal specialization, e.g.

-opt(s). (1)
-opt(m). (2)
-hasF(X,Y) +opt(Y) +opt(X). (3)

Perform a FOL resolution step between literals (3)#2 and (2)#1:
find a minimal substitution σ that makes the (unsigned) atomic formulas
opt(Y) and opt(m) the same: σ = {Y← m}
apply σ to the whole (3) and (2), resulting in opposite literals:
(1’): -hasF(X,m)+opt(m)+opt(X) and (3’): -opt(m)
perform propositional resolution, producing:

-hasF(X,m) +opt(X). (4)

(Is this valid? Yes: if the non-opt m is x ’s friend, then x is an optimist!)
Next, resolve (4)#2 and (2)#1, σ = {X← s} producing:

-hasF(s,m). (5)

Each time we use a clause, we must rename all its vars systematically
Similar two-step deductions result in: -hasF(s,s), -hasF(m,s), -hasF(m,m)
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Unification – making two terms the same

Propositional resolution requires two clauses with opposite literals +A and
-B where the atomic formula A is identical to B
FOL resolution has a weaker requirement: A and B should be unifiable:
there should be a substitution σ of variables with terms, such that Aσ = Bσ
(Aσ denotes the formula obtained from A by applying substitution σ)
A substitution replaces all occurrences of certain variables with arbitrary
terms (possibly other variables)

σ = {X← b, Y← Z}, A = hasF(X, Y), Aσ = hasF(b, Z)
σ = {X← a}, A = hasF(m(X), X), Aσ = hasF(m(a), a)

Example unification: formulas A=hasF(a, X) and B=hasF(Y, b) are
unifiable using the substitution σ = mgu(A, B) = {X← b, Y← a}
If there are multiple substitutions σ for which Aσ = Bσ, resolution uses the
most general unifier, hence the abbreviation mgu
Example: atomic formulas p(X, X) and p(U, V) are unifiable using the
substitution σ ={X← U, V← U} – U is not substituted further

σ′ = {X← a, V← a, U← a} is also a unifier, but not a mgu
The mgu is unique, except for variable renaming:
σ1 = {X← V, U← V} and σ2 = {V← X, U← X} are also mgu’s
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FOL resolution – an example

In Prop. Logic: +a(x ,0)−b(x ,2)
+b(1, y)− c(y)⇒ +a(1,0)−c(2)

In FOL: +a(x ,0)−b(x ,2)

+b(1, y)− c(y)⇒ +a(1,0)− c(2)

Detailed steps:
1 find substitution σ = mgu(b(x ,2),b(1, y)) = {x ← 1, y ← 2}

(note that in general not all variables are necessarily substituted)
2 apply substitution σ to both clauses

(vars are universally quantified – substitution is a valid inference):

+a(1,0)−b(1,2)

+b(1,2)− c(2)aa⇒ +a(1,0)− c(2)

3 finally, apply propositional resolution, to obtain the resolvent:

⇒ +a(1,0)− c(2)a
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The resolution inference rule for FOL

Resolution takes two clauses as input:

C = L1 . . . Ln and D = M1 . . .Mk

where literals Li = ±A and Mj = ±B have opposite signs,
and their atomic formulas are unifiable: σ = mgu(A,B)

Under the above conditions the resolution inference rule can be applied
to C and D and results in the new clause

(L1 . . . Li−1 Li+1 . . . Ln M1 . . .Mj−1 Mj+1 . . .Mn)σ

obtained by
taking the union of the literals of clauses C and D
removing the literals Li and Mj (the ones we resolve upon)
applying the substitution σ to the remaining literals

As specialization (substitution of univ. quantified vars) and propositional
resolution are sound operations, FOL resolution is also sound
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The factoring inference rule for FOL (ADVANCED)

For full FOL the resolution rule is not enough to obtain a complete proof
system, one needs one more simple rule, called factoring – if there are
two literals in a clause that are unifiable, you can replace them by a single
literal, their unified form.
The factoring deduction rule:

example in Propositional Logic: +a+a− b ⇒ +a− b
here this is “automatic”, as clauses are considered sets of literals.
example in FOL: +a(x ,2)+a(1, y)− b(x , y)⇒ +a(1,2)− b(1,2)
in general: factoring takes a clause with two unifiable literals and
produces a clause with these two literals merged:
L1 . . . Ln ⇒ (L1 . . . Lj−1 Lj+1 . . . Ln)σ where σ = mgu(Li ,Lj)

For the subset of FOL used in Prolog, this rule is not required, hence it is
not discussed further.
Ancestor resolution (see later) is an alternative to factoring, when
implementing a complete FOL theorem prover using Prolog technology.
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Resolution: Susan’s puzzle

Recall some formulas from slide 57:
7 If x ’s father or mother is an optimist, so is x , for any x
8 If x has a non-optimist friend, then x is an optimist, for any x .
11 Susan’s maternal grandmother has Susan’s paternal grandm. as a friend.

Let us consider a variant of the above example:
We use the hasP/2 (has parent) pred. instead of father and mother functions.
Also, we replace 11 by 21 : Susan’s mother has Susan’s father as a friend.

Let’s formalize the above statements 7 , 8 and 21 :
7 x is an optimist if x has a parent who is an optimist.

+opt(X) -hasP(X, P) -opt(P). (1)
8 x is an optimist if x has a friend who is not an optimist.

+opt(X) -hasF(X, F) +opt(F). (2)
21 Susan’s (s’s) parents are m and f, and m has f as her friend.

+hasP(s, m). (3)
+hasP(s, f). (4)
+hasF(m, f). (5)
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A resolution proof of the “optimist” example

Initial clauses: (1) +opt(X) -hasP(X, P) -opt(P).
(2) +opt(X) -hasF(X, F) +opt(F).
(3) +hasP(s, m). (4) +hasP(s, f). (5) +hasF(m, f).

A possible resolution proof that (1), . . . , (5) implies opt(s):
(1) + (3) (6) +opt(s) -opt(m). % s is opt if m is opt
(1) + (4) (7) +opt(s) -opt(f). % s is opt if f is opt
(2) + (5) (8) +opt(m) +opt(f). % m is opt if f is not opt
(7) + (8) (9) +opt(s) +opt(m). % s is opt if m is not opt
(6) + (9) (10) +opt(s). % s is opt

The proof as a tree:

(10)

(9)

(8)

(5)(2)

(7)

(4)(1)

(6)

(3)(1)
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Is it feasible to deduce all consequences of a set of clauses?

Can a clause be resolved with itself?
Answer: it depends. . . on what kind of logic we use:

In propositional logic: no, as a clause . . . +a. . . -a. . . is meaningless
In FOL: yes, see e.g. clause (1) from the previous slide

(1) +opt(X) -hasP(X, P) -opt(P).
Resolve (1) with a copy of itself (1’):
(1’) +opt(Y) -hasP(Y, Q) -opt(Q).

resolving literals (1)#3 and (1’)#1, using substitution {Y← P}
The resolvent:
(2) +opt(X) -hasP(X, P) -hasP(P, Q) -opt(Q).

Read as: “X is an optimist if X has an optimist grandparent (Q).”
One can keep resolving the output of the previous step with (1), obtaining
clauses that describe valid and useful consequences of (1):
“X is an optimist if X has an optimist great-grandparent.”. . .
“X is an optimist if X has an optimist nth ancestor.”
One can thus infer infinitely many clauses from {(1)}
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Indirect resolution proofs

Inferring all consequences of a set of clauses is not a viable task in FOL
That is why we focus on more focused indirect proofs
Given a premise U and a consequence V , to prove (U → V ) indirectly:

we assume ¬(U → V ), i.e. U ∧ ¬V
we show that this leads to contradiction, i.e. U ∧ ¬V ≡ false

What is the truth value of an empty clause (empty disjunction)? false
The indirect resolution proof of (U → V ) consists of the following steps:

convert both U and ¬V to (two) sets of clauses
take the union of the two sets and perform resolution
(aiming at getting the shortest clauses possible)
when an empty clause is reached, the proof is completed

To prove that clauses (1), . . . , (5) from page 69 imply opt(s):
add ¬ opt(s) ≡ -opt(s) as clause (10) (this is the initial goal clause)
deduce an empty clause from the set { (1), . . . , (5), (10)}
using resolution
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The indirect resolution proof of the “optimist” example

Initial clauses (so called program clauses: (1)–(5), goal clause: (10))
(1) +opt(X) -hasP(X, P) -opt(P).
(2) +opt(X) -hasF(X, F) +opt(F).
(3) +hasP(s, m).
(4) +hasP(s, f).
(5) +hasF(m, f).

(10) -opt(s).
A possible resolution proof that (1), . . . , (5), (10) lead to contradiction:

(10) -opt(s). % s is non-opt
(10) + (1) (11) -hasP(s, U) -opt(U). % all parents of s are non-opt
(11) + (3) (12) -opt(m). % m is non-opt
(12) + (2) (13) -hasF(m, V) +opt(V). % all friends of m are opt
(13) + (5) (14) +opt(f). % f is opt
(14) + (1) (15) +opt(Y) -hasP(Y, f). % all children of f are opt
(15) + (4) (16) +opt(s). % s is opt
(16) + (10) (17) □ % contradiction

(Recall that □ denotes an empty clause, i.e. an empty disjunction ≡ false)
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The structure of the indirect “optimist” proof

(17) □

(10)(16)

(4)(15)

(1)(14)

(5)(13)

(2)(12)

(3)(11)

(1)(10)

A linear resolution step is when a
goal clause is resolved with a
program clause, producing a new
goal clause
All steps in this proof, except for
the last, are linear
The last step is an example of a
so called ancestor resolution, as
(16) is resolved with one of its
ancestors in the proof tree, (10)
In Prolog, only linear resolution
steps are allowed
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Finding optimists on the island
(1) +opt(X) -hasP(X, P) -opt(P). (3) +hasP(s, m).
(2) +opt(X) -hasF(X, F) +opt(F). (4) +hasP(s, f).

(5) +hasF(m, f).

Let’s try to prove indirectly that (1)–(5) imply S = ∃z.opt(z). Negate S:
¬S ≡ ¬∃z.opt(z) ≡ ∀z.¬opt(z), in clausal form: (10) -opt(Z).
A resolution proof showing that (1), . . . , (5), (10) is contradictory:

(10) -opt(Z). % Z is non-opt
(10) + (1) (11) -hasP(Z, U) -opt(U). % all parents of Z are non-opt
(11) + (3) +hasP(s, m). % { Z = s , U = m}

(12) -opt(m). % m is non-opt
(12) + (2) (13) -hasF(m, V) +opt(V). % all friends of m are opt
(13) + (5) (14) +opt(f). % f is opt

(14) + (10) -opt(Z’). % { Z’ = f }
(15) □ % contradiction

We used two instances of the indirect assumption -opt(Z):
Z = s and Z’ = f. Thus (1)–(5) is in contradiction with (¬ opt(s) ∧¬ opt(f)).
Hence (1)–(5) implies ¬(¬ opt(s) ∧¬ opt(f)) ≡ opt(s) ∨ opt(f),
i.e. one of s and f has to be an optimist. Can we get a stronger result?
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Finding out who are “optimists”, continued

Let’s modify the ending of the previous proof (from the red line) so that
only a single instantiation of (10) is used:
(1) +opt(X) -hasP(X, P) -opt(P). (4) +hasP(s, f).
(2) +opt(X) -hasF(X, F) +opt(F). (5) +hasF(m, f).
(3) +hasP(s, m). (10) -opt(Z).

(10) -opt(Z). % Z is non-opt
(10) + (1) (11) -hasP(Z, U) -opt(U). % all parents of Z are non-opt
(11) + (3) +hasP(s, m). % { Z = s , U = m}

(12) -opt(m). % m is non-opt
(12) + (2) (13) -hasF(m, V) +opt(V). % all friends of m are opt
(13) + (5) (14) +opt(f). % f is opt

(14) + (1) (15) +opt(Y) -hasP(Y, f). % all children of f are opt
(15) + (4) (16) +opt(s). % s is opt
(16) + (10) (17) □ % { Z’ = s } contradiction

Here we still used (10) -opt(Z) twice, but now in both cases with Z = s.
Hence we can conclude that opt(s) follows from (1)–(5).
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Finding out who is an “optimist” using the answer literal

We add a special -answer(Z) literal to the goal clause
This literal does not take part in reasoning, it just stores the answer
Initial clauses:
(1) +opt(X) -hasP(X, P) -opt(P). (4) +hasP(s, f).
(2) +opt(X) -hasF(X, F) +opt(F). (5) +hasF(m, f).
(3) +hasP(s, m). (10) -opt(Z)-answer(Z).

The proof:
(10) -opt(Z) -answer(Z).

(10) + (1) (11) -hasP(Z, U) -opt(U) -answer(Z).
(11) + (3) (12) -opt(m) -answer(s).
(12) + (2) (13) -hasF(m, V) +opt(V) -answer(s).
(13) + (5) (14) +opt(f) -answer(s).
(14) + (1) (15) +opt(Y) -hasP(Y, f) -answer(s).
(15) + (4) (16) +opt(s) -answer(s).
(16) + (10) (17) -answer(s).
The proof ends when only the answer literal is left (cf. empty clause)
The argument of the answer literal shows the answer: s
Using alternative proofs multiple answers can be obtained
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From resolution to Prolog

The base resolution algorithm leaves several things open:
how are the two clauses to be resolved upon selected?
how are the literals selected?

Moving towards Prolog, we now view
a Conjunctive NF as a sequence (rather than a set) of clauses
a clause as a sequence of literals

To make reasoning faster, we only allow a subset of FOL clauses:
those with at most one positive literal (Definite or Horn clauses)

The four kinds of Horn clauses:
Rule: exactly 1 pos lit, ≥ 1 neg lits (1) +opt(X)-hasP(X, P)-opt(P).
Fact: exactly 1 pos lit, no neg lits (3) +hasP(s, m).
Goal: no pos lits, ≥ 1 neg lits (10) -opt(Z).
Empty: no pos lits, no neg lits (17) □.

(An empty clause can only occur as the final goal clause)
Positive literals are written first (and are called the clause head)
In our Susan example the only non-Horn clause was:

• (2) +opt(X)-hasF(X, F)+opt(F).
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From resolution to Prolog (ctd.)

(o1) +opt(X) -hasP(X, P) -opt(P). (p1) +hasP(s, f).
(o2) +opt(gm). (p2) +hasP(s, m).

(p3) +hasP(m, gm).

Rules and facts define boolean functions, called predicates or
procedures. A rule has a head and a body. A fact has a head and no
body. A body is a sequence of goals (also called procedure calls).
Rules and facts are grouped into procedures, based on their functor (F/N,
where F is the name of the clause head, and N is the # of args). E.g.
procedure opt/1 contains (o1)–(o2), proc. hasP/2 contains (p1)–(p3).
A goal clause is the same as a body: a list of negative literals or goals.
The literal -opt(s) is a call of the opt procedure, shown above.
In this example s acts as the actual, and X as the formal parameter of the
procedure, unification is the means for parameter passing
A resolution step can be viewed as a macro expansion: replace -opt(s)
by the body of rule (o1) with subst. {X← s}: -hasP(s, P) -opt(P)
If multiple clause heads match a call, a so called choice point is created,
choices are explored top-to-bottom via backtracking
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Example: proving that Susan is an optimist, initial steps
(o1) +opt(X) -hasP(X, P) -opt(P). (p1) +hasP(s, f).
(o2) +opt(gm). (p2) +hasP(s, m).

(p3) +hasP(m, gm).
Proving that Susan (s) is an optimist, goal: (g1) -opt(s)

Step 1, matching clause heads: (o1)
resolve (g1) with copy 1 of (o1), subst. {X1 ← s} new goal clause:

(g2) -hasP(s, P1) -opt(P1).

Step 2, matching clauses: (p1), (p2); create CHoice Point 1, storing the
goal (g2) and the list of choices: [p1,p2]
resolve (g2) with (p1), subst. {P1 ← f} new goal clause: (g3) -opt(f).

Step 3, single matching clause head: (o1), no CHP created
resolve (g3) with copy 2 of (o1), subst. {X2 ← f} new goal clause:

(g4) -hasP(f, P2) -opt(P2).

Step 4, no matching clauses, backtrack to CHP 1, remove branch p1,
leaving [p2]1. Go back to (g2), resolve it now with (p2),
subst. {P1 ← m}, new goal clause: (g5) -opt(m).

1As this is the last choice, CHP 1 is removed here.
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Graphical representation of the resolution search tree

(o1) +opt(X) -hasP(X, P) -opt(P).
(o2) +opt(gm).

(p1) +hasP(s, f).
(p2) +hasP(s, m).
(p3) +hasP(m, gm).

−hasP(s,P1)−opt(P1)

(p2)
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    −opt(m)
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X3 = m
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P3 = gm

(p3)

 −opt(gm)

(o2)    (o1)

  X4 = gm

     X2 = f

(o1)

  (p1)

             −opt(f)

−hasP(gm,P4)
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P1 = m

−hasP(f,P2)−opt(P2)

   P1 = f

.

.

(backtrack)

(empty clause: success)
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Prolog as a resolution theorem prover

Recall the two kinds of clauses: the premises (program clauses)
and the goal clause (the negation of the conclusion to be proved)
Prolog execution uses the following indirect resolution algorithm:

1 If the goal clause is empty, exit with success (of the indirect proof)
2 Otherwise, find all program clauses whose first literal can be

resolved with the first goal literal, scanning top to bottom
3 If there are > 1 such clauses, create a choice point storing this list of

applicable clauses and the current goal clause
4 If there are ≥ 1 such clauses, resolve the goal clause with the first

applicable program clause, make the resolvent the new goal clause,
and go to step 1

5 If there are no such clauses, backtrack:
if no choice points are left, exit with failure (of the indirect proof)
consider the latest choice point (choice points form a stack),
restore the goal clause from the choice point, resolve it with the
next applicable clause and continue at step 1 .
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Prolog as a resolution theorem prover

The Prolog programming language is based on indirect, goal oriented
resolution; with the following constraints (recap):

the SELECTION of literals is restricted: only the first literals in both
clauses can be used for resolution
resolution is applied in a LINEAR manner: start with the goal,
resolve it with a rule or fact, and repeat this for the resolvent
only DEFINITE (Horn) Clauses are allowed

Prolog is thus based on
SLD resolution – Selective Linear resolution on Definite clauses
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Performing queries using resolution – practice

Consider the program
+hP(a, b). (1)
+hP(b, c). (2)
+hP(b, d). (3)
+hP(d, e). (4)

+hGP(Ch, GP) -hP(Ch, P) -hP(P, GP). (5)
Execute the following goals using SLD resolution:
-hGP(a, GP). (11)
-hGP(b, GP). (12)
-hGP(d, GP). (13)
-hGP(Ch, e). (14)
-hGP(Ch, b). (15)
-hGP(Ch, GP). (16)
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Limitations of Prolog

Equality can not be used in positive literals (clause heads), e.g. these
formulas cannot be converted to Prolog:

∀x .(x = s()← opt(x)) (only Susan can be optimistic)

∀x , y .(x + y = y + x) (addition is commutative)

Consequence: function symbols become data constructors, e.g.
| ?- X = 1+2*3. X = 1+2*3 ?
| ?- X is 1+2*3. X = 7 ? % is is a built-in for arithmetic
| ?- X = 1+2*3, Y+Z = X. X = 1+2*3, Y = 1, Z = 2*3 ?

Prolog unification does not do the occurs check:
FOL resolution prescribes a variable x cannot be unified with a term
α, if x occurs in α.
This costly check is practically useless in Prolog and by default is not
performed by Prolog systems. (However, there is a built-in predicate
unify_with_occurs_check, to perform this.)

Semantic and Declarative Technologies 2024 Fall Semester 84 / 414


