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Part I

Introduction to Logic

1 Introduction to Logic

Introduction to Logic

Foundations of logic – overview

Main theme of the course:
How to use mathematical logic in

programming
intelligent web search

We start with a brief introduction to Logic
Propositional Logic:

Syntax and semantics
The notion of consequence
The resolution inference algorithm
Bonus: solving various logic puzzles

First Order Logic (FOL)
Syntax and Model oriented semantics
The notion of consequence for FOL
The resolution inference algorithm for FOL
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Introduction to Logic Propositional Logic

Contents

1 Introduction to Logic
Propositional Logic
Propositional Resolution
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Introduction to Logic Propositional Logic

Atomic and compound propositions

Consider the sentence: It is raining and I’m staying at home
How many propositions (statements) are there in this sentence?
There are three:

two atomic propositions: A =“It is raining”, B =“I’m staying at home”
and the whole sentence is a compound proposition C = A ∧ B
read the symbol ∧ as “and”
C is called a conjunction, A and B are conjuncts

An atomic proposition is the basic building block of general propositions:
it can be assigned a truth value
it cannot be broken down to simpler propositions

Truth values: true and false, often represented by integers 1 and 0
The term propositional formula (or proposition for short) refers to both
atomic and compound propositions
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Introduction to Logic Propositional Logic

Conjunction

Knowing the truth values of A and B, can you tell the truth value of A ∧ B?
Think of A =“It is raining”, B =“I’m staying at home”

A B A ∧ B
false false false
false true false
true false false
true true true

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

In brief: A ∧ B is true if and only if (iff) . . . both A and B are true

Is the ∧ operator commutative? I.e. A ∧ B ?
= B ∧ A. Why?

Because 0 ∧ 1 = 1 ∧ 0
Is ∧ associative? I.e. (A1 ∧ A2) ∧ A3

?
= A1 ∧ (A2 ∧ A3). Why?

Because both sides are 1 iff each of A1,A2,A3 is 1.
n-fold conjunction: Cn = A1 ∧ · · · ∧ An. When is Cn = 1? If all Ais are 1.
What value should be assigned to an empty conjunction C0 (Cn for n = 0)?
Hint: Describe the relationship between Cn−1 and Cn, use this for n = 1
Cn = Cn−1 ∧ An, C1 = A1, hence A1 = C0 ∧ A1. This is true iff C0 = 1.
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Introduction to Logic Propositional Logic

Disjunction and negation

Another example: It is not raining or (else) I’m staying at home
The two atomic propositions are the same as earlier:
A =“It is raining”, B =“I’m staying at home”
“It is not raining” converts to ¬A, where ¬ denotes negation,
read as “it is not the case that . . . ”
The whole sentence can be formalised as ¬A ∨ B
Read the symbol ∨ as “or”; A ∨ B is called a disjunction, A and B are
disjuncts
The truth tables for disjunction and negation (with 0 – 1 values only):

A B A ∨ B
0 0 0
0 1 1
1 0 1
1 1 1

A ¬A
0 1
1 0
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Introduction to Logic Propositional Logic

Implication

Example: If it is raining, then drive slower than 100 km/h
I obey this sign provided that If it is raining, then I drive slowly. . .
This is an implication, formally written as A → B (A implies B)
the premise: A =“It is raining”, conclusion: B =“I drive slowly . . . ”
When it is not raining, does it matter whether I drive slowly?
The truth table for implication:

A B A → B
0 0 1
0 1 1
1 0 0
1 1 1

Express implication using disjunction and negation: A → B = ¬A ∨ B
A → B evaluates to 0 iff A = 1,B = 0
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Introduction to Logic Propositional Logic

Equivalence and exclusive or

Example 1: I use an umbrella if and only if it is raining
This is an equivalence, formally written as A ↔ B or A ≡ B,
A =“I use an umbrella”, B =“It is raining”,
Example 2: We either go to movies or have dinner (but not both)
This is an exclusive or (XOR), formally written as A xor B or A ⊕ B,
A =“we go to movies”, B =“we have a dinner”
The truth tables for equivalence and exclusive or:

A B A ≡ B
0 0 1
0 1 0
1 0 0
1 1 1

A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Express equivalence using exclusive or, and the other way round:
(A ≡ B) = ¬(A ⊕ B), (A ⊕ B) = ¬(A ≡ B)
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Introduction to Logic Propositional Logic

Normal forms

A proposition has lots of equivalent formulations:
A → B ≡ ¬A ∨ B ≡ ¬(A ∧ ¬B)

To design an efficient reasoning algorithm, it makes sense to use one of
normal forms (NF), such as:

DNF (Disjunctive Normal Form) or CNF (Conjunctive NF)
Both allow only three operations: ∧ , ∨ , and ¬
In both NFs ‘¬’ can only be used in front of atomic propositions.
A formula is called a literal if it is either A or ¬A, where A is atomic.
A DNF takes the form C1 ∨ . . . ∨ Cn, n ≥ 0, where each Ci is a
conjunction of literals Li1 ∧ . . . ∧ Limi

A CNF takes the form D1 ∧ . . . ∧ Dn, n ≥ 0, where each Di is a
disjunction of literals Li1 ∨ . . . ∨ Limi

Transform A ⊕ B (exclusive or) to both CNF and DNF formats
Notice that the DNF can be easily derived from a truth table
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Introduction to Logic Propositional Logic

Models and tautologies

Recall two kinds of algebraic formulas from high school:

x2 − 3x + 2 = 0 equation – true for some values of x

x2 − y2 = (x − y)(x + y) identity – true for all values of x (*)

Consider a propositional formula with n atomic propositions, e.g.

((A ∧ B) → C) ≡ (A → (B → C))

Here n = 3, so there are 2n = 8 valuations for atomic propositions:
(A,B,C) can be (0,0,0); (0,0,1); (0,1,0); . . . ; (1,1,0); (1,1,1)
Each such valuation is called a model or a universe
A model satisfies a propositional formula, if the formula is true when the
atomic propositions take the 0–1 values specified by the model.
E.g. the model (0,0,0) satisfies the above equivalence
A formula is called a tautology if all models satisfy the formula
(cf. the algebraic identity (*) being true for all possible values of x)
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Introduction to Logic Propositional Logic

Some important tautologies

Show that this formula is a tautology:

((A ∧ B) → C) ≡ (A → (B → C)) (1)

Let us find all the models in which the left hand side evaluates to 0:
There is only one such model (A,B,C) = (1,1,0)
Let us find all the models in which the right hand side evaluates to 0:
There is only one such model (A,B,C) = (1,1,0)
Hence the above formula is a tautology

Show that the following formulas are tautologies:
¬¬U ≡ U

¬(U ∧ V ) ≡ ¬U ∨ ¬V (2)
¬(U ∨ V ) ≡ ¬U ∧ ¬V (3)

(2) and (3) are called De Morgan’s laws.
Hint: use case-based reasoning for proving formulas (2) and (3):

1 Select an arbitrary atomic proposition in the formula, say U
2 Show that the formula to be proven holds for both U = 0 and U = 1
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Introduction to Logic Propositional Resolution
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Propositional Logic
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Introduction to Logic Propositional Resolution

An automated inference system: resolution

The first order resolution inference algorithm was devised by Alan
Robinson around 1964
We now introduce resolution for propositional logic
Resolution uses CNF, conjunctive normal form (recall):

a CNF is a conjunction of clauses: Cl1 ∧ . . . ∧ Cln
a clause is a disjunction of literals: L1 ∨ . . . ∨ Lk
a literal is either A or ¬A, where A is an atomic proposition
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Introduction to Logic Propositional Resolution

Translating propositions to clausal form

Steps needed to transform an arbitrary formula to CNF:
1 replace all connectives by equivalents using only ¬,∧,∨
2 move negations inside using De Morgan Laws
3 apply distributivity (repeatedly, if needed) to eliminate ∧ s inside ∨ s:

transform U ∨ (V ∧ W ) to (U ∨ V ) ∧ (U ∨ W )
4 transform ∧ and ∨ operators to sets, elminating duplicates

The result is thus a set of sets, e.g. {{A,B}, {B,C}} ≡ (A ∨ B) ∧ (B ∨ C)
(“Outer” set elements are conjuncts, “inner” set elements are disjuncts)
Simplified notation (used in first Prolog versions)

a literal is written as a signed atomic proposition, e.g. -A, +B (for ¬A, B)
a clause is written as a sequence of literals followed by a full stop,
e.g. ¬A ∨ ¬B ∨ D written as -A -B +D.

Example: transform ((A ∧ B) → D) ∧ (C → (A ∧ B)) to to clausal form
The CNF form: (¬A ∨ ¬B ∨ D) ∧ (¬C ∨ A) ∧ (¬C ∨ B)
The CNF in set notation: {{¬A,¬B,D}, {¬C,A}, {¬C,B}}
The CNF in simplified notation: -A -B +D. -C +A. -C +B.
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Introduction to Logic Propositional Resolution

The resolution inference rule – introduction

Consider these two clauses: +A -B -C. (1)
+A +D +B. (2)

Literal # 2 in clause (1) is -B, while literal # 3 in clause (2) is +B.
These literals are opposite, i.e. one is the negation of the other.
Given two clauses containing opposite literals, the resolution rule infers a
new clause, called the resolvent, containing the union of all literals of the
two clauses, except the two opposite literals.
In the example the resolvent clause is +A -C +D. (3)
Note that there is only one +A as A ∨ A = A.
Resolution is sound, i.e. (3) is implied by (1) and (2). This is due to the
resolution principle:

(¬U ∨ V )︸ ︷︷ ︸
(i)

∧ (U ∨ W )︸ ︷︷ ︸
(ii)

→ (V ∨ W ) (4)

Proof: Assume the LHS is true, so both (i) and (ii) are true.
If U is true V has to be true, for disjunction (i) to be true.
If U is false W has to be true, for disjunction (ii) to be true.

In either case the RHS is true.
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Introduction to Logic Propositional Resolution

The resolution inference rule – full definition (ADVANCED)

Input: two clauses C = L1 L2 . . . Ln.
D = M1 M2 . . . Mk .

where Li = +X and Mj = -X, or Li = -X and Mj = +X.
Let C′ = C \ {Li}, D′ = D \ {Mj}, where \ denotes set difference.
(The set difference S1 \ S2 is obtained by removing all elements of S2 – if
present – from S1)
Thus C′ = L1 . . . Li−1 Li+1 . . . Ln.

D′ = M1 . . . Mj−1 Mj+1 . . . Mk .
Resolution of C and D yields the clause E = C′ ∪ D′ (meaning C′ ∨ D′),
called the resolventij(C,D), or simply resolvent(C,D);
E = L1 . . . Li−1 Li+1 . . . Ln M1 . . . Mj−1 Mj+1 . . . Mk .
(with duplicates removed)

Note that only a single pair of opposite literals is removed by the
resolution step!
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Introduction to Logic Propositional Resolution

The resolution rule – remarks

Informally: the resolution rule can be interpreted as viewing the clauses
as arithmetic formulas, to be summed up and removing exactly one pair
of “summands” +X -X

Example: resolvent(+A-B-C, +B+D) = +A-C+D
Remark: this analogy does not work, if there is a literal which occurs
in both clauses,
e.g. resolvent(+A-B-C, +B+D+A) = +A-C+D (only one +A is kept)

The case of having two or more “summands” with opposite signs also
breaks the analogy

Here only one pair of such summands is removed
Example: resolvent21(+A-B-C, +B+D+C) = +A-C+D+C= 1 (true), or
resolvent33(+A-B-C, +B+D+C) = +A-B+B+D= 1
Thus resolution does not produce a meaningful clause in this case
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Introduction to Logic Propositional Resolution

Example: solving an inspector Craig puzzle using resolution

The puzzle below is cited from “What Is The Name Of This Book?” by
Raymond M. Smullyan, chapter “From the cases of Inspector Craig”
Puzzles in this chapter involve suspects of a crime, named A, B, etc.
Some of them are guilty, some innocent.
Example:
An enormous amount of loot had been stolen from a store. The criminal (or
criminals) took the heist away in a car. Three well-known criminals A, B, C were
brought to Scotland Yard for questioning. The following facts were ascertained:

1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Is A innocent or guilty?
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Introduction to Logic Propositional Resolution

Inspector Craig puzzle – solution

Let’s recall the facts
1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Transform each statement into a formula involving the letters A, B, C as
atomic propositions. Proposition A stands for “A is guilty”, etc.

1 A is guilty or B is guilty or C is guilty: A ∨ B ∨ C
2 If C is guilty then A is guilty: C → A
3 It cannot be the case that only B is guilty: B → (A ∨ C)

Transform each propositional formula into conjunctive normal form (CNF),
then show the clauses in simplified form:

Original formula CNF Simplified clausal form
1 A ∨ B ∨ C A ∨ B ∨ C +A +B +C.
2 C → A ¬C ∨ A -C +A.
3 B → (A ∨ C) ¬B ∨ A ∨ C -B +A +C.

(Note that in general a single formula can give rise to multiple clauses.)
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Introduction to Logic Propositional Resolution

Inspector Craig puzzle – resolution proof

Collect the clauses, give each a reference number and perform a
resolution proof:
(1) +A +B +C. Only A, B, C was involved in the robbery.
(2) -C +A. C never works without A as an accomplice.
(3) -B +A +C. B does not know how to drive.

resolve (1) lit 2 with (3) lit 1 resulting in (4)
(4) +A +C. resolve (4) lit 2 with (2) lit 1 resulting in (5)
(5) +A.
We deduced that A is true, so the solution of the puzzle is: A is guilty
Notice that +A occurs in each of the above clauses, hence each of
(1)–(4) follows from (5)
This, together with the fact that (5) follows from the input clauses
(1)–(3), means that (5) is equivalent to the set of input clauses
Hence the statements of the puzzle impose no restrictions on
propositions B and C
(either can be guilty or innocent – all 4 combinations allowed)
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Introduction to Logic Propositional Resolution

Removing trivial consequences

Consider this set of clauses: CS = { -B+C+D, +A+C, -A-B, +A-B+C }
Find a clause in CS that is a consequence of another clause in CS.
Hint: of these formulas, which implies which other? U ∨ V , U, V?

(If we know U ∨ V is true, can U be false?) Yes, it can.
(If we know U is true, can U ∨ V be false?) No

Hence U implies U ∨ V , and similarly V implies U ∨ V
Viewing clauses as sets, if C ⊆ D, then C → D (“subset” → “whole set”)
+A+C → +A-B+C, so +A-B+C is a trivial consequence of +A+C

Trivial consequences
A clause C ∨ D (D ̸= empty) is said to be a trivial consequence of C
Is it of interest to obtain the set of all consequences of CS?
No, we get marred by trivial consequences, e.g. -A-B-C, -A-B+C, . . .
It makes more sense to construct a maximal set of non-trivial
consequences, i.e. a set MCS which contains all consequences of CS,
except those that are a trivial consequence of a clause already in MCS
Removing a trivial consequence is valid because (C ∧ (C ∨ D)) ≡ C
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Introduction to Logic Propositional Resolution

Maximal set of non-trivial consequences (ADVANCED)

For the mathematically minded, here is a precise definition of the maximal set
of non-trivial consequences

For a set of clauses CS, its maximal set of consequences is MCS iff:
each clause in MCS is a consequence of CS:
for each C ∈ MCS, CS → C
there are no trivial consequences in MCS:
for each C1,C2 ∈ MCS, C2 is not a trivial consequence of C1
MCS contains all non-trivial consequences:
for each clause C such that CS → C holds, either C ∈ MCS holds, or
else C is a trivial consequence of a C′ ∈ MCS.
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Introduction to Logic Propositional Resolution

Constructing MCS – continuing the example

The set of input clauses:
(1) -B+C+D
(2) +A+C
(3) -A-B
(4) +A-B+C

Remove (4), as it is implied by (2)
Resolve (2) with (3) producing a new clause:

(5) -B+C
Remove (1), as it is implied by (5)
As no removal or resolution step can be applied, exit with the following
maximal set of (non-trivial) consequences:

(2) +A+C
(3) -A-B
(5) -B+C
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Introduction to Logic Propositional Resolution

A saturation algorithm for obtaining MCS (ADVANCED)

Given a set of clauses CS0, you can obtain its maximal set of consequences
by performing the following algorithm:

1 set CS to CS0

2 (exit if inconsistency is detected)
if CS contains an empty clause, then exit reporting CS0 is inconsistent

3 (remove a trivial consequence)
if there are C1,C2 ∈ CS such that C2 is a trivial consequence of C1, then
remove C2 from CS, and repeat step 3

4 (perform a meaningful resolution step)
if there are C1,C2 ∈ CS such that C1 resolved with C2 yields C3 where
C3 ̸≡ true and C3 ̸∈ CS, then add C3 to CS, and continue at step 3

5 (exit when saturated)
as the conditions of both steps 3 and 4 failed, exit with MCS = CS
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Introduction to Logic Propositional Resolution

Finding a single consequence using an indirect proof

For large sets of formulas finding all consequences is not viable
Recall the Inspector Craig puzzle discussed earlier:
(1) +A +B +C. Only A, B, C was involved in the robbery.
(2) -C +A. C never works without A as an accomplice.
(3) -B +A +C. B does not know how to drive.

To prove indirectly that (1)–(3) implies A, add ¬ A to the set of clauses:
(4) -A. . . . and perform resolutions, adding resolvents to the set

(4)/1 rw (1)/1 cl. (4) lit. 1 resolved with cl. (1) lit. 1 ⇒ (5)
(5) +B +C. (5)/1 rw (3)/1 ⇒ (6)
(6) +A +C. (6)/1 rw (4)/1 ⇒ (7)
(7) +C. (7)/1 rw (2)/1 ⇒ (8)
(8) +A. (8)/1 rw (4)/1 ⇒ (9)
(9) □ This denotes an empty disjunction ≡ false

Adding ¬A to (1)–(3) leads to contradiction, so {(1),(2),(3)} implies A
This indirect proof is focused on proving the given statement
Notice that the above proof is quite mechanical:

the first input clause is the result of the previous resolution step
we always resolve on the first literal of the first input clause
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Introduction to Logic Propositional Resolution

Inspector Craig puzzle – further proof attempts (ADVANCED)

(1) +A +B +C.
(2) -C +A.
(3) -B +A +C.
We now try to prove indirectly that ¬C follows from (1)–(3), by adding C:
(4) +C. implied clauses removed: (1), (3)
(5) +A. (4)/1 rw (2)/1 implied clauses removed: (2)
The set {(4),(5)} is saturated, hence {(1)–(3)} does not imply ¬ C
Let’s now try to prove that C follows from (1)–(3), by adding ¬ C:
(6) -C. implied clauses removed: (2)
(7) +A +B. (6)/1 rw (1)/3 implied clauses removed: (1)
(8) -B +A. (6)/1 rw (3)/3 implied clauses removed: (3)
(9) +A. (7)/2 rw (8)/1 implied clauses removed: (7), (8)
The set {(6),(9)} is saturated, hence {(1)–(3)} does not imply C
We conclude that neither C nor its negation can be deduced from (1)–(3)
(However, the two unsuccessful proofs put together show that no matter
whether C is true or not, A has to be true. :-)
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