Semantic and Declarative Technologies

Laszl6 Kabodi, Péter Téth, Péter Szeredi

kabodil@gmail.com
peter@toth.dev
szeredi@cs.bme.hu

Aquincum Institute of Technology

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

2024 Fall Semester

Course overview

Part | — practical mathematical logic

Propositional Logic
@ Basic Boolean functions (bitwise ops in C, Python, etc.)
e and: A (&)
e or: V (I)
@ not: — (~)
@ implies: — A — B (Aimplies B) is the same as (-A Vv B)
@ The puzzle below is cited from “What Is The Name Of This Book?” by
Raymond M. Smullyan, chapter “From the cases of Inspector Craig”
@ Puzzles in this chapter involve suspects of a crime, named A, B, etc.
Some of them are guilty, some innocent.
@ Example:
An enormous amount of loot had been stolen from a store. The criminal (or criminals)
took the heist away in a car. Three well-known criminals A, B, C were brought to
Scotland Yard for questioning. The following facts were ascertained:
@ No one other than A, B, C was involved in the robbery.
@ C never works without A (and possibly others) as an accomplice.
© B does not know how to drive.
Is A innocent or guilty?

Semantic and Declarative Technologies 2024 Fall Semester

(AIT) Semantic and Declarative Technologies
Course overview

Inspector Craig puzzle — transforming to formal logic

Course information

@ Course layout

e Introduction to Logic Weeks 1-2
e Declarative Programming
e Prolog — Programming in Logic Weeks 3-7
e Constraint Programming Weeks 8-12
e Semantic Technologies
e Logics for the Semantic Web Weeks 13-14
@ Requirements
e 2 assignments (150 points each) 300 points

e 2 tests (mid-term and final, 200 points each)
e many small exercises + class activity

@ Course webpage: http://cs.bme.hu/~szeredi/ait

400 points total
300 points total

@ Course rules: http://cs.bme.hu/~szeredi/ait/course-rules.pdf

2024 Fall Semester 2/414

@ Let’s recall the facts
@ No one other than A, B, C was involved in the robbery.
© C never works without A (and possibly others) as an accomplice.
© B does not know how to drive.

@ Transform each statement into a formula involving the letters A, B, C as
atomic propositions. Proposition A stands for “A is guilty”, etc.
@ Ais guilty or B is guilty or C is guilty: Av BV C
@ If Cis guilty then A'is guilty: C — A
@ It cannot be the case that only B is guilty: B — (A C)
@ Transform each propositional formula into conjunctive normal form (CNF),
then show the clauses in simplified form:

Original formula CNF Simplified clausal form

Q@ AvBvVC AV BvVC +A +B +C.
QC%A ﬁC\/A -C +A.
Q@B (AvO) -BVAvVC -B +A +C.

@ A clause is a set of signed atomic propositions, called literals

Semantic and Declarative Technologies 2024 Fall Semester 4/414

Course overview

Inspector Craig puzzle — resolution proof

@ Collect the clauses, giving each a reference number:

(1) +A +B +C. Only A, B, C was involved in the robbery.
(2) -C +A. C never works without A as an accomplice.
(3) -B +A +C. B does not know how to drive.

@ A resolution step requires two input clauses which have opposite literals
e.g. literal 3 of clause (1) is +c while lit 1 of clause (2) is -C

@ The resolution step creates a new clause, called the resolvent.
It takes the union of the literals in the inputs and removes a single pair of
opposite literals, e.g. resolving (1) lit 3 with (2) lit 1 results in +A +B

@ The resolvent follows from (is a consequence of) the input clauses, as
(Uv v)yn(=Uv W) (Vv W)always holds (is a tautology)

@ A sample resolution proof:

resolve (1) lit2 with (3)lit 1 resulting in (4)

(4) +A +C. resolve (4) lit2 with (2) it 1 resulting in (5)

(5) +A.
@ We deduced that A is true, so the solution of the puzzle is: A is guilty

2024 Fall Semester

Clauses in First Order Logic (FOL)

@ Example: There is an island where some people are optimistic (opt)
@ The following statements hold on this island:

@ Someone having an opt parent is bound to be opt.
© Someone having a non-opt friend is also bound to be opt.
© Susan’s mother has Susan’s father as a friend.

@ To formalize this in FOL we introduce some task-specific symbols:

@ X has aparent Y — hasP(X, Y); X has a friend Y — hasF(X, Y)
e Xis opt — opt(X); s, £, m stand for Susan, her father and her mother, resp.

@ The FOL form and the clausal form of the above statements:

@ Forall Xand Y, X is opt if X has a parent Y and Y is opt:

VX, Y.(opt(X) < hasP(X, Y) A opt(Y))
+opt (X) -hasP(X,Y) -opt(Y).

@ Forall Xand Y, X is opt if X has a friend Y and Y is not opt:

VX, Y.(opt(X) < hasF(X, Y) A —opt(Y))
+opt (X) -hasF(X,Y) +opt(Y).

@ hasP(s,m) hasP(s,f) hasF(m,f)
+hasP(s,m). +hasP(s,f). +hasF(m,f).

@ We will also learn FOL resolution, on which Prolog execution is based

2024 Fall Semester 6/414

5/414 «O0>» <« F» Semantic and Declarative Technologies
Course overview

Example 2: append - multiple uses of a single predicate

«O» <« F)» Semantic and Declarative Technologies
Course overview

Part Il — Prolog

@ app(L1, L2, L3) istrue if L3 is the concatenation of lists L1 and L2.
Example 1: checking if an integer is a prime
@ A Prolog program consists of predicates (functions returning a Boolean)
@ Let’s write a predicate, which is true if and only if the argument is a prime

@ Programming by specification: first describe when the predicate is true,
then transform the decription to Prolog code

app([]l, L, L). % appending an empty list with L gives L.
app([H|L1], L2, [H|L3]) :- % appending a list composed of
% head H and tail L1 with a list L2
% gives a list with head H and tail L3 if
app(L1, L2, L3). % appending L1 and L2 gives L3.

@ app can be used, for example,

prime(P) :- % P is a prime if . .
integer(P), P > 1, " P is an integer and P > 1 and e to check whether the relation holds:
P1 is P-1, v P1 = P-1 and | ?7- app([1,2], [3], [1,2,3]). == yes
\+ (% it is not the case that o to append two lists:
% (there exists an integer I such that) | ?- app([1,2], [3,4], L). = L =1[1,2,3,4] ? ; no
between(2, P1, I), / 2 =< I=<Piand e to split a list into two:
Pmod I =:=0 “A P is divisible by I | 7- app(L1, L2, [1,2,31). = L1 =[], L2 = [1,2,3] 7 ;
). A L1 = [1], L2 =[2,3] 7 ;
. L1 = [1,2] L2 = [3] 7 ;
Ar nvin f the correctness of the code? :- o ’
€ youco ced of the co) L1 =1[1,2,3], L2 =[] ? ; no

@ Predicate app is available as a built-in: append/3 (append with 3 args)
7/414

Semantic and Declarative Technologies 2024 Fall Semester Semantic and Declarative Technologies 2024 Fall Semester 8/414

Course overview

Example 3: A number puzzle

@ An arithmetic expression is simple if it uses the four basic operations only

@ Let’s write a Prolog program for solving the following task:
Given a set of integers, e.g. {1, 3,4,6}, and a target integer n, e.g. 14,
build a simple arithmetic expression that contains each element of the
given set exactly once, and evaluates to n

@ Some further clarification:

e you cannot “glue” together integers to form larger ones, e.g. forming
13 from 1 and 3 is not allowed

e each operation can be used 0 or more times

e parentheses can be used freely

@ Examples: 1 +6%(3+4)=43,(1+3)/4-6=-5

@ The list of integers contained within an expression (in order of occurence)
is called its list of leaves, e.g. the list of leaves of 6 x (3 + 4) is [6,3,4]

@ A fairly hard task is to construct an expression that evaluates to 24, using
integers {1,3,4,6}

Semantic and Declarative Technologies 2024 Fall Semester

Course overview

Part Ill — Constraint technology

Example 7: The 711 problem (David Gries, May 1982)
https://www.cs.cornell.edu/gries/TechReports/82-493.pdf

One day, a customer bought four items at a 711 store (a chain of stores in the
US). The cashier bagged them and said:

@ That will be $7.11, please.
@ The customer asked: Is it $7.11 because this is a 711 store?
@ No, replied the cashier, | multiplied the prices together and got $7.11.
@ But you are supposed to add them, not multiply them, said the customer.
@ Oh, you're right! exclaimed the cashier
@ Let me recalculate . . . that will be $7.11.
Can you find out the price of each of the four items, based on the above
conversation?
Note: calculations are assumed to be exact, no rounding!
We will use library(clpfd): Constraint Logic Programming over Finite Domains

Semantic and Declarative Technologies 2024 Fall Semester

9/414 «O0)>» <« F» Semantic and Declarative Technologies
Course overview

Course overview

The number puzzle in Prolog

Blue/orange color indicates built-in/library predicates

% Expr uses all integers in L and evaluates to Val.
leaves_value_expr(L, Val, Expr) :-

% PL is a permutation of L,

% PL is a list of leaves of Expr,

% Expr evaluates to Val, if any error

% occurs (e.g. division by 0), simply fail

permutation(L, PL),

leaves_expr(PL, Expr),

catch(Expr =:= Val, _,
fail).

% Expr is an (arbitrary) expression having a given list of leaves L.
leaves_expr(L, Expr) :-

L = [Expr]. % If L is a singleton, Expr is the element
leaves_expr(L, Expr) :-

append (L1, L2, L), % Split L into L1 @ L2

L1 \= [, L2 \= [1, % so that neither L1, nor L2 is empty ([])

leaves_expr(L1, E1), % Let E1 be an arbitrary expr with leaves L1

leaves_expr(L2, E2), % Let E2 be an arbitrary expr with leaves L2

member (Op, [+,-,*,/1), 7% Let Op be one of the four allowed operations

Expr =.. [0Op,E1,E2]. % Let Expr be a binary expresion

% with operation Op and operands El1 and E2

2024 Fall Semester 10/414

Solving the 711 problem using CLPFD: constrain-and-generate

:- use_module(library(clpfd)).

problem711(Vs) :-
Vs = [A,B,C,D], % Prices of the 4 items
domain(Vs, 1, 711), % Prices are in cents
A+B+C+D #= 711, % Prices add up to 711 cents

7 A*¥B*C*D/100°4 = 711/100, % Prices in $s multiply to 7.11
% multiply both sides by 10074:
A*BxC*D #= 71110073, 7%
A #=< B, B #=< C, C #=< D, J Ensure increasing order
labeling([ff], Vs). % Search, using the first fail
% principle: explore the narrowest
% choice point first

| 7- problem711(Vs). - Vs = [120,125,150,316] ? ; no

Some statistics, using SICStus Prolog (exploring the whole search space):
@ Prunings: 21712 (how many times was the domain of a variable reduced)
@ Runtime: 0.015 sec, backtracks (branches of the search tree): 147
(brute force search would require 711* = 2.56 « 10"! backtracks)

Semantic and Declarative Technologies 2024 Fall Semester 12/414

Part IV — Semantic Web Making Susan Optimistic using OWL and Protégé

@ The main goal of the Semantic Web (SW) approach:
o make the information on the web processable by computers @ Recall a statement from the Susan example discussed earlier

° .mgchmes §h.ould be able to uqderstand the web, not only read it o English: Someone having an opt parent is bound to be opt.
@ Achieving the vision of the Semantic Web e FOL: VX, Y.(opt(X) < hasP(X, Y) A opt(Y))
e Adding (computer processable) meta-information to the web e clausal form: +opt (X) -hasP(X,Y) -opt(Y).
e Formalizing background knowledge — building so called ontologies o OWL (Web Ontology Language): hasParent some Opt SubClassOf Opt
e Developing reasoning algorithms and tools (The set of those having some parents who are Opt is a subset of Opt)
@ The Semantic Web layer cake — Tim Berners-Lee s
v-- @ owl:Thing | Description: Opt
. @ OWL (Web Ontology Language) repre- S
Rules rust sents a subset of FOL: e.g. predicates
Proof | £ can have one or two arguments only, Human
Logic E but efficient reasoners are available for serera coss stere @ outh
.on . SubClassOf Opt P
Self & this subset hoaParent soma OpE
Ontology vocabulary | § L SubClassOf Opt
doc, » @ Protégé is a free, open source ontology
RDF + rdfschema a .
editor and knowledge-base framework:

Instances
@ susan

Unicode

Semantic and Declarative Technologies 2024 Fall Semester 13/414 Semantic and Declarative Technologies 2024 Fall Semester 14/414

