Part IV

The Semantic Web

Introduction to Logic

Declarative Programming with Prolog

3 Declarative Programming with Constraints

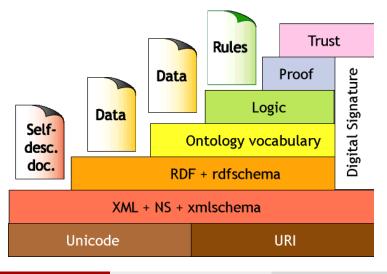
The Semantic Web

Semantic Technologies

- Semantics = meaning
- Semantic Technologies = technologies building on (formalized) meaning
- Declarative Programming as a semantic technology
 - A procedure definition describes its intended meaning
 - e.g. intersect(L1, L2):- member(X, L1), member(X, L2). Lists L1 and L2 intersect if they have a common member X.
 - The execution of a program can be viewed as a process of deduction
- The main goal of the Semantic Web (SW) approach:
 - make the information on the web processable by computers
 - machines should be able to understand the web, not only read it
- Achieving the vision of the Semantic Web
 - Add (computer processable) meta-information to the web
 - Formalize background knowledge build so called ontologies
 - Develop reasoning algorithms and tools
- SW is also used in Knowledge Based Systems (e.g. IBM's Watson)

The vision of the Semantic Web

• The Semantic Web layer cake - Tim Berners-Lee



The Semantic Web

- The goal: making the information on the web processable by computers
- Achieving the vision of the Semantic Web
 - Add meta-information to web pages, e.g.

(AIT hasLocation Budapest)

(AIT hasTrack Track:Foundational-courses)

(Track:Foundational-courses hasCourse Semantic-and-declarative...)

- Formalise background knowledge build so called terminologies
 - hierarchies of notions, e.g.

a $\mathit{University}$ is a (subconcept of) $\mathit{Inst-of-higher-education}$,

- the hasFather relationship is contained in hasParent
- definitions and axioms, e.g.

a Father is a Male Person having at least one child

Develop reasoning algorithms and tools

Main topics

- Description Logic, the maths behind the Semantic Web
- The Web Ontology Language OWL 1 & 2 from the W3C (WWW Consortium)
- A glimpse at reasoning algorithms for Description Logic

Contents

The Semantic Web

An overview of Description Logics and the Semantic Web

- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN an introduction
- The ALCN tableau algorithm for empty TBoxes

First Order Logic (recap)

- Syntax:
 - non-logical ("user-defined") symbols: predicates and functions, including constants (function symbols with 0 arguments)
 - terms (refer to individual elements of the universe, or interpretation),
 e.g. fatherOf(Susan)
 - formulas (that hold or do not hold in a given interpretation), e.g.

 $\varphi = \forall x. (Optimist(fatherOf(x)) \rightarrow Optimist(x))$

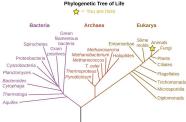
- Semantics:
 - determines if a closed formula φ is true in an interpretation *I*: *I* ⊨ φ (also read as: *I* is a model of φ)
 - an interpretation I consists of a domain ∆ and a mapping from non-logical symbols (e.g. *Optimist*, *fatherOf*, *Susan*) to their meaning
 - semantic consequence: S ⊨ α means: if an interpretation is a model of all formulas in the set S, then it is also a model of α (note that the symbol ⊨ is overloaded)
- Deductive system (also called proof procedure): an algorithm to deduce a consequence α of a set of formulas S: S ⊢ α
 - example: resolution

Soundness, completeness and decidability (recap)

- A deductive system is **sound** if $S \vdash \alpha \Rightarrow S \models \alpha$ (deduces only truths).
- A deductive system is **complete** if $S \models \alpha \Rightarrow S \vdash \alpha$ (deduces all truths).
- Resolution is a sound and complete deductive system for FOL
- Kurt Gödel was first to show such a system: Gödel's completeness theorem: there is a sound and complete deductive system for FOL (⊨≡⊢)
- FOL is not decidable: no decision procedure for the question "does S ⊢ α?" (all proofs will be enumerated but no guarantee of obtaining a proof in bounded time – this is also called semi-decidability)
- Developers of the Semantic Web strive for using decidable languages
 - for a decidable language there is a complete and sound deductive system which is guaranteed to terminate within a time limit, which is a function of the (size of) the input formulas
- Semantic Web languages are based on Description Logics, which are decidable sublanguages of FOL

Ontologies

- Ontology: computer processable description of knowledge
- Early ontologies include classification system (biology, medicine, books)



- Entities in the Web Ontology Language (OWL):
 - objects correspond to real life objects (e.g. people, such as Susan, her parents, etc.)
 - classes describe sets of objects (e.g. optimists)
 - properties (attributes, slots) describe binary relationships (e.g. has parent)

Knowledge Representation

(Color coding: object-individual, class-concept, property-role)

• Natural Language:

- someone having a non-optimist friend is bound to be an optimist.
- Susan has herself as a friend.
- First order Logic:

 - AssFriend(Susan, Susan)
- Description Logics:
 - (∃hasFriend.¬Opt) ⊑ Opt (GCI gen. concept inclusion axiom)
 hasFriend(Susan, Susan) (role assertion)
- Web Ontology Language (Manchester syntax)⁴:
 - (hasFriend some (not Opt)) SubClassOf Opt Those having some friends who are not Opt must be Opt

(GCI – general class inclusion axiom) (object property assertion)

2 hasFriend(Susan,Susan)

⁴protegeproject.github.io/protege/class-expression-syntax

The Semantic Web (Part IV)

Semantic and Declarative Technologies

A sample ontology

- There are "things" that are animals.
- 2 There are animals that are male.
- There are animals that are female.
- There are animals that are humans.
- There are humans who are optimists.
- There are animals that are happy.
- Optimists are always happy.
- There is a relation "has parent".
- There is a relation "has father", which implies "has parent".
- There is a relation "has mother", which implies "has parent".
- The right hand side of "has father" has to be male.
- Provide the state of the sta
- There is a relation "has friend".
- Someone having an optimistic parent is optimistic.
- Someone having a non-optimistic friend is optimistic.
- Ihere are individuals: Susan, her mother Mother and her father Father.
- Ø Mother has Father as her friend.

Try drawing conclusions from these statements.

The sample ontology - saved in Description Logic notation

(Select the "save as" format as "Latex syntax" to obtain DL notation.)

- 2 There are animals that are male.
- There are animals that are female.
- There are animals that are humans.
- There are humans who are optimists
- There are animals that are happy.
- 7 Optimists are always happy.
- Relation "has father" implies "has parent".
- Relation "has mother" implies "has parent". 10
- The RHS (range) of "has father" has to be male.
- The RHS (range) of "has mother" has to be female. $\top \sqsubseteq \forall$ hasMother Female 12
- Someone with an opt. parent is optimistic. $C1 \equiv \exists$ hasParent Opt, $C1 \sqsubseteq Opt$
- Someone with a non-opt. friend is opt. $C2 \equiv \exists$ hasFriend \neg Opt, $C2 \sqsubseteq$ Opt
- There are individuals: Susan, her mother Mother and her father Father. hasFather(Susan, Father), hasMother(Susan, Mother)
- Mother has Father as her friend.

Male \Box Animal

Female \square Animal

Human 🗆 Animal

Opt ⊑ Human

Happy \Box Animal

Opt \square Happy

hasFather L hasParent

hasMother
□ hasParent

 $\top \Box \forall$ hasFather Male

Description Logic (DL) – an overview

- DL, a subset of FOL, is the mathematical background of OWL
 - Signature relation and function symbols allowed in DL
 - role name (R) binary predicate symbol (cf. OWL property)
 - concept name (A) unary predicate symbol (cf. OWL class)
 - individual name (a,...) constant symbol (cf. OWL object)
 - No non-constant function symbols, no preds of arity > 2, no vars
 - Concept names and concept expressions represent sets, e.g.
 <u>hasParent.Optimist</u> the set of those who have an optimist parent
 - Terminological axioms (TBox) stating background knowledge
 - A simple axiom using the DL language ALE: ∃hasParent.Optimist □ Optimist – the set of those who have an optimist parent is a subset of the set of optimists
 - Translation to FOL: $\forall x.(\exists y.(hasP(x, y) \land Opt(y)) \rightarrow Opt(x))$
 - Assertions (ABox) stating facts about individual names
 - Example: Optimist(JACOB), hasParent(JOSEPH, JACOB)
 - A consequence of these TBox and ABox axioms is: Optimist(JOSEPH)
 - The Description Logic used in OWL1 and OWL2 are decidable: there are bounded time algorithms for checking the ⊨ relationship

The Semantic Web (Part IV)

Semantic and Declarative Technologies

Some further examples of terminological axioms

- (1) A Mother is a Person, who is a Female and who has(a)Child. Mother \equiv Person \sqcap Female \sqcap \exists hasChild. \top
- (2) A Tiger is a Mammal.

Tiger ⊑ Mammal

(3) Children of an Optimist Person are Optimists, too.

Optimist ⊓ Person ⊑ ∀hasChild.Optimist

(4) Childless people are Happy.

 \forall hasChild. $\perp \sqcap$ Person \sqsubseteq Happy

- (5) Those in the relation hasChild are also in the relation hasDescendent. hasChild \sqsubseteq hasDescendent
- (6) The relation hasParent is the inverse of the relation hasChild.

hasParent \equiv hasChild⁻

(7) The hasDescendent relationship is transitive.

Trans(hasDescendent)

Description Logics – why the plural?

- These logic variants were progressively developed in the last two decades
- As new constructs were proved to be "safe", i.e. keeping the logic decidable, these were added
- We will start with the very simple language \mathcal{AL} , extend it to \mathcal{ALE} , \mathcal{ALU} and \mathcal{ALC}
- As a side branch we then define \mathcal{ALCN}
- We then go back to ALC and extend it to languages S, SH, SHI and SHIQ (which encompasses ALCN)
- We briefly tackle further extensions \mathcal{O} , (**D**) and \mathcal{R}
- OWL 1, published in 2004, corresponds to SHOIN(D)
- OWL 2, published in 2012, corresponds to SROIQ(D)

Contents

The Semantic Web

An overview of Description Logics and the Semantic Web

• The \mathcal{ALCN} language family

- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN an introduction
- The ALCN tableau algorithm for empty TBoxes

Overview of the \mathcal{ALCN} language

- In \mathcal{ALCN} a statement (axiom) can be
 - a subsumption (inclusion), e.g. Tiger \sqsubseteq Mammal, or
 - an equivalence, e.g. Woman = Female □ Person, Mother = Woman □ ∃hasChild. ⊤
- In general, an \mathcal{ALCN} axiom can take these two forms:
 - subsumption: $C \sqsubseteq D$
 - equivalence: $C \equiv D$, where C and D are concept expressions
- A concept expression C denotes a set of objects (a subset of the Δ universe of the interpretation), and can be:
 - an atomic concept (or concept name), e.g. Tiger, Female, Person
 - a composite concept, e.g. Female □ Person, ∃hasChild. ⊤
 - composite concepts are built from atomic concepts and *atomic roles* (also called role names) using some constructors (e.g. □, ⊔, ∃, etc.)
- We first introduce language \mathcal{AL} , that allows a minimal set of constructors (all examples on this page are valid \mathcal{AL} concept expressions)
- Next, we discuss new constructors named $\mathcal{U},\,\mathcal{E},\,\mathcal{C},\,\mathcal{N}$

The syntax of the \mathcal{AL} language

Language \mathcal{AL} (Attributive Language) allows the following concept expressions, also called concepts, for short:

A is an atomic concept, C, D are arbitrary (possibly composite) concepts R is an atomic role

DL conc.	OWL class	Name	Informal definition	
A	A (class name)	atomic concept	those in A	
Т	owl:Thing	top	the set of all objects	
	owl:Nothing	bottom	the empty set	
$\neg A$	not A	atomic negation	those not in A	
$C \sqcap D$	C and D	intersection	those in both C and D	
∀R.C	R only C	value restriction	those whose all R s belong to C	
∃ R .⊤	R some owl:Thing	limited exist. restr.	those who have at least one R	

Examples of AL concept expressions:

Person □ ¬Female	Person and not Female
Person ⊓ ∀hasChild.Female	Person and (hasChild only Female)
Person ⊓ ∃hasChild.⊤	Person and (hasChild some owl:Thing)

The Semantic Web (Part IV)

Semantic and Declarative Technologies

The semantics of the \mathcal{AL} language

- An interpretation \mathcal{I} is a mapping:
 - $\Delta^{\mathcal{I}} = \Delta$ is the universe, the **nonempty** set of all individuals/objects
 - for each concept/class name $A, A^{\mathcal{I}}$ is a (possibly empty) subset of Δ
 - for each role/property name $R, R^{\mathcal{I}} \subseteq \Delta \times \Delta$ is a bin. relation on Δ
- The semantics of \mathcal{AL} extends \mathcal{I} to composite concept expressions, i.e. describes how to "calculate" the meaning of arbitrary concept exprs

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg A)^{\mathcal{I}} &=& \Delta \setminus A^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta | \forall b. (\langle a, b \rangle \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}})\} \\ (\exists R.\top)^{\mathcal{I}} &=& \{a \in \Delta | \exists b. \langle a, b \rangle \in R^{\mathcal{I}}\} \end{array}$$

• Finally the semantics of axioms maps them to truth values:

$$\begin{aligned} \mathcal{I} &\models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \\ \mathcal{I} &\models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}} \end{aligned}$$

The \mathcal{ALCN} language family: extensions $\mathcal{U},\,\mathcal{E},\,\mathcal{C},\,\mathcal{N}$

Further concept constructors, OWL equivalents shown in [square brackets]:

- Union: $C \sqcup D$, [C or D] those in either C or D $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- Full existential restriction: ∃R.C, [R some C]
 those who have at least one R belonging to C

$$\exists R.C)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} | \exists b. \langle a, b \rangle \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}} \}$$
(*E*)

- (Full) negation: $\neg C$, [not C] those who do not belong to C $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
- Number restrictions (unqualified): $(\ge nR)$, $[R \min n \text{ owl:Thing}]$ and $(\le nR)$, $[R \max n \text{ owl:Thing}]$
 - those who have at least *n R*-s, or have at most *n R*-s

$$(\geq n R)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \right\} \mid \geq n \right\}$$

$$(\leq n R)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \right\} \mid \leq n \right\}$$
$$(\mathcal{N})$$

Note that qualified number restrictions, such as $(\ge n R.C)$ (e.g., those having at least 3 blue-eyed children) are not covered by this extension E_n : Person \Box ((< 1 has Ch) \sqcup (> 3 has Ch)) \Box =has Ch Fomale

• E.g.: Person \sqcap ((\leq 1 hasCh) \sqcup (\geq 3 hasCh)) \sqcap \exists hasCh.Female

Person and (hasCh max 1 or hasCh min 3) and (hasCh some Female)

The Semantic Web (Part IV)

325/372

 (\mathcal{U})

 (\mathcal{C})

Rewriting \mathcal{ALCN} to first order logic

- Concept expressions map to predicates with one argument, e.g. Tiger \implies Tiger(x) Person \implies Person(x) Mammal \implies Mammal(x) Female \implies Female(x)
- Simple connectives ⊓, ⊔, ¬ map to boolean operations ∧, ∨, ¬, e.g. Person ⊓ Female ⇒ Person(x) ∧ Female(x) Person ⊔ ¬Mammal ⇒ Person(x) ∨ ¬Mammal(x)
- An axiom $C \sqsubseteq D$ can be rewritten as $\forall x.(C(x) \rightarrow D(x))$, e.g. Tiger \sqsubseteq Mammal $\Longrightarrow \forall x.(Tiger(x) \rightarrow Mammal(x))$
- An axiom $C \equiv D$ can be rewritten as $\forall x.(C(x) \leftrightarrow D(x))$, e.g. Woman \equiv Person \sqcap Female $\implies \forall x.(Woman(x) \leftrightarrow Person(x) \land Female(x))$
- Concept constructors involving a role name can be rewritten to a quantified formula.

Rewriting \mathcal{ALCN} to first order logic, example

- Consider $C = \text{Person} \sqcap ((\leqslant 1 \text{ hasCh}) \sqcup (\geqslant 3 \text{ hasCh})) \sqcap \exists \text{hasCh}.\text{Female}$
- Let's outline a predicate C(x) which is true when x belongs to concept C: $C(x) \leftrightarrow Person(x) \land$

(hasAtMost1Child(x))hasAtLeast3Children(x)) hasFemaleChild(x)

- Class practice:
 - Define the FOL predicates *hasAtMost1Child(x)*, *hasAtLeast3Children(x)*, *hasFemaleChild(x)*
 - Additionally, define the following FOL predicates:
 - hasOnlyFemaleChildren(x), corresponding to the concept ∀hasCh.Female
 - hasAtMost2Children(x), corresponding to the concept
 (≤ 2 hasCh)

 \vee

Rewriting \mathcal{ALCN} to first order logic, solutions

- ∃hasCh.Female hasFemaleChild(x) ↔ ∃y.(hasCh(x, y) ∧ Female(y))
- ∀hasCh.Female hasOnlyFemaleChildren(x) ↔ ∀y.(hasCh(x, y) → Female(y))
- (\leq 1 hasCh) hasAtMost1Child(x) $\leftrightarrow \forall y, z.(hasCh(x, y) \land hasCh(x, z) \rightarrow y = z)$
- (\geq 3 hasCh) hasAtLeast3Children(x) \leftrightarrow $\exists y, z, w.(hasCh(x, y) \land hasCh(x, z) \land hasCh(x, w) \land y \neq z \land y \neq w \land z \neq w)$
- (\leq 2 hasCh) hasAtMost2Children(x) \leftrightarrow $\forall y, z, w.(hasCh(x, y) \land hasCh(x, z) \land hasCh(x, w) \rightarrow (y = z \lor y = w \lor z = w))$

General rewrite rules $\mathcal{ALCN} \rightarrow \text{FOL}$

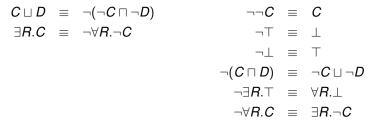
Each concept expression can be mapped to a FOL formula:

- Each concept expression C is mapped to a formula Φ_C(x) (expressing that x belongs to C).
- Atomic concepts (*A*) and roles (*R*) are mapped to unary and binary predicates *A*(*x*), *R*(*x*, *y*).
- \Box , \sqcup , and \neg are transformed to their counterpart in FOL (\land , \lor , \neg), e.g. • $\Phi_{C \sqcap D}(x) = \Phi_{C}(x) \land \Phi_{D}(x)$
- Mapping further concept constructors:

$$\begin{array}{lll} \Phi_{\exists R.C}(x) &=& \exists y. \left(R(x,y) \land \Phi_{C}(y)\right) \\ \Phi_{\forall R.C}(x) &=& \forall y. \left(R(x,y) \rightarrow \Phi_{C}(y)\right) \\ \Phi_{\geqslant nR}(x) &=& \exists y_{1}, \ldots, y_{n}. \left(R(x,y_{1}) \land \cdots \land R(x,y_{n}) \land \bigwedge_{i < j} y_{i} \neq y_{j}\right) \\ \Phi_{\leqslant nR}(x) &=& \forall y_{1}, \ldots, y_{n+1}. \left(R(x,y_{1}) \land \cdots \land R(x,y_{n+1}) \rightarrow \bigvee_{i < j} y_{i} = y_{j}\right) \end{array}$$

Equivalent languages in the \mathcal{ALCN} family

- Language *AL* can be extended by arbitrarily choosing whether to add each of *UECN*, resulting in *AL*[*U*][*E*][*C*][*N*].
 Do these 2⁴ = 16 languages have different expressive power?
 Two concept expressions are said to be equivalent, if they have the same meaning, in all interpretations.
 Languages *L*₁ and *L*₂ have the same expressive power (*L*₁ ^e/₌ *L*₂), if any
 - expression of \mathcal{L}_1 can be mapped into an equivalent expression of \mathcal{L}_2 , and vice versa.
- As a preparation for discussing the above let us show that these axioms hold in all models, for arbitrary concepts *C* and *D* and role *R*:



Equivalent languages in the \mathcal{ALCN} family

Let us show that \mathcal{ALUE} and \mathcal{ALC} are equivalent:

- As $C \sqcup D \equiv \neg(\neg C \sqcap \neg D)$ and $\exists R.C \equiv \neg \forall R.\neg C$, union and full existential restriction can be eliminated by using (full) negation. That is, to each \mathcal{ALUE} concept expression there exists an equivalent \mathcal{ALC} expression.
- The other way, each *ALC* concept can be transformed to an equivalent *ALUE* expression, by moving negation inwards, until before atomic concepts, and removing double negation; using the axioms from the right hand column on the previous slide
- Thus \mathcal{ALUE} and \mathcal{ALC} have the same expressive power, and so $\mathcal{ALC}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCU}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALUE}(\mathcal{N})$.

Further remarks:

- As \mathcal{U} and \mathcal{E} is subsumed by \mathcal{C} , we will use \mathcal{ALC} to denote the language allowing \mathcal{U}, \mathcal{E} and \mathcal{C}
- It can be shown that any two of *AL*, *ALU*, *ALE*, *ALC*, *ALN*, *ALUN*, *ALEN*, *ALCN* have different expressive power

Contents

The Semantic Web

- An overview of Description Logics and the Semantic Web
- The ALCN language family

TBox reasoning

- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN an introduction
- The ALCN tableau algorithm for empty TBoxes

A special case of ontology: definitional TBox

• T_{fam} : a sample definitional TBox for family relationships

Woman ≡ Person ⊓		Person 🗆 Female
Man	\equiv	Person □ ¬Woman
Mother	\equiv	Woman ⊓ ∃hasChild.Person
Father	\equiv	Man ⊓ ∃hasChild.Person
Parent	\equiv	Father U Mother
Grandmother	\equiv	Woman □ ∃hasChild.Parent

- A definitional TBox consists of equivalence axioms only, the left hand sides being distinct concept names (atomic concepts)
- The concepts on the left hand sides are called name symbols
- The remaining atomic concepts are called base symbols, e.g. in our example the two base symbols are Person and Female.
- In a definitional TBox the meanings of name symbols can be obtained by evaluating the right hand side of their definition

Interpretations and semantic consequence

Recall the definition of assigning a truth value to TBox axioms in an interpretation \mathcal{I} :

 $\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \\ \mathcal{I} \models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}}$

Based on this we introduce the notion of "semantic consequence" exactly in the same way as for FOL

- - $\mathcal{I} \models \mathcal{T}$ (\mathcal{I} satisfies \mathcal{T}, \mathcal{I} is a model of \mathcal{T}) iff for each $\alpha \in \mathcal{T}, \mathcal{I} \models \alpha$, i.e. \mathcal{I} is a model of α
 - We now overload even further the " \models " symbol:
 - $\mathcal{T} \models \alpha$ (read axiom α is a semantic consequence of the TBox \mathcal{T}) iff
 - all models of ${\cal T}$ are also models of $\alpha,$ i.e.
 - for all interpretations \mathcal{I} , if $\mathcal{I} \models \mathcal{T}$ holds, then $\mathcal{I} \models \alpha$ also holds

TBox reasoning tasks

Reasoning tasks on TBoxes only (i.e. no ABoxes involved)

- A base assumption: the TBox is **consistent** (does not contain a contradiction), i.e. it has a model
- **Subsumption**: concept *C* is subsumed by concept *D* wrt. a TBox \mathcal{T} , iff $\mathcal{T} \models (C \sqsubseteq D)$, i.e. $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds in all \mathcal{I} models of $\mathcal{T} (C \sqsubseteq_{\mathcal{T}} D)$ e.g. $\mathcal{T}_{fam} \models (Grandmother \sqsubseteq Parent)$ (recall that \mathcal{T}_{fam} is the family TBox)
- **Equivalence**: concepts *C* and *D* are equivalent wrt. a TBox \mathcal{T} , iff $\mathcal{T} \models (C \equiv D)$, i.e. $C^{\mathcal{I}} = D^{\mathcal{I}}$ holds in all \mathcal{I} models of $\mathcal{T} (C \equiv_{\mathcal{T}} D)$. e.g. $\mathcal{T}_{fam} \models (Parent \equiv Person \sqcap \exists hasChild.Person)$
- **Disjointness**: concepts *C* and *D* are disjoint wrt. a TBox \mathcal{T} , iff $\mathcal{T} \models (C \sqcap D \equiv \bot)$, i.e. $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ holds in all \mathcal{I} models of \mathcal{T} . e.g. $\mathcal{T}_{fam} \models (Woman \sqcap Man \equiv \bot)$
- Note that all these tasks involve two concepts, C and D

Reducing reasoning tasks to testing satisfiability

- We now introduce a simpler, but somewhat artificial reasoning task: checking the satisfiability of a concept
- Satisfiability: a concept C is satisfiable wrt. TBox T, iff there is a model I of T such that C^I is non-empty (hence C is non-satisfiable wrt. T iff in all I models of T C^I is empty)
- We will reduce each of the earlier tasks to checking non-satisfiability
- E.g. to prove: Woman ⊑ Person, let's construct a concept C that contains all counter-examples to this statement: C = Woman □ ¬Person
- If we can prove that *C* has to be empty, i.e. there are no counter-examples, then we have proven the subsumption
- Assume we have a method for checking satisfiability. Other tasks can be reduced to this method (usable in *ALC* and above):
 - *C* is subsumed by $D \iff C \sqcap \neg D$ is not satisfiable
 - *C* and *D* are equivalent $\iff (C \sqcap \neg D) \sqcup (D \sqcap \neg C)$ is not satisfiable
 - *C* and *D* are disjoint $\iff C \sqcap D$ is not satisfiable
- In simpler languages, not supporting full negation, such as ALN, all reasoning tasks can be reduced to subsumption

The Semantic Web (Part IV)

Semantic and Declarative Technologies

Contents

The Semantic Web

- An overview of Description Logics and the Semantic Web
- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN an introduction
- The ALCN tableau algorithm for empty TBoxes

The SHIQ Description Logic language – an overview

Expanding the abbreviation SHIQ

- $S \equiv ALC_{R^+}$ (language ALC extended with transitive roles), i.e. one can state that certain roles (e.g. hasAncestor) are transitive.
- *H* = role hierarchies. Adds statements of the form *R* ⊆ *S*,
 e.g. if a pair of objects belongs to the hasFriend relationship, then it must belong to the knows relationship too: hasFriend ⊑ knows (could be stated in English as: *everyone knows their friends*)
- *I* ≡ inverse roles: allows using role expressions *R*[−] to denote the inverse of role *R*, e.g. hasParent ≡ hasChild[−]
- Q = qualified number restrictions (a generalisation of N): allows the use of concept expressions (≤ nR.C) and (≥ nR.C) e.g. those who have at least 3 tall children : (≥ 3 hasChild.Tall)

SHIQ language extensions – the details

• Language $S \equiv ALC_{R^+}$, i.e, ALC plus transitivity (cf. the index $_{R^+}$)

- Concept axioms and concept expressions same as in ALC
- An additional axiom type: **Trans**(*R*) declares role *R* to be transitive
- Extension H introducing role hierarchies
 - Adds role axioms of the form $R \sqsubseteq S$ and $R \equiv S$ ($R \equiv S$ can be eliminated, replacing it by $R \sqsubset S$ and $S \sqsubset R$)
 - $(n \equiv 0 \text{ can be emininated, replacing it by <math>n \equiv 0 \text{ and } 0 \equiv n)$
 - In \mathcal{SH} it is possible describe a weak form of transitive closure:

Trans(hasDescendent)

hasChild L hasDescendent

- This means that hasDescendent is a transitive role which includes hasChild
- What we cannot express in *SH* is that hasDescendent is the smallest such role.

(This property cannot be described in FOL either.)

SHIQ language extensions – the details (2)

Extension \mathcal{I} – adding inverse roles

- Our first role constructor is -: *R*⁻ is the inverse of role *R*
- Example: consider role axiom hasChild⁻ \equiv hasParent and:

A consequence of the above axioms: MerryChild \Box Happy

• Multiple inverses can be eliminated: $(R^-)^- \equiv R, ((R^-)^-)^- \equiv R^- \dots$

SHIQ language extensions – the details (3)

• Extension Q – qualified number restrictions – generalizing extension N:

- (≤ *nR*.*C*) the set of those who have at most *n R*-related individuals belonging to *C*, e.g.
 - $(\leq 2hasChild.Female)$ those with at most 2 daughters
- $(\ge nR.C)$ those with at least n R-related individuals belonging to C
- Important: roles appearing in number restrictions have to be simple. (This is because otherwise the decidability of the language would be lost.)
- A role is simple if it is not transitive and does not have a transitive sub-role either
 - Given Trans(hasDesc), hasDesc is not simple.
 - If we add further role axioms: hasAnc = hasDesc⁻, hasAnc ⊑ hasBloodRelation, then hasBloodRelation is not simple
 - hasAnc is transitive because its inverse hasDesc is such
 - hasBloodRelation has the transitive hasAnc as its sub-role

\mathcal{SHIQ} syntax summary

Notation

С

- A atomic concept, C, C_i concept expressions
- R_A atomic role, R, R_i role expressions,
 - R_S simple role expression, with no transitive sub-role
- The syntax of concept expressions

\rightarrow	Α	atomic concept	(\mathcal{AL})
	T	top – universal concept	(\mathcal{AL})
	_	bottom – empty concept	(\mathcal{AL})
	$\neg C$	negation	(\mathcal{C})
	$C_1 \sqcap C_2$	intersection	(\mathcal{AL})
	$C_1 \sqcup C_2$	union	(U)
	∀ <i>R</i> .C	value restriction	$(\hat{\mathcal{AL}})$
	∃ <i>R</i> . <i>C</i>	existential restriction	(\mathcal{E})
	$ (\geq n R_S.C)$	qualified number restriction	(\mathcal{Q})
		$(R_{\rm S}: simple role)$	
	$ (\leqslant n R_S.C)$	qualified number restriction	(\mathcal{Q})

SHIQ syntax summary (2)

The syntax of role expressions

R ightarrow	R_A	atomic role	(\mathcal{AL})
	R^{-}	inverse role	(\mathcal{I})

The syntax of terminological axioms

$$egin{array}{ll} T
ightarrow & C_1 \equiv C_2 \ & \mid & C_1 \sqsubseteq C_2 \ & \mid & R_1 \equiv R_2 \ & \mid & R_1 \sqsubseteq R_2 \ & \mid & R_1 \sqsubseteq R_2 \ & \mid & \mathbf{Trans}(R) \end{array}$$

concept equivalence axiom concept subsumption axiom role equivalence axiom role subsumption axiom transitivity axiom

 (\mathcal{AL})

AL)

 (\mathcal{H})

 (\mathcal{H})

 (\mathcal{R}^+)

\mathcal{SHIQ} semantics

• The semantics of concept expressions

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C_1 \sqcap C_2)^{\mathcal{I}} &=& C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}} \\ (C_1 \sqcup C_2)^{\mathcal{I}} &=& C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & \forall b. \langle a, b \rangle \in R^{\mathcal{I}} \rightarrow b \in C^{\mathcal{I}} \right\} \\ (\exists R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & \exists b. \langle a, b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \\ (\geq n R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \mid \geq n \right\} \\ (\leqslant n R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \mid \geq n \right\} \end{array}$$

• The semantics of role expressions

$$(\boldsymbol{R}^{-})^{\mathcal{I}} \hspace{.1in} = \hspace{.1in} \left\{ \langle \, \boldsymbol{b}, \boldsymbol{a} \,
angle \in \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}} \mid \langle \, \boldsymbol{a}, \boldsymbol{b} \,
angle \in \boldsymbol{R}^{\mathcal{I}}
ight\}$$

SHIQ semantics (2)

• The semantics of terminological axioms

• Read $\mathcal{I} \models T$ as: " \mathcal{I} satisfies axiom T" or as " \mathcal{I} is a model of T"

Negation normal form (NNF)

- Various normal forms are used in reasoning algorithms
- The tableau algorithms use NNF: only atomic negation allowed
- To obtain NNF, apply the following rules to subterms repeatedly while a subterm matching a left hand side can be found:

$$\neg \neg C \rightsquigarrow C$$

$$\neg (C \sqcap D) \rightsquigarrow \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \rightsquigarrow \neg C \sqcap \neg D$$

$$\neg (\exists R.C) \rightsquigarrow \forall R.(\neg C)$$

$$\neg (\forall R.C) \rightsquigarrow \exists R.(\neg C)$$

$$\neg (\leqslant nR.C) \rightsquigarrow (\geqslant kR.C) \text{ where } k = n + 1$$

$$\neg (\geqslant 1R.C) \rightsquigarrow \forall R.(\neg C)$$

$$\neg (\geqslant nR.C) \rightsquigarrow (\leqslant kR.C) \text{ if } n > 1, \text{ where } k = n - 1$$

Going beyond \mathcal{SHIQ}

- Extension O introduces nominals, i.e. concepts which can only have a single element. Example: {EUROPE} is a concept whose interpretation must contain a single element
 FullyEuropean ≡ ∀hasSite.∀hasLocation.{EUROPE}
- Extension (**D**): concrete domains, e.g. integers, strings etc, whose interpretation is fixed, cf. data properties in OWL
- The Web Ontology Language OWL 1 implements SHOIN(D)
- OWL 2 implements SROIQ(D)
- The main novelty in R wrt. H is the possibility to use role composition (○): hasParent ○ hasBrother ⊑ hasUncle i.e. one's parent's brother is one's uncle
- To ensure decidability, the use of role composition is seriously restricted (e.g. it is not allowed to have ≡ instead of ⊑ in the above example)

Contents

The Semantic Web

- An overview of Description Logics and the Semantic Web
- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN an introduction
- The ALCN tableau algorithm for empty TBoxes

The notion of ABox

• The ABox contains assertions about individuals, referred to by individual names *a*, *b*, *c* etc.

Convention: concrete individual names are written in ALL_CAPITALS

- concept assertions: C(a), e.g. Father(ALEX), $(\exists hasJob. \top)(BOB)$
- role assertions: *R*(*a*, *b*), e.g. hasChild(ALEX, BOB).
- Individual names correspond to constant symbols of first order logic
- The interpretation function has to be extended:
 - to each individual name a, $\mathcal I$ assigns $a^{\mathcal I} \in \Delta^{\mathcal I}$
- The semantics of ABox assertions is straightforward:
 - \mathcal{I} satisfies a concept assertion C(a) ($\mathcal{I} \models C(a)$), iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$,
 - \mathcal{I} satisfies a role assertion R(a, b) ($\mathcal{I} \models R(a, b)$), iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$,
 - *I* satisfies an ABox *A* (*I* ⊨ *A*) iff *I* satisfies all assertions in *A*,
 i.e. for all α ∈ *A*, *I* ⊨ α holds

Reasoning on ABoxes

- ABox \mathcal{A} is consistent wrt. TBox \mathcal{T} iff there is a model \mathcal{I} that satisfies both \mathcal{A} and $\mathcal{T} (\mathcal{I} \models \mathcal{A} \text{ and } \mathcal{I} \models \mathcal{T})$
 - Is the ABox {Mother(S), Father(S)} consistent wrt. an empty TBox? And wrt. the family TBox?
- Assertion α is a consequence of the ABox A wrt. TBox T (A ⊨_T α) iff
 I ⊨ α holds for any interpretation I for which both I ⊨ A and I ⊨ T hold
- Example: let T refer to the family TBox, and A to the ABox below: hasChild(SAM, SUE) Person(SAM) Person(SUE) Person(ANN) hasChild(SUE, ANN) Female(SUE) Female(ANN)

Which of the assertions below is a consequence of $\mathcal A$ wrt. $\mathcal T?$

- Mother(SUE)
- Mother(SAM)
- Mother(SAM)
- Father(SAM)
- (Mother⊔Father)(SAM)
- (\leq 1 hasChild)(SAM)

ABoxes and databases

- An ABox may seem similar to a relational database, but
 - Querying a database uses the closed world assumption (CWA): is the query true in the world (interpretation) where the given and only given facts hold?
 - Contrastingly, ABox reasoning uses logical consequence, also called open world assumption (OWA): is it the case that the query holds in all interpretations satisfying the given facts
- At first one may think that with CWA one can always get more deduction possibilities
- However, case-based reasoning in OWA can lead to deductions not possible with CWA (e.g. Susan being optimistic)

Some important ABox reasoning tasks

• Instance check: Decide if assertion α is a consequence of ABox \mathcal{A} wrt. \mathcal{T} . Example: Check if Mother (SUE) holds wrt, the example ABox \mathcal{A} (on the previous

Check if Mother(SUE) holds wrt. the example ABox A (on the previous but one slide) and the family TBox.

Instance retrieval:

Given a concept expression *C* find the set of all individual names *x* such that $A \models_{\mathcal{T}} C(x)$

Example: Find all individual names known to belong to the concept Mother

The optimists example as an ABox reasoning task

- Our earlier example of optimists:
 - (1) If someone has an optimistic parent, then she is optimistic herself.
 - If someone has a non-optimistic friend, then she is optimistic. (2)
 - (3) Susan's maternal grandfather has her maternal grandmother as a friend.
- Consider the following TBox T: ∃hP.Opt ⊂ Opt Ξ

- Consider the following ABox A, representing (3): hP(S, SM)hP(SM, SMM) hP(SM, SMF) hF(SMF, SMM)
- An instance retrieval task: find the set of all individual names x such that $\mathcal{A} \models_{\mathcal{T}} \mathsf{Opt}(x)$

Another classical example requiring case analysis

• Some facts about the Oedipus family (ABox A_{OE}):

hasChild(IOCASTE,OEDIPUS) hasChild(IOCASTE,POLYNEIKES) hasChild(OEDIPUS,POLYNEIKES) hasChild(POLYNEIKES,THERSANDROS)

Patricide (OEDIPUS)

```
(¬Patricide) (THERSANDROS)
```

• Let us call a person "special" if they have a child who is a patricide and who, in turn, has a child who is not a patricide:

Special $\equiv \exists$ hasChild.(Patricide $\sqcap \exists$ hasChild. \neg Patricide)

- Let TBox T_{OE} contain the above axiom only.
- Consider the instance check "Is locaste special?": $\mathcal{A}_{OE} \models_{\mathcal{T}_{OE}}$ Special(IOCASTE)?
- The answer is "yes", but proving this requires case analysis

Contents

The Semantic Web

- An overview of Description Logics and the Semantic Web
- The ALCN language family
- TBox reasoning
- The *SHIQ* language family
- ABox reasoning
- The tableau algorithm for \mathcal{ALCN} an introduction
- The ALCN tableau algorithm for empty TBoxes

Tableau algorithms

- Various TBox and ABox reasoning tasks have been presented earlier
- In ALC and above, any TBox task can be reduced to checking satisfiability
- Principles of the ALCN tableau algorithm
 - It checks if a concept is satisfiable, by trying to construct a model
 - Uses NNF, i.e. "¬" can appear only in front of atomic concepts
 - The model is built through a series of transformations
- The data structure representing the model is called the tableau (state):
 - a directed graph
 - the vertices can be viewed as the domain of the interpretation
 - edges correspond to roles, each edge is labelled by a role
 - vertices are labelled with sets of concepts, to which the vertex is expected to belong
- Example: If a person has a green-eyed and a blonde child, does it follow that she/he has to have a child who is both green-eyed and blonde?
- Formalize the above task as a question in the Description Logic ALC: <u>Does the axiom (∃hC.B) □ (∃hC.G)</u>⊑∃hC.(B □ G) hold?⁵

 5 (hC = has child, B = blonde, G = green-eyed)

The Semantic Web (Part IV)

Semantic and Declarative Technologies

An introductory example, using \mathcal{ALC}

- Question: Does the axiom $(\exists hC.B) \sqcap (\exists hC.G) \sqsubseteq \exists hC.(B \sqcap G) hold?$ (1)
- Reformulate: "Is *C* satisfiable?", $C = (\exists hC.B) \sqcap (\exists hC.G) \sqcap \neg (\exists hC.(B \sqcap G))$ $(A \sqsubseteq B \Leftrightarrow A \sqcap \neg B \text{ not satisfiable})$
- The neg. normal form of C is: $C_0 = (\exists hC.B) \sqcap (\exists hC.G) \sqcap \forall hC.(\neg B \sqcup \neg G))$
- Goal: build an interpretation *I* such that C₀^{*I*} ≠ Ø. Thus we try to have a b such that b ∈ (∃hC.B)^{*I*}, b ∈ (∃hC.G)^{*I*}, and b ∈ (∀hC.(¬B ⊔ ¬G))^{*I*}.
- From $b \in (\exists hC.B)^{\mathcal{I}} \implies \exists c \text{ such that } \langle b, c \rangle \in hC^{\mathcal{I}} \text{ and } c \in B^{\mathcal{I}}.$ Similarly, $b \in (\exists hC.G)^{\mathcal{I}} \implies \exists d$, such that $\langle b, d \rangle \in hC^{\mathcal{I}}$ and $d \in G^{\mathcal{I}}.$
- As b belongs to ∀hC.(¬B ⊔ ¬G), and both c and d are hC relations of b, we obtain constraints: c ∈ (¬B ⊔ ¬G)^I and d ∈ (¬B ⊔ ¬G)^I.
- $c \in (\neg B \sqcup \neg G)^{\mathcal{I}}$ means that either $c \in (\neg B)^{\mathcal{I}}$ or $c \in (\neg G)^{\mathcal{I}}$. Assuming $c \in (\neg B)^{\mathcal{I}}$ contradicts $c \in B^{\mathcal{I}}$. Thus we have to choose the option $c \in (\neg G)^{\mathcal{I}}$. Similarly, we obtain $d \in (\neg B)^{\mathcal{I}}$.
- We arrive at: $\Delta^{\mathcal{I}} = \{b, c, d\};$ $\mathbf{h}\mathbf{C}^{\mathcal{I}} = \{\langle b, c \rangle, \langle b, d \rangle\};$ $\mathbf{B}^{\mathcal{I}} = \{c\} \text{ and } \mathbf{G}^{\mathcal{I}} = \{d\}.$ Here $b \in C_0^{\mathcal{I}}$, thus (1) does not hold.

Extending the example to \mathcal{ALCN}

- Question: If a person having at most one child has a green-eyed and a blonde child, does it follow that she/he has to have a child who is both green-eyed and blonde?
- DL question: (≤ 1hC) □ (∃hC.B) □ (∃hC.G) [?] ∃hC.(B □ G))
- Reformulation: "Is *C* satisfiable?", where $C = (\leq 1hC) \sqcap (\exists hC.B) \sqcap (\exists hC.G) \sqcap \neg (\exists hC.(B \sqcap G))$
- Negation normal form:
 C₀ = (≤ 1hC) □ (∃hC.B) □ (∃hC.G) □ ∀hC.(¬B ⊔ ¬G))
- We first build the same tableau as for (1):

 $\begin{array}{c} b \\ \mathbf{hC} \\ \mathbf{hC} \\ c \\ \mathbf{hC} \\$

(2)

- From (≤ 1hC)(b), hC(b, c), and hC(b, d) it follows that c = d has to be the case. However merging c and d results in an object being both B and ¬B which is a contradiction (clash)
- Thus we have shown that *C*₀ cannot be satisfied, and thus the answer to question (2) is yes.

The Semantic Web (Part IV)

Semantic and Declarative Technologies

Contents

The Semantic Web

- An overview of Description Logics and the Semantic Web
- The ALCN language family
- TBox reasoning
- The SHIQ language family
- ABox reasoning
- The tableau algorithm for ALCN an introduction
- The ALCN tableau algorithm for empty TBoxes

The \mathcal{ALCN} tableau algorithm for empty TBoxes – outline

- "Is C satisfiable?" \implies Let's build a model satisfying C, exhaustively.
- First, bring C to negation normal form C_0 .
- The main data structure, the tableau structure T = (V, E, L, I)where (V, E, L) is a finite directed graph (more about *I* later)
 - Nodes of the graph (V) can be thought of as domain elements.
 - Edges of the graph (*E*) represent role relationships between nodes.
 - $\bullet\,$ The labeling function ${\cal L}$ assigns labels to nodes and edges:
 - $\forall x \in V, \mathcal{L}(x) \subseteq sub(C_0)$, the set of subexpressions of C_0
 - $\forall \langle x, y \rangle \in E$, $\mathcal{L}(\langle x, y \rangle)$ is a role within *C* (in *SHIQ*: set of roles)
 - The initial tableau has a single node, the root: $(\{x_0\}, \emptyset, \mathcal{L}, \emptyset)$, where $\mathcal{L}(x_0) = \{C_0\}$. Here C_0 is called the root concept.
- The algorithm uses transformation rules to extend the tableau
- Certain rules are nondeterministic, creating a choice point; backtracking occurs when a trivial clash appears (e.g. both A and ¬A ∈ L(x))
- If a clash-free and complete tableau (no rule can fire) is reached \Longrightarrow

C is satisfiable.

• When the whole search tree is traversed \implies *C* is not satisfiable.

Outline of the ALCN tableau algorithm (2)

- The tableau tree is built downwards from the root (edges are always directed downwards)
 - A node b is called an R-successor (or simply successor) of a iff there is an edge from a to b with R as its label, i.e. L(⟨a, b⟩) = R
- Handling equalities and inequalities
 - To handle ($\leq nR$) we need to merge (identify) nodes
 - In handling (≥ n R) we will have to introduce n R-successors which are pairwise non-identifiable (x ≠ y: x and y are not identifiable)
 - The component *I* of the tableau data structure *T* = (*V*, *E*, *L*, *I*) is a set of inequalities of the form *x* ≠ *y*

Transformation rules of the ALCN tableau algorithm (1)

⊓-rule	
Condition:	$(\mathcal{C}_1 \sqcap \mathcal{C}_2) \in \mathcal{L}(x)$ and $\{\mathcal{C}_1, \mathcal{C}_2\} \not\subseteq \mathcal{L}(x)$
<i>New state</i> T':	$\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_1, C_2\}.$
⊔-rule	
Condition:	$(\mathcal{C}_1 \sqcup \mathcal{C}_2) \in \mathcal{L}(x) \text{ and } \{\mathcal{C}_1, \mathcal{C}_2\} \cap \mathcal{L}(x) = \emptyset.$
<i>New state</i> T ₁ :	$\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_1\}.$
New state T ₂ :	$\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_2\}.$
∃-rule	
Condition:	$(\exists R.C) \in \mathcal{L}(x)$, x has no R-successor y s.t. $C \in \mathcal{L}(y)$.
<i>New state</i> T' <i>:</i>	$V' = V \cup \{y\}$ (y is a new node),
	$E' = E \cup \{\langle x, y \rangle\}, \mathcal{L}'(\langle x, y \rangle) = R, \mathcal{L}'(y) = \{C\}.$
∀- rule	
Condition:	$(\forall R.C) \in \mathcal{L}(x), x \text{ has an } R \text{-successor } y \text{ s.t. } C \notin \mathcal{L}(y).$
New state T':	$\mathcal{L}'(\mathbf{y}) = \mathcal{L}(\mathbf{y}) \cup \{\mathbf{C}\}.$

Transformation rules of the ALCN tableau algorithm (2)

≽-rule		
Condition:	$(\ge nR) \in \mathcal{L}(x)$ and x has no n R-successors such that any two are non-identifiable.	
<i>New state</i> T':	$V' = V \cup \{y_1, \ldots, y_n\}$ (y _i new nodes),	
	$E' = E \cup \{\langle x, y_1 \rangle, \dots, \langle x, y_n \rangle\},\$	
	$\mathcal{L}'(\langle x, y_i \rangle) = R, \mathcal{L}'(y_i) = \emptyset$, for each $i = 1 \le i \le n$,	
	$I' = I \cup \{y_i \neq y_j \mid 1 \leq i < j \leq n\}.$	

Transformation rules of the ALCN tableau algorithm (3)

 $\begin{aligned} \leqslant \text{-rule} \\ \textbf{Condition:} \quad (\leqslant nR) \in \mathcal{L}(x) \text{ and } x \text{ has } R \text{-successors } y_1, \dots, y_{n+1} \\ \text{among which there are at least two identifiable nodes.} \\ \textbf{For each } i \text{ and } j, 1 \leq i < j \leq n+1, \text{ where } y_i \text{ and } y_j \text{ are identifiable:} \\ \textbf{New state } \textbf{T}_{ij} \textbf{:} \quad V' = V \setminus \{y_j\}, \mathcal{L}'(y_i) = \mathcal{L}(y_i) \cup \mathcal{L}(y_j), \\ E' = E \setminus \{\langle x, y_j \rangle\} \setminus \{\langle y_j, u \rangle | \langle y_j, u \rangle \in E\} \cup \\ \{\langle y_i, u \rangle | \langle y_j, u \rangle \in E\}, \\ \mathcal{L}'(\langle y_i, u \rangle) = \mathcal{L}(\langle y_j, u \rangle), \forall u \text{ such that } \langle y_j, u \rangle \in E, \\ l' = l[y_j \rightarrow y_i] \text{ (every occurrence of } y_j \text{ is replaced by } y_i). \end{aligned}$

The \mathcal{ALCN} tableau algorithm – further details

- There is clash at some node x of a tableau state iff
 - $\{\bot\} \subseteq \mathcal{L}(x);$ or
 - $\{A, \neg A\} \subseteq \mathcal{L}(x)$ for some atomic concept A; or
 - (≤ nR) ∈ L(x) and x has R-successors y₁,..., y_{n+1} where for any two successors y_i and y_i it holds that y_i ≠ y_i ∈ I.
- A tableau state is said to be complete, if no transformation rules can be applied at this state (there is no rule the conditions of which are satisfied)

The \mathcal{ALCN} tableau algorithm

In this version the algorithm handles a set of tableau states, one for each yet unexplored subtree of the search space.

- Intialise the variable $States = {T_0}$ (a singleton set containing the initial tableau state)
- 2 If there is $T \in \texttt{States}$ such that T contains a clash, remove T from <code>States</code> and continue at step 2
- If there is $T \in States$ such that T is complete (and clash-free), exit the algorithm, reporting satisfiability
- If States is empty, exit the algorithm, reporting non-satisfiability
- Schoose an arbitrary element T ∈ States and apply to T an arbitrary transformation rule, whose conditions are satisfied⁶ (don't care nondeterminism). Remove T from States, and add to States the NewStates resulting from the applied transformation, where NewStates = {T₁, T₂} for the □-rule, NewStates = {T_{ij} | ··· } for the ≤-rule, and NewStates = {T'} for all other (deterministic) rules. Continue at step 2

The Semantic Web (Part IV)

⁶Such a tableau state **T** and such a rule exist, because States is nonempty, and none of its elements is a complete tableau

The ALCN tableau algorithm – an example

Consider checking the satisfiability of concept C₀ (hC = has child, B = blonde):

$$C_0 = C_1 \sqcap C_2 \sqcap C_3 \sqcap C_4$$

$$C_1 = (\ge 2 hC)$$

$$C_2 = \exists hC.B$$

$$C_3 = (\le 2 hC)$$

$$C_4 = C_5 \sqcup C_6$$

$$C_5 = \forall hC.\neg B$$

$$C_6 = B$$

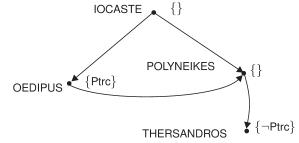
- The tableau algorithm completes with the answer: concept *C*₀ is satisfiable
- The interpretation constructed by the tableau algorithm: $\Delta^{\mathcal{I}} = \{b, c, d\}; \mathbf{h}\mathbf{C}^{\mathcal{I}} = \{\langle b, c \rangle, \langle b, d \rangle\}; \mathbf{B}^{\mathcal{I}} = \{b, c\}$

Extending the tableau algorithm to ABox reasoning

 To solve an ABox reasoning task (with no TBox), we transform the ABox to a graph, serving as the initial tableau state, e.g. for the IOCASTE family ABox:

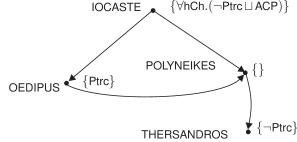
hC(IOCASTE, OEDIPUS) hC(OEDIPUS, POLYNEIKES) Ptrc(OEDIPUS) hC(IOCASTE, POLYNEIKES) hC(POLYNEIKES, THERSANDROS) (¬ Ptrc)(THERSANDROS)

 Individual names become nodes of the graph, labelled by a set of concepts, and each role assertion generates an edge, labelled (implicitly) by hC:



Handling ABox axioms in the tableau algorithm (ctd.)

- Given the locaste ABox, we want to prove that IOCASTE is special, i.e. she belongs to the concept ∃hC.(Ptrc □ ∃hC.¬Ptrc)
- We do an indirect proof: assume that IOCASTE is not special, i.e. IOCASTE belongs to (∀hC.(¬Ptrc ⊔ ∀hC.Ptrc))
- Let's introduce an abbreviation: $ACP \equiv \forall hC.Ptrc$
- To prove that locaste is special, we add concept (1) to the IOCASTE node:



• The tableau algorithm, with this initial state, will detect non-satisfiability

(1)

369/372

Handling TBox axioms in the tableau algorithm

- An arbitrary ALCN TBox can be transformed to a set of subsumptions of the form C ⊑ D (C ≡ D can be replaced by {C ⊑ D, D ⊑ C})
- $C \sqsubseteq D$ can be replaced by $\top \sqsubseteq \neg C \sqcup D$ cf. $(\alpha \rightarrow \beta)$ is the same as $(\neg \alpha \lor \beta)$
- An arbitrary TBox {C₁ ⊆ D₁, C₂ ⊆ D₂,..., C_n ⊆ D_n} can be transformed to a single equivalent axiom: ⊤ ⊆ C_T, where

$$C_{\mathcal{T}} = (\neg C_1 \sqcup D_1) \sqcap (\neg C_2 \sqcup D_2) \sqcap \cdots \sqcap (\neg C_n \sqcup D_n).$$

- Concept $C_{\mathcal{T}}$ is called the internalisation of TBox \mathcal{T}
- An interpretation *I* is a model of a TBox *T* (*I* ⊨ *T*) iff each element of the domain belongs to the *C_T* internalisation concept
 - This observation can be used in the tableaux reasoning algorithm, which tries to build a model
 - To build a model which satisfies the TBox \mathcal{T} we add the concept $C_{\mathcal{T}}$ to the label of each node of the tableau

Handling TBoxes in the tableau algorithm - problems

- Example: Consider the task of checking the satisfiability of concept Blonde wrt. TBox {⊤ ⊑ ∃hasFriend.Blonde}
 - Concept ∃hasFriend.Blonde will appear in each node
 - thus the ∃-rule will generate an infinite chain of hasFriend successors
- To prevent the algorithm from looping the notion of blocking is introduced.

Blocking

- Definition: Node *y* is blocked by node *x*, if *y* is a descendant of *x* and the blocking condition L(y) ⊆ L(x) holds (*subset blocking*).
- When y is blocked, we disallow generator rules (∃- and ≥-rules, creating new successors for y)
- This solves the termination problem, but raises the following issue
 - How can one get an interpretation from the tableau?
 - Solution (approximation, for *ALC* only): identify blocked node *y* with blocking node *x*, i.e. redirect the edge pointing to *y* so that it points to
 - x. This creates a model, as
 - all concepts in the label of *y* are also present in *x*
 - thus x belongs to all concepts y is expected to belong to
- Is Happy □ Blonde satisfiable wrt. TBox {T ⊑ ∃hasFriend.Blonde}?

 $x \circ \{\text{Happy}, \text{Blonde}, \exists \text{hasFriend}. Blonde\}$

hasFriend

y o {Blonde, ∃hasFriend.Blonde}

- x blocks y, the tableau is clash-free and complete
- The model:

$$\Delta^{\mathcal{I}} = \{x\}; \mathsf{Happy}^{\mathcal{I}} = \{x\}; \mathsf{Blonde}^{\mathcal{I}} = \{x\}; \mathsf{hasFriend}^{\mathcal{I}} = \{\langle x, x \rangle\}$$