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Introduction to Logic

@ Introduction to Logic

Course information

@ Course layout

e Introduction to Logic
e Declarative Programming

e Prolog — Programming in Logic
e Constraint Programming
e Semantic Technologies
e Logics for the Semantic Web
@ Requirements
e 2 assignments (150 points each)

e 2 tests (mid-term and final, 200 points each)
e many small exercises + class activity

@ Course webpage: http://cs.bme.hu/~szeredi/ait

Weeks 1-2

Weeks 37
Weeks 8—12

Weeks 13—-14

300 points
400 points total
300 points total

@ Course rules: http://cs.bme.hu/~szeredi/ait/course-rules.pdf

(AIT) Semantic and Declarative Technologies
Introduction to Logic

Foundations of logic — overview

@ Main theme of the course:
e How to use mathematical logic in
e programming
e intelligent web search
@ We start with a brief introduction to Logic
e Propositional Logic:

e Syntax and semantics
e The notion of consequence

2023 Spring Semester 2/28

e The resolution inference algorithm
e Bonus: solving various logic puzzles

e First Order Logic (FOL)
e Syntax and Model oriented semantics

e The notion of consequence for FOL
e The resolution inference algorithm for FOL

Semantic and Declarative Technologies 2023 Spring Semester 4/28



Introduction to Logic Propositional Logic Introduction to Logic Propositional Logic

Contents Atomic and compound propositions

@ Consider the sentence: It is raining and I'm staying at home

@ How many propositions (statements) are there in this sentence?

@ There are three:

two atomic propositions: A ="It is raining”, B ="I'm staying at home”
and the whole sentence is a compound proposition C = A N B

]
e read the symbol / as “and”
e Cis called a conjunction, A and B are conjuncts

@ An atomic proposition is the basic building block of general propositions:

e it can be assigned a truth value
e it cannot be broken down to simpler propositions

@ Truth values: true and false, often represented by integers 1 and 0

@ The term propositional formula (or proposition for short) refers to both
atomic and compound propositions

@ Introduction to Logic
@ Propositional Logic
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Conjunction Disjunction and negation

@ Knowing the truth values of A and B, can you tell the truth value of A A B?

Think of A =“It is raining”, B = “I'm staying at home” @ Another example: /t is not raining or (else) I'm staying at home

@ The two atomic propositions are the same as earlier:

LA [ B [ANB] [A[B]ANB] A ="Itis raining”, B ="I'm staying at home”
false | false | false 0|0 0 e L, .
false | true | Talse 07 0 @ “ltis not“.ra'/n/ng converts to —A, v,\,/here — denotes negation,
true | false | false 1170 0 read as “it is not the case that . ..
true | true true 1] 1 1 @ The whole sentence can be formalised as ~A Vv B

In brief: A A Bis true if and only if (iff) ... both A and B are true @ Read the symbol ' as “or”; AV Biis called a disjunction, A and B are
disjuncts

ive? l.e. A\ B< B A A. Why? L . .
® Isthe /\ operator commutative? |.e a y @ The truth tables for disjunction and negation (with 0—1 values only):

Because0 A1 =110

o Is / associative? l.e. (A1 A Az) A Ag = Ar A (As A Ag). Why? |A[B[AVB]

Because both sides are 1 iff each of Ay, As, Az is 1. 0|0 0
@ n-fold conjunction: C, = Ay A --- A Ap. Whenis C, =17 If all Ajs are 1. (1) 2) 1 (1) 8
@ What value should be assigned to an empty conjunction Cy (C, for n = 0)? T 3

Hint: Describe the relationship between C,_; and C,, use this for n = 1
Cn=Cn_1 N Ay Cy = A, hence Ay = Cy N Ay. This is true iff Cp = 1.
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Introduction to Logic Propositional Logic

Implication

@ Example: Ifitis raining, then drive slower than 100 km/h @

@ | obey this sign provided that /f it is raining, then | drive slowly. .. |

@ This is an implication, formally written as A — B (A implies B)
the premise: A ="It is raining”, conclusion: B =*| drive slowly . ..

@ When it is not raining, does it matter whether | drive slowly?
@ The truth table for implication:

|A|B]A—~B]
0|0 1
0|1 1
110 0
11 1

@ Express implication using disjunction and negation: A —+ B=-AV B
@ A Bevaluatesto0iff A=1,B=0

«O» <«F» Semantic and Declarative Technologies
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Normal forms
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@ A proposition has lots of equivalent formulations:
A—-B=-AvB=-(AN-B)

@ To design an efficient reasoning algorithm, it makes sense to use one of
normal forms (NF), such as:

e DNF (Disjunctive Normal Form) or CNF (Conjunctive NF)
@ Both allow only three operations: /A, v ,and —
@ In both NFs ‘~’ can only be used in front of atomic propositions.
@ A formulais called a literal if it is either A or —A, where A is atomic.

@ A DNF takes the form C; v ... Vv C,, n > 0, where each C; is a
conjunction of literals Liy A ... A Lim,

@ A CNF takes the form Dy A ... A D,, n > 0, where each D; is a
disjunction of literals L1 \V ... V Ly,

@ Transform A & B (exclusive or) to both CNF and DNF formats
@ Notice that the DNF can be easily derived from a truth table

T T T
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9/28 «O0>» <« F» Semantic and Declarative Technologies
Introduction to Logic Propositional Logic

Models and tautologies
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Introduction to Logic Propositional Logic

Equivalence and exclusive or

@ Example 1: | use an umbrella if and only if it is raining

@ This is an equivalence, formally written as A <~ Bor A = B,
A ="luse an umbrella”, B ="It is raining”,

@ Example 2: We either go to movies or have dinner (but not both)

@ This is an exclusive or (XOR), formally written as Axor Bor A & B,
A =“we go to movies”, B ="we have a dinner”

@ The truth tables for equivalence and exclusive or:

[A[B[A=-B] [A[B[A=B]
0|0 1 00 0
011 0 011 1
110 0 110 1
1] 1 1 1 1 0

@ Express equivalence using exclusive or, and the other way round:
(A=B)=-(A@B),(A®B)=-(A=B)
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@ Recall two kinds of algebraic formulas from high school:
x> -3x+2=0
x2—y?=(x—y)(x+y) identity—true for all values of x *)

equation — true for some values of x

@ Consider a propositional formula with n atomic propositions, e.g.
(ANB)—+C) = (A= (B—0)

@ Here n = 3, so there are 2" = 8 valuations for atomic propositions:
(A, B, C) can be (0,0,0);(0,0,1);(0,1,0);...;(1,1,0); (1,1,1)
@ Each such valuation is called a model or a universe

@ A model satisfies a propositional formula, if the formula is true when the
atomic propositions take the 0—1 values specified by the model.
E.g. the model (0, 0, 0) satisfies the above equivalence

@ A formula is called a tautology if all models satisfy the formula
(cf. the algebraic identity (*) being true for all possible values of x)
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Introduction to Logic Propositional Logic

Some important tautologies Contents

@ Show that this formula is a tautology:
(ANB)—C) = (A= (B—0)) (1)
e Let us find all the models in which the left hand side evaluates to O:
There is only one such model (A, B,C) = (1,1,0)
e Let us find all the models in which the right hand side evaluates to 0:
There is only one such model (A, B,C) = (1,1,0)
e Hence the above formula is a tautology

@ Show that the following formulas are tautologies:

@ Introduction to Logic

@ Propositional Resolution

-(unv)y = -Uv-~V 2)
-(Uvv)y = -Unr~V (3)

(2) and (3) are called De Morgan’s laws.
@ Hint: use case-based reasoning for proving formulas (2) and (3):

@ Select an arbitrary atomic proposition in the formula, say U
@ Show that the formula to be proven holds for both U = 0 and U = 1

«O» <« F)» Semantic and Declarative Technologies
Introduction to Logic Propositional Resolution

An automated inference system: resolution
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@ The first order resolution inference algorithm was devised by Alan

Robinson around 1964

@ We now introduce resolution for propositional logic
@ Resolution uses CNF, conjunctive normal form (recall):

e a CNF is a conjunction of clauses: Ch / ... A Cly
e aclause is a disjunction of literals: L1 Vv ... V Lk

o a literal is either A or —A, where A is an atomic proposition

Semantic and Declarative Technologies

2023 Spring Semester
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Introduction to Logic Propositional Resolution

Translating propositions to clausal form

@ Steps needed to transform an arbitrary formula to CNF:
@ replace all connectives by equivalents using only —, A,/
@ move negations inside using De Morgan Laws
© apply distributivity (repeatedly, if needed) to eliminate A sinside V s:
transform U v (V A W) to (U Vv V) A (U V W)
© transform A and Vv operators to sets, elminating duplicates
The result is thus a set of sets, e.g. {{A,B},{B,C}} =(Av B) A (BV C)
(“Outer” set elements are conjuncts, “inner” set elements are disjuncts)

@ Simplified notation (used in first Prolog versions)

e a literal is written as a signed atomic proposition, e.g. -A, +B (for —A, B)
e a clause is written as a sequence of literals followed by a full stop,
e.g. “Av -BVv D writtenas -A -B +D.

@ Example: transform ((A A B) — D) A (C — (A A B)) to to clausal form
The CNF form: (-Av -Bv D) (-CVA)A(-CVB)
The CNF in set notation: {{-A,-B,D},{-C,A},{~C,B}}
The CNF in simplified notation: -A -B +D. -C +A. -C +B.
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Introduction to Logic Propositional Resolution

The resolution inference rule — introduction

+A -B -C.
+A +D +B.
@ Literal # 2 in clause (1) is -B, while literal # 3 in clause (2) is +B.
These literals are opposite, i.e. one is the negation of the other.
@ Given two clauses containing opposite literals, the resolution rule infers a
new clause, called the resolvent, containing the union of all literals of the
two clauses, except the two opposite literals.
@ In the example the resolvent clause is
Note that there is only one +A as A \V A = A.
@ Resolution is sound, i.e. (3) is implied by (1) and (2). This is due to the
resolution principle:

(1)
(@)

@ Consider these two clauses:

+A -C +D.

(3)

(~UVv V)AN(UVv W)= (Vv W)
(i) (i)
@ Proof: Assume the LHS is true, so both (i) and (ii) are true.
o If Uis true V has to be true, for disjunction (i) to be true.
e If Uis false W has to be true, for disjunction (ii) to be true.
In either case the RHS is true.

«O» <«F» Semantic and Declarative Technologies
Introduction to Logic Propositional Resolution

The resolution rule — remarks

(4)
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@ Informally: the resolution rule can be interpreted as viewing the clauses
as arithmetic formulas, to be summed up and removing exactly one pair
of “summands” +X -X

e Example: resolvent(+A-B-C, +B+D) = +A-C+D

o Remark: this analogy does not work, if there is a literal which occurs
in both clauses,
e.g. resolvent(+A-B-C, +B+D+A) = +A-C+D (only one +A is kept)

@ The case of having two or more “summands” with opposite signs also
breaks the analogy
e Here only one pair of such summands is removed
e Example: resolvent,{(+A-B-C, +B+D+C) = +A-C+D+C = 1 (true), or
resolvents3(+A-B-C, +B+D+C) = +A-B+B+D = 1
e Thus resolution does not produce a meaningful clause in this case

Semantic and Declarative Technologies 2023 Spring Semester
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The resolution inference rule — full definition (ADVANCED)

@ Input: two clauses C=L; Ly ... Lp.
D=My Mo ... Mg.
whereL; = +XandM; = -X,orL; = -XandM; = +X.
@ Let C' = C\ {L;}, D' = D\ {M;}, where \ denotes set difference.
(The set difference Sy \ S, is obtained by removing all elements of S, — if
present — from S;)
Thus C’' =1L ... Lj_q Litq ... Lp.
D =M ... Mi—1 Mg ... M.
@ Resolution of C and D yields the clause E = C' U D’ (meaning C’ v D),
called the resolvent;(C, D), or simply resolvent(C, D);
E=Ly ... L1 Ligq ... Lp My ... Mj 4 Mjyq ... Mg.
(with duplicates removed)

@ Note that only a single pair of opposite literals is removed by the
resolution step!
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Example: solving an inspector Craig puzzle using resolution

@ The puzzle below is cited from “What Is The Name Of This Book?” by
Raymond M. Smullyan, chapter “From the cases of Inspector Craig”

@ Puzzles in this chapter involve suspects of a crime, named A, B, etc.
Some of them are guilty, some innocent.

@ Example:
An enormous amount of loot had been stolen from a store. The criminal (or
criminals) took the heist away in a car. Three well-known criminals A, B, C were
brought to Scotland Yard for questioning. The following facts were ascertained:
@ No one other than A, B, C was involved in the robbery.
© C never works without A (and possibly others) as an accomplice.
@ B does not know how to drive.

Is A innocent or guilty?
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Introduction to Logic Propositional Resolution

Inspector Craig puzzle — solution

@ Let’s recall the facts
@ No one other than A, B, C was involved in the robbery.
© C never works without A (and possibly others) as an accomplice.
© B does not know how to drive.

@ Transform each statement into a formula involving the letters A, B, C as
atomic propositions. Proposition A stands for “A is guilty”, etc.
@ Ais guilty or B is guilty or Cis guilty: Av BV C
@ If Cis guilty then A is guilty: C — A
© It cannot be the case that only B is guilty: B — (A Vv C)
@ Transform each propositional formula into conjunctive normal form (CNF),
then show the clauses in simplified form:

Original formula CNF Simplified clausal form

Q@ AvBVC AvBvVC +A +B +C.
QcCc-A -CVA -C +A.
Q@B (AVO) -BVAvVC -B +A +C.

(Note that in general a single formula can give rise to multiple clauses.)

«O» <«F» Semantic and Declarative Technologies
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Removing trivial consequences
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Consider this set of clauses: CS = { -B+C+D, +A+C, —-A-B, +A-B+C }
@ Find a clause in CS that is a consequence of another clause in CS.

@ Hint: of these formulas, which implies which other? UV V, U, V?
(If we know U Vv V is true, can U be false?) Yes, it can.
(If we know U is true, can U v V be false?) No

@ Hence U implies U VvV V, and similarly V implies U v V
@ Viewing clauses as sets, if C C D, then C — D (“subset” — “whole set”)
@ +A+C — +A-B+C, SO +A-B+C is a trivial consequence of +A+C
Trivial consequences
@ Aclause C Vv D (D # empty) is said to be a trivial consequence of C
@ Is it of interest to obtain the set of all consequences of CS?
@ No, we get marred by trivial consequences, e.g. -A-B-C, -A-B+C, ...
@ It makes more sense to construct a maximal set of non-trivial

consequences, i.e. a set MCS which contains all consequences of CS,
except those that are a trivial consequence of a clause already in MCS

@ Removing a trivial consequence is valid because (C » (C vV D)) = C

Semantic and Declarative Technologies 2023 Spring Semester
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Introduction to Logic Propositional Resolution

Inspector Craig puzzle — resolution proof

@ Collect the clauses, give each a reference number and perform a
resolution proof:

(1 +A +B +C. Only A, B, C was involved in the robbery.

(2) -C +A. C never works without A as an accomplice.
(3 -B +A +C. B does not know how to drive.
resolve (1) lit2 with (3) lit 1 resulting in (4)
(4) +A +C. resolve (4)lit2 with (2) lit 1 resulting in (5)
(5) +A.

@ We deduced that A is true, so the solution of the puzzle is: A is guilty

@ Notice that +A occurs in each of the above clauses, hence each of
(1)—(4) follows from (5)

@ This, together with the fact that (5) follows from the input clauses
(1)—(3), means that (5) is equivalent to the set of input clauses

@ Hence the statements of the puzzle impose no restrictions on

propositions B and C
(either can be guilty or innocent — all 4 combinations allowed)
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Maximal set of non-trivial consequences (ADVANCED)

For the mathematically minded, here is a precise definition of the maximal set
of non-trivial consequences
@ For a set of clauses CS, its maximal set of consequences is MCS iff:
e each clause in MCS is a consequence of CS:
foreach C € MCS, CS — C
e there are no trivial consequences in MCS:
for each Cq, Co € MCS, C. is not a trivial consequence of C4
e MCS contains all non-trivial consequences:
for each clause C such that CS — C holds, either C € MCS holds, or
else C is a trivial consequence of a C' € MCS.
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Constructing MCS — continuing the example A saturation algorithm for obtaining MCS (ADVANCED)
@ The set of input clauses: Given a set of clauses CSy, you can obtain its maximal set of consequences
(1) -B+C+D by performing the following algorithm:
Eg Tg @ set CSto CS,
(4) +A-B+C @ (exit if inconsistency is detected)

if CS contains an empty clause, then exit reporting CSy is inconsistent

© (remove a trivial consequence)
if there are Cq, Co € CS such that C; is a trivial consequence of C;, then

@ Remove (4), as it is implied by (2)
@ Resolve (2) with (3) producing a new clause:

(5) -B+C remove C, from CS, and repeat step 3

@ Remove (1), as itis implied by (5) © (perform a meaningful resolution step)

@ As no removal or resolution step can be applied, exit with the following if there are Cy, C, € CS such that C; resolved with C, yields C; where

maximal set of (non-trivial) consequences: Cs # true and Cs; € CS, then add Cs to CS, and continue at step 3
(2) +A+C @ (exit when saturated)
(38) -A-B as the conditions of both steps 3 and 4 failed, exit with MCS = CS
(5) -B+C
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Finding a single consequence using an indirect proof Inspector Craig puzzle — further proof attempts (ADVANCED)

@ For large sets of formulas finding all consequences is not viable

@ Recall the Inspector Craig puzzle discussed earlier: (1) +A +B +C.

(2) -C +A.
(D +A +B +C. Only A, B, C was involved in the robbery. (3) -B +A +C.

(2) -C +A. C never works without A as an accomplice. PR _ _ ; .
3) B o4 C. B does not know how 1o drive. ° \(/Z()a now try to prove indirectly that .C f|c-)”§W|S from (1) (j),(li))/ ac:c;l;ng C:
- . . implied clauses removed: ,

@ To prove indirectly that (1)—(3) implies A, add — A to the set of clauses: (5) :i (@ /1 v (2)/1 imglied clauses removed: (2)
(4) -A. ... and perform resolutions, adding resolvents to the set . .
(4)/1 Tw (1)/1 cl. (&) Iit. 1 resolved with cl. (1) lit. 1 = (5) ® The set {(4).(5)} is saturated, hence {(1)—(3)} does not imply - ¢
(5) +B +C. (5)/1 rw (3)/1 = (6) @ Let’s now try to prove that C follows from (1)-(3), by adding — C:
(6)  +A +C. (6)/1 rw (4)/1 = (7) (6)  -C. implied clauses removed: (2)
(" +C. (/1 rw (2)/1 = (8) <) +A +B. (6)/1 rw (1)/3 implied clauses removed: (1)
(8)  +A. ®/1 rw (/1 = (9 (8)  -B +A. (6)/1 rw (3)/3 implied clauses removed: (3)
(9) | This denotes an empty disjunction = false 9) +A. (7)/2 rw (8)/1 implied clauses removed: (7), (8)

@ Adding —A to (1)—(3) leads to contradiction, so {(1),(2),(3) } implies A
@ This indirect proof is focused on proving the given statement
Notice that the above proof is quite mechanical:
e the first input clause is the result of the previous resolution step
e we always resolve on the first literal of the first input clause
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@ The set {(6),(9)} is saturated, hence {(1)—(3)} does not imply C
@ We conclude that neither C nor its negation can be deduced from (1)—(3)

@ (However, the two unsuccessful proofs put together show that no matter
whether C is true or not, A has to be true. :-)



