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Part I

Introduction to Logic

1 Introduction to Logic

2 Declarative Programming with Prolog

3 Declarative Programming with Constraints

4 The Semantic Web

Introduction to Logic

Foundations of logic – overview

Main theme of the course:
How to use mathematical logic in

programming
intelligent web search

We start with a brief introduction to Logic
Propositional Logic:

Syntax and semantics
The notion of consequence
The resolution inference algorithm
Bonus: solving various logic puzzles

First Order Logic (FOL)
Syntax and Model oriented semantics
The notion of consequence for FOL
The resolution inference algorithm for FOL
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Introduction to Logic Propositional Logic

Contents

1 Introduction to Logic
Propositional Logic
Propositional Resolution
Introduction to First Order Logic (FOL)
Syntax of First Order Logic
First order resolution
Semantics of First Order Logic
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Introduction to Logic Propositional Logic

Atomic and compound propositions

Consider the sentence: It is raining and I’m staying at home
How many propositions (statements) are there in this sentence?
There are three:

two atomic propositions: A =“It is raining”, B =“I’m staying at home”
and the whole sentence is a compound proposition C = A ∧ B
read the symbol ∧ as “and”
C is called a conjunction

Atomic proposition: anything, to which a truth value can be assigned
Truth values: true and false, often represented by integers 1 and 0
The term propositional formula (or proposition for short) refers to both
atomic and compound propositions
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Introduction to Logic Propositional Logic

Conjunction

Knowing the truth values of A and B can you tell the truth value of A ∧ B?
Think of A =“It is raining”, B =“I’m staying at home”

A B A ∧ B
false false false
false true false
true false false
true true true

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

In brief: A ∧ B is true if and only if (iff) . . . both A and B are true

Is the ∧ operator commutative? I.e. A ∧ B ?
= B ∧ A. Why?

Because 0 ∧ 1 = 1 ∧ 0
Is ∧ associative? I.e. (A1 ∧ A2) ∧ A3

?
= A1 ∧ (A2 ∧ A3). Why?

Because both sides are 1 iff each of A1,A2,A3 is 1.
n-fold conjunction: Cn = A1 ∧ A2 ∧ · · · ∧ An. When is Cn 1?
When all Ais are 1.
What is the truth value of an empty conjunction C0 (Cn with n = 0)?
Hint: Describe the relationship between Cn−1 and Cn, use this for n = 1
Cn = Cn−1 ∧ An, C1 = A1, hence A1 = C0 ∧ A1. This is true iff C0 = 1.
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Introduction to Logic Propositional Logic

Disjunction and negation

Another example: It is not raining or (else) I’m staying at home
The two atomic propositions are the same as earlier:
A =“It is raining”, B =“I’m staying at home”
“It is not raining” converts to ¬A, where ¬ denotes negation, read as
“it’s not the case that . . . ”
The whole sentence can be formalised as ¬A ∨ B
Read the symbol ∨ as “or”; U ∨ V is called a disjunction
The truth tables for disjunction and negation (with 0 – 1 values only):

A B A ∨ B
0 0 0
0 1 1
1 0 1
1 1 1

A ¬A
0 1
1 0
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Introduction to Logic Propositional Logic

Implication

Example: If it is raining, then drive slower than 100 km/h
I obey this sign provided that If it is raining, then I drive slowly. . .
This is an implication, formally written as A→ B,
the premise: A =“It is raining”, conclusion: B =“I drive slowly . . . ”
When it is not raining, does it matter whether I drive slowly?
The truth table for implication:

A B A→ B
0 0 1
0 1 1
1 0 0
1 1 1

Express implication using disjunction and negation: A→ B = ¬A ∨ B
A→ B evaluates to 0 iff A = 1,B = 0
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Introduction to Logic Propositional Logic

Equivalence and exclusive or

Example 1: I use an umbrella if and only if it is raining
This is an equivalence, formally written as A↔ B or A ≡ B,
A =“I use an umbrella”, B =“It is raining”,
Example 2: We either go to movies or have dinner (but not both)
This is an exclusive or (XOR), formally written as A xor B or A⊕ B,
A =“we go to movies”, B =“we have a dinner”,
The truth tables for equivalence and exclusive or:

A B A ≡ B
0 0 1
0 1 0
1 0 0
1 1 1

A B A⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Express equivalence using exclusive or, and the other way round:
(A ≡ B) = ¬(A⊕ B), (A⊕ B) = ¬(A ≡ B)
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Introduction to Logic Propositional Logic

Normal forms

A proposition has lots of equivalent formulations:
A→ B ≡ ¬A ∨ B ≡ ¬(A ∧ ¬B)

To design an efficient reasoning algorithm, it makes sense to use one of
normal forms (NF), such as:

DNF (Disjunctive Normal Form) or CNF (Conjunctive NF)
Both allow only three operations: ∧,∨, and ¬
In both NFs ‘¬’ can only be used in front of atomic propositions.
A formula is called a literal if it is either A or ¬A, where A is atomic.
A DNF takes the form C1 ∨ . . . ∨ Cn, n ≥ 0, where each Ci is a
conjunction of literals Li1 ∧ . . . ∧ Limi

A CNF takes the form D1 ∧ . . . ∧ Dn, n ≥ 0, where each Di is a
disjunction of literals Li1 ∨ . . . ∨ Limi

Produce the CNF and DNF of A⊕ B (exclusive or)!
Notice that the DNF can be easily derived from a truth table
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Introduction to Logic Propositional Logic

Models and tautologies

Recall some algebraic formulas from high school:

x2 − 3x + 2 = 0 equation – true for some values of x

x2 − 4 = (x − 2)(x + 2) identity – true for all values of x

Consider a propositional formula with n atomic propositions, e.g.

((A ∧ B)→ C) ≡ (A→ (B → C))

Here n = 3, so there are 2n = 8 valuations for atomic propositions:
(A,B,C) can be (0,0,0); (0,0,1); (0,1,0); . . . ; (1,1,0); (1,1,1)
Each such valuation is called a model or a universe
A model satisfies a propositional formula, if the formula is true when the
atomic propositions take the 0–1 values specified by the model.
E.g. the model (0,0,0) satisfies the above equivalence
A formula is called a tautology if all models satisfy the formula
(cf. the above algebraic identity being true for all possible values of x)

Introduction to Logic (Part I) Semantic and Declarative Technologies 2022 Spring Semester 12 / 372



Introduction to Logic Propositional Logic

Some important tautologies

Show that this formula is a tautology:

((A ∧ B)→ C) ≡ (A→ (B → C)) (1)

Let us find all the models in which the left hand side evaluates to 0:
There is only one such model (A,B,C) = (1,1,0)
Let us find all the models in which the right hand side evaluates to 0:
There is only one such model (A,B,C) = (1,1,0)
Hence the above formula is a tautology

Show that the following formulas are tautologies:

¬¬U ≡ U
¬(U ∧ V ) ≡ ¬U ∨ ¬V (2)
¬(U ∨ V ) ≡ ¬U ∧ ¬V (3)

(2) and (3) are called De Morgan’s laws.
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Introduction to Logic Propositional Resolution

Contents
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Introduction to Logic Propositional Resolution

An automated inference system: resolution

The first order resolution inference algorithm was devised by Alan
Robinson around 1964
Let us first introduce its simplified form for propositional logic
Resolution uses the conjunctive normal form (CNF),
also called clausal form (recall):

a CNF is a conjunction of clauses: Cl1 ∧ . . . ∧ Cln
a clause is a disjunction of literals: L1 ∨ . . . ∨ Lk
a literal is either A or ¬A, where A is an atomic proposition

Conjunction is commutative and associative, and duplicate conjuncts can
be elminated, therefore CNF is normally viewed as a set of clauses.
Similarly, a clause is represented by a set of literals.
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Introduction to Logic Propositional Resolution

A sample translation to clausal form

Example: Transform to clausal form: ((A ∧ B)→ D) ∧ (C → (A ∧ B)) (*)
replace all connectives by equivalents using only ¬,∧,∨
move negations inside using De Morgan Laws
apply distributivity repeatedly to eliminate ∧s inside ∨s:
U ∨ (V ∧W ) = (U ∨ V ) ∧ (U ∨W )
transform ∧ and ∨ operators to sets, elminating duplicates

If a clause (a disjunction) contains both U and ¬U then it is meaningless
(it carries no information as (U ∨¬U) ≡ true), therefore it can be removed
Simplified notation (used in first Prolog versions)

literals written as signed atomic propositions, e.g. -A, +B (for ¬A, B)
clauses written as sequences of literals followed by a full stop, e.g.
-A -B +D. for ¬A ∨ ¬B ∨ D

The CNF of (*): (¬A ∨ ¬B ∨ D) ∧ (¬C ∨ A) ∧ (¬C ∨ B)
The CNF in set notation: {{¬A,¬B,D}, {¬C,A}, {¬C,B}}
The CNF in simplified notation: -A -B +D. -C +A. -C +B.
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Introduction to Logic Propositional Resolution

The resolution inference rule – introduction

Consider these two clauses: +A -B -C. (1)
+A +D +B. (2)

Literal # 2 in clause (1) is -B, while literal # 3 in clause (2) is +B.
These literals are opposite, i.e. one is the negation of the other.
Given two clauses containing opposite literals, the resolution rule infers a
new clause, called the resolvent, containing the union of all literals of the
two clauses, except the opposite literals.
In the example the resolvent clause is +A -C +D. (3)
Note that there is only one +A as A ∨ A = A.
Resolution is sound, i.e. (3) follows from (1) and (2). This is due to the
resolution principle:

(¬U ∨ V ) ∧ (U ∨W )→ (V ∨W ) (4)

Proof: Assume the LHS is true. U is either true or false.
If U is true V has to be true, as the first disj. is true.
If U is false W has to be true, as the second disj. is true.

In either case the RHS is true.
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Introduction to Logic Propositional Resolution

The resolution inference rule – full definition

Input: two clauses C = L1 L2 . . . Ln.
D = M1 M2 . . . Mk .

where Li = +X and Mj = -X, or Li = -X and Mj = +X.
Let C′ = C \ {Li}, D′ = D \ {Mj}, where \ denotes set difference.
(The set difference S1 \ S2 is obtained by removing all elements of S2 – if
present – from S1)
Thus C′ = L1 . . . Li−1 Li+1 . . . Ln.

D′ = M1 . . . Mj−1 Mj+1 . . . Mk .
Resolution of C and D yields the clause E = C′ ∪ D′ (meaning C′ ∨ D′),
called the resolventij(C,D), or simply resolvent(C,D);
E = L1 . . . Li−1 Li+1 . . . Ln M1 . . . Mj−1 Mj+1 . . . Mk .
(with duplicates removed)

Introduction to Logic (Part I) Semantic and Declarative Technologies 2022 Spring Semester 18 / 372

Introduction to Logic Propositional Resolution

The resolution rule – remarks

Informally: the resolution rule can be interpreted as viewing the clauses
as arithmetic formulas, to be summed up and removing exactly one pair
of “summands” +X -X

Example: resolvent(+A-B-C, +B+D) =+A-C+D
Remark: this analogy does not work, if there is a literal which occurs
in both clauses,
e.g. resolvent(+A-B-C, +B+D+A) =+A-C+D (only one +A is kept)

The case of having two or more “summands” with opposite signs also
breaks the analogy

Here only one pair of such summands is removed
Example: resolvent21(+A-B-C, +B+D+C) =+A-C+D+C= 1 (true), or
resolvent33(+A-B-C, +B+D+C) =+A-B+B+D= 1
Thus resolution does not produce a meaningful clause in this case
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Introduction to Logic Propositional Resolution

Example: solving an inspector Craig puzzle using resolution

The puzzle below is cited from “What Is The Name Of This Book?” by
Raymond M. Smullyan, chapter “From the cases of Inspector Craig”
Puzzles in this chapter involve suspects of a crime, named A, B, etc.
Some of them are guilty, some innocent.
Example:
An enormous amount of loot had been stolen from a store. The criminal
(or criminals) took the heist away in a car. Three well-known criminals A,
B, C were brought to Scotland Yard for questioning. The following facts
were ascertained:

1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Is A innocent or guilty?
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Introduction to Logic Propositional Resolution

Inspector Craig puzzle – solution

Let’s recall the facts
1 No one other than A, B, C was involved in the robbery.
2 C never works without A (and possibly others) as an accomplice.
3 B does not know how to drive.

Transform each statement into a formula involving the letters A, B, C as
atomic propositions. Proposition A stands for “A is guilty”, and so on.

1 A is guilty or B is guilty or C is guilty: A ∨ B ∨ C
2 If C is guilty then A is guilty: C → A
3 It cannot be the case that only B is guilty: B → (A ∨ C)

Transform each propositional formula into conjunctive normal form (CNF),
then show the clauses in simplified form:

1 A ∨ B ∨ C (already in CNF), clause: +A +B +C.
2 C → A, CNF: ¬C ∨ A, clause: -C +A.
3 B → (A ∨ C), CNF: ¬B ∨ A ∨ C, clause: -B +A +C.

(Note that in general a single formula can give rise to multiple clauses.)

Introduction to Logic (Part I) Semantic and Declarative Technologies 2022 Spring Semester 21 / 372

Introduction to Logic Propositional Resolution

Inspector Craig puzzle – resolution proof

Collect the clauses, give each a reference number and perform a
resolution proof:
(1) +A +B +C.
(2) -C +A.
(3) -B +A +C. resolve (1) lit 2 with (3) lit 1 => (4)
(4) +A +C. resolve (4) lit 2 with (2) lit 1 => (5)
(5) +A.
We deduced that A is true, so the solution of the puzzle is: A is guilty
Notice that +A occurs in each of the above clauses
As clauses are disjunctions, A being true means that all clauses are true
Hence the statements of the puzzle impose no restrictions on
propositions B and C (all 4 combinations allowed)
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Introduction to Logic Propositional Resolution

Removing trivial consequences

Consider this set of clauses: CS = { -B+C+D, +A+C, -A-B, +A-B+C }
Find a clause in CS that is a consequence of another clause in CS.
Hint: of these formulas, which implies which other? U ∨ V , U, V?

(If we know U ∨ V is true, can U be false?) Yes, it can.
(If we know U is true, can U ∨ V be false?) No

Hence U implies U ∨ V , and similarly V implies U ∨ V
Viewing clauses as sets, if C ⊆ D, then C → D (“subset”→ “whole set”)
+A+C→ +A-B+C, so +A-B+C is a trivial consequence of +A+C

Trivial consequences
A clause C ∨ D (D ̸= empty) is said to be a trivial consequence of C
Is it of interest to obtain the set of all consequences of CS?
No, we get marred by trivial consequences, e.g. -A-B-C, -A-B+C, . . .
It makes more sense to construct a maximal set of non-trivial
consequences, i.e. a set MCS which contains all consequences of CS,
except those that are a trivial consequence of a clause already in MCS
Removing a trivial consequence is valid because (C ∧ (C ∨ D)) ≡ C
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Introduction to Logic Propositional Resolution

Maximal set of non-trivial consequences (ADVANCED)

For the mathematically minded, here is a precise definition of the maximal set
of non-trivial consequences

For a set of clauses CS, its maximal set of consequences is MCS iff:
each clause in MCS is a consequence of CS:
for each C ∈ MCS, CS → C
there are no trivial consequences in MCS:
for each C1,C2 ∈ MCS, C2 is not a trivial consequence of C1
MCS contains all non-trivial consequences:
for each clause C such that CS → C holds, either C ∈ MCS holds,
or else C is a trivial consequence of a C′ ∈ MCS.
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Introduction to Logic Propositional Resolution

Constructing MCS – continuing the example

The set of input clauses:
(1) -B+C+D
(2) +A+C
(3) -A-B
(4) +A-B+C

Remove (4), as it is implied by (2)
Resolve (2) with (3) adding a new clause:

(5) -B+C
Remove (1), as it is implied by (5)
As no removal or resolution step can be applied, exit with the following
maximal set of (non-trivial) consequences:

(2) +A+C
(3) -A-B
(5) -B+C
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Introduction to Logic Propositional Resolution

A saturation algorithm for obtaining MCS

Given a set of clauses CS0, you can obtain its maximal set of consequences
by performing the following algorithm:

1 set CS to CS0

2 if CS contains an empty clause, exit with CS0 being inconsistent
3 if there are C1,C2 ∈ CS such that C2 is a trivial consequence of C1, then

remove C2 from CS, and repeat step 3
4 if there are C1,C2 ∈ CS such that C1 resolved with C2 yields C3 where

C3 ̸≡ true and C3 ̸∈ CS, then add C3 to CS, and continue at step 3
5 (the conditions of both steps 3 and 4 failed) exit with MCS = CS
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Introduction to Logic Introduction to First Order Logic (FOL)

First Order Logic – An example

Consider an island inhabited by at least one person
Some people (possibly none) are optimistic.
A person may have another person as a friend. There is no
information on the number of friends a person may have, this could
be 0, 1, or more. Also, friendship may not be mutual.

We know the following facts
(a) If someone has a non-optimistic friend, then they are optimistic.
(b) There is at least one person, who has a friend.

Try convincing yourself that the following statement must hold:
(c) There is an optimistic person on the island.

Describe statements (a), (b) and (c) formally. Use the following notation:
Let hasF (x , y) denote that x has y as their friend
Let opt(x) mean that x is optimistic
Use the quantifiers ∃ and ∀ as in the example (which states that each
optimistic person has a friend): ∀x .(opt(x)→ ∃y .hasF (x , y))
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First Order Logic – Proving a consequence

Recall: (a) If someone has a non-optimistic friend, then they are optimistic.
(b) There is at least one person, who has a friend.

From (a) and (b), can you deduce (c), i.e. someone is optimistic?
(b) states that there is a person (say p1) who has a friend (say p2)
Do case-based reasoning: p2 is either optimistic or not

Case 1: p2 is optimistic. This implies that (c) is true
Case 2: p2 is not optimistic. As p1 has (the non-optimistic) p2 as
a friend, because of (a), p1 is optimistic. Thus (c) is true again.

Having shown that both possible cases lead to (c) being true, we
have proven that statement (c) holds on the island.

Thus (c) is a semantic consequence of {(a), (b)}: {(a), (b)} |= (c)
This proof works for any island (math-speak: model)
A model for this example consists of

a set ∆ containing the inhabitants of the island
the interpretation of the 1-argument predicate opt/1 ⊆ ∆
the interpretation of the 2-argument predicate hasF/2 ⊆ ∆×∆

A model has all information needed to check the truth of a FOL formula
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First Order Logic (FOL)

First Order Logic
Includes Propositional Logic as a special case

All connectives of Propositional Logic can be used in FOL
Views of logic

Syntax (What are the well-formed statements)
Proofs (How can one obtain true statements?)
Semantics (What is the meaning of statements and their
components?)
Pragmatics (How to use all this?)
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Introduction to Logic Syntax of First Order Logic

First Order Logic – Syntax

Building blocks of FOL
Symbols:

logical symbols: propositional connectives ∨, ¬, . . . ; quantifiers ∀ ∃ ,
punctuation etc.– these have a fixed meaning
non-logical symbols such as hasF – these have arbitrary meaning

An analogy with programming languages:
logical symbols – keywords, non-logical symbols – identifiers
Terms represent individual objects in our universe, e.g. if f(x) and m(x)
denote the father and the mother of x, and s() denotes an individual
named Susan, then m(f(s())) refers to Susan’s father’s mother, i.e. the
paternal grandmother of Susan
Formulas state truths, e.g. hasF(m(f(s())),m(s())) – meaning
Susan’s paternal grandmother has Susan’s mother as a friend.
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Introduction to Logic Syntax of First Order Logic

The alphabet of FOL

What symbols are used in FOL formulas?
logical symbols

punctuation symbols: ( , ) .
logic connectives:
∧ (conjunction), ∨ (disjunction), ¬ (negation),
∃ (existential quantifier symbol – “exists such . . . that . . . ”),
∀ (universal quantifier symbol – “for all . . . holds that . . . ”),
= (equality predicate)
variable symbols: x1, . . . , xi , . . .

non-logical symbols
function symbols: f ,g,h, . . . , (including the special case of)
constant (nullary function) symbols: a,b, c, . . .
predicate symbols: p,q, r , . . .
each function and predicate symbol has a fixed arity (# of args) ≥ 0
a signature (cf. declaring vars in a program) specifies a set of
function and predicate symbols, together with their arities, e.g.
functions: f/1 (f (x) denotes the father of x), m/1 (“mother of”),
predicates: hasF/2,opt/1
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Syntax of FOL, computer scientists style
⟨ term ⟩ ::= ⟨ var symbol ⟩ |

⟨ function symbol ⟩(⟨arglist ⟩)
⟨arglist ⟩ ::= | % empty

⟨ term ⟩, . . . % comma sep. list

⟨atomic frm ⟩::= ⟨pred symbol ⟩(⟨arglist ⟩) |
⟨ term ⟩ = ⟨ term ⟩

⟨ formula ⟩ ::= ⟨atomic frm ⟩ |
(¬ ⟨ formula ⟩) |
(⟨ formula ⟩ ∧ ⟨ formula ⟩ ) |
(⟨ formula ⟩ ∨ ⟨ formula ⟩ ) |
∃ ⟨ var symbol ⟩ . (⟨ formula ⟩) |
∀ ⟨ var symbol ⟩ . (⟨ formula ⟩)

Mathematicians often
insert/delete parentheses and/or dots (in quantified formulas)
omit empty function arguments (), e.g. s ≡ (is a shorthand for) s()
use multiple vars after a single quantifier, e.g. ∀x , y .(. . .) ≡ ∀x .(∀y .(. . .))
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Syntax of FOL, mathematician style (ADVANCED)

A term is a text (a sequence of symbols) to name an object of the
universe of discourse

A variable symbol is a term
If t1, . . . , tn are terms and f is a function symbol of arity n, then
f (t1, . . . , tn) is a term
A term of FOL is obtained by applying the above two rules a finite
number of times

A well formed FOL formula (wff) is a text describing a statement
If t1, . . . , tn are terms and p is a predicate symbol of arity n, then
p(t1, . . . , tn) is an atomic formula
If t1 and t2 are terms, then t1=t2 is also an atomic formula.
If α and β are wffs, x is a variable symbol, then
(¬α), (α∧β), (α∨β), (∃x .α), (∀x .α) are wffs, too.
A well formed formula is obtained by applying the above rules a finite
number of times
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Syntax of FOL, contd.

Abbreviations – adding further propositional operations, as syntactic
sugar:

(α→ β) is an abbreviation of: (¬α ∨ β)
(α ≡ β) is an abbreviation of: ((α→ β) ∧ (β → α))
note that formulas (α ∨ β) and (∃x .α) could have been defined as
abbreviations, using De Morgan’s laws (extended to quantifiers):

(α ∨ β) ≡ ¬(¬α ∧ ¬β)
(∃x .α) ≡ ¬(∀x .¬α)

The scope of variables
An occurrence of variable x is bound if it appears inside a formula
∃x .α or ∀x .α
A variable occurrence x is free if it is not bound

A formula is a sentence (also called a closed formula)
if it contains bound variables only
Propositional Logic is a special case of FOL where all predicate symbols
have arity 0 (and so no variables and no function symbols are allowed)

Introduction to Logic (Part I) Semantic and Declarative Technologies 2022 Spring Semester 36 / 372



Introduction to Logic Syntax of First Order Logic

Some further practice

Formalize in FOL the statements below, using the signature:
function symbols: f/1 and m/1 (for father and mother), s/0 for Susan;
predicate symbols hasF/2 (has friend), and opt/1 (optimist).

1 Someone is an optimist. (recall)
2 Everyone is an optimist.
3 Everyone has a friend.
4 There is someone who is befriended with their father’s mother.
5 Someone is not an optimist.
6 Everyone is a friend of themselves.
7 If x ’s father or mother is an optimist, so is x , for any x
8 If x has a non-optimist friend, then x is an optimist, for any x . (recall)
9 Anyone whose all friends are optimists is bound to have a friend.

10 Susan is an optimist.
11 Susan’s maternal grandmother has Susan’s paternal grandmother as

a friend.
Try finding subsets of the above FOL sentences so that another sentence
above is a consequence of the given subset
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Clauses in First Order Logic

A FOL clause is
a set of literals (disjuncts),
each being a plain or negated atomic formula.
All variables are universally quantified.

An example: one’s female parent is their mother.
-hasParent(X,Y) -female(Y) +hasMother(X,Y).
≡ ∀X, Y.((hasParent(X, Y) ∧ female(Y))→ hasMother(X, Y))
An arbitrary FOL statement can be transformed to a set of clauses:

do propositional transformations
express→, ≡ etc, using ¬, ∧, and ∨
bring ¬ in front of atomic formulas
convert to CNF

bring quantifiers to the front of the formula
get rid of ∃ quantifiers by introducing so called Skolem functions
(not relevant in Logic Programming, not discussed further)
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A sample transformation to CNF

Example: if x has a non-optimist friend, then x is an optimist
FOL formula: ∀x .(∃y .(hasF (x , y) ∧ ¬opt(y))→ opt(x))
Eliminate implication (U → V ≡ ¬U ∨ V ):
∀x .(¬(∃y .(hasF (x , y) ∧ ¬opt(y))) ∨ opt(x))
Bring negation inside (use ¬∃u.W ≡ ∀u.¬W , and also De Morgan rules):
∀x .(∀y .(¬hasF (x , y) ∨ opt(y)) ∨ opt(x))
Bring ∀,∃ outside ∀x .(∀y .(φ1(x , y)) . . . φ2(x))≡ ∀x , y .(φ1(x , y) . . . φ2(x)):
∀x , y .(¬hasF (x , y) ∨ opt(y) ∨ opt(x))
Conjunctive Normal Form (CNF): ¬hasF (x , y) ∨ opt(y) ∨ opt(x)
Simplified CNF: -hasF(X,Y) +opt(Y) +opt(X).
(Note the use of capitalized identifiers for variables.)
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How to read the clausal form?

A general clause: −A1 . . . − Am + B1 . . . + Bn., m ≥ 0,n ≥ 0
It can be read as: the conjunction of negative literals implies the
disjunction of positive literals:
(A1 ∧ . . . ∧ Am)→ (B1 ∨ . . . ∨ Bn)

An empty conjunction (denoted by ■) is true, and an empty disjunction
(denoted by □) is false, because true ∧ A ≡ A and false ∨ A ≡ A.
Example: -hasF(X,Y) +opt(Y) +opt(X). can be read as
One of a pair of friends has to be opt : hasF (X ,Y )→ opt(Y ) ∨ opt(X )

Alternative readings:
Having a non-opt friend implies being opt :

hasF (X ,Y ) ∧ ¬opt(Y )→ opt(X )
A friend of a non-opt is an opt : hasF (X ,Y ) ∧ ¬opt(X )→ opt(Y )
Two non-opts cannot be friends: ¬opt(X ) ∧ ¬opt(Y )→ ¬hasF (X ,Y )
Two non-opts befriended is a contradiction:

¬opt(X ) ∧ ¬opt(Y ) ∧ hasF (X ,Y )→ □
In general: you can place any subset of literals into the RHS disjunction
and the remaining literals, each negated, into the LHS conjunction.
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From propositional resolution to FOL resolution

Assume we have the following clauses:

-opt(s). % s is non-optimistic. (1)
-opt(m). % m is non-optimistic. (2)
-hasF(s,m)+opt(m)+opt(s). % if s has m as a friend, either m or s is opt (3’)

Given (1)–(3’), can you deduce something using resolution?
Yes, one can deduce -hasF(s,m) using (propositional) resolution.
What if w consider this FOL clause instead of (3’):
-hasF(X,Y)+opt(Y)+opt(X) % if X has Y as a friend, either Y or X is opt (3)

Obviously, (3’) is a special case of (3), i.e. (3’) follows from (3).
Substitutions for variables X and Y are obtained through unification, a
two-way pattern matching algorithm.
Unification is an essential component of FOL resolution.
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FOL resolution – a small example

FOL resolution combines prop. resolution with minimal specialization, e.g.

-hasF(X,Y) +opt(Y) +opt(X). (1)
-opt(s). (2)
-opt(m). (3)

Perform a FOL resolution step between literals (1)#2 and (3)#1:
find a minimal substitution that makes the (unsigned) atomic formulas
opt(Y) and opt(m) the same: σ = {Y← m}
apply σ to the whole (1) and (3), resulting in opposite literals:
(1’): -hasF(X,m)+opt(m)+opt(X) and (3’): -opt(m)
perform propositional resolution, producing:

-hasF(X,m) +opt(X). (4)

(Is this a valid statement? Yes: “if Mary is x ’s friend, then x is an optimist”)
Next, resolve (4)#2 and (2)#1, σ = {X← s} producing:

-hasF(s,m). (5)

Each time we use a clause, we rename all its vars systematically
Similar two-step deductions result in: -hasF(s,s), -hasF(m,s), -hasF(m,m)
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Unification – making two terms the same

Propositional resolution requires the presence of literals +A and -B in the
two clauses, where A should be identical to B
FOL resolution has a weaker requirement: A and B should be unifiable:
there should be a substitution σ of variables with terms, such that Aσ = Bσ
(Aσ denotes the formula obtained from A by applying substitution σ)
A substitution replaces all occurrences of certain variables with arbitrary
terms (possibly other variables)

σ = {X← b, Y← Z}, A = hasF(X, Y), Aσ = hasF(b, Z)
σ = {X← a}, A = hasF(m(X), X), Aσ = hasF(m(a), a)

Example unification: formulas A=hasF(a, X) and B=hasF(Y, b) are
unifiable using the substitution σ = mgu(A, B) = {X← b, Y← a}
If there are multiple substitutions σ for which Aσ = Bσ, resolution uses the
most general unifier, hence the abbreviation mgu
Example: atomic formulas p(X, X) and p(U, V) are unifiable using the
substitution σ ={X← U, V← U} – U is not substituted further

σ′ = {X← a, V← a, U← a} is also a unifier, but not a mgu
The mgu is unique, except for variable renaming:
σ1 = {X← V, U← V} and σ2 = {V← X, U← X} are also mgu’s
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FOL resolution – an example

In Prop. Logic: +a(x ,0)−b(x ,2)
+b(1, y)− c(y)⇒ +a(1,0)−c(2)

In FOL: +a(x ,0)−b(x ,2)

+b(1, y)− c(y)⇒ +a(1,0)− c(2)

Detailed steps:
1 find subst. σ = mgu(b(x ,2),b(1, y)) = {x ← 1, y ← 2}

(not all variables are necessarily substituted)
2 apply substitution σ to both clauses

(vars are universally quantified – substitution is a valid inference):

+a(1,0)−b(1,2)

+b(1,2)− c(2)aa⇒ +a(1,0)− c(2)

3 finally, apply propositional resolution, to obtain the resolvent:

⇒ +a(1,0)− c(2)a
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The resolution inference rule for FOL

Resolution takes two clauses as input:

C = L1 . . . Ln and D = M1 . . .Mk

where literals Li = ±A and Mj = ±B have opposite signs,
and their atomic formulas are unifiable: σ = mgu(A,B)

Under the above conditions the resolution inference rule can be applied
to C and D and results in the new clause

(L1 . . . Li−1 Li+1 . . . Ln M1 . . .Mj−1 Mj+1 . . .Mn)σ

obtained by
taking the union of the literals of clauses C and D
removing the literals Li and Mj (the ones we resolve upon)
applying the substitution σ to the remaining literals

As specialization (substitution of univ. quantified vars) and propositional
resolution are sound operations, FOL resolution is also sound
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The factoring inference rule for FOL (ADVANCED)

For full FOL the resolution rule is not enough to obtain a complete proof
system, one needs one more simple rule factoring– if there are two
literals in a clause that are unifiable, you can replace them by a single
literal, their unified form.
The factoring deduction rule:

example in Propositional Logic: +a+a− b ⇒ +a− b
this is „automatic”, as clauses are considered sets of literals.
example in FOL: +a(x ,2)+a(1, y)− b(x , y)⇒ + a(1,2)− b(1,2)
in general: factoring takes a clause with two unifiable literals and
produces a clause with these two literals merged:
L1 . . . Ln ⇒ (L1 . . . Lj−1 Lj+1 . . . Ln)σ where σ = mgu(Li ,Lj)

For the subset of FOL used in Prolog, this rule is not required, hence it is
not discussed further.
Ancestor resolution (see later) is alternative to factoring, when
implementing a complete FOL theorem prover using Prolog technology.
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Resolution: Susan’s puzzle

Recall some formulas from slide 37:
7 If x ’s father or mother is an optimist, so is x , for any x
8 If x has a non-optimist friend, then x is an optimist, for any x .
11 Susan’s maternal grandmother has her paternal grandmother as a friend.

Let us consider a variant of the above example:
We use the hasP/2 (has parent) pred. instead of father and mother functions
Also, we simplify 11 to this: Susan’s mother has her father as a friend.

We will now prove that Susan is bound to be an optimist, using resolution
x is an optimist if x has a parent who is an optimist.
+opt(X) -hasP(X, P) -opt(P). (1)
x is an optimist if x has a friend who is not an optimist.
+opt(X) -hasF(X, F) +opt(F). (2)
Susan’s (s’s) parents are m and f, and m has f as her friend.
+hasP(s, m). (3)
+hasP(s, f). (4)
+hasF(m, f). (5)
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A resolution proof of the “optimist” example

Initial clauses: (1) +opt(X) -hasP(X, P) -opt(P).
(2) +opt(X) -hasF(X, F) +opt(F).
(3) +hasP(s, m). (4) +hasP(s, f). (5) +hasF(m, f).

A possible resolution proof that (1), . . . , (5) implies opt(s):
(1) + (3) (6) +opt(s) -opt(m). % s is opt if m is opt
(1) + (4) (7) +opt(s) -opt(f). % s is opt if f is opt
(2) + (5) (8) +opt(m) +opt(f). % m is opt if f is not opt
(7) + (8) (9) +opt(s) +opt(m). % s is opt if m is not opt
(6) + (9) (10) +opt(s). % s is optimistic

The proof as a tree:

(10)

(9)

(8)

(5)(2)

(7)

(4)(1)

(6)

(3)(1)
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Can we deduce all the consequences of some clauses?

Can a clause be resolved with itself?
Answer: it depends. . . on what kind of logic we use:

In propositional logic: no, as a clause . . . +a. . . -a. . . is meaningless
In FOL: yes, see e.g. clause (1) from the previous slide

(1) +opt(X) -hasP(X, P) -opt(P).
Resolve (1) with a copy of itself (1’) using literals (1)#3 and (1’)#1
(1’) +opt(Y) -hasP(Y, Q) -opt(Q).

Write down the resolvent, and read out its meaning in plain English.
(2) +opt(X) -hasP(X, P) -hasP(P, Q) -opt(Q).

“X is an optimist if X has an optimist grandparent (Q).”
One can keep resolving the output of the previous step with (1), obtaining
clauses that describe valid and useful consequences of (1):
“If X has an optimist great-grandparent, than X is an optimist.”. . .
“If X has an optimist nth ancestor, than X is an optimist.”
One can thus infer infinitely many clauses from {(1)}
Inferring all consequences of a set of clauses is not a viable task in FOL
That is why we focus on indirect proofs
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Indirect resolution proofs

Given a premise U and a consequence V , to prove (U → V ) indirectly:
we assume ¬(U → V ), i.e. U ∧ ¬V
we show that this leads to contradiction, i.e. U ∧ ¬V → false

What is the truth value of an empty clause (empty disjunction)? false
The indirect resolution proof of (U → V ) consists of the following steps:

convert both U and ¬V to (two) sets of clauses
take the union of the two sets and perform resolution
(aiming at getting the shortest clauses possible)
when an empty clause is reached, the proof is completed

To prove that clauses (1), . . . , (5) from page 49 imply opt(s) :
add ¬ opt(s) ≡ -opt(s) as clause (10) (this is called the goal clause)
deduce an empty clause from the set { (1), . . . , (5), (10)}
using resolution
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The indirect resolution proof of the “optimist” example

Initial clauses (so called program clauses: (1)–(5), goal clause: (10))
(1) +opt(X) -hasP(X, P) -opt(P).
(2) +opt(X) -hasF(X, F) +opt(F).
(3) +hasP(s, m).
(4) +hasP(s, f).
(5) +hasF(m, f).

(10) -opt(s).
A possible resolution proof that (1), . . . , (5), (10) lead to contradiction:

(10) -opt(s). % s is non-opt
(10) + (1) (11) -hasP(s, U) -opt(U). % all parents of s are non-opt
(11) + (3) (12) -opt(m). % m is non-opt
(12) + (2) (13) -hasF(m, V) +opt(V). % all friends of m are opt
(13) + (5) (14) +opt(f). % f is opt
(14) + (1) (15) +opt(Y) -hasP(Y, f). % all children of f are opt
(15) + (4) (16) +opt(s). % s is opt
(16) + (10) (17) □ % contradiction

(Recall that □ denotes an empty clause, i.e. an empty disjunction ≡ false)
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The structure of the indirect “optimist” proof

(17) □

(10)(16)

(4)(15)

(1)(14)

(5)(13)

(2)(12)

(3)(11)

(1)(10)

A linear resolution step is when a
goal clause is resolved with a
program clause, producing a new
goal clause
All steps in this proof, except the
last, are linear
The last step is an example of a
so called ancestor resolution, as
(16) is resolved with one of its
ancestors in the proof tree, (10)
In Prolog, only linear resolution
steps are allowed
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Can we find out who are “optimists”?

Let’s try to prove that S = ∃z.opt(z) (there are some optimists),
assuming clauses (1)–(5)
Negate S: ¬S ≡ ¬∃z.opt(z) ≡ ∀z.¬opt(z) =⇒ clause -opt(Z)
Initial clauses:
(1) +opt(X) -hasP(X, P) -opt(P). (4) +hasP(s, f).
(2) +opt(X) -hasF(X, F) +opt(F). (5) +hasF(m, f).
(3) +hasP(s, m). (10) -opt(Z).

A resolution proof showing that (1), . . . , (5), (10) is contradictory:
(10) -opt(Z). % Z is non-opt

(10) + (1) (11) -hasP(Z, U) -opt(U). % all parents of Z are non-opt
(11) + (3) +hasP(s, m). % Z = s

(12) -opt(m). % m is non-opt
(12) + (2) (13) -hasF(m, V) +opt(V). % all friends of m are opt
(13) + (5) (14) +opt(f). % f is opt
(14) + (1) (15) +opt(Y) -hasP(Y, f). % all children of f are opt
(15) + (4) (16) +opt(s). % s is opt
(16) + (10) (17) □ % contradiction
We claimed (indirectly) that ¬∃z.opt(z), and the inference above
constructed a counterexample: Z = s in the step resulting in clause (12)
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Finding out who is an “optimist” using the answer literal

We add a special -answer(Z) literal to the goal clause
This literal cannot take part in reasoning, it just stores the answer
Initial clauses:
(1) +opt(X) -hasP(X, P) -opt(P). (4) +hasP(s, f).
(2) +opt(X) -hasF(X, F) +opt(F). (5) +hasF(m, f).
(3) +hasP(s, m). (10) -opt(Z)-answer(Z).

The proof:
(10) -opt(Z) -answer(Z).

(10) + (1) (11) -hasP(Z, U) -opt(U) -answer(Z).
(11) + (3) (12) -opt(m) -answer(s).
(12) + (2) (13) -hasF(m, V) +opt(V) -answer(s).
(13) + (5) (14) +opt(f) -answer(s).
(14) + (1) (15) +opt(Y) -hasP(Y, f) -answer(s).
(15) + (4) (16) +opt(s) -answer(s).
(16) + (10) (17) -answer(s).
The proof ends when only the answer literal is left (cf. empty clause)
The argument of the answer literal shows the answer: s
Using alternative proofs multiple answers can be obtained
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From resolution to Prolog

The base resolution algorithm leaves several things open:
how are the two clauses to resolve upon selected?
how are the literals selected?

Moving towards Prolog, we now view
a Conjunctive NF as a sequence (rather than a set) of clauses
a clause as a sequence of literals

To make reasoning faster, we only allow a subset of FOL clauses:
those with at most one positive literal (Definite or Horn clauses)
The four kinds of Horn clauses:
Rule: exactly 1 pos lit, ≥ 1 neg lits (1) +opt(X)-hasP(X, P)-opt(P).
Fact: exactly 1 pos lit, no neg lits (3) +hasP(s, m).
Goal: no pos lits, ≥ 1 neg lits (10) -opt(Z).
Empty: no pos lits, no neg lits (17) □.

(An empty clause can only occur as the final goal clause)
Positive literals are written first (and are called the clause head)
In our Susan example the only non-Horn clause was:

• (2) +opt(X)-hasF(X, F)+opt(F).
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From resolution to Prolog (ctd.)

(o1) +opt(X) -hasP(X, P) -opt(P). (p1) +hasP(s, f).
(o2) +opt(gm). (p2) +hasP(s, m).

(p3) +hasP(m, gm).

Rules and facts form procedure (boolean function) definitions, with head
and body parts. (A fact has an empty body.)
Rules and facts are grouped into procedures, based on their functors of
form F/N, where F is the name of the clause head, and N is the # of args.
E.g. procedure opt/1 contains (o1)–(o2), proc. hasP/2 contains (p1)–(p3).
A goal clause can be viewed as a sequence of procedure calls.
The literal -opt(s) is a call of the opt procedure, shown above
In this example s acts as the actual, and X as the formal parameter of the
procedure, unification is the means for parameter passing
A resolution step can be viewed as a macro expansion: replace -opt(s)
by the body of the above rule with subst. {X← s}: -hasP(s, P) -opt(P)
If multiple clause heads match a call, a so called choice point is created,
choices are explored top-to-bottom via backtracking
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Example: proving that Susan is an optimist, initial steps
(o1) +opt(X) -hasP(X, P) -opt(P). (p1) +hasP(s, f).
(o2) +opt(gm). (p2) +hasP(s, m).

(p3) +hasP(m, gm).
Proving that Susan (s) is optimist, goal: (g1) -opt(s)

Step 1, matching clause heads: (o1)
resolve (g1) with copy 1 of (o1), subst. {X1 ← s} new goal clause:

(g2) -hasP(s, P1) -opt(P1).

Step 2, matching clauses: (p1), (p2); create CHoice Point 1, storing the
goal (g2) and the list of choices: [p1,p2]
resolve (g2) with (p1), subst. {P1 ← f} new goal clause: (g3) -opt(f).

Step 3, single matching clause head: (o1), no CHP created
resolve (g3) with copy 2 of (o1), subst. {X2 ← f} new goal clause:

(g4) -hasP(f, P2) -opt(P2).

Step 4, no matching clauses, backtrack to CHP 1, remove branch p1,
leaving [p2]1. Go back to (g2), resolve it now with (p2),
subst. {P1 ← m}, new goal clause: (g5) -opt(m).

1As this is the last choice, CHP 1 is removed here.
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Graphical representation of the resolution search tree

−hasP(s,P1)−opt(P1)

(p2)

(o1)

X1 = s

    −opt(s)

    −opt(m)

(o1)

X3 = m

−hasP(m,P3)−opt(P3)

P3 = gm

(p3)

 −opt(gm)

(o2)    (o1)

  X4 = gm

     X2 = f

(o1)

  (p1)

             −opt(f)

−hasP(gm,P4)

−opt(P4)

P1 = m

−hasP(f,P2)−opt(P2)

   P1 = f

.

.

(backtrack)

(empty clause: success)
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Prolog as a resolution theorem prover

Recall the two kinds of clauses: the premises (program clauses)
and the goal clause (the negation of the conclusion to be proved)
Prolog execution uses the following indirect resolution algorithm:

1 If the goal clause is empty, exit with success (of the indirect proof)
2 Otherwise, find all program clauses whose first literal can be

resolved with the first goal literal, scanning top to bottom
3 If there are > 1 such clauses, create a choice point storing this list of

applicable clauses and the current goal clause
4 If there are ≥ 1 such clauses, resolve the goal clause with the first

applicable program clause, make the resolvent the new goal clause,
and go to step (1)

5 If there are no such clauses, backtrack:
if no choice points are left, exit with failure (of the indirect proof)
consider the latest choice point (choice points form a stack),
restore the goal clause from the choice point, resolve it with the
next applicable clause and continue at step (1).
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Prolog as a resolution theorem prover

The Prolog programming language is based on resolution with these
constraints (recap) :

only DEFINITE Clauses are allowed
the indirect, goal oriented resolution approach is used
resolution is applied in a LINEAR manner: start with the goal,
resolve it with a rule or fact, and repeat this for the resolvent
the SELECTION of literals is restricted: only the first literals in both
clauses can be used for resolution

Prolog is thus based on
SLD resolution – Selective Linear resolution on Definite clauses
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Performing queries using resolution – practice

Consider the program
+hP(a, b). (1)
+hP(b, c). (2)
+hP(b, d). (3)
+hP(d, e). (4)

+hGP(Ch, GP) -hP(Ch, P) -hP(P, GP). (5)
Execute the following goals using SLD resolution:
-hGP(a, GP). (11)
-hGP(b, GP). (12)
-hGP(d, GP). (13)
-hGP(Ch, e). (14)
-hGP(Ch, b). (15)
-hGP(Ch, GP). (16)
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Further limitations of Prolog

Equality can not be used in positive literals (clause heads), e.g. these
formulas cannot be converted to Prolog:

∀x .(x = s()← opt(x)) (only Susan can be optimistic)

∀x , y .(x + y = y + x) (addition is commutative)

Consequence: function symbols become data constructors, e.g.
| ?- X = 1+2*3. X = 1+2*3 ?
| ?- X is 1+2*3. X = 7 ? % is is a built-in for arithmetic
| ?- X = 1+2*3, Y+Z = X. X = 1+2*3, Y = 1, Z = 2*3 ?

Prolog unification does not do the occurs check:
FOL resolution prescribes a variable x cannot be unified with a term
α, if x occurs in α.
This costly check is practically useless in Prolog and by default is not
performed by Prolog systems. (However, there is a built-in predicate
unify_with_occurs_check, to perform this).
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The notion of a model in First Order Logic

A FOL formula V is said to be a semantic consequence of U
⇔ on any “island” on which U holds, V holds as well.
The mathematical counterpart of the “island” is the notion of model.
A model for the Susan example consists of

a base set ∆ (the inhabitants of the island), plus:
functions that correspond to symbols m and f : mI , f I ∈ ∆→ ∆
a 1-argument relation corresponding to symbol opt: opt I ⊆ ∆
a 2-argument relation corresponding to symbol hasF : hasF I ⊆ ∆×∆

The notation frequently used for a model in FOL is this:
a model I is a pair consisting of the base set and a mapping I:

I = ⟨∆, I ⟩

here I is a mapping between (function and predicate) symbols and
their corresponding functions/relations, e.g. in our example:

I = {m 7→ mI , f 7→ f I ,opt 7→ opt I ,hasF 7→ hasF I}
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A sample model

a
b

c

d

g mother

friends

(both ways)

non−optimist

father

optimist

e

null

Isample = ⟨∆, I ⟩,
∆ = {a, b, c, d, e, g, null}
(null represents undefined function values)
opt I = {a, b, c, g}
f I = {a 7→ c, b 7→ e, c 7→ null, d 7→ null,

. . . , null 7→ null}
mI = {a 7→ b, b 7→ g, c 7→ d, d 7→ null,

. . . , null 7→ null}
hasF I = {⟨ a, d ⟩, ⟨ d, a ⟩, ⟨ b, g ⟩, ⟨ g, b ⟩,

⟨ d, g ⟩, ⟨ g, d ⟩, ⟨ e, g ⟩, ⟨ g, e ⟩}

Which of the following statements are true in the model I?
(1) ∃x .opt(x) (2) ∃x .¬opt(x)
(3) ∀x .opt(x) (4) ∃x .hasF (m(x), f (x))
(5) ∃x .opt(f (f (x))) (6) ∃x .opt(m(m(x)))
(7) ∀x .¬hasF (x , x)
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Semantics of FOL

The syntax defines which symbol sequences are well formed formulas
Semantics determines the truth of well formed formulas in a given model
of discourse (model theoretical or Tarski-style semantics)
Let us fix a signature, i.e. the sets of function and predicate symbols and
their arities
I =⟨∆, I ⟩ is called an interpretation or model for a given signature iff

∆ is an arbitrary non-empty set (domain)
I is a mapping (normally applied as a superscript), which maps each

function symbol f with arity n
to an n-ary function on the domain ∆:
f I ∈ ∆× . . .×∆︸ ︷︷ ︸

n

7→ ∆ (f I denotes the function that corresponds
to the function symbol f )

predicate symbol p with arity n
to an n-ary relation on the domain ∆:
pI ⊆ ∆× . . .×∆︸ ︷︷ ︸

n

(pI denotes the relation that corresponds
to the predicate symbol p)
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Formal semantics of FOL (ADVANCED)

Given a model I =⟨∆, I ⟩ for a given signature, the semantics of FOL is
concerned with mapping each term to an element of ∆ and mapping
each sentence to a truth value.
The semantic mapping is defined recursively, thus it has to be concerned
with non-closed formulas (those with free variables).
To assign a meaning to non-closed formulas we need a so called variable
assignment, or valuation:

a variable assignment is a function φ which maps each variable
symbol to an element of the domain: φ(xi) ∈ ∆ for all i
Notation: φ[x 7→ d ] is an assignment which maps all variables
distinct from x to the same value as φ, while it maps x to d ∈ ∆.

Semantics of terms: given a model I =⟨∆, I ⟩ and a valuation φ we map
an arbitrary term t to its meaning tφ,I using the following recursive
definition:

If t = x is a variable, then tφ,I = φ(x),
If t = f (t1, . . . , tn), where t1, . . . , tn are terms and f is a function
symbol of arity n, then tφ,I = f I(tφ,I

1 , . . . , tφ,I
n )
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Formal semantics of FOL, ctd. (ADVANCED)

Semantics of formulas: let us fix a signature and a corresponding model
I = ⟨∆, I ⟩
Formula α is said to hold in model I under valuation φ (I |=φ α):
I |=φ p(t1, . . . , tn) iff ⟨d1, . . . ,dn⟩ ∈ P, where P = pI and di = tφ,I

i .
I |=φ t1 = t2 iff tφ,I

1 = tφ,I
2

I |=φ ¬α iff I |=φ α is not the case.
I |=φ α ∧ β iff both I |=φ α and I |=φ β are true.
I |=φ α ∨ β iff at least one of I |=φ α and I |=φ β is true.
I |=φ ∀x .α iff for all d ∈ ∆ it holds that I |=φ[x 7→d ] α.
I |=φ ∃x .α iff there exists d ∈ ∆ such that I |=φ[x 7→d ] α.

It can be shown that I |=φ α depends on φ(x) only if x is free in α.
Thus I |=φ α does not depend on φ, if α is a sentence,
the notation I |= α is used for sentences α, read as I satisfies α, or
I is a model of α.
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Semantic consequence: three versions of |=

Given a model I and a sentence (a formula with no free vars) α we now
know how to decide if I |= α (α holds in I, I is a model of α)

e.g., Isample |= ∃x .opt(x) holds (see page 66) (1)
but Isample |= ∀x .opt(x) does not hold, i.e.: Isample ̸ |= ∀x .opt(x)

We can naturally extend this notation to a set of sentences S:
I |= S (I is a model of S) iff for each α ∈ S, I |= α

e.g., Isample |= {∃x .opt(x),∃x .¬opt(x)} (2)
We now overload even further the symbol “|=”: S |= α
(sentence α is a semantic consequence of the set of sentences S) iff

all models of S are also models of α, i.e.
for all models I, if I |= S then I |= α also holds
e.g. {∀x .opt(x)} |= ∃x .opt(x) (3)

Note that the first two versions speak about sentences being true in a
model: I |= α, I |= {α1, . . .}, see (1) and (2)
The third version relates sentences only, a set of premises and a
conclusion: {α1, . . .} |= α, see (3)
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Syntactic consequence

The notion of syntactic consequence relies on a choice of a proof system,
characterised by a set of inference rules.
An example of a proof system is FOL resolution which includes two
inference rules: resolution and factoring.
S ⊢ α: sentence α is a syntactic consequence of a set of sentences S
(wrt. a given proof system)
iff there exists a proof of α from S in the given proof system.
A proof of α from S is a list of sentences α1, . . . , αn, such that α = αn,
and for all i

either αi ∈ S;
or αi can be deduced by an inference rule of the given proof system
from a subset of {α1, . . . , αi−1}
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Properties of proof systems

Important properties of a proof system:
Soundness: if U ⊢ V then U |= V (what we prove is true)
Completeness: if U |= V then U ⊢ V (what is true can be proven)

As an example, resolution can be shown to be a sound and complete
proof system.
Gödel was the first to prove the completeness of a proof system, i.e. that
the two kinds of consequence – semantic and syntactic – are the same:

|= ≡ ⊢

see the logo of the Association for Logic Programming (ALP):
https://www.cs.nmsu.edu/ALP
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Problems and limitations of first order logic

FOL is not powerful enough
The set of non-negative integers has the property that every integer
can be reached by incrementing 0 by 1 a finite number of times.
This property cannot be formulated in FOL, and FOL axiomatisations
of arithmetic (e.g. by Peano) have non-standard models: in these
models there are integers that cannot be reached from 0 by a finite
number of increases by 1.

Gödel’s incompleteness theorem: there is a formula that is true, but
cannot be proven (equivalent to stating “I am not provable”)
FOL is too powerful, as it is not decidable

FOL is semi-decidable: there is an algorithm that will determine if
S |= α holds, but no algorithm can be developed for checking if
S ̸|= α holds
In the past ∼ 30 years numerous subsets of FOL have been shown
to be (fully) decidable: for these sublanguages there are algorithms
that return a yes/no answer to the question: S |= α?
We will learn about some decidable sublanguages of FOL in the final
part (Part IV) of the course
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