Semantic and Declarative Technologies

Péter Szeredi, László Kabódi, Péter Tóth

szeredi@cs.bme.hu
kabodil@gmail.com
peter@toth.dev

Aquincum Institute of Technology

Budapest University of Technology and Economics Department of Computer Science and Information Theory

2023 Spring Semester

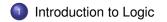
Course information

 Course layout 	
Introduction to Logic	Weeks 1–2
 Declarative Programming 	
Prolog – Programming in American American American Prological American Americ American American Americ American American Ameri	n Logic Weeks 3–7
 Constraint Programming 	Weeks 8–12
 Semantic Technologies 	
 Logics for the Semantic 	Web Weeks 13–14
 Requirements 	
2 assignments (150 points et al.)	ach) 300 points
 2 tests (mid-term and final, 2 	200 points each) 400 points total
 many small exercises + class 	s activity 300 points total
• Course webpage: http://cs.bme.	hu/~szeredi/ait

• Course rules: http://cs.bme.hu/~szeredi/ait/course-rules.pdf

Part I

Introduction to Logic



Foundations of logic - overview

- Main theme of the course:
 - How to use mathematical logic in
 - programming
 - intelligent web search
- We start with a brief introduction to Logic
 - Propositional Logic:
 - Syntax and semantics
 - The notion of consequence
 - The resolution inference algorithm
 - Bonus: solving various logic puzzles
 - First Order Logic (FOL)
 - Syntax and Model oriented semantics
 - The notion of consequence for FOL
 - The resolution inference algorithm for FOL

Propositional Logic

Contents

Introduction to LogicPropositional Logic

Propositional Resolution

5/28

Atomic and compound propositions

- Consider the sentence: It is raining and I'm staying at home
- How many propositions (statements) are there in this sentence?
- There are three:
 - two atomic propositions: *A* = "*It is raining*", *B* = "*I'm staying at home*"
 - and the whole sentence is a compound proposition $C = A \land B$

 - C is called a conjunction, A and B are conjuncts
- An atomic proposition is the basic building block of general propositions:
 - it can be assigned a truth value
 - it cannot be broken down to simpler propositions
- Truth values: true and false, often represented by integers 1 and 0
- The term propositional formula (or proposition for short) refers to both atomic and compound propositions

Conjunction

 Knowing the truth values of *A* and *B*, can you tell the truth value of *A* ∧ *B*? Think of *A* = "It is raining", *B* = "I'm staying at home"

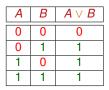
Α	В	$A \wedge B$	
false	false	false	
false	true	false	
true	false	false	
true	true	true	

In brief: $A \land B$ is true if and only if (iff) ... both A and B are true

- Is the ∧ operator commutative? I.e. A ∧ B = B ∧ A. Why? Because 0 ∧ 1 = 1 ∧ 0
- Is \land associative? I.e. $(A_1 \land A_2) \land A_3 \stackrel{?}{=} A_1 \land (A_2 \land A_3)$. Why? Because both sides are 1 iff each of A_1, A_2, A_3 is 1.
- *n*-fold conjunction: $C_n = A_1 \land \cdots \land A_n$. When is $C_n = 1$? If *all* A_i s are 1.
- What value should be assigned to an empty conjunction C_0 (C_n for n = 0)? Hint: Describe the relationship between C_{n-1} and C_n , use this for n = 1 $C_n = C_{n-1} \land A_n$, $C_1 = A_1$, hence $A_1 = C_0 \land A_1$. This is true iff $C_0 = 1$.

Disjunction and negation

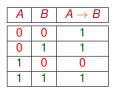
- Another example: It is not raining or (else) I'm staying at home
- The two atomic propositions are the same as earlier: *A* = "It is raining", *B* = "I'm staying at home"
- *"It is not raining"* converts to ¬A, where ¬ denotes negation, read as "it is not the case that ..."
- The whole sentence can be formalised as $\neg A \lor B$
- Read the symbol \lor as "or"; $A \lor B$ is called a disjunction, A and B are disjuncts
- The truth tables for disjunction and negation (with 0-1 values only):



8/28

Implication

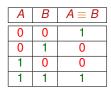
- Example: If it is raining, then drive slower than 100 km/h
- I obey this sign provided that If it is raining, then I drive slowly...
- This is an implication, formally written as A → B (A implies B) the premise: A = "It is raining", conclusion: B = "I drive slowly"
- When it is not raining, does it matter whether I drive slowly?
- The truth table for implication:

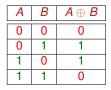


- Express implication using disjunction and negation: $A \rightarrow B = \neg A \lor B$
- $A \rightarrow B$ evaluates to 0 iff A = 1, B = 0

Equivalence and exclusive or

- Example 1: I use an umbrella if and only if it is raining
- This is an equivalence, formally written as A ↔ B or A ≡ B, A = "I use an umbrella", B = "It is raining",
- Example 2: We either go to movies or have dinner (but not both)
- This is an exclusive or (XOR), formally written as $A \times or B$ or $A \oplus B$, A = "we go to movies", B = "we have a dinner"
- The truth tables for equivalence and exclusive or:





• Express equivalence using exclusive or, and the other way round: $(A \equiv B) = \neg (A \oplus B), (A \oplus B) = \neg (A \equiv B)$

Propositional Logic

Normal forms

A proposition has lots of equivalent formulations:

 $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$

- To design an efficient reasoning algorithm, it makes sense to use one of normal forms (NF), such as:
 - DNF (Disjunctive Normal Form) or CNF (Conjunctive NF)
- Both allow only three operations: \land , \lor , and \neg
- In both NFs '¬' can only be used in front of atomic propositions.
- A formula is called a literal if it is either A or $\neg A$, where A is atomic.
- A DNF takes the form $C_1 \vee \ldots \vee C_n$, n > 0, where each C_i is a conjunction of literals $L_{i1} \wedge \ldots \wedge L_{im_i}$
- A CNF takes the form $D_1 \wedge \ldots \wedge D_n$, n > 0, where each D_i is a disjunction of literals $L_{i1} \vee \ldots \vee L_{im_i}$
- Transform $A \oplus B$ (exclusive or) to both CNF and DNF formats
- Notice that the DNF can be easily derived from a truth table

Propositional Logic

Models and tautologies

Recall two kinds of algebraic formulas from high school:

 $x^2 - 3x + 2 = 0$ equation – true for *some* values of x $x^2 - y^2 = (x - y)(x + y)$ identity – true for all values of x

Consider a propositional formula with n atomic propositions, e.g.

 $((A \land B) \rightarrow C) \equiv (A \rightarrow (B \rightarrow C))$

- Here n = 3, so there are $2^n = 8$ valuations for atomic propositions: (A, B, C) can be (0, 0, 0); (0, 0, 1); (0, 1, 0); ...; (1, 1, 0); (1, 1, 1)
- Each such valuation is called a model or a universe
- A model satisfies a propositional formula, if the formula is true when the atomic propositions take the 0-1 values specified by the model. E.g. the model (0, 0, 0) satisfies the above equivalence
- A formula is called a tautology if all models satisfy the formula (cf. the algebraic identity (*) being true for all possible values of x)

(*)

Some important tautologies

• Show that this formula is a tautology:

$$((A \land B) \to C) \equiv (A \to (B \to C)) \tag{1}$$

- Let us find all the models in which the left hand side evaluates to 0: There is only one such model (A, B, C) = (1, 1, 0)
- Let us find all the models in which the right hand side evaluates to 0: There is only one such model (A, B, C) = (1, 1, 0)
- Hence the above formula is a tautology
- Show that the following formulas are tautologies:

$$\neg \neg U \equiv U$$

$$\neg (U \land V) \equiv \neg U \lor \neg V \qquad (2)$$

$$\neg (U \lor V) \equiv \neg U \land \neg V \qquad (3)$$

(2) and (3) are called De Morgan's laws.

- Hint: use case-based reasoning for proving formulas (2) and (3):
 - Select an arbitrary atomic proposition in the formula, say U
 - 3 Show that the formula to be proven holds for both U = 0 and U = 1

Contents

Introduction to Logic

Propositional Logic

Propositional Resolution

An automated inference system: resolution

- The *first order resolution* inference algorithm was devised by Alan Robinson around 1964
- We now introduce resolution for propositional logic
- Resolution uses CNF, *conjunctive normal form* (recall):
 - a CNF is a conjunction of *clauses*: $Cl_1 \land \ldots \land Cl_n$
 - a clause is a disjunction of *literals*: $L_1 \vee \ldots \vee L_k$
 - a literal is either A or $\neg A$, where A is an atomic proposition

Translating propositions to clausal form

- Steps needed to transform an arbitrary formula to CNF:
 - replace all connectives by equivalents using only ¬, ∧, ∨
 - e move negations inside using De Morgan Laws
 - Solution apply distributivity (repeatedly, if needed) to eliminate ∧ s inside ∨ s: transform U ∨ (V ∧ W) to (U ∨ V) ∧ (U ∨ W)
 - Itransform ∧ and ∨ operators to sets, elminating duplicates

The result is thus a set of sets, e.g. $\{\{A, B\}, \{B, C\}\} \equiv (A \lor B) \land (B \lor C)$ ("Outer" set elements are conjuncts, "inner" set elements are disjuncts)

- Simplified notation (used in first Prolog versions)
 - a literal is written as a signed atomic proposition, e.g. -A, +B (for ¬A, B)
 - a clause is written as a sequence of literals followed by a full stop, e.g. $\neg A \lor \neg B \lor D$ written as $\neg A \neg B + D$.
- Example: transform $((A \land B) \rightarrow D) \land (C \rightarrow (A \land B))$ to to clausal form The CNF form: $(\neg A \lor \neg B \lor D) \land (\neg C \lor A) \land (\neg C \lor B)$ The CNF in set notation: $\{\{\neg A, \neg B, D\}, \{\neg C, A\}, \{\neg C, B\}\}$ The CNF in simplified notation: $\neg A \neg B + D$. $\neg C + A$. $\neg C + B$.

The resolution inference rule – introduction

• Consider these two clauses: +A -B -C.

- Literal # 2 in clause (1) is -B, while literal # 3 in clause (2) is +B. These literals are *opposite*, i.e. one is the negation of the other.
- Given two clauses containing opposite literals, the resolution rule infers a new clause, called the resolvent, containing the union of all literals of the two clauses, except the two opposite literals.
- In the example the resolvent clause is +A -C +D.
 Note that there is only one +A as A ∨ A = A.
- Resolution is sound, i.e. (3) is implied by (1) and (2). This is due to the *resolution principle*:

$$\underbrace{(\neg U \lor V)}_{(i)} \land \underbrace{(U \lor W)}_{(ii)} \to (V \lor W)$$
(4)

- Proof: Assume the LHS is true, so both (i) and (ii) are true.
 - If U is true V has to be true, for disjunction (i) to be true.
 - If *U* is false *W* has to be true, for disjunction (ii) to be true.

In either case the RHS is true.

< • • • **•** •

(1)

(2)

(3)

The resolution inference rule – full definition (ADVANCED)

• Input: two clauses
$$C = L_1 \ L_2 \ \dots \ L_n$$
.
 $D = M_1 \ M_2 \ \dots \ M_k$.

where $L_i = +X$ and $M_j = -X$, or $L_i = -X$ and $M_j = +X$.

• Let $C' = C \setminus \{L_i\}, D' = D \setminus \{M_j\}$, where \setminus denotes set difference.

(The set difference $S_1 \setminus S_2$ is obtained by removing all elements of S_2 – if present – from S_1)

Thus
$$C' = L_1 \dots L_{i-1} L_{i+1} \dots L_n$$
.
 $D' = M_1 \dots M_{j-1} M_{j+1} \dots M_k$.

• Resolution of *C* and *D* yields the clause $E = C' \cup D'$ (meaning $C' \vee D'$), called the *resolvent*_{ij}(*C*, *D*), or simply *resolvent*(*C*, *D*);

$$E = L_1 \dots L_{i-1} L_{i+1} \dots L_n M_1 \dots M_{j-1} M_{j+1} \dots M_k$$
.
(with duplicates removed)

• Note that only a single pair of opposite literals is removed by the resolution step!

The resolution rule - remarks

- Informally: the resolution rule can be interpreted as viewing the clauses as arithmetic formulas, to be summed up and removing *exactly one* pair of "summands" +X -X
 - Example: resolvent(+A-B-C, +B+D) = +A-C+D
 - Remark: this analogy does not work, if there is a literal which occurs in both clauses,

e.g. resolvent(+A-B-C, +B+D+A) = +A-C+D (only one +A is kept)

- The case of having two or more "summands" with opposite signs also breaks the analogy
 - Here only one pair of such summands is removed
 - Example: *resolvent*₂₁(+A-B-C, +B+D+C) = +A-C+D+C = 1 (true), or *resolvent*₃₃(+A-B-C, +B+D+C) = +A-B+B+D = 1
 - Thus resolution does not produce a meaningful clause in this case

Example: solving an inspector Craig puzzle using resolution

- The puzzle below is cited from "What Is The Name Of This Book?" by Raymond M. Smullyan, chapter "From the cases of Inspector Craig"
- Puzzles in this chapter involve suspects of a crime, named A, B, etc. Some of them are guilty, some innocent.

• Example:

An enormous amount of loot had been stolen from a store. The criminal (or criminals) took the heist away in a car. Three well-known criminals A, B, C were brought to Scotland Yard for questioning. The following facts were ascertained:

- No one other than A, B, C was involved in the robbery.
- 2 C never works without A (and possibly others) as an accomplice.
- B does not know how to drive.

Is A innocent or guilty?

Inspector Craig puzzle – solution

- Let's recall the facts
 - No one other than A, B, C was involved in the robbery.
 - 2 C never works without A (and possibly others) as an accomplice.
 - B does not know how to drive.
- Transform each statement into a formula involving the letters *A*, *B*, *C* as atomic propositions. Proposition *A* stands for "A is guilty", etc.
 - A is guilty or B is guilty or C is guilty: $A \lor B \lor C$
 - **2** If C is guilty then A is guilty: $C \rightarrow A$
 - It cannot be the case that only B is guilty: $B \rightarrow (A \lor C)$
- Transform each propositional formula into conjunctive normal form (CNF), then show the clauses in simplified form:

	Original formula	CNF	Simplified clausal form		
1	$A \lor B \lor C$	$A \lor B \lor C$	+A +B +C.		
2	$C \rightarrow A$	$\neg C \lor A$	-C +A.		
3	$B ightarrow (A \lor C)$	$\neg B \lor A \lor C$	-B +A +C.		

(Note that in general a single formula can give rise to multiple clauses.)

Inspector Craig puzzle – resolution proof

- Collect the clauses, give each a reference number and perform a resolution proof:
 - +A +B +C.
 Only A, B, C was involved in the robbery.
 -C +A.
 C never works without A as an accomplice.
 -B +A +C.
 B does not know how to drive.

```
resolve (1) lit 2 with (3) lit 1 resulting in (4)
```

```
(4) +A +C. resolve (4) lit 2 with (2) lit 1 resulting in (5)
```

```
(5) +A.
```

- We deduced that A is true, so the solution of the puzzle is: A is guilty
- Notice that +A occurs in each of the above clauses, hence each of (1)-(4) follows from (5)
- This, together with the fact that (5) follows from the input clauses (1)-(3), means that (5) is equivalent to the set of input clauses

Hence the statements of the puzzle impose no restrictions on propositions *B* and *C* (either can be guilty or innocent – all 4 combinations allowed)

Removing trivial consequences

Consider this set of clauses: $CS = \{ -B+C+D, +A+C, -A-B, +A-B+C \}$

- Find a clause in CS that is a consequence of another clause in CS.
- Hint: of these formulas, which implies which other? U v V, U, V?
 (If we know U v V is true, can U be false?) Yes, it can.
 (If we know U is true, can U v V be false?) No
- Hence U implies $U \vee V$, and similarly V implies $U \vee V$
- Viewing clauses as sets, if $C \subseteq D$, then $C \rightarrow D$ ("subset" \rightarrow "whole set")
- +A+C \rightarrow +A-B+C, so +A-B+C is a trivial consequence of +A+C

Trivial consequences

- A clause $C \lor D$ ($D \neq$ empty) is said to be a trivial consequence of C
- Is it of interest to obtain the set of all consequences of CS?
- No, we get marred by trivial consequences, e.g. -A-B-C, -A-B+C, ...
- It makes more sense to construct a maximal set of *non-trivial* consequences, i.e. a set *MCS* which contains all consequences of *CS*, except those that are a trivial consequence of a clause already in *MCS*
- Removing a trivial consequence is valid because $(C \land (C \lor D)) \equiv C$

Maximal set of non-trivial consequences (ADVANCED)

For the mathematically minded, here is a precise definition of the *maximal set* of non-trivial consequences

- For a set of clauses CS, its maximal set of consequences is MCS iff:
 - each clause in MCS is a consequence of CS: for each $C \in MCS$, $CS \rightarrow C$
 - there are no trivial consequences in MCS: for each C₁, C₂ ∈ MCS, C₂ is not a trivial consequence of C₁
 - MCS contains all non-trivial consequences: for each clause C such that CS → C holds, either C ∈ MCS holds, or else C is a trivial consequence of a C' ∈ MCS.

Constructing MCS – continuing the example

• The set of input clauses:

- (1) -B+C+D
 (2) +A+C
 (3) -A-B
 (4) +A-B+C
- Remove (4), as it is implied by (2)
- Resolve (2) with (3) producing a new clause:

(5) -B+C

- Remove (1), as it is implied by (5)
- As no removal or resolution step can be applied, exit with the following maximal set of (non-trivial) consequences:

<□> <⊡>

A saturation algorithm for obtaining MCS (ADVANCED)

Given a set of clauses CS_0 , you can obtain its maximal set of consequences by performing the following algorithm:

- set CS to CS₀
- (exit if inconsistency is detected)
 if CS contains an empty clause, then exit reporting CS₀ is inconsistent
- (remove a trivial consequence) if there are $C_1, C_2 \in CS$ such that C_2 is a trivial consequence of C_1 , then remove C_2 from CS, and repeat step 3
- (perform a meaningful resolution step) if there are $C_1, C_2 \in CS$ such that C_1 resolved with C_2 yields C_3 where $C_3 \neq true$ and $C_3 \notin CS$, then add C_3 to CS, and continue at step 3
- (exit when saturated) as the conditions of both steps 3 and 4 failed, exit with MCS = CS

Finding a single consequence using an indirect proof

- For large sets of formulas finding all consequences is not viable
- Recall the Inspector Craig puzzle discussed earlier:
 - (1) +A +B +C.
 (2) -C +A.
 (3) -B +A +C.
 Only A, B, C was involved in the robbery.
 C never works without A as an accomplice.
 B does not know how to drive.
- To prove indirectly that (1)-(3) implies A, add \neg A to the set of clauses:
 - (4) -A. ... and perform resolutions, adding resolvents to the set (4)/1 rw (1)/1 cl. (4) lit. 1 resolved with cl. (1) lit. 1 \Rightarrow (5)
 - (5) +B +C. (5)/1 rw (3)/1 \Rightarrow (6) (6) +A +C. (6)/1 rw (4)/1 \Rightarrow (7)
 - $(0) + A + U. \quad (0)/1 \text{ rw} (4)/1 \Rightarrow (7)$
 - (7) +C. (7)/1 rw (2)/1 \Rightarrow (8)
 - (8) +A. (8)/1 rw (4)/1 \Rightarrow (9)
 - (9) \Box This denotes an empty disjunction \equiv false
- Adding \neg A to (1)–(3) leads to contradiction, so {(1),(2),(3)} implies A
- This indirect proof is focused on proving the given statement Notice that the above proof is quite mechanical:
 - the first input clause is the result of the previous resolution step
 - we always resolve on the first literal of the first input clause

Inspector Craig puzzle – further proof attempts (ADVANCED)

- (1) +A +B +C.
- (2) -C +A.
- (3) -B +A +C.
- We now try to prove indirectly that $\neg C$ follows from (1)–(3), by adding C:
 - (4) +C. implied clauses removed: (1), (3)
 (5) +A. (4)/1 rw (2)/1 implied clauses removed: (2)
- The set $\{(4), (5)\}$ is saturated, hence $\{(1)-(3)\}$ does not imply $\neg C$
- Let's now try to prove that C follows from (1)-(3), by adding \neg C:

(6)	-C.			implied clauses	removed:	(2)	
(7)	+A +B.	(6)/1 rw (1)/3	implied clauses	removed:	(1)	
(8)	-B +A.	(6)/1 rw (3)/3	implied clauses	removed:	(3)	
(9)	+A.	(7)/2 rw (8)/1	implied clauses	removed:	(7),	(8)

- The set {(6),(9)} is saturated, hence {(1)-(3)} does not imply C
- We conclude that neither C nor its negation can be deduced from (1)-(3)
- (However, the two unsuccessful proofs put together show that no matter whether C is true or not, A has to be true. :-)