
AIT Semantic and Declarative Technologies Course

Homework P4

For each problem, write a Prolog predicate that corresponds to the provided head comment.

You are free to make use of the predicates de�ned in the slides and in earlier exercise solutions. Do not use library predicates
that are not discussed in the slides.

You can de�ne helper predicates. Try to provide the most accurate head comment (speci�cation, in other words) for the helper
predicates. Remember that a head comment is an English language sentence which describes the logical relationship between
the arguments of the predicate.

1. Chopping a list

% chop(+N, +List, -LofLists): LofLists is a list whose elements are

% nonempty lists, such that the concatenation of these results in List.

% All elements of LofLists, except for the last, have length N, the

% length of the last should be between 1 and N (inclusive).

| ?- chop(2, [1,a,b,2,c], LL). LL = [[1,a],[b,2],[c]] ? ; no

| ?- chop(3, [1,a,b,2,c], LL). LL = [[1,a,b],[2,c]] ? ; no

| ?- chop(3, [1,a,b,2,c,5], LL). LL = [[1,a,b],[2,c,5]] ? ; no

| ?- chop(3, [1,a], LL). LL = [[1,a]] ? ; no

| ?- chop(3, [], LL). LL = [] ? ; no

Hint: use split/4 from Homework P3.

2. Enumerating sublists

% list_sub(+Whole, ?Part, ?Before, ?Length, ?After): Part is a

sublist of Whole such that there are Before number of elements in

Whole before Part, After number of elements in Whole after Part

and the length of Part is Length.

| ?- list_sub([a,b], Part, Before, Length, After).

Part = [], After = 2, Before = 0, Length = 0 ? ;

Part = [a], After = 1, Before = 0, Length = 1 ? ;

Part = [a,b], After = 0, Before = 0, Length = 2 ? ;

Part = [], After = 1, Before = 1, Length = 0 ? ;

Part = [b], After = 0, Before = 1, Length = 1 ? ;

Part = [], After = 0, Before = 2, Length = 0 ? ; no

This predicate is available in SICStus library(lists) as sublist/5. Obviously, you should not use this library predicate.
Hint: make a declarative, non-recursive solution using the library predicate append/2 and the BIP length/2.
Warning: The suggested solution results in very-very simple code :-).

3. First plateau in a list

Consider a proper list L of arbitrary ground terms (i.e. terms containing no variables). A sublist P of L is called a plateau,
if its length is at least two, all its elements are identical, and it is maximal, i.e. it can not be extended to a longer list of
identical elements.

% first_plateau(+L, ?A, ?Len, ?Suff): The leftmost plateau in list L

% consists of elements A and its length is Len. Suff is the suffix of L

% after the plateau.

| ?- first_plateau([a,b,2,2,2,a+1,a+1,s(1,2)], A, Len, Suff).

A = 2, Len = 3, Suff = [a+1,a+1,s(1,2)] ? ; no

| ?- first_plateau([a+1,a+1,s(1,2)], A, Len, Suff).

A = a+1, Len = 2, Suff = [s(1,2)] ? ; no

You may re-use the predicate boring/2 from class practice P2-1.

4. Enumerating all plateaus in a list

% plateau(+L, ?A, ?Len): In list L there is a plateau of Len elements,

% each being A.

| ?- plateau([a,b,2,2,2,a+1,a+1,s(1,2)], A, Len).

A = 2, Len = 3 ? ;

A = a+1, Len = 2 ? ; no

We suggest to use the predicate first_plateau/4.

1


