Semantic and Declarative Technologies

Péter Szeredi, László Kabódi, Péter Tóth

szeredi@cs.bme.hu
kabodil@gmail.com
peter@toth.dev

Aquincum Institute of Technology

Budapest University of Technology and Economics Department of Computer Science and Information Theory

2023 Spring Semester

Course information

Course layout

 Introduction to Logic 	Weeks 1–2
 Declarative Programming 	
Prolog – Programming in Logic	Weeks 3–7
 Constraint Programming 	Weeks 8–12
 Semantic Technologies 	
 Logics for the Semantic Web 	Weeks 13-14
Requirements	
 2 assignments (150 points each) 	300 points
 2 tests (mid-term and final, 200 points each) 	400 points total
 many small exercises + class activity 	300 points total

• Course webpage: http://cs.bme.hu/~szeredi/ait

• Course rules: http://cs.bme.hu/~szeredi/ait/course-rules.pdf

(AIT)	Semantic and Declarative Technologies	2023 Spring Semester	2/28
	Introduction to Logic		

Foundations of logic – overview

- Main theme of the course:
 - How to use mathematical logic in
 - programming
 - intelligent web search
- We start with a brief introduction to Logic
 - Propositional Logic:
 - Syntax and semantics
 - The notion of consequence
 - The resolution inference algorithm
 - Bonus: solving various logic puzzles
 - First Order Logic (FOL)
 - Syntax and Model oriented semantics
 - The notion of consequence for FOL
 - The resolution inference algorithm for FOL

Part I

Introduction to Logic

Introduction to Logic

<□> <⊡>

Introduction to Logic	Propositional Logic	Introduction to Logic Propositional Logic
Contents	Atomic and com	ipound propositions
 Introduction to Logic Propositional Logic Propositional Resolution 	 Consider the s How many pro There are thre two atomic and the w read the s C is called An atomic prop it can be a it cannot b Truth values: t The term prop 	Sentence: <i>It is raining and I'm staying at home</i> positions (statements) are there in this sentence? e: c propositions: $A = "It is raining"$, $B = "I'm staying at home"$ 'hole sentence is a compound proposition $C = A \land B$ symbol \land as "and" d a conjunction, A and B are conjuncts position is the basic building block of general propositions: assigned a truth value be broken down to simpler propositions true and false, often represented by integers 1 and 0 positional formula (or proposition for short) refers to both

atomic and compound propositions

<□≻ <∂≻	Semantic and Declarative Technologies	2023 Spring Semester	5/28	<□≻ <舂≻	Semantic and Declarative Technologies	2023 Spring Semester	6/28
	Introduction to Logic Propositional Logic				Introduction to Logic Propositional Logic		
Operations				Disius stiese and seas	Al a la		

Conjunction

 Knowing the truth values of *A* and *B*, can you tell the truth value of *A* \wedge *B*? Think of *A* = "It is raining", *B* = "I'm staying at home"

A	В	$A \wedge B$	Α	В	A
false	false	false	0	0	
false	true	false	0	1	
true	false	false	1	0	
true	true	true	1	1	

In brief: $A \land B$ is true if and only if (iff) ... both A and B are true

- Is the ∧ operator commutative? I.e. A ∧ B = B ∧ A. Why? Because 0 ∧ 1 = 1 ∧ 0
- Is \land associative? I.e. $(A_1 \land A_2) \land A_3 \stackrel{?}{=} A_1 \land (A_2 \land A_3)$. Why? Because both sides are 1 iff each of A_1, A_2, A_3 is 1.
- *n*-fold conjunction: $C_n = A_1 \wedge \cdots \wedge A_n$. When is $C_n = 1$? If *all* A_i s are 1.
- What value should be assigned to an empty conjunction C_0 (C_n for n = 0)? Hint: Describe the relationship between C_{n-1} and C_n , use this for n = 1 $C_n = C_{n-1} \wedge A_n$, $C_1 = A_1$, hence $A_1 = C_0 \wedge A_1$. This is true iff $C_0 = 1$.

Disjunction and negation

- Another example: It is not raining or (else) I'm staying at home
- The two atomic propositions are the same as earlier: *A* = "*It is raining*", *B* = "*I'm staying at home*"
- *"It is not raining"* converts to ¬A, where ¬ denotes negation, read as "it is not the case that"
- The whole sentence can be formalised as $\neg A \lor B$
- Read the symbol \lor as "or"; $A \lor B$ is called a disjunction, A and B are disjuncts
- The truth tables for disjunction and negation (with 0-1 values only):

A	В	$A \lor B$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

	A	$\neg A$
Γ	0	1
	1	0

 $\wedge B$

0

0

0

Implication

Introduction to Logic Propositional Logic

Equivalence and exclusive or

- Example: If it is raining, then drive slower than 100 km/h
- I obey this sign provided that If it is raining, then I drive slowly...
- This is an implication, formally written as $A \rightarrow B$ (A implies B) the premise: A = "It is raining", conclusion: B = "I drive slowly"
- When it is not raining, does it matter whether I drive slowly?
- The truth table for implication:

Α	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

- Express implication using disjunction and negation: $A \rightarrow B = \neg A \lor B$
- $A \rightarrow B$ evaluates to 0 iff A = 1, B = 0

- Example 1: I use an umbrella if and only if it is raining
- This is an equivalence, formally written as $A \leftrightarrow B$ or $A \equiv B$, A = "I use an umbrella", B = "It is raining",
- Example 2: We either go to movies or have dinner (but not both)
- This is an exclusive or (XOR), formally written as $A \times ar B$ or $A \oplus B$, A = "we go to movies", B = "we have a dinner"
- The truth tables for equivalence and exclusive or:

				-	
В	$A \equiv B$		Α	В	$A \oplus B$
0	1		0	0	0
1	0		0	1	1
0	0		1	0	1
1	1		1	1	0
	B 0 1 0 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cc} B & A \equiv B \\ \hline 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

• Express equivalence using exclusive or, and the other way round: $(A \equiv B) = \neg (A \oplus B), (A \oplus B) = \neg (A \equiv B)$

<□▶ <⊡►	Semantic and Declarative Technologies	2023 Spring Semester	9/28	<□> <⊡> <⊡>	Semantic and Declarative Technologies	2023 Spring Semester	10/28
	Introduction to Logic Propositional Logic				Introduction to Logic Propositional Logic		

Normal forms

- A proposition has lots of equivalent formulations: $A \to B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$
- To design an efficient reasoning algorithm, it makes sense to use one of normal forms (NF), such as:
 - DNF (Disjunctive Normal Form) or CNF (Conjunctive NF)
- Both allow only three operations: \land , \lor , and \neg
- In both NFs ' \neg ' can only be used in front of atomic propositions.
- A formula is called a literal if it is either A or $\neg A$, where A is atomic.
- A DNF takes the form $C_1 \vee \ldots \vee C_n$, $n \ge 0$, where each C_i is a conjunction of literals $L_{i1} \wedge \ldots \wedge L_{im_i}$
- A CNF takes the form $D_1 \wedge \ldots \wedge D_n$, n > 0, where each D_i is a disjunction of literals $L_{i1} \vee \ldots \vee L_{im_i}$
- Transform $A \oplus B$ (exclusive or) to both CNF and DNF formats
- Notice that the DNF can be easily derived from a truth table

Models and tautologies

• Recall two kinds of algebraic formulas from high school:

$$x^{2} - 3x + 2 = 0$$
 equation – true for *some* values of x

$$x^{2} - y^{2} = (x - y)(x + y)$$
 identity – true for *all* values of x (*)

• Consider a propositional formula with *n* atomic propositions, e.g.

$$((A \land B) \rightarrow C) \equiv (A \rightarrow (B \rightarrow C))$$

- Here n = 3, so there are $2^n = 8$ valuations for atomic propositions: (A, B, C) can be (0, 0, 0); (0, 0, 1); (0, 1, 0); ...; (1, 1, 0); (1, 1, 1)
- Each such valuation is called a model or a universe
- A model satisfies a propositional formula, if the formula is true when the atomic propositions take the 0-1 values specified by the model. E.g. the model (0, 0, 0) satisfies the above equivalence
- A formula is called a tautology if all models satisfy the formula (cf. the algebraic identity (*) being true for all possible values of x)

Introduction to Logic Propositional Logic

Some important tautologies

• Show that this formula is a tautology:

$$((A \land B) \to C) \equiv (A \to (B \to C)) \tag{1}$$

- Let us find all the models in which the left hand side evaluates to 0: There is only one such model (A, B, C) = (1, 1, 0)
- Let us find all the models in which the right hand side evaluates to 0: There is only one such model (A, B, C) = (1, 1, 0)
- Hence the above formula is a tautology
- Show that the following formulas are tautologies:

$$\neg \neg U \equiv U$$

$$\neg (U \land V) \equiv \neg U \lor \neg V$$

$$\neg (U \lor V) \equiv \neg U \land \neg V$$
(2)
(3)

(2) and (3) are called De Morgan's laws.

- Hint: use case-based reasoning for proving formulas (2) and (3):
 - Select an arbitrary atomic proposition in the formula, say U
 - 3 Show that the formula to be proven holds for both U = 0 and U = 1

Introduction to Logic

- Propositional Logic
- Propositional Resolution

◀◻▸ ◀♂►	Semantic and Declarative Technologies Introduction to Logic Propositional Resolution	2023 Spring Semester	13/28	<□≻ ₽	Semantic and Declarative Technologies Introduction to Logic Propositional Resolution	2023 Spring Semester	14/28
An automated infere	ence system: resolution			Translating proposition	ons to clausal form		
 The first order resc Robinson around 1 We now introduce Resolution uses Cl a CNF is a cor a clause is a cor a literal is either 	blution inference algorithm was of 964 resolution for propositional logic NF, conjunctive normal form (reconjunction of clauses: $Cl_1 \land \ldots \land$ lisjunction of literals: $L_1 \lor \ldots \lor$ er A or $\neg A$, where A is an atomic	devised by Alan call): CI_n L_k c proposition		 Steps needed to tra replace all conr move negations apply distributive transform U V (transform ∧ all The result is thus a ("Outer" set element Simplified notation (a literal is writtee. a clause is writtee. a clause is writtee. Example: transform The CNF form: The CNF form: The CNF in set notation (Insform an arbitrary formula to nectives by equivalents using is inside using De Morgan Law vity (repeatedly, if needed) to $(V \land W)$ to $(U \lor V) \land (U \lor W)$ and \lor operators to sets, elmin set of sets, e.g. { $\{A, B\}, \{B, 0\}$ ts are conjuncts, "inner" set effused in first Prolog versions) en as a signed atomic proposi- ten as a sequence of literals for (D written as -A -B +D). $((A \land B) \rightarrow D) \land (C \rightarrow (A \land (\neg A \lor \neg B \lor D)))$ ation: $\{\{\neg A, \neg A\}, \{\neg A, \neg A\}\}$	b CNF: only \neg , \land , \lor vs eliminate \land s inside V) nating duplicates $C\} \equiv (A \lor B) \land (B)$ elements are disjund ition, e.g. $\neg A$, $+B$ (for followed by a full sto B)) to to clausal for $\land (\neg C \lor A) \land (\neg C$ $B, D\}, {\neg C, A}, {\neg C}$ $\neg B + DC + A. \neg C$	 ≥ ∨ s: ≥ ∨ C) > c) > c) > b) > c) >
<□> <∄>	Semantic and Declarative Technologies	2023 Spring Semester	15/28	4 T > 4 A >	Semantic and Declarative Technologies	2023 Spring Semester	16/28

Contents

Introduction to Logic Propositional Resolution

The resolution inference rule – introduction

- Consider these two clauses: +A -B -C. +A +D +B.
- Literal # 2 in clause (1) is -B, while literal # 3 in clause (2) is +B. These literals are *opposite*, i.e. one is the negation of the other.
- Given two clauses containing opposite literals, the resolution rule infers a new clause, called the resolvent, containing the union of all literals of the two clauses, except the two opposite literals.
- In the example the resolvent clause is +A -C +D. (3)Note that there is only one +A as $A \lor A = A$.
- Resolution is sound, i.e. (3) is implied by (1) and (2). This is due to the resolution principle:

$$\underbrace{(\neg U \lor V)}_{(i)} \land \underbrace{(U \lor W)}_{(ii)} \to (V \lor W)$$
(4)

- Proof: Assume the LHS is true, so both (i) and (ii) are true.
 - If U is true V has to be true, for disjunction (i) to be true.
 - If *U* is false *W* has to be true, for disjunction (ii) to be true. In either case the RHS is true.

The resolution inference rule – full definition (ADVANCED)

• Input: two clauses $C = L_1 L_2 \ldots L_n$. $D = M_1 M_2 \ldots M_k$.

where $L_i = +X$ and $M_i = -X$, or $L_i = -X$ and $M_i = +X$.

• Let $C' = C \setminus \{L_i\}, D' = D \setminus \{M_i\}$, where \setminus denotes set difference. (The set difference $S_1 \setminus S_2$ is obtained by removing all elements of S_2 – if present – from S_1)

Thus $C' = L_1 \dots L_{i-1} L_{i+1}$... L_n. $M_{i-1} M_{i+1} \dots M_k$. $D' = M_1 \ldots$

• Resolution of *C* and *D* yields the clause $E = C' \cup D'$ (meaning $C' \vee D'$), called the *resolvent*_{ii}(C, D), or simply *resolvent*(C, D);

 $E = L_1 \ldots L_{i-1} L_{i+1} \ldots L_n M_1 \ldots M_{i-1} M_{i+1} \ldots M_k$ (with duplicates removed)

• Note that only a single pair of opposite literals is removed by the resolution step!

<□≻ <∄≻	Semantic and Declarative Technologies	2023 Spring Semester	17/28	<□≻ <∄≻	Semantic and Declarative Technologies	2023 Spring Semester	18/28
	Introduction to Logic Propositional Resolution				Introduction to Logic Propositional Resolution		
The resolution rule –	remarks			Example: solving an	inspector Craig puzzle i	using resolution	

(1)

(2)

The resolution rule – remarks

- Informally: the resolution rule can be interpreted as viewing the clauses as arithmetic formulas, to be summed up and removing *exactly one* pair of "summands" +X - X
 - Example: *resolvent*(+A-B-C, +B+D) = +A-C+D
 - Remark: this analogy does not work, if there is a literal which occurs in both clauses.

e.g. resolvent(+A-B-C, +B+D+A) = +A-C+D (only one +A is kept)

- The case of having two or more "summands" with opposite signs also breaks the analogy
 - Here only one pair of such summands is removed
 - Example: $resolvent_{21}(+A-B-C, +B+D+C) = +A-C+D+C = 1$ (true), or resolvent₃₃(+A-B-C, +B+D+C) = +A-B+B+D = 1
 - Thus resolution does not produce a meaningful clause in this case

- The puzzle below is cited from "What Is The Name Of This Book?" by Raymond M. Smullyan, chapter "From the cases of Inspector Craig"
- Puzzles in this chapter involve suspects of a crime, named A, B, etc. Some of them are guilty, some innocent.
- Example:

An enormous amount of loot had been stolen from a store. The criminal (or criminals) took the heist away in a car. Three well-known criminals A, B, C were brought to Scotland Yard for questioning. The following facts were ascertained:

- No one other than A, B, C was involved in the robbery.
- 2 C never works without A (and possibly others) as an accomplice.
- B does not know how to drive.
- Is A innocent or guilty?

19/28

Introduction to Logic Propositional Resolution	Introduction to Logic Propositional Resolution				
Inspector Craig puzzle – solution	Inspector Craig puzzle – resolution proof				
 Let's recall the facts No one other than A, B, C was involved in the robbery. C never works without A (and possibly others) as an accomplice. B does not know how to drive. Transform each statement into a formula involving the letters A, B, C as atomic propositions. Proposition A stands for "A is guilty", etc. A is guilty or B is guilty or C is guilty: A ∨ B ∨ C If C is guilty then A is guilty: C → A It cannot be the case that only B is guilty: B → (A ∨ C) Transform each propositional formula into conjunctive normal form (CNF), then show the clauses in simplified form: Original formula CNF Simplified clausal form 	 Collect the clauses, give each a reference number and perform a resolution proof: +A +B +C. Only A, B, C was involved in the robbery. -C +A. C never works without A as an accomplice. -B +A +C. B does not know how to drive. resolve (1) lit 2 with (3) lit 1 resulting in (4) +A +C. resolve (4) lit 2 with (2) lit 1 resulting in (5) +A. We deduced that A is true, so the solution of the puzzle is: A is guilty Notice that +A occurs in each of the above clauses, hence each of (1)-(4) follows from (5) This tegether with the fact that (5) follows from the input clauses. 				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 (1)-(3), means that (5) is equivalent to the set of input clauses Hence the statements of the puzzle impose no restrictions on propositions <i>B</i> and <i>C</i> 				

(Note that in general a single formula can give rise to multiple clauses.)

<□> <⊡>	Semantic and Declarative Technologies	2023 Spring Semester	21/28		Semantic and Declarative Technologies	2023 Spring Semester	22/28
Introduction to Logic Propositional Resolution			Introduction to Logic Propositional Resolution				

Removing trivial consequences

Consider this set of clauses: $CS = \{ -B+C+D, +A+C, -A-B, +A-B+C \}$

- Find a clause in *CS* that is a consequence of another clause in *CS*.
- Hint: of these formulas, which implies which other? U ∨ V, U, V?
 (If we know U ∨ V is true, can U be false?) Yes, it can.
 (If we know U is true, can U ∨ V be false?) No
- Hence *U* implies $U \lor V$, and similarly *V* implies $U \lor V$
- Viewing clauses as sets, if $C \subseteq D$, then $C \rightarrow D$ ("subset" \rightarrow "whole set")
- +A+C \rightarrow +A-B+C, so +A-B+C is a trivial consequence of +A+C

Trivial consequences

<□> <⊡>

- A clause $C \lor D$ ($D \neq$ empty) is said to be a trivial consequence of C
- Is it of interest to obtain the set of all consequences of CS?
- No, we get marred by trivial consequences, e.g. -A-B-C, -A-B+C, \dots
- It makes more sense to construct a maximal set of *non-trivial* consequences, i.e. a set *MCS* which contains all consequences of *CS*, except those that are a trivial consequence of a clause already in *MCS*
- Removing a trivial consequence is valid because $(C \land (C \lor D)) \equiv C$

For the mathematically minded, here is a precise definition of the *maximal set* of non-trivial consequences

(either can be guilty or innocent – all 4 combinations allowed)

Maximal set of non-trivial consequences (ADVANCED)

- For a set of clauses CS, its maximal set of consequences is MCS iff:
 - each clause in MCS is a consequence of CS: for each C ∈ MCS, CS → C
 - there are no trivial consequences in MCS: for each C₁, C₂ ∈ MCS, C₂ is not a trivial consequence of C₁
 - MCS contains all non-trivial consequences: for each clause C such that CS → C holds, either C ∈ MCS holds, or else C is a trivial consequence of a C' ∈ MCS.

Introduction to Logic Propositional Resolution	Introduction to Logic Propositional Resolution				
Constructing MCS – continuing the example	A saturation algorithm for obtaining MCS (ADVANCED)				
 The set of input clauses: (1) -B+C+D (2) +A+C (3) -A-B (4) +A-B+C Remove (4), as it is implied by (2) Resolve (2) with (3) producing a new clause: (5) -B+C Remove (1), as it is implied by (5) As no removal or resolution step can be applied, exit with the following maximal set of (non-trivial) consequences: (2) +A+C (3) -A-B (5) -B+C 	 Given a set of clauses CS₀, you can obtain its maximal set of consequences by performing the following algorithm: set CS to CS₀ (exit if inconsistency is detected) if CS contains an empty clause, then exit reporting CS₀ is inconsistent (remove a trivial consequence) if there are C₁, C₂ ∈ CS such that C₂ is a trivial consequence of C₁, then remove C₂ from CS, and repeat step 3 (perform a meaningful resolution step) if there are C₁, C₂ ∈ CS such that C₁ resolved with C₂ yields C₃ where C₃ ≠ true and C₃ ∉ CS, then add C₃ to CS, and continue at step 3 (exit when saturated) as the conditions of both steps 3 and 4 failed, exit with MCS = CS 				

< □	▶ ◀♬▶	Semantic and Declarative Technologies Introduction to Logic Propositional Resolution	2023 Spring Semester	25/28	< □	▶ ◀♬▶	Semantic and Dec Introduction to Logic	clarative Technologies Propositional Resolution	2023 Spring Semester	26/28
Finding a	ı single co	onsequence using an indire	ect proof		Inspecto	r Craig p	uzzle – further	proof attemp	ts (ADVANCED))
 For la Recal (1) (2) (3) To pro (4) (5) (6) (7) (8) (9) Addin This in Notice th w 	rge sets of f I the Inspec +A +B +C. -C +A. -B +A +C. -B +A +C. -A. +B +C. +A +C. +C. +A +C.	formulas finding all consequence tor Craig puzzle discussed earli Only <i>A</i> , <i>B</i> , <i>C</i> was in <i>C</i> never works with <i>B</i> does not know ho y that (1)–(3) implies A, add ¬ and perform resolutions, addin (4)/1 rw (1)/1 cl. (4) lit. 1 reso (5)/1 rw (3)/1 \Rightarrow (6) (6)/1 rw (4)/1 \Rightarrow (7) (7)/1 rw (2)/1 \Rightarrow (8) (8)/1 rw (4)/1 \Rightarrow (9) This denotes an empty disjunction –(3) leads to contradiction, so { f is focused on proving the given ve proof is quite mechanical: clause is the result of the previous r olve on the first literal of the first inp	es is not viable er: volved in the robbery. but A as an accomplice w to drive. A to the set of clause g resolvents to the set ved with cl. (1) lit. 1 = \equiv false [(1), (2), (3)] implie in statement esolution step put clause	e. es: ≻ (5) s A	(1) (2) (3) • We n (4) (5) • The s • Let's (6) (7) (8) (9) • The s • We c • (How wheth	+A +B +C -C +A. -B +A +C ow try to p +C. +A. Set { $(4), (5)$ now try to -C. +A +B. -B +A. +A. Set { $(6), (9)$ onclude that ever, the two her C is true	rove indirectly that (4)/1 rw (2)/1)} is saturated, he prove that C follow (6)/1 rw (1)/3 (6)/1 rw (3)/3 (7)/2 rw (8)/1)} is saturated, he at neither C nor its vo unsuccessful p e or not, A has to b	t ¬C follows from implied clauses implied clauses ence {(1)-(3)} vs from (1)-(3) implied clauses implied clauses implied clauses ence {(1)-(3)} negation can be proofs put togeth pe true. :-)	n (1)-(3), by addin removed: (1), (3) removed: (2) does not imply ¬ C , by adding ¬ C: removed: (2) removed: (1) removed: (3) does not imply C e deduced from (1) rer show that no ma	ng C: ;)—(3) atter
	▲ @ >	Semantic and Declarative Technologies	2023 Spring Semester	27/28	< □	▶ 4 A	Semantic and Dec	clarative Technologies	2023 Spring Semester	28/28