
AIT Semantic and Declarative Technologies Course

Homework P5

For each problem, write a Prolog predicate that corresponds to the provided head comment.
You are free to make use of the predicates defined in the slides and in earlier exercise solutions. Do not use library predicates
that are not discussed in the slides.
You can define helper predicates. Try to provide the most accurate head comment (specification, in other words) for the helper
predicates. Remember that a head comment is an English language sentence which describes the logical relationship between
the arguments of the predicate.

1. Chopping a list

% chop(+N, +List, -LofLists): LofLists is a list whose elements are
% nonempty lists, such that the concatenation of these results in List.
% All elements of LofLists, except for the last, have length N, the
% length of the last should be between 1 and N (inclusive).

| ?- chop(2, [1,a,b,2,c], LL). LL = [[1,a],[b,2],[c]] ? ; no
| ?- chop(3, [1,a,b,2,c], LL). LL = [[1,a,b],[2,c]] ? ; no
| ?- chop(3, [1,a,b,2,c,5], LL). LL = [[1,a,b],[2,c,5]] ? ; no
| ?- chop(3, [1,a], LL). LL = [[1,a]] ? ; no
| ?- chop(3, [], LL). LL = [] ? ; no

Hint: use split/4 from Homework P4.

2. Enumerating sublists

% list_sub(+Whole, ?Part, ?Before, ?Length, ?After): Part is a
sublist of Whole such that there are Before number of elements in
Whole before Part, After number of elements in Whole after Part
and the length of Part is Length.

| ?- list_sub([a,b], Part, Before, Length, After).
Part = [], After = 2, Before = 0, Length = 0 ? ;
Part = [a], After = 1, Before = 0, Length = 1 ? ;
Part = [a,b], After = 0, Before = 0, Length = 2 ? ;
Part = [], After = 1, Before = 1, Length = 0 ? ;
Part = [b], After = 0, Before = 1, Length = 1 ? ;
Part = [], After = 0, Before = 2, Length = 0 ? ; no

Note that this predicate is available in SICStus library(lists) as sublist/5. Obviously, you should not use this library
predicate.
Hint: make a declarative, non-recursive solution using the predicates append/4 (from Class Practice P3) and length/2 (BIP).
Warning: The suggested solution results in very-very simple code :-).

3. Plateaus in a list
Consider a proper list L of arbitrary ground terms (i.e. terms containing no variables). A sublist P of L is called a plateau,
if its length is at least two, all its elements are identical, and it is maximal, i.e. it can not be extended to a longer list of
identical elements.

% plateau(+L, ?I, ?Len): There is a plateau of length Len starting at the
% I-th position of list L.

| ?- plateau([a,a,b,2,2,2,a+1,a+1,s(1,2)], I, Len).
I = 1, Len = 2 ? ;
I = 4, Len = 3 ? ;
I = 7, Len = 2 ? ; no

You don’t have to strive for ultimate efficiency, a declarative solution based on append/4 and length/2 is acceptable.

1

4. Drawing graphs with a single line
In the problem below the data structure graph is defined as follows:
A graph is a list of Prolog structures of the form X-Y, where both X and Y are atoms.
The Prolog list [a1-b1,a2-b2,...,an-bn] describes the graph (in mathematical sense) whose set of nodes is {a1, .., an, b1, ..., bn}
and there is an undirected edge between ai and bi, for i = 1, . . . , n.
Thus the Prolog terms [a-b,a-c], [a-c,b-a], [b-a,a-c], [c-a,a-b], etc. all describe the same graph.
The Prolog term [a-b,a-c,b-c,b-d,b-e,c-d,c-e,d-e] is one of the many terms describing the graph below:

a
/ \

/ \
/ \

b-------c
|\ /|
| \ / |
| \ / |
| \ |
| / \ |
| / \ |
|/ \|
d-------e

You may have encountered the task of drawing this graph with a single line.
We define the notion of a line as a Prolog graph [a1-b1,a2-b2,...,an-bn] where b1 = a2, b2 = a3, . . . , bn−1 = an.
We say that a graph G can be drawn by a line L iff G and L describe the same mathematical graph and furthermore L is a
line.
Write a Prolog predicate draw/2 which has the following head comment:

% draw(+G, ?L): Graph G can be drawn by line L.

The query ?- draw(G, L). should thus return all lines L which “draw” graph G, i.e. describe the same graph as G.

| ?- draw([a-b,a-c], L).
L = [b-a,a-c] ? ;
L = [c-a,a-b] ? ;
no
| ?- draw([a-b,a-c,b-c,b-d,b-e,c-d,c-e,d-e], L), L = [d-e|_].
L = [d-e,e-b,b-a,a-c,c-b,b-d,d-c,c-e] ? ;
L = [d-e,e-b,b-a,a-c,c-d,d-b,b-c,c-e] ? ;
L = [d-e,e-b,b-c,c-a,a-b,b-d,d-c,c-e] ? ;
L = [d-e,e-b,b-c,c-d,d-b,b-a,a-c,c-e] ? ;
L = [d-e,e-b,b-d,d-c,c-a,a-b,b-c,c-e] ? ;
L = [d-e,e-b,b-d,d-c,c-b,b-a,a-c,c-e] ? ;
L = [d-e,e-c,c-a,a-b,b-c,c-d,d-b,b-e] ? ;
L = [d-e,e-c,c-a,a-b,b-d,d-c,c-b,b-e] ? ;
L = [d-e,e-c,c-b,b-a,a-c,c-d,d-b,b-e] ? ;
L = [d-e,e-c,c-b,b-d,d-c,c-a,a-b,b-e] ? ;
L = [d-e,e-c,c-d,d-b,b-a,a-c,c-b,b-e] ? ;
L = [d-e,e-c,c-d,d-b,b-c,c-a,a-b,b-e] ? ;
no

You don’t have to strive for ultimate efficiency, but your program should be able to find all solutions in the last example in
a couple of seconds.
Hints: Write the following helper predicate:

% draw(+G, +P, ?L): Graph G can be drawn by line L which starts at point P
% (in other words: L is of the form [P-_|_])

Use the predicate select/3 from library(lists), also defined in the slides.
Having completed predicate draw/3 check if it works when called with a variable as the second argument (P). If this is the
case (which is most probable), you should be able to define draw/2 in terms of draw/3 in an extremely simple way.
To load a library, e.g. lists, and to import the predicate select/3, include the following line at the beginning of your
program:

:- use_module(library(lists), /*The list of imported predicate functors: */[select/3]).

2

