
Part III

Declarative Programming with Constraints

1 Introduction to Logic

2 Declarative Programming with Prolog

3 Declarative Programming with Constraints

4 The Semantic Web

Declarative Programming with Constraints Motivation

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 187 / 372

Declarative Programming with Constraints Motivation

CLPFD – Constraint Logic Programming with Finite Domains

In this part of the course we get acquainted with CLPFD
within the huge area of CP – Constraint Programming
we will use Logic Programming, i.e. Prolog
for solving Finite Domain Problems

Examples for other, related approaches:
IBM ILog: Constraint Programming on Finite Domains using
C++https://www.ibm.com/products/ilog-cplex-optimization-studio
SICStus and SWI Prolog have other constraint libraries:

CLPR/CLPQ –
Constraint Logic Programming on real/rational numbers,
CLPB – Constraint Logic Programming on Booleans

CLPFD, also written as CLP(FD) is part of a generic scheme CLP(X),
where X can also be R, Q, B, etc.
CLPFD uses the reasoning approach of Constraint Satisfaction Problems
(CSPs), a branch of Artificial Intelligence (AI)

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 188 / 372

https://www.ibm.com/products/ilog-cplex-optimization-studio

Declarative Programming with Constraints Motivation

The structure of CLPFD problems

Example: cryptoarithmetic puzzles e.g. SEND MORE MONEY:
Substitute different letters by different digits to obtain an equation that holds
(disallowing leading zeroes): SEND + MORE = MONEY

Variables: S, E, N, D, M, O, R, Y

Values allowed (domains): S and M: 1..9, all others 0..9

Constraints: S ̸= E, S ̸= N, . . . , O ̸= R, O ̸= Y, R ̸= Y,
S*1000+M*100+E*10+D)+(M*1000+O*100+R*10+E =

M*10000+O*1000+N*100+E*10+Y

In a CLPFD problem:
there are given some variables: X1, . . . ,Xn

each variable takes a value from a given finite set (domain): Xi ∈ Di

there are some constraints (relations) between Xi -s that have to satisfied,
e.g. X1 ̸= X2, X2 + X3 = X5, etc.
the task is to assign each variable a value from its associated domain so
that all the constraints are satisfied;
to obtain one/all solutions, possibly maximizing some variables

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 189 / 372

Declarative Programming with Constraints Motivation

SEND MORE MONEY – Prolog and CLPFD solutions

generate and test

:- use_module(library(between)).
send0(SEND, MORE, MONEY) :-

Ds = [S,E,N,D,M,O,R,Y],
maplist(between(0, 9), Ds),
alldiff(Ds),
S =\= 0, M =\= 0,
SEND is 1000*S+100*E+10*N+D,
MORE is 1000*M+100*O+10*R+E,
MONEY is

10000*M+1000*O+100*N+10*E+Y,
SEND+MORE =:= MONEY.

% alldiff(+L):
% elements of L are all different
alldiff([]).
alldiff([D|Ds]) :-

nonmember(D, Ds), alldiff(Ds).

test (constrain) and generate

:- use_module(library(clpfd)).
send(SEND, MORE, MONEY) :-

Ds = [S,E,N,D,M,O,R,Y],
domain(Ds, 0, 9), all_different(Ds),
S #\= 0, M #\= 0,
SEND #= 1000*S+100*E+10*N+D,
MORE #= 1000*M+100*O+10*R+E,
MONEY #=

10000*M+1000*O+100*N+10*E+Y,
SEND+MORE #= MONEY,
labeling([], Ds).

New implementation features needed:

associate a domain with a var.

deamons executing a repetitive
pruning algorithm at domain
change

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 190 / 372

Declarative Programming with Constraints Motivation

The CLPFD approach

Calling a constraint is called posting
A constraint can be of two kinds:

primitive: prunes the domain (set of poss. values) of a var. and exits:
e.g. S #\= 0 simply removes 0 from the domain of S and exits
composite: performs an initial pruning, and then becomes a deamon,
e.g. SEND #= 1000*S+100*E+10*N+D

1 waits in the background (sleeps) until there is a change in the
domain of one of variables

2 wakes up to adjust the domain of other variables
3 if the constraint is now bound to fail, it initiates a backtrack
4 if the constraint is now bound to hold, it exits with success
5 otherwise goes to step 1.

When all constraints are posted, the search phase, labeling, is started:
it generates and traverses the search tree
by changing variable domains it causes constraint to wake up
eventually makes all variables bound, and thus finds solutions

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 191 / 372

Declarative Programming with Constraints Motivation

Another CLPFD example: the N-queens problem

Place N queens on an N × N chessboard, so that no two queens attack
each other

The Prolog list [Q1, ..., QN] represents the placement: row i contains a
queen in column Qi , for each i = 1, . . . ,N.
The list encoding the above placement:[3,6,4,2,8,5,7,1]

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 192 / 372

Declarative Programming with Constraints Motivation

Constraints in the N-queens problem

In this 4-queens placement [3,4,1,3], Q1 threatens all three other queens
1 2 3 4

Q1 3
Q2 4 neg. diagonal: Q1 + (2-1) = Q2

Q3 1 pos. diagonal: Q1 - (3-1) = Q1

Q4 3 same column: Q1 = Q4

In general, queen Qj threatens Qk if either:
Qj + (k-j) = Qk , or
Qj - (k-j) = Qk , or
Qj = Qk .

The condition for two queens not threatening each other:
% no_threat(QJ, QK, I): queens placed in column QJ of row m and
% in column QK of row m+I
% do not attack each other.
no_threat(QJ, QK, I) :-

QK =\= QJ+I, QK =\= QJ-I, QK =\= QJ.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 193 / 372

Declarative Programming with Constraints Motivation

Constraints in the N-queens problem (contd.)

We “bundle” the no_threat/3 tests into no_attack/3 tests:
% no_attack(Q, Qs, I): Q is the placement of the queen in row k,
% Qs lists the placements of queens in rows k+I, k+I+1, ...
% Queen in row k does not attack any of the queens listed in Qs.

The resulting code structure is:
queens([Q1,Q2,Q3,Q4]) :-

no_attack(Q1, [Q2,Q3,Q4], 1),
no_attack(Q2, [Q3,Q4], 1),
no_attack(Q3, [Q4], 1), no_attack(Q4, [], 1).

no_attack(Q1, [Q2,Q3,Q4], 1) :-
no_threat(Q1, Q2, 1),
no_threat(Q1, Q3, 2),
no_threat(Q1, Q4, 3).

no_attack(Q2, [Q3,Q4], 1) :-
no_threat(Q2, Q3, 1),
no_threat(Q2, Q4, 2).

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 194 / 372

Declarative Programming with Constraints Motivation

Prolog solution: “generate and test”

% queens_gt(N, Qs): Qs is a good placement of N queens on an NxN chessboard.
queens_gt(N, Qs):-

length(Qs, N), maplist(between(1, N), Qs) , safe(Qs), true .

% safe(Qs): In placement Q, no pair of queens attack each other.
safe([]).
safe([Q|Qs]):-

no_attack(Q, Qs, 1), safe(Qs).

% no_attack(Q, Qs, I): Q is the placement of the queen in row k,
% Qs lists the placements of queens in rows k+I, k+I+1, ...
% Queen in row k does not attack any of the queens listed in Qs.
no_attack(_, [], _).
no_attack(X, [Y|Ys], I):-

no_threat(X, Y, I), J is I+1, no_attack(X, Ys, J).

% no_threat(X, Y, I): queens placed in column X of row k and in column Y of row k+I
% do not attack each other.
no_threat(X, Y, I) :-

Y =\= X, Y =\= X-I, Y =\= X+I .

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 195 / 372

Declarative Programming with Constraints Motivation

Evaluation

Nice solution: declarative, concise, easy to validate
But...

N Time for all solutions in msec
(on an Intel i3-3110M, 2.40GHz CPU)

4 0
5 16
6 46
7 515
8 10,842
9 275,170

10 7,926,879

15 ∼ 10,000 years
20 ∼ 1000 bn years

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 196 / 372

Declarative Programming with Constraints Motivation

The process of solving CSP/CLPFD problems

Modeling – transforming the problem to a CSP
defining the variables and their domains
identifying the constraints between the variables

Implementation – the structure of the CSP program
Set up variable domains: N in {1,2,3}, domain([X,Y], 1, 5).
Post constraints. Preferably, no choice points should be created.
Label the variables, i.e. systematically explore all variable settings.

Optimization, e.g. redundant constraints, labeling heuristics, constructive
disjunction, shaving.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 197 / 372

Declarative Programming with Constraints CLPFD basics

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 198 / 372

Declarative Programming with Constraints CLPFD basics

library(clpfd) – an overview

To load the library, include the directive
:- use_module(library(clpfd)).

at the beginning of your program
Domain: a finite set of integers (allowing the restricted use of infinite
intervals for convenience)
Constraints:

membership, e.g. X in 1..5 (1 ≤ X ≤ 5)
arithmetic, e.g. X #< Y+1 (X < Y + 1)
reified, e.g. X#<Y+5 #<=> B (B is the truth value of X < Y + 5)
propositional, e.g. B1 #\/ B2

(at least one of the two Boolean values B1 and B2 is true)
combinatorial, e.g. all_distinct([V1,V2,...])

(variables [V1,V2,...] are pairwise different)
user-defined

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 199 / 372

Declarative Programming with Constraints CLPFD basics

Membership constraints

domain(+Vars, +Min, +Max) where
Min: ⟨ integer ⟩ or inf (−∞),
Max: ⟨ integer ⟩ or sup (+∞):
All elements of list Vars belong to the closed interval [Min,Max].

Example: domain([A,B,C], 1, sup) – variables A, B and C are positive
X in +ConstRange: X belongs to the set ConstRange, where:
ConstantSet ::= {⟨ integer ⟩,...,⟨ integer ⟩}
Constant ::= ⟨ integer ⟩ | inf | sup
ConstRange ::= ConstantSet

| Constant .. Constant (interval)
| ConstRange /\ ConstRange (intersection)
| ConstRange \/ ConstRange (union)
| \ ConstRange (complement)

Examples: A in inf .. -1, B in \(0 .. sup), C in {1,4,7,2}.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 200 / 372

Declarative Programming with Constraints CLPFD basics

Arithmetic constraints

Arithmetic formula constraints: Expr Relop Expr where
RelOp ::= #= | #\= | #< | #=< | #> | #>=
Expr ::= ⟨ integer ⟩ | ⟨ variable ⟩

| - Expr | Expr + Expr | Expr - Expr | Expr * Expr
| Expr / Expr % integer division
| Expr mod Expr | Expr rem Expr % differ only for ints < 0
| min(Expr,Expr) | max(Expr,Expr) | abs(Expr)

Global arith. constraints (global = having arbitrary number of args):
Have (proper) list args containing FD variables or integers

sum(+Xs, +RelOp, ?Value): Σ Xs Relop Value.
scalar_product(+Coeffs, +Xs, +RelOp, ?Value[, +Options])
(last arg. optional): Σi Coeffsi*Xsi RelOp Value.
where Coeffs has to be a list of integers. Examples :
scalar_product([1,2,5], [X,Y,Z], #<, U) ≡ X + 2*Y + 5*Z #< U
scalar_product([1,1,1], [X,Y,Z], #=, U) ≡ sum([X,Y,Z], #=, U)
minimum(?V, +Xs), maximum(?V, +Xs): V is the minimum, resp.
maximum of the elements of the list Xs. Example :

minimum(M, [X,Y,Z]) ≡ min(X,min(Y,Z)) #= M

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 201 / 372

Declarative Programming with Constraints CLPFD basics

Relational symbols

Standard Prolog relations and CLPFD relations should not be confused;
their meaning is in general quite different
Example: “equals”

Expr1#=Expr2: post a constraint that Expr1 and Expr2 must be equal
Term1=Term2: attempt to unify Term1 and Term2
domain([A,B],3,4), A+1#=B. =⇒ A=3, B=4
domain([A,B],3,4), A+1=B. =⇒ error

Example: “less than”
Expr1#<Expr2: post a constraint that Expr1 must be less than Expr2
Expr1<Expr2: checks if Expr1 is less than Expr2
domain([A,B],3,4), A#<B. =⇒ A=3, B=4
domain([A,B],3,4), A<B. =⇒ error

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 202 / 372

Declarative Programming with Constraints CLPFD basics

Global constraints

Some global constraints:
all_different([X1,...,Xn]): same as Xi #\= Xj for all 1 ≤ i < j ≤ n.
all_distinct([X1,...,Xn]): same as all_different, but guarantees
arc-consistency (see later) for the whole set of n variables.

| ?- L=[A,B,C], domain(L, 1, 2), all_different(L).
=⇒ A in 1..2, B in 1..2, C in 1..2
| ?- L=[A,B,C], domain(L, 1, 2), all_distinct(L).
=⇒ no

And many many more...

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 203 / 372

Declarative Programming with Constraints CLPFD basics

Labeling – at a glance

In general, we cannot infer the solution directly from the constraints =⇒
labeling is necessary
Labeling: search by creating choice points and systematic assignment of
feasible values to variables
During labeling, a change to the domain of a variable may wake up
constraints that in turn may change the domain of other variables etc.
(propagation)
indomain(?Var): for variable Var, its feasible values are assigned one after
the other (in ascending order)
labeling(+Options, +Vars): assigns values to all variables in Vars.
The options control, for example,

the order in which variables are selected
the order in which the feasible values of the selected variable are
tried

Most of the options impact only the efficiency of the algorithm, not its
correctness.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 204 / 372

Declarative Programming with Constraints CLPFD basics

Recall the Prolog solution for N-queens

% queens_gt(N, Qs): Qs is a good placement of N queens on an NxN chessboard.
queens_gt(N, Qs):-

length(Qs, N), maplist(between(1, N), Qs) , safe(Qs), true .

% safe(Qs): In placement Q, no pair of queens attack each other.
safe([]).
safe([Q|Qs]):-

no_attack(Q, Qs, 1), safe(Qs).

% no_attack(Q, Qs, I): Q is the placement of the queen in row k,
% Qs lists the placements of queens in rows k+I, k+I+1, ...
% Queen in row k does not attack any of the queens listed in Qs.
no_attack(_, [], _).
no_attack(X, [Y|Ys], I):-

no_threat(X, Y, I), J is I+1, no_attack(X, Ys, J).

% no_threat(X, Y, I): queens placed in column X of row k and in column Y of row k+I
% do not attack each other.
no_threat(X, Y, I) :-

Y =\= X, Y =\= X-I, Y =\= X+I .

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 205 / 372

Declarative Programming with Constraints CLPFD basics

N-queens – a CLPFD solution

% queens_clpfd(N, Qs): Qs is a good placement of N queens on an NxN chessboard.
queens_clpfd(N, Qs):-

length(Qs, N), domain(Qs, 1, N) , safe(Qs), labeling([ff],Qs) .

% safe(Qs): In placement Q, no pair of queens attack each other.
safe([]).
safe([Q|Qs]):-

no_attack(Q, Qs, 1), safe(Qs).

% no_attack(Q, Qs, I): Q is the placement of the queen in row k,
% Qs lists the placements of queens in rows k+I, k+I+1, ...
% Queen in row k does not attack any of the queens listed in Qs.
no_attack(_, [], _).
no_attack(X, [Y|Ys], I):-

no_threat(X, Y, I), J is I+1, no_attack(X, Ys, J).

% no_threat(X, Y, I): queens placed in column X of row k and in column Y of row k+I
% do not attack each other.
no_threat(X, Y, I) :-

Y #\= X, Y #\= X-I, Y #\= X+I .

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 206 / 372

Declarative Programming with Constraints CLPFD basics

Evaluation

Time for all solutions in msec (on an Intel i3-3110M, 2.40GHz CPU):

N Prolog CLPFD

4 0 0
5 16 0
6 46 0
7 515 0
8 10,842 0
9 275,170 31

10 7,926,879 94
11 ∼ 2 days 421
12 ∼ 2 months 2,168
13 ∼ 6 years 10,982
14 ∼ 250 years 54,242
15 ∼ 10,000 years 351,424

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 207 / 372

Declarative Programming with Constraints CLPFD basics

A simple practice task

Write a constraint (predicate) according to the spec below

% incr(L, Len, N): L is a strictly increasing list of length Len,
% containing integers in 1..N.
| ?- incr(L, 3, 3). ---> L = [1,2,3] ; no
| ?- incr(L, 3, 4). ---> L = [1,2,3] ; L = [1,2,4] ;

L = [1,3,4] ; L = [2,3,4] ; no
| ?- incr(L, 2, 5), L = [3|_]. ---> L = [3,4] ; L = [3,5] ; no

A solution:

incr(L, Len, N) :-
length(L, Len), % Determining the variables
domain(L, 1, N), % Setting up the domains
L = [H|T], incr_list(T, H), % Posting the constraints
labeling([], L). % Labeling

incr_list([X2|T], X1) :-
X1 #< X2, incr_list(T, X2).

incr_list([], _).

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 208 / 372

Declarative Programming with Constraints CLPFD basics

A more complex practice task

Write a constraint (predicate) according to the spec below
Partitioning a list
% partition(+L1, ?L2): L1 is a list of integers; L2 contains a subset of
% the elements of L1 (in the same order as in L1), such that the sum of
% elements in L2 is half of the sum of elements in L1.

| ?- partition([1,2,3,5,8,13],L2).
L2 = [3,13] ? ;
L2 = [3,5,8] ? ;
L2 = [1,2,13] ? ;
L2 = [1,2,5,8] ? ; no

Hint: it is helpful to use n binary variables (where n denotes the number
of elements of L1), with xi = 1 meaning that the i th element of L1 should
also be an element of L2 and xi = 0 otherwise. It is fairly easy to
formulate the constraint in terms of these variables. After labeling, do not
forget to create the desired output based on the values of the xi variables.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 209 / 372

Declarative Programming with Constraints How does CLPFD work

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 210 / 372

Declarative Programming with Constraints How does CLPFD work

Infeasible values

A constraint is a deamon, making sure that a relation holds for given args.
Let r(x , y) be a relation on integers, e.g. r1(x , y) ≡ (x + 5 = y).
r1 = {⟨ x , y ⟩|x + 5 = y} = {. . ., ⟨−1,4 ⟩,⟨0,5 ⟩,⟨1,6 ⟩,⟨2,7 ⟩,. . .}
The CLPFD constraint X+5#=Y has to ensure that r1(X,Y) holds:

1 if both X and Y are bound : check if ⟨ X,Y ⟩ ∈ r1 holds, i.e. X+5=Y
2 if only X is bound: set Y to X+5, if possible, else fail
3 if only Y is bound: set X to Y-5 if possible, else fail
4 if X and Y are unbound: remove infeasible values from their domains:

E.g.: X in 1..6, Y in {1,6,7,9}, Infeasible for X: 3, 5, 6; for Y: 1
(this case covers cases 1-3 as well, empty domain⇒ failure)

Let D(u) denote the domain of variable u. Wrt. a relation r(x , y),
a ∈ D(x) is infeasible iff there is no b ∈ D(y) such that r(a,b) holds;
b ∈ D(y) is infeasible iff there is no a ∈ D(x) such that r(a,b) holds
In general: A value di ∈ D(xi) is infeasible w.r.t. the constraint
c = r(x1, . . . , xi , . . .), if no assignment can be found for the remaining
variables – mapping each xj , j ̸= i to dj ∈ D(xj) – so that
c = r(d1, . . . ,di , . . .) holds

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 211 / 372

Declarative Programming with Constraints How does CLPFD work

Implementation of constraints

The main data structure: the backtrackable constraint store – maps
variables to their domains.
Simple constraints: e.g. X in 1..10 or X #< 10 just modify the store.
Composite constraints are implemented as daemons, which keep
removing infeasible values from argument domains
Example:

Current store content: X in 1..6, Y in {1,6,7,9}
Daemon for X+5#=Y
Daemon may remove 3, 5, 6 from X and 1 from Y
Resulting store content: X in {1,2,4}, Y in {6,7,9}

A daemon may exit (die), when the constraint it represents is entailed by
(follows from) the constraint store

Example: X #< Y may exit if the store contains:
X in 1..5 and Y in 7..9

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 212 / 372

Declarative Programming with Constraints How does CLPFD work

Strength of reasoning for composite constraints

Arc-consistency, also called domain-consistency: all infeasible values are
removed

Example:
Current store content: X in 1..6, Y in {4,6,8,9}
Daemon for X+5#=Y
Daemon removes 2,5,6 from X and 4 from Y
Resulting store content: X in {1,3,4}, Y in {6,8,9}

Cost: exponential in the number of variables
Bound-consistency: (repeatedly) removes infeasible bounds only, i.e.
middle elements, as in the above example, are not removed

Weaker than domain-consistency
Example:

Current store content: X in 1..6, Y in {4,6,8,9}
Daemon for X+5#=Y
Daemon removes 6 and then 5 from X, and 4 from Y
Resulting store content: X in 1..4, Y in {6,8,9}

Cost: linear in the number of variables
Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 213 / 372

Declarative Programming with Constraints How does CLPFD work

Consistency levels guaranteed by SICStus Prolog

Membership constraints (trivially) ensure domain-consistency.
Linear arithmetic constraints ensure at least bound-consistency.
Nonlinear arithmetic constraints do not guarantee bound-consistency.
For all constraints, when all the variables of the constraint are bound, the
constraint is guaranteed to deliver the correct result (success or failure).

| ?- X in {4,9}, Y in {2,3}, Z #= X-Y. =⇒ Z in 1..7 ?
=⇒ Bound consistent

| ?- X in {4,9}, Y in {2,3},
scalar_product([1,-1], [X,Y], #=, Z, [consistency(domain)]).
/* not available in SWI, scalar_product can only have 4 arguments*/

=⇒ Z in(1..2)\/(6..7) ?
=⇒ Domain consistent

| ?- domain([X,Y],-9,9), X*X+2*X+1 #= Y.=⇒ X in -4..4, Y in -7..9 ?
=⇒ Not even bound consistent

| ?- domain([X,Y],-9,9), (X+1)*(X+1)#=Y.=⇒ X in -4..2, Y in 0..9 ?
=⇒ Bound consistent

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 214 / 372

Declarative Programming with Constraints How does CLPFD work

Implementation of constraints

A constraint C is implemented by:
transforming C (possibly at compile time) to a series of elementary
constraints,
e.g. X*X #> Y⇒ A #= X*X, A #> Y (formula constraints only).
posting C, or each of the primitive constraints obtained from C

To see the the pending constraints in SICStus execute the code below
(pending constraints are always shown in SWI):

| ?- assert(clpfd:full_answer).

Examples (with some editing for better readability):

SICStus Prolog

| ?- domain([X,Y],-9,9), X*X+2*X+1#=Y.
A#=X*X,
Y#=2*X+A+1,
X in -4..4,
Y in -7..9,
A in 0..16 ?

SWI Prolog

?- [X,Y] ins -9..9, X*X+2*X+1#=Y.
2*X#=B, X^2#=A, B+A#=C, C+1#=Y,
X in -4..4, A in 0..16,
B in -8..8, C in -8..8,
Y in -7..9.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 215 / 372

Declarative Programming with Constraints How does CLPFD work

Execution of constraints

To execute a constraint C:
execute completely (e.g. X #< 3); or
create a daemon for C:

specify the activation conditions (when to wake up the daemon)
prune the domains
until the termination condition becomes true do

go to sleep (wait for activation)
prune the domains

enduntil

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 216 / 372

Declarative Programming with Constraints How does CLPFD work

Execution of constraints, continued

Activation condition: the domain of a variable X changes in SOME way
SOME can be:

Any change of the domain
Lower or upper or any bound has changed
X has been instantiated
. . .

The termination condition is constraint specific
earliest: when the constraint is entailed
latest: when all its variables are instantiated

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 217 / 372

Declarative Programming with Constraints How does CLPFD work

Implementation of some constraints

A #\= B (domain-consistent)
Activation: when A or B is instantiated.
Pruning: remove the value of the instantiated variable from the
domain of the other.
Termination: when A or B is instantiated.

A #< B (domain-consistent)
Activation: when min(A) (the lower bound of A) or max(B) (the upper
bound of B) changes.
Pruning:
remove from the domain of A all x ’s for which x ≥ max(B),
remove from the domain of B all y ’s for which y ≤ min(A).
Termination: if one of the variables A and B becomes instantiated
(could be improved).

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 218 / 372

Declarative Programming with Constraints How does CLPFD work

Implementation of some constraints (contd.)

X+Y #= T (bound-consistent)
Activation: when the lower or upper bound changes for any of the
variables X, Y, T.
Pruning:
narrow the domain of T to (min(X)+min(Y))..(max(X)+max(Y));
narrow the domain of X to (min(T)-max(Y))..(max(T)-min(Y));
narrow the domain of Y to (min(T)-max(X))..(max(T)-min(X)).
Termination: if all three variables are instantiated (after the pruning).

all_distinct([A1,...]) (domain-consistent)
Activation: at any domain change of any variable.
Pruning: remove all infeasible values from the domains of all
variables (using an algorithm based on maximal matchings in
bipartite graphs).
Termination: when at most one of the variables is uninstantiated.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 219 / 372

Declarative Programming with Constraints How does CLPFD work

Interplay of multiple constraints

A simple example:
| ?- domain([X,Y], 0, 100), X+Y #=10, X-Y #=4.
=⇒ X in 4..10, Y in 0..6

A different example:
| ?- domain([X,Y], 0, 100), X+Y #=10, X+2*Y #=14.
=⇒ X = 6, Y = 4

More examples in the practice tool C1-1

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 220 / 372

Declarative Programming with Constraints FDBG

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 221 / 372

Declarative Programming with Constraints FDBG

FDBG – a dedicated CLPFD debugger

Created by Dávid Hanák and Tamás Szeredi at Budapest University of
Technology and Economics back in 2001
Now part of SICStus
Shows details of all important CLPFD events

Constraints waking up
Pruning
Constraints exiting
Labeling steps

Highly customizable
Output can be written to a file

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 222 / 372

Declarative Programming with Constraints FDBG

Example: effects and life-cycle of constraints

| ?- use_module([library(clpfd),library(fdbg)]).
| ?- fdbg_on.
| ?- Xs=[X1,X2], fdbg_assign_name(Xs, ’X’), domain(Xs, 1, 6),

X1+X2 #= 8, X2 #>= 2*X1+1.

domain([<X_1>,<X_2>],1,6) X_1 = inf..sup -> 1..6
X_2 = inf..sup -> 1..6
Constraint exited.

<X_1>+<X_2>#=8 X_1 = 1..6 -> 2..6
X_2 = 1..6 -> 2..6

<X_2>#>=2*<X_1>+1 X_1 = 2..6 -> {2}
X_2 = 2..6 -> 5..6
Constraint exited.

<X_1>+<X_2>#=8 X_1 = {2}
X_2 = 5..6 -> {6}
Constraint exited.

Xs = [2,6], X1 = 2, X2 = 6 ?

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 223 / 372

Declarative Programming with Constraints FDBG

Example: labeling

| ?- X in 1..3, labeling([bisect], [X]).
<fdvar_1> in 1..3

fdvar_1 = inf..sup -> 1..3
Constraint exited.

Labeling [2, <fdvar_1>]: starting in range 1..3.
Labeling [2, <fdvar_1>]: bisect: <fdvar_1> =< 2

Labeling [4, <fdvar_1>]: starting in range 1..2.
Labeling [4, <fdvar_1>]: bisect: <fdvar_1> =< 1

X = 1 ? ;
Labeling [4, <fdvar_1>]: bisect: <fdvar_1> >= 2

X = 2 ? ;
Labeling [4, <fdvar_1>]: failed.

Labeling [2, <fdvar_1>]: bisect: <fdvar_1> >= 3

X = 3 ? ;
Labeling [2, <fdvar_1>]: failed.

no

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 224 / 372

Declarative Programming with Constraints Reified constraints

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 225 / 372

Declarative Programming with Constraints Reified constraints

Reification – introductory example

Consider variables X in 0..9 and Y in 0..9

Write the constraint: exactly one of X and Y is > 0.
A possible approach: introduce a boolean var XP (for X Positive) that holds
the truth value of the constraint X #> 0.
Can you write an arithmetic constraint that describes this relationship
between X and XP?

(X+9) // 10 #= XP % // is the operator for integer division

Using the helper it is easy to implement this constraint:
exactly_one_pos(X, Y) :-

(X+9) // 10 #= XP, (Y+9) // 10 #= YP, XP + YP #= 1.

The (X+9) // 10 #= XP helper constraint reflects (or reifies) the truth
value of X #> 0 in the boolean variable XP

library(clpfd) supports reified constraints in general:
X #> 0 #<=> XP or in general: <reifiable constraint> #<=> B

This works without any limitation on the domain of X.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 226 / 372

Declarative Programming with Constraints Reified constraints

Reification – what is it?

Reification = reflecting the truth value of a constraint into a 0/1-variable
Form: C #<=> B, where C is a reifiable constraint
and B is a 0/1-variable
Meaning: C holds if and only if B=1

Example: (X #>= 5) #<=> B (X > 5 holds iff B is true (B = 1)) (*)
4 implications:

If C holds, then B must be 1
If ¬C holds, then B must be 0
If B=1, then C must hold
If B=0, then ¬C must hold

Not every constraint can be reified
Arithmetic formula constraints (#=, #=<, etc.) can be reified
The X in ConstRange membership constraint can be reified,
e.g. rewrite (*) to a membership constraint: (X in 5..sup) #<=> B
Most global constraints (e.g. all_distinct/1, sum/3) cannot be
reified. In SICStus, scalar_product can be reified.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 227 / 372

Declarative Programming with Constraints Reified constraints

Reification – what is it good for?

1 Use the 0/1-variables – that reflect the truth value of reified constraints –
in propositional constraints

2 Use the 0/1-variables – that reflect the truth value of reified constraints –
in arithmetic constraints

3 Combine multiple constraints using operators of propositional logic

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 228 / 372

Declarative Programming with Constraints Reified constraints

1. Propositional constraints

Propositional connectives allowed by SICStus Prolog CLPFD:
#\ Q negation op(710, fy, #\).
P #/\ Q conjunction op(720, yfx, #/\).
P #\ Q exclusive or op(730, yfx, #\).
P #\/ Q disjunction op(740, yfx, #\/).
P #=> Q implication op(750, xfy, #=>).
Q #<= P implication op(750, yfx, #<=).
P #<=> Q equivalence op(760, yfx, #<=>).

The operand of a propositional constraint can be
a variable B, whose domain automatically becomes 0..1; or
an integer (0 or 1); or
a reifiable constraint; or
recursively, a propositional constraint.

The propositional constraints are built from variables, integers and
reifiable constraints using the above operators
Example: (X#>5) #<=> B1, (Y#>7) #<=> B2, B1 #\/ B2

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 229 / 372

Declarative Programming with Constraints Reified constraints

2. Using 0/1-variables in arithmetic constraints

0/1-variables can be used just like any other FD-variable, e.g., in
arithmetic calculations
Typical usage: counting the number of times a given constraint holds
Example:
% pcount(L, N): list L has N positive elements.
pcount([], 0).
pcount([X|Xs], N) :-

(X #> 0) #<=> B,
N #= N1+B,
pcount(Xs, N1).

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 230 / 372

Declarative Programming with Constraints Reified constraints

3. Combining constraints by means of propositional operators

It is possible to combine multiple constraints with the help of propositional
(logical) operators

Example:
(X#>5) #\/ (Y#>7)
Handled by transforming it to a set of reifications and arithmetic
constraints:
(X#>5) #<=> B1, (Y#>7) #<=> B2, B1+B2#>0
Not possible with non-reifiable constraints

Example: (X#>5) #\/ all_different([X,Y])
will lead to an error

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 231 / 372

Declarative Programming with Constraints Reified constraints

Executing reified constraints

Recall: a constraint C is said to be entailed (or implied) by the store:
iff C holds for any variable assignment allowed by the store
e.g.: store X in 5..10, Y in 12..15 entails the constraint X #< Y

Posting the constraint C #<=> B immediately implies B in 0..1

The execution of C #<=> B requires three daemons:
When B is instantiated:

if B=1, post C; if B=0, post ¬C
When C is entailed, set B to 1
When C is disentailed (i.e. ¬C is entailed), set B to 0

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 232 / 372

Declarative Programming with Constraints Reified constraints

Entailment levels

Detecting entailment can be done with different levels of precision:
A reified membership constraint C detects domain-entailment, i.e. B is set
as soon as C is a consequence of the store
A linear arithmetic constraint C is guaranteed to detect bound-entailment,
i.e. B is set as soon as C is a consequence of the interval closure of the
store

Interval closure is obtained by removing ‘holes’ from the domains
Example:

Store: X in {1,3}, Y in {2,4}, Z in {2,4}
Interval closure: X in {1,2,3}, Y in {2,3,4}, Z in {2,3,4}
Constraint: (X+Y#\=Z) #<=> B
The store actually implies X+Y ̸=Z (odd+even̸=even), but its
interval closure does not
=⇒ Result will be B in 0..1 instead of B=1

At the latest when a constraint becomes ground, its (dis)entailment is
detected

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 233 / 372

Declarative Programming with Constraints Reified constraints

Domain entailment for arithmetic constraints in SICStus Prolog

| ?- X in {1,3}, Y in {2,4}, Z in {2,4}, (X+Y#\=Z) #<=> B.
X in {1}\/{3},
Y in {2}\/{4},
Z in {2}\/{4},
B in 0..1 ? ;
no
| ?- X in {1,3}, Y in {2,4}, Z in {2,4},

scalar_product([1,1], [X,Y], #\=, Z, [consistency(domain)]) #<=> B.
B = 1,
X in {1}\/{3},
Y in {2}\/{4},
Z in {2}\/{4} ? ;
no

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 234 / 372

Declarative Programming with Constraints Reified constraints

Knights and knaves – a CLPFD example using Booleans

Knights and knaves puzzles –
see e.g. R. Smullyan’s “What is the name of this book”
A remote island is inhabited by two kinds of natives:
knights always tell the truth, knaves always lie.
One day I met two natives, A and B. A says: “One of us is a knave”.
What are A and B?
Prolog representation: knave, false −→ 0, knight, true −→ 1.
Example run:
| ?- true(A says A is 0 or B is 0).

% A says A is a knave or B is a knave

A = 1, B = 0 ? ; no
% A is a knight, B is a knave

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 235 / 372

Declarative Programming with Constraints Reified constraints

Knights and knaves – CLPFD solution

:- use_module(library(clpfd)).
:- op(700, fy, not), op(800, yfx, and), op(900, yfx, or), op(950, xfy, says).

% Statement Stmt is true.
true(Stmt) :-

term_variables(Stmt, Vars),
% term_variables(+T, -Vs): Vs is the list of vars that occur in term T

domain(Vars, 0, 1),
has_value(Stmt, 1), labeling([], Vars).

% Stmt has_value Val: The truth value of statement Stmt is Val.
has_value(X is N, V) :- V #<=> X #= N.
has_value(X says S, V) :- has_value(S, V0), V #<=> X #= V0.
has_value(S1 and S2, V) :- has_value(S1, V1),

has_value(S2, V2), V #<=> V1 #/\ V2.
has_value(S1 or S2, V) :- has_value(S1, V1),

has_value(S2, V2), V #<=> V1 #\/ V2.
has_value(not S, V) :- has_value(S, V0), V #<=> #\ V0.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 236 / 372

Declarative Programming with Constraints Global constraints

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 237 / 372

Declarative Programming with Constraints Global constraints

Global constraints – an overview

Category Constraint
Counting count/4

global_cardinality/[2,3]
nvalue/2

Sorting sorting/3
lex_chain/[1,2]

Distinctness all_different/[1,2]
all_distinct/[1,2]

Permutation assignment/[2,3]
circuit/[1,2]

Scheduling cumulative/[1,2]
cumulatives/[2,3]

Geometric disjoint1/[1,2]
disjoint2/[1,2]
geost/[2,3,4]

Arbitrary relation automaton/[3,8,9]
case/[3,4]
relation/3
table/[2,3]

Other element/3

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 238 / 372

Declarative Programming with Constraints Global constraints

Arguments of global constraints

It is important to differentiate between two kinds of arguments:
Arguments that can be FD-variables (or lists of such)
Arguments that can only be integers (or lists of such)

It is always possible to write an integer where an FD-variable is expected,
but not the other way around
Convention: in this section, FD-variables (and lists of such) are written in
italics.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 239 / 372

Declarative Programming with Constraints Global constraints

Counting

count(Int, List, Relop, Count): Int occurs in List n times,
and n Relop Count holds. (Not available in SWI-Prolog)
| ?- length(L, 3), domain(L, 6, 8), count(7, L, #=, 3).

=⇒ L = [7,7,7] ? ; no
| ?- length(L, 3), domain(L, 1, 100), count(3, L, #=, _C),

count(2, L, #>, _C), _C #> 0, labeling([], L).
=⇒ L = [2,2,3] ? ; L = [2,3,2] ? ; L = [3,2,2] ? ; no

global_cardinality(Vars, [K1-V1, ...Kn-Vn]): K1, ..., Kn are distinct
integers, and each of the Vars takes a value from {K1, ..., Kn}. Further,
integer Ki occurs exactly Vi times in Vars , for all 1 ≤ i ≤ n.
| ?- length(L, 3), global_cardinality(L, [6-_,7-3,8-_]).

L = [7,7,7] ? ; no
| ?- length(L,3), domain(L,1,100), global_cardinality(L,[2-_X,3-_Y]),

_X#>_Y, _Y#>0, labeling([], L).
=⇒ L = [2,2,3] ? ; L = [2,3,2] ? ; L = [3,2,2] ? ; no

There is a variant global_cardinality/3 with a 3rd, Options argument,
where pruning strength can be specified

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 240 / 372

Declarative Programming with Constraints Global constraints

Distinctness

all_distinct(Vars, Options), all_different(Vars, Options): Variables in
Vars are pairwise different. The two predicates differ only in Options
defaults. An empty Options argument can be omitted.
| ?- L = [A,B,C], domain(L,1,2), all_different(L).=⇒ A in 1..2,...

| ?- L = [A,B,C], domain(L,1,2), all_distinct(L). =⇒ no

The Options argument is a list of options. In option consistency(Cons)
Cons can be domain (the default for all_distinct), value (the default for
all_different), and bounds. Other options are also available.
SWI-Prolog only supports the 1-argument version (no options argument)
for these predicates.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 241 / 372

Declarative Programming with Constraints Global constraints

Permutation
assignment([X1,...,Xn],[Y1,...,Yn]): all Xi , Yi are in 1..n and Xi=j iff Yj=i.
Equivalently: [X1,...,Xn] is a permutation of 1..n and [Y1,...,Yn] is the
inverse permutation.
| ?- length(Xs, 3), assignment(Xs, Ys), Ys = [3|_], labeling([], Xs).

=⇒ Xs = [2,3,1], Ys = [3,1,2] ? ;
=⇒ Xs = [3,2,1], Ys = [3,2,1] ? ; no

circuit([X1,...,Xn]):
Edges i→ Xi form a single (Hamiltonian) circuit of nodes {1, ..., n}.
Equivalently: [X1,...,Xn] is a permutation of 1..n that consists of a single
cycle of length n.
| ?- length(Xs, 4), circuit(Xs), Xs = [2|_], labeling([], Xs).

=⇒ Xs = [2,3,4,1] ? ;
=⇒ Xs = [2,4,1,3] ? ; no

1 2

3 4

[2,3,4,1]:

1 2

3 4

[2,4,1,3]:

 

1 2

3 4

[2,1,3,4]:



1 2

3 4

[2,1,4,3]:



1 2

3 4

[2,3,1,4]:



1 2

3 4

[2,4,3,1]:


Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 242 / 372

Declarative Programming with Constraints Global constraints

Specifying arbitrary finite relations

table([Tuple1,...,TupleN], Extension): each Tuple belongs to the
relation described by Extension. Extension is a list of all the valid tuples
that form the relation. Available in SWI-Prolog as tuples_in/2.
times(X, Y, Z) :-

table([[X,Y,Z]], [[1,1,1], [1,2,2], [1,3,3], [1,4,4],
[2,1,2], [2,2,4], [2,3,6], [2,4,8],
[3,1,3], [3,2,6], [3,3,9], [3,4,12],
[4,1,4], [4,2,8], [4,3,12],[4,4,16]]).

| ?- times(X, 4, Z), Z #> 10. =⇒ X in 3..4, Z in{12}\/{16} ? ; no

| ?- table([[X,Y],[Y,Z]], [[1,3],[4,6],[3,5],[6,8]]).
=⇒ X in {1}\/{4}, Y in {3}\/{6}, Z in {5}\/{8} ?

Using table/2 for combining constraints:
diffsum(L, N, Sum) :-

domain(L, 1, N), append(L, [Sum], L1),
findall(L1, (sum(L, #=, Sum), all_different(L), labeling([], L)), Tuples),
table([L1], Tuples).

| ?- length(L, 3), diffsum(L, 9, 23).
=⇒ L = [_A,_B,_C], _A in{6}\/(8..9), _B in{6}\/(8..9), _C in{6}\/(8..9) ?

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 243 / 372

Declarative Programming with Constraints Global constraints

Other

element(X, List, Y): Y is the X th element of List (counting from 1)
| ?- L=[A,B,C], domain(L, 1, 5), B#<3, Y in 4..6, element(X, L, Y).

=⇒ ..., X in {1}\/{3}, Y in 4..5 ? % domain-consistent in X

| ?- L = [A,B], A in 1..2, B in 5..7, element(X, L, Y).
=⇒ ..., X in 1..2, Y in 1..7 ? % bound-consistent in Y

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 244 / 372

Declarative Programming with Constraints Labeling

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 245 / 372

Declarative Programming with Constraints Labeling

Labeling – overview

Typical CLPFD program structure:
1 Define variables and domains
2 Post constraints (no choice points!)
3 Labeling
4 Optional post-processing

Labeling traverses the search tree – the search space of possible
variable assignments – using a depth-first strategy (cf. Prolog execution)
Labeling creates choice points (decision points), manages all the
branching and backtracking
Each decision is normally followed by propagation: constraints wake up,
perform pruning, further constraints may wake up etc.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 246 / 372

Declarative Programming with Constraints Labeling

Labeling – overview

Possible aims of labeling:
Find a single solution (decide solvability)
Find all solutions
Find the best solution according to a given objective function

In general, labeling guarantees a complete search, i.e. all solutions are
enumerated (advanced options, e.g. timeout may cause incompleteness)
A typical CLPFD program spends almost 100% of its running time in the
call to labeling =⇒ efficiency is critical
Efficiency largely depends on the main search options:

Order of the variables to branch on
Way of splitting the domain of the chosen variable
Order of considering the possible values of the chosen variable

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 247 / 372

Declarative Programming with Constraints Labeling

Order of the variables to branch on

| ?- X in 1..4, Y in 1..2, XY #= 10*X+Y,
indomain(X), indomain(Y).

indomain(X) creates a choice point
enumerating all possible values for X

Y

11 12XY 21 22 31 32 41 42

X

| ?- X in 1..4, Y in 1..2, XY #= 10*X+Y,
indomain(Y), indomain(X). X

Y

11 21 31 41 12 22 32 42XY

The order of the variables can have significant impact on the number of
visited tree nodes
First-fail principle: start with the variable that has the smallest domain
Most-constrained principle: start with the variable that has the most
constraints suspended on it

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 248 / 372

Declarative Programming with Constraints Labeling

How to split the domain of the selected variable?

enumeration: | ?- X in 1..4,
labeling([enum], [X]).

1 2 3 4

bisection: | ?- X in 1..4,
labeling([bisect], [X]).

1 2 3 4

>2=<2

stepping: | ?- X in 1..4,
labeling([step], [X]).

43

> 1

> 2

> 3

1

2

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 249 / 372

Declarative Programming with Constraints Labeling

Labeling options

labeling(Options, VarList):
Considers all possible value assignments of the variables in VarList, all of
which must have finite domains. Options may contain at most one from each
of the following option categories (default values are in italics). Options
shown in a small font are available only in SICStus (not discussed further).

Variable selection: leftmost, min, max, ff, ffc,. . .
anti_first_fail, occurrence, max_regret, variable(Sel)

Type of splitting: step, enum, bisect,. . .
median, middle, value(Enum)

Order of children: up, down

indomain(X) is equivalent to labeling([enum], [X]).

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 250 / 372

Declarative Programming with Constraints Labeling

Options for variable selection

leftmost (default) — use the order as the variables were listed
min — choose the variable with the smallest lower bound
max — choose the variable with the highest upper bound
ff — (‘first-fail’ principle): choose the variable with the smallest domain
occurrence — (‘most-constrained’ principle): choose the variable that
has the most constraints suspended on it
ffc — (combination of ‘first-fail’ and ‘most-constrained’ principles):
choose the variable with the smallest domain; if there is a tie, choose the
variable that has the most constraints suspended on it
anti_first_fail — choose the variable with the largest domain
. . .

For tie-breaking, leftmost is used

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 251 / 372

Declarative Programming with Constraints Labeling

Options for branching

Type of splitting:
step (default) — two-way branching according to X #= LB vs. X #\= LB,
where LB is the lower bound of the domain of X; or – if option down
applies, see below – according to X #= UB vs. X #\= UB, (upper bound)
enum — n-way braching, enumerating all n possible values of X

bisect — two way branching according to X #=< M vs. X #> M, where M
is the middle of the domain of X (M = (min(X)+max(X))//2)
middle — branching according to X #= M vs. X #\= M, where M is the
middle of the domain of X

. . .

Direction:
up (default) — the domain is enumerated in ascending order
down — the domain is enumerated in descending order

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 252 / 372

Declarative Programming with Constraints Labeling

Labeling – a simple example

Sample query:
X in 1..3, Y in 1..2, X#>=Y, labeling([min], [X,Y]).

Option min means: select the variable that has the smallest lower bound
If there is a tie, select the leftmost

No option provided for branching =⇒ defaults used (step and up)
The search tree:

X=1

X>=3

X>= 2

X=2

Y>= 2Y=1

X>=3X=2

<3,2><2,2><3,1><2,1>

X#>=Y

Y=1

<1,1>

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 253 / 372

Declarative Programming with Constraints Labeling

Impact on performance

Time for finding all solutions of N-queens for N = 13
(on an Intel i5-3230M 2.60GHz CPU):

Labeling options Runtime

[leftmost,step] 6.295 sec
[leftmost,enum] 5.604 sec
[leftmost,bisect] 6.281 sec
[min,step] 6.610 sec
[min,enum] 6.633 sec
[min,bisect] 12.081 sec
[ff,step] 5.134 sec
[ff,enum] 4.716 sec
[ff,bisect] 5.180 sec
[ffc,step] 5.264 sec
[ffc,enum] 4.854 sec
[ffc,bisect] 5.214 sec

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 254 / 372

Declarative Programming with Constraints From plain Prolog to constraints

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 255 / 372

Declarative Programming with Constraints From plain Prolog to constraints

Transforming Prolog code to constraint code – an example

% pcountVT(L, N): L has N positive elements.
% Predicate naming convention:
% V = <single digit> version number
% T = p | c for Prolog vs. CLPFD

Step 1: ensure there is a single recursive call within the predicate

pcount0p([], 0).
pcount0p([X|Xs], N) :-

(X > 0 ->
pcount0p(Xs, N0),
N is N0+1

; pcount0p(Xs, N)
).

pcount1p([], 0).
pcount1p([X|Xs], N) :-

pcount1p(Xs, N0),
(X > 0 ->

N is N0+1
; N = N0
).

Note that the if-then-else contains arithmetic and equality BIPs only.
This is important when transforming to CLPFD.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 256 / 372

Declarative Programming with Constraints From plain Prolog to constraints

Prolog to constraints – a simple example, ctd.

A scheme to convert Prolog if-then-else to CLPFD code using reification:
foo(...) :- NonrecTest.
foo(...) :-

foo(...),

(Cond -> Then
; Else
).

foo(...) :- NonrecTest#.
foo(...) :-

foo(...),
Cond# #<=> B,

B #=> Then#,
#\ B #=> Else#.

Step2: apply the above scheme to the Prolog predicate obtained in step 1:
pcount1p([], 0).
pcount1p([X|Xs], N) :-

pcount1p(Xs, N0),

(X > 0 -> N is N0+1
; N = N0
).

pcount2c([], 0).
pcount2c([X|Xs], N) :-

pcount2c(Xs, N0),
X #> 0 #<=> B,

B #=> N #= N0+1,
#\ B #=> N #= N0.

Note that pcount2c can be made tail recursive by simply reordering goals.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 257 / 372

Declarative Programming with Constraints From plain Prolog to constraints

Prolog to constraints – a simple example, cont’d.

Notice that pcount2c has bad pruning behavior:

| ?- pcount2c([A,B], N).
(...) N in inf..sup ? % N could be pruned to 0..2
| ?- pcount2c([A,B], N), A #> 4.
(...) N in inf..sup ? % N could be pruned to 1..2

Exactly one LHS of these two implications has to be true:

B #=> N #= N0+1,
#\ B #=> N #= N0.

but Prolog is not aware of this. To make Prolog able to reason, replace these
two constraints by an equivalent constraint N #= N0+B.
Prolog is now aware that N is either equal to or 1 larger than variable N0!

pcount3c([], 0).
pcount3c([X|Xs], N) :-

X #> 0 #<=> B, N #= N0+B, pcount3c(Xs, N0).

| ?- pcount3c([A,B], N), A #> 4. ⇒ N in 1..2

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 258 / 372

Declarative Programming with Constraints From plain Prolog to constraints

Prolog to constraints – another example – X-Sums Sudoku.

Basic Sudoku rules apply. Additionally the clues outside the grid indicate the
sum of the first X numbers placed in the corresponding direction, where X is
equal to the first number placed in that direction.

This requires the following constraint:

nsum(L, N, Sum): The first N elements of list L add up to Sum.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 259 / 372

Declarative Programming with Constraints From plain Prolog to constraints

The nsum constraint

We follow the same steps as for pcount

Common specification:
% nsumVT(Xs, N, Sum): The leftmost N elements of Xs add up to Sum.

First Prolog version:
nsum0p([], 0, 0).
nsum0p([X|Xs], N0, Sum0) :-

(N0 > 0 -> N1 is N0-1, Sum1 is Sum0-X, nsum0p(Xs, N1, Sum1)
; Sum0 = 0
).

We have an additional problem here: this recursion stops when N0
becomes 0. However, in the constraint version N0 may not be known yet.
Solution: we transform this code so that it always scans the whole list.
(This is an unnnecessary overhead in the Prolog version, but is needed
for the constraint version.)

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 260 / 372

Declarative Programming with Constraints From plain Prolog to constraints

The nsum constraint, cont’d.

Second Prolog version:
nsum1p([], 0, 0).
nsum1p([X|Xs], N0, Sum0) :-

(N0 > 0 -> N1 is N0-1, Sum1 is Sum0-X
; N1 = N0, Sum1 = Sum0
),
nsum1p(Xs, N1, Sum1).

Notice that when the counter N0 becomes 0 we keep the recursion
running, without changing the sum and the counter.
The two CLPFD versions:

nsum2c([], 0, 0).
nsum2c([X|Xs], N0, Sum0) :-

N0 #> 0 #<=> B,
B #=> N1 #= N0-1 #/\ Sum1 #= Sum0-X,
#\ B #=> N1 #= N0 #/\ Sum1 #= Sum0,
nsum2c(Xs, N1, Sum1).

nsum3c([], 0, 0).
nsum3c([X|Xs], N0, Sum0) :-

N0 #> 0 #<=> B,
N1 #= N0-B,
Sum1 #= Sum0-X*B,
nsum3c(Xs, N1, Sum1).

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 261 / 372

Declarative Programming with Constraints Improving efficiency

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 262 / 372

Declarative Programming with Constraints Improving efficiency

Techniques for improving efficiency of CLPFD programs

In most cases:
Avoiding choice points (other than labeling)
Finding the most appropriate labeling options

In some cases:
Reordering the variables before labeling
Introducing symmetry breaking rules to exclude equivalent solutions
Using global constraints instead of several ‘small’ constraints
Using redundant constraints for additional pruning

Further options (not discussed in detail):
Custom labeling heuristics
Experimenting with the possible options of library constraints
Using constructive disjunction and shaving to prune infeasible values
Implementing user-defined constraints with improved pruning capabilities
Trying different models of the problem

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 263 / 372

Declarative Programming with Constraints Improving efficiency

Reordering the variables before labeling

Example: in the N-queens problem, how many values can be pruned from the
domain of other variables, after instantiating a variable?

=⇒ 14 =⇒ 20

Idea: variables should be instantiated inside-out, starting from the middle

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 264 / 372

Declarative Programming with Constraints Improving efficiency

Reordering the variables before labeling

:- use_module(library(lists)).

% reorder_inside_out(+L1, -L2): L2 contains the same elements as L1
% but reordered inside-out, starting from the middle, going alternately
% up and down
reorder_inside_out(L1, L2) :-

length(L1,N),
Half1 is N//2, Half2 is N-Half1,
prefix_length(L1,FirstList,Half1), suffix_length(L1,SecondList,Half2),
reverse(FirstList,ReversedFirstList),
merge(ReversedFirstList,SecondList,L2).

% merge(+L1, +L2, -L3): the elements of L3 are alternately the
% elements of L1 and L2.
merge([],[],[]).
merge([X],[],[X]).
merge([],[Y],[Y]).
merge([X|L1],[Y|L2],[X,Y|L3]) :-

merge(L1,L2,L3).

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 265 / 372

Declarative Programming with Constraints Improving efficiency

Reordering the variables before labeling

:- use_module(library(clpfd)).

% queens_clpfd(N, Qs): Qs is a valid placement of N queens on an NxN
% chessboard.
queens_clpfd(N, Qs):-

placement(N, N, Qs),
safe(Qs),
reorder_inside_out(Qs,Qs2) ,
labeling([ffc,bisect],Qs2).

=⇒ Time in msec for finding all solutions of N-queens for N = 12 (on an
Intel i3-3110M, 2.40GHz CPU):

Without reordering With reordering

1,810 1,311

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 266 / 372

Declarative Programming with Constraints Improving efficiency

Symmetry breaking

Symmetry: a solution induces other – in a sense, equivalent – solutions
Symmetry breaking: narrowing the search space by eliminating some of
the equivalent solutions
Example: N-queens – mirrored solutions

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 267 / 372

Declarative Programming with Constraints Improving efficiency

Symmetry breaking

A simple symmetry-breaking rule for N-queens: the queen in the first row
must be in the left half of the row
Mid is (N+1)//2, Qs=[Q1|_], Q1#=<Mid

This will roughly halve the runtime
Only half of the solutions will be found
If all solutions are needed, the remaining ones must be created by
mirroring

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 268 / 372

Declarative Programming with Constraints Improving efficiency

Another case study: magic sequences

Definition: L = (x0, . . . , xn−1) is a magic sequence if
each xi is an integer from [0,n − 1] and
for each i = 0,1, . . . ,n − 1, the number i occurs exactly xi times in L

Examples for n = 4: (1, 2, 1, 0) and (2, 0, 2, 0)
Problem: write a CLPFD program that finds a magic sequence of a given
length, and enumerates all solutions on backtracking
% magic(+N, ?L): L is a magic sequence of length N.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 269 / 372

Declarative Programming with Constraints Improving efficiency

Solution, main part

% magic(+N, ?L): L is a magic sequence of length N.
magic(N,L) :-

length(L,N),
N1 is N-1, domain(L,0,N1),
occurrences(L,0,L),
labeling([ffc],L).

% occurrences(Suffix, I, L): Suffix is the suffix of L starting at
% position I, and the magic sequence constraint holds for each element of
% Suffix.
occurrences([],_,_).
occurrences([X|Suffix],I,L) :-

exactly(I,L,X),
I1 is I+1,
occurrences(Suffix,I1,L).

% exactly(I,L,X): the number I occurs exactly X times in list L.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 270 / 372

Declarative Programming with Constraints Improving efficiency

Variations for exactly/3

% exactly(I,L,M): the number I occurs exactly M times in list L.

Speculative solution (uses choice points in posting the constraints):
exactly_spec(I, [I|L], M) :-

M#>0, M1 #= M-1, exactly_spec(I, L, M1).
exactly_spec(I, [X|L], M) :-

M#>0, X #\= I, exactly_spec(I, L, M).
exactly_spec(I, L, 0) :-

all_nonequal(I,L).
all_nonequal(_,[]).
all_nonequal(I,[X|Xs]) :-

I #\= X, all_nonequal(I,Xs).

A non-speculative solution using reification:
exactly_reif(_, [], 0).
exactly_reif(I, [X|L], M) :-

X#=I #<=> B, M#=M1+B, exactly_reif(I, L, M1).

A non-speculative solution using a global library constraint:
exactly_glob(I, L, M) :-

count(I, L, #=, M).
Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 271 / 372

Declarative Programming with Constraints Improving efficiency

Evaluation

Time for all solutions in msec (on an Intel i3-3110M, 2.40GHz CPU):

N Speculative Reification Global

6 0 0 0
7 31 0 0
8 93 0 0
9 344 0 0

10 1,669 0 0
11 8,767 0 0
12 49,109 0 0
13 293,594 15 16

20 94 31
25 203 47
30 422 93
35 843 234
40 1,716 405

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 272 / 372

Declarative Programming with Constraints Improving efficiency

Redundant constraints

Proposition 1: If L = (x0, . . . , xn−1) is a magic sequence, then

n−1∑
i=0

xi = n

Implementation using CLPFD:
sum(L, #=, N)

Proposition 2: If L = (x0, . . . , xn−1) is a magic sequence, then

n−1∑
i=0

i · xi = n

Implementation using CLPFD (using also library(between)):
N1 is N-1,
numlist(0, N1, Coeffs), % Coeffs = [0,1,...,N1]
scalar_product(Coeffs, L, #=, N)

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 273 / 372

Declarative Programming with Constraints Improving efficiency

The effect of redundant constraints on the global approach

Time for all solutions in msec (on an Intel i3-3110M, 2.40GHz CPU):

N None Proposition 1 Proposition 2 Proposition 1 + 2

40 405 15 15 16
50 874 78 31 31
60 2,372 109 47 31
70 3,885 202 63 47
80 8,081 390 140 109
90 12,589 499 172 140

100 19,438 686 187 109
120 42,151 1,279 296 203
140 73,273 2,324 546 313

200 11,058 2,044 1,466
250 21,223 2,871 2,043
300 37,287 4,931 3,182

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 274 / 372

Declarative Programming with Constraints Implementation of CLPFD

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 275 / 372

Declarative Programming with Constraints Implementation of CLPFD

FD variable internals – reflection predicates

(The slides in this section are specific to SICStus Prolog)
The representation of a finite domain (FD) variable contains

the size of the domain
the lower bound of the domain
the upper bound of the domain
the domain as an FD-set (internal representation format)

The above pieces of information can be obtained (in constant time) using
fd_size(X, Size): Size is the size (number of elements) of the
domain of X (integer or sup).
fd_min(X, Min): Min is the lower bound of X’s domain;
Min can be an integer or the atom inf
fd_max(X, Max): Max is the upper bound of X’s domain (integer or sup).
fd_set(X, Set): Set is the domain of X in FD-set format

Further reflection predicates
fd_dom(X, Range): Range is the domain of X in ConstRange format
(the format accepted by the constraint Y in ConstRange)
fd_degree(X, D): D is the number of constraints attached to X

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 276 / 372

Declarative Programming with Constraints Implementation of CLPFD

FD reflection predicates – examples

| ?- X in (1..5)\/{9}, fd_min(X, Min), fd_max(X, Max),
fd_size(X, Size).

Min = 1, Max = 9, Size = 6, X in(1..5)\/{9} ?

| ?- X in (1..9)/\ \(6..8), fd_dom(X, Dom), fd_set(X, Set).
Dom = (1..5)\/{9}, Set = [[1|5],[9|9]], X in ... ?

To illustrate fd_degree here is a variant of N-queens without labeling:

% queens_nolab(N, Qs): Qs is a valid placement of N queens on
% an NxN chessboard. queens_nolab/2 does not perform labeling.
queens_nolab(N, Qs):-

length(Qs, N), domain(Qs, 1, N), safe(Qs).

| ?- queens_nolab(8, [X|_]), fd_degree(X, Deg).
Deg = 21, X in 1..8 ? % 21 = 7*3

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 277 / 372

Declarative Programming with Constraints Implementation of CLPFD

FD variable internals

ConstRange vs. FD-set format
| ?- X in 1..9, X#\=5, fd_dom(X,R), fd_set(X,S).

⇒ R = (1..4)\/(6..9), S = [[1|4],[6|9]]

FD-set is an internal format; user code should not make any assumptions
about it – use access predicates instead, see next slide
When do we need access to data associated with FD variables?

when implementing a user-defined labeling procedure
when implementing a user-defined constraint
(as a so called global constraint)
for other special techniques, such as constructive disjunction or
shaving

To perform the above tasks efficiently, we need predicates for processing
FD-sets

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 278 / 372

Declarative Programming with Constraints Implementation of CLPFD

Manipulating FD-sets

Some of the many useful operations:
is_fdset(Set): Set is a proper FD-set.
empty_fdset(Set): Set is an empty FD-set.
fdset_parts(Set, Min, Max, Rest): Set consists of an initial interval
Min..Max and a remaining FD-set Rest.
fdset_interval(Set, Min, Max): Set represents the interval Min..Max.
fdset_union(Set1, Set2, Union): The union of Set1 and Set2 is Union.
fdset_union(Sets, Union): The union of the list of FD-sets Sets is Union.
fdset_intersection/[2,3]: analogous to fdset_union/[2,3]

fdset_complement(Set1, Set2): Set2 is the complement of Set1.
list_to_fdset(List, Set), fdset_to_list(Set, List): conversions
between FD-sets and lists
X in_set Set: Similar to X in Range but for FD-sets

Blue preds work back and forth, e.g. fdset_parts(+,-,-,-) decomposes an
FD-set, while fdset_parts(-,+,+,+) builds an FD-set,

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 279 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 280 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

Handling disjunctions

Example: intervals [x , x + 5) and [y , y + 5) are disjoint:
(x + 5 ≤ y) ∨ (y + 5 ≤ x)

Reification-based solution
| ?- domain([X,Y], 0, 6), X+5 #=< Y #\/ Y+5 #=< X.

⇒ X in 0..6, Y in 0..6 no pruning

Speculative solution
| ?- domain([X,Y], 0, 6), (X+5 #=< Y ; Y+5 #=< X).

⇒ X in 0..1, Y in 5..6 ? ;
⇒ X in 5..6, Y in 0..1 ? ; no

max. pruning, but choice points created

A solution using domain-consistent arithmetic:
| ?- domain([X,Y], 0, 6),
scalar_product([1,-1],[X,Y],#=,D,[consistency(domain)]),
abs(D) #>= 5.
⇒ X in (0..1)\/(5..6), Y in (0..1)\/(5..6) ? max. pruning

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 281 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

Bent triples (Y-wings) – a sudoku solving technique

Consider the following sudoku solution state, using pencilmarks
(pencilmarks correspond to CLPFD variable domains)

The three framed cells form a bent triple or Y-wing.
The blue cell in r3c3 (call it X) has two possible values: 7 and 8.
What happens to the orange cell in r1c6 (call it Z) if X gets instantiated?

If X=7 r1c3 becomes 6 and so 6 gets removed from the cell Z
If X=8 r3c6 becomes 6 and so 6 gets removed from the cell Z

Either way Z cannot be 6, so we can remove 6 from Z
Can 6 be removed from r1c5? And from r2c6?
This type of reasoning is called constructive disjunction.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 282 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

Constructive disjunction (CD)

Constructive disjunction is a case-based reasoning technique
Assume a disjunction C1 ∨ . . . ∨ Cn

Let D(X ,S) denote the domain of X in store S
The idea of constructive disjunction:

For each i , let Si be the store obtained by executing Ci in S
Proceed with store SU , the union of Si , i.e. for all X ,
D(X ,SU) = ∪iD(X ,Si)

Algorithmically:
For each i :

post Ci
save the new domains of the variables
undo Ci

Narrow the domain of each variable to the union of its saved domains

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 283 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

Implementing constructive disjunction (CD)

Computing the CD of a list of constraints Cs wrt. a single variable Var:
cdisj(Cs, Var) :-

findall(S, (member(C,Cs),C,fd_set(Var,S)), Doms),
fdset_union(Doms,Set),
Var in_set Set.

Example:
| ?- domain([X,Y],0,6), cdisj([X+5#=<Y,Y+5#=<X], X).

⇒ X in(0..1)\/(5..6), Y in 0..6 ?

Note that CD is not a constraint, but a one-off pruning technique.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 284 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

Shaving – a special case constructive disjunction

Basic idea: “What if” X = v? (. . . and hope for failure). If executing X = v
causes failure (without any labeling) =⇒ X ̸= v , otherwise do nothing.
Shaving an integer V off the domain of X:
shave_value(X, V) :- (\+ (X = V) -> X #\= V

; true
).

Shaving all values in X ’s domain {v1, . . . , vn} is the same as performing
a constructive disjunction for (X = v1) ∨ . . . ∨ (X = vn) w.r.t. X
shave_values0(X) :-

fd_set(X, FD), fdset_to_list(FD, L),
maplist(shave_value(X), L).
% i.e., if L = [A,B,...] this is equivalent to:
% shave_value(X, A), shave_value(X, B), ...

A (slightly more efficient) variant using findall:
shave_values(X) :- fd_set(X, FD),

findall(X, fdset_member(X,FD), Vs),
list_to_fdset(Vs, FD1), X in_set FD1.

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 285 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

An example for shaving, from a kakuro puzzle

Kakuro puzzle: like a crossword, but with distinct digits 1–9 instead of
letters; sums of digits are given as clues.
% L is a list of N distinct digits 1..9 with sum Sum.
kakuro(N, L, Sum) :-

length(L, N), domain(L, 1, 9), all_distinct(L), sum(L,#=,Sum).

Example: a 4 letter “word” [A,B,C,D], the sum is 23, domains:
sample_domains(L) :- L = [A,_,C,D], A in {5,9}, C in {6,8,9}, D=4.

| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L).
⇒ A in {5}\/{9}, B in (1..3)\/(5..8), C in {6}\/(8..9) ?

Only B gets pruned:
4 is pruned by all_distinct
9 is pruned by sum

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 286 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

An example for shaving, from a kakuro puzzle

Shaving 9 off C shows that the value 9 for C is infeasible:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L). % from prev. slide
⇒ A in{5}\/{9}, B in(1..3)\/(5..8), C in{6}\/(8..9) ?

| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L), shave_value(9,C).
⇒ A in{5}\/{9}, B in(2..3)\/(5..8), C in{6}\/{8}} ?

Shaving the whole domain of B leaves just three values:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L), shave_values(B).
⇒ A in{5}\/{9}, B in{2}\/{6}\/{8}, C in{6}\/(8..9) ?

These two shaving operations happen to achieve domain consistency:
| ?- kakuro(4, L, 23), sample_domains(L), labeling([], L).

⇒ L = [5,6,8,4] ? ; L = [5,8,6,4] ? ; L = [9,2,8,4] ? ; no

| ?- kakuro(4, L, 23), sample_domains(L), findall(L, labeling([], L), Sols),
transpose(Sols, _Vs), maplist(sort, _Vs, Vals).

Sols = [[5,6,8,4],[5,8,6,4],[9,2,8,4]],
Vals = [[5,9],[2,6,8],[6,8],[4]]

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 287 / 372

Declarative Programming with Constraints Disjunctions in CLPFD

When to perform shaving?

It’s often enough to do it just once, before labeling
Recall that labeling is performed for each variable, in a loop
It may be useful to do shaving in each such loop cycle

do your own loop, e.g. simply scanning vars left-to-right
use the value(Goal) labeling option (not discussed in this course)

To make shaving efficient one may consider
shaving a single variable repeatedly, until a fixpoint is reached
(may not pay off)
limit it to variables with small enough domain (e.g. of size 2)
perform it only after every nth labeling step (requires global variables)

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 288 / 372

Declarative Programming with Constraints Modelling

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 289 / 372

Declarative Programming with Constraints Modelling

Example: the domino puzzle

See e.g. http://www.puzzle-dominosa.com/,
http://williamarmstrong.com/brain/dominojigsawpuzzle.html

Rectangle of size (n + 1)× (n + 2)
A full set of n-dominoes: tiles marked with {⟨ i , j ⟩ | 0 ≤ i ≤ j ≤ n}
By using each domino exactly once, the rectangle can be covered with no
overlaps and no holes
Input: a rectangle filled with integers 0..n (domino boundaries removed)
Task: reconstruct the domino boundaries

% A puzzle (n=3): % The (only) solution:

1 3 0 1 2 | 1 | 3 0 | 1 | 2 |
| |-------| | |

3 2 0 1 3 | 3 | 2 0 | 1 | 3 |
|---------------|---|

3 3 0 0 1 | 3 3 | 0 0 | 1 |
|-------|-------| |

2 2 1 2 0 | 2 2 | 1 2 | 0 |

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 290 / 372

http://www.puzzle-dominosa.com/
http://williamarmstrong.com/brain/dominojigsawpuzzle.html

Declarative Programming with Constraints Modelling

Modelling – selecting the variables

Option 1: A matrix of solution variables, each having a value which
encodes n, w, s, e

difficult to ensure that each domino is used exactly once
Option 2: For each domino in the set have variable(s) pointing to its place
on the board

difficult to describe the non-overlap constraint
Option 3: Use both sets of variables, with constraints linking them

high number of variables and constraints add considerable overhead
Option 4: Map each gap between – horizontally or vertically – adjacent
numbers to a 0/1 variable, whose value is 1, say, iff it is the mid-line of a
domino

this is the chosen solution

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 291 / 372

Declarative Programming with Constraints Modelling

Modelling – constraints for option 4

Let Syx and Eyx be the variables for the southern and eastern boundaries
of the matrix element in row y, column x.
Non-overlap constraint: the four boundaries of a matrix element sum up
to 1. E.g. for the element in row 2, column 4 (see blue diamonds below):
sum([S14,E23,S24,E24], #=, 1)

All dominoes used exactly once: of all the possible placements of each
domino, exactly one is used. E.g. for domino ⟨0,2 ⟩ (see red asterisks):
sum([E22,S34,E44], #=, 1)

1 3 0 1 2
⋄

3 2 * 0 ⋄ 1 ⋄ 3
⋄

3 3 0 0 1
*

2 2 1 2 * 0

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 292 / 372

Declarative Programming with Constraints User-defined constraints (ADVANCED)

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 293 / 372

Declarative Programming with Constraints User-defined constraints (ADVANCED)

User-defined constraints (ADVANCED)

What should be specified when defining a new constraint:
Activation conditions: when should it wake up
Pruning: how should it prune the domains of its variables
Termination conditions: when should it exit

Additional issues for reifiable constraints:
How should its negation be posted?
How to determine whether it is entailed by the store?
How to determine whether its negation is entailed by the store?

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 294 / 372

Declarative Programming with Constraints User-defined constraints (ADVANCED)

Two possibilities for defining new constraints (ADVANCED)

FD predicates Global constraints

Number of arguments Fixed Arbitrary (lists of vari-
ables as arguments)

Specification of prun-
ing logic

Using indexicals, a set-
valued functional lan-
guage

In Prolog

Specification of acti-
vation and termination
conditions

Deduced automatically
from the indexicals

In Prolog

Support for reification Yes, using further in-
dexicals

No

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 295 / 372

Declarative Programming with Constraints User-defined constraints (ADVANCED)

FD predicates – a simple example (ADVANCED)

An FD predicate ’x=<y’(X,Y), implementing the constraint X #=< Y

FD clause with neck “+:” – pruning rules for the constraint itself:
’x=<y’(X,Y) +:

X in inf..max(Y), % intersect X with inf..max(Y)
Y in min(X)..sup. % intersect Y with min(X)..sup

FD clause with neck “-:” – pruning rules for the negated constraint:
’x=<y’(X,Y) -:

X in (min(Y)+1)..sup,
Y in inf..(max(X)-1).

FD clause with neck “+?” – the entailment condition:
’x=<y’(X,Y) +? % X=<Y is entailed if the domain of X

X in inf..min(Y). % becomes a subset of inf..min(Y)

FD clause with neck “-?” – the entailment condition for the negation:
’x=<y’(X,Y) -? % Negation X > Y is entailed when X’s

X in (max(Y)+1)..sup. % domain is a subset of (max(Y)+1)..sup

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 296 / 372

Declarative Programming with Constraints User-defined constraints (ADVANCED)

Defining global constraints (ADVANCED)

The constraint is written as two pieces of Prolog code:
The start-up code

an ordinary predicate with arbitrary arguments
should call fd_global/3 to set up the constraint

The wake-up code
written as a clause of the hook predicate dispatch_global/4
called by SICStus at activation
should return the domain prunings
should decide the outcome:

constraint exits with success
constraint exits with failure
constraint goes back to sleep (the default)

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 297 / 372

Declarative Programming with Constraints User-defined constraints (ADVANCED)

The start-up predicate fd_global/3 (ADVANCED)

fd_global(Constraint, State, Susp): start up constraint Constraint with
initial state State and wake-up conditions Susp.

Constraint is normally the same as the head of the start-up predicate
State can be an arbitrary non-variable term
Susp is a list of terms of the form:

dom(X) – wake up at any change of domain of variable X
min(X) – wake up when the lower bound of X changes
max(X) – wake up when the upper bound of X changes
minmax(X) – wake up when the lower or upper bound of X
changes
val(X) – wake up when X is instantiated

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 298 / 372

Declarative Programming with Constraints User-defined constraints (ADVANCED)

The wake-up hook predicate dispatch_global/4 (ADV’D)
(ADVANCED)

dispatch_global(Constraint, State0, State, Actions): When Constraint
is woken up at state State0 it goes to state State and executes Actions

Actions is a list of terms of the form:
exit – the constraint will exit with success
fail – the constraint will exit with failure
X=V, X in R, X in_set S – the given pruning will be performed
call(Module:Goal) – the given goal will be executed

No pruning should be done inside dispatch_global, instead the pruning
requests should be returned in Actions

States can be used to share information between invocations of the
constraint
Information about the domain variables can be queried using reflection
predicates

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 299 / 372

Declarative Programming with Constraints User-defined constraints (ADVANCED)

Global constraints – a simple example (ADVANCED)

Defining the constraint X #=< Y as a global constraint
The start-up code
lseq(X, Y) :-

fd_global(lseq(X,Y), void, [min(X),max(Y)]).
% ^^^^^^^^^ constraint name
% ^^^^ initial state
% ^^^^^^^^^^^^^^^ wake-up conditions

The wake-up code
:- multifile clpfd:dispatch_global/4.
:- discontiguous clpfd:dispatch_global/4.
clpfd:dispatch_global(lseq(X,Y), St, St, Actions) :-

dispatch_lseq(X, Y, Actions).
dispatch_lseq(X, Y, Actions) :-

fd_min(X, MinX), fd_max(X, MaxX), % get min of X in MinX, etc.
fd_min(Y, MinY), fd_max(Y, MaxY),
(number(MaxX), number(MinY), MaxX =< MinY
-> Actions = [exit]
; Actions = [X in inf..MaxY,Y in MinX..sup]
).

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 300 / 372

Declarative Programming with Constraints Some further global constraints (ADVANCED)

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 301 / 372

Declarative Programming with Constraints Some further global constraints (ADVANCED)

Specifying a relation using an automaton (ADVANCED)

automaton(Signature, SourcesSinks, Arcs): SourcesSinks and Arcs define
a finite automaton that classifies ground instances as solutions or
non-solutions. The constraint holds if the automaton accepts the list
Signature.
Example: the first few elements (at least one) of L must be all 1, the
remaining elements (at least one) must be all 2.
| ?- length(L,4), automaton(L,[source(s0),sink(s2)],

[arc(s0,1,s1),arc(s1,1,s1),arc(s1,2,s2),arc(s2,2,s2)]),
labeling([],L).

L = [1,1,1,2] ? ;
L = [1,1,2,2] ? ;
L = [1,2,2,2] ? ;
no

s0 s1 s2
1

1

2

2

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 302 / 372

Declarative Programming with Constraints Some further global constraints (ADVANCED)

Specifying a relation using a DAG (ADVANCED)
case(Template, Tuples, Dag[, Options]): similar to automaton, but uses a
directed acycylic graph (DAG), the nodes of which correspond to
variables in the same order as they appear in Template and arcs are
labeled with admissible intervals of the variable of the arc’s starting node.
For each tuple in Tuples, there must be an appropriate path from the root
node to a leaf node.
Example: A is in [1,6], B is in [0,1]; if dividing A by 3 gives remainder 1,
then B is even, otherwise B is odd.
?- case([X,Y],[[A,B]],[node(0,X,[(1..1)-1,(2..3)-2,(4..4)-1,(5..6)-2]),

node(1,Y,[0..0]),node(2,Y,[1..1])]),
labeling([],[A,B]),write(A-B),write(’ ’),fail.

=⇒ 1-0 2-1 3-1 4-0 5-1 6-1

1..1

4..4

2..3

5..6

0:X

1:Y

2:Y

0..0

1..1

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 303 / 372

Declarative Programming with Constraints Closing remarks

Contents

3 Declarative Programming with Constraints
Motivation
CLPFD basics
How does CLPFD work
FDBG
Reified constraints
Global constraints
Labeling
From plain Prolog to constraints
Improving efficiency
Implementation of CLPFD
Disjunctions in CLPFD
Modelling
User-defined constraints (ADVANCED)
Some further global constraints (ADVANCED)
Closing remarks

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 304 / 372

Declarative Programming with Constraints Closing remarks

What else is there in SICStus Prolog?

Further constraint libraries:
CLPB – booleans
CLPQ/CLPR – linear inequalities on rationals/reals
Constraint Handling Rules: generic constraints

Other features
“Traditional” built-in predicates, e.g. sorting, input/output, exception
handling, etc.
Powerful data structures, e.g. AVL trees, multisets, heaps, graphs,
etc.
Definite clause grammars, an extension of context-free grammars
with Prolog terms
Interfaces to other programming languages, e.g. C/C++, Java, .NET,
Tcl/Tk
Integrated development environment based on Eclipse (Spider)
Execution profiling
...

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 305 / 372

Declarative Programming with Constraints Closing remarks

Some applications of (constraint) logic programming

Boeing Corp.: Connector Assembly Specifications Expert (CASEy) – an
expert system that guides shop floor personnel in the correct usage of
electrical process specifications.
Windows NT: \WINNT\SYSTEM32\NETCFG.DLL contains a small Prolog
interpreter handling the rules for network configuration.
Experian (one of the largest credit rating companies): Prolog for checking
credit scores. Experian bought Prologia, the Marseille Prolog company.
IBM bought ILOG, the developer of many constraint algorithms (e.g. that
in all_distinct); ILOG develops a constraint programming / optimization
framework embedded in C++.
IBM uses Prolog in the Watson deep Question-Answer system for parsing
and matching English text

Declarative Programming with Constraints (Part III) Semantic and Declarative Technologies 2022 Spring Semester 306 / 372

