
Semantic and Declarative Technologies

László Kabódi, Péter Tóth, Péter Szeredi

kabodil@gmail.com
peter@toth.dev

szeredi@cs.bme.hu

Aquincum Institute of Technology

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

2024 Fall Semester

Revision 3695M | Generated: 2024. nov. 27., szerda, 13:59:35 CET

Course information

Course layout
Introduction to Logic Weeks 1–2
Declarative Programming

Prolog – Programming in Logic Weeks 3–7
Constraint Programming Weeks 8–12

Semantic Technologies
Logics for the Semantic Web Weeks 13–14

Requirements
2 assignments (150 points each) 300 points
2 tests (mid-term and final, 200 points each) 400 points total
many small exercises + class activity 300 points total

Course webpage: http://cs.bme.hu/~szeredi/ait
Course rules: http://cs.bme.hu/~szeredi/ait/course-rules.pdf

(AIT) Semantic and Declarative Technologies 2024 Fall Semester 2 / 414

Course overview

Part I – practical mathematical logic

Propositional Logic
Basic Boolean functions (bitwise ops in C, Python, etc.)

and: ∧ (&)
or: ∨ (|)
not: ¬ (~)
implies: → A→ B (A implies B) is the same as (¬A ∨ B)

The puzzle below is cited from “What Is The Name Of This Book?” by
Raymond M. Smullyan, chapter “From the cases of Inspector Craig”
Puzzles in this chapter involve suspects of a crime, named A, B, etc.
Some of them are guilty, some innocent.
Example:
An enormous amount of loot had been stolen from a store. The criminal (or criminals)
took the heist away in a car. Three well-known criminals A, B, C were brought to
Scotland Yard for questioning. The following facts were ascertained:

1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Is A innocent or guilty?
Semantic and Declarative Technologies 2024 Fall Semester 3 / 414

Course overview

Inspector Craig puzzle – transforming to formal logic

Let’s recall the facts
1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Transform each statement into a formula involving the letters A, B, C as
atomic propositions. Proposition A stands for “A is guilty”, etc.

1 A is guilty or B is guilty or C is guilty: A ∨ B ∨ C
2 If C is guilty then A is guilty: C → A
3 It cannot be the case that only B is guilty: B → (A ∨ C)

Transform each propositional formula into conjunctive normal form (CNF),
then show the clauses in simplified form:

Original formula CNF Simplified clausal form
1 A ∨ B ∨ C A ∨ B ∨ C +A +B +C.
2 C → A ¬C ∨ A -C +A.
3 B → (A ∨ C) ¬B ∨ A ∨ C -B +A +C.

A clause is a set of signed atomic propositions, called literals
Semantic and Declarative Technologies 2024 Fall Semester 4 / 414

Course overview

Inspector Craig puzzle – resolution proof

Collect the clauses, giving each a reference number:
(1) +A +B +C. Only A, B, C was involved in the robbery.
(2) -C +A. C never works without A as an accomplice.
(3) -B +A +C. B does not know how to drive.

A resolution step requires two input clauses which have opposite literals
e.g. literal 3 of clause (1) is +C while lit 1 of clause (2) is -C
The resolution step creates a new clause, called the resolvent.
It takes the union of the literals in the inputs and removes a single pair of
opposite literals, e.g. resolving (1) lit 3 with (2) lit 1 results in +A +B
The resolvent follows from (is a consequence of) the input clauses, as
(U ∨ V) ∧ (¬U ∨W)→ (V ∨W) always holds (is a tautology)
A sample resolution proof:

resolve (1) lit 2 with (3) lit 1 resulting in (4)
(4) +A +C. resolve (4) lit 2 with (2) lit 1 resulting in (5)
(5) +A.
We deduced that A is true, so the solution of the puzzle is: A is guilty

Semantic and Declarative Technologies 2024 Fall Semester 5 / 414

Course overview

Clauses in First Order Logic (FOL)

Example: There is an island where some people are optimistic (opt)
The following statements hold on this island:

1 Someone having an opt parent is bound to be opt.
2 Someone having a non-opt friend is also bound to be opt.
3 Susan’s mother has Susan’s father as a friend.

To formalize this in FOL we introduce some task-specific symbols:
X has a parent Y −→ hasP(X ,Y); X has a friend Y −→ hasF(X ,Y)
X is opt −→ opt(X); s, f, m stand for Susan, her father and her mother, resp.

The FOL form and the clausal form of the above statements:
1 For all X and Y , X is opt if X has a parent Y and Y is opt:
∀X ,Y .(opt(X)← hasP(X ,Y) ∧ opt(Y))

+opt(X) -hasP(X,Y) -opt(Y).
2 For all X and Y , X is opt if X has a friend Y and Y is not opt:
∀X ,Y .(opt(X)← hasF(X ,Y) ∧ ¬opt(Y))

+opt(X) -hasF(X,Y) +opt(Y).
3 hasP(s, m) hasP(s, f) hasF(m, f)

+hasP(s,m). +hasP(s,f). +hasF(m,f).
We will also learn FOL resolution, on which Prolog execution is based

Semantic and Declarative Technologies 2024 Fall Semester 6 / 414

Course overview

Part II – Prolog

Example 1: checking if an integer is a prime
A Prolog program consists of predicates (functions returning a Boolean)
Let’s write a predicate, which is true if and only if the argument is a prime
Programming by specification: first describe when the predicate is true,
then transform the decription to Prolog code

prime(P) :- % P is a prime if
integer(P), P > 1, % P is an integer and P > 1 and
P1 is P-1, % P1 = P-1 and
\+ (% it is not the case that

% (there exists an integer I such that)
between(2, P1, I), % 2 =< I =< P1 and
P mod I =:= 0 % P is divisible by I

). %

Are you convinced of the correctness of the code? :-)

Semantic and Declarative Technologies 2024 Fall Semester 7 / 414

Course overview

Example 2: append - multiple uses of a single predicate

app(L1, L2, L3) is true if L3 is the concatenation of lists L1 and L2.

app([], L, L). % appending an empty list with L gives L.
app([H|L1], L2, [H|L3]) :- % appending a list composed of

% head H and tail L1 with a list L2
% gives a list with head H and tail L3 if

app(L1, L2, L3). % appending L1 and L2 gives L3.

app can be used, for example,
to check whether the relation holds:
| ?- app([1,2], [3], [1,2,3]). =⇒ yes
to append two lists:
| ?- app([1,2], [3,4], L). =⇒ L = [1,2,3,4] ? ; no
to split a list into two:
| ?- app(L1, L2, [1,2,3]). =⇒ L1 = [], L2 = [1,2,3] ? ;

L1 = [1], L2 = [2,3] ? ;
L1 = [1,2], L2 = [3] ? ;
L1 = [1,2,3], L2 = [] ? ; no

Predicate app is available as a built-in: append/3 (append with 3 args)
Semantic and Declarative Technologies 2024 Fall Semester 8 / 414

Course overview

Example 3: A number puzzle

An arithmetic expression is simple if it uses the four basic operations only
Let’s write a Prolog program for solving the following task:
Given a set of integers, e.g. {1,3,4,6}, and a target integer n, e.g. 14,
build a simple arithmetic expression that contains each element of the
given set exactly once, and evaluates to n
Some further clarification:

you cannot “glue” together integers to form larger ones, e.g. forming
13 from 1 and 3 is not allowed
each operation can be used 0 or more times
parentheses can be used freely

Examples: 1 + 6 ∗ (3 + 4) = 43, (1 + 3)/4− 6 = −5
The list of integers contained within an expression (in order of occurence)
is called its list of leaves, e.g. the list of leaves of 6 ∗ (3 + 4) is [6,3,4]
A fairly hard task is to construct an expression that evaluates to 24, using
integers {1,3,4,6}

Semantic and Declarative Technologies 2024 Fall Semester 9 / 414

Course overview

The number puzzle in Prolog

Blue/orange color indicates built-in/library predicates

% Expr uses all integers in L and evaluates to Val.
leaves_value_expr(L, Val, Expr) :-

permutation(L, PL), % PL is a permutation of L,
leaves_expr(PL, Expr), % PL is a list of leaves of Expr,
catch(Expr =:= Val, _, % Expr evaluates to Val, if any error

fail). % occurs (e.g. division by 0), simply fail

% Expr is an (arbitrary) expression having a given list of leaves L.
leaves_expr(L, Expr) :-

L = [Expr]. % If L is a singleton, Expr is the element
leaves_expr(L, Expr) :-

append(L1, L2, L), % Split L into L1 ⊕ L2
L1 \= [], L2 \= [], % so that neither L1, nor L2 is empty ([])
leaves_expr(L1, E1), % Let E1 be an arbitrary expr with leaves L1
leaves_expr(L2, E2), % Let E2 be an arbitrary expr with leaves L2
member(Op, [+,-,*,/]), % Let Op be one of the four allowed operations
Expr =.. [Op,E1,E2]. % Let Expr be a binary expresion

% with operation Op and operands E1 and E2

Semantic and Declarative Technologies 2024 Fall Semester 10 / 414

Course overview

Part III – Constraint technology

Example 7: The 711 problem (David Gries, May 1982)
https://www.cs.cornell.edu/gries/TechReports/82-493.pdf
One day, a customer bought four items at a 711 store (a chain of stores in the
US). The cashier bagged them and said:

That will be $7.11, please.
The customer asked: Is it $7.11 because this is a 711 store?
No, replied the cashier, I multiplied the prices together and got $7.11.
But you are supposed to add them, not multiply them, said the customer.
Oh, you’re right! exclaimed the cashier
Let me recalculate . . . that will be $7.11.

Can you find out the price of each of the four items, based on the above
conversation?
Note: calculations are assumed to be exact, no rounding!
We will use library(clpfd): Constraint Logic Programming over Finite Domains

Semantic and Declarative Technologies 2024 Fall Semester 11 / 414

Course overview

Solving the 711 problem using CLPFD: constrain-and-generate

:- use_module(library(clpfd)).

problem711(Vs) :-
Vs = [A,B,C,D], % Prices of the 4 items
domain(Vs, 1, 711), % Prices are in cents
A+B+C+D #= 711, % Prices add up to 711 cents

% A*B*C*D/100^4 = 711/100, % Prices in $s multiply to 7.11
% multiply both sides by 100^4:

A*B*C*D #= 711*100^3, %
A #=< B, B #=< C, C #=< D, % Ensure increasing order
labeling([ff], Vs). % Search, using the first fail

% principle: explore the narrowest
% choice point first

| ?- problem711(Vs). =⇒ Vs = [120,125,150,316] ? ; no

Some statistics, using SICStus Prolog (exploring the whole search space):
Prunings: 21712 (how many times was the domain of a variable reduced)
Run time: 0.015 sec, backtracks (branches of the search tree): 147
(brute force search would require 7114 = 2.56 ∗ 1011 backtracks)

Semantic and Declarative Technologies 2024 Fall Semester 12 / 414

Course overview

Part IV – Semantic Web

The main goal of the Semantic Web (SW) approach:
make the information on the web processable by computers
machines should be able to understand the web, not only read it

Achieving the vision of the Semantic Web
Adding (computer processable) meta-information to the web
Formalizing background knowledge – building so called ontologies
Developing reasoning algorithms and tools

The Semantic Web layer cake – Tim Berners-Lee

Semantic and Declarative Technologies 2024 Fall Semester 13 / 414

Course overview

Making Susan Optimistic using OWL and Protégé

Recall a statement from the Susan example discussed earlier
English: Someone having an opt parent is bound to be opt.
FOL: ∀X ,Y .(opt(X)← hasP(X ,Y) ∧ opt(Y))
clausal form: +opt(X) -hasP(X,Y) -opt(Y).
OWL (Web Ontology Language): hasParent some Opt SubClassOf Opt

(The set of those having some parents who are Opt is a subset of Opt)

OWL (Web Ontology Language) repre-
sents a subset of FOL: e.g. predicates
can have one or two arguments only,
but efficient reasoners are available for
this subset
Protégé is a free, open source ontology
editor and knowledge-base framework:

Semantic and Declarative Technologies 2024 Fall Semester 14 / 414

